Science.gov

Sample records for airway sensory nerves

  1. Sensory nerves in lung and airways.

    PubMed

    Lee, Lu-Yuan; Yu, Jerry

    2014-01-01

    Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.

  2. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2012-10-01

    blind design was used to compare between the effects of pretreatments with ipratropium bromide and placebo aerosols on the airway responses to HA... ipratropium completely prevented the WA- induced bronchoconstriction in asthmatics. In conclusion, bronchoconstriction induced by increasing airway...patients was completely prevented by pretreatment with ipratropium aerosol, indicating an involvement of cholinergic reflex. Accompanying the

  3. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2016-01-01

    selection of more suitable animal models for studying various airway diseases in humans. A continuing growth of our knowledge about the physiological and...rats, but not in control rats. Chronic airway inflammation in sensitized animals is likely a major contributing factor in causing this response. 3) A...C-fibers. 4) In an animal model of asthma (Brown-Norway rats sensitized by ovalbumin), chronic allergic inflammation sensitization increases the

  4. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2011-10-01

    cough , bronchoconstriction, and other cardiopulmonary reflex responses (1). Recent studies conducted in our lab have established the first evidence...dyspnea, airway constriction, cough , etc) in healthy volunteers, and in patients with mild asthma, allergic rhinitis and post upper respiratory...cmH2O/L/sec (P>0.05). Furthermore, increasing airway temperature also consistently elicited bouts of cough in asthmatic patients, but not in healthy

  5. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2013-10-01

    constriction, cough , dyspnea 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...constriction, cough , etc.) in patients with allergic rhinitis. 3) To determine if thermal stress generated various airway dysfunctions in patients with...hyperventilation of humid warm air (WA) triggered cough and reflex bronchoconstriction in patients with mild asthma (Am. J. Resp. Crit. Care Med. 185:1190

  6. RSD931, a novel anti-tussive agent acting on airway sensory nerves

    PubMed Central

    Adcock, J J; Douglas, G J; Garabette, M; Gascoigne, M; Beatch, G; Walker, M; Page, C P

    2003-01-01

    The anti-tussive effects, of the local anaesthetic, lidocaine and carcainium chloride (RSD931) have been investigated in guinea-pigs and rabbits. Pre-treatment of guinea-pigs with aerosols of lidocaine or RSD931 at 0.1, 1.0 and 10 mg ml−1 reduced the number of citric acid-induced coughs by 9.3, 32.6 and 40.9% (P>0.05) for lidocaine and by 25.3% (P>0.05), 40.4% (P>0.05) and 97.6% (P<0.01) for RSD931, respectively and increased the latency to onset of cough at 10.0 mg ml−1 only. In addition, RSD931 at 10 mg ml−1 reduced citric acid-evoked cough responses in rabbits (with prior exposure to ozone at 3 p.p.m. for 1 h) from 22.1±5.1 to 2.7±0.9 coughs (P<0.01). Acute pre-treatment of guinea-pigs with aerosols of lidocaine or RSD931 at 10.0 and 30.0 mg ml−1 reduced the number of capsaicin-evoked coughs by 42.2 and 10.3% (P>0.05) (lidocaine) and by 25% (P>0.05) and 76.9% (P<0.01) (RSD931), respectively. Lidocaine had little effect on the latency of cough onset at either 10.0 or 30.0 mg ml−1, however, RSD at 30.0 mg ml−1 significantly (P<0.05) prolonged the latency of cough onset. RSD931 (10.0 mg ml−1) significantly (P<0.05–<0.01) reduced the spontaneous and histamine-evoked discharges in Aδ-fibres originating from airway, rapidly adapting stretch receptors (RARs) without affecting histamine-evoked bronchoconstriction. Lidocaine at 10.0 mg ml−1 also significantly (P<0.05) inhibited the spontaneous and histamine-induced discharges of RARs without affecting histamine-evoked bronchoconstriction. Aerosols of RSD931 (10.0 mg ml−1) caused a transient, but significant (P<0.05), activation of pulmonary C-fibre endings 2.5 min after administration started. RSD931 had no significant (P>0.05) effects on discharges in bronchial C-fibres originating from bronchial C-fibre endings, capsaicin-evoked discharges of either pulmonary or bronchial C-fibre endings or on capsaicin-evoked bronchoconstriction. In contrast, lidocaine (10.0 mg ml−1) significantly (P<0

  7. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits

    PubMed Central

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm2; P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm2; > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities. PMID:28018231

  8. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits.

    PubMed

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na(+)/K(+)-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm(2); P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm(2); > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  9. Airway nerves: in vitro electrophysiology.

    PubMed

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  10. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  11. AIRWAY HYPERRESPONSIVENESS IN MICE FOLLOWING ANTIGEN AND PARTICULATE MATTER EXPOSURE IS VAGALLY MEDIATED

    EPA Science Inventory

    Sensory nerves within the airways can initiate a variety of protective reflexes. We hypothesized that insults such as exposure to antigen and particulate matter (PM) might dysregulate airway sensory nerve function, thereby contributing to enhanced airway inflammation and hyperre...

  12. TRPA1 is a major oxidant sensor in murine airway sensory neurons

    PubMed Central

    Bessac, Bret F.; Sivula, Michael; von Hehn, Christian A.; Escalera, Jasmine; Cohn, Lauren; Jordt, Sven-Eric

    2008-01-01

    Sensory neurons in the airways are finely tuned to respond to reactive chemicals threatening airway function and integrity. Nasal trigeminal nerve endings are particularly sensitive to oxidants formed in polluted air and during oxidative stress as well as to chlorine, which is frequently released in industrial and domestic accidents. Oxidant activation of airway neurons induces respiratory depression, nasal obstruction, sneezing, cough, and pain. While normally protective, chemosensory airway reflexes can provoke severe complications in patients affected by inflammatory airway conditions like rhinitis and asthma. Here, we showed that both hypochlorite, the oxidizing mediator of chlorine, and hydrogen peroxide, a reactive oxygen species, activated Ca2+ influx and membrane currents in an oxidant-sensitive subpopulation of chemosensory neurons. These responses were absent in neurons from mice lacking TRPA1, an ion channel of the transient receptor potential (TRP) gene family. TRPA1 channels were strongly activated by hypochlorite and hydrogen peroxide in primary sensory neurons and heterologous cells. In tests of respiratory function, Trpa1–/– mice displayed profound deficiencies in hypochlorite- and hydrogen peroxide–induced respiratory depression as well as decreased oxidant-induced pain behavior. Our results indicate that TRPA1 is an oxidant sensor in sensory neurons, initiating neuronal excitation and subsequent physiological responses in vitro and in vivo. PMID:18398506

  13. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    PubMed

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  14. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  15. Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels.

    PubMed

    Taylor-Clark, Thomas E; Undem, Bradley J

    2010-02-01

    Inhalation of ozone is a major health risk in industrialized nations. Ozone can impair lung function and induce respiratory symptoms through sensory neural-mediated pathways, yet the specific interaction of ozone with airway sensory nerves has yet to be elucidated. Here we demonstrate, using a vagally innervated ex vivo tracheal-lung mouse preparation, that ozone selectively and directly evokes action potential discharge in a subset of nociceptive bronchopulmonary nerves, namely slow conducting C-fibres. Sensitivity to ozone correlated with the transient receptor potential (TRP) A1 agonist, cinnamaldehyde, with ozone having no effect on cinnamaldehyde-insensitive fibres. C-fibre responses to ozone were abolished by ruthenium red (TRP inhibitor). Ozone also stimulated a subset of nociceptive sensory neurones isolated from vagal ganglia of wild-type mice, but failed to activate neurones isolated from transient receptor potential ankyrin 1 (TRPA1) knockout mice. Ozone activated HEK293 cells transfected with TRPA1, but failed to activate non-transfected HEK293 or HEK293 transfected with the capsaicin-sensitive transient receptor potential vanilloid 1 (TRPV1) channel. Thus, ozone is not an indiscriminate neuronal activator, but rather it potently and selectively activates a subset of airway C-fibres by directly stimulating TRPA1.

  16. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  17. Sensory Neural Responses to Ozone Exposure during Early Postnatal Development in Rat Airways

    PubMed Central

    Hunter, Dawn D.; Wu, Zhongxin; Dey, Richard D.

    2010-01-01

    Airway infections or irritant exposures during early postnatal periods may contribute to the onset of childhood asthma. The purpose of this study was to examine critical periods of postnatal airway development during which ozone (O3) exposure leads to heightened neural responses. Rats were exposed to O3 (2 ppm) or filtered air for 1 hour on specific postnatal days (PDs) between PD1 and PD29, and killed 24 hours after exposure. In a second experiment, rats were exposed to O3 on PD2–PD6, inside a proposed critical period of development, or on PD19–PD23, outside the critical period. Both groups were re-exposed to O3 on PD28, and killed 24 hours later. Airways were removed, fixed, and prepared for substance P (SP) immunocytochemistry. SP nerve fiber density (NFD) in control extrapulmonary (EXP) epithelium/lamina propria (EPLP) increased threefold, from 1% to 3.3% from PD1–PD3 through PD13–PD15, and maintained through PD29. Upon O3 exposure, SP-NFD in EXP–smooth muscle (SM) and intrapulmonary (INT)-SM increased at least twofold at PD1–PD3 through PD13–PD15 in comparison to air exposure. No change was observed at PD21–PD22 or PD28–PD29. In critical period studies, SP-NFD in the INT-SM and EXP-SM of the PD2–PD6 O3 group re-exposed to O3 on PD28 was significantly higher than that of the group exposed at PD19–PD23 and re-exposed at PD28. These findings suggest that O3-mediated changes in sensory innervation of SM are more responsive during earlier postnatal development. Enhanced responsiveness of airway sensory nerves may be a contributing mechanism of increased susceptibility to environmental exposures observed in human infants and children. PMID:20118220

  18. Interaction between TRPA1 and TRPV1: Synergy on pulmonary sensory nerves.

    PubMed

    Lee, Lu-Yuan; Hsu, Chun-Chun; Lin, Yu-Jung; Lin, Ruei-Lung; Khosravi, Mehdi

    2015-12-01

    Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are co-expressed in vagal pulmonary C-fiber sensory nerves. Because both these ligand-gated non-selective cation channels are sensitive to a number of endogenous inflammatory mediators, it is highly probable that they can be activated simultaneously during airway inflammation. Studies were carried out to investigate whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. Our studies showed a distinct potentiating effect induced abruptly by simultaneous activations of TRPA1 and TRPV1 by their respective selective agonists, allyl isothiocyanate (AITC) and capsaicin (Cap), at near-threshold concentrations. This synergistic effect was demonstrated in the studies of single-unit recording of vagal bronchopulmonary C-fiber afferents and the reflex responses elicited by activation of these afferents in intact animals, as well as in the isolated nodose and jugular bronchopulmonary sensory neurons. This potentiating effect was absent when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, the synergism was dependent upon the extracellular Ca(2+), and the rapid onset of the action further suggests that the interaction probably occurred locally at the sites of these channels. These findings suggest that the TRPA1-TRPV1 interaction may play an important role in regulating the function and excitability of pulmonary sensory neurons during airway inflammation, but the mechanism underlying this positive interaction is not yet fully understood.

  19. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  20. Quantifying nerve architecture in murine and human airways using three-dimensional computational mapping.

    PubMed

    Scott, Gregory D; Fryer, Allison D; Jacoby, David B

    2013-01-01

    The quantitative histological analysis of airway innervation using tissue sections is challenging because of the sparse and patchy distribution of nerves. Here we demonstrate a method using a computational approach to measure airway nerve architecture that will allow for more complete nerve quantification and the measurement of structural peripheral neuroplasticity in lung development and disease. We demonstrate how our computer analysis outperforms manual scoring in quantifying three-dimensional nerve branchpoints and lengths. In murine lungs, we detected airway epithelial nerves that have not been previously identified because of their patchy distribution, and we quantified their three-dimensional morphology using our computer mapping approach. Furthermore, we show the utility of this approach in bronchoscopic forceps biopsies of human airways, as well as the esophagus, colon, and skin.

  1. Alteration in sensory nerve function following electrical shock.

    PubMed

    Abramov, G S; Bier, M; Capelli-Schellpfeffer, M; Lee, R C

    1996-12-01

    A study of the effects of electrical shock on peripheral nerve fibres is presented. Strength and duration of the applied shocks were similar to those encountered in a typical industrial electrical accident. The purpose of this study is: (i) to identify the electrophysiological and morphological change in nerve fibres after the application of electrical current shocks; (ii) to examine the ability of the peripheral nerve fibres to spontaneously regain function and; (iii) to demonstrate the usefulness of the sensory refractory spectrum as an additional technique in assessing the damage. Three groups of animals received twelve 4-ms electric field pulses of approximately 37 V/cm (n = 5), 75 V/cm (n = 9) and 150 V/cm (n = 6), respectively. Group 4 was a control group and received a direct application of 2 per cent lidocaine over the sciatic nerve for 30 min. Thermal effects of the shocks were negligible. The sensory refractory spectrum shows that electrical shock damage was mainly to the large, fast myelinated fibres and that higher field strengths do more damage. Also in a histological examination it was found that the more heavily shocked myelinated fibres had sustained more damage.

  2. Pre-implanted Sensory Nerve Could Enhance the Neurotization in Tissue-Engineered Bone Graft.

    PubMed

    Wu, Yan; Jing, Da; Ouyang, Hongwei; Li, Liang; Zhai, Mingming; Li, Yan; Bi, Long; Guoxian, Pei

    2015-08-01

    In our previous study, it was found that implanting the sensory nerve tract into the tissue-engineered bone to repair large bone defects can significantly result in better osteogenesis effect than tissue-engineered bone graft (TEBG) alone. To study the behavior of the preimplanted sensory nerve in the TEBG, the TEBG was constructed by seeding bone mesenchymal stem cells into β-tricalcium phosphate scaffold with (treatment group) or without (blank group) implantation of the sensory nerve. The expression of calcitonin gene-related peptide (CGRP), which helps in the healing of bone defect in the treatment group was significantly higher than the blank group at 4, 8, and 12 weeks. The expression of growth-associated protein 43 (GAP43), which might be expressed during nerve healing in the treatment group, was significantly higher than the blank group at 4 and 8 weeks. The nerve tracts of the preimplanted sensory nerve were found in the scaffold by the nerve tracing technique. The implanted sensory nerve tracts grew into the pores of scaffolds much earlier than the vascular. The implanted sensory nerve tracts traced by Dil could be observed at 4 weeks, but at the same time, no vascular was observed. In conclusion, the TEBG could be benefited from the preimplanted sensory nerve through the healing behavior of the sensory nerve. The sensory nerve fibers could grow into the pores of the TEBG rapidly, and increase the expression of CGRP, which is helpful in regulating the bone formation and the blood flow.

  3. Coordinated Respiratory Motor Activity in Nerves Innervating the Upper Airway Muscles in Rats.

    PubMed

    Tachikawa, Satoshi; Nakayama, Kiyomi; Nakamura, Shiro; Mochizuki, Ayako; Iijima, Takehiko; Inoue, Tomio

    2016-01-01

    Maintaining the patency of the upper airway during breathing is of vital importance. The activity of various muscles is related to the patency of the upper airway. In the present study, we examined the respiratory motor activity in the efferent nerves innervating the upper airway muscles to determine the movements of the upper airway during respiration under normocapnic conditions (pH = 7.4) and in hypercapnic acidosis (pH = 7.2). Experiments were performed on arterially perfused decerebrate rats aged between postnatal days 21-35. We recorded the efferent nerve activity in a branch of the cervical spinal nerve innervating the infrahyoid muscles (CN), the hypoglossal nerve (HGN), the external branch of the superior laryngeal nerve (SLN), and the recurrent laryngeal nerve (RLN) with the phrenic nerve (PN). Inspiratory nerve discharges were observed in all these nerves under normocapnic conditions. The onset of inspiratory discharges in the CN and HGN was slightly prior to those in the SLN and RLN. When the CO2 concentration in the perfusate was increased from 5% to 8% to prepare for hypercapnic acidosis, the peak amplitudes of the inspiratory discharges in all the recorded nerves were increased. Moreover, hypercapnic acidosis induced pre-inspiratory discharges in the CN, HGN, SLN, and RLN. The onset of pre-inspiratory discharges in the CN, HGN, and SLN was prior to that of discharges in the RLN. These results suggest that the securing of the airway that occurs a certain time before dilation of the glottis may facilitate ventilation and improve hypercapnic acidosis.

  4. Coordinated Respiratory Motor Activity in Nerves Innervating the Upper Airway Muscles in Rats

    PubMed Central

    Tachikawa, Satoshi; Nakayama, Kiyomi; Nakamura, Shiro; Mochizuki, Ayako; Iijima, Takehiko; Inoue, Tomio

    2016-01-01

    Maintaining the patency of the upper airway during breathing is of vital importance. The activity of various muscles is related to the patency of the upper airway. In the present study, we examined the respiratory motor activity in the efferent nerves innervating the upper airway muscles to determine the movements of the upper airway during respiration under normocapnic conditions (pH = 7.4) and in hypercapnic acidosis (pH = 7.2). Experiments were performed on arterially perfused decerebrate rats aged between postnatal days 21–35. We recorded the efferent nerve activity in a branch of the cervical spinal nerve innervating the infrahyoid muscles (CN), the hypoglossal nerve (HGN), the external branch of the superior laryngeal nerve (SLN), and the recurrent laryngeal nerve (RLN) with the phrenic nerve (PN). Inspiratory nerve discharges were observed in all these nerves under normocapnic conditions. The onset of inspiratory discharges in the CN and HGN was slightly prior to those in the SLN and RLN. When the CO2 concentration in the perfusate was increased from 5% to 8% to prepare for hypercapnic acidosis, the peak amplitudes of the inspiratory discharges in all the recorded nerves were increased. Moreover, hypercapnic acidosis induced pre-inspiratory discharges in the CN, HGN, SLN, and RLN. The onset of pre-inspiratory discharges in the CN, HGN, and SLN was prior to that of discharges in the RLN. These results suggest that the securing of the airway that occurs a certain time before dilation of the glottis may facilitate ventilation and improve hypercapnic acidosis. PMID:27832132

  5. Skin conductance responses are elicited by the airway sensory effects of puffs from cigarettes.

    PubMed

    Naqvi, Nasir H; Bechara, Antoine

    2006-07-01

    The airway sensations stimulated by smoking are an important source of hedonic impact (pleasure) for dependent smokers. The learning process by which these sensations become pleasurable is not well understood. The classical conditioning model predicts that airway sensory stimulation will elicit sympathetic arousal that is positively correlated with the hedonic impact that is elicited by airway sensory stimulation. To test this prediction, we measured skin conductance responses (SCRs) and subjective hedonic impact elicited by a series of individual puffs from nicotinized, denicotinized and unlit cigarettes. Nicotinized puffs elicited more subjective hedonic impact than denicotinized and unlit puffs partly as a result of the fact that they provided a greater level of airway sensory stimulation. We found that SCRs were not larger for nicotinized puffs than for denicotinized puffs, but that they were larger for both nicotinized and denicotinized puffs than for unlit puffs. We also found that the average SCR of a subject to denicotinized puffs was positively correlated with the average hedonic impact that a subject obtained from denicotinized puffs. Together, this suggests that SCR magnitude does not reflect within-subject variations in hedonic impact that are due to variations in the level of airway sensory stimulation, but that it does reflect individual differences in the amount of hedonic impact that is derived from a given level of airway sensory stimulation. The results of a post hoc correlation analysis suggest that these individual differences may have been due to variations in the prevailing urge to smoke. The implications of these findings for the classical conditioning model, as well as for other learning models, are discussed.

  6. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2014-12-01

    96, 2013. Hsu, C.C., R.L. Lin, L.-Y. Lee and Y.S. Lin. Hydrogen sulfide induces hypersensitivity of rat lung vagal neurons: role of TRPA1 receptors...or in part by this TATRC project are included in this Annual Progress Report below: 1. Hsu CC, Lin RL, Lee LY, Lin YS. Hydrogen sulfide induces

  7. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation.

    PubMed

    Bain, J R; Veltri, K L; Chamberlain, D; Fahnestock, M

    2001-01-01

    Prolonged muscle denervation results in poor functional recovery after nerve repair. The possible protective effect of temporary sensory innervation of denervated muscle, prior to motor nerve repair, has been examined in the rat. Soleus and gastrocnemius muscles were denervated by cutting the tibial nerve, and the peroneal nerve was then sutured to the transected distal tibial nerve stump either immediately or after two, four or six months. In half of the animals with delayed repair, the saphenous (sensory) nerve was temporarily attached to the distal nerve stump. Muscles were evaluated three months after the peroneal-to-tibial union, and were compared with each other, with unoperated control muscles and with untreated denervated muscles. After four to six months of sensory "protection", gastrocnemius muscles weighed significantly more than unprotected muscles, and both gastrocnemius and soleus muscles exhibited better preservation of their structure, with less fiber atrophy and connective tissue hyperplasia. The maximum compound action potentials were significantly larger in gastrocnemius and soleus muscles following sensory protection, irrespective of the delay in motor nerve union. Isometric force, although less than in control animals and in those with immediate nerve repair, remained reasonably constant after sensory protection, while in unprotected muscles there was a progressive and significant decline as the period of denervation lengthened. We interpret these results as showing that, although incapable of forming excitable neuromuscular junctions, sensory nerves can nevertheless exert powerful trophic effects on denervated muscle fibers. We propose that these findings indicate a useful strategy for improving the outcome of peripheral nerve surgery.

  8. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.

    PubMed

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-09-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff electrodes. The timing of laminectomy was based on the presence of regenerating fibres along the nerve within the tibial cuff. Stimulation of unlesioned tibial nerves (n = 6) evoked the largest motor response in S1 ventral root and the largest sensory response in L7 dorsal root. Growth rates were compared by mapping the regenerating nerve fibres within the tibial nerve cuff to all ventral or dorsal roots and, regardless of the lesion type, the fastest growth was similar in sensory and motor fibres. Maturation was assessed as recovery of the maximum motor and sensory conduction velocities (CVs) within the tibial nerve cuff. Throughout the observation period the CV was approximately 14% faster in regenerated sensory fibres than in motor fibres in accordance with the difference observed in control nerves. Recovery of amplitude was only partial after section, whereas the root distribution pattern was restored. Our data suggest that the fastest growth and maturation rates that can be achieved during regeneration are similar for motor and sensory myelinated fibres.

  9. Glial cell plasticity in sensory ganglia induced by nerve damage.

    PubMed

    Hanani, M; Huang, T Y; Cherkas, P S; Ledda, M; Pannese, E

    2002-01-01

    Numerous studies have been done on the effect of nerve injury on neurons of sensory ganglia but little is known about the contribution of satellite glial cells (SCs) in these ganglia to post-injury events. We investigated cell-to-cell coupling and ultrastructure of SCs in mouse dorsal root ganglia after nerve injury (axotomy). Under control conditions SCs were mutually coupled, but mainly to other SCs around a given neuron. After axotomy SCs became extensively coupled to SCs that enveloped other neurons, apparently by gap junctions. Serial section electron microscopy showed that after axotomy SC sheaths enveloping neighboring neurons formed connections with each other. Such connections were absent in control ganglia. The number of gap junctions between SCs increased 6.5-fold after axotomy. We propose that axotomy induces growth of perineuronal SC sheaths, leading to contacts between SCs enveloping adjacent neurons and to formation of new gap junctions between SCs. These changes may be an important mode of glial plasticity and can contribute to neuropathic pain.

  10. Photostimulation of sensory neurons of the rat vagus nerve

    NASA Astrophysics Data System (ADS)

    Rhee, Albert Y.; Li, Gong; Wells, Jonathon; Kao, Joseph P. Y.

    2008-02-01

    We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-μm output of a diode laser, delivered through a 200-μm silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca 2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca 2+ indicator, to monitor the rise in intracellular Ca 2+ concentration ([Ca 2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca 2+]i (referred to as Ca 2+ transients). Consistent with the Ca 2+ transients arising from influx of Ca 2+, identical photostimulation failed to evoke Ca 2+ responses in the absence of extracellular Ca 2+. Furthermore, the photo-induced Ca 2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

  11. Sensory nerve conduction in the upper limbs at various stages of diabetic neuropathy 1

    PubMed Central

    Noël, P.

    1973-01-01

    In 59 diabetic patients, sensory nerve potentials were recorded at various sites along the course of the median nerve. Pathological responses were characterized by reduced amplitude, desynchronization and decreased conduction velocity (CV). Four groups of patients with increasingly severe nerve dysfunction were distinguished. The presence and severity of clinical neuropathy in the upper limbs could be related to decreased maximal sensory nerve CV in the proximal segment of the limbs. When maximal sensory nerve CV was normal above the wrist, neuropathy usually remained latent. In severe cases where no sensory nerve potentials could be recorded, the cerebral evoked potentials nonetheless permitted a precise evaluation of the somatosensory conduction. In these cases, maximal sensory nerve CV was very low. In five patients with a so-called diabetic mononeuropathy, abnormal nerve potentials were recorded in the median nerve, although no clinical signs could be seen in the corresponding territory. It is proposed that the diabetic nature of a mononeuropathy can be assessed by the finding of latent abnormalities in seemingly normal nerve. PMID:4753874

  12. Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction.

    PubMed

    Risitano, G; Cavallaro, G; Merrino, T; Coppolino, S; Ruggeri, F

    2002-05-01

    Lesions of the digital and other sensory nerves in the hand are common. Based on experimental studies on vein graft as a support for peripheral nerve regeneration, the Authors have been using a simple vein graft to bridge sensory nerve gaps when treating acute hand injuries. This is a retrospective study on the results of 22 sensory nerves repaired using vein grafts in cases in which primary suture was not feasible, in emergency hand reconstruction. Patients were informed that a secondary nerve graft could possibly be necessary in the future. Patients were reviewed by two independent observers at least one year after repair and evaluated using the Highest scale as modified by MacKinnon & Dellon. Evaluation chart included influence of repair on rehabilitation program and presence of painful neuromas and scars as well as patient satisfaction. Results were classified according to Sakellarides and 20/22 were classified as very good or good. Cases classified as poor were satisfied and no secondary nerve grafting has been carried out. Rehabilitation of the associated lesions (tendon lacerations or bone and soft tissue damage) was not influenced by the nerve repair and no painful neuroma was reported in the series. In conclusion, since the literature shows unsatisfactory results in repair of digital nerves with nerve grafts, since it's been demonstrated that an unrepaired sensory nerve leads to painful scar and painful neuroma and since we are reluctant to use nerve grafts in emergency procedures, we recommend this simple method because it is easy, low-cost and effective.

  13. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    PubMed

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  14. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.

    PubMed

    Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

    2013-12-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function).

  15. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea

    PubMed Central

    Gao, Nan; Lee, Patrick; Yu, Fu-Shin

    2016-01-01

    The corneal epithelium consists of stratified epithelial cells, sparsely interspersed with dendritic cells (DCs) and a dense layer of sensory axons. We sought to assess the structural and functional correlation of DCs and sensory nerves. Two morphologically different DCs, dendriform and round-shaped, were detected in the corneal epithelium. The dendriform DCs were located at the sub-basal space where the nerve plexus resides, with DC dendrites crossing several nerve endings. The round-shaped DCs were closely associated with nerve fiber branching points, penetrating the basement membrane and reaching into the stroma. Phenotypically, the round-shaped DCs were CD86 positive. Trigeminal denervation resulted in epithelial defects with or without total tarsorrhaphy, decreased tear secretion, and the loss of dendriform DCs at the ocular surface. Local DC depletion resulted in a significant decrease in corneal sensitivity, an increase in epithelial defects, and a reduced density of nerve endings at the center of the cornea. Post-wound nerve regeneration was also delayed in the DC-depleted corneas. Taken together, our data show that DCs and sensory nerves are located in close proximity. DCs may play a role in epithelium innervation by accompanying the sensory nerve fibers in crossing the basement membrane and branching into nerve endings. PMID:27805041

  16. Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury.

    PubMed

    Wang, Yu; Guo, Zhi-Yuan; Sun, Xun; Lu, Shi-Bi; Xu, Wen-Jing; Zhao, Qing; Peng, Jiang

    2016-06-02

    Wallerian degeneration is a sequence of events in the distal stump of axotomized nerves. Despite large numbers of researches concentrating on WD, the biological mechanism still remains unclear. Hence we constructed a rat model with both motor and sensory nerves injury and then conducted a RNA-seq analysis. Here the rats were divided into the 4 following groups: normal motor nerves (NMN), injured motor nerves (IMN), normal sensory nerves (NSN) and injured sensory nerves (ISN). The transcriptomes of rats were sequenced by the Illumina HiSeq. The differentially expressed genes (DEGs) of 4 combinations including NMN vs. IMN, NSN vs. ISN, NMN vs. NSN and IMN vs. ISN were identified respectively. For the above 4 combinations, we identified 1666, 1514, 95 and 17 DEGs. We found that NMN vs. IMN shared the most common genes with NSN vs. ISN indicating common mechanisms between motor nerves injury and sensory nerves injury. At last, we performed an enrichment analysis and observed that the DEGs of NMN vs IMN and NSN vs. ISN were significantly associated with binding and activity, immune response, biosynthesis, metabolism and development. We hope our study may shed light on the molecular mechanisms of nerves degeneration and regeneration during WD.

  17. Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Ren, Zhiwu; Wang, Yu; Peng, Jiang; Zhang, Li; Xu, Wenjing; Liang, Xiangdang; Zhao, Qing; Lu, Shibi

    2012-02-15

    The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.

  18. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments.

    PubMed

    Turkof, Edvin; Jurasch, Nikita; Knolle, Erik; Schwendenwein, Ilse; Habib, Danja; Unger, Ewald; Reichel, Martin; Losert, Udo

    2006-10-01

    Differentiation between motor and sensory fascicles is frequently necessary in reconstructive peripheral nerve surgery. The goal of this experimental study was to verify if centrally motor evoked potentials (MEP) could be implemented to differentiate sensory from motor fascicles, despite the well-known intermingling between nerve fascicles along their course to their distant periphery. This new procedure would enable surgeons to use MEP for placing nerve grafts at corresponding fascicles in the proximal and distal stumps without the need to use time-consuming staining. In ten sheep, both ulnar nerves were exposed at the terminal bifurcation between the last sensory and motor branch. Animals were then relaxed to avoid volume conduction. On central stimulation, the evoked nerve compound action potentials were simultaneously recorded from both terminal branches. In all cases, neurogenic motor nerve action potentials were recorded only from the terminal motor branch. The conclusion was that MEPs can be used for intraoperative differentiation between sensory and motor nerves. Further studies are necessary to develop this method for in situ measurements on intact nerve trunks.

  19. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD

    PubMed Central

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-01-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses.In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D2/3 agonist), ropinirole (D2/3/4 agonist), SKF 38393 (D1/5 agonist), AR-C68397AA (Viozan™) (dual D2/B2 agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus.The quinagolide response was blocked by sulpiride (D2/3 antagonist) but not SCH 23390 (D1/5 antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner.In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease. PMID:12055141

  20. Effect of dopamine receptor agonists on sensory nerve activity: possible therapeutic targets for the treatment of asthma and COPD.

    PubMed

    Birrell, Mark A; Crispino, Natascia; Hele, David J; Patel, Hema J; Yacoub, Magdi H; Barnes, Peter J; Belvisi, Maria G

    2002-06-01

    Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses. In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D(2/3) agonist), ropinirole (D(2/3/4) agonist), SKF 38393 (D(1/5) agonist), AR-C68397AA (Viozan) (dual D(2)/B(2) agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus. The quinagolide response was blocked by sulpiride (D(2/3) antagonist) but not SCH 23390 (D(1/5) antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner. In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease.

  1. Sympathetic modulation of sensory nerve activity with age: human and rodent skin models.

    PubMed

    Khalil, Z; LeVasseur, S; Merhi, M; Helme, R D

    1997-11-01

    1. Sensory nerves serve an afferent role and mediate neurogenic components of inflammation and tissue repair via an axon reflex release of sensory peptides at sites of injury. Dysfunction of these nerves with age could contribute to delayed tissue healing. 2. Complementary animal and human skin models were used in the present studies to investigate changes in the modulation of sensory nerve function by sympathetic efferents during ageing. Laser Doppler flowmetry was used to monitor neurogenic skin vascular responses. 3. The animal model used skin of the hind footpad of anaesthetized rats combined with electrical stimulation of the sciatic nerve, while the human model comprised capsaicin electrophoresis to the volar surface of the forearm. Sympathetic modulation was effected by systemic phentolamine pretreatment in animals and local application in the human model. 4. The results obtained from the human model confirmed the reported decline in sensory nerve function and showed no change in sympathetic modulation with age. The results from the animal model confirm and expand results obtained from the human model. 5. The use of low (5 Hz) and high (15 Hz) frequency electrical stimulation (20 V, 2 ms for 1 min) revealed a preferential response of aged sensory nerves to low-frequency electrical stimulation parameters with differential sympathetic modulation that is dependent on the frequency of stimulation.

  2. Neurilemmoma of Deep Peroneal Nerve Sensory Branch : Thermographic Findings with Compression Test

    PubMed Central

    Ryu, Seung Jun

    2015-01-01

    We report a case of neurilemmoma of deep peroneal nerve sensory branch that triggered sensory change with compression test on lower extremity. After resection of tumor, there are evoked thermal changes on pre- and post-operative infrared (IR) thermographic images. A 52-year-old female presented with low back pain, sciatica, and sensory change on the dorsal side of the right foot and big toe that has lasted for 9 months. She also presented with right tibial mass sized 1.2 cm by 1.4 cm. Ultrasonographic imaging revealed a peripheral nerve sheath tumor arising from the peroneal nerve. IR thermographic image showed hyperthermia when the neurilemoma induced sensory change with compression test on the fibular area, dorsum of foot, and big toe. After surgery, the symptoms and thermographic changes were relieved and disappeared. The clinical, surgical, radiographic, and thermographic perspectives regarding this case are discussed. PMID:26539275

  3. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    NASA Technical Reports Server (NTRS)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  4. Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations.

    PubMed

    Vaughan, Sydney K; Kemp, Zachary; Hatzipetros, Theo; Vieira, Fernando; Valdez, Gregorio

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1(G93A) and TDP43(A315T) transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1(G93A) and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α-motor axons in SOD1(G93A) mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α-motor axons in TDP43(A315T) transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α-motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS-causing mutations, with pathological changes starting at their peripheral nerve endings.

  5. Role of sensory nerves in gastroprotective effect of anandamide in rats.

    PubMed

    Warzecha, Z; Dembinski, A; Ceranowicz, P; Dembinski, M; Cieszkowski, J; Kownacki, P; Konturek, P C

    2011-04-01

    Previous studies have shown that stimulation of cannabinoid 1 (CB1) receptor protects the gastric mucosa against stress-induced lesion. Aim of the present study was to examine the influence of anandamide on lipid peroxidation and antioxidant defense system in gastric mucosa and the role of sensory nerves in gastroprotective effects of cannabinoids. Studies were performed on rats with intact or ablated sensory nerves (by neurotoxic doses of capsaicin). Gastric lesions were induced by water immersion and restrain stress (WRS). Anandamide was administered at the dose of 0.3, 1.5 or 3.0 μmol/kg, 30 min before exposure to WRS. CB1 receptor antagonist, AM251 (4.0 μmol/kg) was administered 40 min before WRS. WRS induced gastric lesions associated with the decrease in gastric blood flow, mucosal DNA synthesis and mucosal activity of superoxide dismutase (SOD). Serum level of interleukin-1β (IL-1β) and mucosal level of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were increased. Administration of anandamide reduced the ulcers area, generation of MDA+4-HNE and serum level of IL-1β, and this effect was associated with the reduction in the WRS-induced decrease in gastric mucosal blood flow, mucosal DNA synthesis and SOD activity. Ablation of sensory nerves increased the area of ulcers, serum level of IL-1β and mucosal content of MDA+4-HNE, whereas mucosal DNA synthesis, SOD activity and blood flow were additionally decreased. In rats with ablation of sensory nerves, administration of anandamide at the high doses (1.5 and 3.0 μmol/kg) partly reduced deleterious effect of WRS on gastric mucosa, but this effect was weaker than in animals with intact sensory nerves. Low dose of anandamide (0.3 μmol/kg) was ineffective in the protection of gastric mucosa against the WRS-induced lesions in rats with ablation of sensory nerves. In rats with intact sensory nerves and exposed to WRS, administration of AM251 exhibited deleterious effect. In rats with ablation of sensory

  6. Accommodation to hyperpolarizing currents: differences between motor and sensory nerves in mice.

    PubMed

    Nodera, Hiroyuki; Rutkove, Seward B

    2012-06-19

    Peripheral motor nerves have revealed variability in excitability by hyperpolarizing current at specific target response levels, likely reflecting differences in the hyperpolarization-activated current (Ih). Whether such variability in Ih exists in sensory axons is yet to be established. We performed nerve excitability testing in mouse tail motor and sensory nerves at 3 target response levels (20, 40, and 60% of the maximum amplitudes). Target-level dependent variability was present by long hyperpolarizing currents in motor and sensory nerves in which the recording at the low target level showed smaller threshold changes than at the high target level. Other excitability measures, however, showed no variability. Furthermore, the accommodation by long, strong hyperpolarization revealed smaller S3 accommodation (threshold change between the maximum and at the end of the 200 ms conditioning pulse) at the low target response level in sensory axons, but not in motor axons. Variation in the kinetics of the subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in motor and sensory axons is the most likely explanation for these findings. The present study has proposed that nerve excitability testing may provide a non-invasive means for the assessment of the different types of Ih in neurological disorders where HCN subtypes play unique pathophysiological roles.

  7. A study of the sympathetic skin response and sensory nerve action potential after median and ulnar nerve repair.

    PubMed

    Jazayeri, M; Ghavanini, M R; Rahimi, H R; Raissi, G R

    2003-01-01

    The purpose of this study was to compare SSR with sensory nerve action potential (SNAP) responses in regeneration of injured peripheral nerves after nerve repair. We studied 10 male patients with a mean age of 26.7 years. All the patients had complete laceration of median or ulnar nerves. The patients were followed up at least for six months. SSR and SNAP assessment were performed every one to two months. Normal hands were used as controls. SSR was positive after 15.8 +/- 9.4 weeks (mean +/- 2 SD) and SNAP after 27.8 +/- 12.9 weeks (mean +/- 2 SD). The difference was statistically significant (P value < 0.001). This can be due to more rapid growth of sympathetic unmyelinated fibers relative to sensory myelinated fibers. This study also shows that recovery of the sudomotor activity following nerve repair is satisfactory in general and SSR can be used as a useful and sensitive method in the evaluation of sudomotor nerve regeneration.

  8. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    PubMed

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  9. Distribution of sensory nerve endings around the human sinus tarsi: a cadaver study.

    PubMed

    Rein, Susanne; Manthey, Suzanne; Zwipp, Hans; Witt, Andreas

    2014-04-01

    The aim of this study was to analyse the pattern of sensory nerve endings and blood vessels around the sinus tarsi. The superficial and deep parts of the fat pads at the inferior extensor retinaculum (IER) as well as the subtalar joint capsule inside the sinus tarsi from 13 cadaver feet were dissected. The distribution of the sensory nerve endings and blood vessels were analysed in the resected specimens as the number per cm(2) after staining with haematoxylin-eosin, S100 protein, low-affinity neurotrophin receptor p75, and protein gene product 9.5 using the classification of Freeman and Wyke. Free nerve endings were the predominant sensory ending (P < 0.001). Ruffini and Golgi-like endings were rarely found and no Pacini corpuscles were seen. Significantly more free nerve endings (P < 0.001) and blood vessels (P = 0.01) were observed in the subtalar joint capsule than in the superficial part of the fat pad at the IER. The deep part of the fat pad at the IER had significantly more blood vessels than the superficial part of the fat pad at the IER (P = 0.012). Significantly more blood vessels than free nerve endings were seen in all three groups (P < 0.001). No significant differences in distribution were seen in terms of right or left side, except for free nerve endings in the superficial part of the fat pad at the IER (P = 0.003). A greater number of free nerve endings correlated with a greater number of blood vessels. The presence of sensory nerve endings between individual fat cells supports the hypothesis that the fat pad has a proprioceptive role monitoring changes and that it is a source of pain in sinus tarsi syndrome due to the abundance of free nerve endings.

  10. Neuroplasticity of Sensory and Sympathetic Nerve Fibers in the Painful Arthritic Joint

    PubMed Central

    Ghilardi, Joseph R.; Freeman, Katie T.; Jimenez-Andrade, Juan M.; Coughlin, Kathleen; Kaczmarska, Magdalena J.; Castaneda-Corral, Gabriela; Bloom, Aaron P.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2012-01-01

    Objective Many forms of arthritis are accompanied by significant chronic joint pain. Here we studied whether there is significant sprouting of sensory and sympathetic nerve fibers in the painful arthritic knee joint and whether nerve growth factor (NGF) drives this pathological reorganization. Methods A painful arthritic knee joint was produced by injection of complete Freund’s adjuvant (CFA) into the knee joint of young adult mice. CFA-injected mice were then treated systemically with vehicle or anti-NGF antibody. Pain behaviors were assessed and at 28 days following the initial CFA injection, the knee joints were processed for immunohistochemistry using antibodies raised against calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), growth associated protein-43 (GAP43; sprouted nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), CD31 (endothelial cells) or CD68 (monocytes/macrophages). Results In CFA-injected mice, but not vehicle-injected mice, there was a significant increase in the density of CD68+ macrophages, CD31+ blood vessels, CGRP+, NF200+, GAP43+, and TH+ nerve fibers in the synovium as well as joint pain-related behaviors. Administration of anti-NGF reduced these pain-related behaviors and the ectopic sprouting of nerve fibers, but had no significant effect on the increase in density of CD31+ blood vessels or CD68+ macrophages. Conclusions Ectopic sprouting of sensory and sympathetic nerve fibers occurs in the painful arthritic joint and may be involved in the generation and maintenance of arthritic pain. PMID:22246649

  11. Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves.

    PubMed

    Undem, Bradley J; Oh, Eun Joo; Lancaster, Eric; Weinreich, Daniel

    2003-03-01

    The effect of reducing extracellular calcium concentration ([Ca(2+)](o)) on vagal afferent excitability was analyzed in a guinea pig isolated vagally innervated trachea-bronchus preparation. Afferent fibers were characterized as either having low-threshold, rapidly adapting mechanosensors (Adelta fibers) or nociceptive-like phenotypes (Adelta and C fibers). The nociceptors were derived from neurons within the jugular ganglia, whereas the low-threshold mechanosensors were derived from neurons within the nodose ganglia. Reducing [Ca(2+)](o) did not affect the excitability of the low-threshold mechanosensors in the airway. By contrast, reducing [Ca(2+)](o) selectively increased the excitability of airway nociceptors as manifested by a substantive increase in action potential discharge in response to mechanical stimulation, and in a subset of fibers, by overtly evoking action potential discharge. This increase in the excitability of nociceptors was not mimicked by a combination of omega-conotoxin and nifedipine or tetraethylammonium. Whole cell patch recordings from airway-labeled and unlabeled neurons in the vagal jugular ganglia support the hypothesis that [Ca(2+)](o) inhibits a nonselective cation conductance in vagal nociceptors that may serve to regulate excitability of the nerve terminals within the airways.

  12. Sensory nerve conduction and nociception in the equine lower forelimb during perineural bupivacaine infusion along the palmar nerves

    PubMed Central

    Zarucco, Laura; Driessen, Bernd; Scandella, Massimiliano; Cozzi, Francesca; Cantile, Carlo

    2010-01-01

    The purpose of this investigation was to study lateral palmar nerve (LPN) and medial palmar nerve (MPN) morphology and determine nociception and sensory nerve conduction velocity (SNCV) following placement of continuous peripheral nerve block (CPNB) catheters along LPN and MPN with subsequent bupivacaine (BUP) infusion. Myelinated nerve fiber distribution in LPN and MPN was examined after harvesting nerve specimens in 3 anesthetized horses and processing them for morphometric analysis. In 5 sedated horses, CPNB catheters were placed along each PN in both forelimbs. Horses then received in one forelimb 3 mL 0.125% BUP containing epinephrine 1:200 000 and 0.04% NaHCO3 per catheter site followed by 2 mL/h infusion over a 6-day period, while in the other forelimb equal amounts of saline (SAL) solution were administered. The hoof withdrawal response (HWR) threshold during pressure loading of the area above the dorsal coronary band was determined daily in both forelimbs. On day 6 SNCV was measured under general anesthesia of horses in each limb’s LPN and MPN to detect nerve injury, followed by CPNB catheter removal. The SNCV was also recorded in 2 anesthetized non-instrumented horses (sham controls). In both LPN and MPN myelinated fiber distributions were bimodal. The fraction of large fibers (>7 μm) was greater in the MPN than LPN (P < 0.05). Presence of CPNB catheters and SAL administration did neither affect measured HWR thresholds nor SNCVs, whereas BUP infusion suppressed HWRs. In conclusion, CPNB with 0.125% BUP provides pronounced analgesia by inhibiting sensory nerve conduction in the distal equine forelimb. PMID:21197231

  13. Effect of pulsed infrared lasers on neural conduction and axoplasmic transport in sensory nerves

    NASA Astrophysics Data System (ADS)

    Wesselmann, Ursula; Rymer, William Z.; Lin, Shien-Fong

    1990-06-01

    Over the past ten years there has been an increasing interest in the use of lasers for neurosurgical and neurological procedures. Novel recent applications range from neurosurgical procedures such as dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers to pain relief by low power laser irradiation of the appropriate painful nerve or affected region1 '2 However, despite the widespread clinical applications of laser light, very little is known about the photobiological interactions between laser light and nervous tissue. The present studies were designed to evaluate the effects of pulsed Nd:YAG laser light on neural impulse conduction and axoplasmic transport in sensory nerves in rats and cats. Our data indicate that Q-switched Nd:YAG laser irradiation can induce a preferential impairment of (1) the synaptic effects of small afferent fibers on dorsal horn cells in the spinal cord and of (2) small slow conducting sensory nerve fibers in dorsal roots and peripheral nerves. These results imply that laser light might have selective effects on impulse conduction in slow conducting sensory nerve fibers. In agreement with our elecirophysiological observations recent histological data from our laboratory show, that axonal transport of the enzyme horseradish peroxidase is selectively impaired in small sensory nerve fibers. In summary these data indicate, that Q-switched Nd:YAG laser irradiation can selectively impair neural conduction and axoplasmic transport in small sensory nerve fibers as compared to fast conducting fibers. A selective influence of laser irradiation on slow conducting fibers could have important clinical applications, especially for the treatment of chronic pain.

  14. Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses

    PubMed Central

    Ledbetter, Noah M.; Ethier, Christian; Oby, Emily R.; Hiatt, Scott D.; Wilder, Andrew M.; Ko, Jason H.; Agnew, Sonya P.; Miller, Lee E.

    2013-01-01

    High-count microelectrode arrays implanted in peripheral nerves could restore motor function after spinal cord injury or sensory function after limb loss. In this study, we implanted Utah Slanted Electrode Arrays (USEAs) intrafascicularly at the elbow or shoulder in arm nerves of rhesus monkeys (n = 4) under isoflurane anesthesia. Input-output curves indicated that pulse-width-modulated single-electrode stimulation in each arm nerve could recruit single muscles with little or no recruitment of other muscles. Stimulus trains evoked specific, natural, hand movements, which could be combined via multielectrode stimulation to elicit coordinated power or pinch grasp. Stimulation also elicited short-latency evoked potentials (EPs) in primary somatosensory cortex, which might be used to provide sensory feedback from a prosthetic limb. These results demonstrate a high-resolution, high-channel-count interface to the peripheral nervous system for restoring hand function after neural injury or disruption or for examining nerve structure. PMID:23076108

  15. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  16. Effects of Latrodectus spider venoms on sensory and motor nerve terminals of muscle spindles.

    PubMed

    Queiroz, L S; Duchen, L W

    1982-08-23

    The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.

  17. The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes⋆

    PubMed Central

    Naqvi, Nasir H.; Bechara, Antoine

    2005-01-01

    Puffs from cigarettes are the fundamental unit of smoking reward. Here, we examined the extent to which reward from puffs can be derived from the airway sensory effect of nicotine, in the absence of a direct central nervous system effect of nicotine. We did this by assessing the self-reported reward obtained from individual puffs from nicotinized, denicotinized and unlit cigarettes within 7 s of inhalation, which is before nicotine had an opportunity to reach the brain. We also assessed the self-reported strength of airway sensations elicited by the puffs. We found that nicotinized puffs were rated as both stronger and more rewarding than denicotinized and unlit puffs. We also found that the extent to which nicotine elicited reward was directly correlated with the extent to which nicotine elicited airway sensations. This indicates that the airway sensory effects of nicotine contribute to the reward from puffs, above and beyond the reward derived from the airway sensory effects of non-nicotine constituents. These findings have implications for the interpretation of studies that use puffs as experimental units to examine nicotine reward. They also have implications for the use of denicotinized and low nicotine cigarettes as aids to smoking cessation. PMID:15996724

  18. Serotonin and Sensory Nerves: Meeting in the Cardiovascular System

    PubMed Central

    Watts, Stephanie W.

    2014-01-01

    Blood pressure regulation by 5-HT has proven to be a complex story to unravel. The work by Cuesta et al in this issue of Vascular Pharmacology adds another layer of complexity by providing sound in vivo data that 5-HT, through the 5-HT7 receptor, can inhibit the vasodepressor actions of the sensory nervous system and thereby promote blood pressure maintenance. This interaction of 5-HT with the sensory nervous system is inhibitory, whereas 5-HT is understood to be stimulatory in other systems. Moreover, activation of the 5-HT7 receptor has been linked to both reduction and elevation of blood pressure. These interactions are discussed in this mini-review, as are potential steps forward in understanding the interplay of 5-HT, the sensory nervous system and blood pressure. PMID:25181552

  19. Multifocal acquired demyelinating sensory and motor neuropathy presenting as a peripheral nerve tumor.

    PubMed

    Allen, David C; Smallman, Clare A; Mills, Kerry R

    2006-09-01

    A man with multifocal acquired demyelinating sensory and motor neuropathy (MADSAM), or Lewis-Sumner syndrome, presented with a progressive left lumbosacral plexus lesion resembling a neurofibroma. After 7 years he developed a left ulnar nerve lesion with conduction block in its upper segment. Treatment with intravenous immunoglobulin improved the symptoms and signs of both lesions. We conclude that inflammatory neuropathy must be considered in the differential diagnosis of peripheral nerve tumors, and that unifocal lesions may precede multifocal involvement in MADSAM by several years. In addition, we discuss the clinical features in 9 patients attending a specialist peripheral nerve clinic and review the literature.

  20. Phenotyping sensory nerve endings in vitro in the mouse

    PubMed Central

    Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W

    2014-01-01

    This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088

  1. NerveCheck for the Detection of Sensory Loss and Neuropathic Pain in Diabetes

    PubMed Central

    Ponirakis, Georgios; Odriozola, Maria N.; Odriozola, Samantha; Petropoulos, Ioannis N.; Azmi, Shazli; Ferdousi, Maryam; Fadavi, Hassan; Alam, Uazman; Marshall, Andrew; Jeziorska, Maria; Miro, Anthony; Kheyami, Ahmad; Tavakoli, Mitra; Al-Ahmar, Ahmed; Odriozola, Maria B.; Odriozola, Ariel

    2016-01-01

    Abstract Background: Accurate and economic detection of nerve damage in diabetes is key to more widespread diagnosis of patients with diabetic peripheral neuropathy (DPN) and painful diabetic neuropathy. This study examined the diagnostic performance of NerveCheck, an inexpensive ($500) quantitative sensory testing (QST) device. Methods: One hundred forty-four subjects (74 with and 70 without diabetes) underwent assessment with NerveCheck, neuropathy disability score (NDS), nerve conduction studies (NCS), intraepidermal and corneal nerve fiber density (IENFD and CNFD), and McGill questionnaire for neuropathic pain. Results: Of the 74 subjects with diabetes, 41 were diagnosed with DPN based on the NDS. The NerveCheck scores for vibration perception threshold (VPT), cold perception threshold (CPT), and warm perception threshold (WPT) were significantly lower (P ≤ 0.0001) in diabetic patients with DPN compared to patients without DPN. The diagnostic accuracy of VPT was high with reference to NCS (area under the curve [AUC]: 82%–84%) and moderate for IENFD, CNFD, and neuropathic pain (AUC: 60%–76%). The diagnostic accuracy of CPT and WPT was moderate with reference to NCS, IENFD, and CNFD (AUC: 69%–78%) and low for neuropathic pain (AUC: 63%–65%). Conclusions: NerveCheck is a low-cost QST device with good diagnostic utility for identifying sensory deficits, comparable to established tests of large and small fiber neuropathy and for the severity of neuropathic pain. PMID:27922760

  2. Heightened motor and sensory (mirror-touch) referral induced by nerve block or topical anesthetic.

    PubMed

    Case, Laura K; Gosavi, Radhika; Ramachandran, Vilayanur S

    2013-08-01

    Mirror neurons allow us to covertly simulate the sensation and movement of others. If mirror neurons are sensory and motor neurons, why do we not actually feel this simulation- like "mirror-touch synesthetes"? Might afferent sensation normally inhibit mirror representations from reaching consciousness? We and others have reported heightened sensory referral to phantom limbs and temporarily anesthetized arms. These patients, however, had experienced illness or injury of the deafferented limb. In the current study we observe heightened sensory and motor referral to the face after unilateral nerve block for routine dental procedures. We also obtain double-blind, quantitative evidence of heightened sensory referral in healthy participants completing a mirror-touch confusion task after topical anesthetic cream is applied. We suggest that sensory and motor feedback exist in dynamic equilibrium with mirror representations; as feedback is reduced, the brain draws more upon visual information to determine- perhaps in a Bayesian manner- what to feel.

  3. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor.

    PubMed

    Verbout, Norah G; Jacoby, David B; Gleich, Gerald J; Fryer, Allison D

    2009-08-01

    Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. Antibody to NGF (Ab NGF) was administered to sensitized guinea pigs with and without atropine pretreatment (1 mg/kg iv) 1 h before challenge. At 24 h after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Electrical stimulation of both vagus nerves caused bronchoconstriction that was increased in challenged animals. Atropine pretreatment potentiated antigen challenge-induced hyperreactivity. Ab NGF did not affect eosinophils or inflammatory cells in any group, nor did it prevent hyperreactivity in challenged animals that were not pretreated with atropine. However, Ab NGF did prevent atropine-enhanced, antigen challenge-induced hyperreactivity and eosinophil activation (assessed by immunohistochemistry). This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial.

  4. The use of sensory action potential to evaluate inferior alveolar nerve damage after orthognathic surgery.

    PubMed

    Calabria, Francesca; Sellek, Lucy; Gugole, Fabio; Trevisiol, Lorenzo; Trevisol, Lorenzo; Bertolasi, Laura; D'Agostino, Antonio

    2013-03-01

    To assess and monitor the common event of neurosensory disturbance to the inferior alveolar nerve (IAN) after bilateral sagittal split osteotomy, we used clinical sensory tests and neurophysiologic test sensory action potentials. The diagnostic value of these tests was evaluated by comparing them with the degree of nerve damage reported by patients. Fourteen patients undergoing bilateral sagittal split osteotomy were analyzed preoperatively and 2 years postoperatively. Patients were evaluated bilaterally for positive and negative symptoms: light touch sensation, paraesthesia, hyperesthesia, and dysaesthesia; a "sensation score" was then calculated for each patient. Patients were also asked if they would be willing to repeat the procedure knowing the sensation loss they had now. Next, the right and left IAN were evaluated using sensory action potential and correlated with the other results. Before surgery, the medium latency difference between left and right was lower compared with postsurgery, with all patients having some deficit. The reduction in medium amplitude of 67% after the intervention was statistically significant. The frequency of abnormal findings in the electrophysiologic tests indicating IAN injury correlated with subjective sensory alteration. All patients said that they would repeat the surgery. Electrophysiologic testing is recommended for the evaluation of nerve dysfunction and seems a sensitive method for accurately assessing postsurgical nerve conduction.

  5. [The role of sensory nerves in the development of inflammation of oral tissues].

    PubMed

    Olgart, L

    1998-01-01

    Experimental stimulation and clinical procedures applied on the tooth crown cause vascular reactions in the dental pulp of cats and rats. These reactions depend on the activation of trigeminal afferent nerves and release of neuropeptides. A brief stimulation causes vasodilation, which is mainly mediated by calcitonin gene-related peptide (CGRP). A longer stimulation results in plasma extravasation which is mediated mainly by substance P (SP) and prostaglandins in the pulp. In adjacent oral tissues the mechanisms following stimulation or local irritation are more complex and other mediators are also involved. Nitric oxide (NO) which is instantly produced in the tissues is such a novel mediator. The chemosensitive nature of the nerves involved (capsaicin sensitive) may lead to their activation also by inflammatory mediators released in the tissues. Thus, sensory nerves may modulate the progress of inflammation. Since sensory nerves in oral tissues are often the first structures to be activated during clinical procedures, tissue reactions that occur can be assumed to be initiated and perpetuated by the sensory neuropeptides. Much work is now made to modulate the sensory nerveinduced cascade of events in oral tissues to find new treatment strategies.

  6. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  7. Hypoglossal Nerve Palsy After Airway Management for General Anesthesia: An Analysis of 69 Patients

    PubMed Central

    Shah, Aalap C.; Barnes, Christopher; Spiekerman, Charles F.; Bollag, Laurent A.

    2014-01-01

    Isolated hypoglossal nerve palsy (HNP), or neurapraxia, a rare postoperative complication after airway management, causes ipsilateral tongue deviation, dysarthria, and dysphagia. We reviewed the pathophysiological causes of hypoglossal nerve injury and discuss the associated clinical and procedural characteristics of affected patients. Furthermore, we identified procedural factors potentially affecting HNP recovery duration and propose several measures that may reduce the risk of HNP. While HNP can occur after a variety of surgeries, most cases in the literature were reported after orthopedic and otolaryngology operations, typically in males. The diagnosis is frequently missed by the anesthesia care team in the recovery room due to the delayed symptomatic onset and often requires neurology and otolaryngology evaluations to exclude serious etiologies. Signs and symptoms are self-limited, with resolution occurring within 2 months in 50% of patients, and 80% resolving within 4 months. Currently, there are no specific preventive or therapeutic recommendations. We found 69 cases of HNP after procedural airway management reported in the literature from 1926–2013. PMID:25625257

  8. Painful traumatic peripheral partial nerve injury-sensory dysfunction profiles comparing outcomes of bedside examination and quantitative sensory testing.

    PubMed

    Leffler, Ann-Sofie; Hansson, Per

    2008-05-01

    The primary aim of this retrospective study was to focusing on the relationship between individual outcomes of bedside examination (BE) and quantitative testing of somatosensory functions (QST) in 32 patients with painful traumatic partial nerve injury. In addition, the potential presence of common sensory dysfunction denominators has been probed. Patients with a history of traumatic partial nerve injury and ongoing pain were included if pain was confined to the entire or part of the innervation territory of the severed nerve and a bedside titration of the neuron-anatomical borders confirmed sensory aberrations. An in-depth BE and QST was then performed in the most painful area. Categorization of normal and pathological outcome for both BE and QST was based on time honoured clinical decision-making using the healthy contralateral corresponding area as control. In patients with normal outcome or quantitative aberrations (i.e. hypo- or hyperesthesia) at BE and QST, the same individual outcome of touch sensation was reported by 48% of the patients, for cold in 54% and for warmth in 58%. The most common dysfunction found at both BE and QST was hypoesthesia, however with no common denominators in somatosensory dysfunction. In conclusion, this study demonstrated that not infrequently the individual outcome of BE and the corresponding QST measure differed, most frequently for touch sensibility. This finding is of outmost importance when QST outcomes are used to corroborate results from BE in the diagnostic situation.

  9. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs.

  10. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays.

    PubMed

    Clark, Gregory A; Ledbetter, Noah M; Warren, David J; Harrison, Reid R

    2011-01-01

    Recording and stimulation via high-count penetrating microelectrode arrays implanted in peripheral nerves may help restore precise motor and sensory function after nervous system damage or disease. Although previous work has demonstrated safety and relatively successful stimulation for long-term implants of 100-electrode Utah Slanted Electrode Arrays (USEAs) in feline sciatic nerve [1], two major remaining challenges were 1) to maintain viable recordings of nerve action potentials long-term, and 2) to overcome contamination of unit recordings by myoelectric (EMG) activity in awake, moving animals. In conjunction with improvements to USEAs themselves, we have redesigned several aspects of our USEA containment and connector systems. Although further increases in unit yield and long-term stability remain desirable, here we report considerable progress toward meeting both of these goals: We have successfully recorded unit activity from USEAs implanted intrafascicularly in sciatic nerve for periods up to 4 months (the terminal experimental time point), and we have developed a containment system that effectively eliminates or substantially reduces EMG contamination of unit recordings in the moving animal. In addition, we used a 100-channel wireless recording integrated circuit attached to implanted USEAs to transmit broadband or spike-threshold data from nerve. Neural data thusly obtained during imposed limb movements were decoded blindly to drive a virtual prosthetic limb in real time. These results support the possibility of using USEAs in peripheral nerves to provide motor control and cutaneous or proprioceptive sensory feedback in individuals after limb loss or spinal cord injury.

  11. CAPSAICIN-SENSITIVE SENSORY NERVE FIBERS CONTRIBUTE TO THE GENERATION AND MAINTENANCE OF SKELETAL FRACTURE PAIN

    PubMed Central

    Jimenez-Andrade, Juan Miguel; Bloom, Aaron P.; Mantyh, William G.; Koewler, Nathan J.; Freeman, Katie T.; Delong, David; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2009-01-01

    Although skeletal pain can have a marked impact on a patient’s functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15–16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP+) sensory nerve fibers, but not 200 kD neurofilament H positive (NF200+) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP+ C-fibers) and capsaicin-insensitive (primarily NF200+ A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain. PMID:19486928

  12. The sensory component of the facial nerve of a reptile (Lacerta viridis).

    PubMed

    Jacobs, V L

    1979-04-01

    The sensory fibers of the facial nerve in Lacerta viridis have been studied with a silver impregnation method to follow the course of axonal degeneration. Destruction of the geniculate ganglion demonstrated the degenerated sensory component of the facial nerve adjacent to the anterior vestibular root. Within the lateral vestibular area the facial sensory fibers consist of numerous rootlets separated by vestibular fibers and cells. These rootlets may join to form a main or paired sensory tract that passes through the vestibular nuclei to enter the tractus solitarius and divide into a small ascending prefacial component and a major descending prevagal division. A few fibers continue into the postvagal part of tractus solitarius and extend caudally to terminate in the nucleus commissura infima. Prefacial fibers terminate along the periventricular gray while prevagal fibers terminate within the tractus solitarius on the dendrites of cells of nucleus tractus solitarius and near the periphery of the dorsal motor nucleus of X. There was no noticeable degeneration in the descendens tractus trigemini. Terminal degeneration to descendens nucleus trigemini and motor nucleus of VII followed the tractus solitarius course. Most facial sensory fibers are probably related to taste and other visceral information.

  13. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy

    PubMed Central

    Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.

    2014-01-01

    Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients

  14. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy.

    PubMed

    Schmid, Annina B; Bland, Jeremy D P; Bhat, Manzoor A; Bennett, David L H

    2014-12-01

    Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P<0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P<0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P>0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P<0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P>0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P<0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients' symptoms or

  15. Sensory nerves and nitric oxide contribute to reflex cutaneous vasodilation in humans.

    PubMed

    Wong, Brett J

    2013-04-15

    We tested the hypothesis that inhibition of cutaneous sensory nerves would attenuate reflex cutaneous vasodilation in response to an increase in core temperature. Nine subjects were equipped with four microdialysis fibers on the forearm. Two sites were treated with topical anesthetic EMLA cream for 120 min. Sensory nerve inhibition was verified by lack of sensation to a pinprick. Microdialysis fibers were randomly assigned as 1) lactated Ringer (control); 2) 10 mM nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase; 3) EMLA + lactated Ringer; and 4) EMLA + L-NAME. Laser-Doppler flowmetry was used as an index of skin blood flow, and blood pressure was measured via brachial auscultation. Subjects wore a water-perfused suit, and oral temperature was monitored as an index of core temperature. The suit was perfused with 50°C water to initiate whole body heat stress to raise oral temperature 0.8°C above baseline. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVC(max)). There was no difference in CVC between control and EMLA sites (67 ± 5 vs. 69 ± 6% CVC(max)), but the onset of vasodilation was delayed at EMLA compared with control sites. The L-NAME site was significantly attenuated compared with control and EMLA sites (45 ± 5% CVC(max); P < 0.01). Combined EMLA + L-NAME site (25 ± 6% CVC(max)) was attenuated compared with control and EMLA (P < 0.001) and L-NAME only (P < 0.01). These data suggest cutaneous sensory nerves contribute to reflex cutaneous vasodilation during the early, but not latter, stages of heat stress, and full expression of reflex cutaneous vasodilation requires functional sensory nerves and NOS.

  16. Emerging Relationships between Exercise, Sensory Nerves, and Neuropathic Pain

    PubMed Central

    Cooper, Michael A.; Kluding, Patricia M.; Wright, Douglas E.

    2016-01-01

    The utilization of physical activity as a therapeutic tool is rapidly growing in the medical community and the role exercise may offer in the alleviation of painful disease states is an emerging research area. The development of neuropathic pain is a complex mechanism, which clinicians and researchers are continually working to better understand. The limited therapies available for alleviation of these pain states are still focused on pain abatement and as opposed to treating underlying mechanisms. The continued research into exercise and pain may address these underlying mechanisms, but the mechanisms which exercise acts through are still poorly understood. The objective of this review is to provide an overview of how the peripheral nervous system responds to exercise, the relationship of inflammation and exercise, and experimental and clinical use of exercise to treat pain. Although pain is associated with many conditions, this review highlights pain associated with diabetes as well as experimental studies on nerve damages-associated pain. Because of the global effects of exercise across multiple organ systems, exercise intervention can address multiple problems across the entire nervous system through a single intervention. This is a double-edged sword however, as the global interactions of exercise also require in depth investigations to include and identify the many changes that can occur after physical activity. A continued investment into research is necessary to advance the adoption of physical activity as a beneficial remedy for neuropathic pain. The following highlights our current understanding of how exercise alters pain, the varied pain models used to explore exercise intervention, and the molecular pathways leading to the physiological and pathological changes following exercise intervention. PMID:27601974

  17. Sensory and sympathetic nerve contributions to the cutaneous vasodilator response from a noxious heat stimulus.

    PubMed

    Carter, Stephen J; Hodges, Gary J

    2011-11-01

    We investigated the roles of sensory and noradrenergic sympathetic nerves on the cutaneous vasodilator response to a localized noxious heating stimulus. In two separate studies, four forearm skin sites were instrumented with microdialysis fibres, local heaters and laser-Doppler probes. Skin sites were locally heated from 33 to 42 °C or rapidly to 44 °C (noxious). In the first study, we tested sensory nerve involvement using EMLA cream. Treatments were as follows: (1) control 42 °C; (2) EMLA 42 °C; (3) control 44°C; and (4) EMLA 44 °C. At the EMLA-treated sites, the axon reflex was reduced compared with the control sites during heating to 42 °C (P < 0.05). There were no differences during the plateau phase (P > 0.05). At both the sites heated to 44 °C, the initial peak and nadir became indistinguishable, and the EMLA-treated sites were lower compared with the control sites during the plateau phase (P < 0.05). In the second study, we tested the involvement of noradrenergic sympathetic nerves in response to the noxious heating using bretylium tosylate (BT). Treatments were as follows: (1) control 42 °C; (2) BT 42 °C; (3) control 44 °C; and (4) BT 44 °C. Treatment with BT at the 42 °C sites resulted in a marked reduction in both the axon reflex and the secondary plateau (P < 0.05). At the 44 °C sites, there was no apparent initial peak or nadir, but the plateau phase was reduced at the BT-treated sites (P < 0.05). These data suggest that both sympathetic nerves and sensory nerves are involved during the vasodilator response to a noxious heat stimulus.

  18. Role of sensory nerves in the cutaneous vasoconstrictor response to local cooling in humans.

    PubMed

    Hodges, Gary J; Traeger, J Andrew; Tang, Tri; Kosiba, Wojciech A; Zhao, Kun; Johnson, John M

    2007-07-01

    Local cooling (LC) causes a cutaneous vasoconstriction (VC). In this study, we tested whether there is a mechanism that links LC to VC nerve function via sensory nerves. Six subjects participated. Local skin and body temperatures were controlled with Peltier probe holders and water-perfused suits, respectively. Skin blood flow at four forearm sites was monitored by laser-Doppler flowmetry with the following treatments: untreated control, pretreatment with local anesthesia (LA) blocking sensory nerve function, pretreatment with bretylium tosylate (BT) blocking VC nerve function, and pretreatment with both LA and BT. Local skin temperature was slowly reduced from 34 to 29 degrees C at all four sites. Both sites treated with LA produced an increase in cutaneous vascular conductance (CVC) early in the LC process (64 +/- 55%, LA only; 42 +/- 14% LA plus BT; P < 0.05), which was absent at the control and BT-only sites (5 +/- 8 and 6 +/- 8%, respectively; P > 0.05). As cooling continued, there were significant reductions in CVC at all sites (P < 0.05). At control and LA-only sites, CVC decreased by 39 +/- 4 and 46 +/- 8% of the original baseline values, which were significantly (P < 0.05) more than the reductions in CVC at the sites treated with BT and BT plus LA (-26 +/- 8 and -22 +/- 6%). Because LA affected only the short-term response to LC, either alone or in the presence of BT, we conclude that sensory nerves are involved early in the VC response to LC, but not for either adrenergic or nonadrenergic VC with longer term LC.

  19. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy: an analysis of 500 cases.

    PubMed

    Zhang, Yunqian; Li, Jintao; Wang, Tingjuan; Wang, Jianlin

    2014-07-15

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Affiliated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control subjects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were significantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. Moreover, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The amplitude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, asymptomatic stage of diabetic peripheral neuropathy.

  20. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    PubMed Central

    Ferreira Junior, Rui Seabra

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617

  1. Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves

    PubMed Central

    Hamid, Hussein S; Mervak, Colin M; Münch, Alexandra E; Robell, Nicholas J; Hayes, John M; Porzio, Michael T; Singleton, J Robinson; Smith, A Gordon; Feldman, Eva L; Lentz, Stephen I

    2014-01-01

    Objective This study focused on altered mitochondrial dynamics as a potential mechanism for diabetic peripheral neuropathy (DPN). We employed both an in vitro sensory neuron model and an in situ analysis of human intraepidermal nerve fibers (IENFs) from cutaneous biopsies to measure alterations in the size distribution of mitochondria as a result of hyperglycemia and diabetes, respectively. Methods Neurite- and nerve-specific mitochondrial signals within cultured rodent sensory neurons and human IENFs were measured by employing a three-dimensional visualization and quantification technique. Skin biopsies from distal thigh (DT) and distal leg (DL) were analyzed from three groups of patients; patients with diabetes and no DPN, patients with diabetes and confirmed DPN, and healthy controls. Results This analysis demonstrated an increase in mitochondria distributed within the neurites of cultured sensory neurons exposed to hyperglycemic conditions. Similar changes were observed within IENFs of the DT in DPN patients compared to controls. This change was represented by a significant shift in the size frequency distribution of mitochondria toward larger mitochondria volumes within DT nerves of DPN patients. There was a length-dependent difference in mitochondria within IENFs. Distal leg IENFs from control patients had a significant shift toward larger volumes of mitochondrial signal compared to DT IENFs. Interpretation The results of this study support the hypothesis that altered mitochondrial dynamics may contribute to DPN pathogenesis. Future studies will examine the potential mechanisms that are responsible for mitochondrial changes within IENFs and its effect on DPN pathogenesis. PMID:25493271

  2. Functional coupling between motor and sensory nerves through contraction of sphincters in the pudendal area of the female cat.

    PubMed

    Lagunes-Córdoba, Roberto; Hernández, Pablo Rogelio; Raya, José Guadalupe; Muñoz-Martínez, E J

    2010-01-01

    The question of whether skin receptors might help in the perception of muscle contraction and body movement has not been settled. The present study gives direct evidence of skin receptor firing in close coincidence with the contraction of the vaginal and anal sphincters. The distal stump of the sectioned motor pudendal nerve was stimulated. Single shocks induced a wavelike increase in the lumen pressure of the distal vagina and the anal canal, as well as constriction of the vaginal introitus and the anus. The constriction pulls on and moves the surrounding skin, which was initially detected visually. In the present experiments, a thin strain gauge that pressed on the skin surface detected its displacement. Single shocks to the motor nerve induced a wave of skin movement with maximal amplitude at 5 mm from the anus and propagated with decrement beyond 35 mm. The peripheral terminals of the sensory pudendal nerve and the posterior femoral nerve supply the skin that moves. Sensory axons from both nerves fired in response to both tactile stimulation and the skin movement produced by the constriction of the orifices (motor-sensory coupling). In cats with all nerves intact, a single shock to the sensory nerves induced reflex waves of skin movement and lumen pressure (sensory-motor coupling). Both couplings provide evidence for a feedforward action that might help to maintain the female posture during mating and to the perception of muscle contraction.

  3. Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea.

    PubMed

    Eckert, Danny J; Lo, Yu L; Saboisky, Julian P; Jordan, Amy S; White, David P; Malhotra, Atul

    2011-12-01

    Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P < 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P < 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.

  4. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana.

    PubMed

    Watanabe, Hidehiro; Nishino, Hiroshi; Nishikawa, Michiko; Mizunami, Makoto; Yokohari, Fumio

    2010-10-01

    Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.

  5. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  6. Evaluation of the motor and sensory components of the pudendal nerve.

    PubMed

    Loening-Baucke, V; Read, N W; Yamada, T; Barker, A T

    1994-02-01

    Extensive neurophysiological investigations consisting of different techniques to evaluate the efferents and afferents of the pudendal nerve were carried out in 27 healthy subjects. These investigations included motor evoked potential recordings from the external anal sphincter in response to magnetic stimulation of the cortex and lumbosacral roots, measurement of sacral reflex latency to magnetic and electrical stimulation, and cortical sensory evoked potential recording after stimulation of the dorso-genital nerve and anal canal. Motor latencies after transcranial magnetic stimulation to the anal sphincter were 25.1 +/- 2.9 msec at rest and 20.9 +/- 2.0 msec with voluntary sphincter contraction (facilitation). Motor latency after lumbosacral root stimulation was 3.7 +/- 1.0 msec. Mean sacral reflex latency after magnetic stimulation was 43.8 +/- 11.2 msec and was significantly longer than after electrical stimulation (37.0 +/- 7.2 msec; P < 0.05). P1 latency of the sensory evoked potentials after dorso-genital nerve stimulation was 40 +/- 3 msec and was significantly shorter than after anal stimulation 46 +/- 3 msec (P < 0.01). Evoked potential recording allows us to study both upper and lower motor neuron components to the anal sphincter. The present study paves the way for the combined application of these tests in the evaluation of disorders of the pelvic floor.

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage.

    PubMed

    Resnik, Jennifer; Polley, Daniel B

    2017-03-21

    Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries.

  9. [Should biopsy be done on the sensory branch of the radial nerve in leprosy patients? Apropos of 112 cases].

    PubMed

    Grauwin, M Y; Dieye, M; Mane, I; Cartel, J L

    1997-01-01

    Biopsies of the superficial sensory branch of the radial nerve are contested. Some authors mention it to be simple and without harm, but others are formally against this procedure. At ILAD, 274 biopsies were made between 1986 to 1992. We present a review of 112 leprosy patients for whom biopsy was done. On 112 reexamined patients, we observed 2 benign neuroma, hence 2%. The comparison of nerve function before biopsy and after, of 63 of the 112 patients, reexamination shows no significant modification of the functional score. Given even the occurrence of benign neuroma in only 2% of the cases, the authors do not recommend the biopsy of the superficial sensory branch of the radial nerve. For research purposes on neuritis in leprosy, as well as to assure diagnosis in primary neuritic leprosy, we propose the biopsy of the sensory branch of the musculo cutaneous nerve at elbow level.

  10. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice

    PubMed Central

    2012-01-01

    Introduction Although the prevalence of arthritis dramatically increases with age, the great majority of preclinical studies concerning the mechanisms that drive arthritic joint pain have been performed in young animals. One mechanism hypothesized to contribute to arthritic pain is ectopic nerve sprouting; however, neuroplasticity is generally thought to be greater in young versus old nerves. Here we explore whether sensory and sympathetic nerve fibers can undergo a significant ectopic nerve remodeling in the painful arthritic knee joint of geriatric mice. Methods Vehicle (saline) or complete Freund's adjuvant (CFA) was injected into the knee joint of 27- to 29-month-old female mice. Pain behaviors, macrophage infiltration, neovascularization, and the sprouting of sensory and sympathetic nerve fibers were then assessed 28 days later, when significant knee-joint pain was present. Knee joints were processed for immunohistochemistry by using antibodies raised against CD68 (monocytes/macrophages), PECAM (endothelial cells), calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), and growth-associated protein 43 (GAP43; nerve fibers undergoing sprouting). Results At 4 weeks after initial injection, CFA-injected mice displayed robust pain-related behaviors (which included flinching, guarding, impaired limb use, and reduced weight bearing), whereas animals injected with vehicle alone displayed no significant pain-related behaviors. Similarly, in the CFA-injected knee joint, but not in the vehicle-injected knee joint, a remarkable increase was noted in the number of CD68+ macrophages, density of PECAM+ blood vessels, and density and formation of neuroma-like structures by CGRP+, NF200+, and TH+ nerve fibers in the synovium and periosteum. Conclusions Sensory and sympathetic nerve fibers that innervate the aged knee joint clearly maintain the capacity for robust

  11. Immunohistochemical study of skin nerve regeneration after toe-to-finger transplantation: correlations with clinical, quantitative sensory, and electrophysiological evaluations.

    PubMed

    Hsieh, Sung-Tsang; Chu, Nai-Shin

    2004-12-01

    Cutaneous nerve regeneration following toe-to-finger transplantation was studied by immunohistochemical technique using antibody to protein gene product 9.5 (PGP 9.5) which is a specific neuronal marker. By this technique, epidermal and dermal nerves were semi-quantified and the Meissner's corpuscles were quantified. There were also quantitative sensory tests (QST) including pinprick, pressure and temperature, as well as electrophysiological studies including digital nerve sensory conduction, digital nerve somatosensory evoked potentials and sympathetic skin response at the pulp of the transplanted toes. The opposite corresponding normal finger and normal toe served as controls. Study subjects were 20 adult patients with toe-to-finger transplantation for at least one year. A score system was used to quantify the results of histochemical, psychophysiological and electrophysiological studies. Clinically 7 patients had good recovery and 13 patients had poor recovery. Cutaneous nerve regeneration in the transplanted toes was incomplete with epidermal nerve, dermal nerve and the Meissner's corpuscle significantly reduced. The nerve regeneration was correlated with clinical recovery, QST and electrophysiological data. These findings indicate that immunohischemical technique is useful to evaluate skin nerve regeneration following toe-to-finger transplantation, and that although nerve regeneration did occur, it was incomplete and correlated with the severity of hand injury.

  12. Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves.

    PubMed

    Lorenzo, Santiago; Minson, Christopher T

    2007-11-15

    Reactive hyperaemia is the increase in blood flow following arterial occlusion. The exact mechanisms mediating this response in skin are not fully understood. The purpose of this study was to investigate the individual and combined contributions of (1) sensory nerves and large-conductance calcium activated potassium (BKCa) channels, and (2) nitric oxide (NO) and prostanoids to cutaneous reactive hyperaemia. Laser-Doppler flowmetry was used to measure skin blood flow in a total of 18 subjects. Peak blood flow (BF) was defined as the highest blood flow value after release of the pressure cuff. Total hyperaemic response was calculated by taking the area under the curve (AUC) of the hyperaemic response minus baseline. Infusates were perfused through forearm skin using microdialysis in four sites. In the sensory nerve/BKCa protocol: (1) EMLA cream (EMLA, applied topically to skin surface), (2) tetraethylammonium (TEA), (3) EMLA + TEA (Combo), and (4) Ringer solution (Control). In the prostanoid/NO protocol: (1) ketorolac (Keto), (2) NG-nitro-l-arginine methyl ester (L-NAME), (3) Keto + l-NAME (Combo), and (4) Ringer solution (Control). CVC was calculated as flux/mean arterial pressure and normalized to maximal flow. Hyperaemic responses in Control (1389 +/- 794%CVC max s) were significantly greater compared to TEA, EMLA and Combo sites (TEA, 630 +/- 512, P = 0.003; EMLA, 421 +/- 216, P < 0.001; Combo, 201 +/- 200, P < 0.001%CVC max s). Furthermore, AUC in Combo (Keto + l-NAME) site was significantly greater than Control (4109 +/- 2777 versus 1295 +/- 368%CVC max s). These data suggest (1) sensory nerves and BKCa channels play major roles in the EDHF component of reactive hyperaemia and appear to work partly independent of each other, and (2) the COX pathway does not appear to have a vasodilatory role in cutaneous reactive hyperaemia.

  13. Sensory disturbances of buccal and lingual nerve by muscle compression: A case report and review of the literature

    PubMed Central

    Alvira-González, Joaquín

    2016-01-01

    Introduction Several studies on cadavers dissection have shown that collateral branches of the trigeminal nerve cross muscle bundles on their way, being a possible etiological factor of some nerve disturbances. Case Report A 45-year-old man attended to the Temporomandibular Joint and Orofacial Pain Unit of the Master of Oral Surgery and Implantology in Hospital Odontològic of Barcelona University, referring tingling in the left hemifacial región and ipsilateral lingual side for one year, with discomfort when shaving or skin compression. Discussion Several branches of the trigeminal nerve follow a path through the masticatory muscles, being the lingual nerve and buccal nerve the most involved. The hyperactivity of the muscle bundles that are crossed by nerve structures generates a compression that could explain certain orofacial neuropathies (numbness and / or pain) in which a clear etiologic factor can not be identified. Key words:Buccal nerve, paresthesia, idiopathic trigeminal sensory neuropathy. PMID:26855715

  14. Implementation of linear sensory signaling via multiple coordinated mechanisms at central vestibular nerve synapses.

    PubMed

    McElvain, Lauren E; Faulstich, Michael; Jeanne, James M; Moore, Jeffrey D; du Lac, Sascha

    2015-03-04

    Signal transfer in neural circuits is dynamically modified by the recent history of neuronal activity. Short-term plasticity endows synapses with nonlinear transmission properties, yet synapses in sensory and motor circuits are capable of signaling linearly over a wide range of presynaptic firing rates. How do such synapses achieve rate-invariant transmission despite history-dependent nonlinearities? Here, ultrastructural, biophysical, and computational analyses demonstrate that concerted molecular, anatomical, and physiological refinements are required for central vestibular nerve synapses to linearly transmit rate-coded sensory signals. Vestibular synapses operate in a physiological regime of steady-state depression imposed by tonic firing. Rate-invariant transmission relies on brief presynaptic action potentials that delimit calcium influx, large pools of rapidly mobilized vesicles, multiple low-probability release sites, robust postsynaptic receptor sensitivity, and efficient transmitter clearance. Broadband linear synaptic filtering of head motion signals is thus achieved by coordinately tuned synaptic machinery that maintains physiological operation within inherent cell biological limitations.

  15. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    PubMed

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day.

  16. A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans.

    PubMed

    Van Boven, R W; Johnson, K O

    1994-02-01

    Twenty-four subjects were studied before and up to 1 year after surgery that produced injury to a major sensory branch of the trigeminal nerve. We employed a battery of 11 psychophysical tests, in which the neural mechanisms underlying performance are understood, to study the basis of recovery following nerve injury. Immediately after nerve injury, sensation was profoundly impaired in all subjects. In the following weeks and months, the recovery of performance proceeded in an orderly fashion. Although the rates of recovery varied between subjects, the order of recovery between tasks did not. The recovery rates fell into three distinct categories. Recovery in one task, brush-stroke directional discrimination, was most rapid. Two weeks after nerve injury, 52% of subjects could discriminate brush-stroke direction; by 3 months only one subject could not perform this task. The second category comprised recovery rates for pain thresholds for noxious heat, cold and mechanical stimuli, and to preinjury performance in tasks assessing touch and vibration detection, two-point discrimination, cooling detection and subjective magnitude estimation of mechanical force. The third, slowest group included recovery rates for warming detection and grating orientation discrimination. Early recovery to preinjury performance levels in the brush-stroke direction and one-point versus two-point discrimination tasks was correlated with later recovery to near normal performance in the grating orientation task. The grating orientation task was unique in providing a measure that corresponded consistently with the subjects' reports of sensory deficits. Our psychophysical findings are consistent with neurophysiological data showing that the major primary afferent fibre classes reinnervate the skin at a similar rate. A hypothesis that accounts for the psychophysical findings in this study is that differences in recovery rates between tasks is determined largely by their relative dependencies on

  17. Acceptable differences in sensory and motor latencies between the median and ulnar nerves.

    PubMed

    Grossart, Elizabeth A; Prahlow, Nathan D; Buschbacher, Ralph M

    2006-01-01

    The median and ulnar nerves are often studied during the same electrodiagnostic examination. The sensory and motor latencies of these nerves have been compared to detect a common electrodiagnostic entity: median neuropathy at the wrist. However, this comparison could also be used to diagnose less common ulnar pathology. For this reason, it is important to establish normal values for comparing median and ulnar sensory and motor latencies. Previous research deriving these differences in latency has had some limitations. The purpose of this study was to derive an improved normative database for the acceptable differences in latency between the median and ulnar sensory and motor nerves of the same limb. Median and ulnar sensory and motor latencies were obtained from 219 and 238 asymptomatic risk-factor-free subjects, respectively. An analysis of variance was performed to determine whether physical characteristics, specifically age, race, gender, height, or body mass index (as an indicator of obesity), correlated with differences in latency. Differences in sensory latencies were unaffected by physical characteristics. The upper limit of normal difference between median and ulnar (median longer than ulnar) onset latency was 0.5 ms (97th percentile), whereas the peak latency value was 0.4 ms (97th percentile). The upper limit of normal difference between ulnar-versus-median (ulnar longer than median) onset latency was 0.3 ms (97th percentile), whereas the peak-latency value was 0.5 ms (97th percentile). The mean difference in motor latencies correlated with age, with older subjects having a greater variability. In subjects aged 50 and over, the mean difference in median-versus-ulnar latency was 0.9 ms +/- 0.4 ms. The upper limit of normal difference (median longer than ulnar) was 1.7 ms (97th percentile). The upper limit of normal ulnar motor latency is attained if the ulnar latency comes within 0.3 ms of the median latency. In individuals less than 50 years of age, the

  18. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology.

    PubMed

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-08-15

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.

  19. Antidromic effect of calcitonin gene-related peptide containing nerves on cerebral arteries in rats--a possible role of sensory nerves on cerebral circulatio.

    PubMed

    Asari, J; Suzuki, K; Matsumoto, M; Sasaki, T; Kodama, N

    2001-12-01

    It has generally been thought that the neurogenic control of cerebral circulation is decided mainly by the autonomic nervous system. Recent studies, however, indicate that sensory nerves rich in calcitonin gene-related peptide (CGRP) are also distributed on cerebral arteries. CGRP is one of neuropeptides that has strong vasodilative effect. This indicates that sensory nerves may antidromically dilate cerebral arteries mediated by CGRP. The aim of this study is to investigate the relationship between the CGRP containing nerves and cerebral circulation. Firstly, we developed a selective denervation model of CGRP containing nerves. The denervation was performed with intrathecal administration of capsaicin in rats. Secondly, we measured the change of regional cerebral blood flow (rCBF) during the occlusion of bilateral common carotid artery or systemic hypotension. CGRP immunoreactivity around cerebral arteries disappeared after capsaicin treatment. The rCBF during the occlusion of bilateral common carotid artery decreased more in the capsaicin group than in the control group. There was no significant difference in the changes of rCBF during systemic hypotension. These results showed that CGRP containing nerves would participate in the vascular response of cerebral arteries. It is likely that sensory nerves with CGRP should have antidromic effect on cerebral circulation.

  20. The functions of TRPA1 and TRPV1: moving away from sensory nerves.

    PubMed

    Fernandes, E S; Fernandes, M A; Keeble, J E

    2012-05-01

    The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1 and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.

  1. Noninvasive Peroneal Sensory and Motor Nerve Conduction Recordings in the Rabbit Distal Hindlimb: Feasibility, Variability and Neuropathy Measure

    PubMed Central

    Hotson, John R.

    2014-01-01

    The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12) and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9). The sensory nerve action potential mean amplitude was 22.8 μV (SD ± 2.8) and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2). Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation  =  2.6–5.9%), sensory potential amplitudes were intermediate (coefficient of variation  =  11.1%) and compound potential amplitudes were the most variable (coefficient of variation  = 19.3%). Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42–57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in chronic

  2. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  3. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest.

    PubMed

    Marasco, Paul D; Schultz, Aimee E; Kuiken, Todd A

    2009-06-01

    Targeted reinnervation is a new neural-machine interface that has been developed to help improve the function of new-generation prosthetic limbs. Targeted reinnervation is a surgical procedure that takes the nerves that once innervated a severed limb and redirects them to proximal muscle and skin sites. The sensory afferents of the redirected nerves reinnervate the skin overlying the transfer site. This creates a sensory expression of the missing limb in the amputee's reinnervated skin. When these individuals are touched on this reinnervated skin they feel as though they are being touched on their missing limb. Targeted reinnervation takes nerves that once served the hand, a skin region of high functional importance, and redirects them to less functionally relevant skin areas adjacent to the amputation site. In an effort to better understand the sensory capacity of the reinnervated target skin following this procedure, we examined grating orientation thresholds and point localization thresholds on two amputees who had undergone the targeted reinnervation surgery. Grating orientation thresholds and point localization thresholds were also measured on the contralateral normal skin of the targeted reinnervation amputees and on analogous sites in able-bodied controls. Grating orientation thresholds for the reinnervated skin of the targeted reinnervation amputees were found to be similar to normal ranges for both the amputees' contralateral skin and also for the control population. Point localization thresholds for these amputees were found to be lower for their reinnervated skin than for their contralateral skin. Reinnervated point localization thresholds values were also lower in comparison to homologous chest sites on the control population. Mechanisms appear to be in place to maximize re-established touch input in targeted reinnervation amputees. It seems that sound sensory function is provided to the denervated skin of the residual limb when connected to afferent

  4. Somatosensory evoked potentials following nerve and segmental stimulation do not confirm cervical radiculopathy with sensory deficit.

    PubMed Central

    Schmid, U D; Hess, C W; Ludin, H P

    1988-01-01

    Twenty eight patients with unilateral cervical radiculopathy were studied by somatosensory evoked potentials (SEPs) from nerve stimulation at the wrist and from skin stimulation at the first, third or fifth finger depending on the root involved. In order to evaluate the reliability of various "radicular SEP patterns" as described in the literature, absolute latencies and side-to-side differences of the brachial plexus component from the supraclavicular fossa (N9), the medullary component (N13) from the cervical vertebra Cv7, and the primary cortical component (N20, P25) were assessed. Side-to-side differences of the amplitudes of N20/P25 and of the conduction times across the intervertebral fossa (interval N9-N13) were analysed. After nerve stimulation, 68% of the patients had false negative findings on the symptomatic, while 36% had positive findings on the asymptomatic side. After segmental stimulation, 72% of the patients had false negative findings on the symptomatic, while 22% had positive findings on the asymptomatic side. It is concluded that SEPs following nerve and segmental stimulation do not reliably confirm clear-cut already established diagnoses of unilateral radiculopathy with sensory and motor deficit. Therefore, they will not be helpful in the electrophysiological investigation of cervicobrachialgias of unknown origin. PMID:2831303

  5. Remote arteriolar dilations caused by methacholine: a role for CGRP sensory nerves?

    PubMed

    Thengchaisri, Naris; Rivers, Richard J

    2005-08-01

    Remote vasodilation caused by arteriolar microapplication of acetylcholine cannot be completely attributed to passive cell-cell communication of a hyperpolarizing signal. The present study was undertaken to ascertain whether a neural component may be involved in the remote response. In the cheek pouch of anesthetized hamsters, methacholine (100 microM) was applied to the arteriole by micropipette for 5 s, and the arteriolar responses were measured at the site of application and at remote locations: 500 and 1,000 microm upstream from the application site. Superfusion with the local anesthetic bupivacaine attenuated a local dilatory response and abolished the conducted dilation response to methacholine. Localized micropipette application of bupivacaine 300 microm from the methacholine application site also attenuated the remote dilation but did not inhibit the local dilation. Blockade of neuromuscular transmission with botulinum neurotoxin A (1 U, 3 days), micropipette application of calcitonin gene-related peptide (CGRP) receptor inhibitor CGRP-(8-37) (10 microM) 300 microm upstream from the methacholine application site, and denervation of the CGRP sensory nerve by 2 days of capsaicin treatment reduced the conducted dilation response to methacholine but did not affect the local dilatory response. Together, these data support involvement of a TTX-insensitive nerve, specifically the CGRP containing nerve, in vascular communication. Understanding the effect of regulation of a novel neural network system on the vascular network may lead to a new insight into regulation of blood flow and intraorgan blood distribution.

  6. A proposed biologic cure for recurrent genital herpes simplex through injection of neurolytic agents into cutaneous sensory nerves.

    PubMed

    Bierman, S M

    1983-01-01

    It may be possible to eliminate Herpes simplex virus (HSV) from the skin of patients with chronic recurrent genital infections through destruction of the cutaneous sensory nerves of the genitals by injecting absolute alcohol into the affected areas. In so doing the latency of the virus in the sensory ganglia may be influenced, the immediate source of reinfection suppressed, and reactivation of HSV inhibited in the skin.

  7. A Hypothesis and Pilot Study of Age-Related Sensory Innervation of the Hard Palate: Sensory Disorder After Nasopalatine Nerve Division

    PubMed Central

    Liu, Jiyuan; Li, Xiufen; Ma, Liyuan; Pan, Jian; Tang, Xiufa; Wu, Yunlong; Hua, Chengge

    2017-01-01

    Background The nasopalatine nerve may be injured during extraction of teeth embedded in the anterior hard palate. The neural recovery process and its impact on sensation in the anterior hard palatal region are controversial. In our clinical practice, we noticed a distinct recovery process in children compared with adolescents or adults after surgery. We hypothesized that the sensory innervations of the anterior palate might shift during later childhood and pre-adolescence, which is due to the development of the nasopalatine nerve along with the maxillary growth and permanent teeth eruption. Material/Method Forty patients (20 females and 20 males, mean age 11.8±2.2) with impacted supernumerary teeth in anterior palatine area were included into our study, and were divided into 3 groups according to their age. A 24-week follow-up was conducted and the sensation in the anterior hard palate region was examined at every check point. All the data were collected and analyzed by Kaplan-Meier analysis. Results Fourteen children did not complain of any numbness immediately after anesthetization, and other children with sensory disorders had shorter healing periods compared to adolescent/adult patients. Conclusions The results indicated that the dominant nerve of the anterior hard palate region was dramatically changed from the greater palatine nerve to the nasopalatine nerve, which is important in deciding when to operate and in selection of anesthesia method. PMID:28132066

  8. Self-powered sensory nerve system for civil structures using hybrid forisome actuators

    NASA Astrophysics Data System (ADS)

    Shoureshi, Rahmat A.; Shen, Amy

    2006-03-01

    In order to provide a true distributed sensor and control system for civil structures, we have developed a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently discovered plant-protein forisomes, a novel non-living biological material capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using forisomes as the mechanoreceptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper will present up to date results of our research, including the design and analysis of the structural nervous system.

  9. Phenotypic switching of nonpeptidergic cutaneous sensory neurons following peripheral nerve injury.

    PubMed

    Wang, Ting; Molliver, Derek C; Jing, Xiaotang; Schwartz, Erica S; Yang, Fu-Chia; Samad, Omar Abdel; Ma, Qiufu; Davis, Brian M

    2011-01-01

    In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult.

  10. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury

    PubMed Central

    2011-01-01

    Background Neuronal hyperexcitability is a crucial phenomenon underlying spontaneous and evoked pain. In invertebrate nociceptors, the S-type leak K+ channel (analogous to TREK-1 in mammals) plays a critical role of in determining neuronal excitability following nerve injury. Few data are available on the role of leak K2P channels after peripheral axotomy in mammals. Results Here we describe that rat sciatic nerve axotomy induces hyperexcitability of L4-L5 DRG sensory neurons and decreases TRESK (K2P18.1) expression, a channel with a major contribution to total leak current in DRGs. While the expression of other channels from the same family did not significantly change, injury markers ATF3 and Cacna2d1 were highly upregulated. Similarly, acute sensory neuron dissociation (in vitro axotomy) produced marked hyperexcitability and similar total background currents compared with neurons injured in vivo. In addition, the sanshool derivative IBA, which blocked TRESK currents in transfected HEK293 cells and DRGs, increased intracellular calcium in 49% of DRG neurons in culture. Most IBA-responding neurons (71%) also responded to the TRPV1 agonist capsaicin, indicating that they were nociceptors. Additional evidence of a biological role of TRESK channels was provided by behavioral evidence of pain (flinching and licking), in vivo electrophysiological evidence of C-nociceptor activation following IBA injection in the rat hindpaw, and increased sensitivity to painful pressure after TRESK knockdown in vivo. Conclusions In summary, our results clearly support an important role of TRESK channels in determining neuronal excitability in specific DRG neurons subpopulations, and show that axonal injury down-regulates TRESK channels, therefore contributing to neuronal hyperexcitability. PMID:21527011

  11. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain

    PubMed Central

    Jimenez-Andrade, Juan M.; Mantyh, William G.; Bloom, Aaron P.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2010-01-01

    As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4 month old), middle-aged (13 month) and old (36 month) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP+ and NF200+ nerve fibers that innervate the bone remained remarkably unchanged as well as the severity of acute skeletal fracture pain. Thus, while bone mass, quality and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. PMID:20947214

  12. Implementation of linear sensory signaling via multiple coordinated mechanisms at central vestibular nerve synapses

    PubMed Central

    McElvain, Lauren E.; Faulstich, Michael; Jeanne, James M.; Moore, Jeffrey D.; du Lac, Sascha

    2015-01-01

    Summary Signal transfer in neural circuits is dynamically modified by the recent history of neuronal activity. Short-term plasticity endows synapses with nonlinear transmission properties, yet synapses in sensory and motor circuits are capable of signaling linearly over a wide range of presynaptic firing rates. How do such synapses achieve rate-invariant transmission despite history-dependent nonlinearities? Here, ultrastructural, biophysical, and computational analyses demonstrate that concerted molecular, anatomical, and physiological refinements are required for central vestibular nerve synapses to linearly transmit rate-coded sensory signals. Vestibular synapses operate in a physiological regime of steady-state depression imposed by tonic firing. Rate-invariant transmission relies on brief presynaptic action potentials that delimit calcium influx, large pools of rapidly mobilized vesicles, multiple low-probability release sites, robust postsynaptic receptor sensitivity, and efficient transmitter clearance. Broadband linear synaptic filtering of head motion signals is thus achieved by coordinately tuned synaptic machinery that maintains physiological operation within inherent cell biological limitations. PMID:25704949

  13. Variation in quantitative sensory testing and epidermal nerve fiber density in repeated measurements.

    PubMed

    Selim, Mona M; Wendelschafer-Crabb, Gwen; Hodges, James S; Simone, Donald A; Foster, Shawn X Y-L; Vanhove, Geertrui F; Kennedy, William R

    2010-12-01

    Quantitative sensory testing (QST) is commonly used to evaluate peripheral sensory function in neuropathic conditions. QST measures vary in repeated measurements of normal subjects but it is not known whether QST can reflect small changes in epidermal nerve fiber density (ENFd). This study evaluated QST measures (touch, mechanical pain, heat pain and innocuous cold sensations) for differences between genders and over time using ENFd as an objective-independent measure. QST was performed on the thighs of 36 healthy volunteers on four occasions between December and May. ENFd in skin biopsies was determined on three of those visits. Compared to men, women had a higher ENFd, a difference of 12.2 ENFs/mm. They also had lower tactile and innocuous cold thresholds, and detected mechanical pain (pinprick) at a higher frequency. Heat pain thresholds did not differ between genders. By the end of the 24-week study, men and women showed a small reduction (p<0.05) in the frequency of sharp mechanical pain evoked by pinprick whereas tactile and thermal thresholds showed no change. This coincided with a small decrease in ENFd, 4.18 ENFs/mm. Variation in measurements over time was large in a fraction of normal subjects. We conclude that most QST measures detect relatively large differences in epidermal innervation (12.2 ENFs/mm), but response to mechanical pain was the only sensory modality tested with the sensitivity to detect small changes in innervation (4.18 ENFs/mm). Since some individuals had large unsystematic variations, unexpected test results should therefore alert clinicians to test additional locations.

  14. Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat.

    PubMed

    Schenker, Michel; Kraftsik, Rudolf; Glauser, Liliane; Kuntzer, Thierry; Bogousslavsky, Julien; Barakat-Walter, Ibtissam

    2003-11-01

    We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.

  15. THE MAJORITY OF MYELINATED AND UNMYELINATED SENSORY NERVE FIBERS THAT INNERVATE BONE EXPRESS THE TROPOMYOSIN RECEPTOR KINASE A

    PubMed Central

    Castañeda-Corral, Gabriela; Jimenez-Andrade, Juan M.; Bloom, Aaron P.; Taylor, Reid N.; Mantyh, William G.; Kaczmarska, Magdalena J.; Ghilardi, Joseph R.; Mantyh, Patrick W.

    2011-01-01

    Although skeletal pain is a leading cause of chronic pain and disability, relatively little is known about the specific populations of nerve fibers that innervate the skeleton. Recent studies have reported that therapies blocking nerve growth factor (NGF) or its cognate receptor, tropomyosin receptor kinase A (TrkA) are efficacious in attenuating skeletal pain. A potential factor to consider when assessing the analgesic efficacy of targeting NGF-TrkA signaling in a pain state is the fraction of NGF-responsive TrkA+ nociceptors that innervate the tissue from which the pain is arising, as this innervation and the analgesic efficacy of targeting NGF-TrkA signaling may vary considerably from tissue to tissue. To explore this in the skeleton, tissue slices and whole mount preparations of the normal, adult mouse femur were analyzed using immunohistochemistry and confocal microscopy. Analysis of these preparations revealed that 80% of the unmyelinated/thinly myelinated sensory nerve fibers that express calcitonin gene-related peptide (CGRP) and innervate the periosteum, mineralized bone and bone marrow also express TrkA. Similarly, the majority of myelinated sensory nerve fibers that express neurofilament 200 kDa (NF200) which innervate the periosteum, mineralized bone and bone marrow also co-express TrkA. In the normal femur, the relative density of CGRP+, NF200+ and TrkA+ sensory nerve fibers per unit volume is: periosteum > bone marrow > mineralized bone > cartilage with the respective relative densities being 100: 2: 0.1: 0. The observation that the majority of sensory nerve fibers innervating the skeleton express TrkA+, may in part explain why therapies that block NGF/TrkA pathway are highly efficacious in attenuating skeletal pain. PMID:21277945

  16. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage

    PubMed Central

    Resnik, Jennifer; Polley, Daniel B

    2017-01-01

    Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries. DOI: http://dx.doi.org/10.7554/eLife.21452.001 PMID:28323619

  17. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    SciTech Connect

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  18. TRPM8, a sensor for mild cooling in mammalian sensory nerve endings.

    PubMed

    Babes, Alexandru; Ciobanu, Alexandru Cristian; Neacsu, Cristian; Babes, Ramona-Madalina

    2011-01-01

    Temperature sensing is a crucial feature of the nervous system, enabling organisms to avoid physical danger and choose optimal environments for survival. TRPM8 (Transient Receptor Potential Melastatin type 8) belongs to a select group of ion channels which are gated by changes in temperature, are expressed in sensory nerves and/or skin cells and may be involved in temperature sensing. This channel is activated by a moderate decrease in temperature, with a threshold of approximately 25 °C in heterologous expression systems, and by a variety of natural and synthetic compounds, including menthol. While the physiological role of TRPM8 as a transducer of gentle cooling is widely accepted, its involvement in acute noxious cold sensing in healthy tissues is still under debate. Although accumulating evidence indicates that TRPM8 is involved in neuropathic cold allodynia, in some animal models of nerve injury peripheral and central activation of TRPM8 is followed by analgesia. A variety of inflammatory mediators, including bradykinin and prostaglandin E(2), modulate TRPM8 by inhibiting the channel and shifting its activation threshold to colder temperatures, most likely counteracting the analgesic action of TRPM8. While important progress has been made in unraveling the biophysical features of TRPM8, including the revelation of its voltage dependence, the precise mechanism involved in temperature sensing by this channel is still not completely understood. This article will review the current status of knowledge regarding the (patho)physiological role(s) of TRPM8, its modulation by inflammatory mediators, the signaling pathways involved in this regulation, and the biophysical properties of the channel.

  19. The sensory innervation of the human pharynx: searching for mechanoreceptors.

    PubMed

    de Carlos, F; Cobo, J; Macías, E; Feito, J; Cobo, T; Calavia, M G; García-Suárez, O; Vega, J A

    2013-11-01

    The coordinate neural regulation of the upper airways muscles is basic to control airway size and resistance. The superior constrictor pharyngeal muscle (SCPM) forms the main part of the lateral and posterior walls of the pharynx and typically is devoid of muscle spindles, the main type of proprioceptor. Because proprioception arising from SCPM is potentially important in the physiology of the upper airways, we have investigated if there are mechanical sensory nerve endings substitute for the muscle spindles. Samples of human pharynx were analyzed using immunohistochemistry associated to general axonic and Schwann cells markers (NSE, PGP 9.5, RT-97, and S100P), intrafusal muscle fiber markers, and putative mechanical sense proteins (TRPV4 and ASIC2). Different kinds of sensory corpuscles were observed in the pharynx walls (Pacini-like corpuscles, Ruffini-like corpuscles, spiral-wharves nerve structures, and others) which are supplied by sensory nerves and express putative mechanoproteins. No evidence of muscle spindles was observed. The present results demonstrate the occurrence of numerous and different morphotypes of sensory corpuscles/mechanoreceptors in human pharynx that presumably detect mechanical changes in the upper airways and replace muscle spindles for proprioception. Present findings are of potential interest for the knowledge of pathologies of the upper airways with supposed sensory pathogenesis.

  20. Activation of sensory nerves in guinea-pig isolated basilar artery by nicotine: evidence for inhibition of trigeminal sensory neurotransmission by sumatriptan.

    PubMed

    O'Shaughnessy, C T; Connor, H E

    1994-06-23

    Nicotine (100 microM), but not electrical field stimulation or potassium chloride (0.1-3 microM), caused capsaicin (1 microM)- and tetrodotoxin (1 microM)-sensitive relaxations of guinea-pig isolated basilar artery precontracted with prostaglandin F2 alpha. Nicotine-induced responses were blocked by the neurokinin NK1 receptor antagonist, GR82334 (10 microM), but were unaffected by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP-(8-37) (1 microM). This suggests that nicotine activates capsaicin-sensitive sensory nerves in guinea-pig basilar artery to cause relaxation predominantly via substance P release. The vascular 5-HT1 receptor agonist, sumatriptan (0.3 and 3 microM), inhibited nicotine-induced relaxation (by 50 and 80% respectively); the inhibitory effect of sumatriptan (0.3 microM) was attenuated in the presence of the non-selective 5-HT1 receptor antagonist, methiothepin (0.1 microM). These data suggest that sumatriptan can inhibit sensory neurotransmission in guinea-pig basilar artery via activation of inhibitory prejunctional 5-HT1 receptors on sensory nerve terminals.

  1. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    NASA Astrophysics Data System (ADS)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  2. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    PubMed Central

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  3. Impact of stepwise mandibular advancement on upper airway mechanics in obstructive sleep apnea using phrenic nerve magnetic stimulation.

    PubMed

    Gakwaya, Simon; Melo-Silva, César Augusto; Borel, Jean-Christian; Rousseau, Eric; Masse, Jean-François; Sériès, Frédéric

    2014-01-01

    Mandibular advancement devices (MAD) represent a potential treatment for obstructive sleep apnea (OSA). However, their mechanisms of actions are not completely understood. This study was aimed to explore the effects of MAD-induced mandibular protrusion on upper airway mechanics. 25 men commencing treatment for OSA with MAD were recruited. Phrenic nerve magnetic stimulation (PNMS) was used to measure flow/pressure relationship during progressive protrusion in three conditions (without MAD, MAD at minimum protrusion, and MAD at maximum tolerable protrusion). Pressures were recorded simultaneously at three different upper airway segments (naso-, velo-, and oro-pharynx). Without MAD, PNMS twitches induced flow-limitation at the velopharyngeal level in 19 subjects and six of them experienced a shift in the flow-limitation site to the lower segment with MAD at maximum protrusion. An association was found between having a velopharyngeal limitation site without MAD and the increase in maximum flow with the advanced MAD. These data suggest that mandibular advancement devices are acting predominantly at the velopharyngeal level.

  4. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury.

    PubMed

    Frattini, Flávia; Lopes, Fatima Rosalina Pereira; Almeida, Fernanda Martins; Rodrigues, Rafaela Fintelman; Boldrini, Leonardo Cunha; Tomaz, Marcelo A; Baptista, Abrahão Fontes; Melo, Paulo A; Martinez, Ana Maria Blanco

    2012-10-01

    Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell

  5. Sural sensory nerve action potential: A study in healthy Indian subjects

    PubMed Central

    Sreenivasan, Aarthika; Mansukhani, Khushnuma A; Sharma, Alika; Balakrishnan, Lajita

    2016-01-01

    Background: The sural sensory nerve action potential (SNAP) is an important electrodiagnostic study for suspected peripheral neuropathies. Incorrect technique and unavailability of reference data can lead to erroneous conclusions. Objectives: To establish reference data for sural SNAP in age-stratified healthy subjects at three sites of stimulation. Materials and Methods: A prospective study was conducted in 146 nerves from healthy subjects aged between 18 years and 90 years, stratified into six age groups (a = 18-30 years, b = 31–40 years, c = 41–50 years, d = 51–60 years, e = 61–70 years, and f >71 years). Sural SNAP was recorded antidromically, stimulating at three sites at distances of 14 cm, 12 cm, and 10 cm from the recording electrode. Mean – 2 standard deviation (SD) of the transformed data was used to generate reference values for amplitudes. Analysis of variance (ANOVA) test was used for inter-group and between three sites comparisons of amplitudes. Results: The lower limits of amplitude at 14 cm were 12.4 μV, 10.4 μV, 6.5 μV, 5.3 μV, 2.9 μV, and 1.9 μV; at 12 cm were 13.5 μV, 13.6 μV, 8.5 μV, 7.8 μV, 3.5 μV, and 2.8 μV; and at 10 cm were 16.3 μV, 16.3 μV, 11.1 μV, 10.0 μV, 4.8 μV, and 3.7 μV for groups a, b, c, d, e, and f, respectively. A statistically significant difference in amplitudes was noted from the three different sites of stimulation (P < 0.001). The amplitude differed significantly above the age of 60 years (P < 0.01) but not between groups e and f (P > 0.05). Conclusion: This study provides reference data for sural SNAP in Indian population at three different sites of stimulation along the calf in six age groups. It also shows significant variation in amplitude from the three different sites of stimulation. PMID:27570380

  6. Sensory nerves contribute to cutaneous vasodilator response to cathodal stimulation in healthy rats.

    PubMed

    Gohin, Stéphanie; Decorps, Johanna; Sigaudo-Roussel, Dominique; Fromy, Bérengère

    2015-09-01

    Cutaneous current-induced vasodilation (CIV) in response to galvanic current application is an integrative model of neurovascular interaction that relies on capsaicin-sensitive fiber activation. The upstream and downstream mechanisms related to the activation of the capsaicin-sensitive fibers involved in CIV are not elucidated. In particular, the activation of cutaneous transient receptor potential vanilloid type-1 (TRPV1) channels and/or acid-sensing ion channels (ASIC) (activators mechanisms) and the release of calcitonin gene-related peptide (CGRP) and substance P (SP) (effector mechanisms) have been tested. To assess cathodal CIV, we measured cutaneous blood flow using laser Doppler flowmetry for 20min following cathodal current application (240s, 100μA) on the skin of the thigh in anesthetized healthy rats for 20min. CIV was studied in rats treated with capsazepine and amiloride to inhibit TRPV1 and ASIC channels, respectively; CGRP8-37 and SR140333 to antagonize CGRP and neurokinin-1 (NK1) receptors, respectively; compared to their respective controls. Cathodal CIV was attenuated by capsazepine (12±2% vs 54±6%, P<0.001), amiloride (19±8% vs 61±6%, P<0.01), CGRP8-37 (15±6% vs 61±6%, P<0.001) and SR140333 (9±5% vs 54±6%, P<0.001) without changing local acidification. This is the first integrative study performed in healthy rats showing that cutaneous vasodilation in response to cathodal stimulation is initiated by activation of cutaneous TRPV1 and ASIC channels likely through local acidification. The involvement of CGRP and NK1 receptors suggests that cathodal CIV is the result of CGRP and SP released through activated capsaicin-sensitive fibers. Therefore cathodal CIV could be a valuable method to assess sensory neurovascular function in the skin, which would be particularly relevant to evaluate the presence of small nerve fiber disorders and the effectiveness of treatments.

  7. Atypical venous glomangioma causing chronic compression of the radial sensory nerve in the forearm. A case report and review of the literature.

    PubMed

    Jiga, Lucian P; Rata, Andreea; Ignatiadis, Ioannis; Geishauser, Max; Ionac, Mihai

    2012-03-01

    Extrinsic chronic nerve compression induced by nonendothelium derived vascular tumors is a rare occurrence at the forearm level. We present a case of severe chronic compression of the radial sensory nerve (RSN) caused by an undiagnosed venous glomangioma. The tumor was excised with complete symptoms relief. In the presence of severe nerve compression syndromes in young age, without predisposing comorbidities, atypical extrinsic compression due to vascular tumors should be considered.

  8. Refining the Sensory and Motor Ratunculus of the Rat Upper Extremity Using fMRI and Direct Nerve Stimulation

    PubMed Central

    Cho, Younghoon R.; Pawela, Christopher P.; Li, Rupeng; Kao, Dennis; Schulte, Marie L.; Runquist, Matthew L.; Yan, Ji-Geng; Matloub, Hani S.; Jaradeh, Safwan S.; Hudetz, Anthony G.; Hyde, James S.

    2008-01-01

    It is well understood that the different regions of the body have cortical representations in proportion to the degree of innervation. Our current understanding of the rat upper extremity has been enhanced using functional MRI (fMRI), but these studies are often limited to the rat forepaw. The purpose of this study is to describe a new technique that allows us to refine the sensory and motor representations in the cerebral cortex by surgically implanting electrodes on the major nerves of the rat upper extremity and providing direct electrical nerve stimulation while acquiring fMRI images. This technique was used to stimulate the ulnar, median, radial, and musculocutaneous nerves in the rat upper extremity using four different stimulation sequences that varied in frequency (5 Hz vs. 10 Hz) and current (0.5 mA vs. 1.0 mA). A distinct pattern of cortical activation was found for each nerve. The higher stimulation current resulted in a dramatic increase in the level of cortical activation. The higher stimulation frequency resulted in both increases and attenuation of cortical activation in different regions of the brain, depending on which nerve was stimulated. PMID:17969116

  9. Low-level laser treatment improves longstanding sensory aberrations in the inferior alveolar nerve following surgical trauma

    NASA Astrophysics Data System (ADS)

    Khullar, Shelley M.; Brodin, P.; Barkvoll, P.; Haanoes, H. R.

    1996-01-01

    The incidence of inferior alveolar nerve (IAN) damage following removal of 3rd molar teeth or saggital split osteotomy has been reported as high as up to 5.5% and 100% respectively. Sensory aberrations in the IAN persisting for longer than 6 months leave some degree of permanent defect. Low level laser treatment (LLL) has a reported beneficial effect on regeneration of traumatically injured nerves. The purpose of this double blind clinical trial was to examine the effects of LLL using a GaAlAs laser (820 nm, Ronvig, Denmark) on touch and temperature sensory perception following a longstanding post surgical IAN injury. Thirteen patients were divided into two groups, one of which received real LLL (4 by 6 J per treatment along the distribution of the IAN to a total of 20 treatments during a time period between 36 - 69 days) and the other equivalent placebo LLL. The degree of mechanoreceptor injury as assessed by Semmes Weinstein Monofilaments (North Coast Medical, USA) were comparable in the two groups prior to treatment (p equals 0.9). Subsequent to LLL the real laser treatment group showed a significant improvement in mechanoreceptor sensory testing (p equals 0.01) as manifested by a decrease in load threshold (g) necessary to elicit a response from the most damaged area. The placebo LLL group showed no significant improvement, In addition, the real LLL group reported a subjective improvement in sensory function too. The degree of thermal sensitivity disability as assessed using a thermotester (Philips, Sweden) was comparable between the two groups prior to LLL p equals 0.5). However, there was no significant improvement in thermal sensitivity post LLL for either the real or placebo laser treated groups. In conclusion, GaAlAs LLL can improve mechanoreceptor perception in longstanding sensory aberration in the IAN.

  10. Diuresis and natriuresis caused by activation of VR1-positive sensory nerves in renal pelvis of rats.

    PubMed

    Zhu, Yi; Wang, Youping; Wang, Donna H

    2005-10-01

    To test the hypothesis that activation of the vanilloid receptor 1 (VR1) expressed in sensory nerves innervating the renal pelvis leads to diuresis and natriuresis, a selective VR1 receptor agonist, capsaicin (2.4 nmol), or vehicle was perfused intravenously or into the left renal pelvis of anesthetized rats at a rate without changing renal perfusion pressure. Mean arterial pressure was not altered by capsaicin administered intravenously or into the renal pelvis. Capsaicin perfusion into the left renal pelvis but not intravenously caused significant increases in urine flow rate and urinary sodium excretion bilaterally in a dose-dependent manner, which were abolished by capsazepine, a selective VR1 receptor antagonist, given ipsilaterally to the renal pelvis or by ipsilateral renal denervation. Capsaicin given intravenously or into the left renal pelvis increased plasma calcitonin gene-related peptide levels to the same extent. Increased plasma calcitonin gene-related peptide levels induced by capsaicin (68.9+/-2.8 pg/mL) perfusion into the renal pelvis was prevented either by capsazepine (22.5+/-10.1 pg/mL) given ipsilaterally into the renal pelvis or by ipsilateral renal denervation (25.9+/-2.3 pg/mL). Taken together, our data show that unilateral activation of VR1-positive sensory nerves innervating the renal pelvis leads to bilateral diuresis and natriuresis via a mechanism that is independent of plasma calcitonin gene-related peptide levels. These data suggest that VR1-positive sensory nerves in the kidney enhance renal excretory function, a mechanism that may be critically involved in sodium and fluid homeostasis.

  11. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

    PubMed Central

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-01-01

    Objective The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro–immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Methods Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. Results In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Conclusions Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody

  12. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial

    PubMed Central

    Paula, Mayara H.; Barbosa, Rafael I.; Marcolino, Alexandre M.; Elui, Valéria M. C.; Rosén, Birgitta; Fonseca, Marisa C. R.

    2016-01-01

    BACKGROUND: Mirror therapy has been used as an alternative stimulus to feed the somatosensory cortex in an attempt to preserve hand cortical representation with better functional results. OBJECTIVE: To analyze the short-term functional outcome of an early re-education program using mirror therapy compared to a late classic sensory program for hand nerve repair. METHOD: This is a randomized controlled trial. We assessed 20 patients with median and ulnar nerve and flexor tendon repair using the Rosen Score combined with the DASH questionnaire. The early phase group using mirror therapy began on the first postoperative week and lasted 5 months. The control group received classic sensory re-education when the protective sensation threshold was restored. All participants received a patient education booklet and were submitted to the modified Duran protocol for flexor tendon repair. The assessments were performed by the same investigator blinded to the allocated treatment. Mann-Whitney Test and Effect Size using Cohen's d score were used for inter-group comparisons at 3 and 6 months after intervention. RESULTS: The primary outcome (Rosen score) values for the Mirror Therapy group and classic therapy control group after 3 and 6 months were 1.68 (SD=0.5); 1.96 (SD=0.56) and 1.65 (SD=0.52); 1.51 (SD=0.62), respectively. No between-group differences were observed. CONCLUSION: Although some clinical improvement was observed, mirror therapy was not shown to be more effective than late sensory re-education in an intermediate phase of nerve repair in the hand. Replication is needed to confirm these findings. PMID:26786080

  13. Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea.

    PubMed

    Brock, J A; Pianova, S; Belmonte, C

    2001-06-01

    1. Extracellular recording techniques were used to study nerve terminal impulses (NTIs) recorded from single polymodal nociceptors and cold-sensitive receptors in guinea-pig cornea isolated in vitro. 2. The amplitude and time course of NTIs recorded from polymodal nociceptors was different from those of cold-sensitive receptors. 3. Bath application of tetrodotoxin (1 microM) changed the time course of spontaneous NTIs recorded from both polymodal and cold-sensitive receptors. 4. Bath application of lignocaine (lidocaine; 1-5 mM) abolished all electrical activity. 5. Local application of lignocaine (2.5 and 20 mM) through the recording electrode changed the time course of the NTIs recorded from polymodal nociceptors but not that of NTIs recorded from cold-sensitive nerve endings. 6. It is concluded that action potentials propagate actively in the sensory nerve endings of polymodal nociceptors. In contrast, cold-sensitive receptor nerve endings appear to be passively invaded from a point more proximal in the axon where the action potential can fail or be initiated.

  14. Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse.

    PubMed

    Elekes, Krisztián; Helyes, Zsuzsanna; Németh, József; Sándor, Katalin; Pozsgai, Gábor; Kereskai, László; Börzsei, Rita; Pintér, Erika; Szabó, Arpád; Szolcsányi, János

    2007-06-07

    Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.

  15. Selective decrease of small sensory neurons in lumbar dorsal root ganglia labeled with horseradish peroxidase after ND:YAG laser irradiation of the tibial nerve in the rat

    SciTech Connect

    Wesselmann, U.; Lin, S.F.; Rymer, W.Z. )

    1991-02-01

    Recent electrophysiological evidence indicates that Q-switched Nd:YAG laser irradiation might have selective effects on neural impulse transmission in small slow conducting sensory nerve fibers as compared to large diameter afferents. In an attempt to clarify the ultimate fate of sensory neurons after laser application to their peripheral axons, we have used horseradish peroxidase (HRP) as a cell marker to retrogradely label sensory neurons innervating the distal hindlimb in the rat. Pulsed Nd:YAG laser light was applied to the tibial nerve at pulse energies of 70 or 80 mJ/pulse for 5 min in experimental rats. Seven days later HRP was applied to the left (laser-treated) and to the contralateral (untreated) tibial nerve proximal to the site of laser irradiation. In control animals the numbers of HRP-labeled dorsal root ganglion cells were not significantly different between the right and the left side. In contrast, after previous laser irradiation labeling was always less on the laser-treated side (2183 +/- 513 cells, mean +/- SEM) as compared to the untreated side (3937 +/- 225). Analysis of the dimensions of labeled cells suggested that the reduction of labeled cells on the laser-treated side was mainly due to a deficit in small sensory neurons. Since the conduction velocity of nerve fibers is related to the size of their somata, our histological data imply that laser light selectively affects retrograde transport mechanisms for HRP in slow conducting sensory nerve fibers.

  16. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves.

    PubMed

    Kopp, Ulla C; Cicha, Michael Z; Smith, Lori A; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-02-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α(1)-and α(2)-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α(2)-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α(2A)-AR and α(2C)-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α(2)-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α(2)-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α(2)-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake.

  17. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves

    PubMed Central

    Cicha, Michael Z.; Smith, Lori A.; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hökfelt, Tomas

    2011-01-01

    Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal α1-and α2-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of α2-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of α2A-AR and α2C-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the α2-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of α2-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of α2-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake. PMID:21106912

  18. Role of sensory nerves in the rapid cutaneous vasodilator response to local heating in young and older endurance-trained and untrained men.

    PubMed

    Tew, Garry A; Klonizakis, Markos; Moss, James; Ruddock, Alan D; Saxton, John M; Hodges, Gary J

    2011-02-01

    The ability to increase skin blood flow (SkBF) rapidly in response to local heating is diminished with advanced age; however, the mechanisms are unclear. The primary aim of this study was to investigate the role of sensory nerves in this age-related change. A secondary aim was to investigate the effect of aerobic fitness on sensory nerve-mediated vasodilatation in young and aged skin. We measured SkBF (using laser Doppler flowmetry) in young and older endurance-trained and untrained men (n= 7 in each group) at baseline and during 35 min of local skin heating to 42°C at two sites on the ventral forearm. One site was pretreated with topical anaesthetic cream to block local sensory nerve function. Cutaneous vascular conductance (CVC) was calculated as SkBF divided by mean arterial pressure and normalized to maximal values (CVC(max)) achieved during local heating to 44°C. At the untreated site, the rapid vasodilatation during the first ~5 min of local heating (initial peak) was lower in the older untrained group (68 ± 3%CVC(max)) compared with all other groups (young trained, 76 ± 4%CVC(max); young untrained, 75 ± 5%CVC(max); and older trained, 81 ± 3%CVC(max); P < 0.05). Sensory nerve blockade abolished these differences among the groups (P > 0.05). The contribution of sensory nerve-mediated vasodilatation was lower in the older untrained group compared with all other groups (P< 0.05). Our results suggest that the age-related decline in the rapid vasodilator response to local heating in human skin is explained by diminished sensory nerve-mediated vasodilatation. These findings also indicate that this age-related change can be prevented through participation in regular aerobic exercise.

  19. Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons.

    PubMed

    Schaeffer, Véronique; Meyer, Laurence; Patte-Mensah, Christine; Eckert, Anne; Mensah-Nyagan, Ayikoe G

    2010-01-15

    Neurosteroids are synthesized either by glial cells, by neurons, or within the context of neuron-glia cross-talk. Various studies suggested neurosteroid involvement in the control of neurodegeneration but there is no evidence showing that the natural protection of nerve cells against apoptosis directly depends on their own capacity to produce neuroprotective neurosteroids. Here, we investigated the interactions between neurosteroidogenesis and apoptosis occurring in sensory structures of rats subjected to neuropathic pain generated by sciatic nerve chronic constriction injury (CCI). Using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), we observed no apoptotic cells in the spinal cord up to 30 days after CCI although pain symptoms such as mechano-allodynia, thermal and mechanical hyperalgesia were evidenced with the Hargreaves's behavioral and von Frey filament tests. In contrast, double-labeling experiments combining TUNEL and immunostaining with antibodies against glutamine synthetase or neuronal nuclei protein revealed apoptosis occurrence in satellite glial cells (SGC) (not in neurons) of CCI rat ipsilateral dorsal root ganglia (DRG) at day 30 after injury. Pulse-chase experiments coupled with high performance liquid chromatography and flow scintillation detection showed that, among numerous biosynthetic pathways converting [(3)H]pregnenolone into various [(3)H]neurosteroids, only [(3)H]estradiol formation was selectively modified and upregulated in DRG of CCI rats. Consistently, immunohistochemical investigations localized aromatase (estradiol-synthesizing enzyme) in DRG neurons but not in SGC. Pharmacological inhibition of aromatase caused apoptosis of CCI rat DRG neurons. Altogether, our results suggest that endogenously produced neurosteroids such as estradiol may be pivotal for the protection of DRG sensory neurons against sciatic nerve CCI-induced apoptosis.

  20. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes

    PubMed Central

    Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

    2009-01-01

    OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation Nε-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and Nε-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

  1. Perineural Administration of Dexmedetomidine in Combination with Bupivacaine Enhances Sensory and Motor Blockade in Sciatic Nerve Block without Inducing Neurotoxicity in the Rat

    PubMed Central

    Brummett, Chad M.; Norat, Mary A.; Palmisano, John M.; Lydic, Ralph

    2008-01-01

    Background The present study was designed to test the hypothesis that high-dose dexmedetomidine added to local anesthetic would increase the duration of sensory and motor blockade in a rat model of sciatic nerve blockade without causing nerve damage. Methods Thirty-one adult Sprague Dawley rats received bilateral sciatic nerve blocks with either 0.2 ml of 0.5% bupivacaine and 0.5% bupivacaine plus 0.005% dexmedetomidine in the contralateral leg, or 0.2 ml of 0.005% dexmedetomidine and normal saline in the contralateral leg. Sensory and motor function were assessed by a blinded investigator every 30 minutes until the return of normal sensory and motor function. Sciatic nerves were harvested at either 24 hours or 14 days after injection and analyzed for perineural inflammation and nerve damage. Results High-dose dexmedetomidine added to bupivacaine significantly enhanced the duration of sensory and motor blockade. Dexmedetomidine alone did not cause significant motor or sensory block. All of the nerves analyzed had normal axons and myelin at 24 hours and 14 days. Bupivacaine plus dexmedetomidine showed less perineural inflammation at 24 hours than the bupivacaine group when compared with the saline control. Conclusion The finding that high-dose dexmedetomidine can safely improve the duration of bupivacaine-induced antinociception following sciatic nerve blockade in rats is an essential first step encouraging future studies in humans. The dose of dexmedetomidine used in this study may exceed the sedative safety threshold in humans and could cause prolonged motor blockade, therefore future work with clinically relevant doses is necessary. PMID:18719449

  2. Effect of Ranirestat on Sensory and Motor Nerve Function in Japanese Patients with Diabetic Polyneuropathy: A Randomized Double-Blind Placebo-Controlled Study

    PubMed Central

    Satoh, Jo; Kohara, Nobuo; Sekiguchi, Kenji; Yamaguchi, Yasuyuki

    2016-01-01

    We conducted a 26-week oral-administration study of ranirestat (an aldose reductase inhibitor) at a once-daily dose of 20 mg to evaluate its efficacy and safety in Japanese patients with diabetic polyneuropathy (DPN). The primary endpoint was summed change in sensory nerve conduction velocity (NCV) for the bilateral sural and proximal median sensory nerves. The sensory NCV was significantly (P = 0.006) improved by ranirestat. On clinical symptoms evaluated with the use of modified Toronto Clinical Neuropathy Score (mTCNS), obvious efficacy was not found in total score. However, improvement in the sensory test domain of the mTCNS was significant (P = 0.037) in a subgroup of patients diagnosed with neuropathy according to the TCNS severity classification. No clinically significant effects on safety parameters including hepatic and renal functions were observed. Our results indicate that ranirestat is effective on DPN (Japic CTI-121994). PMID:26881251

  3. Activin Acts with Nerve Growth Factor to Regulate Calcitonin Gene-Related Peptide mRNA in Sensory Neurons

    PubMed Central

    Xu, Pin; Hall, Alison K.

    2009-01-01

    Calcitonin Gene-Related Peptide (CGRP) increases in sensory neurons after inflammation and plays an important role in abnormal pain responses, but how this neuropeptide is regulated is not well understood. Both activin A and Nerve Growth Factor (NGF) increase in skin after inflammation and induce CGRP in neurons in vivo and in vitro. This study was designed to understand how neurons integrate these two signals to regulate the neuropeptide important for inflammatory pain. In adult dorsal root ganglion neurons, NGF but not activin alone produced a dose-dependent increase in CGRP mRNA. When added together with NGF, activin synergistically increased CGRP mRNA, indicating that sensory neurons combine these signals. Studies were then designed to learn if that combination occurred at a common receptor or shared intracellular signals. Studies with Activin IB receptor or trkA inhibitors suggested that each ligand required its cognate receptor to stimulate the neuropeptide. Further, activin did not augment NGF-initiated intracellular MAPK signals but instead stimulated Smad phosphorylation, suggesting these ligands initiated parallel signals in the cytoplasm. Activin synergy required several NGF intracellular signals to be present. Because activin did not further stimulate, but did require NGF intracellular signals, it appears that activin and NGF converge not in receptor or cytoplasmic signals, but in transcriptional mechanisms to regulate CGRP in sensory neurons after inflammation. PMID:17964731

  4. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  5. Disruption and restoration of dorsal horn sensory map after peripheral nerve crush and regeneration.

    PubMed

    Sugimoto, T; Yoshida, A; Nishijima, K; Ichikawa, H

    1995-10-01

    Formalin injection into the hindpaw of rats produces many neurons with c-fos protein-like immunoreactivity (fos-neurons) in the medial 3/4 of the ipsilateral dorsal horn laminae I and II at the junction of 4th and 5th lumbar segments (the sciatic territory). The tibial nerve transection 2 or 3 days earlier resulted in almost complete elimination of stimulation-induced fos-neurons in the tibial territory (medial 1/2 of the sciatic territory). When the animals had been conditioned by crushing the tibial nerve 2 weeks before stimulation (11 or 12 days before transection), the number of fos-neurons significantly increased compared to simple transection alone. The increase (2.5-fold) was greatest in the tibial territory. Therefore, the dorsal horn neurons in the deafferented tibial territory exhibited hypersensitivity to intact peroneal primary input, and the somatotopy map was disrupted. When the nerve had been crushed 3 weeks (18 or 19 days earlier than transection) rather than 2 weeks before stimulation, however, the number and distribution of fos-neurons were not different from those without conditioning (transection alone). Regenerated tibial nerve fibers were capable of transganglionic transport of WGA-HRP from the hindpaw receptive field to the tibial territory of the dorsal horn by 3 weeks but not by 2 weeks following the nerve crush. When transection was omitted, noxious signal transmitted through the tibial nerve fibers regenerated by 3 weeks after crush was capable of inducing c-fos in the tibial territory. The injury-induced hypersensitivity of dorsal horn neurons and resulting disruption of somatotopy map were reversed by re-establishment of peripheral tissue-nerve interaction.

  6. G9a inhibits CREB-triggered expression of mu opioid receptor in primary sensory neurons following peripheral nerve injury

    PubMed Central

    Liang, Lingli; Zhao, Jian-Yuan; Gu, Xiyao; Wu, Shaogen; Mo, Kai; Xiong, Ming; Marie Lutz, Brianna; Bekker, Alex

    2016-01-01

    Neuropathic pain, a distressing and debilitating disorder, is still poorly managed in clinic. Opioids, like morphine, remain the mainstay of prescribed medications in the treatment of this disorder, but their analgesic effects are highly unsatisfactory in part due to nerve injury-induced reduction of opioid receptors in the first-order sensory neurons of dorsal root ganglia. G9a is a repressor of gene expression. We found that nerve injury-induced increases in G9a and its catalyzed repressive marker H3K9m2 are responsible for epigenetic silencing of Oprm1, Oprk1, and Oprd1 genes in the injured dorsal root ganglia. Blocking these increases rescued dorsal root ganglia Oprm1, Oprk1, and Oprd1 gene expression and morphine or loperamide analgesia and prevented the development of morphine or loperamide-induced analgesic tolerance under neuropathic pain conditions. Conversely, mimicking these increases reduced the expression of three opioid receptors and promoted the mu opioid receptor-gated release of primary afferent neurotransmitters. Mechanistically, nerve injury-induced increases in the binding activity of G9a and H3K9me2 to the Oprm1 gene were associated with the reduced binding of cyclic AMP response element binding protein to the Oprm1 gene. These findings suggest that G9a participates in the nerve injury-induced reduction of the Oprm1 gene likely through G9a-triggered blockage in the access of cyclic AMP response element binding protein to this gene. PMID:27927796

  7. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons

    PubMed Central

    Liang, Lingli; Gu, Xiyao; Zhao, Jian-Yuan; Wu, Shaogen; Miao, Xuerong; Xiao, Jifang; Mo, Kai; Zhang, Jun; Lutz, Brianna Marie; Bekker, Alex; Tao, Yuan-Xiang

    2016-01-01

    Nerve injury-induced downregulation of voltage-gated potassium channel subunit Kcna2 in the dorsal root ganglion (DRG) is critical for DRG neuronal excitability and neuropathic pain genesis. However, how nerve injury causes this downregulation is still elusive. Euchromatic histone-lysine N-methyltransferase 2, also known as G9a, methylates histone H3 on lysine residue 9 to predominantly produce a dynamic histone dimethylation, resulting in condensed chromatin and gene transcriptional repression. We showed here that blocking nerve injury-induced increase in G9a rescued Kcna2 mRNA and protein expression in the axotomized DRG and attenuated the development of nerve injury-induced pain hypersensitivity. Mimicking this increase decreased Kcna2 mRNA and protein expression, reduced Kv current, and increased excitability in the DRG neurons and led to spinal cord central sensitization and neuropathic pain-like symptoms. G9a mRNA is co-localized with Kcna2 mRNA in the DRG neurons. These findings indicate that G9a contributes to neuropathic pain development through epigenetic silencing of Kcna2 in the axotomized DRG. PMID:27874088

  8. Peribulbar anesthesia for cataract surgery: Effect of lidocaine warming and alkalinization on injection pain, motor and sensory nerve blockade

    PubMed Central

    Jaichandran, Venkatakrishnan; Vijaya, Lingam; George, Ronnie Jacob; InderMohan, Bhanulakshmi

    2010-01-01

    Aim: To compare self-reported pain and efficacy of warmed, alkalinized, and warmed alkalinized lidocaine with plain 2% lidocaine at room temperature for peribulbar anesthesia in cataract surgery. Materials and Methods: Through a prospective, single-blinded, randomized, controlled clinical trial 200 patients were divided into four groups. They received either lidocaine at operating room temperature 18°C, control group (Group C), lidocaine warmed to 37°C (Group W), lidocaine alkalinized to a pH of 7.09 ± 0.10 (Group B) or lidocaine at 37°C alkalinized to a pH of 6.94 ± 0.05 (Group WB). All solutions contained Inj. Hyaluronidase 50 IU/ml. Pain was assessed using a 10-cm visual analog score scale. Time of onset of sensory and motor blockade and time to onset of postoperative pain were recorded by a blinded observer. Results: Mean pain score was significantly lower in Group B and WB compared with Group C (P < 0.001). Onset of analgesia was delayed in Group C compared with Group B (P = 0.021) and WB (P < 0.001). Mean time taken for the onset of complete akinesia and supplementation required for the block was significantly lower in Group B. Time of onset of pain after operation was significantly earlier in Group W compared with Group C (P = 0.036). Conclusion: Alkalinized lidocaine with or without warming produced less pain than lidocaine injected at room temperature. Alkalinization enhances the effect of warming for sensory nerve blockade, but warming does not enhance alkalinization, in fact it reduces the efficacy of alkalinized solution for blocking the motor nerves in the eye. PMID:20195031

  9. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1.

    PubMed

    Taylor-Clark, Thomas E; Ghatta, Srinivas; Bettner, Weston; Undem, Bradley J

    2009-04-01

    Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive cysteine modifying agents, such as nitrooleic acid (9-OA-NO(2)). Using calcium imaging and electrophysiology, we have shown that 9-OA-NO(2) activates human TRPA1 channels (EC(50), 1 microM), whereas oleic acid had no effect on TRPA1. 9-OA-NO(2) failed to activate TRPA1 in which the cysteines at positions 619, 639, and 663 and the lysine at 708 had been mutated. TRPA1 activation by 9-OA-NO(2) was not inhibited by the NO scavenger carboxy-PTIO. 9-OA-NO(2) had no effect on another nociceptive-specific ion channel, TRPV1. 9-OA-NO(2) activated a subset of mouse vagal and trigeminal sensory neurons, which also responded to the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. 9-OA-NO(2) failed to activate neurons derived from TRPA1(-/-) mice. The action of 9-OA-NO(2) at nociceptive nerve terminals was investigated using an ex vivo extracellular recording preparation of individual bronchopulmonary C fibers in the mouse. 9-OA-NO(2) evoked robust action potential discharge from capsaicin-sensitive fibers with slow conduction velocities (0.4-0.7 m/s), which was inhibited by the TRPA1 antagonist AP-18. These data demonstrate that nitrooleic acid, a product of nitrative stress, can induce substantial nociceptive nerve activation through the selective and direct activation of TRPA1 channels.

  10. Sensory stimulation for lowering intraocular pressure, improving blood flow to the optic nerve and neuroprotection in primary open-angle glaucoma.

    PubMed

    Rom, Edith

    2013-12-01

    Primary open-angle glaucoma is a group of optic neuropathies that can lead to irreversible blindness. Sensory stimulation in the form of acupuncture or ear acupressure may contribute to protecting patients from blindness when used as a complementary method to orthodox treatment in the form of drops, laser or surgery. The objective of this article is to provide a narrative overview of the available literature up to July 2012. It summarises reported evidence on the potential beneficial effects of sensory stimulation for glaucoma. Sensory stimulation appears to significantly enhance the pressure-lowering effect of orthodox treatments. Studies suggest that it may also improve blood flow to the eye and optic nerve head. Furthermore, it may play a role in neuroprotection through regulating nerve growth factor and brain-derived neurotrophic factor and their receptors, thereby encouraging the survival pathway in contrast to the pathway to apoptosis. Blood flow and neuroprotection are areas that are not directly influenced by orthodox treatment modalities. Numerous different treatment protocols were used to investigate the effect of sensory stimulation on intraocular pressure, blood flow or neuroprotection of the retina and optic nerve in the animal model and human pilot studies. Objective outcomes were reported to have been evaluated with Goldmann tonometry, Doppler ultrasound techniques and electrophysiology (pattern electroretinography, visually evoked potentials), and supported with histological studies in the animal model. Taken together, reported evidence from these studies strongly suggests that sensory stimulation is worthy of further research.

  11. Neurophenotypes in Airway Diseases. Insights from Translational Cough Studies

    PubMed Central

    Birrell, Mark A.; Khalid, Saifudin; Wortley, Michael A.; Dockry, Rachel; Coote, Julie; Holt, Kimberley; Dubuis, Eric; Kelsall, Angela; Maher, Sarah A.; Bonvini, Sara; Woodcock, Ashley

    2016-01-01

    Rationale: Most airway diseases, including chronic obstructive pulmonary disease (COPD), are associated with excessive coughing. The extent to which this may be a consequence of increased activation of vagal afferents by pathology in the airways (e.g., inflammatory mediators, excessive mucus) or an altered neuronal phenotype is unknown. Understanding whether respiratory diseases are associated with dysfunction of airway sensory nerves has the potential to identify novel therapeutic targets. Objectives: To assess the changes in cough responses to a range of inhaled irritants in COPD and model these in animals to investigate the underlying mechanisms. Methods: Cough responses to inhaled stimuli in patients with COPD, healthy smokers, refractory chronic cough, asthma, and healthy volunteers were assessed and compared with vagus/airway nerve and cough responses in a cigarette smoke (CS) exposure guinea pig model. Measurements and Main Results: Patients with COPD had heightened cough responses to capsaicin but reduced responses to prostaglandin E2 compared with healthy volunteers. Furthermore, the different patient groups all exhibited different patterns of modulation of cough responses. Consistent with these findings, capsaicin caused a greater number of coughs in CS-exposed guinea pigs than in control animals; similar increased responses were observed in ex vivo vagus nerve and neuron cell bodies in the vagal ganglia. However, responses to prostaglandin E2 were decreased by CS exposure. Conclusions: CS exposure is capable of inducing responses consistent with phenotypic switching in airway sensory nerves comparable with the cough responses observed in patients with COPD. Moreover, the differing profiles of cough responses support the concept of disease-specific neurophenotypes in airway disease. Clinical trial registered with www.clinicaltrials.gov (NCT 01297790). PMID:26741046

  12. Local neurogenic regulation of rat hindlimb circulation: CO2-induced release of calcitonin gene-related peptide from sensory nerves

    PubMed Central

    Yamada, Masami; Ishikawa, Tomohisa; Yamanaka, Akihiro; Fujimori, Akira; Goto, Katsutoshi

    1997-01-01

    The mechanism of release of calcitonin gene-related peptide (CGRP) from sensory nerves in response to skeletal muscle contraction was investigated in the rat hindlimb in vivo and in vitro. In the anaesthetized rat, sciatic nerve stimulation at 10 Hz for 1 min caused a hyperaemic response in the hindlimb. During the response, partial pressure of CO2 in the venous blood effluent from the hindlimb significantly increased from 43±3 to 73±8 mmHg, whereas a small decrease in pH and no appreciable change in partial pressure of O2 were observed. An intra-arterial bolus injection of NaHCO3 (titrated to pH 7.2 with HCl), which elevated PCO2 of the venous blood, caused a sustained increase in regional blood flow of the iliac artery. Capsaicin (0.33 μmol kg−1, i.a.) and a specific calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8–37), (100 nmol kg−1 min−1, i.v.) significantly suppressed the hyperaemic response to NaHCO3. Neither NDΩ-nitro-L-arginine methyl ester (1 μmol kg−1 min−1, i.v.) nor indomethacin (5 mg kg−1, i.v.) affected the response. The serum level of CGRP-like immunoreactivity in the venous blood was significantly increased by a bolus injection of NaHCO3 (pH=7.2) from 50±4 to 196±16 fmol ml−1. In the isolated hindlimb perfused with Krebs-Ringer solution, a bolus injection of NaHCO3 (pH=7.2) caused a decrease in perfusion pressure which was composed of two responses, i.e., an initial transient response and a slowly-developing long-lasting one. CGRP(8–37) significantly inhibited the latter response by 73%. These results suggest that CO2 liberated from exercising skeletal muscle activates capsaicin-sensitive perivascular sensory nerves locally, which results in the release of CGRP from their peripheral endings, and then the released peptide causes local vasodilatation. PMID:9375968

  13. Characterization of Thoracic Motor and Sensory Neurons and Spinal Nerve Roots in Canine Degenerative Myelopathy, a Potential Disease Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Morgan, Brandie R.; Coates, Joan R.; Johnson, Gayle C.; Shelton, G. Diane; Katz, Martin L.

    2014-01-01

    Canine Degenerative Myelopathy (DM) is a progressive adult-onset multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced stage DM. To determine if other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MN) and dorsal root ganglia (DRG), and in motor and sensory nerve root axons from DM-affected Boxers and Pembroke Welsh Corgis (PWCs). No alterations in MNs, or motor root axons were observed in either breed. However, advanced stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, or of their axons. Axonal loss in thoracic sensory roots and sensory nerve death suggest sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  14. Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130.

    PubMed

    Quarta, Serena; Baeumer, Bastian E; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E; Kress, Michaela

    2014-09-24

    After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.

  15. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings.

    PubMed

    Banks, R W; Hulliger, M; Saed, H H; Stacey, M J

    2009-06-01

    The encapsulated sensory endings of mammalian skeletal muscles are all mechanoreceptors. At the most basic functional level they serve as length sensors (muscle spindle primary and secondary endings), tension sensors (tendon organs), and pressure or vibration sensors (lamellated corpuscles). At a higher functional level, the differing roles of individual muscles in, for example, postural adjustment and locomotion might be expected to be reflected in characteristic complements of the various end-organs, their sensory endings and afferent nerve fibres. This has previously been demonstrated with regard to the number of muscle-spindle capsules; however, information on the other types of end-organ, as well as the complements of primary and secondary endings of the spindles themselves, is sporadic and inconclusive regarding their comparative provision in different muscles. Our general conclusion that muscle-specific variability in the provision of encapsulated sensory endings does exist demonstrates the necessity for the acquisition of more data of this type if we are to understand the underlying adaptive relationships between motor control and the structure and function of skeletal muscle. The present quantitative and comparative analysis of encapsulated muscle afferents is based on teased, silver-impregnated preparations. We begin with a statistical analysis of the number and distribution of muscle-spindle afferents in hind-limb muscles of the cat, particularly tenuissimus. We show that: (i) taking account of the necessity for at least one primary ending to be present, muscles differ significantly in the mean number of additional afferents per spindle capsule; (ii) the frequency of occurrence of spindles with different sensory complements is consistent with a stochastic, rather than deterministic, developmental process; and (iii) notwithstanding the previous finding, there is a differential distribution of spindles intramuscularly such that the more complex ones tend

  16. Pre-pharyngeal Swallow Effects of Recurrent Laryngeal Nerve Lesion on Bolus Shape and Airway Protection in an Infant Pig Model.

    PubMed

    Gould, Francois D H; Yglesias, B; Ohlemacher, J; German, R Z

    2016-11-21

    Recurrent laryngeal nerve (RLN) damage in infants leads to increased dysphagia and aspiration pneumonia. Recent work has shown that intraoral transport and swallow kinematics change following RLN lesion, suggesting potential changes in bolus formation prior to the swallow. In this study, we used geometric morphometrics to understand the effect of bolus shape on penetration and aspiration in infants with and without RLN lesion. We hypothesized (1) that geometric bolus properties are related to airway protection outcomes and (2) that in infants with RLN lesion, the relationship between geometric bolus properties and dysphagia is changed. In five infant pigs, dysphagia in 188 swallows was assessed using the Infant Mammalian Penetration-Aspiration Scale (IMPAS). Using images from high-speed VFSS, bolus shape, bolus area, and tongue outline were quantified digitally. Bolus shape was analyzed using elliptical Fourier analysis, and tongue outline using polynomial curve fitting. Despite large inter-individual differences, significant within individual effects of bolus shape and bolus area on airway protection exist. The relationship between penetration-aspiration score and both bolus area and shape changed post lesion. Tongue shape differed between pre- and post-lesion swallows, and between swallows with different IMPAS scores. Bolus shape and area affect airway protection outcomes. RLN lesion changes that relationship, indicating that proper bolus formation and control by the tongue require intact laryngeal sensation. The impact of RLN lesion on dysphagia is pervasive.

  17. [Thermographic quantification of sensory and sympathetic nerve lesions in mandibular fractures--a prognostic criterium?].

    PubMed

    Radtke, J; Bremerich, A; Machtens, E

    1996-01-01

    As a rule, damage to segmental afferent nerves by trauma is accompanied with local impairment of sympathic functions. Standardized quantification of subjective items concerning the deficit of sensibility is quite problematical. Investigation by electrophysiological means yield not more than qualitative issues. In contrast, changes of sympathetic status and reaction of dependent dermatomas are quantitatively measurable by thermography. -26 patients with unilateral mandibular fractures complained of different posttraumatic or postoperative sensible impairment of the third branch of the trigeminal nerve. In the course of onto 3 years area and quality of the concerned neural defect were correlated to skin temperature that was measured by contact thermography and compared to the opposite reference region.- In all cases the early posttraumatic period showed a difference in temperature of the corresponding skin areas (delta T = 0.43 +/- 0.24 C). In 20 of 26 cases a relation between the changes of temperature concerning time and area and the sensible improvement could be seen. There was an individual time-lag between these developments. Side-comparing thermography was able to forecast improvement in 17 of 26 cases. Thus, the issued device provides statements about the amount and the course of posttraumatic loss of sensibility.

  18. Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves.

    PubMed

    Kocmalova, Michaela; Kollarik, Marian; Canning, Brendan J; Ru, Fei; Adam Herbstsomer, R; Meeker, Sonya; Fonquerna, Silvia; Aparici, Monica; Miralpeix, Montserrat; Chi, Xian Xuan; Li, Baolin; Wilenkin, Ben; McDermott, Jeff; Nisenbaum, Eric; Krajewski, Jeffrey L; Undem, Bradley J

    2017-04-01

    Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.

  19. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex

    PubMed Central

    Herrera-Rincon, Celia; Panetsos, Fivos

    2014-01-01

    Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex “on demand” by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing. PMID:25452715

  20. Early Electrodiagnostic Features of Upper Extremity Sensory Nerves Can Differentiate Axonal Guillain-Barré Syndrome from Acute Inflammatory Demyelinating Polyneuropathy

    PubMed Central

    Koo, Yong Seo; Shin, Ha Young; Kim, Jong Kuk; Nam, Tai-Seung; Shin, Kyong Jin; Bae, Jong-Seok; Suh, Bum Chun; Oh, Jeeyoung; Yoon, Byeol-A

    2016-01-01

    Background and Purpose Serial nerve conduction studies (NCSs) are recommended for differentiating axonal and demyelinating Guillain-Barré syndrome (GBS), but this approach is not suitable for early diagnoses. This study was designed to identify possible NCS parameters for differentiating GBS subtypes. Methods We retrospectively reviewed the medical records of 70 patients with GBS who underwent NCS within 10 days of symptom onset. Patients with axonal GBS and acute inflammatory demyelinating polyneuropathy (AIDP) were selected based on clinical characteristics and serial NCSs. An antiganglioside antibody study was used to increase the diagnostic certainty. Results The amplitudes of median and ulnar nerve sensory nerve action potentials (SNAPs) were significantly smaller in the AIDP group than in the axonal-GBS group. Classification and regression-tree analysis revealed that the distal ulnar sensory nerve SNAP amplitude was the best predictor of axonal GBS. Conclusions Early upper extremity sensory NCS findings are helpful in differentiating axonal-GBS patients with antiganglioside antibodies from AIDP patients. PMID:27819421

  1. Evidence for an effect of sodium cromoglycate on sensory nerves in man.

    PubMed Central

    Collier, J G; Fuller, R W

    1983-01-01

    Sodium cromoglycate was given by both intravenous injection and local intra-arterial infusion to healthy volunteers. Intravenous injection of a dose of 4 mg in four subjects caused a statistically significant rise in blood pressure and pulse rate associated with a feeling of warmth in the perineum and blush areas of the face and chest. Brachial artery infusion of sodium cromoglycate at doses of 100-1000 microgram/min caused a feeling of warmth in the limb during 26 out of 30 infusions and this sensation was subject to tachyphylaxis. During eight infusions in which there was a sensation of warmth there was no change in local blood flow as measured by strain-gauge plethysmography. In a further six studies involving 12 infusions of sodium cromoglycate the feeling of warmth was not accompanied by a rise in local skin temperature. The results suggest that sodium cromoglycate may stimulate afferent nerves in man. PMID:6419758

  2. Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury

    PubMed Central

    Yagasaki, Yuki; Katayama, Yoko

    2017-01-01

    Abstract Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.

  3. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain.

    PubMed

    Chartier, Stephane R; Thompson, Michelle L; Longo, Geraldine; Fealk, Michelle N; Majuta, Lisa A; Mantyh, Patrick W

    2014-11-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state.

  4. Enhanced vascular permeability in rat skin induced by sensory nerve stimulation: evaluation of the time course and appropriate stimulation parameters.

    PubMed

    Carmichael, N M E; Dostrovsky, J O; Charlton, M P

    2008-05-15

    Activation of nociceptors causes them to secrete neuropeptides. The binding of these peptides to receptors on blood vessels causes vasodilation and increased vascular permeability that allows loss of proteins and fluid (plasma extravasation, PE); this contributes to inflammation. This study defines the relationship between electrical activation of nociceptors and PE and evaluates the time course of this response in the skin of rats. We measured the time course and extent of PE by digital imaging of changes in skin reflectance caused by leakage of Evans Blue (EB) dye infused in the circulatory system before stimulation. Stimulation of the exclusively sensory saphenous nerve caused the skin to become dark blue within 2 min due to accumulation of EB. While PE is usually measured after 5-15 min of electrical stimulation, we found that stimulation for only 1 min at 4 Hz produced maximum PE. This response was dependent on the number of electrical stimuli at least for 4 Hz and 8 Hz stimulation rates. Since accumulation of EB in the skin is only slowly reversible, to determine the duration of enhanced vascular permeability we administered EB at various times after electrical stimulation of the saphenous nerve. PE was only observed when EB was infused within 5 min of electrical stimulation but could still be observed 50 min after capsaicin (1%, 25 microl) injection into the hind paw. These findings indicate that enhanced vascular permeability evoked by electrical stimulation persists only briefly after release of neuropeptides from nociceptors in the skin. Therefore, treatment of inflammation by blockade of neuropeptide release and receptors may be more effective than treatments aimed at epithelial gaps. We propose, in models of stimulation-induced inflammation, the use of a short stimulus train.

  5. Sensory perineuritis.

    PubMed Central

    Matthews, W B; Squier, M V

    1988-01-01

    A case of sensory perineuritis is described, affecting individual cutaneous nerves in the extremities and with a chronic inflammatory exudate confined to the perineurium in a sural nerve biopsy. No cause was found. The condition slowly resolved on steroid treatment. Images PMID:3379419

  6. Amplitudes of sural and radial sensory nerve action potentials in orthodromic and antidromic studies in children.

    PubMed

    Melendrez, J L; MacMillan, L J; Vajsar, J

    1998-01-01

    Several previous studies of adults have reported that the amplitudes of the sural and superficial radial nerve action potentials (SN and SRN SNAP respectively) are larger with antidromic than with orthodromic recordings. However, this difference has not been documented in children. This study evaluated the amplitudes of SN and SRN SNAPs obtained with antidromic and orthodromic recordings in children with and without neuropathy and compared these data with findings in adults. The SN or SRN or both of 10 neurologically normal children, 6 children with neuropathy and 7 healthy adults were studied with surface stimulation and recording. The position of the stimulating and recording electrodes for the orthodromic recordings was the reverse of that for the antidromic recordings. Peak-to-peak SNAP amplitudes were measured and analyzed. The mean of the SRN SNAP amplitude was significantly higher with the antidromic than the orthodromic technique for the first and third groups (p < 0.05). The mean SN SNAP amplitude was higher in the three groups, but not statistically significant when the data for the children and adult normal groups were combined and reanalyzed (p < 0.05). Consistent responses were obtained with both techniques. However, the antidromic technique was superior to the orthodromic technique because of the greater amplitude of responses. We recommend the use of the antidromic technique because of its greater amplitudes, ease of use and potential reduction of discomfort to the patient.

  7. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1.

    PubMed

    Bahia, Parmvir K; Parks, Thomas A; Stanford, Katherine R; Mitchell, David A; Varma, Sameer; Stevens, Stanley M; Taylor-Clark, Thomas E

    2016-06-01

    Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621.

  8. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1

    PubMed Central

    Bahia, Parmvir K.; Parks, Thomas A.; Stanford, Katherine R.; Mitchell, David A.; Varma, Sameer; Stevens, Stanley M.

    2016-01-01

    Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621. PMID:27241698

  9. Evidence for a role of capsaicin-sensitive sensory nerves in the lung oedema induced by Tityus serrulatus venom in rats.

    PubMed

    Andrade, Marcus V M; Souza, Danielle G; de A Castro, Maria Salete; Cunha-Melo, José R; Teixeira, Mauro M

    2002-03-01

    In the most severe cases of human envenoming by Tityus serrulatus, pulmonary oedema is a frequent finding and can be the cause of death. We have previously demonstrated a role for neuropeptides acting on tachykinin NK(1) receptors in the development of lung oedema following i.v. injection of T. serrulatus venom (TsV) in experimental animals. The present work was designed to investigate whether capsaicin-sensitive primary afferent neurons were a potential source of NK(1)-acting neuropeptides. To this end, sensory nerves were depleted of neuropeptides by neonatal treatment of rats with capsaicin. The effectiveness of this strategy at depleting sensory nerves was demonstrated by the inhibition of the neuropeptide-dependent response to intraplantar injection of formalin. Pulmonary oedema, as assessed by the levels of extravasation of Evans blue dye in the bronchoalveolar lavage and in the left lung, was markedly inhibited in capsaicin-treated animals. In contrast, capsaicin treatment failed to alter the increase in arterial blood pressure or the lethality following i.v. injection of TsV. Our results demonstrate an important role for capsaicin-sensitive sensory nerves in the cascade of events leading to lung injury following the i.v. administration of TsV.

  10. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Brandie R; Coates, Joan R; Johnson, Gayle C; Shelton, G Diane; Katz, Martin L

    2014-04-01

    Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS.

  11. KW-4679-induced inhibition of tachykininergic contraction in the guinea-pig bronchi by prejunctional inhibition of peripheral sensory nerves.

    PubMed Central

    Ikemura, T.; Okarmura, K.; Sasaki, Y.; Ishi, H.; Ohmori, K.

    1996-01-01

    scyllatoxin (300 nM). Apamin or scyllatoxin per se did not influence the slow phase contractions. 7. The results suggest that KW-4679 preferentially inhibits the release of tachykinins from the bronchial sensory nerves through activation of small conductance Ca(2+)-activated K+ channels. Images Figure 4 Figure 5 PMID:8851519

  12. Release of somatostatin and its role in the mediation of the anti-inflammatory effect induced by antidromic stimulation of sensory fibres of rat sciatic nerve.

    PubMed

    Szolcsányi, J; Helyes, Z; Oroszi, G; Németh, J; Pintér, E

    1998-03-01

    1. The effect of antidromic stimulation of the sensory fibres of the sciatic nerve on inflammatory plasma extravasation in various tissues and on cutaneous vasodilatation elicited in distant parts of the body was investigated in rats pretreated with guanethidine (8 mg kg(-1), i.p.) and pipecuronium (200 microg kg(-1), i.v.). 2. Antidromic sciatic nerve stimulation with C-fibre strength (20 V, 0.5 ms) at 5 Hz for 5 min elicited neurogenic inflammation in the innervated area and inhibited by 50.3 +/- 4.67% the development of a subsequent plasma extravasation in response to similar stimulation of the contralateral sciatic nerve. Stimulation at 0.5 Hz for 1 h also evoked local plasma extravasation and inhibited the carrageenin-induced (1%, 100 microl s.c.) cutaneous inflammation by 38.5 +/- 10.0% in the contralateral paw. Excitation at 0.1 Hz for 4 h elicited no local plasma extravasation in the stimulated hindleg but still reduced the carrageenin-induced oedema by 52.1 +/- 9.7% in the paw on the contralateral side. 3. Plasma extravasation in the knee joint in response to carrageenin (2%, 200 microl intra-articular injection) was diminished by 46.1 +/- 12.69% and 40.9 +/- 4.93% when the sciatic nerve was stimulated in the contralateral leg at 0.5 Hz for 1 h or 0.1 Hz for 4 h, respectively. 4. Stimulation of the peripheral stump of the left vagal nerve (20 V, 1 ms, 8 Hz, 10 min) elicited plasma extravasation in the trachea, oesophagus and mediastinal connective tissue in rats pretreated with atropine (2 mg kg(-1), i.v.), guanethidine (8 mg kg(-1), i.p.) and pipecuronium (200 microg kg(-1), i.v.). These responses were inhibited by 37.8 +/- 5.1%, 49.7 +/- 9.9% and 37.6 +/- 4.2%, respectively by antidromic sciatic nerve excitation (5 Hz, 5 min) applied 5 min earlier. 5. Pretreatment with polyclonal somatostatin antiserum (0.5 ml/rat, i.v.) or the selective somatostatin depleting agent cysteamine (280 mg kg(-1), s.c.) prevented the anti-inflammatory effect of sciatic nerve

  13. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain

    PubMed Central

    Chartier, Stephane R.; Thompson, Michelle L.; Longo, Geraldine; Fealk, Michelle N.; Majuta, Lisa A.; Mantyh, Patrick W.

    2014-01-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in non-healed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+ days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state. PMID:25196264

  14. The contribution of sensory nerves to the onset threshold for cutaneous vasodilatation during gradual local skin heating of the forearm and leg.

    PubMed

    Hodges, Gary J; McGarr, Gregory W; Mallette, Matthew M; Del Pozzi, Andrew T; Cheung, Stephen S

    2016-05-01

    During local skin heating, the temporal onset of vasodilatation is delayed in the leg compared to the forearm, and sensory nerve blockade abolishes these differences. However, previous work using rapid skin heating did not allow for determination of sensory nerve influences on temperature thresholds for vasodilatation. Two sites were examined on both the forearm and leg, one control (CTRL), and one treated for sensory nerve blockade (EMLA). Skin blood flux was monitored using laser-Doppler probes, with heaters controlling local skin temperature (Tloc). Tloc was increased from 32-44 °C (+1 °C·10 min(-1)). Stimulus-response curves were constructed by fitting a four-parameter logistic function. EMLA significantly increased Tloc onset in the forearm (CTRL=35.3 ± 0.4 °C; EMLA=36.8 ± 0.7 °C) and leg (CTRL=36.5 ± 0.4 °C; EMLA=38.4 ± 0.5 °C; both P<0.05). At both CTRL and EMLA, Tloc onset was higher in the leg compared to the forearm (both P<0.05). In the forearm, median effective temperature to elicit 50% vasodilatation (ET50) was similar between sites (CTRL=39.7 ± 0.3 °C; EMLA=40.2 ± 0.4 °C; P=0.09); however, in the leg, EMLA significantly increased ET50 (CTRL=40.2 ± 0.3 °C; EMLA=41.0 ± 0.3 °C)(P<0.05). At CTRL sites, no limb difference was observed for ET50 (P=0.06); however, with EMLA, ET50 was significantly higher in the leg (P<0.05). EMLA significantly increased the gain of the slope at the forearm, (CTRL=0.31 ± 0.01%CVCmax·°C(-1); EMLA=0.45 ± 0.07%CVCmax·°C(-1)), and leg (CTRL=0.37 ± 0.05%CVCmax·°C(-1); EMLA=0.54 ± 0.04%CVCmax·°C(-1))(both P<0.05). At CTRL sites, the gain was significantly higher in the leg (P<0.05); however, for EMLA, no significant limb difference existed (P=0.10). These data indicate that the onset of vasodilatation occurs at a lower temperature in the forearm than the legs, and sensory nerves play an important role in both limbs.

  15. OZONE EXPOSURE INITIATES A SEQUENTIAL SIGNALING CASCADE IN AIRWAYS INVOLVING INTERLEUKIN-1BETA RELEASE, NERVE GROWTH FACTOR SECRETION, AND SUBSTANCE P UPREGULATION

    PubMed Central

    Barker, Joshua S.; Wu, Zhongxin; Hunter, Dawn D.; Dey, Richard D.

    2015-01-01

    Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo. PMID:25734767

  16. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  17. Primary Sensory and Motor Cortex Excitability Are Co-Modulated in Response to Peripheral Electrical Nerve Stimulation

    PubMed Central

    Schabrun, Siobhan M.; Ridding, Michael C.; Galea, Mary P.; Hodges, Paul W.; Chipchase, Lucinda S.

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES. PMID:23227260

  18. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation.

    PubMed

    Schabrun, Siobhan M; Ridding, Michael C; Galea, Mary P; Hodges, Paul W; Chipchase, Lucinda S

    2012-01-01

    Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30-50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N(20)-P(25) component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P(14)-N(20) SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.

  19. Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release.

    PubMed

    Hajna, Zsófia; Sághy, Éva; Payrits, Maja; Aubdool, Aisah A; Szőke, Éva; Pozsgai, Gábor; Bátai, István Z; Nagy, Lívia; Filotás, Dániel; Helyes, Zsuzsanna; Brain, Susan D; Pintér, Erika

    2016-10-01

    It is supposed that TRPA1 receptor can be activated by hydrogen sulphide (H2S). Here, we have investigated the role of TRPA1 receptor in H2S-induced [Ca(2+)]i increase in trigeminal ganglia (TRG) neurons, and the involvement of capsaicin-sensitive sensory nerves in H2S-evoked cutaneous vasodilatation. [Ca(2+)]i was measured with ratiometric technique on TRG neurons of TRPA1(+/+) and TRPA1(-/-) mice after NaHS, Na2S, allylisothiocyanate (AITC) or KCl treatment. Microcirculatory changes in the ear were detected by laser Doppler imaging in response to topical NaHS, AITC, NaOH, NaSO3 or NaCl. Mice were either treated with resiniferatoxin (RTX), or CGRP antagonist BIBN4096, or NK1 receptor antagonist CP99994, or K(+) ATP channel blocker glibenclamide. Alpha-CGRP(-/-) and NK1 (-/-) mice were also investigated. NaHS and Na2S increased [Ca(2+)]i in TRG neurons derived from TRPA(+/+) but not from TRPA1(-/-) mice. NaHS increased cutaneous blood flow, while NaOH, NaSO3 and NaCl did not cause significant changes. NaHS-induced vasodilatation was reduced in RTX-treated animals, as well as by pre-treatment with BIBN4096 or CP99994 alone or in combination. NaHS-induced vasodilatation was significantly smaller in alpha-CGRP(-/-) or NK1 (-/-) mice compared to wild-types. H2S activates capsaicin-sensitive sensory nerves through TRPA1 receptors and the resultant vasodilatation is mediated by the release of vasoactive sensory neuropeptides CGRP and substance P.

  20. Genetics Home Reference: hereditary sensory and autonomic neuropathy type V

    MedlinePlus

    ... that primarily affects the sensory nerve cells (sensory neurons), which transmit information about sensations such as pain, ... in the development and survival of nerve cells (neurons), including sensory neurons. The NGFβ protein functions by ...

  1. Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors

    PubMed Central

    Keast, Janet R.; Forrest, Shelley L.; Osborne, Peregrine B.

    2010-01-01

    Most small unmyelinated neurons in adult rat dorsal ganglia (DRG) express one or more of the co-receptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin and artemin (GFRα1, GFRα2 and GFRα3 respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitisation. In this study, we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord, there was a widespread increase in neuronal GFRα1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRα3-IR also increased but in a more restricted area. In contrast, GFRα2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabelled L5 DRG sections suggested the main effect of injury on GFRα1- and GFRα3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRα2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRα2-IR neurons. Our results suggest the DRG neuronal populations targeted by GDNF, neurturin or artemin, and the effect of exogenous GFLs could change significantly after a peripheral nerve injury. PMID:20533358

  2. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats

    PubMed Central

    Bregeon, Fabienne; Alliez, Jean Roch; Héry, Géraldine; Marqueste, Tanguy; Ravailhe, Sylvie; Jammes, Yves

    2007-01-01

    There is no study in the literature dealing with re-innervation of the cardiopulmonary vagus nerve after its transection followed by re-anastomosis. In the present study, we explored the bronchomotor, heart rate and respiratory responses in rats at 2, 3 and 6 months after re-anastomosis of one cervical vagus trunk. The conduction velocity of A, B and C waves was calculated in the compound vagal action potential. We searched for afferent vagal activities in phase with pulmonary inflation to assess the persistence of pulmonary stretch receptor (PSR) discharge in re-innervated lungs. In each animal, data from the stimulation or recording of one re-anastomosed vagus nerve were compared with those obtained in the contra-lateral intact one. Two and three months after surgery, the conduction velocities of A and B waves decreased, but recovery of conduction velocity was complete at 6 months. By contrast, the conduction velocity of the C wave did not change until 6 months, when it was doubled. The PSR activity was present in 50% of re-anastomosed vagus nerves at 2 and 3 months and in 75% at 6 months. Respiratory inhibition evoked by vagal stimulation was significantly weaker from the re-anastomosed than intact nerve at 2 but not 3 months. Vagal stimulation did not elicit cardiac slowing or bronchoconstriction 6 months after re-anastomosis. Our study demonstrates the capacity of pulmonary vagal sensory neurones to regenerate after axotomy followed by re-anastomosis, and the failure of the vagal efferents to re-innervate both the lungs and heart. PMID:17430986

  3. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Wark, H. A. C.; Hutchinson, D. T.; Warren, D. J.; O'Neill, K.; Scheinblum, T.; Clark, G. A.; Normann, R. A.; Greger, B.

    2016-06-01

    Objective. An important goal of neuroprosthetic research is to establish bidirectional communication between the user and new prosthetic limbs that are capable of controlling >20 different movements. One strategy for achieving this goal is to interface the prosthetic limb directly with efferent and afferent fibres in the peripheral nervous system using an array of intrafascicular microelectrodes. This approach would provide access to a large number of independent neural pathways for controlling high degree-of-freedom prosthetic limbs, as well as evoking multiple-complex sensory percepts. Approach. Utah Slanted Electrode Arrays (USEAs, 96 recording/stimulating electrodes) were implanted for 30 days into the median (Subject 1-M, 31 years post-amputation) or ulnar (Subject 2-U, 1.5 years post-amputation) nerves of two amputees. Neural activity was recorded during intended movements of the subject’s phantom fingers and a linear Kalman filter was used to decode the neural data. Microelectrode stimulation of varying amplitudes and frequencies was delivered via single or multiple electrodes to investigate the number, size and quality of sensory percepts that could be evoked. Device performance over time was assessed by measuring: electrode impedances, signal-to-noise ratios (SNRs), stimulation thresholds, number and stability of evoked percepts. Main results. The subjects were able to proportionally, control individual fingers of a virtual robotic hand, with 13 different movements decoded offline (r = 0.48) and two movements decoded online. Electrical stimulation across one USEA evoked >80 sensory percepts. Varying the stimulation parameters modulated percept quality. Devices remained intrafascicularly implanted for the duration of the study with no significant changes in the SNRs or percept thresholds. Significance. This study demonstrated that an array of 96 microelectrodes can be implanted into the human peripheral nervous system for up to 1 month durations. Such an

  4. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  5. Comparison of sensory tests and neuronal quantity of peripheral nerves between streptozotocin (STZ)-induced diabetic rats and paclitaxel (PAC)-treated rats.

    PubMed

    Jin, Heung Yong; Lee, Na Young; Ko, Hyun A; Lee, Kyung Ae; Park, Tae Sun

    Although diabetic peripheral neuropathy (DPN) and chemotherapy-induced peripheral neuropathy (CIPN) are different disease entities, they share similar neuropathic symptoms that impede quality of life for these patients. Despite having very similar downstream effects, there have been no direct comparisons between DPN and CIPN with respect to symptom severity and therapeutic responses. We compared peripheral nerve damage due to hyperglycemia with that caused by paclitaxel (PAC) treatment as represented by biochemical parameters, diverse sensory tests, and immunohistochemistry of cutaneous and sciatic nerves. The therapeutic effects of alpha-lipoic acid and DA-9801 were also compared in the two models. Animals were divided into seven groups (n = 7-10) as follows: normal, diabetes (DM), DM + alpha-lipoic acid 100 mg/kg (ALA), DM + DA-9801 (100 mg/kg), paclitaxel-treated rat (PAC), PAC + ALA (100 mg/kg), and PAC + DA-9801 (100 mg/kg). The sensory thresholds of animals to mechanical, heat, and pressure stimuli were altered by both hyperglycemia and PAC when compared with controls, and the responses to sensory tests were different between both groups. There were no significant differences in the biochemical markers of blood glutathione between DM and PAC groups (p > .05). Quantitative comparisons of peripheral nerves by intraepidermal nerve fiber density (IENFD) analysis indicated that the DM and PAC groups were similar (6.18 ± 1.03 vs. 5.01 ± 2.57). IENFD was significantly improved after ALA and DA-9801 treatment in diabetic animals (7.6 ± 1.28, 7.7 ± 1.28, respectively, p < .05) but did not reach significance in the PAC-treated groups (6.05 ± 1.76, 5.66 ± 1.26, respectively, p > .05). Sciatic nerves were less damaged in the PAC-treated groups compared with the DM groups with respect to axonal diameter and area (8.60 ± 1.14 μm vs. 6.66 ± 1.07 μm, and 59.04 ± 15.16 μm(2) vs. 35

  6. Dysregulation of the Descending Pain System in Temporomandibular Disorders Revealed by Low-Frequency Sensory Transcutaneous Electrical Nerve Stimulation: A Pupillometric Study

    PubMed Central

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the

  7. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: a pupillometric study.

    PubMed

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the

  8. Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues.

    PubMed

    Witherspoon, J W; Smirnova, I V; McIff, T E

    2014-07-01

    Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns' protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns' modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable.

  9. Nerve growth factor acts through the TrkA receptor to protect sensory neurons from the damaging effects of the HIV-1 viral protein, Vpr.

    PubMed

    Webber, C A; Salame, J; Luu, G-L S; Acharjee, S; Ruangkittisakul, A; Martinez, J A; Jalali, H; Watts, R; Ballanyi, K; Guo, G F; Zochodne, D W; Power, C

    2013-11-12

    Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. A clinical trial with HIV/AIDS patients demonstrated that nerve growth factor (NGF) reduced the severity of DSP-associated neuropathic pain, a problem linked to damage to small diameter, potentially NGF-responsive fibers. Herein, the actions of NGF were investigated in our Vpr model of DSP and we demonstrated that NGF significantly protected sensory neurons from the effects of Vpr. Footpads of immunodeficient Vpr transgenic (vpr/RAG1(-/-)) mice displayed allodynia (p<0.05), diminished epidermalinnervation (p<0.01) and reduced NGF mRNA expression (p<0.001) compared to immunodeficient (wildtype/RAG1(-/-)) littermate control mice. Compartmented cultures confirmed recombinant Vpr exposure to the DRG neuronal perikarya decreased distal neurite extension (p<0.01), whereas NGF exposure at these distal axons protected the DRG neurons from the Vpr-induced effect on their cell bodies. NGF prevented Vpr-induced attenuation of the phosphorylated glycogen synthase-3 axon extension pathway and tropomyosin-related kinase A (TrkA) receptor expression in DRG neurons (p<0.05) and it directly counteracted the cytosolic calcium burst caused by Vpr exposure to DRG neurons (p<0.01). TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling

  10. Nerve growth factor acts through the TrkA receptor to protect sensory neurons from the damaging effects of the HIV-1 viral protein, Vpr

    PubMed Central

    Webber, Christine A.; Salame, Jihan; Luu, Gia-Linh S.; Acharjee, Shaona; Ruangkittisakul, Araya; Martinez, Jose A.; Jalali, Hanieh; Watts, Russell; Ballanyi, Klaus; Guo, Gui Fang; Zochodne, Douglas W.; Power, Christopher

    2013-01-01

    Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. A clinical trial with HIV/AIDS patients demonstrated that nerve growth factor (NGF) reduced the severity of DSP-associated neuropathic pain, a problem linked to damage to small diameter, potentially NGF responsive fibers. Herein, the actions of NGF were investigated in our Vpr model of DSP and we demonstrated that NGF significantly protected sensory neurons from the effects of Vpr. Footpads of immunodeficient Vpr transgenic (vpr/RAG1−/−) mice displayed allodynia (p<0.05), diminished epidermal innervation (p<0.01) and reduced NGF mRNA expression (p<0.001) compared to immunodeficient (wildtype/RAG1−/−) littermate control mice. Compartmented cultures confirmed recombinant Vpr exposure to the DRG neuronal perikarya decreased distal neurite extension (p<0.01), whereas NGF exposure at these distal axons protected the DRG neurons from the Vpr-induced effect on their cell bodies. NGF prevented Vpr-induced attenuation of the phosphorylated glycogen synthase-3 axon extension pathway and tropomyosin related kinase A (TrkA) receptor expression in DRG neurons (p<0.05) and it directly counteracted the cytosolic calcium burst caused by Vpr exposure to DRG neurons (p<0.01). TrkA receptor antagonists indicated that NGF acted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr’s effect on DRG neurons. Overall, NGF

  11. Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage.

    PubMed

    Brzozowski, Tomasz; Konturek, Peter C; Zwirska-Korczala, Krystyna; Konturek, Stanislaw J; Brzozowska, Iwona; Drozdowicz, Danuta; Sliwowski, Zbigniew; Pawlik, Michal; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-01

    Melatonin attenuates acute gastric lesions induced by topical strong irritants because of scavenging of free radicals, but its role in the pathogenesis of stress-induced gastric lesions has been sparingly investigated. In this study we compared the effects of intragastric (i.g.) or intracerebroventricular (i.c.v.) administration of melatonin and its precursor, L-tryptophan, with or without concurrent treatment with luzindole, a selective antagonist of melatonin MT2 receptors, on gastric lesions induced by water immersion and restraint stress (WRS). The involvement of pineal gland, endogenous prostaglandins (PG) and sensory nerves in gastroprotective action of melatonin and L-tryptophan against WRS was studied in intact or pinealectomized rats or those treated with indomethacin or rofecoxib to suppress cyclooxygenase (COX)-1 and COX-2, respectively, and with capsaicin to induce functional ablation of the sensory nerves. In addition, the influence of i.c.v. and i.g. melatonin on gastric secretion was tested in a separate group of rats equipped with gastric fistulas. At 3.5 hr after the end of WRS, the number of gastric lesions was counted, the gastric blood flow (GBF) was determined by H2-gas clearance technique and plasma melatonin and gastrin levels were measured by specific radioimmunoassay (RIA). Biopsy mucosal samples were taken for determination of expression of mRNA for COX-1 and COX-2 by reverse transcriptase-polymerase chain reaction (RT-PCR) and of the mucosal generation of prostaglandin E2 (PGE2) by RIA. Melatonin applied i.g. (1.25-10 mg/kg) or i.c.v. (1.25-10 microg/kg) dose-dependently inhibited gastric acid secretion and significantly attenuated the WRS-induced gastric damage. This protective effect of melatonin was accompanied by a significant rise in the GBF and plasma melatonin and gastrin levels and in mucosal generation of PGE2. Pinealectomy, which suppressed plasma melatonin levels, aggravated the gastric lesions induced by WRS and these effects

  12. Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues

    PubMed Central

    Witherspoon, J W; Smirnova, IV; McIff, TE

    2014-01-01

    Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns’ protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns’ modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable. PMID:24476562

  13. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis.

    PubMed

    Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y

    2010-01-01

    Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.

  14. Nerve growth factor-tyrosine kinase A pathway is involved in thermoregulation and adaptation to stress: studies on patients with hereditary sensory and autonomic neuropathy type IV.

    PubMed

    Loewenthal, Neta; Levy, Jacov; Schreiber, Ruth; Pinsk, Vered; Perry, Zvi; Shorer, Zamir; Hershkovitz, Eli

    2005-04-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is caused by mutations in the tyrosin kinase A (TrkA) gene, encoding for the high-affinity receptor of nerve growth factor (NGF). The NGF-TrkA system is expressed in many endocrine glands. We hypothesized that HSAN IV represents a natural model for impaired NGF effect on the neuroendocrine system in humans. We have documented the clinical outcome of 31 HSAN IV patients in a single medical center, and investigated their basal endocrine system status. The endocrine system response to thirst was compared between six patients and six healthy children. High rates of mortality (22%) and severe morbidity (30%) have been found in HSAN IV patients. Hypothermia was noted in 40% of the patients and unexplained fever was observed in 56%. Subnormal adrenal function was demonstrated in six (30%) of the patients studied. Furthermore, we found lower plasma norepinephrine (NE) levels in six HSAN IV patients compared with a control group after the thirst test. Our findings emphasize the importance of NGF-TrkA pathway in the physiology of the neuroendocrine system and its response to stress. Inadequate response to stress might contribute to the observed significant mortality, morbidity, and temperature instability in HSAN IV patients.

  15. Nerve growth factor derivative NGF61/100 promotes outgrowth of primary sensory neurons with reduced signs of nociceptive sensitization.

    PubMed

    Severini, C; Petrocchi Passeri, P; Ciotti, M T; Florenzano, F; Petrella, C; Malerba, F; Bruni, B; D'Onofrio, M; Arisi, I; Brandi, R; Possenti, R; Calissano, P; Cattaneo, A

    2017-02-02

    Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease. However, the development of an NGF-based therapy is limited by its potent pain activity. We have developed a "painless" derivative form of human NGF (NGF61/100), characterized by identical neurotrophic properties but a reduced nociceptive sensitization activity in vivo. Here we characterized the response of rat dorsal root ganglia neurons (DRG) to the NGF derivative NGF61/100, in comparison to that of control NGF (NGF61), analyzing the expression of noxious pro-nociceptive mediators. NGF61/100 displays a neurotrophic activity on DRG neurons comparable to that of control NGF61, despite a reduced activation of PLCγ, Akt and Erk1/2. NGF61/100 does not differ from NGF61 in its ability to up-regulate Substance P (SP) and Calcitonin Gene Related Peptide (CGRP) expression. However, upon Bradykinin (BK) stimulation, NGF61/100-treated DRG neurons release a much lower amount of SP and CGRP, compared to control NGF61 pre-treated neurons. This effect of painless NGF is explained by the reduced up-regulation of BK receptor 2 (B2R), respect to control NGF61. As a consequence, BK treatment reduced phosphorylation of the transient receptor channel subfamily V member 1 (TRPV1) in NGF61/100-treated cultures and induced a significantly lower intracellular Ca(2+) mobilization, responsible for the lower release of noxious mediators. Transcriptomic analysis of DRG neurons treated with NGF61/100 or control NGF allowed identifying a small number of nociceptive-related genes that constitute an "NGF pain fingerprint", whose differential regulation by NGF61/100 provides a strong mechanistic basis for its selective reduced pain sensitizing actions.

  16. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2

    PubMed Central

    Jones, Victoria C; Birrell, Mark A; Maher, Sarah A; Griffiths, Mark; Grace, Megan; O'Donnell, Valerie B; Clark, Stephen R

    2016-01-01

    Background and Purpose Airway microvascular leak (MVL) involves the extravasation of proteins from post‐capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX‐mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. Experimental Approach Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor‐deficient mice to define the receptor subtype involved. Key Results PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2‐induced MVL was demonstrated in Ptger2 −/− and Ptger4 −/− mice and in wild‐type mice pretreated simultaneously with EP2 (PF‐04418948) and EP4 (ER‐819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2 −/− and Ptger4 −/− mice. Conclusions and Implications PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2. PMID:26639895

  17. SUSTAINED BLOCKADE OF NEUROTROPHIN RECEPTORS TrkA, TrkB AND TrkC REDUCES NON-MALIGNANT SKELETAL PAIN BUT NOT THE MAINTENANCE OF SENSORY AND SYMPATHETIC NERVE FIBERS

    PubMed Central

    Ghilardi, Joseph R.; Freeman, Katie T.; Jimenez-Andrade, Juan M.; Mantyh, William G.; Bloom, Aaron P.; Bouhana, Karyn S.; Trollinger, David; Winkler, James; Lee, Patrice; Andrews, Steven W.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2010-01-01

    Current therapies for treating skeletal pain have significant limitations as available drugs (nonsteroidal anti-inflammatory drugs and opiates) have significant unwanted side effects. Targeting nerve growth factor or it's cognate receptor Tropomysin receptor kinase A (TrkA) has recently become an attractive target for inhibition of adult skeletal pain. Here we explore whether sustained administration of a selective small molecule Trk inhibitor that blocks TrkA, TrkB and TrkC kinase activity with nanomolar affinity reduces skeletal pain while allowing the maintenance of sensory and sympathetic neurons in the adult mouse. Twice-daily administration of a Trk inhibitor was begun 1 day post fracture and within 8 hours of acute administration fracture pain related behaviors were reduced by 50% without significant sedation, weight gain or inhibition of fracture healing. Following administration of the Trk inhibitor for 7 weeks, there was no significant decline in the density of unmyelinated, myelinated sensory or sympathetic nerve fibers, measures of acute thermal pain, acute mechanical pain, or general neuromuscular function. The present results suggest that sustained administration of a peripherally selective TrkA, B & C inhibitor significantly reduces skeletal pain without having any obvious detrimental effects on adult sensory and sympathetic nerve fibers or early fracture healing. As with any potential therapeutic advance, understanding whether the benefits of NGF blockade by ARRY-470 are associated with any risks or unexpected effects will be required to fully appreciate the patient populations that may benefit from this therapy. PMID:20854944

  18. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase

    PubMed Central

    Janes, Kali; Doyle, Timothy; Bryant, Leesa; Esposito, Emanuela; Cuzzocrea, Salvatore; Ryerse, Jan; Bennett, Gary J.; Salvemini, Daniela

    2016-01-01

    Many of the widely used anticancer drugs induce dose-limiting peripheral neuropathies that undermine their therapeutic efficacy. Animal models of chemotherapy-induced painful peripheral neuropathy (CIPN) evoked by a variety of drug classes, including taxanes, vinca alkaloids, platinum-complexes, and proteasome-inhibitors, suggest that the common underlying mechanism in the development of these neuropathies is mitotoxicity in primary nerve sensory axons (PNSAs) arising from reduced mitochondrial bioenergetics [eg adenosine triphosphate (ATP) production deficits due to compromised respiratory complex I and II activity]. The causative mechanisms of this mitotoxicity remain poorly defined. However, peroxynitrite, an important pro-nociceptive agent, has been linked to mitotoxicity in several disease states and may also drive the mitotoxicity associated with CIPN. Our findings reveal that the development of mechano-hypersensitivity induced by paclitaxel, oxaliplatin, and bortezomib was prevented by administration of the peroxynitrite decomposition catalyst Mn(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+) without interfering with their anti-tumor effects. Peak CIPN was associated with the nitration and inactivation of superoxide dismutase in the mitochondria, but not in the cytosol, as well as a significant decrease in ATP production within the PNSAs; all of these events were attenuated by MnTE-2-PyP5+. Our results provide continued support for the role of mitotoxicity in the development of CIPN across chemotherapeutic drug classes, and identify peroxynitrite as a key mediator in these processes, thereby providing the rationale towards development of “peroxynitrite-targeted” therapeutics for CIPN. PMID:23891899

  19. Targeting primary afferent nerves for novel antitussive therapy.

    PubMed

    Undem, Bradley J; Carr, Michael J

    2010-01-01

    The best available data support the hypothesis that there are at least two types of vagal nerves responsible for initiating coughing reflexes. One type of nerve conducts action potentials in the A-range and is characterized by rapidly adapting responses to mechanical probing or acidification of the large airway epithelium. Stimulation of these nerves can evoke cough in unconscious experimental animals and humans. These nerves are important in immediate cough evoked by aspiration and as such perform a critical role in airway defense. The other type of primary afferent nerve involved in cough is the vagal C-fiber. Inhalation of selective C-fiber stimulants leads to cough only in conscious animals. In clinical studies, inhalation of a low concentration of a C-fiber stimulant causes an irritating, itchy urge-to-cough sensation that mimics the urge-to-cough sensations associated with respiratory tract infection, post-infection, gastroesophageal reflux disorders, and inflammatory airway diseases. Here we discuss the recent advances in sensory neurobiology that allow for the targeting of vagal C-fibers for novel antitussive therapy. No attempts are made to be all-inclusive with respect to the numerous possible molecular targets being considered to accomplish this goal. Rather, two general strategies are discussed: decreasing generator potential amplitude and decreasing the efficiency by which a generator potential evokes action-potential discharge. For the first category we focus on two targets, transient receptor potential vanilloid 1 and transient receptor potential A1. For the latter category we focus on recent advances in voltage-gated sodium (Na(V)) channel biology.

  20. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs.

    PubMed

    Nassenstein, Christina; Kwong, Kevin; Taylor-Clark, Thomas; Kollarik, Marian; Macglashan, Donald M; Braun, Armin; Undem, Bradley J

    2008-03-15

    Transient receptor potential (TRP) A1 and TRPM8 are ion channels that have been localized to afferent nociceptive nerves. These TRP channels may be of particular relevance to respiratory nociceptors in that they can be activated by various inhaled irritants and/or cold air. We addressed the hypothesis that mouse vagal sensory nerves projecting to the airways express TRPA1 and TRPM8 and that they can be activated via these receptors. Single cell RT-PCR analysis revealed that TRPA1 mRNA, but not TRPM8, is uniformly expressed in lung-labelled TRPV1-expressing vagal sensory neurons. Neither TRPA1 nor TRPM8 mRNA was expressed in TRPV1-negative neurons. Capsaicin-sensitive, but not capsaicin-insensitive, lung-specific neurons responded to cinnamaldehyde, a TRPA1 agonist, with increases in intracellular calcium. Menthol, a TRPM8 agonist, was ineffective at increasing cellular calcium in lung-specific vagal sensory neurons. Cinnamaldehyde also induced TRPA1-like inward currents (as measured by means of whole cell patch clamp recordings) in capsaicin-sensitive neurons. In an ex vivo vagal innervated mouse lung preparation, cinnamaldehyde evoked action potential discharge in mouse vagal C-fibres with a peak frequency similar to that observed with capsaicin. Cinnamaldehyde inhalation in vivo mimicked capsaicin in eliciting strong central-reflex changes in breathing pattern. Taken together, our results support the hypothesis that TRPA1, but not TRPM8, is expressed in vagal sensory nerves innervating the airways. TRPA1 activation provides a mechanism by which certain environmental stimuli may elicit action potential discharge in airway afferent C-fibres and the consequent nocifensor reflexes.

  1. High-Resolution Ultrasonography of the Superficial Peroneal Motor and Sural Sensory Nerves May Be a Non-invasive Approach to the Diagnosis of Vasculitic Neuropathy

    PubMed Central

    Üçeyler, Nurcan; Schäfer, Kristina A.; Mackenrodt, Daniel; Sommer, Claudia; Müllges, Wolfgang

    2016-01-01

    High-resolution ultrasonography (HRUS) is an emerging new tool in the investigation of peripheral nerves. We set out to assess the utility of HRUS performed at lower extremity nerves in peripheral neuropathies. Nerves of 26 patients with polyneuropathies of different etiologies and 26 controls were investigated using HRUS. Patients underwent clinical, laboratory, electrophysiological assessment, and a diagnostic sural nerve biopsy as part of the routine work-up. HRUS was performed at the sural, tibial, and the common, superficial, and deep peroneal nerves. The superficial peroneal nerve longitudinal diameter (LD) distinguished best between the groups: patients with immune-mediated neuropathies (n = 13, including six with histology-proven vasculitic neuropathy) had larger LD compared to patients with non-immune-mediated neuropathies (p < 0.05) and to controls (p < 0.001). Among all subgroups, patients with vasculitic neuropathy showed the largest superficial peroneal nerve LD (p < 0.001) and had a larger sural nerve cross-sectional area when compared with disease controls (p < 0.001). Enlargement of the superficial peroneal and sural nerves as detected by HRUS may be a useful additional finding in the differential diagnosis of vasculitic and other immune-mediated neuropathies. PMID:27064457

  2. High-Resolution Ultrasonography of the Superficial Peroneal Motor and Sural Sensory Nerves May Be a Non-invasive Approach to the Diagnosis of Vasculitic Neuropathy.

    PubMed

    Üçeyler, Nurcan; Schäfer, Kristina A; Mackenrodt, Daniel; Sommer, Claudia; Müllges, Wolfgang

    2016-01-01

    High-resolution ultrasonography (HRUS) is an emerging new tool in the investigation of peripheral nerves. We set out to assess the utility of HRUS performed at lower extremity nerves in peripheral neuropathies. Nerves of 26 patients with polyneuropathies of different etiologies and 26 controls were investigated using HRUS. Patients underwent clinical, laboratory, electrophysiological assessment, and a diagnostic sural nerve biopsy as part of the routine work-up. HRUS was performed at the sural, tibial, and the common, superficial, and deep peroneal nerves. The superficial peroneal nerve longitudinal diameter (LD) distinguished best between the groups: patients with immune-mediated neuropathies (n = 13, including six with histology-proven vasculitic neuropathy) had larger LD compared to patients with non-immune-mediated neuropathies (p < 0.05) and to controls (p < 0.001). Among all subgroups, patients with vasculitic neuropathy showed the largest superficial peroneal nerve LD (p < 0.001) and had a larger sural nerve cross-sectional area when compared with disease controls (p < 0.001). Enlargement of the superficial peroneal and sural nerves as detected by HRUS may be a useful additional finding in the differential diagnosis of vasculitic and other immune-mediated neuropathies.

  3. Nerve growth factor treatment of sensory neuron primary cultures causes elevated levels of the mRNA encoding the ATP synthase beta-subunit as detected by a novel PCR-based differential cloning method.

    PubMed

    Kendall, G; Ensor, E; Crankson, H D; Latchman, D S

    1996-03-01

    The mRNA encoding the rat ATP synthase beta-subunit was rapidly induced by nerve growth factor, within 60 min, in cultured adult rat dorsal root ganglion neurons. ATP synthase beta-subunit cDNA clones were isolated from a lambda library. The library was constructed using rat dorsal root ganglion mRNA that was differentially screened with cDNA-derived probes from untreated and nerve-growth-factor-treated primary cultures of adult rat dorsal root ganglion sensory neurons. Radiolabelled probes were made from submicrogram quantities of RNA, by a novel PCR-based technique, which allows small amounts of primary tissue to be used for library screening. The use of this technique in isolating novel differentially expressed mRNAs is discussed.

  4. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons.

    PubMed

    Sousa-Valente, João; Varga, Angelika; Torres-Perez, Jose Vicente; Jenes, Agnes; Wahba, John; Mackie, Ken; Cravatt, Benjamin; Ueda, Natsuo; Tsuboi, Kazuhito; Santha, Peter; Jancso, Gabor; Tailor, Hiren; Avelino, António; Nagy, Istvan

    2017-06-01

    Elevation of intracellular Ca(2+) concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca(2+) -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.

  5. [Pathophysiology of sensory ataxic neuropathy].

    PubMed

    Sobue, G

    1996-12-01

    The main lesions of sensory ataxic neuropathy such as chronic idiopathic sensory ataxic neuropathy, (ISAN), carcinomatous neuropathy, Sjögren syndrome-associated neuropathy and acute autonomic and sensory neuropathy (AASN) are the large-diameter sensory neurons and dosal column of the spinal cord and the large myelinated fibers in the peripheral nerve trunks. In addition, afferent fibers to the Clarke's nuclei are also severely involved, suggesting Ia fibers being involved in these neuropathies. In NT-3 knockout mouse, an animal model of sensory ataxia, large-sized la neurons as well as muscle spindle and Golgi tendon organs are depleted, and are causative for sensory ataxia. Thus, the proprioceptive Ia neurons would play a role in pathogenesis of sensory ataxia in human sensory ataxic neuropathies, but the significance of dorsal column involvement in human sensory ataxia is still needed to evaluate.

  6. Diverse mechanisms for assembly of branchiomeric nerves.

    PubMed

    Cox, Jane A; Lamora, Angela; Johnson, Stephen L; Voigt, Mark M

    2011-09-15

    The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.

  7. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.

    PubMed

    Sachdeva, Rahul; Theisen, Catherine C; Ninan, Vinu; Twiss, Jeffery L; Houlé, John D

    2016-02-01

    Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of

  8. Neurological Complications in Thyroid Surgery: A Surgical Point of View on Laryngeal Nerves

    PubMed Central

    Varaldo, Emanuela; Ansaldo, Gian Luca; Mascherini, Matteo; Cafiero, Ferdinando; Minuto, Michele N.

    2014-01-01

    The cervical branches of the vagus nerve that are pertinent to endocrine surgery are the superior and the inferior laryngeal nerves: their anatomical course in the neck places them at risk during thyroid surgery. The external branch of the superior laryngeal nerve (EB) is at risk during thyroid surgery because of its close anatomical relationship with the superior thyroid vessels and the superior thyroid pole region. The rate of EB injury (which leads to the paralysis of the cricothyroid muscle) varies from 0 to 58%. The identification of the EB during surgery helps avoiding both an accidental transection and an excessive stretching. When the nerve is not identified, the ligation of superior thyroid artery branches close to the thyroid gland is suggested, as well as the abstention from an indiscriminate use of energy-based devices that might damage it. The inferior laryngeal nerve (RLN) runs in the tracheoesophageal groove toward the larynx, close to the posterior aspect of the thyroid. It is the main motor nerve of the intrinsic laryngeal muscles, and also provides sensory innervation to the larynx. Its injury finally causes the paralysis of the omolateral vocal cord and various sensory alterations: the symptoms range from mild to severe hoarseness, to acute airway obstruction, and swallowing impairment. Permanent lesions of the RNL occur from 0.3 to 7% of cases, according to different factors. The surgeon must be aware of the possible anatomical variations of the nerve, which should be actively searched for and identified. Visual control and gentle dissection of RLN are imperative. The use of intraoperative nerve monitoring has been safely applied but, at the moment, its impact in the incidence of RLN injuries has not been clarified. In conclusion, despite a thorough surgical technique and the use of intraoperative neuromonitoring, the incidence of neurological complications after thyroid surgery cannot be suppressed, but should be maintained in a low range. PMID

  9. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  10. Use of cone-beam computed tomography in the diagnosis of sensory nerve paresthesia secondary to orthodontic tooth movement: a clinical report.

    PubMed

    Chana, Randeep S; Wiltshire, William A; Cholakis, Anastasia; Levine, Gary

    2013-08-01

    In this article, we report an incident of transient neuropathy secondary to tooth movement involving the inferior alveolar nerve. This clinical report reflects the need to thoroughly examine potentially high-risk patients for neuropathy using advanced diagnostic tools such as cone-beam computed tomography when diagnosing and planning treatment.

  11. Prevention of NKCC1 phosphorylation avoids downregulation of KCC2 in central sensory pathways and reduces neuropathic pain after peripheral nerve injury.

    PubMed

    Mòdol, Laura; Cobianchi, Stefano; Navarro, Xavier

    2014-08-01

    Neuropathic pain after peripheral nerve injury is characterized by loss of inhibition in both peripheral and central pain pathways. In the adult nervous system, the Na(+)-K(+)-2Cl(-) (NKCC1) and neuron-specific K(+)-Cl(-) (KCC2) cotransporters are involved in setting the strength and polarity of GABAergic/glycinergic transmission. After nerve injury, the balance between these cotransporters changes, leading to a decrease in the inhibitory tone. However, the role that NKCC1 and KCC2 play in pain-processing brain areas is unknown. Our goal was to study the effects of peripheral nerve injury on NKCC1 and KCC2 expression in dorsal root ganglia (DRG), spinal cord, ventral posterolateral (VPL) nucleus of the thalamus, and primary somatosensory (S1) cortex. After sciatic nerve section and suture in adult rats, assessment of mechanical and thermal pain thresholds showed evidence of hyperalgesia during the following 2 months. We also found an increase in NKCC1 expression in the DRG and a downregulation of KCC2 in spinal cord after injury, accompanied by later decrease of KCC2 levels in higher projection areas (VPL and S1) from 2 weeks postinjury, correlating with neuropathic pain signs. Administration of bumetanide (30 mg/kg) during 2 weeks following sciatic nerve lesion prevented the previously observed changes in the spinothalamic tract projecting areas and the appearance of hyperalgesia. In conclusion, the present results indicate that changes in NKCC1 and KCC2 in DRG, spinal cord, and central pain areas may contribute to development of neuropathic pain.

  12. Preparation of the patient and the airway for awake intubation

    PubMed Central

    Ramkumar, Venkateswaran

    2011-01-01

    Awake intubation is usually performed electively in the presence of a difficult airway. A detailed airway examination is time-consuming and often not feasible in an emergency. A simple 1-2-3 rule for airway examination allows one to identify potential airway difficulty within a minute. A more detailed airway examination can give a better idea about the exact nature of difficulty and the course of action to be taken to overcome it. When faced with an anticipated difficult airway, the anaesthesiologist needs to consider securing the airway in an awake state without the use of anaesthetic agents or muscle relaxants. As this can be highly discomforting to the patient, time and effort must be spent to prepare such patients both psychologically and pharmacologically for awake intubation. Psychological preparation is best initiated by an anaesthesiologist who explains the procedure in simple language. Sedative medications can be titrated to achieve patient comfort without compromising airway patency. Additional pharmacological preparation includes anaesthetising the airway through topical application of local anaesthetics and appropriate nerve blocks. When faced with a difficult airway, one should call for the difficult airway cart as well as for help from colleagues who have interest and expertise in airway management. Preoxygenation and monitoring during awake intubation is important. Anxious patients with a difficult airway may need to be intubated under general anaesthesia without muscle relaxants. Proper psychological and pharmacological preparation of the patient by an empathetic anaesthesiologist can go a long way in making awake intubation acceptable for all concerned. PMID:22174458

  13. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Design and drawings of micro-electrode arrays complete. 2 • Measure impedances on all electrodes in each array prior to sterilization, and if...allow them to compliantly move with the peripheral nerves and resist mechanical damage. Figure 1 – CAD drawings of the poly-LIFE. Top panel: A...week of implantation due to the array/ wire being crushed/broken by the patient likely during performance of their job. The second array failure

  14. Determination of Long Term Motor Control and Cutaneous Sensory Properties of a High Resolution Peripheral Nerve Interface Technology for Limb Amputees

    DTIC Science & Technology

    2012-12-01

    implant surgery , and since the nerve sizes and content vary widely by location, a “one size fits all” approach was included in the overall approach as...while larger fascicles can be readily divided into smaller fascicles during implant surgeries . In order to rigorously but fairly test the MTA approach...accomplished with available technology from advanced robotics efforts. However, if standard CMOS foundry process technology can be leveraged, then

  15. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    PubMed Central

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  16. Subclinical sensory involvement in monomelic amyotrophy.

    PubMed

    Liao, Jenny P; Waclawik, Andrew J; Lotz, Barend P

    2005-12-01

    An 18-year-old woman presented with weakness and atrophy in her hand without associated sensory symptoms, preceding events, or structural abnormalities on neuroimaging. No sensory deficits were detected on neurologic examination. Electrophysiological studies showed not only the expected motor findings for monomelic amyotrophy (MA) in the affected limb, but also markedly reduced sensory nerve action potentials when compared with the unaffected side. These findings suggest that subclinical sensory involvement can exist in patients with otherwise classic presentations of MA.

  17. Pressure-volume behaviour of the rat upper airway: effects of tongue muscle activation

    PubMed Central

    Bailey, E Fiona; Fregosi, Ralph F

    2003-01-01

    Our hypothesis was that the simultaneous activation of tongue protrudor and retractor muscles (co-activation) would constrict and stiffen the pharyngeal airway more than the independent activation of tongue protrudor muscles. Upper airway stiffness was determined by injecting known volumes of air into the sealed pharyngeal airway of the anaesthetized rat while measuring nasal pressure under control (no-stimulus) and stimulus conditions (volume paired with hypoglossal (XII) nerve stimulation). Stimulation of the whole XII nerves (co-activation) or the medial XII branches (protrudor activation) effected similar increases in total pharyngeal airway stiffness. Importantly, co-activation produced volume compression (airway narrowing) at large airway volumes (P < 0.05), but had no effect on airway dimension at low airway volumes. In comparison, protrudor activation resulted in significant volume expansion (airway dilatation) at low airway volumes and airway narrowing at high airway volumes (P < 0.05). In conclusion, both co-activation and independent protrudor muscle activation increase airway stiffness. However, their effects on airway size are complex and depend on the condition of the airway at the time of activation. PMID:12640023

  18. Genetics Home Reference: hereditary sensory and autonomic neuropathy type IE

    MedlinePlus

    ... by impaired function of nerve cells called sensory neurons, which transmit information about sensations such as pain, ... understood, the enzyme may help regulate nerve cell (neuron) maturation and specialization (differentiation), the ability of neurons ...

  19. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  20. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  1. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  2. Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control

    PubMed Central

    Bessac, Bret F.; Jordt, Sven-Eric

    2009-01-01

    New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743

  3. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  4. Continuous Femoral Nerve Blocks: Varying Local Anesthetic Delivery Method (Bolus versus Basal) to Minimize Quadriceps Motor Block while Maintaining Sensory Block

    PubMed Central

    Charous, Matthew T.; Madison, Sarah J.; Suresh, J.; Sandhu, NavParkash S.; Loland, Vanessa J.; Mariano, Edward R.; Donohue, Michael C.; Dutton, Pascual H.; Ferguson, Eliza J.; Ilfeld, Brian M.

    2011-01-01

    Background Whether the method of local anesthetic administration for continuous femoral nerve blocks —basal infusion versus repeated hourly bolus doses —influences block effects remains unknown. Methods Bilateral femoral perineural catheters were inserted in volunteers (n = 11). Ropivacaine 0.1% was administered through both catheters concurrently: a 6-h continuous 5 ml/h basal infusion on one side and 6 hourly bolus doses on the contralateral side. The primary endpoint was the maximum voluntary isometric contraction (MVIC) of the quadriceps femoris muscle at Hour 6. Secondary end points included quadriceps MVIC at other time points, hip adductor MVIC, and cutaneous sensation 2 cm medial to the distal quadriceps tendon in the 22 h following local anesthetic administration initiation. Results Quadriceps MVIC for limbs receiving 0.1% ropivacaine as a basal infusion declined by a mean (SD) of 84% (19) compared with 83% (24) for limbs receiving 0.1% ropivacaine as repeated bolus doses between baseline and Hour 6 (paired t test P = 0.91). Intrasubject comparisons (left vs. right) reflected a lack of difference as well: the mean basal-bolus difference in quadriceps MVIC at Hour 6 was −1.1% (95% CI −22.0 to 19.8%). The similarity did not reach our a priori threshold for concluding equivalence, which was the 95% CI falling within ± 20%. There were similar minimal differences in the secondary endpoints during local anesthetic administration. Conclusions This study did not find evidence to support the hypothesis that varying the method of local anesthetic administration —basal infusion versus repeated bolus doses —influences continuous femoral nerve block effects to a clinically significant degree. PMID:21394001

  5. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes.

    PubMed

    Tsuboi, Kentaro; Mizukami, Hiroki; Inaba, Wataru; Baba, Masayuki; Yagihashi, Soroku

    2015-11-25

    Incretin-related therapy was found to be beneficial for experimental diabetic neuropathy, but its mechanism is obscure. The purpose of this study is to explore the mechanism through which dipeptidyl peptidase IV inhibitor, vildagliptin (VG), influences neuropathy in diabetic rodents. To this end, non-obese type 2 diabetic Goto-Kakizaki rats (GK) and streptozotocin (STZ)-induced diabetic mice were treated with VG orally. Neuropathy was evaluated by nerve conduction velocity (NCV) in both GK and STZ-diabetic mice, whereas calcitonin-gene-related peptide (CGRP) expressions, neuronal cell size of dorsal root ganglion (DRG) and intraepidermal nerve fiber density (IENFD) were examined in GK. DRG from GK and STZ-diabetic mice served for analyses of GLP-1 and insulin signaling. As results, VG-treatment improved glucose intolerance and increased serum insulin and GLP-1 in GK accompanied by the amelioration of delayed NCV and neuronal atrophy, reduced CGRP expressions and IENFD. Diet restriction alone did not significantly influence these measures. Impaired GLP-1 signals such as CREB, PKB/Akt and S6RP in DRG of GK were restored in VG-treated group, but the effect was equivocal in diet-treated GK. Concurrently, decreased phosphorylation of insulin receptor substrate-2 (IRS2) in GK was corrected by VG-treatment. Consistent with the effect on GK, VG-treatment improved NCV in diabetic mice without influence on hyperglycemia. DRG of VG-treated diabetic mice were characterized by correction of GLP-1 signals and IRS2 phosphorylation without effects on insulin receptor-β expression. The results suggest close association of neuropathy development with impaired signaling of insulin and GLP-1 in diabetic rodents. This article is protected by copyright. All rights reserved.

  6. INHIBITION OF PAN NEUROTROPHIN RECEPTOR P75 ATTENUATES DIESEL PARTICULATE-INDUCED ENHANCEMENT OF ALLERGIC AIRWAY RESPONSES IN C57/BL6J MICE

    EPA Science Inventory

    Recent investigations have linked neurotrophins including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle...

  7. Transient unilateral combined paresis of the hypoglossal nerve and lingual nerve following intubation anesthesia.

    PubMed

    Ulusoy, Hulya; Besir, Ahmet; Cekic, Bahanur; Kosucu, Muge; Geze, Sukran

    2014-01-01

    Nerve damage may occur in the pharyngolaryngeal region during general anesthesia. The most frequently injured nerves are the hypoglossal, lingual and recurrent laryngeal. These injuries may arise in association with several factors, such as laryngoscopy, endotracheal intubation and tube insertion, cuff pressure, mask ventilation, the triple airway maneuver, the oropharyngeal airway, manner of intubation tube insertion, head and neck position and aspiration. Nerve injuries in this region may take the form of an isolated single nerve or of paresis of two nerves together in the form of hypoglossal and recurrent laryngeal nerve palsy (Tapia's syndrome). However, combined injury of the lingual and hypoglossal nerves following intubation anesthesia is a much rarer condition. The risk of this damage can be reduced with precautionary measures. We describe a case of combined unilateral nervus hypoglossus and nervus lingualis paresis developing after intubation anesthesia.

  8. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  9. The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles).

    PubMed Central

    Halata, Z

    1977-01-01

    Two types of mechanoreceptor have been found in the articular capsule of the knee joint of the domestic cat--Ruffini corpuscles and Pacinian corpuscles. Ruffini corpuscles are situated in the stratum fibrosum and consist of 2 to 6 cylinders. Each cylinder is made up of an afferent axon (diameter 3-4 micrometer), its swellings and terminal processes, Schwann cells enveloping the nerve swellings and terminal processes, endoneural connective tissue and a perineural capsule. The perineural capsule is incomplete in Ruffini corpuscles. The Pacinian corpuscles are 20 to 40 micrometer wide and 150-250 micrometer long. They are situated in groups of up to five at the boundary between the stratum synoviale and the stratum fibrosum. The afferent axon is myelinated (diameter 3-5 micrometer). Its terminal portion is inside the inner bulb which is formed of modified Schwann cells. Each corpuscle is enveloped by a perineural capsule (4-8 layers). The ultrastructure of the Pacinian corpuscles is compared with the ultrastructure of the skin receptors in the cat. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:604339

  10. [Sensory sensitization, part II: Pathophysiology in dysfunctional disorders. Understanding the inner life of the nerve pathways may explain hitherto unexplainable symptoms].

    PubMed

    Levander, Hans

    2003-04-30

    This article is based on a vast clinical experience from patients presenting with widespread pain syndromes as well as dysfunctional symptoms from inner organs. A literature survey has been performed. Allodynia and hyperalgesia that partly explain the fibromyalgia and local myalgia syndromes seem to arise from a pathophysiological process of nociceptive sensitisation. It is proposed that the concept of "sensory sensitisation dysfunctional disorders" be applied to conditions like bronchial hyperreactivity, Da Costas syndrome, Dercum's disease (Adipositas dolorosa), dry eyes and mouth syndrome, fibromyalgia, gastralgia, globus hystericus, interstitial cystitis, chronic prostatitis, irritable bowel syndrome, photo- and phonosensitivity, rhinitis, tension headache, tinnitus, vestibulitis syndrome. These dysfunctional disorders cannot be satisfactorily explained by presently known pathophysiological models like ongoing inflammatory process, tissue degeneration, fibrosis, blood vessel diseases, tumours, immune reactions, toxic or deficiency conditions, metabolic disturbances. Neurogenic mechanisms also seem to play an important role in the pathophysiology of arthritic conditions, and might be worthwhile to include in forthcoming discussions concerning the aetiology of chronic inflammatory disease.

  11. Characterization of cardiovascular reflexes evoked by airway stimulation with allylisothiocyanate, capsaicin, and ATP in Sprague-Dawley rats

    PubMed Central

    Hooper, J. S.; Hadley, S. H.; Morris, K. F.; Breslin, J. W.; Dean, J. B.

    2015-01-01

    Acute inhalation of airborne pollutants alters cardiovascular function and evidence suggests that pollutant-induced activation of airway sensory nerves via the gating of ion channels is critical to these systemic responses. Here, we have investigated the effect of capsaicin [transient receptor potential (TRP) vanilloid 1 (TRPV1) agonist], AITC [TRP ankyrin 1 (TRPA1) agonist], and ATP (P2X2/3 agonist) on bronchopulmonary sensory activity and cardiovascular responses of conscious Sprague-Dawley (SD) rats. Single fiber recordings show that allyl isothiocyanate (AITC) and capsaicin selectively activate C fibers, whereas subpopulations of both A and C fibers are activated by stimulation of P2X2/3 receptors. Inhalation of the agonists by conscious rats caused significant bradycardia, atrioventricular (AV) block, and prolonged PR intervals, although ATP-induced responses were lesser than those evoked by AITC or capsaicin. Responses to AITC were inhibited by the TRP channel blocker ruthenium red and the muscarinic antagonist atropine. AITC inhalation also caused a biphasic blood pressure response: a brief hypertensive phase followed by a hypotensive phase. Atropine accentuated the hypertensive phase, while preventing the hypotension. AITC-evoked bradycardia was not abolished by terazosin, the α1-adrenoceptor inhibitor, which prevented the hypertensive response. Anesthetics had profound effects on AITC-evoked bradycardia and AV block, which was abolished by urethane, ketamine, and isoflurane. Nevertheless, AITC inhalation caused bradycardia and AV block in paralyzed and ventilated rats following precollicular decerebration. In conclusion, we provide evidence that activation of ion channels expressed on nociceptive airway sensory nerves causes significant cardiovascular effects in conscious SD rats via reflex modulation of the autonomic nervous system. PMID:26718787

  12. Identification of target areas for deep brain stimulation in human basal ganglia substructures based on median nerve sensory evoked potential criteria

    PubMed Central

    Klostermann, F; Vesper, J; Curio, G

    2003-01-01

    Objective: In the interventional treatment of movement disorders, the thalamic ventral intermediate nucleus (VIM) and the subthalamic nucleus (STN) are the most relevant electrode targets for deep brain stimulation (DBS). This study tested the value of somatosensory evoked potentials (SEP) for the functional identification of VIM and STN. Methods: Median nerve SEP were recorded from the final stimulation electrodes targeted at STN and VIM. Throughout the stereotactic procedure SEP were recorded during short electrode stops above STN/VIM and within the presumed target areas. After digital filtering, high and low frequency SEP components were analysed separately to parameterise both the 1000 Hz SEP burst and low frequency (<100 Hz) components. Results: SEP recorded in the VIM target region could unequivocally be distinguished from SEP recorded in STN. The 1000 Hz burst signal was significantly larger in VIM than in STN without any overlap of amplitude values. In the low frequency band, a primary high amplitude negativity was obtained in VIM, contrasting with a low amplitude positivity in STN. SEP waveshapes in recordings above target positions resembled SEP obtained in STN. When entering VIM, a sharp amplitude increase was observed over a few millimetres only. Conclusions: Based on SEP criteria, the VIM target but not the STN region can be identified by typical SEP configuration changes, when penetrating the target zone. The approach is independent of the patient's cooperation and vigilance and therefore feasible in general anaesthesia. It provides an easy, reliable, and robust tool for the final assessment of electrode positions at the last instance during electrode implantation when eventual electrode revisions can easily be performed. PMID:12876229

  13. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  14. Wartenberg's migrant sensory neuritis: a prospective follow-up study.

    PubMed

    Stork, Abraham C J; van der Meulen, Marjon F G; van der Pol, W-Ludo; Vrancken, Alexander F J E; Franssen, Hessel; Notermans, Nicolette C

    2010-08-01

    Migrant sensory neuropathy (Wartenberg's migrant sensory neuritis) is characterized by sudden numbness in the distribution of one or multiple cutaneous nerves. To study disease course and outcome, we prospectively followed 12 patients who presented to our tertiary referral neuromuscular outpatient clinic between January 2003 and January 2004. Medical history, neurological, laboratory and electrophysiological examinations were obtained from all patients. All patients were reviewed a second time in 2007, and five had a follow-up electrophysiological examination. At the first visit, 50% described an episode of stretching preceding the sensory complaints. All but three described pain in the affected area before or concomitant with sensory loss. At clinical examination a median of six skin areas were affected, and in 75% this could be confirmed by nerve conduction studies in at least one nerve. Forty-two percent had involvement of the trigeminal nerve. After a mean disease duration of 7.5 years, three patients reported a complete disappearance of sensory complaints and five that the pain had disappeared, but numbness remained. Three patients still had both painful and numb sensory deficits. One patient developed a distal symmetric sensory polyneuropathy. In conclusion, Wartenberg's sensory neuritis is a distinct, exclusively sensory, neuropathy, marked by pain preceding numbness in affected nerves. An episode of stretching preceding pain is not necessary for the diagnosis. Wartenberg's sensory neuritis often retains its spotty, exclusively sensory characteristics after long term follow-up.

  15. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  16. Sensory development.

    PubMed

    Clark-Gambelunghe, Melinda B; Clark, David A

    2015-04-01

    Sensory development is complex, with both morphologic and neural components. Development of the senses begins in early fetal life, initially with structures and then in-utero stimulation initiates perception. After birth, environmental stimulants accelerate each sensory organ to nearly complete maturity several months after birth. Vision and hearing are the best studied senses and the most crucial for learning. This article focuses on the cranial senses of vision, hearing, smell, and taste. Sensory function, embryogenesis, external and genetic effects, and common malformations that may affect development are discussed, and the corresponding sensory organs are examined and evaluated.

  17. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea

    PubMed Central

    Gao, Nan; Yan, Chenxi; Lee, Patrick; Sun, Haijing

    2016-01-01

    Diabetic peripheral neuropathy (DPN) often leads to neurotrophic ulcerations in the cornea and skin; however, the underlying cellular mechanisms of this complication are poorly understood. Here, we used post-wound corneal sensory degeneration and regeneration as a model and tested the hypothesis that diabetes adversely affects DC populations and infiltration, resulting in disrupted DC-nerve communication and DPN. In streptozotocin-induced type 1 diabetic mice, there was a substantial reduction in sensory nerve density and the number of intraepithelial DCs in unwounded (UW) corneas. In wounded corneas, diabetes markedly delayed sensory nerve regeneration and reduced the number of infiltrating DCs, which were a major source of ciliary neurotrophic factor (CNTF) in the cornea. While CNTF neutralization retarded reinnervation in normal corneas, exogenous CNTF accelerated nerve regeneration in the wounded corneas of diabetic mice and healthy animals, in which DCs had been locally depleted. Moreover, blockade of the CNTF-specific receptor CNTFRα induced sensory nerve degeneration and retarded regeneration in normal corneas. Soluble CNTFRα also partially restored the branching of diabetes-suppressed sensory nerve endings and regeneration in the diabetic corneas. Collectively, our data show that DCs mediate sensory nerve innervation and regeneration through CNTF and that diabetes reduces DC populations in UW and wounded corneas, resulting in decreased CNTF and impaired sensory nerve innervation and regeneration. PMID:27064280

  18. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  19. MOEBIUS SYNDROME: CHALLENGES OF AIRWAY MANAGEMENT.

    PubMed

    Budić, Ivana; Šurdilović, Dušan; Slavković, Anđelka; Marjanović, Vesna; Stević, Marija; Simić, Dušica

    2016-03-01

    Moebius syndrome is a rare nonprogressive congenital neurological disorder with a wide range of severity and variability of symptoms. This diversity is a consequence of dysfunction of different cranial nerves (most often facial and abducens nerves), accompanying orofacial abnormalities, musculoskeletal malformations, congenital cardiac diseases, as well as specific associations of Moebius and other syndromes. The authors present anesthesia and airway management during the multiple tooth extraction surgery in a 10-year-old girl with Moebius syndrome associated with Poland and trigeminal trophic syndromes.

  20. Electrical stimulation of upper airway musculature.

    PubMed

    Smith, P L; Eisele, D W; Podszus, T; Penzel, T; Grote, L; Peter, J H; Schwartz, A R

    1996-12-01

    Investigators have postulated that pharyngeal collapse during sleep in patients with obstructive sleep apnea (OSA) may be alleviated by stimulating the genioglossus. The effect of electrical stimulation (ES) of the genioglossus on pharyngeal patency was examined in an isolated feline upper airway preparation and in apneic humans during sleep. We found that stimulation of the genioglossus (n = 8) and of the hypoglossal nerve (n = 1) increased maximum airflow through the isolated feline upper airway in humans during sleep. Additional findings in the isolated feline upper airway suggest that such increases in airflow were due to decreases in pharyngeal collapsibility. The evidence suggests that improvements in airflow dynamics with electrical stimulation are due to selective recruitment of the genioglossus, rather than due to nonspecific activation of the pharyngeal musculature or arousal from sleep. The implications of these results for future therapy with ES are discussed.

  1. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  2. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  3. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy.

  4. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  5. Breathing hot humid air induces airway irritation and cough in patients with allergic rhinitis.

    PubMed

    Khosravi, Mehdi; Collins, Paul B; Lin, Ruei-Lung; Hayes, Don; Smith, Jaclyn A; Lee, Lu-Yuan

    2014-07-01

    We studied the respiratory responses to an increase in airway temperature in patients with allergic rhinitis (AR). Responses to isocapnic hyperventilation (40% of maximal voluntary ventilation) for 4min of humidified hot air (HA; 49°C) and room air (RA; 21°C) were compared between AR patients (n=7) and healthy subjects (n=6). In AR patients, cough frequency increased pronouncedly from 0.10±0.07 before to 2.37±0.73 during, and 1.80±0.79coughs/min for the first 8min after the HA challenge, but not during the RA challenge. In contrast, neither HA nor RA had any significant tussive effect in healthy subjects. The HA challenge also caused respiratory discomfort (mainly throat irritation) measured by the handgrip dynamometry in AR patients, but not in healthy subjects. Bronchoconstriction was not detected after the HA challenge in either group of subjects. In conclusion, hyperventilation of HA triggered vigorous cough response and throat irritation in AR patients, indicating the involvement of sensory nerves innervating upper airways.

  6. Functional gait evaluation of collagen chitosan nerve guides for sciatic nerve repair.

    PubMed

    Patel, Minal; Vandevord, Pamela J; Matthew, Howard W; Desilva, Stephen; Wu, Bin; Wooley, Paul H

    2008-12-01

    The objective of this work was to use a functional gait analysis technique to evaluate sciatic nerve repair through tissue-engineered nerve guides in a rodent animal model. The nerve guides were fabricated by blending collagen with chitosan material and evaluated over a 12-week period for motor and sensory nerve recovery assessed by gait analysis and behavioral testing. Gastrocnemius muscle weight measurements were obtained at the end of each experimental time point and correlated to motor nerve recovery. Functional gait analysis studied both the stance and swing phase angle formations during a normal gait cycle. During the stance phase, functional results revealed that blended nerve guides promoted increased motor nerve recovery than unblended chitosan nerve guides. Similar results were obtained from behavioral tests, indicating that blended nerve guides created increased sensitivity to applied stimulus compared to unblended nerve guides. Muscle strength also correlated with functional recovery and was significantly higher when compared to the unblended nerve guides. From this study, we conclude that collagen-blended chitosan nerve guides enhanced motor and sensory nerve recovery assayed through gait and behavioral testing compared to unblended nerve guides.

  7. Sensory Detection and Responses to Toxic Gases

    PubMed Central

    Bessac, Bret F.; Jordt, Sven-Eric

    2010-01-01

    The inhalation of reactive gases and vapors can lead to severe damage of the airways and lung, compromising the function of the respiratory system. Exposures to oxidizing, electrophilic, acidic, or basic gases frequently occur in occupational and ambient environments. Corrosive gases and vapors such as chlorine, phosgene, and chloropicrin were used as warfare agents and in terrorist acts. Chemical airway exposures are detected by the olfactory, gustatory, and nociceptive sensory systems that initiate protective physiological and behavioral responses. This review focuses on the role of airway nociceptive sensory neurons in chemical sensing and discusses the recent discovery of neuronal receptors for reactive chemicals. Using physiological, imaging, and genetic approaches, Transient Receptor Potential (TRP) ion channels in sensory neurons were shown to respond to a wide range of noxious chemical stimuli, initiating pain, respiratory depression, cough, glandular secretions, and other protective responses. TRPA1, a TRP ion channel expressed in chemosensory C-fibers, is activated by almost all oxidizing and electrophilic chemicals, including chlorine, acrolein, tear gas agents, and methyl isocyanate, the highly noxious chemical released in the Bhopal disaster. Chemicals likely activate TRPA1 through covalent protein modification. Animal studies using TRPA1 antagonists or TRPA1-deficient mice confirmed the role of TRPA1 in chemically induced respiratory reflexes, pain, and inflammation in vivo. New research shows that sensory neurons are not merely passive sensors of chemical exposures. Sensory channels such as TRPA1 are essential for maintenance of airway inflammation in asthma and may contribute to the progression of airway injury following high-level chemical exposures. PMID:20601631

  8. Meaningful power grip recovery after salvage reconstruction of a median nerve avulsion injury with a pedicled vascularized ulnar nerve

    PubMed Central

    Van Slyke, Aaron C; Jansen, Leigh A; Hynes, Sally; Hicks, Jane; Bristol, Sean; Carr, Nicholas

    2015-01-01

    In cases of median nerve injury alongside an unsalvageable ulnar nerve, a vascularized ulnar nerve graft to reconstruct the median nerve is a viable option. While restoration of median nerve sensation is consistently reported, recovery of significant motor function is less frequently observed. The authors report a case involving a previously healthy man who sustained upper arm segmental median and ulnar nerve injuries and, after failure of sural nerve grafts, was treated with a pedicled vascularized ulnar nerve graft to restore median nerve function. Long-term follow-up showed near full fist, with 12 kg of grip strength, key pinch with 1.5 kg of strength and protective sensation in the median nerve distribution. The present case demonstrates that pedicled ulnar vascularized nerve grafts can provide significant improvements to median nerve sensory and motor function in a heavily scarred environment. PMID:26665144

  9. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  10. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  11. Peripheral nerve injury during anesthesia.

    PubMed

    Lieblich, S E

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention.

  12. Peripheral nerve injury during anesthesia.

    PubMed Central

    Lieblich, S. E.

    1990-01-01

    A case is presented where a peripheral nerve injury occurred due to the pressure of a restraint buckle causing a postoperative motor and sensory deficit. Because these are iatrogenic injuries it is useful to review the mechanism of injury and means of prevention. Images Figure 1 PMID:2096751

  13. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    PubMed Central

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  14. The GABAA agonist muscimol attenuates induced airway constriction in guinea pigs in vivo.

    PubMed

    Gleason, Neil R; Gallos, George; Zhang, Yi; Emala, Charles W

    2009-04-01

    GABA(A) channels are ubiquitously expressed on neuronal cells and act via an inward chloride current to hyperpolarize the cell membrane of mature neurons. Expression and function of GABA(A) channels on airway smooth muscle cells has been demonstrated in vitro. Airway smooth muscle cell membrane hyperpolarization contributes to relaxation. We hypothesized that muscimol, a selective GABA(A) agonist, could act on endogenous GABA(A) channels expressed on airway smooth muscle to attenuate induced increases in airway pressures in anesthetized guinea pigs in vivo. In an effort to localize muscimol's effect to GABA(A) channels expressed on airway smooth muscle, we pretreated guinea pigs with a selective GABA(A) antagonist (gabazine) or eliminated lung neural control from central parasympathetic, sympathetic, and nonadrenergic, noncholinergic (NANC) nerves before muscimol treatment. Pretreatment with intravenous muscimol alone attenuated intravenous histamine-, intravenous acetylcholine-, or vagal nerve-stimulated increases in peak pulmonary inflation pressure. Pretreatment with the GABA(A) antagonist gabazine blocked muscimol's effect. After the elimination of neural input to airway tone by central parasympathetic nerves, peripheral sympathetic nerves, and NANC nerves, intravenous muscimol retained its ability to block intravenous acetylcholine-induced increases in peak pulmonary inflation pressures. These findings demonstrate that the GABA(A) agonist muscimol acting specifically via GABA(A) channel activation attenuates airway constriction independently of neural contributions. These findings suggest that therapeutics directed at the airway smooth muscle GABA(A) channel may be a novel therapy for airway constriction following airway irritation and possibly more broadly in diseases such as asthma and chronic obstructive pulmonary disease.

  15. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Review Date 6/1/2015 ...

  16. Orofacial sensory changes and temporomandibular dysfunction.

    PubMed

    DuPont, J S; Matthews, E P

    2000-07-01

    Orofacial sensory changes are uncommon complaints that can coexist with temporomandibular dysfunction (TMD). The location, character, and intensity vary greatly with each individual and symptom fluctuation is not unusual for any patient. The etiology of orofacial sensory changes may be related to either local or systemic factors. Several investigators have reported that muscle entrapment of branches of the third division of the trigeminal nerve may result in orofacial sensory disruption. Different theories have been suggested to illustrate how TMD and trauma might be associated with these neurological changes. Additionally, several mechanisms exist to explain how muscle spasms may be responsible for nerve compression in individuals with normal anatomy and in those with anatomical variations. In this study, thirty subjects from a group of 282 TMD patients were found to have coexisting orofacial sensory disturbances and TMD. Subjects presenting with any neurological complaints should alert the clinician to the possibility that these symptoms may be the early clinical signs of serious disease.

  17. SUSCEPTIBILITY TO POLLUTANT-INDUCED AIRWAY INFLAMMATION IS NEUROGENICALLY MEDIATED.

    EPA Science Inventory

    Neurogenic inflammation in the airways involves the activation of sensory irritant receptors (capsaicin, VR1) by noxious stimuli and the subsequent release of neuropeptides (e.g., SP, CGRP, NKA) from these fibers. Once released, these peptides initiate and sustain symptoms of ...

  18. Double peak sensory responses: effects of capsaicin.

    PubMed

    Aprile, I; Tonali, P; Stalberg, E; Di Stasio, E; Caliandro, P; Foschini, M; Vergili, G; Padua, L

    2007-10-01

    The aim of this study is to verify whether degeneration of skin receptors or intradermal nerve endings by topical application of capsaicin modifies the double peak response obtained by submaximal anodal stimulation. Five healthy volunteers topically applied capsaicin to the finger-tip of digit III (on the distal phalanx) four times daily for 4-5 weeks. Before and after local capsaicin applications, we studied the following electrophysiological findings: compound sensory action potential (CSAP), double peak response, sensory threshold and double peak stimulus intensity. Local capsaicin application causes disappearance or decrease of the second component of the double peak, which gradually increases after the suspension of capsaicin. Conversely, no significant differences were observed for CSAP, sensory threshold and double peak stimulus intensity. This study suggests that the second component of the double peak may be a diagnostic tool suitable to show an impairment of the extreme segments of sensory nerve fibres in distal sensory axonopathy in the early stages of damage, when receptors or skin nerve endings are impaired but undetectable by standard nerve conduction studies.

  19. Microsurgical anatomy of the trigeminal nerve.

    PubMed

    Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Mizokami, Koji; Rhoton, Albert L

    2014-01-01

    The objective of this study is to review surgical anatomy of the trigeminal nerve. We also demonstrate some pictures involving the trigeminal nerve and its surrounding connective and neurovascular structures. Ten adult cadaveric heads were studied, using a magnification ranging from 3× to 40×, after perfusion of the arteries and veins with colored latex. The trigeminal nerve is the largest and most complex of the cranial nerves. It serves as a major conduit of sensory input from the face and provides motor innervation to the muscles of mastication. Because of its size and complexity, it is essential to have thorough knowledge of the nerve before diagnoses and treatment of the pathologic processes in the orofacial, temporomandibular, infratemporal, and pterygopalatine areas. The trigeminal nerve is encountered with imaging or surgery of the skull base surgery. Thus, a comprehensive knowledge of the anatomy of the trigeminal nerve is crucial for performing the surgical procedures without significant complication.

  20. Nerve transfers in brachial plexus birth palsies: indications, techniques, and outcomes.

    PubMed

    Kozin, Scott H

    2008-11-01

    The advent of nerve transfers has greatly increased surgical options for children who have brachial plexus birth palsies. Nerve transfers have considerable advantages, including easier surgical techniques, avoidance of neuroma resection, and direct motor and sensory reinnervation. Therefore, any functioning nerve fibers within the neuroma are preserved. Furthermore, a carefully selected donor nerve results in little or no clinical deficit. However, some disadvantages and unanswered questions remain. Because of a lack of head-to-head comparison between nerve transfers and nerve grafting, the window of opportunity for nerve grafting may be missed, which may degrade the ultimate outcome. Time will tell the ultimate role of nerve transfer or nerve grafting.

  1. Common peroneal nerve dysfunction

    MedlinePlus

    Neuropathy - common peroneal nerve; Peroneal nerve injury; Peroneal nerve palsy ... type of peripheral neuropathy (damage to nerves outside the brain ... nerve injuries. Damage to the nerve disrupts the myelin sheath ...

  2. [An analysis of characteristics of nerve conduction in 154 cases of amyotrophic lateral sclerosis].

    PubMed

    Ren, Y T; Cui, F; Yang, F; Chen, Z H; Ling, L; Huang, X S

    2016-10-01

    Objective: To analyze the features of nerve conduction in patients with amyotrophic lateral sclerosis (ALS), and explore the correlation between compound muscle action potential (CMAP) amplitude and disease duration and revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R). Methods: Standard motor and sensory nerve conduction studies were performed in 154 patients with ALS. The following parameters were collected including CMAP amplitude, distal motor latency (DML), motor conduction velocity, sensory conduction velocity and sensory nerve action potential amplitude. Regression study was done to explore the correlation between CMAP amplitude and disease duration and ALSFRS-R. Results: Motor nerve conduction abnormalities were presented in a majority of the patients with prolonged DML in the tibial nerve, median nerve and ulnar nerve as the most common form (61.06%-81.42%), followed by decreased CMAP amplitude (30.12%-53.98%), decreased MCV (12.05%-16.81%) and absence of CMAP (2.65%-9.73%). Sensory nerve conduction abnormalities were detected in a small proportion of patients and the decreased SCV, decreased SNAP amplitude and absence of SNAP in the sural nerve, median nerve and ulnar nerve were found in 1.22%-2.73%, 0-1.82% and 0-1.22% patients respectively. No correlation was found between CMAP of the common peroneal nerve, tibial nerve, median nerve and ulnar nerve and the disease duration (P>0.05), while significant positive correlation was established between CMAP amplitude of the median nerve and ulnar nerve and ALSFRS-R (r=0.273, P=0.016; r=0.357, P=0.001). Conclusions: Motor nerve conduction is abnormal in a majority of ALS patients with prolonged DML as the most common form, while abnormal sensory nerve conduction is only found in a few of ALS patients. CMAP amplitude of the median nerve and ulnar nerve might be of certain clinical value in evaluating the severity of ALS.

  3. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  4. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    PubMed Central

    Fan, Li-yuan; Wang, Zhong-chao; Wang, Pin; Lan, Yu-yan; Tu, Ling

    2015-01-01

    Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK) pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury. PMID:26889186

  5. Vascularized Nerve Grafts and Vascularized Fascia for Upper Extremity Nerve Reconstruction

    PubMed Central

    Kostopoulos, Vasileios K.

    2009-01-01

    Since 1976, experimental and clinical studies have suggested the superiority of vascularized nerve grafts. In this study, a 27-year experience of the senior author is presented regarding vascularized nerve grafts and fascia for complex upper extremity nerve reconstruction. The factors influencing outcomes as well as a comparison with conventional nerve grafts is presented. Since 1981, 21 vascularized nerve grafts, other than vascularized ulnar nerve, were used for reconstruction of nerve injuries in the upper extremity. Indications were prolonged denervation time, failure of the previously used conventional nerve grafts, and excessive scar in the recipient site. Injury was in the hand/wrist area (n = 5), in the forearm (n = 4), in the elbow (n = 2), in the arm (n = 4), or in the plexus (n = 6). Vascularized sural (n = 9), saphenous (n = 8), superficial radial (n = 3), and peroneal (superficial and deep) nerves were used. The mean follow-up was 31.4 months. Vascularized nerve grafts for upper extremity injuries provided good to excellent sensory return in severely scarred upper extremities in patients in whom conventional nerve grafts had failed. They have also provided relief of causalgia after painful neuroma resection and motor function recovery in selective cases even for above the elbow injuries. Small diameter vascularized nerve grafts should be considered for bridging long nerve gaps in regions of excessive scar or for reconstructions where conventional nerve grafts have failed. PMID:19381727

  6. Advances in upper airway cough syndrome.

    PubMed

    Yu, Li; Xu, Xianghuai; Lv, Hanjing; Qiu, Zhongmin

    2015-05-01

    Upper airway cough syndrome (UACS), previously referred to as postnasal drip syndrome, is one of the most common causes of chronic cough. However, the pathogenesis of UACS/postnasal drip syndrome remains unclear, and physicians in countries throughout the world have different definitions and ways of treating this disease. The various proposed pathogeneses of UACS include the early postnasal drip theory, subsequent chronic airway inflammation theory, and a recent sensory neural hypersensitivity theory. Additionally, some researchers suggest that UACS is a clinical phenotype of cough hypersensitivity syndrome. While the general principles involved in treating UACS are similar throughout the world, the specific details of treatment differ. This review summarizes the various definitions, pathogenic mechanisms, treatments, and other aspects of UACS, to aid clinicians in expanding their knowledge of how to diagnose and treat this syndrome.

  7. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  8. Sensory ability in the narwhal tooth organ system.

    PubMed

    Nweeia, Martin T; Eichmiller, Frederick C; Hauschka, Peter V; Donahue, Gretchen A; Orr, Jack R; Ferguson, Steven H; Watt, Cortney A; Mead, James G; Potter, Charles W; Dietz, Rune; Giuseppetti, Anthony A; Black, Sandie R; Trachtenberg, Alexander J; Kuo, Winston P

    2014-04-01

    The erupted tusk of the narwhal exhibits sensory ability. The hypothesized sensory pathway begins with ocean water entering through cementum channels to a network of patent dentinal tubules extending from the dentinocementum junction to the inner pulpal wall. Circumpulpal sensory structures then signal pulpal nerves terminating near the base of the tusk. The maxillary division of the fifth cranial nerve then transmits this sensory information to the brain. This sensory pathway was first described in published results of patent dentinal tubules, and evidence from dissection of tusk nerve connection via the maxillary division of the fifth cranial nerve to the brain. New evidence presented here indicates that the patent dentinal tubules communicate with open channels through a porous cementum from the ocean environment. The ability of pulpal tissue to react to external stimuli is supported by immunohistochemical detection of neuronal markers in the pulp and gene expression of pulpal sensory nerve tissue. Final confirmation of sensory ability is demonstrated by significant changes in heart rate when alternating solutions of high-salt and fresh water are exposed to the external tusk surface. Additional supporting information for function includes new observations of dentinal tubule networks evident in unerupted tusks, female erupted tusks, and vestigial teeth. New findings of sexual foraging divergence documented by stable isotope and fatty acid results add to the discussion of the functional significance of the narwhal tusk. The combined evidence suggests multiple tusk functions may have driven the tooth organ system's evolutionary development and persistence.

  9. Vitamin D deficiency leads to sensory and sympathetic denervation of the rat synovium

    PubMed Central

    Tague, Sarah E.; Smith, Peter G.

    2014-01-01

    Vitamin D deficiency is associated with increased susceptibility to inflammatory arthritis. Sensory and sympathetic synovial nerves are critical to the development of inflammatory arthritis and spontaneously degenerate in the early phases of disease. These nerves contain vitamin D receptors and vitamin D influences nerve growth and neurotrophin expression. We therefore examined the density of synovial nerves and neurotrophin-containing cells in vitamin D deficient rats. Seven week old Sprague Dawley rats were fed either control or vitamin D deficient diets for four weeks. Knee synovium sections extending from patella to meniscus were immunostained for total nerves, myelinated and unmyelinated nerves, sympathetic nerves, peptidergic and non-peptidergic sensory nerves, and neurotrophins and immune cell markers. In control rats, intimal innervation by unmyelinated sensory fibers was denser than subintimal innervation. In contrast, sympathetic innervation was confined to the subintima. Many sensory axons contained markers for both peptidergic and non-peptidergic nerves. NGF was primarily expressed by intimal CD163-negative type B synoviocytes, while neurturin, a ligand selective for non-peptidergic sensory neurons, was expressed by synovial mast cells. In vitamin D deficient rats, there were significant reductions in sensory nerves in the intima and sympathetic nerves in the subintima. While there was no significant change in NGF-immunoreactivity, the number of neurturin-expressing mast cells was significantly reduced in the intima, suggesting that intimal reductions in sensory nerves may be related to reductions in neurturin. Vitamin D deficiency therefore may increase susceptibility to inflammatory arthritis by depleting sensory and sympathetic synovial nerves as a result of reduced synovial neurotrophin content. PMID:25193239

  10. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy

    PubMed Central

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  11. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    PubMed

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8) and G2+3 (TNSr 9-24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  12. Capsaicin Induces Degeneration of Cutaneous Autonomic Nerve Fibers

    PubMed Central

    Gibbons, Christopher H; Wang, Ningshan; Freeman, Roy

    2010-01-01

    Objective To determine the effects of topical application of capsaicin on cutaneous autonomic nerves. Methods Thirty-two healthy subjects underwent occlusive application of 0.1% capsaicin cream (or placebo) for 48 hours. Subjects were followed for 6 months with serial assessments of sudomotor, vasomotor, pilomotor and sensory function with simultaneous assessment of innervation through skin biopsies. Results There were reductions in sudomotor, vasomotor, pilomotor and sensory function in capsaicin- treated subjects (p<0.01 vs. placebo). Sensory function declined more rapidly than autonomic function; reaching a nadir by day 6 while autonomic function reached a nadir by day 16. There were reductions in sudomotor, vasomotor, pilomotor and sensory nerve fiber densities in capsaicin treated subjects (p<0.01 vs. placebo). Intra-epidermal nerve fiber density declined maximally by 6 days while autonomic nerve fiber densities reached maximal degeneration by day 16. Conversely, autonomic nerves generally regenerated more rapidly than sensory nerves, requiring 40–50 days to return to baseline levels while sensory fibers required 140–150 days to return to baseline. Interpretation Topical capsaicin leads to degeneration of sudomotor, vasomotor and pilomotor nerves accompanied by impairment of sudomotor, vasomotor and pilomotor function. These results suggest the susceptibility and/or pathophysiologic mechanisms of nerve damage may differ between autonomic and sensory nerve fibers treated with capsaicin and enhances the capsaicin model for the study of disease modifying agents. The data suggest caution should be taken when topical capsaicin is applied to skin surfaces at risk for ulceration, particularly in neuropathic conditions characterized by sensory and autonomic impairment. PMID:21061393

  13. Morphology of nerve endings in vocal fold of human newborn.

    PubMed

    Gonçalves da Silva Leite, Janaina; Costa Cavalcante, Maria Luzete; Fechine-Jamacaru, Francisco Vagnaldo; de Lima Pompeu, Margarida Maria; Leite, José Alberto Dias; Nascimento Coelho, Dulce Maria; Rabelo de Freitas, Marcos

    2016-10-01

    Sensory receptors are distributed throughout the oral cavity, pharynx, and larynx. Laryngeal sensitivity is crucial for maintaining safe swallowing, thus avoiding silent aspiration. Morphologic description of different receptor types present in larynx vary because of the study of many different species, from mouse to humans. The most commonly sensory structures described in laryngeal mucosa are free nerve endings, taste buds, muscle spindles, glomerular and corpuscular receptors. This study aimed at describing the morphology and the distribution of nerve endings in premature newborn glottic region. Transversal serial frozen sections of the whole vocal folds of three newborns were analyzed using an immuno-histochemical process with a pan-neuronal marker anti-protein gene product 9.5 (PGP 9.5). Imaging was done using a confocal laser microscope. Nerve fiber density in vocal cord was calculated using panoramic images in software Morphometric Analysis System v1.0. Some sensory structures, i.e. glomerular endings and intraepithelial free nerve endings were found in the vocal cord mucosa. Muscle spindles, complex nerve endings (Meissner-like, spherical, rectangular and growing) spiral-wharves nerve structures were identified in larynx intrinsic muscles. Nervous total mean density in vocal cord was similar in the three newborns, although they had different gestational age. The mean nerve fiber density was higher in the posterior region than anterior region of vocal cord. The present results demonstrate the occurrence of different morphotypes of sensory corpuscles and nerve endings premature newborn glottic region and provide information on their sensory systems.

  14. [Trigeminal sensory involvement in Bell's palsy (author's transl)].

    PubMed

    Lapresle, J; Fernandez Manchola, I; Lasjaunias, P

    1980-01-26

    Trigeminal sensory involvement was noted in 14 out of 24 cases of Bell's palsy. The authors describe its characteristics and its chronology with regard to the facial paralysis. Then they propose a vascular mechanism for this association on the basis of two kinds of data. First it is known that there is a common arterial supply of the VIIth and Vth cranial nerves through the middle meningeal vascular system. Secondly some exceptional complications of embolisation within that system have included involvement of both VIIth and Vth sensory nerves. These facts support the vascular basis of Bell's palsy and present an example of a vascular territorial pathology in cranial nerve involvement.

  15. Three-dimensional Reconstruction of Peripheral Nerve Internal Fascicular Groups

    PubMed Central

    Zhong, Yingchun; Wang, Liping; Dong, Jianghui; Zhang, Yi; Luo, Peng; Qi, Jian; Liu, Xiaolin; Xian, Cory J.

    2015-01-01

    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery. PMID:26596642

  16. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells.

    PubMed

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F; Lundy, Fionnuala; McGarvey, Lorcan P A; Cosby, S Louise

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.

  17. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    PubMed Central

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  18. Reduced evoked motor and sensory potential amplitudes in obstructive sleep apnea patients.

    PubMed

    Mihalj, Mario; Lušić, Linda; Đogaš, Zoran

    2016-06-01

    It is unknown to what extent chronic intermittent hypoxaemia in obstructive sleep apnea causes damage to the motor and sensory peripheral nerves. It was hypothesized that patients with obstructive sleep apnea would have bilaterally significantly impaired amplitudes of both motor and sensory peripheral nerve-evoked potentials of both lower and upper limbs. An observational study was conducted on 43 patients with obstructive sleep apnea confirmed by the whole-night polysomnography, and 40 controls to assess the relationship between obstructive sleep apnea and peripheral neuropathy. All obstructive sleep apnea subjects underwent standardized electroneurographic testing, with full assessment of amplitudes of evoked compound muscle action potentials, sensory neural action potentials, motor and sensory nerve conduction velocities, and distal motor and sensory latencies of the median, ulnar, peroneal and sural nerves, bilaterally. All nerve measurements were compared with reference values, as well as between the untreated patients with obstructive sleep apnea and control subjects. Averaged compound muscle action potential and sensory nerve action potential amplitudes were significantly reduced in the nerves of both upper and lower limbs in patients with obstructive sleep apnea compared with controls (P < 0.001). These results confirmed that patients with obstructive sleep apnea had significantly lower amplitudes of evoked action potentials of both motor and sensory peripheral nerves. Clinical/subclinical axonal damage exists in patients with obstructive sleep apnea to a greater extent than previously thought.

  19. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  20. Early compensatory sensory re-education.

    PubMed

    Daniele, Hugo R; Aguado, Leda

    2003-02-01

    After a neurorrhaphy, there will be a distal disconnection between the cortex and skin receptors, along with interruption of sensibility information. This report demonstrates the efficacy of a new sensory re-education program for achieving optimal sensation in a relatively short time. Between 1999 and 2001, in the authors' Hand Rehabilitation Department, 11 patients with previous neurorrhaphy were subjected to a program of early "compensatory sensory re-education." Lesions were caused by clean cut. There were 13 primary digital nerve procedures, 12 at the distal palmar MP level, and one at the radial dorsal branch of the index (just after emerging from the common digital nerve). The technique of compensatory sensory re-education was based on a previous, but modified, sensory re-education method. In order to evaluate the results in the compensatory sensory re-education series described, additional tests for evaluation of achieved functional sensibility were used. The authors' best results were achieved in a maximum of 8 weeks (4-8 weeks), much less time than with the original method (1-2 years). Using the British classification, it was possible to compare the achieved levels of sensibility and the time required for optimal results. The different methods of sensibility re-education may be similar, but with the authors' compensatory sensory re-education method, substantial time is saved.

  1. Fixation of bilateral condylar fractures with maxillary and mandibular nerve blocks

    PubMed Central

    Parthasarathy, S.; Sripriya, R.

    2015-01-01

    Mandibulo facial injuries present special problems to the anesthesiologist in terms of the difficult airway. Hence, if regional anesthesia could be possible, it necessarily removes the major concern with airway access. We present a case of bilateral mandibular condylar fracture dislocation with the maxillary and mandibular nerve blocks on both sides. The surgery went on smoothly without any perioperative problems. PMID:26417146

  2. Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration.

    PubMed

    Wright, Megan C; Mi, Ruifa; Connor, Emmalynn; Reed, Nicole; Vyas, Alka; Alspalter, Manula; Coppola, Giovanni; Geschwind, Daniel H; Brushart, Thomas M; Höke, Ahmet

    2014-01-29

    Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU(-/-) mice. When compared with OPN(+/+) mice, motor neuron regeneration was reduced in OPN(-/-) mice. Impaired regeneration through OPN(-/-) peripheral nerves grafted into OPN(+/+) mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU(-/-) mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU(-/-) nerve grafts transplanted into CLU(+/+) mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons.

  3. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  4. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.

    PubMed

    Jiang, Xu; Mi, Ruifa; Hoke, Ahmet; Chew, Sing Yian

    2014-05-01

    Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p < 0.01). In addition, the compound muscle action potential (CMAP) amplitudes were higher and distal motor latency values were lower in the Nanofiber conduit group compared to the Microfiber group. This study demonstrated the impact of fibre size on peripheral nerve regeneration. These results could provide useful insights for future nerve guide designs.

  5. Cortical Gating of Oropharyngeal Sensory Stimuli

    PubMed Central

    Wheeler-Hegland, Karen; Pitts, Teresa; Davenport, Paul W.

    2010-01-01

    Somatosensory evoked potentials provide a measure of cortical neuronal activation in response to various types of sensory stimuli. In order to prevent flooding of the cortex with redundant information various sensory stimuli are gated cortically such that response to stimulus 2 (S2) is significantly reduced in amplitude compared to stimulus 1 (S1). Upper airway protective mechanisms, such as swallowing and cough, are dependent on sensory input for triggering and modifying their motor output. Thus, it was hypothesized that central neural gating would be absent for paired-air puff stimuli applied to the oropharynx. Twenty-three healthy adults (18–35 years) served as research participants. Pharyngeal sensory evoked potentials (PSEPs) were measured via 32-electrode cap (10–20 system) connected to SynAmps2 Neuroscan EEG System. Paired-pulse air puffs were delivered with an inter-stimulus interval of 500 ms to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. Data were analyzed using descriptive statistics and a repeated measures analysis of variance. There were no significant differences found for the amplitudes S1 and S2 for any of the four component PSEP peaks. Mean gating ratios were above 0.90 for each peak. Results supports our hypothesis that sensory central neural gating would be absent for component PSEP peaks with paired-pulse stimuli delivered to the oropharynx. This may be related to the need for constant sensory monitoring necessary for adequate airway protection associated with swallowing and coughing. PMID:21423402

  6. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge

    PubMed Central

    Schelegle, Edward S.; Walby, William F.

    2012-01-01

    Brown-Norway rats (n = 113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O3) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0 ppm O3 for 8 hours. There were three groups: 1) control; 2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and 3) vagotomy. O3 inhalation resulted in a significant increase in lung resistance (RL) and an exaggerated response to subsequent allergen challenge. PCT abolished the O3-induced increase in RL and significantly reduced the increase in RL induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O3 inhalation and subsequent challenge with allergen. In this model of O3 exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. PMID:22525484

  7. Citric acid cough threshold and airway responsiveness in asthmatic patients and smokers with chronic airflow obstruction.

    PubMed Central

    Auffarth, B; de Monchy, J G; van der Mark, T W; Postma, D S; Koëter, G H

    1991-01-01

    The relation between citric acid cough threshold and airway hyperresponsiveness was investigated in 11 non-smoking patients with allergic asthma (mean FEV1 94% predicted) and 25 non-atopic smokers with chronic airflow obstruction (mean FEV1 65% predicted). Cough threshold was determined on two occasions by administering doubling concentrations of citric acid. Seven of the 11 asthmatic subjects and 14 of 25 smokers with chronic airflow obstruction had a positive cough threshold on both test days. Cough threshold measurements were reproducible in both groups (standard deviation of duplicate measurements 1.2 doubling concentrations in asthma, 1.1 doubling concentrations in chronic airflow obstruction). Citric acid provocation did not cause bronchial obstruction in most patients, though four patients had a fall in FEV1 of more than 20% for a short time on one occasion only. No significant difference in cough threshold was found between the two patient groups despite differences in baseline FEV1 values. There was no significant correlation between cough threshold and the provocative concentration of histamine causing a 20% fall in FEV1 (PC20) histamine in either group. Thus sensory nerves can be activated with a tussive agent in patients with asthma and chronic airflow obstruction without causing bronchial smooth muscle contraction. PMID:1948792

  8. Hereditary sensory radicular neuropathy: defective neurogenic inflammation.

    PubMed

    Westerman, R A; Block, A; Nunn, A; Delaney, C A; Hahn, A; Dennett, X; Carr, R W

    1992-01-01

    Hereditary sensory radicular neuropathy exhibits autosomal dominant inheritance with complete penetrance in males and incomplete penetrance in females. Newer tests of small sensory nerve function were used in screening 8 family members aged between 14 and 66 years. All exhibited some frequent features of the disorder with an onset in the 2nd or 3rd decade, foot ulceration, foot callus, loss of pin prick, thermal and light touch sensation, and some reduction in vibration acuity and proprioception in the lower limbs. The hands were involved in 3 of 8, muscle involvement was present in 5 of 8, but deafness was not detected by audiometry. Nerve conduction velocity, sensory action potentials, latency and amplitude, thermal acuity, vibration acuity and axon reflex flares were measured in all patients. One sural nerve biopsy confirmed the presence of peripheral fibre loss in this predominantly sensory neuropathy. Chemically evoked axon reflex tests were used to evaluate the extent of primary sensory nerve fibre involvement. All patients were tested using a Moor MBF 3-D dual channel laser Doppler velocimeter. Acetylcholine or phenylephrine iontophoretically applied as 16 mC doses evoked absent or tiny axon reflexes in areas of impaired pin prick sensation. By contrast, direct microvascular dilator responses to nitroprusside (smooth muscle dependent) and acetylcholine (endothelium-dependent) were present but somewhat reduced in areas with defective neurogenic inflammation. These results differ significantly from the responses obtained in age-matched healthy controls (P < 0.05). Foot pressure analysis was performed for orthoses in 2 affected members with foot ulceration using the Musgrave Footprint system.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  10. Ulnar nerve dysfunction

    MedlinePlus

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... compressed in the elbow, a problem called cubital tunnel syndrome may result. When damage destroys the nerve ...

  11. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve.

  12. Cross-Face Nerve Grafting with Infraorbital Nerve Pathway Protection: Anatomic and Histomorphometric Feasibility Study

    PubMed Central

    Catapano, Joseph; Demsey, Daniel R.B.; Ho, Emily S.; Zuker, Ronald M.

    2016-01-01

    Smiling is an important aspect of emotional expression and social interaction, leaving facial palsy patients with impaired social functioning and decreased overall quality of life. Although there are several techniques available for facial reanimation, staged facial reanimation using donor nerve branches from the contralateral, functioning facial nerve connected to a cross-face nerve graft (CFNG) is the only technique that can reliably reproduce an emotionally spontaneous smile. Although CFNGs provide spontaneity, they typically produce less smile excursion than when the subsequent free functioning muscle flap is innervated with the motor nerve to the masseter muscle. This may be explained in part by the larger number of donor motor axons when using the masseter nerve, as studies have shown that only 20% to 50% of facial nerve donor axons successfully cross the nerve graft to innervate their targets. As demonstrated in our animal studies, increasing the number of donor axons that grow into and traverse the CFNG to innervate the free muscle transfer increases muscle movement, and this phenomenon may provide patients with the benefit of improved smile excursion. We have previously shown in animal studies that sensory nerves, when coapted to a nerve graft, improve axonal growth through the nerve graft and improve muscle excursion. Here, we describe the feasibility of and our experience in translating these results clinically by coapting the distal portion of the CFNG to branches of the infraorbital nerve. PMID:27757349

  13. Electrophysiology of corneal cold receptor nerve terminals.

    PubMed

    Carr, Richard W; Brock, James A

    2002-01-01

    The mechanisms of sensory transduction in the fine nerve terminals of free nerve endings supplied by Adelta and C sensory axons are largely a matter of speculation. This is because the nerve terminals are small and inaccessible, particularly in intact tissues like skin. However, some of the difficulties associated with investigating the physiology of fine nerve terminals have recently been overcome using an in vitro preparation of the guinea-pig cornea that allows nerve terminal impulses (NTIs) to be recorded extracellularly from single polymodal and cold receptor nerve terminals. For cold receptors, the rate of spontaneously occurring NTIs is increased during cooling and decreased during heating. In addition, heating and cooling differentially modulate the shape of the recorded NTI. At the same temperature, NTIs are larger in amplitude and faster in time course during heating than those during cooling. The differential effect of heating and cooling on NTI shape is not considered to result simply from the temperature dependence of voltage-activated conductance kinetics or activity dependent changes in membrane excitability. Instead, changes in NTI shape may reflect changes in nerve terminal membrane potential that underlie the process of thermal transduction.

  14. Ulnar nerve sonography in leprosy neuropathy.

    PubMed

    Wang, Zhu; Liu, Da-Yue; Lei, Yang-Yang; Yang, Zheng; Wang, Wei

    2016-01-01

    A 23-year-old woman presented with a half-year history of right forearm sensory and motor dysfunction. Ultrasound imaging revealed definite thickening of the right ulnar nerve trunk and inner epineurium, along with heterogeneous hypoechogenicity and unclear nerve fiber bundle. Color Doppler exhibited a rich blood supply, which was clearly different from the normal ulnar nerve presentation with a scarce blood supply. The patient subsequently underwent needle aspiration of the right ulnar nerve, and histopathological examination confirmed that granulomatous nodules had formed with a large number of infiltrating lymphocytes and a plurality of epithelioid cells in the fibrous connective tissues, with visible atypical foam cells and proliferous vascularization, consistent with leprosy. Our report will familiarize readers with the characteristic sonographic features of the ulnar nerve in leprosy, particularly because of the decreasing incidence of leprosy in recent years.

  15. Role of calcium ions in the positive interaction between TRPA1 and TRPV1 channels in bronchopulmonary sensory neurons.

    PubMed

    Hsu, Chun-Chun; Lee, Lu-Yuan

    2015-06-15

    Both transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are abundantly expressed in bronchopulmonary C-fiber sensory nerves and can be activated by a number of endogenous inflammatory mediators. A recent study has reported a synergistic effect of simultaneous TRPA1 and TRPV1 activations in vagal pulmonary C-fiber afferents in anesthetized rats, but its underlying mechanism was not known. This study aimed to characterize a possible interaction between these two TRP channels and to investigate the potential role of Ca(2+) as a mediator of this interaction in isolated rat vagal pulmonary sensory neurons. Using the perforated patch-clamp recording technique, our study demonstrated a distinct positive interaction occurring abruptly between TRPA1 and TRPV1 when they were activated simultaneously by their respective agonists, capsaicin (Cap) and allyl isothiocyanate (AITC), at near-threshold concentrations in these neurons. AITC at this low concentration evoked only minimal or undetectable responses, but it markedly amplified the Cap-evoked current in the same neurons. This potentiating effect was eliminated when either AITC or Cap was replaced by non-TRPA1 and non-TRPV1 chemical activators of these neurons, demonstrating the selectivity of the interaction between these two TRP channels. Furthermore, when Ca(2+) was removed from the extracellular solution, the synergistic effect of Cap and AITC on pulmonary sensory neurons was completely abrogated, clearly indicating a critical role of Ca(2+) in mediating the action. These results suggest that this TRPA1-TRPV1 interaction may play a part in regulating the sensitivity of pulmonary sensory neurons during airway inflammatory reaction.

  16. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  17. Sensory receptors in monotremes.

    PubMed

    Proske, U; Gregory, J E; Iggo, A

    1998-07-29

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  18. Sensory receptors in monotremes.

    PubMed Central

    Proske, U; Gregory, J E; Iggo, A

    1998-01-01

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  19. Upper airway radiographs in infants with upper airway insufficiency.

    PubMed Central

    Tonkin, S L; Davis, S L; Gunn, T R

    1994-01-01

    Upper airway measurements in nine infants considered to be at risk of upper airway insufficiency, six of whom presented after an apnoeic episode, were compared with measurements taken in two age groups of healthy infants. Paired, inspiratory and expiratory, lateral upper airway radiographs were obtained while the infants were awake and breathing quietly. The radiographs of all nine infants demonstrated narrowing in the oropharyngeal portion of the airway during inspiration and in six infants there was ballooning of the upper airway during expiration. Seven of the nine infants subsequently experienced recurrent apnoeic episodes which required vigorous stimulation to restore breathing. Experience suggests that respiratory phase timed radiographs are a useful adjunct to the evaluation of infants who are suspected of having upper airway dysfunction. They provide information regarding both the dimensions and compliance of the upper airway as well as the site of any restriction. Images PMID:8048825

  20. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  1. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  2. Spontaneous temporal changes and variability of peripheral nerve conduction analyzed using a random effects model.

    PubMed

    Krøigård, Thomas; Gaist, David; Otto, Marit; Højlund, Dorthe; Selmar, Peter E; Sindrup, Søren H

    2014-08-01

    The reproducibility of variables commonly included in studies of peripheral nerve conduction in healthy individuals has not previously been analyzed using a random effects regression model. We examined the temporal changes and variability of standard nerve conduction measures in the leg. Peroneal nerve distal motor latency, motor conduction velocity, and compound motor action potential amplitude; sural nerve sensory action potential amplitude and sensory conduction velocity; and tibial nerve minimal F-wave latency were examined in 51 healthy subjects, aged 40 to 67 years. They were reexamined after 2 and 26 weeks. There was no change in the variables except for a minor decrease in sural nerve sensory action potential amplitude and a minor increase in tibial nerve minimal F-wave latency. Reproducibility was best for peroneal nerve distal motor latency and motor conduction velocity, sural nerve sensory conduction velocity, and tibial nerve minimal F-wave latency. Between-subject variability was greater than within-subject variability. Sample sizes ranging from 21 to 128 would be required to show changes twice the magnitude of the spontaneous changes observed in this study. Nerve conduction studies have a high reproducibility, and variables are mainly unaltered during 6 months. This study provides a solid basis for the planning of future clinical trials assessing changes in nerve conduction.

  3. Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii

    PubMed Central

    Sekizawa, Shin-ichi; Joad, Jesse P; Bonham, Ann C

    2003-01-01

    Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1′-dioctadecyl-3,3,3′,3′-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 μM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 μM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function. PMID:14561836

  4. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  5. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  6. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  7. Effects of clinical infrared laser on superficial radial nerve conduction

    SciTech Connect

    Greathouse, D.G.; Currier, D.P.; Gilmore, R.L.

    1985-08-01

    The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for five 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.

  8. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  9. Mechanisms determining cholinergic neural responses in airways of young and mature rabbits.

    PubMed

    Larsen, Gary L; Loader, Joan; Nguyen, Dee Dee; Fratelli, Cori; Dakhama, Azzeddine; Colasurdo, Giuseppe N

    2004-08-01

    Neural pathways help control airway caliber and responsiveness. Yet little is known of how neural control changes as a function of development. In rabbits, we found electrical field stimulation (EFS) of airway nerves led to more marked contractile responses in 2- vs. 13-week-old animals. This enhanced response to EFS may be due to prejunctional, junctional, and/or postjunctional neural mechanisms. We assessed these mechanisms in airways of 2- and 13-week-old rabbits. The contractile responses to methacholine did not differ in the groups, suggesting postjunctional neural events are not primarily responsible for differing responses to EFS. To address junctional events, acetylcholinesterase (AChE) was measured (spectrophotometry). AChE was elevated in 2-week-olds. However, this should lead to less and not greater responses. Prejunctionally, EFS-induced acetylcholine (ACh) release was assessed by HPLC. Airways of 2-week-old rabbits released significantly more ACh than airways from mature rabbits. Choline acetyltransferase, a marker of cholinergic nerves, was not different between groups, suggesting that more ACh release in young rabbits was not due to increased nerve density. ACh release in the presence of polyarginine increased significantly in both groups, supporting the presence of functional muscarinic autoreceptors (M2) at both ages. Because substance P (SP) increases release of ACh, SP was measured by ELISA. This neuropeptide was significantly elevated in airways of younger rabbits. Nerve growth factor (NGF) increased SP and was also significantly increased in airways from younger rabbits. This work suggests that increases in EFS-induced responsiveness in young rabbits are likely due to prejunctional events with enhanced release of ACh. Increases in NGF and SP early in life may contribute to this increased responsiveness.

  10. Cutting your nerve changes your brain.

    PubMed

    Taylor, Keri S; Anastakis, Dimitri J; Davis, Karen D

    2009-11-01

    Following upper limb peripheral nerve transection and surgical repair, some patients regain good sensorimotor function while others do not. Understanding peripheral and central mechanisms that contribute to recovery may facilitate the development of new therapeutic interventions. Plasticity following peripheral nerve transection has been demonstrated throughout the neuroaxis in animal models of nerve injury. However, the brain changes that occur following peripheral nerve transection and surgical repair in humans have not been examined. Furthermore, the extent to which peripheral nerve regeneration influences functional and structural brain changes has not been characterized. Therefore, we asked whether functional changes are accompanied by grey and/or white matter structural changes and whether these changes relate to sensory recovery? To address these key issues we (i) assessed peripheral nerve regeneration; (ii) measured functional magnetic resonance imaging brain activation (blood oxygen level dependent signal; BOLD) in response to a vibrotactile stimulus; (iii) examined grey and white matter structural brain plasticity; and (iv) correlated sensory recovery measures with grey matter changes in peripheral nerve transection and surgical repair patients. Compared to each patient's healthy contralesional nerve, transected nerves have impaired nerve conduction 1.5 years after transection and repair, conducting with decreased amplitude and increased latency. Compared to healthy controls, peripheral nerve transection and surgical repair patients had altered blood oxygen level dependent signal activity in the contralesional primary and secondary somatosensory cortices, and in a set of brain areas known as the 'task positive network'. In addition, grey matter reductions were identified in several brain areas, including the contralesional primary and secondary somatosensory cortices, in the same areas where blood oxygen level dependent signal reductions were identified

  11. Treatment of disorders characterized by reversible airway obstruction in childhood: are anti-cholinergic agents the answer?

    PubMed

    Quizon, Annabelle; Colin, Andrew A; Pelosi, Umberto; Rossi, Giovanni A

    2012-01-01

    Release of acetylcholine from parasympathetic nerves in the airways activates postjunctional muscarinic receptors present on smooth muscle, submucosal glands and blood vessels. This triggers bronchoconstriction, muscle hypertrophy, mucus secretion, and vasodilatation, respectively. The release of acetylcholine from parasympathetic nerves in lungs is induced by a variety of stimuli and downregulated by the inhibitory activity of neuronal M2 muscarinic receptors via a feedback mechanism. Increased parasympathetic nerve activity occurs in a variety of airway diseases in childhood, including viral-induced wheeze and asthma. Common to these conditions are reversible airway obstruction, mucus hypersecretion, vasodilation and enhanced vascular permeability. In animal models of airway hyperreactivity similar findings of increased acetylcholine release resulting in enhanced supply of this neurotransmitter to the postjunctional smooth muscles, submucosal glands and airway vessels, were demonstrated. While the number and function of postjunctional muscarinic receptors in the airways are unchanged in such airway disorders, inhibitory activity on the parasympathetic nerves appears to be impaired. Specifically, M2 muscarinic receptor dysfunction has been demonstrated in models of bronchial hyperreactivity induced by a variety of triggers, including viruses, atmospheric pollutants and allergens. The mechanisms leading to impairment of neuronal M2 muscarinic receptor function and their putative relevance to the pathogenesis and the treatment of airway disease in childhood are described. Finally, the available data on the activity of ipratropium bromide, a short-acting anticholinergic drug, in the most common pediatric airway disease are reported and the possible therapeutic efficacy of tiotropium bromide, a more recently introduced long-acting, selective anticholinergic compound, is discussed.

  12. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  13. Morphology of human intracardiac nerves: an electron microscope study

    PubMed Central

    PAUZIENE, NERINGA; PAUZA, DAINIUS H.; STROPUS, RIMVYDAS

    2000-01-01

    Since many human heart diseases involve both the intrinsic cardiac neurons and nerves, their detailed normal ultrastructure was examined in material from autopsy cases without cardiac complications obtained no more than 8 h after death. Many intracardiac nerves were covered by epineurium, the thickness of which was related to nerve diameter. The perineurial sheath varied from nerve to nerve and, depending on nerve diameter, contained up to 12 layers of perineurial cells. The sheaths of the intracardiac nerves therefore become progressively attenuated during their course in the heart. The intraneural capillaries of the human heart differ from those in animals in possessing an increased number of endothelial cells. A proportion of the intraneural capillaries were fenestrated. The number of unmyelinated axons within unmyelinated nerve fibres was related to nerve diameter, thin cardiac nerves possessing fewer axons. The most distinctive feature was the presence of stacks of laminated Schwann cell processes unassociated with axons that were more frequent in older subjects. Most unmyelinated and myelinated nerve fibres showed normal ultrastructure, although a number of profiles displayed a variety of different axoplasmic contents. Collectively, the data provide baseline information on the normal structure of intracardiac nerves in healthy humans which may be useful for assessing the degree of nerve damage both in autonomic and sensory neuropathies in the human heart. PMID:11117629

  14. Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    PubMed Central

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C.S.; Jiruska, P.; Jefferys, J.G.R.; Dolphin, A.C.

    2014-01-01

    The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining. PMID:24641886

  15. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.

    PubMed

    Gordon, Tessa

    2016-05-01

    Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries.

  16. α-Synuclein in cutaneous autonomic nerves

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Lafo, Jacob

    2013-01-01

    Objective: To develop a cutaneous biomarker for Parkinson disease (PD). Methods: Twenty patients with PD and 14 age- and sex-matched control subjects underwent examinations, autonomic testing, and skin biopsies at the distal leg, distal thigh, and proximal thigh. α-Synuclein deposition and the density of intraepidermal, sudomotor, and pilomotor nerve fibers were measured. α-Synuclein deposition was normalized to nerve fiber density (the α-synuclein ratio). Results were compared with examination scores and autonomic function testing. Results: Patients with PD had a distal sensory and autonomic neuropathy characterized by loss of intraepidermal and pilomotor fibers (p < 0.05 vs controls, all sites) and morphologic changes to sudomotor nerve fibers. Patients with PD had greater α-synuclein deposition and higher α-synuclein ratios compared with controls within pilomotor nerves and sudomotor nerves (p < 0.01, all sites) but not sensory nerves. Higher α-synuclein ratios correlated with Hoehn and Yahr scores (r = 0.58–0.71, p < 0.01), with sympathetic adrenergic function (r = −0.40 to −0.66, p < 0.01), and with parasympathetic function (r = −0.66 to −0.77, p > 0.01). Conclusions: We conclude that α-synuclein deposition is increased in cutaneous sympathetic adrenergic and sympathetic cholinergic fibers but not sensory fibers of patients with PD. Higher α-synuclein deposition is associated with greater autonomic dysfunction and more advanced PD. These data suggest that measures of α-synuclein deposition in cutaneous autonomic nerves may be a useful biomarker in patients with PD. PMID:24089386

  17. Inferior alveolar nerve injury following orthognathic surgery: a review of assessment issues

    PubMed Central

    PHILLIPS, C.; ESSICK, G.

    2011-01-01

    SUMMARY The sensory branches of the trigeminal nerve encode information about facial expressions, speaking and chewing movements, and stimuli that come into contact with the orofacial tissues. Whatever the cause, damage to the inferior alveolar nerve negatively affects the quality of facial sensibility as well as the patient's ability to translate patterns of altered nerve activity into functionally meaningful motor behaviours. There is no generally accepted, standard method of estimating sensory disturbances in the distribution of the inferior alveolar nerve following injury. Assessment of sensory alterations can be conducted using three types of measures: (i) objective electrophysiological measures of nerve conduction, (ii) sensory testing (stimulus) measures and (iii) patient report. Each type of measure with advantages and disadvantages for use are reviewed. PMID:21058973

  18. Evaluation of dermal myelinated nerve fibers in diabetes mellitus.

    PubMed

    Peltier, Amanda C; Myers, M Iliza; Artibee, Kay J; Hamilton, Audra D; Yan, Qing; Guo, Jiasong; Shi, Yaping; Wang, Lily; Li, Jun

    2013-06-01

    Skin biopsies have primarily been used to study the non-myelinated nerve fibers of the epidermis in a variety of neuropathies. In this study, we have expanded the skin biopsy technique to glabrous, non-hairy skin to evaluate myelinated nerve fibers in the most highly prevalent peripheral nerve disease, diabetic polyneuropathy (DPN). Twenty patients with DPN (Type I, n = 9; Type II, n = 11) and 16 age-matched healthy controls (age 29-73) underwent skin biopsy of the index finger, nerve conduction studies (NCS), and composite neuropathy scoring. In patients with DPN, we found a statistically significant reduction of both mechanoreceptive Meissner corpuscles (MCs) and their afferent myelinated nerve fibers (p = 0.01). This myelinated nerve fiber loss was correlated with the decreased amplitudes of sensory/motor responses in NCS. This study supports the utilization of skin biopsy to quantitatively evaluate axonal loss of myelinated nerve fibers in patients with DPN.

  19. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  20. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2015-12-01

    mice, despite a considerable and sustained decrease in sensory nerve activity. Physiological adaptations during development may allow mice to...Department of Anatomy, Physiology , & Cell Biology, USA Abstract Objectives: The present study sought to determine the effects of decreased peripheral...differences in bone parameters in capsaicin-treated mice, despite a considerable and sustained decrease in sensory nerve activity. Physiological

  1. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation.

    PubMed

    Patel, Yogi A; Butera, Robert J

    2015-06-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5-70 kHz and amplitudes of 0.1-3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function.

  2. Dual p38/JNK mitogen activated protein kinase inhibitors prevent ozone-induced airway hyperreactivity in guinea pigs.

    PubMed

    Verhein, Kirsten C; Salituro, Francesco G; Ledeboer, Mark W; Fryer, Allison D; Jacoby, David B

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, i.p.) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction.

  3. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice.

    PubMed

    Pan, Jie; Luk, Catherine; Kent, Geraldine; Cutz, Ernest; Yeger, Herman

    2006-09-01

    The amine- and peptide-producing pulmonary neuroendocrine cells (PNEC) are widely distributed within the airway mucosa of mammalian lung as solitary cells and innervated clusters, neuroepithelial bodies (NEB), which function as airway O2 sensors. These cells express Cftr and hence could play a role in the pathophysiology of cystic fibrosis (CF) lung disease. We performed confocal microscopy and morphometric analysis on lung sections from Cftr-/- (null), Cftr+/+, and Cftr+/- (control) mice at developmental stages E20, P5, P9, and P30 to determine the distribution, frequency, and innervation of PNEC/NEB, innervation and cell mass of airway smooth muscle, and neuromuscular junctions using synaptic vesicle protein 2, smooth muscle actin, and synaptophysin markers, respectively. The mean number of PNEC/NEB in Cftr-/- mice was significantly reduced compared with control mice at E20, whereas comparable or increased numbers were observed postnatally. NEB cells in Cftr null mice showed a significant reduction in intracorpuscular nerve endings compared with control mice, which is consistent with an intrinsic abnormality of the PNEC system. The airways of Cftr-/- mice showed reduced density (approximately 20-30%) of smooth muscle innervation, decreased mean airway smooth muscle mass (approximately 35%), and reduced density (approximately 20%) of nerve endings compared with control mice. We conclude that the airways of Cftr-/- mice exhibit heretofore unappreciated structural alterations affecting cellular and neural components of the PNEC system and airway smooth muscle and its innervation resulting in blunted O2 sensing and reduced airway tonus. Cftr could play a role in the development of the PNEC system, lung innervation, and airway smooth muscle.

  4. Clinical and electrophysiological assessment of inferior alveolar nerve function after lateral nerve transposition.

    PubMed

    Nocini, P F; De Santis, D; Fracasso, E; Zanette, G

    1999-04-01

    Inferior alveolar nerve (IAN) transposition surgery may cause some degree of sensory impairment. Accurate and reproducible tests are mandatory to assess IAN conduction capacity following nerve transposition. In this study subjective (heat, pain and tactile-discriminative tests) and objective (electrophysiological) assessments were performed in 10 patients receiving IAN transposition (bilaterally in 8 cases) in order to evaluate any impairment of the involved nerves one year post-operatively. All patients reported a tingling, well-tolerated sensation in the areas supplied by the mental nerve with no anaesthesia or burning paresthesia. Tactile discrimination was affected the most (all but 1 patient). No action potential was recorded in 4 patients' sides (23.5%); 12 sides showed a decreased nerve conduction velocity (NCV) (70.5%) and 1 side normal NCV values (6%). There was no significant difference in NCV decrease between partial and total transposition sides, if examined separately. Nerve conduction findings were related 2-point discrimination scores, but not to changes in pain and heat sensitivity. These findings show that lateral nerve transposition, though resulting in a high percentage of minor IAN injuries, as determined by electrophysiological testing, provides a viable surgical procedure to allow implant placement in the posterior mandible without causing severe sensory complaints. Considering ethical and forensic implications, patients should be fully informed that a certain degree of nerve injury might be expected to occur from the procedure. Electrophysiological evaluation is a reliable way to assess the degree of IAN dysfunction, especially if combined with a clinical examination. Intraoperative monitoring of IAN conduction might help identify the pathogenetic mechanisms of nerve injury and the surgical steps that are most likely to harm nerve integrity.

  5. A novel internal fixator device for peripheral nerve regeneration.

    PubMed

    Chuang, Ting-Hsien; Wilson, Robin E; Love, James M; Fisher, John P; Shah, Sameer B

    2013-06-01

    Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension--traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration.

  6. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration.

  7. Sensory innervation of the hairy skin (light- and electronmicroscopic study.

    PubMed

    Halata, Z

    1993-07-01

    The sense of touch develops early in phylogeny and is one of the most important senses for the survival of the animal. Touch organs of hairy skin in mammals include the so-called "Haarscheiben" (also Pinkus corpuscles) and all types of hair follicles with their nerve endings. The touch organs of the skin consist of a mechanical transducing component and the sensory component. The epithelium and its derivatives like hair follicles and sebaceous glands are the mechanical transducing component transmitting the mechanical forces like pressure or touch to the second component--the sensory nerve endings. In mammalian hairy skin all sinus and guard hairs and many vellus hairs are touch organs. The sinus hair is a typical example of a touch organ. All mammals except humans are equipped with these highly differentiated touch organs. The hair follicle is almost completely embedded in a blood sinus and equipped with more than 2,000 sensory nerve endings. All sinus and guard hairs are equipped with free nerve endings (nociceptors), Merkel nerve endings (slowly adapting [SA I] mechanoreceptor units-pressure detectors), palisades of lanceolate nerve endings (velocity detectors), and pilo-Ruffini corpuscles (tension receptors). In most of the sinus hairs lamellated corpuscles of Pacini type could be found (rapidly adapting receptors-acceleration detectors). Most vellus hairs are equipped with free and lanceolate nerve endings. Some of the vellus hairs of the upper portion of the body (head, upper extremity) are innervated by Merkel nerve endings. The presence of pilo-Ruffini nerve endings in vellus hairs is very unusual.

  8. Evaluation of Fastrach Laryngeal Mask Airway as an Alternative to Fiberoptic Bronchoscope to Manage Difficult Airway: A Comparative Study

    PubMed Central

    Shyam, Radhey; Sachan, Pushplata; Singh, Prithvi Kumar; Singh, Gyan Prakash; Bhatia, Vinod Kumar; Chandra, Girish; Singh, Dinesh

    2017-01-01

    Introduction Awake intubation via Fiberoptic Bronchoscope (FB) is the gold standard for management of difficult airway but patients had to face problems like oxygen desaturation, tachycardia, hypertension and anxiety due to awake state. This study was conducted to assess feasibility of Fastrach Laryngeal Mask Airway (FLMA) to manage difficult airway as a conduit for intubation as well as for ventilation. Materials and Methods After ethical approval and informed consent, 60 patients with difficult airway were randomly enrolled in FB group and FLMA group. In FB group, patients were sedated with midazolam/fentanyl. Airway anaesthetization of oropharynx was done with xylocaine spray and viscous and larynx and trachea by superior laryngeal nerve block and transtracheal block respectively. In FLMA group, initially patients were induced with propofol for FLMA insertion then succinylcholine was given for Tracheal Intubation (TI). The first TI attempt was done blindly via the FLMA and all subsequent attempts were performed with fiberoptic guidance. Haemodynamic monitoring was done during induction, intubation, immediately post insertion and there after at five minutes interval for 30 minutes. Results All patients in the FLMA group were successfully ventilated (100%). In both the groups 28 (93.33%) patients were successfully intubated. However, first/second/third attempt intubation rate in FLMA vs FB group was 15 (50%) vs 13 (43.3%), 8 (26.66%) vs 10 (33.33%) and 5 (16.66%) in both groups respectively. Patients in the FLMA group were more satisfied with their method of TI and had lesser complications (p<0.05). Conclusion So the FLMA may be a better technique for management of patients with difficult airways. PMID:28274023

  9. The catecholaminergic nerve plexus of Holothuroidea

    PubMed Central

    Díaz-Balzac, Carlos A.; Mejías, Wigberto; Jiménez, Luis B.

    2010-01-01

    Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue. PMID:20827375

  10. Effect of Facial Sensory Re-training on Sensory Thresholds

    PubMed Central

    Essick, G.K.; Phillips, C.; Zuniga, J.

    2010-01-01

    Nearly 100% of patients experience trauma to the trigeminal nerve during orthognathic surgery, impairing sensation and sensory function on the face. In a recent randomized clinical trial, people who performed sensory re-training exercises reported less difficulty related to residual numbness and decreased lip sensitivity than those who performed standard opening exercises only. We hypothesized that re-training reduces the impaired performance on neurosensory tests of tactile function that is commonly observed post-surgically. We analyzed thresholds for contact detection, two-point discrimination, and two-point perception, obtained during the clinical trial before and at 1, 3, and 6 months after surgery, to assess tactile detection and discriminative sensitivities, and subjective interpretation of tactile stimulation, respectively. Post-surgery, the retrained persons exhibited less impairment, on average, than non-retrained persons only in two-point perception (P < 0.025), suggesting that retrained persons experienced or interpreted the tactile stimuli differently than did non-retrained persons. PMID:17525360

  11. Nerve conduction velocity

    MedlinePlus

    ... polyneuropathy Tibial nerve dysfunction Ulnar nerve dysfunction Any peripheral neuropathy can cause abnormal results. Damage to the spinal ... Herniated disk Lambert-Eaton syndrome Mononeuropathy Multiple ... azotemia Primary amyloidosis Radial nerve dysfunction Sciatica ...

  12. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control

    PubMed Central

    Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.

    2013-01-01

    The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656

  13. Epilepsy and the Sensory Systems

    PubMed Central

    2016-01-01

    The relations of epilepsy and the sensory systems are bidirectional. Epilepsy may act on sensory systems by producing sensory seizure symptoms, by altering sensory performance, and by epilepsy treatment causing sensory side effects. Sensory system activity may have an important role in both generation and inhibition of seizures. PMID:27857611

  14. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  15. Global airway disease beyond allergy.

    PubMed

    Hellings, Peter W; Prokopakis, Emmanuel P

    2010-03-01

    Besides the anatomic continuity of the upper and lower airways, inflammation in one part of the airway influences the homeostasis of the other. The mechanisms underlying this interaction have been studied primarily in allergic disease, showing systemic immune activation, induction of inflammation at a distance, and a negative impact of nasal inflammation on bronchial homeostasis. In addition to allergy, other inflammatory conditions of the upper airways are associated with lower airway disease. Rhinosinusitis is frequently associated with asthma and chronic obstructive pulmonary disease. The impairment of purification, humidification, and warming up of the inspired air by the nose in rhinosinusitis may be responsible in part for bronchial pathology. The resolution of sinonasal inflammation via medical and/or surgical treatment is responsible for the beneficial effect of the treatment on bronchial disease. This article provides a comprehensive overview of the current knowledge of upper and lower airway communication beyond allergic disease.

  16. Recurrent airway obstruction: a review.

    PubMed

    Pirie, R S

    2014-05-01

    Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.

  17. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  18. Pattern of sensory innervation of the perineal skin in the female rat.

    PubMed

    Cruz, Yolanda; Zempoalteca, René; Angelica Lucio, Rosa; Pacheco, Pablo; Hudson, Robyn; Martínez-Gómez, Margarita

    2004-10-22

    Here we describe the nerves innervating the perineal skin together with their sensory fields in the adult female rat. Electrophysiological recording showed that the lumbosacral and L6-S1 trunks, in part by way of the sacral plexus, transmit sensory information from the perineal skin via four nerves: the viscerocutaneous branch of the pelvic nerve innervating the skin at the midline between the vaginal opening and anus, the sensory branch of the pudendal nerve innervating the clitoral sheath, the distal perineal branch of the pudendal nerve innervating a broad area of skin adjacent to the vaginal opening and anus, and the proximal perineal branch of the sacral plexus innervating a broad area of skin adjacent to the clitoris and vaginal opening. The sensory fields of three of these nerves overlapped to some degree: the viscerocutaneous branch of the pelvic and the distal perineal branch of the pudendal nerves at the midline skin between the vaginal opening and the anus, and the distal perineal branch of the pudendal nerve and the proximal perineal branch of the sacral plexus at the skin lateral to the vaginal opening. Such overlap might provide a safeguard helping to ensure that somatosensory input from the perineal region important for triggering reproductive and nonreproductive reflexes reaches the CNS.

  19. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  20. Internal tobacco industry research on olfactory and trigeminal nerve response to nicotine and other smoke components.

    PubMed

    Megerdichian, Christine L; Rees, Vaughan W; Wayne, Geoffrey Ferris; Connolly, Gregory N

    2007-11-01

    Evidence has shown that factors other than the central pharmacological effects of nicotine are important in promoting smoking behavior. One such non-nicotine effect includes sensory stimulation, which may promote smoking by developing learned associations with nicotine's rewarding effects, or by constituting a rewarding experience independent of nicotine. The present study used internal tobacco industry documents to examine industry efforts to understand and manipulate stimulation of the sensory nerves by tobacco smoke, and the influence of sensory stimulation on smoker behavior. Research focused on sensory nerves of the head and neck, including the olfactory nerve, which carries flavor and odor, and the trigeminal nerve, which carries irritant information. The tobacco industry maintained a systematic research program designed to elucidate an understanding of responses of sensory nerves to nicotine and other components of tobacco smoke, and attempted to develop nicotine-like compounds that would enhance sensory responses in smokers. Industry research appeared intended to aid in the development of new products with greater consumer appeal. The potential influence of sensory response in enhancing nicotine dependence through an associative mechanism was acknowledged by the tobacco industry, but evidence for research in this area was limited. These findings add to evidence of industry manipulation of sensory factors to enhance smoking behavior and may have implications for development of more effective treatment strategies, including more "acceptable" nicotine replacement therapies.

  1. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  2. Peripheral nerve surgery--today and looking ahead.

    PubMed

    McQuarrie, I G

    1986-04-01

    The trend in peripheral nerve surgery is toward earlier definitive treatment of the lesion, based on the optimal use of preoperative and intraoperative electrodiagnostic techniques. Newer diagnostic tools include computed tomography (CT) and thermography. Knowledge is still being gained about the technology and limitations of the autogenous nerve grafts that are being used to overcome nerve gaps. The technique of nerve anastomosis is undergoing rapid improvement, and better methods have been developed for identifying motor and sensory fascicles at the time of operation. Research activity into the problem of nerve damage produced at the time of trimming nerve stumps promises to change to the technology of nerve repair in the near future. For benign nerve sheath tumors (schwannoma, neurofibroma), the trend is away from nerve excision and in the direction of tumor enucleation. Histologic methods for diagnosing malignant nerve tumors have been improved, making it possible to embark on radical excision with less hesitation. The pain syndromes (causalgia, phantom limb pain, and stump pain) that may follow nerve injury continue to present a problem in management, but steady progress is being made toward a rational program of management. A more distant prospect is for pharmacologic and electrophysiologic methods to accelerate axonal regeneration.

  3. The pattern and diagnostic criteria of sensory neuronopathy: a case–control study

    PubMed Central

    Camdessanché, Jean-Philippe; Jousserand, Guillemette; Ferraud, Karine; Vial, Christophe; Petiot, Philippe; Honnorat, Jérôme

    2009-01-01

    Acquired sensory neuronopathies encompass a group of paraneoplastic, dysimmune, toxic or idiopathic disorders characterized by degeneration of peripheral sensory neurons in dorsal root ganglia. As dorsal root ganglia cannot easily be explored, the clinical diagnosis of these disorders may be difficult. The question as to whether there exists a common clinical pattern of sensory neuronopathies, allowing the establishment of validated and easy-to-use diagnostic criteria, has not yet been addressed. In this study, logistic regression was used to construct diagnostic criteria on a retrospective study population of 78 patients with sensory neuronopathies and 56 with other sensory neuropathies. For this, sensory neuronopathy was provisionally considered as unambiguous in 44 patients with paraneoplastic disorder or cisplatin treatment and likely in 34 with a dysimmune or idiopathic setting who may theoretically have another form of neuropathy. To test the homogeneity of the sensory neuronopathy population, likely candidates were compared with unambiguous cases and then the whole population was compared with the other sensory neuropathies population. Criteria accuracy was checked on 37 prospective patients referred for diagnosis of sensory neuropathy. In the study population, sensory neuronopathy showed a common clinical and electrophysiological pattern that was independent of the underlying cause, including unusual forms with only patchy sensory loss, mild electrical motor nerve abnormalities and predominant small fibre or isolated lower limb involvement. Logistic regression allowed the construction of a set of criteria that gave fair results with the following combination: ataxia in the lower or upper limbs + asymmetrical distribution + sensory loss not restricted to the lower limbs + at least one sensory action potential absent or three sensory action potentials <30% of the lower limit of normal in the upper limbs + less than two nerves with abnormal motor nerve

  4. Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review

    PubMed Central

    Wang, Hom-Lay; Sabalys, Gintautas

    2011-01-01

    ABSTRACT Objectives The purpose of present article was to review aetiological factors, mechanism, clinical symptoms, and diagnostic methods as well as to create treatment guidelines for the management of inferior alveolar nerve injury during dental implant placement. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were inferior alveolar nerve injury, inferior alveolar nerve injuries, inferior alveolar nerve injury implant, inferior alveolar nerve damage, inferior alveolar nerve paresthesia and inferior alveolar nerve repair. The search was restricted to English language articles, published from 1972 to November 2010. Additionally, a manual search in the major anatomy, dental implant, periodontal and oral surgery journals and books were performed. The publications there selected by including clinical, human anatomy and physiology studies. Results In total 136 literature sources were obtained and reviewed. Aetiological factors of inferior alveolar nerve injury, risk factors, mechanism, clinical sensory nerve examination methods, clinical symptoms and treatment were discussed. Guidelines were created to illustrate the methods used to prevent and manage inferior alveolar nerve injury before or after dental implant placement. Conclusions The damage of inferior alveolar nerve during the dental implant placement can be a serious complication. Clinician should recognise and exclude aetiological factors leading to nerve injury. Proper presurgery planning, timely diagnosis and treatment are the key to avoid nerve sensory disturbances management. PMID:24421983

  5. Peroneal nerve palsy after compression stockings application

    PubMed Central

    Kim, Jun Hyun; Kim, Won Il; Kim, Ji Yeon; Choe, Won Joo

    2016-01-01

    Peroneal nerve palsy can be caused by various etiology. We report unilateral peroneal nerve palsy after compression stockings application. A 64-year-old man underwent off-pump coronary bypass graft. Surgeon did not use saphenous vein for the bypass graft. Sedation was stopped after 3 h postoperative. After 16 h, for prophylaxis of deep vein thrombosis, knee-high elastic stocking was applied. After 1 h, he took off right stocking because of numbness but left stocking was kept. After 24 h postoperative, (8 h after stocking application) patient complained suddenly left foot drop. Manual muscle test revealed 0/5 of ankle dorsiflexion, ankle eversion, and toe extension. Sensory was decreased to 70% in lower half of anterolateral aspect of tibia, foot dorsum, and toes. Foot drop and sensory abnormality decreased in 3 weeks. Cardiac surgery patients already have many risk factors for peripheral neuropathy. Clinicians should be careful when applying stockings on those patients. PMID:27833497

  6. Peroneal nerve palsy after compression stockings application.

    PubMed

    Kim, Jun Hyun; Kim, Won Il; Kim, Ji Yeon; Choe, Won Joo

    2016-01-01

    Peroneal nerve palsy can be caused by various etiology. We report unilateral peroneal nerve palsy after compression stockings application. A 64-year-old man underwent off-pump coronary bypass graft. Surgeon did not use saphenous vein for the bypass graft. Sedation was stopped after 3 h postoperative. After 16 h, for prophylaxis of deep vein thrombosis, knee-high elastic stocking was applied. After 1 h, he took off right stocking because of numbness but left stocking was kept. After 24 h postoperative, (8 h after stocking application) patient complained suddenly left foot drop. Manual muscle test revealed 0/5 of ankle dorsiflexion, ankle eversion, and toe extension. Sensory was decreased to 70% in lower half of anterolateral aspect of tibia, foot dorsum, and toes. Foot drop and sensory abnormality decreased in 3 weeks. Cardiac surgery patients already have many risk factors for peripheral neuropathy. Clinicians should be careful when applying stockings on those patients.

  7. Ontogeny of the cutaneous sensory organs.

    PubMed

    Saxod, R

    1996-07-01

    The ontogeny of cutaneous sensory nerve organs is described in higher vertebrates, and includes the lamellated corpuscles of Meissner, Pacini and Herbst, and the Merkel cell-neurite complex with bird Merkel and Grandry corpuscles, and mammalian Merkel cells. The main common feature is that for most corpuscles there is an inside-out order of assembly around the nerve ending which is present from the beginning of end-organ ontogeny. The exception is the mammalian Merkel cell which is present in the epidermis before the entrance of nerve fibers, and could play a promotional role in the development of skin innervation. The developmental origin of Herbst and Merkel corpuscles in birds is reported as demonstrated using embryological experiments with cell markers. Conclusions are that inner bulb cells of Herbst corpuscles and bird Merkel cells are of neural crest origin, whereas other cells (inner space and capsular cells for Herbst corpuscle and capsular cells for Merkel corpuscles) are provided by the local mesenchyme. The question of the ontogeny of mammalian Merkel cells is discussed in relation to the two debated hypothesis of epidermal and neural crest origins. Morphogenetic interactions during the development of cutaneous sensory end organs are also discussed.

  8. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  9. Effect of pioglitazone on nerve conduction velocity of the median nerve in the carpal tunnel in type 2 diabetes patients

    PubMed Central

    Chatterjee, Sudip; Sanyal, Debmalya; Das Choudhury, Sourav; Bandyopadhyay, Mili; Chakraborty, Suraj; Mukherjee, Arabinda

    2016-01-01

    AIM To evaluate the impact of pioglitazone pharmacotherapy in median nerve electrophysiology in the carpal tunnel among type 2 diabetes patients. METHODS The study was executed in patients with type 2 diabetes, treated with oral drugs, categorized under pioglitazone or non-pioglitazone group (14 in each group), and who received electrophysiological evaluation by nerve conduction velocity at baseline and 3 mo. RESULTS At 3 mo, pioglitazone-category had inferior amplitude in sensory median nerve [8.5 interquartile range (IQR) = 6.5 to 11.5) vs non-pioglitazone 14.5 (IQR 10.5 to 18.75)] (P = 0.002). Non-pioglitazone category displayed amelioration in amplitude in the sensory median nerve [baseline 13 (IQR = 9 to 16.25) vs 3 mo 8.5 (IQR = 6.5 to 11.5)] (P = 0.01) and amplitude in motor median nerve [baseline 9 (IQR = 4.75 to 11) vs 3 mo 6.75 (IQR = 4.75 to 10.25)] (P = 0.049); and deterioration of terminal latency of in motor ulnar nerve [baseline 2.07 (IQR = 1.92 to 2.25) vs 3 mo 2.16 (IQR = 1.97 to 2.325)] (P = 0.043). There was amelioration of terminal latency in sensory ulnar nerve [baseline 2.45 (IQR = 2.315 to 2.88) vs 3 mo 2.37 (IQR = 2.275 to 2.445) for pioglitazone group (P = 0.038). CONCLUSION Treatment with pioglitazone accentuates probability of compressive neuropathy. In spite of comparable glycemic control over 3 mo, patients treated with pioglitazone showed superior electrophysiological parameters for the ulnar nerve. Pioglitazone has favourable outcome in nerve electrophysiology which was repealed when the nerve was subjected to compressive neuropathy. PMID:27895823

  10. Serotonin transporter messenger RNA expression in neural crest-derived structures and sensory pathways of the developing rat embryo.

    PubMed

    Hansson, S R; Mezey, E; Hoffman, B J

    1999-03-01

    A growing body of evidence suggests that serotonin plays an important role in the early development of both neural and non-neural tissues from vertebrate and invertebrate species. Serotonin is removed from the extracellular space by the cocaine- and antidepressant-sensitive serotonin transporter, thereby limiting its action on receptors. In situ hybridization histochemistry was used to delineate serotonin transporter messenger RNA expression during rat embryonic development. Serotonin transporter messenger RNA was widely expressed beginning prior to organogenesis and throughout the second half of gestation. Strikingly, serotonin transporter messenger RNA was detected in neural crest cells, some of which respond to serotonin in vitro, and neural crest-derived tissues, such as autonomic ganglia, tooth primordia, adrenal medulla, chondrocytes and neuroepithelial cells, in the skin, heart, intestine and lung. Within the peripheral sensory pathways, two major cells types were serotonin transporter messenger RNA-positive: (i) sensory ganglionic neurons and (ii) neuroepithelial cells which serve as targets for the outgrowing sensory neurons. Several sensory organs (cochlear and retinal ganglionic cells, taste buds, whisker and hair follicles) contained serotonin transporter messenger RNA by late gestation. The expression of serotonin transporter messenger RNA throughout the sensory pathways from central nervous system relay stations [Hansson S. R. et al. (1997) Neuroscience 83, 1185-1201; Lebrand C. et al. (1996) Neuron 17, 823-835] to sensory nerves and target organs as shown in this study suggests that serotonin may regulate peripheral synaptogenesis, and thereby influence later processing of sensory stimuli. If the early detection of serotonin transporter messenger RNA in skin and gastrointestinal and airway epithelia correlates with protein activity, it may permit establishment of a serotonin concentration gradient across epithelia, either from serotonin in the

  11. “Early Evaluation of Nerve Regeneration After Nerve Injury and Repair Using Functional Connectivity MRI”

    PubMed Central

    Li, Rupeng; Hettinger, Patrick C.; Liu, Xiping; Machol, Jacques; Yan, Ji-Geng; Matloub, Hani S.; Hyde, James S.

    2014-01-01

    Resting state functional connectivity magnetic resonance imaging (fcMRI) studies in rat brain show brain reorganization caused by nerve injury and repair. In this study, distinguishable differences were found in healthy, nerve transection without repair (R+) and nerve transection with repair (R−) groups in the subacute stage (two weeks after initial injury). Only forepaw on the healthy side was used to determine seed voxel regions in this study. Disturbance of neuronal network in the primary sensory region of cortex occurs within two hours after initial injury, and the network pattern was restored in R+ group in subacute stage, while the disturbed pattern remained in R− group. These are the central findings of the study. This technique provides a novel way of detecting and monitoring the effectiveness of peripheral nerve injury treatment in the early stage and potentially offers a tool for clinicians to avoid poor clinical outcomes. PMID:24515926

  12. Airway complications after lung transplantation.

    PubMed

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  13. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  14. Sensory Conversion Devices

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro

    The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

  15. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release.

    PubMed

    Weller, K; Reeh, P W; Sauer, S K

    2011-12-01

    Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC₅₀ of 0.12 μM. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 μM) significantly reduced capsaicin-evoked iCGRP release while concentrations ≥ 1 μM mAEA had sensitizing effects. Only 100 μM mAEA directly augmented iCGRP release by itself. In the mouse, 310 μM mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 μM) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 μM) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at μM concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic

  16. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  17. The effect of height on paclitaxel nerve damage.

    PubMed

    Openshaw, Harry; Beamon, Karen; Longmate, Jeffrey; Synold, Timothy; Slatkin, Neal E; Somlo, George

    2005-09-01

    Dying-back neuropathies result in sensory loss and motor signs in the distal distribution of the longest nerves of the body. It would be expected, therefore, that taller individuals with dying-back neuropathies would tend to have worse nerve damage than shorter individuals. This hypothesis was tested in patients receiving high dose paclitaxel. Nerve conductions and quantitative sensory tests were obtained in 21 breast cancer subjects, prior to and 20-40 days after 725 mg/m(2) paclitaxel administered intravenously over 24 h. Despite the uniform dose of paclitaxel, there was a wide variation in post minus pre-paclitaxel changes. Analysis by linear regression showed that decrease of peroneal nerve compound muscle action potential amplitude was significantly greater in taller subjects (P=0.004), and increase in cold detection threshold was greater in taller subjects (P=0.02). No correlation with height was found for paclitaxel drug clearance, maximum concentration, and area under the curve. Decrease in sural sensory nerve action potential amplitude and increase in vibration detection threshold did not correlate with height. In summary, the wide variation of changes seen in neurophysiological tests suggests that multiple factors are involved in determining the severity of neuropathy. Nerve length is probably one of these factors. To determine whether the effect of height is clinically important would require additional study with a larger number of subjects and longer clinical follow-up.

  18. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission.

    PubMed

    Leung, Albert; Shukla, Shivshil; Lee, Jacquelyn; Metzger-Smith, Valerie; He, Yifan; Chen, Jeffrey; Golshan, Shahrokh

    2015-09-01

    Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P < 0.05) elevates sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers.

  19. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  20. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  1. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  2. Median and ulnar antidromic sensory studies to the fourth digit.

    PubMed

    Berkson, Andrew; Lohman, James; Buschbacher, Ralph M

    2006-01-01

    The literature documents multiple reports of neurological injury resulting from both the implantation and the removal of orthopedic devices. These injuries can be easily and objectively evaluated with nerve conduction studies. This study was undertaken to derive a normative database for median and ulnar sensory conduction studies to the fourth digit. Testing was done utilizing a 14-cm antidromic technique on 192 asymptomatic subjects with no risk factors for neuropathy. The subjects were studied bilaterally. Onset latency, peak latency, onset-to-peak amplitude, peak-to-peak amplitude, rise time, and duration were recorded. Increasing age and body mass index were associated with decreasing amplitudes and area. No other demographic factors correlated with differences in waveform measurements. Mean onset latency was 2.7 +/- 0.3 ms for the median nerve and 2.6 +/- 0.2 for the ulnar nerve. Mean peak latency was 3.4 +/- 0.3 ms for the median nerve and 3.3 +/- 0.3 ms for the ulnar nerve. Mean onset-to-peak amplitude was 21 +/- 12 muV for the median nerve and 23 +/- 12muV for the ulnar nerve. Mean peak-to-peak amplitude was 34 +/- 20 muV for the median nerve and 36 +/- 23 muV for the ulnar nerve. Mean area was 25 +/- 17 nVs for the median nerve and 28 +/- 19 nVs for the ulnar nerve. Mean rise time was 0.7 +/- 0.1 ms for the median nerve and 0.7 +/- 0.2 ms for the ulnar nerve. Mean duration was 1.9 +/- 0.4 ms for the median nerve and 1.9 +/- 0.5 ms for the ulnar nerve. The mean difference in onset and peak latency between the median and ulnar nerves (median minus ulnar) was 0.1 +/- 0.2 ms. The upper limit of normal difference of median greater than ulnar onset and peak latency was 0.5 ms. The upper limit of normal difference of ulnar greater than median onset latency was 0.2 ms (0.3 ms for peak latency). The upper limit of normal drop in median peak-to-peak amplitude from one side to the other was 56%. For the ulnar nerve this value was 73%.

  3. Hereditary sensory neuropathy type I.

    PubMed

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  4. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  5. Nrf2 protects against airway disorders

    SciTech Connect

    Cho, Hye-Youn; Kleeberger, Steven R.

    2010-04-01

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.

  6. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  7. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.

    PubMed

    Mbiene, Joseph-Pascal

    2004-12-01

    Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.

  8. The Relationship between Nerve Conduction Study and Clinical Grading of Carpal Tunnel Syndrome

    PubMed Central

    Cheluvaiah, Janardhan D.; Agadi, Jagadish B.; Nagaraj, Karthik

    2016-01-01

    Introduction Carpal Tunnel Syndrome (CTS) is the most common nerve entrapment. Subjective sensory symptoms are common place in patients with CTS, but sometimes they are not supported by objective findings in the neurological examination. Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory nerve action potential and motor nerve action potential reflect the functional state of axons, and are useful parameters and complement the clinical grading in the assessment of severity of CTS. Aim To conduct median nerve sensory and motor conduction studies on patients with carpal tunnel syndrome and correlate the relationship between nerve conduction study parameters and the clinical severity grading. Materials and Methods Based on clinical assessment, the study patients were divided into 03 groups with mild CTS, moderate CTS and severe CTS respectively as per Mackinnson’s classification. Median and ulnar nerve conduction studies were performed on bilateral upper limbs of 50 patients with symptoms of CTS and 50 age and sex matched healthy control subjects. The relationship between the clinical severity grade and various nerve conduction study parameters were correlated. Results In this prospective case control study, 50 patients with symptoms consistent with CTS and 50 age and sex matched healthy control subjects were examined over a 10 month period. A total of 30 patients had unilateral CTS (right upper limb in 19 and left upper limb in 11) and 20 patients had bilateral CTS. Female to male ratio was 3.54 to 1. Age ranged from 25 to 81 years. The mean age at presentation was 49.68±11.7 years. Tingling paresthesias of hand and first three fingers were the most frequent symptoms 48 (98%). Tinel’s and Phalen’s sign were positive in 36 (72%) and 44 (88%) patients respectively. The mean duration of symptoms at presentation was 52.68±99.81 weeks. 16 patients (32%) had

  9. Neurology: an ancient sensory organ in crocodilians.

    PubMed

    Soares, Daphne

    2002-05-16

    Crocodilians hunt at night, waiting half-submerged for land-bound prey to disturb the water surface. Here I show that crocodilians have specialized sensory organs on their faces that can detect small disruptions in the surface of the surrounding water, and which are linked to a dedicated, hypertrophied nerve system. Such 'dome' pressure receptors are also evident in fossils from the Jurassic period, indicating that these semi-aquatic predators solved the problem of combining armour with tactile sensitivity many millions of years ago.

  10. End-to-side neurorrhaphy as a salvage procedure for irreparable nerve injuries. Technical note.

    PubMed

    Oğün, Tunç C; Ozdemir, Mustafa; Senaran, Hakan; Ustün, Mehmet E

    2003-07-01

    After a few reports on end-to-side nerve repair at the beginning of the last century, the technique was put aside until its recent reintroduction. The authors present their results in three patients with median nerve defects that were between 15 and 22 cm long and treated using end-to-side median-to-ulnar neurorrhaphy through an epineurial window. The follow-up times were between 32 and 38 months. Sensory evaluation involved superficial touch, pinprick, and two-point discrimination tests. Motor evaluation was completed by assessing the presence of opposition and by palpating the abductor pollicis brevis muscle. Sensory recovery was observed in all patients in the median nerve dermatome, and motor recovery was absent, except in Case 1. End-to-side nerve repair can be a viable alternative to nerve grafting in patients with long gaps between the ends of the injured nerve.

  11. IL-17 and VEGF are necessary for efficient corneal nerve regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contribution of acute inflammation to sensory nerve regeneration was investigated in the murine cornea using a model of corneal abrasion that removes the stratified epithelium and subbasal nerve plexus. Abrasion induced accumulation of IL-17(+) CCR6(+) yo T cells, neutrophils, and platelets in t...

  12. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  13. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  14. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  15. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  16. Airway management in emergency situations.

    PubMed

    Dörges, Volker

    2005-12-01

    Securing and monitoring the airway are among the key requirements of appropriate therapy in emergency patients. Failures to secure the airways can drastically increase morbidity and mortality of patients within a very short time. Therefore, the entire range of measures needed to secure the airway in an emergency, without intermediate ventilation and oxygenation, is limited to 30-40 seconds. Endotracheal intubation is often called the 'gold standard' for airway management in an emergency, but multiple failed intubation attempts do not result in maintaining oxygenation; instead, they endanger the patient by prolonging hypoxia and causing additional trauma to the upper airways. Thus, knowledge and availability of alternative procedures are also essential in every emergency setting. Given the great variety of techniques available, it is important to establish a well-planned, methodical protocol within the framework of an algorithm. This not only facilitates the preparation of equipment and the training of personnel, it also ensures efficient decision-making under time pressure. Most anaesthesia-related deaths are due to hypoxaemia when difficulty in securing the airway is encountered, especially in obstetrics during induction of anaesthesia for caesarean delivery. The most commonly occurring adverse respiratory events are failure to intubate, failure to recognize oesophageal intubation, and failure to ventilate. Thus, it is essential that every anaesthesiologist working on the labour and delivery ward is comfortable with the algorithm for the management of failed intubation. The algorithm for emergency airway management describing the sequence of various procedures has to be adapted to internal standards and to techniques that are available.

  17. Influence of human skin injury on regeneration of sensory neurons.

    PubMed

    Taherzadeh, O; Otto, W R; Anand, U; Nanchahal, J; Anand, P

    2003-06-01

    The regeneration of sensory nerve fibres is regulated by trophic factors released from their target tissue, particularly the basal epidermis, and matrix molecules. Means to modulate this response may be useful for the treatment of neuromas and painful hypertrophic scars and of sensory deficits in skin grafts and flaps. We have developed an in vitro model of sensory neuron regeneration on human skin in order to study the mechanisms of sensory dysfunction in pathological conditions. Adult rat sensory neurons were co-cultured with unfixed cryosections of normal or injured (crushed) human skin for 72 h. Neurons were immunostained for growth-associated protein-43 and the neurite lengths of neuronal cell bodies situated in various skin regions were measured. Two-way analysis of variance was performed. Neurites of sensory cell bodies on epidermis of normal skin were the shortest, with a mean +/- SEM of 75+/-10 micrometer, whereas those of cells on the dermo-epidermal junction were the longest, with a mean +/- SEM of 231+/-18 micrometer. Neurons on the dermo-epidermal junction of injured skin had significantly longer neurites than those on the same region of normal skin (mean +/- SEM = 289+/-21 micrometer). Regeneration of sensory neurons may be influenced by extracellular matrix molecules, matrix-binding growth factors and trophic factors. Altered substrate or trophic factors in injured skin may explain the increase of neurite lengths. This in vitro model may be useful for studying the molecular mechanisms of sensory recovery and the development of neuropathic pain following peripheral nerve injury.

  18. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx.

    PubMed

    Kichko, Tatjana I; Kobal, Gerd; Reeh, Peter W

    2015-10-15

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.

  19. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

    PubMed Central

    Kichko, Tatjana I.; Kobal, Gerd

    2015-01-01

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1−/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1−/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811

  20. Improvement of Sciatic Nerve Regeneration Using Laminin-Binding Human NGF-β

    PubMed Central

    Sun, Wenjie; Sun, Changkai; Zhao, Hui; Lin, Hang; Han, Qianqian; Wang, Jingyu; Ma, Hui; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-01-01

    Background Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration. Methods Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. Findings LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. Conclusion Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries. PMID:19587785

  1. Investigation of infraorbital nerve injury following zygomaticomaxillary complex fractures.

    PubMed

    Sakavicius, D; Juodzbalys, G; Kubilius, R; Sabalys, G P

    2008-12-01

    The aim of this study was to investigate the severity of infraorbital nerve injury following zygomaticomaxillary complex fractures and to estimate the treatment methods facilitating its functional recovery. A total of 478 patients with unilateral zygomaticomaxillary complex fractures were treated. Infraorbital nerve sensory disturbances were diagnosed in 64.4% of the patients. Injury of the infraorbital nerve was expressed as asymmetry index, which was calculated as a ratio between the affected side and the intact side electric pain detection thresholds at the innervation zone skin before treatment and 14 days, 1, 3, 6 and 12 months postoperatively. A mean asymmetry index of 0.6 +/- 0.03 and 1.9 +/- 0.5 was registered for 57 (11.9%) patients with hyperalgesia and for 251 (52.5%) patients with hypoalgesia, respectively. As a result of retrospective analysis of infraorbital nerve sensory disturbances and its functional recovery, infraorbital nerve injury severity was classified as mild, moderate and severe. It was found that the dynamics and outcome of the functional infraorbital nerve recovery depend on the severity of the injury and the presence of infraorbital canal damage. Function was completely recovered within 3 months after treatment in cases with mild nerve injury. In moderate cases, complete recovery was seen within 6 months and in 34.6% of the severe cases, within a 12-month period after treatment when infraorbital nerve decompression was performed according to the stated indication. Treatment based on infraorbital nerve injury classification offers a better prognosis for complete recovery of the infraorbital nerve function.

  2. Pattern of Peripheral Nerve Involvement in Spinocerebellar Ataxia Type 2: a Neurophysiological Assessment.

    PubMed

    Bezerra, Marcio Luiz Escorcio; Pedroso, José Luiz; Braga-Neto, Pedro; Abrahao, Agessandro; de Albuquerque, Marcus Vinicius Cristino; Borges, Franklin Roberto Pereira; Saraiva-Pereira, Maria Luiza; Jardim, Laura Bannach; de Oliveira Braga, Nadia Iandoli; Manzano, Gilberto Mastrocola; Barsottini, Orlando G P

    2016-12-01

    Peripheral neuropathy is frequent in spinocerebellar ataxia type 2 (SCA2), but the pattern and characteristics of nerve involvement are still an unsettled issue. This study aimed to evaluate the prevalence, extent, and distribution of nerve involvement in SCA2 patients through neurophysiological studies. Thirty-one SCA2 patients and 20 control subjects were enrolled in this study. All subjects were prospectively evaluated through electromyography, including nerve conduction, needle electromyography in proximal and distal muscles of the upper and lower limbs, and sural radial amplitude ratio (SRAR). We aimed to differentiate distal axonopathy from diffuse nerve commitment, characterizing neuronopathy. Nerve involvement was observed in 83.6 % (26 individuals) of SCA2 patients. Among these, 19 had diffuse sensory abnormalities on nerve conduction predominantly on the upper limbs, with diffuse chronic denervation on needle electromyography and elevated SRAR values. Four individuals had only diffuse sensory involvement, and 2 had only motor involvement on needle evaluation and normal nerve conduction. These were interpreted as neuronopathy due to the diffuse distribution of the involvement. One individual had distal sensory axonopathy, with lower limb predominance. In this study, we found neuronopathy as the main pattern of nerve involvement in SCA2 patients and that motor involvement is a frequent feature. This information brings new insights into the understanding of the pathophysiology of nerve involvement in SCA2 and sets some key points about the phenotype, which is relevant to guide the genetic/molecular diagnosis.

  3. Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature.

    PubMed

    Wu, Shao-Wei; Wang, Yi-Chia; Hsieh, Paul-Chen; Tseng, Ming-Tsung; Chiang, Ming-Chang; Chu, Chih-Pang; Feng, Fang-Ping; Lin, Yea-Huey; Hsieh, Sung-Tsang; Chao, Chi-Chao

    2017-03-01

    Contact heat-evoked potentials (CHEPs) have become an established method of assessing small-fiber sensory nerves; however, their potential as a physiological signature of neuropathic pain symptoms has not been fully explored. To investigate the diagnostic efficacy in examining small-fiber sensory nerve degeneration, the relationship with skin innervations, and clinical correlates with sensory symptoms, we recruited 188 patients (115 men) with length-dependent sensory symptoms and reduced intraepidermal nerve fiber (IENF) density at the distal leg to perform CHEP, quantitative sensory testing, and nerve conduction study. Fifty-seven age- and sex-matched controls were enrolled for comparison of CHEP and skin innervation. Among patients with neuropathy, 144 patients had neuropathic pain and 64 cases had evoked pain. Compared with quantitative sensory testing and nerve conduction study parameters, CHEP amplitudes showed the highest sensitivity for diagnosing small-fiber sensory nerve degeneration and exhibited the strongest correlation with IENF density in multiple linear regression. Contact heat-evoked potential amplitudes were strongly correlated with the degree of skin innervation in both patients with neuropathy and controls, and the slope of the regression line between CHEP amplitude and IENF density was higher in patients with neuropathy than in controls. Patients with evoked pain had higher CHEP amplitude than those without evoked pain, independent of IENF density. Receiver operating characteristic analysis showed that CHEP had better performance in diagnosing small-fiber sensory nerve degeneration than thermal thresholds. Furthermore, CHEPs showed superior classification accuracy with respect to evoked pain. In conclusion, CHEP is a sensitive tool to evaluate pathophysiology of small-fiber sensory nerve and serves as a physiological signature of neuropathic pain symptoms.

  4. The Study of Diagnostic Efficacy of Nerve Conduction Study Parameters in Cervical Radiculopathy

    PubMed Central

    Pawar, Sachin; Kashikar, Aditi; Shende, Vinod; Waghmare, Satish

    2013-01-01

    Background: Cervical Radiculopathy (CR) is a neurologic condition characterised by dysfunction of a cervical spinal nerve, the roots of the nerve, or both. Diagnostic criteria for CR are not well defined, and no universally accepted criteria for its diagnosis have been established. Clinical examination, radiological imaging and electrophysiologic evaluation are the different modalities to diagnose CR. The incidence of Cervical Spondylosis and related conditions is increasing in the present scenario and the use of radiologic examination is time consuming and uneconomical for the common Indian setup. Thus, there is a definite need to establish a cost effective, reliable, and accurate means for establishing the diagnosis of cervical radiculopathy. Electrodiagnostic tests are the closest to fulfill these criteria. Aim: To evaluate diagnostic utility of various motor and sensory nerve conduction study parameters in cervical radiculopathy. Setting and Design: It was a cross-sectional study conducted on 100 subjects of age > 40 years. Material and Methods: The consecutive patients clinically diagnosed to have cervical radiculopathy, referred from department of Orthopaedics were prospectively recruited for the motor and sensory nerve conduction study using RMS EMG EP Mark-II. Parameters studied were Compound Muscle Action Potential (CMAP), Distal Motor Latency (DML) and Conduction Velocity (CV) for motor nerves and Sensory Nerve Action Potential (SNAP) and CV for sensory nerves. Statistical Analysis: Study observations and results were analysed to find the Specificity, Sensitivity, Positive Predictive Value and Negative Predictive Value using SPSS 16.0. Results: Among various motor nerve conduction parameters CMAP was found to be more sensitive with high positive predicative value. CV was found to have greater specificity and DML had least negative predictive value. Sensory nerve conduction parameters were found to have less sensitivity but higher specificity as compared

  5. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  6. The efficacy of combined regional nerve blocks in awake orotracheal fiberoptic intubation

    PubMed Central

    Chatrath, Veena; Sharan, Radhe; Jain, Payal; Bala, Anju; Ranjana; Sudha

    2016-01-01

    Aims of Study: To evaluate the efficacy, hemodynamic changes, and patient comfort during awake fiberoptic intubation done under combined regional blocks. Materials and Methods: In the present observational study, 50 patients of American Society of Anesthesiologists ( ASA) Grade I–II, Mallampati Grade I–IV were given nerve blocks - bilateral glossopharyngeal nerve block, bilateral superior laryngeal nerve block, and recurrent laryngeal nerve block before awake fiberoptic intubation using 2% lidocaine. Results: Procedure was associated with minimal increases in hemodynamic parameters during the procedure and until 3 min after it. Most of the intubations were being carried out within 3 min. Patient comfort was satisfactory with 90% of patients having favorable grades. Discussion: The most common cause of mortality and serious morbidity due to anesthesia is from airway problems. One-third of all anesthetic deaths are due to failure to intubate and ventilate. Awake flexible fiberoptic intubation under local anesthesia is now an accepted technique for managing such situations. In awake patient's anatomy, muscle tone, airway protection, and ventilation are preserved, but it is essential to sufficiently anesthetize the upper airway before the performance of awake fiberoptic bronchoscope-guided intubation to ensure patient comfort and cooperation for which in our study we used the nerve block technique. Conclusion: A properly performed technique of awake fiberoptic intubation done under combined regional nerve blocks provides good intubating conditions, patient comfort and safety and results in minimal hemodynamic changes. PMID:27212757

  7. Continuing the Original Stanford Sleep Surgery Protocol From Upper Airway Reconstruction to Upper Airway Stimulation: Our First Successful Case.

    PubMed

    Liu, Stanley Yung; Riley, Robert Wayne

    2017-02-20

    In 1993, a surgical protocol for dynamic upper airway reconstruction in patients with obstructive sleep apnea (OSA) was published, and it became commonly known as the Stanford phase 1 and 2 sleep surgery protocol. It served as a platform on which research and clinical studies have continued to perfect the surgical care of patients with OSA. However, relapse is inevitable in a chronic condition such as OSA, and a subset of previously cured surgical patients return with complaints of excessive daytime sleepiness. This report describes a patient who was successfully treated with phase 1 and 2 operations more than a decade previously. He returned at 65 years of age with relapse of moderate OSA, and after workup with polysomnography and drug-induced sleep endoscopy, he underwent upper airway stimulation of the hypoglossal nerve that resulted in a cure of OSA. This case shows why upper airway stimulation is an appropriate option for patients with OSA relapse, after previously successful maxillomandibular advancement.

  8. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  9. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  10. Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia

    PubMed Central

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

  11. Evidence for glutamate as a neuroglial transmitter within sensory ganglia.

    PubMed

    Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T; Jasmin, Luc

    2013-01-01

    This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.

  12. Establishing improved normal values for nerve conduction studies.

    PubMed

    Buschbacher, Ralph M

    2006-01-01

    Nerve conduction studies are commonly performed to diagnose injuries of the peripheral nerves. In the past, normal ranges have been derived on relatively small samples of normal subjects. These ranges were often suboptimal for clinical use. Therefore, this series of articles was created to establish an improved database of normative values. It highlights the key contributions of a number of authors. In this foreword, the contributions of the various authors to the special issue on the development of an improved database for nerve conduction studies are described. The authors are introduced, including their training, gifts, and which articles they were involved in writing. In addition, there is a brief review of each of the articles in this special supplement. The fundamentals of ulnar motor nerve conduction to the first dorsal interosseous muscle are described, as is the contribution of Nate Prahlow, MD. In addition, the median motor nerve conduction to the pronator teres muscle and flexor carpi radialis muscle is highlighted including the contributions of Brian Foley, MD. The radial sensory nerve and dorsal ulnar cutaneous sensory nerve studies are described, as well as the contributions of Van Evanoff, Jr., MD, in creating this research. Median motor conduction to the lumbrical muscles and ulnar motor conduction to the palmar interosseous muscles are described, again highlighting the contributions of Dr. Foley. In addition, medial and lateral antebrachial cutaneous nerve studies are described, along with the contributions of Dr. Nathan Prahlow. Median and ulnar sensory conduction studies recording from the fourth digit, as well as median and radial sensory conduction to the first digit, are described, as are the contributions of James Lohman, MD, and Andrew Berkson, DO. The side-to-side differences in median and ulnar sensory conduction studies and the importance of performing such studies are described, as are the contributions in this research of Dr. Nathan

  13. Laryngeal elevation by selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Hadley, Aaron J.; Kolb, Ilya; Tyler, Dustin J.

    2013-08-01

    Objective. Laryngeal elevation protects the airway and assists opening of the esophagus during swallowing. The GH, thyrohyoid, and MH muscles provide a majority of this elevatory motion. This study applied functional electrical stimulation to the XII/C1 nerve complex using a nerve cuff electrode to determine the capabilities of neural stimulation to induce laryngeal elevation. Approach. Multi-contact FINE electrodes were implanted onto the XII/C1 nerve complex at locations proximal and distal to the thyrohyoid branching point in five anesthetized canines. Motion of the thyroid cartilage and the hyoid bone was recorded during stimulation of nerve cuffs and intramuscular electrodes. Main Results. Nerve stimulation induced 260% more laryngeal elevation than intramuscular stimulation (18.8 mm versus 5.2 mm, p ≪ 0.01), and 228% higher velocity (143.8 versus 43.9 mm s-1, p ≪ 0.01). While stimulation at all cuff and electrode locations elevated the larynx, only the proximal XII/C1 nerve cuff significantly elicited both thyroid-hyoid approximation and hyoid elevation. In all proximal XII/C1 nerve cuffs (n = 7), stimulation was able to obtain selectivity of greater than 75% of at least one elevatory muscle. Significance. These results support the hypothesis that an implanted neural interface system can produce increased laryngeal elevation, a significant protective mechanism of deglutition.

  14. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates.

    PubMed

    Palmer, Clare E; Davare, Marco; Kilner, James M

    2016-10-19

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time-frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation.

  15. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  16. [Regional anesthesia of the airways in difficult tracheal intubation in a conscious patient with spontaneous respiration].

    PubMed

    Dziadz'ko, A M

    2002-01-01

    Clinical pattern of anesthesia, hemodynamic and gas exchange states were evaluated in 64 patients with congenital or acquired damage of maxillary-facial region due to tumor or trauma. 51 patients were intubated under locoregional anesthesia of the upper respiratory tract (superior laryngeal nerves, glossopharyngeal nerves, intratracheal anesthesia) by means of blind nasal or oral fiberoptic retrograde and by using laryngeal mask technique. In 12 cases fiberoptic device was used for intubation under local anesthesia by lidocaine solution. There was no airways obstruction in any case. Satisfactory anesthesia in oropharynx, larynx and trachea was reached in all cases, the most profound blockage of airways and lack of pharyngeal and laryngeal reflexes being in patients under locoregional anesthesia. So locoregional anesthesia can be used for awake intubation.

  17. Hypoglossal nerve stimulation improves obstructive sleep apnea: 12-month outcomes.

    PubMed

    Kezirian, Eric J; Goding, George S; Malhotra, Atul; O'Donoghue, Fergal J; Zammit, Gary; Wheatley, John R; Catcheside, Peter G; Smith, Philip L; Schwartz, Alan R; Walsh, Jennifer H; Maddison, Kathleen J; Claman, David M; Huntley, Tod; Park, Steven Y; Campbell, Matthew C; Palme, Carsten E; Iber, Conrad; Eastwood, Peter R; Hillman, David R; Barnes, Maree

    2014-02-01

    Reduced upper airway muscle activity during sleep is a key contributor to obstructive sleep apnea pathogenesis. Hypoglossal nerve stimulation activates upper airway dilator muscles, including the genioglossus, and has the potential to reduce obstructive sleep apnea severity. The objective of this study was to examine the safety, feasibility and efficacy of a novel hypoglossal nerve stimulation system (HGNS; Apnex Medical, St Paul, MN, USA) in treating obstructive sleep apnea at 12 months following implantation. Thirty-one subjects (35% female, age 52.4 ± 9.4 years) with moderate to severe obstructive sleep apnea and unable to tolerate positive airway pressure underwent surgical implantation and activation of the hypoglossal nerve stimulation system in a prospective single-arm interventional trial. Primary outcomes were changes in obstructive sleep apnea severity (apnea-hypopnea index, from in-laboratory polysomnogram) and sleep-related quality of life [Functional Outcomes of Sleep Questionnaire (FOSQ)]. Hypoglossal nerve stimulation was used on 86 ± 16% of nights for 5.4 ± 1.4 h per night. There was a significant improvement (P < 0.001) from baseline to 12 months in apnea-hypopnea index (45.4 ± 17.5 to 25.3 ± 20.6 events h(-1) ) and Functional Outcomes of Sleep Questionnaire score (14.2 ± 2.0 to 17.0 ± 2.4), as well as other polysomnogram and symptom measures. Outcomes were stable compared with 6 months following implantation. Three serious device-related adverse events occurred: an infection requiring device removal; and two stimulation lead cuff dislodgements requiring replacement. There were no significant adverse events with onset later than 6 months following implantation. Hypoglossal nerve stimulation demonstrated favourable safety, feasibility and efficacy.

  18. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  19. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  20. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways.

  1. Optic Nerve Pit

    MedlinePlus

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  2. Unexpected motor axons in the distal superficial radial and posterior interosseous nerves: a cadaver study.

    PubMed

    Okwueze, Martina I; Cardwell, Nancy L; Wolfort, Sean L; Nanney, Lillian B

    2007-10-01

    The prevalence of motor variations in the nerves supplying muscles of the first web space was evaluated by a visual dissection and immunohistochemical analysis from 56 cadaver hands. By microscopic visualization, 30% of the superficial radial nerves (SRNs) sent branches into muscles of the first web space. Since these unexpected penetrating branches were expected to be sensory or proprioceptive, markers of sensory and motor axons were used for confirmation. Positive identifications of motor axons (as identified by positive immunostaining for choline acetyltransferase) were made in 30% of SRNs and in 28.5% of posterior interosseous nerves. Classical teachings that the SRNs and PINs are exclusively sensory have been brought into question. Our data are in agreement with the rare clinical finding that motor function occasionally persists following devastating injury to both the ulnar and median nerves. Anatomic prevalence for this variation appears much higher than previous descriptions have indicated.

  3. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  4. Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro.

    PubMed

    Alcayaga, J; Iturriaga, R; Varas, R; Arroyo, J; Zapata, P

    1998-03-09

    The petrosal ganglion innervates carotid body chemoreceptors through the carotid (sinus) nerve. These primary sensory neurons are activated by transmitters released from receptor (glomus) cells, acetylcholine (ACh) having been proposed as one of the transmitters involved in this process. Since the perikarya of primary sensory neurons share several properties with peripheral sensory endings, we studied the electrical responses of the carotid nerve and glossopharyngeal branch to ACh locally applied to the cat petrosal ganglion superfused in vitro. Ganglionar applications of AChCl (1 microg-1 mg) generated bursts of action potentials conducted along the carotid nerve, while only a few spikes were exceptionally recorded from the glossopharyngeal branch in response to the largest doses. Carotid nerve responses to ACh were dose-dependent, the higher doses inducing transient desensitization. Application of nicotine to the petrosal ganglion also evoked dose-dependent excitatory responses in the carotid nerve. Responses to ACh were reversibly antagonized by adding hexamethonium to the superfusate, more intense and prolonged block of ACh responses being produced by mecamylamine. Ganglionar applications of gamma-amino butyric acid and serotonin, in doses of up to 5 mg, did not induce firing of action potentials in any of the branches of the glossopharyngeal nerve. Our results indicate that petrosal ganglion neurons projecting through the carotid nerve are selectively activated by ACh acting on nicotinic ACh receptors located in the somata of these neurons. Thus, cholinosensitivity would be shared by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.

  5. The nervous system of airways and its remodeling in inflammatory lung diseases.

    PubMed

    Audrit, Katrin Julia; Delventhal, Lucas; Aydin, Öznur; Nassenstein, Christina

    2017-03-01

    Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.

  6. Neuropeptide release from airways of young and fully-grown rabbits.

    PubMed

    Larsen, Gary L; Fratelli, Cori; Loader, Joan; Kang, June-Ku Brian; Dakhama, Azzeddine

    2006-12-01

    Nerve growth factor (NGF), a neurotrophin that regulates neuronal development, enhances production of neuropeptides that control airway caliber including substance P (SP). Little is known about the developmental interplay between neurotrophins and neuropeptides. Our goal was to assess release of NGF, SP, and vasoactive intestinal peptide (VIP) from tracheal segments of young (2-week-old) and fully-grown (13-week-old) rabbits, and ascertain location of neuropeptides in airways with mechanical denudation of epithelium and immunohistochemistry. After electrical field stimulation of nerves, bath solutions were collected and immunoassays performed to quantify NGF, SP, and VIP release. There were significant decreases in NGF, SP, and VIP release from airways in 13- versus 2-week-old rabbits. There were also significant decreases in SP and VIP release from denuded versus normal tissues at 2 weeks of age. A similar pattern for SP was seen in 13-week-old rabbits. Immunohistochemistry demonstrated increased neuropeptides in airways from younger rabbits. Although SP was seen in the epithelium and submucosal nerves in the younger group, it was localized to the latter location in fully-grown rabbits. VIP was seen in only submucosal nerves at both ages. Thus, release of NGF, SP, and VIP with neural stimulation decreases in rabbit tracheal segments with age. Decreases in SP with maturation and epithelial denudation appear related in part to decreases in epithelial SP with growth. However, decreases in VIP that occur normally and with epithelial denudation are not explained by location of VIP within the epithelium. The epithelium may be a source of factors that inhibit release of neuropeptides.

  7. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques.

  8. Sensory Substitution for Wounded Servicemembers

    DTIC Science & Technology

    2009-10-28

    traumatic brain injury (TBI) and two civilians, all with partial visual impairment , evaluated the vision sensory substitution systems. The servicemember...Mobility Augmentation; Wounded Service Members; Human-Centered Computing; Vision Augmentation, Vision , Balance and Hearing; Sensory Substitution-enabled...mitigation of vision sensory and mobility losses. 2) Improved the usefulness of available sensory substitution technologies for injured military

  9. Upper Airway Stimulation for Obstructive Sleep Apnea: Past, Present, and Future

    PubMed Central

    Dedhia, Raj C.; Strollo, Patrick J.; Soose, Ryan J.

    2015-01-01

    Obstructive sleep apnea (OSA) is an increasingly prevalent clinical problem with significant effects on both personal and public health. Continuous positive airway pressure (CPAP) has demonstrated excellent efficacy and low morbidity; long-term adherence rates approach 50%. Although traditional upper airway surgical procedures target the anatomic component of obstruction, upper airway stimulation tackles the twin goals of improving anatomic and neuromuscular pathology. After decades of trials demonstrating proof of concept of hypoglossal nerve stimulation in animal and human subjects, the results of a large multicenter, prospective trial were recently published. The trial demonstrated that hypoglossal nerve stimulation led to significant improvements in objective and subjective measurements of the severity of OSA. This novel approach is the first to combine sleep surgery techniques with a titratable medical device for the treatment of OSA. Further research is required to define optimal patient selection and device performance and to demonstrate long-term effectiveness. Citation: Dedhia RC, Strollo PJ, Soose RJ. Upper airway stimulation for obstructive sleep apnea: past, present, and future. SLEEP 2015;38(6):899– 906. PMID:25409109

  10. Comments to Role of upper airway ultrasound in airway management.

    PubMed

    Lien, Wan-Ching

    2017-01-01

    Tracheal ultrasound can be an alternative diagnostic tool in airway management, besides traditional confirmatory methods such as capnography and auscultation. The standard image is a hyperechoic air-mucosa (A-M) interface with a reverberation artifact posteriorly (comet-tail artifact). If the second A-M interface appears, which we call a "double-tract sign," esophageal intubation is considered.

  11. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations.

    PubMed

    Sleigh, James N; Dawes, John M; West, Steven J; Wei, Na; Spaulding, Emily L; Gómez-Martín, Adriana; Zhang, Qian; Burgess, Robert W; Cader, M Zameel; Talbot, Kevin; Yang, Xiang-Lei; Bennett, David L; Schiavo, Giampietro

    2017-03-28

    Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.

  12. Acute small fibre sensory neuropathy: another variant of Guillain-Barré syndrome?

    PubMed

    Seneviratne, U; Gunasekera, S

    2002-04-01

    Six patients who presented with acute sensory neuropathy were studied. All patients underwent detailed clinical assessment along with electrophysiological tests and relevant laboratory investigations. All patients had acute onset numbness, reaching the peak deficit within 4 weeks. Four of them had associated burning dysaesthesia. An antecedent illness was reported in four; diarrhoea in three, and urinary tract infection in one. The neurological examination disclosed normal muscle strength, symmetric glove and stocking type sensory loss for pain and temperature, normal proprioception, and vibration senses with normal or brisk tendon reflexes. Analysis of CSF demonstrated albuminocytological dissociation in all. Routine motor and sensory nerve conduction studies were normal. Sympathetic skin responses were also normal except for the lower limbs in one patient. Stool cultures for Campylobacter jejuni were negative. The outcome was favourable. Burning dysaesthesia disappeared within 4 months. Numbness and objective sensory loss tended to persist longer. The clinical features and normal routine nerve conduction studies, which assess large diameter nerve fibre function, indicate small sensory fibre dysfunction in the group. Their presentation and CSF findings would fit into the diagnosis of sensory Guillain-Barré syndrome. The current study suggests that acute small fibre sensory neuropathy (ASFSN) is another clinical entity which could perhaps be included in the heterogeneous range of Guillain-Barré syndrome.

  13. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    SciTech Connect

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  14. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  15. Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors?

    PubMed Central

    Bergren, D R; Peterson, D F

    1993-01-01

    1. We studied the characteristics of pulmonary sensory receptors whose afferent fibres are in the left vagus nerve of opened-chest rats. The activity of these receptors was recorded during mechanical ventilation approximating eupnoea, as well as during deflation, stepwise inflations and constant-pressure inflations of the lungs. Data were also collected from closed-chest rats and analysed separately. 2. Ninety-four per cent of receptors were located in the ipsilateral lung or airways with the remainder in the contralateral lung. 3. Not only were slowly adapting receptors (SARs) the most abundant pulmonary receptors but 21% of them were either exclusively or predominantly active during the deflationary phase of the ventilatory cycle. Deflationary units were found in opened- and closed-chest rats. The average conduction velocity for all fibres innervating SARs averaged 29.7 m s-1. 4. We found rapidly adapting receptors (RARs) to be extremely rare in the rat. Their activity was sparse and irregular. The conduction velocities of fibres innervating RARs averaged 12.3 m s-1. 5. Far more abundant than RARs in the remaining population of pulmonary fibres were C fibres. They were observed to have an average conduction velocity of 2.1 m s-1, base-level activity which was irregular and a high pressure threshold of activation and were stimulated by intravenous capsaicin injection. 6. Notable differences exist between pulmonary receptors in rats and those reported in other species. The variations include the abundant existence of intrapulmonary SARs with exclusively deflationary modulation and the rarity of RARs. We also encountered C fibres which have not previously been described systematically in the rat. PMID:8229824

  16. Electromechanical tactile stimulation system for sensory vision substitution

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Elani, Gal; Azoulay, Eli; Ilani, Dan; Beiderman, Yevgeny; Belkin, Michael

    2013-02-01

    A sensory substitution device is developed in which nonretinal stimulus is used to generate input to the brain of blind people to substitute for damage or loss of retinal input. Although the final realization of this technology (direct stimulation of the corneal nerve endings) was not addressed, a device consisting of a contact lens delivering point mechanical or electrical stimulating of the corneal nerves and a camera mounted on a spectacles frame which wirelessly transmit processed image to the contact lens, translating the visual information into tactile sensation is expected to be constructed. In order to improve the spatial resolution of the constructed image, the camera will also time multiplex, compress and encode the captured image before transmitting it to the stimulating contact lens. Preliminary devices performing tactile stimulation of the fingers and of the tongue by applying point electrical stimulations, were constructed and tested. Subjects were taught to "see" using the mechanical and the electrical tactile sensory.

  17. Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx.

    PubMed

    Kano, Mitsuhiro; Shimizu, Yoshinaka; Suzuki, Yujiro; Furukawa, Yusuke; Ishida, Hiroko; Oikawa, Miho; Kanetaka, Hiroyasu; Ichikawa, Hiroyuki; Suzuki, Toshihiko

    2011-12-20

    The distribution of pituitary adenylatecyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers was studied in the rat epiglottis and pharynx. PACAP-IR nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant on the laryngeal side of the epiglottis and in the dorsal and lateral border region between naso-oral and laryngeal parts of the pharynx. PACAP-IR nerve fibers were also detected in taste buds within the epiglottis and pharynx. In addition, many PACAP-IR nerve fibers were found around acinar cells and blood vessels. The double immunofluorescence method demonstrated that distribution of PACAP-IR nerve fibers was similar to that in CGRP-IR nerve fibers in the epithelium and taste bud. However, distributions of PACAP-IR and CGRP-IR nerve fibers innervating mucous glands and blood vessels were different. The retrograde tracing method also demonstrated that PACAP and CGRP were co-expressed by vagal and glossopharyngeal sensory neurons innervating the pharynx. These findings suggest that PACAP-IR nerve fibers in the epithelium and taste bud of the epiglottis and pharynx which originate from the vagal and glossopharyngeal sensory ganglia include nociceptors and chemoreceptors. The origin of PACAP-IR nerve fibers which innervate mucous glands and blood vessels may be the autonomic ganglion.

  18. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  19. The Lung Microbiome and Airway Disease.

    PubMed

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  20. Incidence of lingual nerve paraesthesia following mandibular third molar surgery

    PubMed Central

    Lata, Jeevan; Tiwari, Arunesh K.

    2011-01-01

    Context: The surgical removal of impacted mandibular third molar is associated with minor but expected complications like pain, swelling, bruising and trismus. The lingual nerve damage sometimes occurs after the removal of mandibular third molar producing impaired sensation or permanent sensory loss. This complication is usually unexpected and unacceptable for the patients particularly if no prior warning has been given. Aims: The aim of the present clinical prospective study was to determine the clinical incidence of lingual nerve injury following mandibular third molar removal and to analyze possible factors for the lingual nerve injury. Settings and Design: Clinical prospective study in the Department of Oral Surgery, Punjab Government Dental College and Hospital, Amritsar. Materials and Methods: Ninety patients were selected randomly, amongst the patients, who reported to our department from January 2009 to December 2009 for the surgical removal of impacted mandibular third molar. To minimize the risk of lingual nerve injury, the standard terence wards incision was made in all cases and only buccal flap was raised. Statistical Analysis: The small number of paraesthesia precluded statistical analysis. Results: Out of 90 patients, six patients were diagnosed with lingual nerve paraesthesia. The overall incidence rate of lingual nerve injury was 6.6%. Conclusions: It can be concluded that lingual nerve paraesthesia can occur with or without reflection of lingual flap in spite of all the measures taken to protect it. It may be contributed to the fact of anatomical variations of lingual nerve. PMID:22639500

  1. Nerve conduction velocities and hair concentrations of trace elements in haemodialysis patients.

    PubMed

    Sasagawa, I; Nakada, T; Sawamura, T; Kato, T; Hashimoto, T; Ishigooka, M; Izumiya, K

    1993-01-01

    Nerve conduction velocities and hair concentrations of trace elements were studied in 19 male patients with chronic renal failure undergoing haemodialysis. Both motor and sensory nerve conduction velocities were significantly lower in haemodialysis patients as compared to controls (p < 0.001). Calcium and aluminium concentrations were significantly higher in patients (p < 0.01), however, vanadium and arsenic levels were significantly lower in patients (p < 0.01). In concentrations of copper and zinc there was no significant difference between patients and controls. There were no significant correlations between hair concentrations of trace elements and nerve conduction velocities except between calcium concentration and sensory nerve conduction velocity. These facts suggest that nerve conduction velocities are not influenced by changes of trace element concentrations in hair in patients with chronic renal failure undergoing haemodialysis.

  2. Dr. Henry Head and lessons learned from his self-experiment on radial nerve transection.

    PubMed

    Lenfest, Stephen M; Vaduva-Nemes, Andreea; Okun, Michael S

    2011-02-01

    In this paper the authors aim to review Dr. Henry Head's famous and dramatic nerve sectioning experiment. They discuss the implications of his experimental approach as well as the effect his experiment had on the field of neurology. Henry Head was a prominent British neurologist who contributed greatly to the understanding of the sensory examination through an experiment in which he had his own radial nerve transected. Head carefully documented the sensory changes following the sectioning. He hypothesized the existence of two separate sensory systems: protopathic and epicritic. Head was one of the first scientists to speculate on sensory dissociation, and his writings generated both enthusiasm and controversy. Although the ethical issue of self-experimentation was raised by his bold experiment and many aspects of his investigations and conclusions have been criticized, Head undoubtedly contributed important clinical lessons to neurology. Arguably, Henry Head's greatest contribution was the realization that the neurological portion of the sensory examination was anything but straightforward.

  3. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  4. IRRITANT AGONISTS AND AIR POLLUTANTS: NEUROLOGICALLY MEDIATED RESPIRATORY AND CARDIOVASCULAR RESPONSES

    EPA Science Inventory

    Situated within and just beneath the airway epithelium is a dense plexus of sensory nerves. These sensory (afferent) nerves serve as sentinels at the gateway between the organism and the inhaled air. This airway mucosal nerve plexus is present from the nose to the most peripheral...

  5. Sensory testing in leprosy: comparison of ballpoint pen and monofilaments.

    PubMed

    Koelewijn, L F; Meima, A; Broekhuis, S M; Richardus, J H; Mitchell, P D; Benbow, C; Saunderson, P R

    2003-03-01

    The 10 g monofilament has been replaced by the ballpoint pen in routine sensory testing of nerves in leprosy control in Ethiopia. Results of sensory testing between the ballpoint pen and different monofilaments on hands and feet were compared. Ballpoint pen underdiagnosis of loss of sensation was defined to occur when the pen was felt and the monofilament was not. Differences were evaluated both for individual test points (test point level) and for the test points of extremities collectively (extremity level). An extremity (either a hand or a foot) was defined as having sensory nerve function impairment (SNFI) if a supplying nerve had SNFI, which was the case when sensation was absent in two or more test points in the area supplied by that nerve. At test point level, the percentages with ballpoint pen underdiagnosis relative to the 2, 10, 20 and 50 g monofilaments were 40, 21, 9 and 7%, respectively, in the hands, and 47, 30, 15 and 7% in the feet. Ballpoint pen underdiagnosis percentages of SNFI at extremity level were 32, 18, 8 and 9% in the hands, and 37, 26, 14 and 6% in the feet. The risk of ballpoint pen underdiagnosis appears to be higher in extremities without visible damage. In conclusion, substantial levels of underdiagnosis of sensory loss with the ballpoint pen were observed. However, the consequences for the prognosis of treatment with corticosteroids in patients with the more subtle sensation loss noted here need to be established. Development and testing of guidelines is a prerequisite for the use of the ballpoint pen.

  6. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium

    PubMed Central

    Weidler, C; Holzer, C; Harbuz, M; Hofbauer, R; Angele, P; Scholmerich, J; Straub, R

    2005-01-01

    Objective: To investigate the correlation between density of nerve fibres and the presence of BDNF+ cells. Methods: Densities of nerve fibres and BDNF+ cells were detected by quantitative immunohistochemistry in fresh synovial tissue from 52 patients with RA, 59 with OA, and 26 controls (Co). BDNF was also detected by in situ hybridisation. Results: Sympathetic nerve fibre density was similar in Co and OA but markedly reduced in RA (p = 0.002), whereas density of substance P positive (SP+) sensory nerve fibres was lower in OA than in Co and RA (p = 0.002). The ratio of sympathetic/SP+ sensory nerve fibre density was highest in OA and Co, followed by RA. The correlation between density of sympathetic nerve fibres and SP+ sensory nerve fibres in OA (R = 0.425, p = 0.001) was strongly positive, had a positive trend in Co (R = 0.243, NS), but was negative in RA (R = –0.292, p = 0.040). In RA and OA tissue the density of BDNF+ cells was high in sublining areas but markedly lower in Co (p = 0.001). BDNF+ cell density correlated positively with the ratio of sympathetic/SP+ sensory nerve fibre density in Co (R = 0.433, p = 0.045) and in OA (R = 0.613, p = 0.015), but not in RA (R = 0.101, NS). Immunohistochemical double staining demonstrated that some macrophages and fibroblasts were positive for BDNF. Conclusions: The correlation of density of SP+ sensory with sympathetic nerve fibres was positive in Co and OA but negative in RA. BDNF may have a stimulatory role on growth of sympathetic in relation to SP+ sensory nerve fibres in Co and OA, but not in RA. PMID:15608299

  7. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments.

  8. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  9. Is distal motor and/or sensory demyelination a distinctive feature of anti-MAG neuropathy?

    PubMed

    Lozeron, Pierre; Ribrag, Vincent; Adams, David; Brisset, Marion; Vignon, Marguerite; Baron, Marine; Malphettes, Marion; Theaudin, Marie; Arnulf, Bertrand; Kubis, Nathalie

    2016-09-01

    To report the frequency of the different patterns of sensory and motor electrophysiological demyelination distribution in patients with anti-MAG neuropathy in comparison with patients with IgM neuropathy without MAG reactivity (IgM-NP). Thirty-five anti-MAG patients at early disease stage (20.1 months) were compared to 23 patients with IgM-NP; 21 CIDP patients and 13 patients with CMT1a neuropathy were used as gold standard neuropathies with multifocal and homogeneous demyelination, respectively. In all groups, standard motor and sensory electrophysiological parameters, terminal latency index and modified F ratio were investigated. Motor electrophysiological demyelination was divided in four profiles: distal, homogeneous, proximal, and proximo-distal. Distal sensory and sensorimotor demyelination were evaluated. Anti-MAG neuropathy is a demyelinating neuropathy in 91 % of cases. In the upper limbs, reduced TLI is more frequent in anti-MAG neuropathy, compared to IgM-NP. But, predominant distal demyelination of the median nerve is encountered in only 43 % of anti-MAG neuropathy and is also common in IgM-NP (35 %). Homogeneous demyelination was the second most frequent pattern (31 %). Concordance of electrophysiological profiles across motor nerves trunks is low and median nerve is the main site of distal motor conduction slowing. Reduced sensory conduction velocities occurs in 14 % of patients without evidence of predominant distal slowing. Simultaneous sensory and motor distal slowing was more common in the median nerve of anti-MAG neuropathy than IgM-NP. Electrophysiological distal motor demyelination and sensory demyelination are not a distinctive feature of anti-MAG reactivity. In anti-MAG neuropathy it is mainly found in the median nerve suggesting a frequent nerve compression at wrist.

  10. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  11. Regional anesthesia in difficult airway: The quest for a solution continues

    PubMed Central

    Khetarpal, Ranjana; Chatrath, Veena; Dhawan, Akshay; Attri, Joginder Pal

    2016-01-01

    Difficult airway, a scenario with potentially life threatening outcome, is routinely encountered by an anesthesiologist leaving him with the dilemma of whether to use regional anesthesia (RA) or general anesthesia. Our study aims to look into this problem. The literature search was performed in the Google, PubMed, and Medscape using key words “regional anesthesia, difficult airway, pregnancy, ventilation, intubation, epidural anesthesia, nerve blocks.” More than 38 free full articles and books published from the year 1987 to 2014 were retrieved and studied. At first sight, RA may appear to offer an ideal solution as it helps to avoid the problem of difficult airway. However, the possibility of a total spinal block, failed or incomplete RA, local anesthetic toxicity or unforeseen surgical complication may make it imperative that the airway is secured. The correct decision can only be made by the anesthetist when all the relevant clinical information is taken into account. It is also important to ensure that before considering RA in a patient of difficult airway, an anesthesiologist must have a preformulated strategy for intubation. PMID:27212743

  12. The non-neuronal cholinergic system as novel drug target in the airways.

    PubMed

    Pieper, Michael Paul

    2012-11-27

    The parasympathetic nervous system is a key regulator of the human organism involved in the pathophysiology of various disorders through cholinergic mechanisms. In the lungs, acetylcholine (ACh) released by vagal nerve endings stimulates muscarinic receptors thereby increasing airway smooth muscle tone. Contraction of airway smooth muscle cells leads to increased respiratory resistance and dyspnea. An additional branch of the cholinergic system is the non-neuronal cholinergic system expressed in nearly all cell types present in the airways. Activation of this system may contribute to an increased cholinergic tone in the lungs, inducing pathophysiological processes like inflammation, remodeling, mucus hypersecretion and chronic cough. Selective muscarinic receptor antagonists specifically inhibit acetylcholine at the receptor inducing bronchodilation in patients with obstructive airway diseases. This paper reviews preclinical pharmacological research activities on anticholinergics including experimental models of asthma and chronic obstructive pulmonary disease, COPD. It discloses various options to follow up the non-neuronal cholinergic system as a novel drug target for the treatment of key aspects of obstructive airway diseases, in particular those of a chronic nature.

  13. Regional anesthesia in difficult airway: The quest for a solution continues.

    PubMed

    Khetarpal, Ranjana; Chatrath, Veena; Dhawan, Akshay; Attri, Joginder Pal

    2016-01-01

    Difficult airway, a scenario with potentially life threatening outcome, is routinely encountered by an anesthesiologist leaving him with the dilemma of whether to use regional anesthesia (RA) or general anesthesia. Our study aims to look into this problem. The literature search was performed in the Google, PubMed, and Medscape using key words "regional anesthesia, difficult airway, pregnancy, ventilation, intubation, epidural anesthesia, nerve blocks." More than 38 free full articles and books published from the year 1987 to 2014 were retrieved and studied. At first sight, RA may appear to offer an ideal solution as it helps to avoid the problem of difficult airway. However, the possibility of a total spinal block, failed or incomplete RA, local anesthetic toxicity or unforeseen surgical complication may make it imperative that the airway is secured. The correct decision can only be made by the anesthetist when all the relevant clinical information is taken into account. It is also important to ensure that before considering RA in a patient of difficult airway, an anesthesiologist must have a preformulated strategy for intubation.

  14. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  15. An animal model of peripheral nerve regeneration after the application of a collagen-polyvinyl alcohol scaffold and mesenchymal stem cells.

    PubMed

    Marinescu, Silviu Adrian; Zărnescu, Otilia; Mihai, Ioana Ruxandra; Giuglea, Carmen; Sinescu, Ruxandra Diana

    2014-01-01

    Extensive nerve injuries often leading to nerve gaps can benefit, besides the gold standard represented by autologous nerve grafts, by the inciting field of tissue engineering. To enhance the role of biomaterials in nerve regeneration, the nerve conduits are associated with Schwann or Schwann-like cells. In this study, we evaluated rat sciatic nerve regeneration, by using a biodegradable nerve guide composed of Collagen (COL) and Polyvinyl Alcohol (PVA), associated with mesenchymal stem cells (MSC). After the exposure of the rat sciatic nerve, a nerve gap was created by excising 1 cm of the nerve. Three experimental groups were used for nerve gap bridging: autografts, nerve conduits filled with medium culture and nerve conduits filled with MSC. The methods of sensory and motor assessment consisted of the functional evaluation of sciatic nerve recovery - toe-spread, pinprick tests and gastrocnemius muscle index (GMI). The histological and immunocytochemical analysis of the probes that were harvested from the repair site was performed at 12 weeks. Successful nerve regeneration was noted in all three groups at the end of the 12th week. The functional and immunocytochemical results suggested that COL-PVA tubes supported with mesenchymal stem cells could be considered similar to autologous nerve grafts in peripheral nerve regeneration, without the drawbacks of the last ones. The functional results were better for the autografts and the ultrastructural data were better for the nerve conduits, but there were not noticed any statistical differences.

  16. Skin biopsy and quantitative sensory testing do not predict response to lidocaine patch in painful neuropathies.

    PubMed

    Herrmann, David N; Pannoni, Valerie; Barbano, Richard L; Pennella-Vaughan, Janet; Dworkin, Robert H

    2006-01-01

    Predictors of response to neuropathic pain treatment in patients with painful distal sensory neuropathies are lacking. The 5% lidocaine patch is believed to exert its effects on neuropathic pain via a local stabilizing effect on cutaneous sensory afferents. As such, it provides a model to assess whether the status of epidermal innervation as determined by skin biopsy or quantitative sensory testing (QST) of small- and large-diameter sensory afferents might serve as predictors of response to topical, locally active treatment. In this study we assessed associations between epidermal nerve fiber (ENF) densities, sensory nerve conduction studies (NCS), QST, and response to a 5% lidocaine patch in patients with painful distal sensory neuropathies. We observed no association between distal leg epidermal and subepidermal innervation and response to the lidocaine patch. Several patients with complete loss of distal leg ENF showed a response to the lidocaine patch. Similarly we observed no consistent association between treatment response and QST for vibration, cooling, warm, heat-pain, and cold-pain thresholds, or distal sensory NCS. Thus, distal-leg skin biopsy, QST, and sensory NCS cannot be used to identify patients with painful polyneuropathy likely to respond to a lidocaine patch in clinical practice. Further studies are required to clarify precisely the mechanism and site of action of the lidocaine patch in patients with peripheral neuropathic pain.

  17. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.

    PubMed

    Reid, Adam J; Shawcross, Susan G; Hamilton, Alex E; Wiberg, Mikael; Terenghi, Giorgio

    2009-10-01

    Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

  18. CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA.

    PubMed

    Suzuki, Keisuke; Katsuno, Masahisa; Banno, Haruhiko; Takeuchi, Yu; Atsuta, Naoki; Ito, Mizuki; Watanabe, Hirohisa; Yamashita, Fumitada; Hori, Norio; Nakamura, Tomohiko; Hirayama, Masaaki; Tanaka, Fumiaki; Sobue, Gen

    2008-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an adult-onset, lower motor neuron disease caused by an aberrant elongation of a CAG repeat in the androgen receptor (AR) gene. The main symptoms are weakness and atrophy of bulbar, facial and limb muscles, but sensory disturbances are frequently found in SBMA patients. Motor symptoms have been attributed to the accumulation of mutant AR in the nucleus of lower motor neurons, which is more profound in patients with a longer CAG repeat. We examined nerve conduction properties including F-waves in a total of 106 patients with genetically confirmed SBMA (mean age at data collection = 53.8 years; range = 31-75 years) and 85 control subjects. Motor conduction velocities (MCV), compound muscle action potentials (CMAP), sensory conduction velocities (SCV) and sensory nerve action potentials (SNAP) were significantly decreased in all nerves examined in the SBMA patients compared with that in the normal controls, indicating that axonal degeneration is the primary process in both motor and sensory nerves. More profound abnormalities were observed in the nerves of the upper limbs than in those of the lower limbs. F-waves in the median nerve were absent in 30 of 106 cases (28.3%), but no cases of absent F-waves were observed in the tibial nerve. From an analysis of the relationship between CMAPs and SNAPs, patients were identified with different electrophysiological phenotypes: motor-dominant, sensory-dominant and non-dominant phenotypes. The CAG repeat size and the age at onset were significantly different among the patients with motor- and sensory-dominant phenotypes, indicating that a longer CAG repeat is more closely linked to the motor-dominant phenotype and a shorter CAG repeat is more closely linked to the sensory-dominant phenotype. Furthermore, when we classified the patients by CAG repeat size, CMAP values showed a tendency to be decreased in patients with a longer CAG repeat (> or =47), while SNAPs were significantly

  19. Immune trigeminal sensory neuropathy with esophageal achalasia: improvement with long-term immunotherapy.

    PubMed

    Figueroa, Juan J; Engelstad, Janean K; Spinner, Robert J; Dyck, P James B

    2011-02-01

    We report a patient who developed subacute facial-predominant numbness and anhidrosis, oral incoordination, and esophageal achalasia with resultant cachexia. Great auricular nerve biopsy showed extensive epineurial perivascular inflammatory infiltrates. Sensation, sweating, and swallowing improved with pulse intravenous methylprednisolone given over 5 years. We suggest that the patient's deficits, including achalasia, were due to an immune-mediated sensory and autonomic neuropathy and that, in such cases, pathologic studies of the great auricular nerve may be diagnostically informative.

  20. Decompression of inferior alveolar nerve: case report.

    PubMed

    Marques, Tiago Miguel Santos; Gomes, Joana Marques

    2011-01-01

    Paresthesia as a result of mechanical trauma is one of the most frequent sensory disturbances of the inferior alveolar nerve. This case report describes surgical treatment for paresthesia caused by a compressive phenomenon within the mandibular canal. The cause of the compression, a broken instrument left in the patient's mouth during previous endodontic therapy, was identified during routine radiography and computed tomography. Once the foreign object was removed by surgery, the paresthesia resolved quickly. This case highlights the potential for an iatrogenic mechanical cause of paresthesia.

  1. Neurotoxicity of perineural vs intraneural-extrafascicular injection of liposomal bupivacaine in the porcine model of sciatic nerve block.

    PubMed

    Damjanovska, M; Cvetko, E; Hadzic, A; Seliskar, A; Plavec, T; Mis, K; Vuckovic Hasanbegovic, I; Stopar Pintaric, T

    2015-12-01

    Liposomal bupivacaine is a prolonged-release local anaesthetic, the neurotoxicity of which has not yet been determined. We used quantitative histomorphometric and immunohistochemical analyses to evaluate the neurotoxic effect of liposomal bupivacaine after perineural and intraneural (extrafascicular) injection of the sciatic nerve in pigs. In this double-blind prospective randomised trial, 4 ml liposomal bupivacaine 1.3% was injected either perineurally (n = 5) or intraneurally extrafascicularly (n = 5). Intraneural-extrafascicular injection of saline (n = 5) was used as a control. After emergence from anaesthesia, neurological examinations were conducted over two weeks. After harvesting the sciatic nerves, no changes in nerve fibre density or myelin width indicative of nerve injury were observed in any of the groups. Intraneural injections resulted in longer sensory blockade than perineural (p < 0.003) without persistent motor or sensory deficit. Sciatic nerve block with liposomal bupivacaine in pigs did not result in histological evidence of nerve injury.

  2. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Ayme