Science.gov

Sample records for airway smooth muscles

  1. Migration of Airway Smooth Muscle Cells

    PubMed Central

    Gerthoffer, William T.

    2008-01-01

    Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including β-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling. PMID:18094091

  2. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    PubMed Central

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  3. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  4. Cortex phellodendri Extract Relaxes Airway Smooth Muscle.

    PubMed

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K(+)- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K(+) was also blocked by nifedipine, a selective blocker of L-type Ca(2+) channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca(2+) channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  5. Airway smooth muscle in the pathophysiology and treatment of asthma

    PubMed Central

    Solway, Julian

    2013-01-01

    Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma. PMID:23305987

  6. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    PubMed

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  7. A theoretical analysis of the effect of airway smooth muscle load on airway narrowing.

    PubMed

    Macklem, P T

    1996-01-01

    We used published data for the elastic properties of a 2-mm outer-diameter canine bronchus and assumed values for the thickness of the wall components and lung parenchymal shear modulus to estimate the load on airway smooth muscle and its effect on airway narrowing. The following relationships were calculated: (1) luminal and smooth muscle radii of curvature and transmural pressure; (2) the isovolume, transmural pressures developed by the smooth muscle to narrow the lumen at distending pressures of 20, 10, 5, and 2 cm H2O; (3) the equilibrium tension developed by, and thus the load on, the airway smooth muscle as a function of smooth muscle length during isovolume bronchoconstriction. From these calculations a smooth muscle length-tension diagram was drawn allowing the interactions between submucosal thickening, peribronchial thickening, load, and smooth muscle contractility to be analyzed. The analysis indicates that: (1) the load on smooth muscle decreases by more than an order of magnitude between a distending pressure of 20 and 2 cm H2O; (2) increasing smooth muscle contractility has more effect at large rather than at small distending pressures; (3) peribronchial inflammation decreases both load and the slope of the relationship between peribronchial and pleural pressures. Decreases in load may be an important mechanism producing excessive bronchoconstriction in asthma. PMID:8542167

  8. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  9. Targeting the airway smooth muscle for asthma treatment.

    PubMed

    Camoretti-Mercado, Blanca

    2009-10-01

    Asthma is a complex respiratory disease whose incidence has increased worldwide in the last decade. Currently there is no cure for asthma. Although bronchodilator and anti-inflammatory medications are effective medicines in some asthmatic patients, it is clear that an unmet therapeutic need persists for a subpopulation of individuals with severe asthma. This chronic lung disease is characterized by airflow limitation, lung inflammation, and remodeling that includes increased airway smooth muscle (ASM) mass. In addition to its contractile properties, the ASM also contributes to the inflammatory process by producing active mediators, which modify the extracellular matrix composition and interact with inflammatory cells. These undesirable functions make interventions aimed at reducing ASM abundance an attractive strategy for novel asthma therapies. The following three mechanisms could limit the accumulation of smooth muscle: decreased cell proliferation, augmented cell apoptosis, and reduced cell migration into the smooth muscle layer. Inhibitors of the mevalonate pathway or statins hold promise for asthma treatment, because they exhibit anti-inflammatory, antimigratory, and antiproliferative effects in preclinical and clinical studies, and they can target the smooth muscle. This review will discuss current knowledge of ASM biology and identify gaps in the field to stimulate future investigations of the cellular mechanisms that control ASM overabundance in asthma. Targeting ASM has the potential to be an innovative venue of treatment for patients with asthma.

  10. Mechanisms of BDNF regulation in asthmatic airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-08-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by airway smooth muscle (ASM), enhances inflammation effects on airway contractility, supporting the idea that locally produced growth factors influence airway diseases such as asthma. We endeavored to dissect intrinsic mechanisms regulating endogenous, as well as inflammation (TNF-α)-induced BDNF secretion in ASM of nonasthmatic vs. asthmatic humans. We focused on specific Ca(2+) regulation- and inflammation-related signaling cascades and quantified BDNF secretion. We find that TNF-α enhances BDNF release by ASM cells, via several mechanisms relevant to asthma, including transient receptor potential channels TRPC3 and TRPC6 (but not TRPC1), ERK 1/2, PI3K, PLC, and PKC cascades, Rho kinase, and transcription factors cAMP response element binding protein and nuclear factor of activated T cells. Basal BDNF expression and secretion are elevated in asthmatic ASM and increase further with TNF-α exposure, involving many of these regulatory mechanisms. We conclude that airway BDNF secretion is regulated at multiple levels, providing a basis for autocrine effects of BDNF under conditions of inflammation and disease, with potential downstream influences on contractility and remodeling. PMID:27317689

  11. Platelet membranes induce airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2011-01-01

    The role of platelets in airway disease is poorly understood although they have been suggested to influence on proliferation of airway smooth muscle cells (ASMC). Platelets have been found localized in the airways in autopsy material from asthmatic patients and have been implicated in airway remodeling. The aim of the present study was to investigate the effects of various platelet fractions on proliferation of ASMC obtained from guinea pigs (GP-ASMC) and humans (H-ASMC). Proliferation of ASMC was measured by the MTS assay and the results confirmed by measurements of the DNA content. A key observation was that the platelet membrane preparations induced a significant increase in the proliferation of both GP-ASMC (129.9 ± 3.0 %) and H-ASMC (144.8 ± 12.2). However, neither supernatants from lysed or filtrated thrombin stimulated platelets induced ASMC proliferation to the same extent as the membrane preparation. We have previously shown that platelet-induced proliferation is dependent on 5-lipoxygenase (5-LOX) and reactive oxygen species (ROS) pathways. In the present work we established that platelet membrane-induced ASMC proliferation was reduced in the presence of the NADPH oxidase inhibitor DPI and the 5-LOX inhibitor AA-861. In conclusion, our results showed that platelet membranes significantly induced ASMC proliferation, demonstrating that the mitogenic effect of platelets and platelet membranes on ASMC is mainly due to membrane-associated factors. The effects of platelet membranes were evident on both GP-ASMC and H-ASMC and involved 5-LOX and ROS. These new findings are of importance in understanding the mechanisms contributing to airway remodeling and may contribute to the development of new pharmacological tools in the treatment of inflammatory airway diseases.

  12. Insulin NO-dependent action on airways smooth muscles.

    PubMed

    Papayianni, M; Gourgoulianis, K I; Molyvdas, P A

    2001-02-01

    In order to find out how insulin acts on airway smooth muscle and which mechanisms could be involved, we studied the effect of insulin on contraction induced, first, by KCl and, second, by Acetylcholine (Ach), before and after epithelium removal, and finally in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Tracheal smooth muscle strips from 24 rabbits, 6 being used for each experiment. Each muscle strip was pretreated with a solution containing either 80 mM KCl or 10(-5) Ach and increasing doses of insulin (range 10(-10)--10(-5) M) in the presence or absence of 10(-4) M L-NAME. A reference curve for contraction evoked by 80 mM KCl or 10(-5) M Ach in the presence or absence of 10(-4) M L-NAME was recorded each time before the pretreatment mentioned above. Insulin evoked a concentration-dependent inhibition of tracheal smooth muscle contraction, induced by 80 mM KCl or 10(-5) M Ach. After epithelium removal, insulin (10(-8), 10(-7) M) evoked statistically significant increases to the contractions induced by 10(-5) M Ach compared to the contractions induced by 10(-5) M Ach and insulin in the presence of epithelium (P < 0.05). These increases were higher when 10(-4) M l-NAME was added to the bath (P < 0.05). In conclusion, these results indicate that insulin inhibits tracheal smooth muscle contraction by acting on epithelium and releasing NO.

  13. Effect of antigenic exposure on airway smooth muscle remodeling in an equine model of chronic asthma.

    PubMed

    Leclere, Mathilde; Lavoie-Lamoureux, Anouk; Gélinas-Lymburner, Emilie; David, Florent; Martin, James G; Lavoie, Jean-Pierre

    2011-07-01

    Recent studies suggest that airway smooth muscle remodeling is an early event in asthma, but whether it remains a dynamic process late in the course of the disease is unknown. Moreover, little is known about the effects of an antigenic exposure on chronically established smooth muscle remodeling. We measured the effects of antigenic exposure on airway smooth muscle in the central and peripheral airways of horses with heaves, a naturally occurring airway disease that shares similarities with chronic asthma. Heaves-affected horses (n = 6) and age-matched control horses (n = 5) were kept on pasture before being exposed to indoor antigens for 30 days to induce airway inflammation and bronchoconstriction. Peripheral lung and endobronchial biopsies were collected before and after antigenic exposure by thoracoscopy and bronchoscopy, respectively. Immunohistochemistry and enzymatic labeling were used for morphometric analyses of airway smooth muscle mass and proliferative and apoptotic myocytes. In the peripheral airways, heaves-affected horses had twice as much smooth muscle as control horses. Remodeling was associated with smooth muscle hyperplasia and in situ proliferation, without reduced apoptosis. Further antigenic exposure had no effect on the morphometric data. In central airways, proliferating myocytes were increased compared with control horses only after antigenic exposure. Peripheral airway smooth muscle mass is stable in chronically affected animals subjected to antigenic exposure. This increased mass is maintained in a dynamic equilibrium by an elevated cellular turnover, suggesting that targeting smooth muscle proliferation could be effective at decreasing chronic remodeling.

  14. Airway smooth muscle and bronchospasm: fluctuating, fluidizing, freezing

    PubMed Central

    Krishnan, Ramaswamy; Trepat, Xavier; Nguyen, Trang T. B.; Lenormand, Guillaume; Oliver, Madavi; Fredberg, Jeffrey J.

    2008-01-01

    We review here four recent findings that have altered in a fundamental way our understanding of airways smooth muscle (ASM), its dynamic responses to physiological loading, and their dominant mechanical role in bronchospasm. These findings highlight ASM remodeling processes that are innately out-of-equilibrium and dynamic, and bring to the forefront a striking intersection between topics in condensed matter physics and ASM cytoskeletal biology. By doing so, they place in a new light the role of enhanced ASM mass in airway hyper-responsiveness as well as in the failure of a deep inspiration to relax the asthmatic airway. These findings have established that (i) ASM length is equilibrated dynamically, not statically; (ii) ASM dynamics closely resemble physical features exhibited by so-called soft glassy materials; (iii) static force-length relationships fail to describe dynamically contracted ASM states; (iv) stretch fluidizes the ASM cytoskeleton. Taken together, these observations suggest that at the origin of the bronchodilatory effect of a deep inspiration, and its failure in asthma, may lie glassy dynamics of the ASM cell. PMID:18514592

  15. Transcriptional regulation of cytokine function in airway smooth muscle cells

    PubMed Central

    Clarke, Deborah; Damera, Gautam; Sukkar, Maria B.; Tliba, Omar

    2009-01-01

    The immuno-modulatory properties of airway smooth muscle have become of increasing importance in our understanding of the mechanisms underlying chronic inflammation and structural remodeling of the airway wall in asthma and chronic obstructive pulmonary disease (COPD). ASM cells respond to many cytokines, growth factors and lipid mediators to produce a wide array of immuno-modulatory molecules which may in turn orchestrate and perpetuate the disease process in asthma and COPD. Despite numerous studies of the cellular effects of cytokines on cultured ASM, few have identified intracellular signaling pathways by which cytokines modulate or induce these cellular responses. In this review we provide an overview of the transcriptional mechanisms as well as intracellular signaling pathways regulating cytokine functions in ASM cells. The recent discovery of toll-like receptors in ASM cells represents a significant development in our understanding of the immuno-modulatory capabilities of ASM cells. Thus, we also review emerging evidence of the inflammatory response to toll-like receptor activation in ASM cells. PMID:19393330

  16. Structural and functional changes in the airway smooth muscle of asthmatic subjects.

    PubMed

    Seow, C Y; Schellenberg, R R; Paré, P D

    1998-11-01

    It has been recognized since the early 1920s that the amount of smooth muscle in asthmatic subjects' airways is markedly increased. More recent studies have confirmed that in fatal asthma there is a significant increase in the thickness of airway smooth muscle. For subjects who have had asthma and who died for other reasons or had a lobectomy, the increase in muscle layer thickness is less striking. An increase in smooth muscle mass could have a dual effect on airway narrowing: one due to the thickening of airway wall, the other due to a concomitant increase in force generation. However, it is not known whether the increased muscle mass, due either to hypertrophy or hyperplasia, is accompanied by an increase in force. Proliferation of smooth muscle cells often produces noncontractile cells in vitro. Comparison of force generation by muscle preparations from asthmatic and control airways shows conflicting results, with some studies demonstrating an increase in force in asthmatic muscle preparations and others showing no increase. The discrepancy could be due to a failure to take into account the length-tension relationship of the muscle preparations in some studies. No force velocity data are available for human airway smooth muscle. However, there is some evidence for an increased amount of shortening in airway smooth muscle preparations from patients with asthma. This could be due to an increase in force generation and/or a decrease in tissue elastance in asthmatic airways. Muscle contractility and tissue elastance are in turn influenced by cytokines, matrix-degrading enzymes, and other inflammatory mediators present in the airways of asthmatic subjects. Data from in vitro studies of a canine "asthma model" indicate an increase in both shortening velocity and amount of shortening compared with littermate control animals. An increase in the compliance of the parallel elastic element of the sensitized airway preparation could account for the mechanical alterations

  17. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  18. Cooling-induced contraction in ovine airways smooth muscle.

    PubMed

    Mustafa, S M; Pilcher, C W; Williams, K I

    1999-02-01

    The mechanism of cold-induced bronchoconstriction is poorly understood. This prompted the present study whose aim was to determine the step-wise direct effect of cooling on smooth muscle of isolated ovine airways and analyse the role of calcium in the mechanisms involved. Isolated tracheal strips and bronchial segments were suspended in organ baths containing Krebs' solution for isometric tension recording. Tissue responses during stepwise cooling from 37 to 5 degrees C were examined. Cooling induced a rapid and reproducible contraction proportional to cooling temperature in ovine tracheal and bronchial preparations which was epithelium-independent. On readjustment to 37 degrees C the tone returned rapidly to basal level. Maximum contraction was achieved at a temperature of 5 degrees C for trachea and 15 degrees C for bronchiole. Cooling-induced contractions (CIC) was resistant to tetrodotoxin (1; 10 micrometer), and not affected by the muscarinic antagonist atropine (1 micrometer) or the alpha-adrenergic antagonist phentolamine (1 micrometer), or the histamine H1-antagonist mepyramine (1 micrometer) or indomethacin (1 micrometer). Ca2+ antagonists (nifedipine and verapamil) and Mn2+ raised tracheal but not bronchiolar tone and augmented CIC. Incubation in Ca2+-free, EGTA-containing Krebs' solution for 5 min had no effect on CIC, although it significantly reduced KCl-induced contraction by up to 75%. Cooling inhibited Ca2+ influx measured using 45Ca2+ uptake. Caffeine (100 micrometer) significantly inhibited CIC. The results show that cooling-induced contractions do not appear to involve activation of nerve endings, all surface reception systems or Ca2+ influx. However, CIC is mainly dependent on release of intracellular Ca2+. PMID:10072702

  19. Functional significance of increased airway smooth muscle in asthma and COPD.

    PubMed

    Lambert, R K; Wiggs, B R; Kuwano, K; Hogg, J C; Paré, P D

    1993-06-01

    Using a computational model, we investigated the effect of the morphologically determined increased airway smooth muscle mass, adventitial mass, and submucosal mass observed in patients with asthma and chronic obstructive pulmonary disease (COPD) on the increase in airway resistance in response to a bronchoconstricting stimulus. The computational model of Wiggs et al. (J. Appl. Physiol. 69: 849-860, 1990) was modified in such a way that smooth muscle shortening was limited by the maximal stress that the muscle could develop at the constricted length. Increased adventitial thickness was found to increase constriction by reducing parenchymal interdependence. Increased submucosal thickness led to greater luminal occlusion for any degree of smooth muscle shortening. Increased muscle thickness allowed greater smooth muscle shortening against the elastic loads provided by parenchymal interdependence and airway wall stiffness. We found that for constant airway mechanics, as reflected by the passive area-pressure curves of the airways, the increased muscle mass is likely to be the most important abnormality responsible for the increased resistance observed in response to bronchoconstricting stimuli in asthma and COPD. For a given maximal muscle stress, greater muscle thickness allows the development of greater tension and thus more constriction of the lumen. PMID:8365980

  20. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.

    PubMed

    Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R

    2009-10-01

    Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.

  1. Mechanical state of airway smooth muscle at very short lengths.

    PubMed

    Meiss, Richard A; Pidaparti, Ramana M

    2004-02-01

    Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment. During the vibration, peak muscle force fell exponentially with successive forced elongations. After the episode, the muscle either extended itself or exerted a force against the tension transducer, depending on external conditions. The magnitude of this effect was proportional to the prior muscle stiffness and the amplitude of the vibration, indicating a recoil of strained connective tissue elements no longer opposed by cross-bridge forces. This behavior suggests that mechanical behavior at short lengths is dominated by tissue forces within a tensegrity-like structure made up of connective tissue, other extracellular matrix components, and active contractile elements.

  2. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    PubMed

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  3. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle

    PubMed Central

    Robinson, Mac B.; Deshpande, Deepak A.; Chou, Jeffery; Cui, Wei; Smith, Shelly; Langefeld, Carl; Hastie, Annette T.; Bleecker, Eugene R.

    2015-01-01

    Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling. PMID:26001777

  4. Airway smooth muscle changes in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Belik, Jaques; Davidge, Sandra T; Zhang, Wei; Pan, Jingyi; Greer, John J

    2003-05-01

    In the fetal rat, nitrofen induces congenital diaphragmatic hernia (CDH) and pulmonary vascular remodeling similar to what is observed in the human condition. Airway hyperactivity is common in infants with CDH and attributed to the ventilator-induced airway damage. The purpose of this study was to test the hypothesis that airway smooth muscle mechanical properties are altered in the nitrofen-induced CDH rat model. Lungs from nitrofen-exposed fetuses with hernias (CDH) or intact diaphragm (nitrofen) and untreated fetuses (control) were studied on gestation d 21. The left intrapulmonary artery and bronchi were removed and mounted on a wire myograph, and lung expression, content, and immunolocalization of cyclooxygenases COX-1 and COX-2 were evaluated. Pulmonary artery muscle in the CDH group had significantly (p < 0.01) lower force generation compared with control and nitrofen groups. In contrast, the same generation bronchial smooth muscle of the CDH and nitrofen groups developed higher force compared with control. Whereas no differences were found in endothelium-dependent pulmonary vascular muscle tone, the epithelium-dependent airway muscle relaxation was significantly decreased (p < 0.01) in the CDH and nitrofen groups. The lung mRNA levels of COX-1 and COX-2 were increased in the CDH and nitrofen groups. COX-1 vascular and airway immunostaining, as well as COX-1 and COX-2 lung protein content, were increased in the CDH group. This is the first report of airway smooth muscle abnormalities in the nitrofen-induced fetal rat model of CDH. We speculate that congenital airway muscle changes may be present in the human form of this disease. PMID:12612200

  5. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness

    PubMed Central

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P.; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A.

    2016-01-01

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma. PMID:27088802

  6. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    PubMed Central

    Billington, Charlotte K; Penn, Raymond B

    2003-01-01

    Signaling through G protein-coupled receptors (GPCRs) mediates numerous airway smooth muscle (ASM) functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state. PMID:12648290

  7. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis

    PubMed Central

    1994-01-01

    Asthma is a disease of airway inflammation and hyperreactivity that is associated with a lymphocytic infiltrate in the bronchial submucosa. The interactions between infiltrating T lymphocytes with cellular and extracellular matrix components of the airway and the consequences of these interactions have not been defined. We demonstrate the constitutive expression of CD44 on human airway smooth muscle (ASM) cells in culture as well as in human bronchial tissue transplanted into severe combined immunodeficient mice. In contrast, basal levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression are minimal but are induced on ASM by inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha). Activated, but not resting T cells, adhere to cultured ASM; stimulation of the ASM with TNF-alpha enhanced this adhesion. Adhesion was partially blocked by monoclonal antibodies (mAb) specific for lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4) on T cells and ICAM-1 and VCAM-1 on ASM cells. The observed integrin-independent adhesion was mediated by CD44/hyaluronate interactions as it was inhibited by anti-CD44 mAb 5F12 and by hyaluronidase. Furthermore, the adhesion of activated T lymphocytes induced DNA synthesis in growth-arrested ASM cells. Thus, the interaction between T cells and ASM may provide insight into the mechanisms that induce bronchial inflammation and possibly ASM cell hyperplasia seen in asthma. PMID:7520473

  8. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required. PMID:20047256

  9. Reflex tracheal smooth muscle contraction and bronchial vasodilation evoked by airway cooling in dogs.

    PubMed

    Pisarri, T E; Giesbrecht, G G

    1997-05-01

    Cooling intrathoracic airways by filling the pulmonary circulation with cold blood alters pulmonary mechanoreceptor discharge. To determine whether this initiates reflex changes that could contribute to airway obstruction, we measured changes in tracheal smooth muscle tension and bronchial arterial flow evoked by cooling. In nine chloralose-anesthetized open-chest dogs, the right pulmonary artery was cannulated and perfused; the left lung, ventilated separately, provided gas exchange. With the right lung phasically ventilated, filling the right pulmonary circulation with 5 degrees C blood increased smooth muscle tension in an innervated upper tracheal segment by 23 +/- 6 (SE) g from a baseline of 75 g. Contraction began within 10 s of injection and was maximal at approximately 30s. The response was abolished by cervical vagotomy. Bronchial arterial flow increased from 8 +/- 1 to 13 +/- 2 ml/min, with little effect on arterial blood pressure. The time course was similar to that of the tracheal response. This response was greatly attenuated after cervical vagotomy. Blood at 20 degrees C also increased tracheal smooth muscle tension and bronchial flow, whereas 37 degrees C blood had little effect. The results suggested that alteration of airway mechanoreceptor discharge by cooling can initiate reflexes that contribute to airway obstruction. PMID:9134906

  10. Inhibition of Glycogen Synthase Kinase-3β Is Sufficient for Airway Smooth Muscle Hypertrophy*

    PubMed Central

    Deng, Huan; Dokshin, Gregoriy A.; Lei, Jing; Goldsmith, Adam M.; Bitar, Khalil N.; Fingar, Diane C.; Hershenson, Marc B.; Bentley, J. Kelley

    2008-01-01

    We examined the role of glycogen synthase kinase-3β (GSK-3β) inhibition in airway smooth muscle hypertrophy, a structural change found in patients with severe asthma. LiCl, SB216763, and specific small interfering RNA (siRNA) against GSK-3β, each of which inhibit GSK-3β activity or expression, increased human bronchial smooth muscle cell size, protein synthesis, and expression of the contractile proteins α-smooth muscle actin, myosin light chain kinase, smooth muscle myosin heavy chain, and SM22. Similar results were obtained following treatment of cells with cardiotrophin (CT)-1, a member of the interleukin-6 superfamily, and transforming growth factor (TGF)-β, a proasthmatic cytokine. GSK-3β inhibition increased mRNA expression of α-actin and transactivation of nuclear factors of activated T cells and serum response factor. siRNA against eukaryotic translation initiation factor 2Bε (eIF2Bε) attenuated LiCl- and SB216763-induced protein synthesis and expression of α-actin and SM22, indicating that eIF2B is required for GSK-3β-mediated airway smooth muscle hypertrophy. eIF2Bε siRNA also blocked CT-1- but not TGF-β-induced protein synthesis. Infection of human bronchial smooth muscle cells with pMSCV GSK-3β-A9, a retroviral vector encoding a constitutively active, nonphosphorylatable GSK-3β, blocked protein synthesis and α-actin expression induced by LiCl, SB216763, and CT-1 but not TGF-β. Finally, lungs from ovalbumin-sensitized and -challenged mice demonstrated increased α-actin and CT-1 mRNA expression, and airway myocytes isolated from ovalbumin-treated mice showed increased cell size and GSK-3β phosphorylation. These data suggest that inhibition of the GSK-3β/eIF2Bε translational control pathway contributes to airway smooth muscle hypertrophy in vitro and in vivo. On the other hand, TGF-β-induced hypertrophy does not depend on GSK-3β/eIF2B signaling. PMID:18252708

  11. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    PubMed

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.

  12. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    PubMed

    Zhang, Ting; Luo, Xiao-Jing; Sai, Wen-Bo; Yu, Meng-Fei; Li, Wen-Er; Ma, Yun-Fei; Chen, Weiwei; Zhai, Kui; Qin, Gangjian; Guo, Donglin; Zheng, Yun-Min; Wang, Yong-Xiao; Shen, Jin-Hua; Ji, Guangju; Liu, Qing-Hua

    2014-01-01

    Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 µM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  13. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  14. Airway responsiveness: role of inflammation, epithelium damage and smooth muscle tension.

    PubMed

    Gourgoulianis, K I; Domali, A; Molyvdas, P A

    1999-01-01

    The purpose of this study was the effect of epithelium damage on mechanical responses of airway smooth muscles under different resting tension. We performed acetylcholine (ACh) (10(-5) M)-induced contraction on tracheal strips from 30 rabbits in five groups (0.5, 1, 1.5, 2 and 2.5 g) before and after epithelium removal. At low resting tension (0.5-1.5 g), the epithelium removal decreased the ACh-induced contractions. At 2 g resting tension, the epithelium removal increased the ACh-induced contractions of airways with intact epithelium about 20%. At 2.5 g resting tension, the elevation of contraction is about 25% (P<0.01). Consequently, after epithelium loss, the resting tension determines the airway smooth muscles responsiveness. In asthma, mediators such as ACh act on already contracted inflammatory airways, which results in additional increase of contraction. In contrast, low resting tension, a condition that simulates normal tidal breathing, protects from bronchoconstriction even when the epithelium is damaged. PMID:10704081

  15. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling.

    PubMed

    Noble, Peter B; Pascoe, Chris D; Lan, Bo; Ito, Satoru; Kistemaker, Loes E M; Tatler, Amanda L; Pera, Tonio; Brook, Bindi S; Gosens, Reinoud; West, Adrian R

    2014-12-01

    Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.

  16. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood. PMID:25204635

  17. Development and maintenance of force and stiffness in airway smooth muscle.

    PubMed

    Lan, Bo; Norris, Brandon A; Liu, Jeffrey C-Y; Paré, Peter D; Seow, Chun Y; Deng, Linhong

    2015-03-01

    Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.

  18. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  19. Steroids and antihistamines synergize to inhibit rat's airway smooth muscle contractility.

    PubMed

    Liu, Shao-Cheng; Chu, Yueng-Hsiang; Kao, Chuan-Hsiang; Wu, Chi-Chung; Wang, Hsing-Won

    2015-06-01

    Both glucocorticoids and H1-antihistamines were widely used on patients with allergic rhinitis (AR) and obstructive airway diseases. However, their direct effects on airway smooth muscle were not fully explored. In this study, we tested the effectiveness of prednisolone (Kidsolone) and levocetirizine (Xyzal) on isolated rat trachea submersed in Kreb's solution in a muscle bath. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured. The following assessments of the drug were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine; (3) effect of the drug on electrical field stimulation (EFS) induced tracheal smooth muscle contractions. The result revealed sole use of Kidsolone or Xyzal elicited no significant effect or only a little relaxation response on tracheal tension after methacholine treatment. The tension was 90.5 ± 7.5 and 99.5 ± 0.8 % at 10(-4) M for Xyzal and 10(-5) M for Kidsolone, respectively. However, a dramatically spasmolytic effect was observed after co-administration of Kidsolone and Xyzal and the tension dropped to 67.5 ± 13.6 %, with statistical significance (p < 0.05). As for EFS-induced contractions, Kidsolone had no direct effect but Xyzal could inhibit it, with increasing basal tension. In conclusion, using glucocorticoids alone had no spasmolytic effect but they can be synergized with antihistamines to dramatically relax the trachea smooth muscle within minutes. Therefore, for AR patients with acute asthma attack, combined use of those two drugs is recommended. PMID:25115316

  20. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  1. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.

    PubMed

    Dudášová, A; Keir, S D; Parsons, M E; Molleman, A; Page, C P

    2013-06-01

    (-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders.

  2. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Zhang, Yi; Mizuta, Fumiko; Hoshijima, Hiroshi; Shiga, Toshiya; Masaki, Eiji; Emala, Charles W

    2015-11-01

    Obesity is one of the major risk factors for asthma. Previous studies have demonstrated that free fatty acid levels are elevated in the plasma of obese individuals. Medium- and long-chain free fatty acids act as endogenous ligands for the free fatty acid receptors FFAR1/GPR40 and FFAR4/GPR120, which couple to Gq proteins. We investigated whether FFAR1 and FFAR4 are expressed on airway smooth muscle and whether they activate Gq-coupled signaling and modulate airway smooth muscle tone. We detected the protein expression of FFAR1 and FFAR4 in freshly dissected native human and guinea pig airway smooth muscle and cultured human airway smooth muscle (HASM) cells by immunoblotting and immunohistochemistry. The long-chain free fatty acids (oleic acid and linoleic acid) and GW9508 (FFAR1/FFAR4 dual agonist) dose-dependently stimulated transient intracellular Ca(2+) concentration ([Ca(2+)]i) increases and inositol phosphate synthesis in HASM cells. Downregulation of FFAR1 or FFAR4 in HASM cells by small interfering RNA led to a significant inhibition of the long-chain free fatty acids-induced transient [Ca(2+)]i increases. Oleic acid, linoleic acid, or GW9508 stimulated stress fiber formation in HASM cells, potentiated acetylcholine-contracted guinea pig tracheal rings, and attenuated the relaxant effect of isoproterenol after an acetylcholine-induced contraction. In contrast, TUG-891 (FFAR4 agonist) did not induce the stress fiber formation or potentiate acetylcholine-induced contraction. These results suggest that FFAR1 is the functionally dominant free fatty acid receptor in both human and guinea pig airway smooth muscle. The free fatty acid sensors expressed on airway smooth muscle could be an important modulator of airway smooth muscle tone.

  3. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    PubMed

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.

  4. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells

    PubMed Central

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M.; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J.; Prakash, Y. S.

    2015-01-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. PMID:25724668

  5. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A.

    PubMed

    Townsend, Elizabeth A; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2012-11-15

    Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.

  6. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  7. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration.

    PubMed Central

    Skloot, G; Permutt, S; Togias, A

    1995-01-01

    We hypothesized that hyperresponsiveness in asthma is caused by an impairment in the ability of inspiration to stretch airway smooth muscle. If the hypothesis was correct, we reasoned that the sensitivity to inhaled methacholine in normal and asthmatic subjects should be the same if the challenge was carried out under conditions where deep inspirations were prohibited. 10 asthmatic and 10 normal subjects received increasing concentrations of inhaled methacholine under conditions where forced expirations from a normal end-tidal inspiration were performed. When no deep inspirations were allowed, the response to methacholine was similar in the normal and asthmatic subjects, compatible with the hypothesis we propose. Completely contrary to our expectations, however, was the marked responsivity to methacholine that remained in the normal subjects after deep breaths were initiated. 6 of the 10 normal subjects had > 20% reduction in forced expiratory volume in one second (FEV 1) at doses of methacholine < 8 mg/ml, whereas there was < 15% reduction with 75 mg/ml during routine challenge. The ability of normal subjects to develop asthmatic responses when the modulating effects of increases in lung volume was voluntarily suppressed suggests that an intrinsic impairment of the ability of inspiration to stretch airway smooth muscle is a major feature of asthma. PMID:7593627

  8. A Synthetic Chloride Channel Relaxes Airway Smooth Muscle of the Rat

    PubMed Central

    Yau, Kwok-hei; Mak, Judith Choi-wo; Leung, Susan Wai-sum; Yang, Dan; Vanhoutte, Paul M.

    2012-01-01

    Synthetic ion channels may have potential therapeutic applications, provided they possess appropriate biological activities. The present study was designed to examine the ability of small molecule-based synthetic Cl– channels to modulate airway smooth muscle responsiveness. Changes in isometric tension were measured in rat tracheal rings. Relaxations to the synthetic chloride channel SCC-1 were obtained during sustained contractions to KCl. The anion dependency of the effect of SCC-1 was evaluated by ion substitution experiments. The sensitivity to conventional Cl– transport inhibitors was also tested. SCC-1 caused concentration-dependent relaxations during sustained contractions to potassium chloride. This relaxing effect was dependent on the presence of extracellular Cl– and HCO3−. It was insensitive to conventional Cl– channels/transport inhibitors that blocked the cystic fibrosis transmembrane conductance regulator and calcium-activated Cl– channels. SCC-1 did not inhibit contractions induced by carbachol, endothelin-1, 5-hydroxytryptamine or the calcium ionophore A23187. SCC-1 relaxes airway smooth muscle during contractions evoked by depolarizing solutions. The Cl– conductance conferred by this synthetic compound is distinct from the endogenous transport systems for chloride anions. PMID:23049786

  9. Assays for in vitro monitoring of proliferation of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cells.

    PubMed

    Goncharova, Elena A; Lim, Poay; Goncharov, Dmitry A; Eszterhas, Andrew; Panettieri, Reynold A; Krymskaya, Vera P

    2006-01-01

    Vascular and airway remodeling, which are characterized by airway smooth muscle (ASM) and pulmonary arterial vascular smooth muscle (VSM) proliferation, contribute to the pathology of asthma, pulmonary hypertension, restenosis and atherosclerosis. To evaluate the proliferation of VSM and ASM cells in response to mitogens, we perform a [3H]thymidine incorporation assay. The proliferation protocol takes approximately 48 h and includes stimulating cells synchronized in G0/G1 phase of the cell cycle with agonists, labeling cells with [3H]thymidine and examining levels of [3H]thymidine incorporation by scintillation counting. Although using radiolabeled [3H]thymidine incorporation is a limitation, the greatest benefit of the assay is providing reliable and statistically significant data. PMID:17406550

  10. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    PubMed

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. PMID:26566264

  11. The effects of in utero vitamin D deficiency on airway smooth muscle mass and lung function.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Jones, Anya C; Gout, Alex; Gorman, Shelley; Hart, Prue H; Zosky, Graeme R

    2015-11-01

    We have previously demonstrated increased airway smooth muscle (ASM) mass and airway hyperresponsiveness in whole-life vitamin D-deficient female mice. In this study, we aimed to uncover the molecular mechanisms contributing to altered lung structure and function. RNA was extracted from lung tissue of whole-life vitamin D-deficient and -replete female mice, and gene expression patterns were profiled by RNA sequencing. The data showed that genes involved in embryonic organ development, pattern formation, branching morphogenesis, Wingless/Int signaling, and inflammation were differentially expressed in vitamin D-deficient mice. Network analysis suggested that differentially expressed genes were connected by the hubs matrix metallopeptidase 9; NF-κ light polypeptide gene enhancer in B cells inhibitor, α; epidermal growth factor receptor; and E1A binding protein p300. Given our findings that developmental pathways may be altered, we investigated if the timing of vitamin D exposure (in utero vs. postnatal) had an impact on lung health outcomes. Gene expression was measured in in utero or postnatal vitamin D-deficient mice, as well as whole-life vitamin D-deficient and -replete mice at 8 weeks of age. Baseline lung function, airway hyperresponsiveness, and airway inflammation were measured and lungs fixed for lung structure assessment using stereological methods and quantification of ASM mass. In utero vitamin D deficiency was sufficient to increase ASM mass and baseline airway resistance and alter lung structure. There were increased neutrophils but decreased lymphocytes in bronchoalveolar lavage. Expression of inflammatory molecules S100A9 and S100A8 was mainly increased in postnatal vitamin D-deficient mice. These observations suggest that in utero vitamin D deficiency can alter lung structure and function and increase inflammation, contributing to symptoms in chronic diseases, such as asthma.

  12. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  13. Ovalbumin sensitization of guinea pig at birth prevents the ontogenetic decrease in airway smooth muscle responsiveness

    PubMed Central

    Chitano, Pasquale; Wang, Lu; Degan, Simone; Worthington, Charles L.; Pozzato, Valeria; Hussaini, Syed H.; Turner, Wesley C.; Dorscheid, Delbert R.; Murphy, Thomas M.

    2014-01-01

    Abstract Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. We hypothesized that allergic sensitization, which causes ASM hyperresponsiveness and typically occurs early in life, prevents the ontogenetic loss of the ASM hyperresponsive phenotype. We therefore studied whether neonatal allergic sensitization, not followed by later allergen challenges, alters the ontogenesis of ASM properties. We neonatally sensitized guinea pigs to ovalbumin and studied them at 1 week, 3 weeks, and 3 months (adult). A Schultz‐Dale response in isolated tracheal rings confirmed sensitization. The occurrence of inflammation was evaluated in the blood and in the submucosa of large airways. We assessed ASM function in tracheal strips as ability to produce force and shortening. ASM content of vimentin was also studied. A Schultz‐Dale response was observed in all 3‐week or older sensitized animals. A mild inflammatory process was characterized by eosinophilia in the blood and in the airway submucosa. Early life sensitization had no effect on ASM force generation, but prevented the ontogenetic decline of shortening velocity and the increase in resistance to shortening. Vimentin increased with age in control but not in sensitized animals. Allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype. PMID:25501429

  14. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C; Pabelick, Christina M; Prakash, Y S

    2014-05-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  15. Studying airway smooth muscle in vivo with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Miller, Alyssa J.; Villiger, Martin; Holz, Jasmin; Szabari, Margit V.; Bouma, Brett E.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. We have developed novel techniques that we applied to Polarization Sensitive OCT (PS-OCT) in order to assess ASM, and validated our results with a substantial number of histological matches. In this work we employ our system in the study of ASM distributions in both asthmatic and non-asthmatic airways with data obtained in vivo from human volunteers. By isolating the ASM and performing volumetric analysis we obtain a variety of informative metrics such as ASM thickness and band width, and compare these quantities between subject types. Furthermore, we demonstrate that the degree of birefringence of the ASM can be associated with contractility, allowing us to estimate pressure exerted by ASM during contraction. We apply this technique to in vivo datasets from human volunteers as well.

  16. RANTES expression induced by Toll-like receptor 4 ligand in rat airway smooth muscle cells.

    PubMed

    Okayasu, Kaori; Tamaoka, Meiyo; Takayama, Satoshi; Miyazaki, Yasunari; Sumi, Yuki; Inase, Naohiko; Yoshizawa, Yasuyuki

    2010-01-01

    Airway smooth muscle cells (ASMCs) have been reported to express Toll-like receptors (TLRs) and take part in the pathogenesis of asthma exacerbation. Though TLRs were found to activate epidermal growth factor receptor (EGFR) in airway epithelial cells, little is known about the association of TLR ligands with EGFR signaling pathways in ASMCs. Using primary cultured ASMCs from Brown Norway rats, TLR4, eotaxin, and RANTES mRNA were examined by real-time quantitative RT-PCR after stimulation with the TLR4 ligand, lipopolysaccharides (LPS). The concentration of RANTES protein in culture supernatant was measured by ELISA. The effect of EGFR signaling inhibitors on RANTES expression was examined as well. Phosphorylation of EGFR after stimulation was examined by Western Blotting. Rat ASMCs expressed TLR4 and eotaxin, and LPS upregulated RANTES production. The EGFR tyrosine kinase inhibitor AG1478, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the matrix metalloproteinase (MMP) inhibitor GM6001 inhibited RANTES expression induced by LPS. LPS phosphorylated EGFR. TLR4 activation can induce RANTES expression via EGFR transactivation and PI3K/Akt pathway in rat ASMCs. MMP-induced EGFR proligand cleavage and ligand binding to EGFR seem to be involved in this pathway. These findings may be critical in the pathogenesis of asthma exacerbation by airway infection. PMID:23896774

  17. Cholinergic neuromodulation by prostaglandin D2 in canine airway smooth muscle.

    PubMed

    Tamaoki, J; Sekizawa, K; Graf, P D; Nadel, J A

    1987-10-01

    To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.

  18. Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    PubMed Central

    Morris, G. E.; Bridge, J. C.; Eltboli, O. M. I.; Lewis, M. P.; Knox, A. J.; Aylott, J. W.; Brightling, C. E.; Ghaemmaghami, A. M.

    2014-01-01

    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment. PMID:24793171

  19. Effect of different bronchodilators on airway smooth muscle responsiveness to contractile agents.

    PubMed

    Gustafsson, B; Persson, C G

    1991-05-01

    "Functional antagonism" is often used to describe the general relaxant effect of beta 2 agonists and xanthines and their ability to protect the airways against bronchoconstrictor stimuli. This study in guinea pig isolated trachea addresses the question of whether the capacity of these drugs to protect against constrictor stimuli is related to smooth muscle relaxation. Three antimuscarinic drugs were also examined to determine whether antagonism of mediators other than muscarinic agonists might contribute to bronchodilatation by these antimuscarinic drugs. Terbutaline (1.1 x 10(-7), 2.2 x 10(-7) M), theophylline (2.2 x 10(-4), 4.4 x 10(-4) M), and enprofylline (5.2 x 10(-5), 1.0 x 10(-4) M) relaxed the tracheal tension that remained after indomethacin treatment. They did not, however, alter the carbachol concentration-response curve significantly. In addition, neither theophylline (2.2 x 10(-4) M) nor terbutaline (1.1 x 10(-7) M) altered histamine induced contraction. Atropine sulphate, glycopyrrolate, and ipratropium bromide had EC50 values of 10(-9) - 10(-8) M for relaxation of carbachol induced contractions, whereas concentrations of 10(-6) - 10(-3) M or greater were required to relax contractions induced by allergen and nine other non-muscarinic mediators. It is suggested that bronchodilatation by antimuscarinic drugs in vivo is due to inhibition of acetylcholine induced bronchoconstriction alone and that beta 2 agonists and xanthines have poor ability to protect airway smooth muscle against constrictor stimuli. Hence mechanisms other than bronchodilatation and "functional antagonism" should be considered to explain the protection against constrictor stimuli in asthma seen with beta 2 agonists and xanthines. PMID:2068693

  20. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  1. Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma

    PubMed Central

    Matsumoto, Hisako; Moir, Lyn M; Oliver, Brian G G; Burgess, Janette K; Roth, Michael; Black, Judith L; McParland, Brent E

    2007-01-01

    Backgrounds Exaggerated bronchial constriction is the most significant and life threatening response of patients with asthma to inhaled stimuli. However, few studies have investigated the contractility of airway smooth muscle (ASM) from these patients. The purpose of this study was to establish a method to measure contraction of ASM cells by embedding them into a collagen gel, and to compare the contraction between subjects with and without asthma. Methods Gel contraction to histamine was examined in floating gels containing cultured ASM cells from subjects with and without asthma following overnight incubation while unattached (method 1) or attached (method 2) to casting plates. Smooth muscle myosin light chain kinase protein levels were also examined. Results Collagen gels containing ASM cells reduced in size when stimulated with histamine in a concentration‐dependent manner and reached a maximum at a mean (SE) of 15.7 (1.2) min. This gel contraction was decreased by inhibitors for phospholipase C (U73122), myosin light chain kinase (ML‐7) and Rho kinase (Y27632). When comparing the two patient groups, the maximal decreased area of gels containing ASM cells from patients with asthma was 19 (2)% (n = 8) using method 1 and 22 (3)% (n = 6) using method 2, both of which were greater than that of cells from patients without asthma: 13 (2)% (n = 9, p = 0.05) and 10 (4)% (n = 5, p = 0.024), respectively. Smooth muscle myosin light chain kinase levels were not different between the two groups. Conclusion The increased contraction of asthmatic ASM cells may be responsible for exaggerated bronchial constriction in asthma. PMID:17412779

  2. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  3. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  4. Single-Cell Analysis of Mast Cell Degranulation Induced by Airway Smooth Muscle-Secreted Chemokines

    PubMed Central

    Manning, Benjamin M.; Meyer, Audrey F.; Gruba, Sarah M.; Haynes, Christy L.

    2015-01-01

    Background Asthma is a chronic inflammatory disease characterized by narrowed airways, bronchial hyper-responsiveness, mucus hyper-secretion, and airway remodeling. Mast cell (MC) infiltration into airway smooth muscle (ASM) is a defining feature of asthma, and ASM regulates the inflammatory response by secreting chemokines, including CXCL10 and CCL5. Single cell analysis offers a unique approach to study specific cellular signaling interactions within large and complex signaling networks such as the inflammatory microenvironment in asthma. Methods Carbon fiber microelectrode amperometry was used to study the effects of ASM–secreted chemokines on mouse peritoneal MC degranulation. Results MC degranulation in response to CXCL10 and CCL5 was monitored at the single cell level. Relative to IgE-mediated degranulation, CXCL10- and CCL5-stimulated MCs released a decreased amount of serotonin per granule with fewer release events per cell. Decreased serotonin released per granule was correlated with increased spike half-width and rise-time values. Conclusions MCs are directly activated with ASM-associated chemokines. CXCL10 and CCL5 induce less robust MC degranulation compared to IgE- and A23187-stimulation. The kinetics of MC degranulation are signaling pathway-dependent, suggesting a biophysical mechanism of regulated degranulation that incorporates control over granule trafficking, transport, and docking machinery. General Significance The biophysical mechanisms, including variations in number of exocytotic release events, serotonin released per granule, and the membrane kinetics of exocytosis that underlie MC degranulation in response to CXCL10 and CCL5 were characterized at the single cell level. These findings clarify the function of ASM-derived chemokines as instigators of MC degranulation relative to classical mechanisms of MC stimulation. PMID:25986989

  5. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    PubMed

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  6. GM-CSF production from human airway smooth muscle cells is potentiated by human serum.

    PubMed Central

    Sukkar, M B; Hughes, J M; Johnson, P R; Armour, C L

    2000-01-01

    Recent evidence suggests that airway smooth muscle cells (ASMC) actively participate in the airway inflammatory process in asthma. Interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1) allergic asthmatic serum (AAS) modulates ASMC mediator release in response to IL-1beta and TNF-alpha, and (2) IL-1beta/TNF-alpha prime ASMC to release mediators in response to AAS. IL-5 and GM-CSF were quantified by ELISA in culture supernatants of; (1) ASMC pre-incubated with either AAS, nonallergic non-asthmatic serum (NAS) or Monomed (a serum substitute) and subsequently stimulated with IL-1beta and TNF-alpha and (2) ASMC stimulated with IL-1beta/TNF-alpha and subsequently exposed to either AAS, NAS or Monomed. IL-1beta and TNF-alpha induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or Monomed. IL-1beta and TNF-alpha, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL-1beta/TNF-alpha and serum exposure (AAS or NAS) was significantly greater than that following IL-1beta/TNF-alpha and Monomed exposure or IL-1beta/TNF-alpha exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage. PMID:11132773

  7. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  8. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ.

    PubMed

    Brown, Amy; Danielsson, Jennifer; Townsend, Elizabeth A; Zhang, Yi; Perez-Zoghbi, Jose F; Emala, Charles W; Gallos, George

    2016-04-15

    Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction.

  9. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD.

    PubMed

    O'Leary, Lawrence; Sevinç, Kenan; Papazoglou, Ilektra M; Tildy, Bernadett; Detillieux, Karen; Halayko, Andrew J; Chung, Kian Fan; Perry, Mark M

    2016-05-01

    Chronic obstructive pulmonary disease (COPD) is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease, in part caused by the aberrant function of airway smooth muscle (ASM) cells under the regulation of transforming growth factor (TGF)-β. miRNA are short, noncoding gene transcripts involved in the negative regulation of specific target genes, through their interactions with mRNA. Previous studies have proposed that mRNA-145 (miR-145) may interact with SMAD3, an important downstream signalling molecule of the TGF-β pathway. TGF-β was used to stimulate primary human ASM cells isolated from healthy nonsmokers, healthy smokers and COPD patients. This resulted in a TGF-β-dependent increase in CXCL8 and IL-6 release, most notably in the cells from COPD patients. TGF-β stimulation increased SMAD3 expression, only in cells from COPD patients, with a concurrent increased miR-145 expression. Regulation of miR-145 was found to be negatively controlled by pathways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent, overexpression of miR-145 (using synthetic mimics) in ASM cells from patients with COPD suppressed IL-6 and CXCL8 release, to levels comparable to the nonsmoker controls. Therefore, this study suggests that miR-145 negatively regulates pro-inflammatory cytokine release from ASM cells in COPD by targeting SMAD3. PMID:27060571

  10. IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.

    PubMed

    Dragon, Stéphane; Hirst, Stuart J; Lee, Tak H; Gounni, Abdelilah S

    2014-06-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal-regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells.

  11. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle.

    PubMed

    Zaidi, Sarah; Gallos, George; Yim, Peter D; Xu, Dingbang; Sonett, Joshua R; Panettieri, Reynold A; Gerthoffer, William; Emala, Charles W

    2011-08-01

    γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM. PMID:21057105

  12. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  13. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma

    PubMed Central

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-01-01

    ABSTRACT Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)–33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  14. Upregulation of a disintegrin and metalloproteinase-33 by VEGF in human airway smooth muscle cells: Implications for asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Zheng, Hong; Zhao, Li-Hong; Kim, Sung-Ho

    2016-10-17

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)-33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma. PMID:27579513

  15. Mechanisms of action of endothelin 1 in maturing rabbit airway smooth muscle.

    PubMed

    Grunstein, M M; Rosenberg, S M; Schramm, C M; Pawlowski, N A

    1991-06-01

    Maturational differences in the effects and mechanisms of action of endothelin 1 (ET-1) on airway contractility were investigated in tracheal smooth muscle (TSM) segments isolated from 2-wk-old and adult rabbits. In TSM under passive tension, ET-1 elicited dose-dependent contractions, with a potency of action that was significantly greater (P less than 0.001) in the 2-wk-old vs. adult tissues (i.e., mean +/- SE - log 50% of maximal response values: 8.59 +/- 0.17 vs. 7.79 +/- 0.15 - log M, respectively). In TSM half-maximally contracted with acetylcholine (ACh), however, ET-1 elicited dual and opposing dose-dependent effects. At lower doses (less than or equal to 10(-9) M), ET-1 induced TSM relaxation that was significantly greater in the adult vs. 2-wk-old TSM segments (i.e., approximately 100 vs. 26.5% decrease in active tension, respectively). The relaxant responses were associated with significantly enhanced (P less than 0.001) ET-1-induced release of prostaglandins E2 and I2 in the adult tissues. At higher doses (greater than 10(-9) M), ET-1 induced TSM contractions that were 1) attenuated to a relatively greater extent by the Ca2+ channel blocker, nifedipine (10(-5) M) in the 2-wk-old tissues and 2) associated with significantly (P less than 0.001) enhanced ET-1-stimulated accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in the immature TSM. Moreover, the TSM contractions were inhibited by the protein kinase C (PKC) antagonist, H-7, and the latter effect was more potent in the immature TSM. Collectively, these findings demonstrate that ET-1 exerts a potent duality of action in rabbit TSM which varies significantly with maturation, wherein 1) age-dependent differences in airway relaxation are associated with changes in the evoked release of bronchodilatory prostaglandins and 2) maturational differences in airway contraction are associated with changes in Ins(1,4,5)P3 accumulation and extracellular Ca2+ mobilization, coupled to differences in PKC

  16. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma.

    PubMed

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. PMID:27587274

  17. The effect of hyperpolarization-activated cyclic nucleotide-gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone

    PubMed Central

    McGovern, Alice E; Robusto, Jed; Rakoczy, Joanna; Simmons, David G; Phipps, Simon; Mazzone, Stuart B

    2014-01-01

    BACKGROUND AND PURPOSE Subtypes of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of cation channels are widely expressed on nerves and smooth muscle cells in many organ systems, where they serve to regulate membrane excitability. Here we have assessed whether HCN channel inhibitors alter the function of airway smooth muscle or the neurons that regulate airway smooth muscle tone. EXPERIMENTAL APPROACH The effects of the HCN channel inhibitors ZD7288, zatebradine and Cs+ were assessed on agonist and nerve stimulation-evoked changes in guinea pig airway smooth muscle tone using tracheal strips in vitro, an innervated tracheal tube preparation ex vivo or in anaesthetized mechanically ventilated guinea pigs in vivo. HCN channel expression in airway nerves was assessed using immunohistochemistry, PCR and in situ hybridization. KEY RESULTS HCN channel inhibition did not alter airway smooth muscle reactivity in vitro to exogenously administered smooth muscle spasmogens, but significantly potentiated smooth muscle contraction evoked by the sensory nerve stimulant capsaicin and electrical field stimulation of parasympathetic cholinergic postganglionic neurons. Sensory nerve hyperresponsiveness was also evident in in vivo following HCN channel blockade. Cs+, but not ZD7288, potentiated preganglionic nerve-dependent airway contractions and over time induced autorhythmic preganglionic nerve activity, which was not mimicked by inhibitors of potassium channels. HCN channel expression was most evident in vagal sensory ganglia and airway nerve fibres. CONCLUSIONS AND IMPLICATIONS HCN channel inhibitors had a previously unrecognized effect on the neural regulation of airway smooth muscle tone, which may have implications for some patients receiving HCN channel inhibitors for therapeutic purposes. PMID:24762027

  18. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    PubMed

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  19. Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma

    PubMed Central

    Johnson, Martin; Nikolos, Christina; Jester, William; Klanderman, Barbara; Litonjua, Augusto A.; Tantisira, Kelan G.; Truskowski, Kevin; MacDonald, Kevin; Panettieri, Reynold A.; Weiss, Scott T.

    2015-01-01

    Globally, asthma is a chronic inflammatory respiratory disease affecting over 300 million people. Some asthma patients remain poorly controlled by conventional therapies and experience more life-threatening exacerbations. Vitamin D, as an adjunct therapy, may improve disease control in severe asthma patients since vitamin D enhances glucocorticoid responsiveness and mitigates airway smooth muscle (ASM) hyperplasia. We sought to characterize differences in transcriptome responsiveness to vitamin D between fatal asthma- and non-asthma-derived ASM by using RNA-Seq to measure ASM transcript expression in five donors with fatal asthma and ten non-asthma-derived donors at baseline and with vitamin D treatment. Based on a Benjamini-Hochberg corrected p-value <0.05, 838 genes were differentially expressed in fatal asthma vs. non-asthma-derived ASM at baseline, and vitamin D treatment compared to baseline conditions induced differential expression of 711 and 867 genes in fatal asthma- and non-asthma-derived ASM, respectively. Functional gene categories that were highly represented in all groups included extracellular matrix, and responses to steroid hormone stimuli and wounding. Genes differentially expressed by vitamin D also included cytokine and chemokine activity categories. Follow-up qPCR and individual analyte ELISA experiments were conducted for four cytokines (i.e. CCL2, CCL13, CXCL12, IL8) to measure TNFα-induced changes by asthma status and vitamin D treatment. Vitamin D inhibited TNFα-induced IL8 protein secretion levels to a comparable degree in fatal asthma- and non-asthma-derived ASM even though IL8 had significantly higher baseline levels in fatal asthma-derived ASM. Our findings identify vitamin D-specific gene targets and provide transcriptomic data to explore differences in the ASM of fatal asthma- and non-asthma-derived donors. PMID:26207385

  20. Technical and physiological determinants of airway smooth muscle mass in endobronchial biopsy samples of asthmatic horses.

    PubMed

    Bullone, Michela; Chevigny, Mylène; Allano, Marion; Martin, James G; Lavoie, Jean-Pierre

    2014-10-01

    Morphometric analyses of endobronchial biopsies are commonly performed in asthma research but little is known about the technical and physiological parameters contributing to measurement variability. We investigated factors potentially affecting biopsy size, quality, and airway smooth muscle (ASM) content in heaves, an asthma-like disease of horses. Horses with heaves in clinical exacerbation (n = 6) or remission (n = 6) from the disease and six controls were studied using a crossover design. The effect of disease status, age, bronchodilation, biopsy forceps type, and carina size on total biopsy area (Atot), ASM area (AASM), ASM% (AASM/Atot), and histologic quality were assessed. Concordance among different measuring techniques was also assessed. Compared with other groups, horses with heaves in exacerbation yielded larger biopsies (P < 0.05). Better quality biopsies were obtained from carinae of small size compared with large ones (P = 0.02), and carina size and forceps type significantly affected the ASM content of the biopsy (interaction, P < 0.05). AASM increased with age only in heaves-affected horses (r = 0.9, P < 0.05), and ASM% was negatively correlated with pulmonary resistance at 5 Hz in heaves-affected horses (r = -0.74, P = 0.01), likely because of the increased thickness of the extracellular matrix layer in this group (P = 0.01). In conclusion, disease status, carina thickness, and the forceps used may significantly affect biopsy size, quality, and ASM content. Endobronchial biopsies are not appropriate samples for ASM quantification in heaves, and studies measuring ASM mass should not be compared when measuring techniques differ. PMID:25103978

  1. Bidirectional counter-regulation of human lung mast cell and airway smooth muscle β2-adrenoceptors

    PubMed Central

    Newby, Chris; Amrani, Yassine; Bradding, Peter

    2015-01-01

    Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesised that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at tyrosine 350 (Tyr350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC co-culture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC co-culture. These effects were reversed by neutralisation of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr350 occurred within 5 minutes in both HLMCs and HASMCs when the cells were co-cultured, and was inhibited by neutralising SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients. PMID:26608913

  2. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    PubMed

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  3. 17β-Aminoestrogens induce guinea pig airway smooth muscle hyperresponsiveness through L-type Ca(2+) channels activation.

    PubMed

    Flores-Soto, Edgar; Martínez-Villa, Inocencio; Solís-Chagoyán, Héctor; Sommer, Bettina; Lemini, Cristina; Montaño, Luis M

    2015-09-01

    Therapy with estrogens is frequently used in menopausal women and as hormonal contraception. Because of its thrombotic effects, long term estrogen administration used in hormonal replacement therapy (HRT) and contraception could represent a health hazard. In this regard, 17β-aminoestrogens such as aminoestrol, butolame and pentolame have shown promising HRT potential, because they have a weak agonist estrogenic action and antithrombotic activity. Additionally, estrogens play a protective role in airway smooth muscle, but the effect of 17β-aminoestrogens on the airway smooth muscle has not been tested yet. In guinea pig tracheal smooth muscle pentolame and butolame induced hyperresponsiveness to histamine (His), carbachol (Cch) and KCl. Interestingly, aminoestrol did not show this effect at the highest concentration studied, it even lowered the contraction induced by Cch. The hyperresponsiveness induced by pentolame to His was abolished by nifedipine. In single tracheal myocytes, KCl induced an increment in the intracellular Ca(2+) concentration [Ca(2+)]i, pentolame also showed an increase in [Ca(2+)]i and the addition of KCl in the plateau of this rise further significantly augmented the [Ca(2+)]i response. Additionally, in patch clamp experiments pentolame increased the L-type Ca(2+) currents. Thus, 17β-aminoestrogens such as pentolame and butolame, but not aminoestrol, activate L-type Ca(2+) channel to induced hyperresponsiveness to Cch, His and KCl in guinea pig tracheal smooth muscle. Due to its lack of effect on airways and to its anticoagulant characteristics, aminoestrol seems to be the best alternative in the HRT among the 17β-aminoestrogens studied.

  4. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma.

    PubMed

    Wright, David; Sharma, Pawan; Ryu, Min-Hyung; Rissé, Paul-Andre; Ngo, Melanie; Maarsingh, Harm; Koziol-White, Cynthia; Jha, Aruni; Halayko, Andrew J; West, Adrian R

    2013-02-01

    Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function plays a significant role in the disease pathophysiology remains contentious. The difficulty in determining the role of ASM lies in limitations with the models used to assess contraction. In vivo models provide a fully integrated physiological response but ASM contraction cannot be directly measured. Ex vivo and in vitro models can provide more direct assessment of ASM contraction but the loss of factors that may modulate ASM responsiveness and AHR, including interaction between multiple cell types and disruption of the mechanical environment, precludes a complete understanding of the disease process. In this review we detail key advantages of common in vivo, ex vivo and in vitro models of ASM contraction, as well as emerging tissue engineered models of ASM and whole airways. We also highlight important findings from each model with respect to the pathophysiology of asthma.

  5. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  6. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    PubMed

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  7. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD

    PubMed Central

    2016-01-01

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation. PMID:27656649

  8. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  9. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD

    PubMed Central

    2016-01-01

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.

  10. TRPC3-mediated Ca(2+) entry contributes to mouse airway smooth muscle cell proliferation induced by lipopolysaccharide.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2016-10-01

    Airway remodeling is a histopathological hallmark of chronic respiratory diseases that includes airway smooth muscle cell (ASMC) proliferation. Canonical transient receptor potential channel-3 (TRPC3)-encoded nonselective cation channels (NSCCs) are important native constitutively active channels that play significant roles in physiological and pathological conditions in ASMCs. Lipopolysaccharides (LPSs), known as lipoglycans and endotoxin, have been proven to be inducers of airway remodeling, though the mechanisms remain unclear. We hypothesized that TRPC3 is important in LPS-induced airway remodeling by regulating ASMC proliferation. To test this hypothesis, mouse ASMCs were cultured with or without LPS for 48h. Cell viability, TRPC3 protein expression, NSCC currents and changes in intracellular calcium concentration ([Ca(2+)]i) were then analyzed using an MTT assay, western blotting, whole-cell patch clamp and calcium imaging, respectively. The results showed that LPS treatment significantly induced ASMC proliferation, up-regulation of TRPC3 protein expression and enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i. TRPC3 blocker Gd(3+), TRPC3 blocking antibody or TRPC3 gene silencing by siRNA significantly inhibited LPS-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca(2+)]i and ACh-elicited changes in [Ca(2+)]i, eventually inhibiting LPS-induced ASMCproliferation. These results demonstrated that TRPC3-mediated Ca(2+) entry contributed to LPS-induced ASMC proliferation and identified TRPC3 as a possible key target in airway remodeling intervention.

  11. Maturational regulation of inositol 1,4,5-trisphosphate metabolism in rabbit airway smooth muscle.

    PubMed Central

    Rosenberg, S M; Berry, G T; Yandrasitz, J R; Grunstein, M M

    1991-01-01

    Airway reactivity has been shown to vary with age; however, the mechanism(s) underlying this process remain unidentified. To elucidate the role of ontogenetic changes in phosphoinositide-linked signal transduction, we examined whether age-related differences in tracheal smooth muscle (TSM) contractility to carbachol (CCh) are associated with developmental changes in the production and metabolism of the second messenger, inositol 1,4,5-trisphosphate (Ins (1,4,5)P3). In TSM segments isolated from 2-wk-old and adult rabbits, both the maximal isometric contractile force and sensitivity (i.e., -logED50) to CCh (10(-10)-10(-4) M) were significantly greater in the immature vs. adult tissues (P less than 0.001). Similarly, Ins(1,4,5)P3 accumulation elicited by either receptor-coupled stimulation with CCh (10(-10)-10(-4) M) or post-receptor-mediated guanine nucleotide binding protein activation of permeabilized TSM with GTP gamma S (100 microM) was also significantly enhanced in 2-wk-old vs. adult TSM. Measurement of the activities of the degradative enzymes for Ins(1,4,5)P3 demonstrated that: (a) mean +/- SE maximal Ins(1,4,5)P3 3'-kinase activity was significantly reduced in the immature vs. adult TSM (i.e., approximately 71.7 +/- 6.0 vs. 137.8 +/- 10.0 pmol/min per mg protein, respectively; P less than 0.005); (b) by contrast, maximal Ins(1,4,5)P3 5'-phosphatase activity was significantly increased in the immature vs. adult TSM (i.e., 27.9 +/- 1.2 vs. 15.6 +/- 1.5 nmol/min per mg protein, respectively; P less than 0.001); and (c) the Km values for Ins(1,4,5)P3 5'-phosphatase were 14- and 19-fold greater than those for Ins(1,4,5)P3 3'-kinase in the 2-wk-old and adult TSM, respectively. Collectively, the findings suggest that the age-related decrease in agonist-induced rabbit TSM contractility is associated with a diminution in Ins(1,4,5)P3 accumulation which is attributed, at least in part, to ontogenetic changes in the relative activities of the degradative enzymes for

  12. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle

    PubMed Central

    Castro-Piedras, Isabel; Perez-Zoghbi, Jose F

    2013-01-01

    Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca2+ release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca2+ release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca2+ release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca2+ oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca2+ release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca2+ release through InsP3Rs and consequent reduction of agonist-induced Ca2+ oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca2+ release – a cell-signalling system of critical importance for many physiological and pathophysiological processes. PMID

  13. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells.

    PubMed

    Yang, Chao-Huei; Tsao, Chiung-Fang; Ko, Wang-Sheng; Chiou, Ya-Ling

    2016-01-09

    In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs) is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF)-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL) to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL) increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05). Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%-99% after 48 h (p < 0.05) and induced G₁/G₀ cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2), Akt, and nuclear factor (NF)-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  14. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. PMID:25729015

  15. Nuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model

    PubMed Central

    Qiu, Chen; Zhang, Jian; Su, Meiping; Fan, Xiujun

    2015-01-01

    Airway smooth muscle cells (ASMCs) phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to airway proliferative diseases such as allergic asthma. Nuclear Factor-κB (NF-κB) has been reported as a key regulator for the occurrence and development of asthma. However, little is known regarding its role in ASM cell phenotypic modulation. To elucidate the role of NF-κB in regulating ASM cells phenotypic modulation, we investigated the effects of NF-κB on ASM cells contractile marker protein expression, and its impact on proliferation and apoptosis. We found that chronic asthma increased the activation of NF-κB in the primary murine ASM cells with a concomitant marked decrease in the expression of contractile phenotypic marker protein including smooth muscle alpha-actin (α-SMA). Additionally, we used the normal ASM cells under different processing to build the phenotype switching when we found the activation of NF-κB. Meanwhile, the expression of α-SMA in asthma was significantly increased by the NF-κB blocker. NF-κB blocker also suppressed asthma mouse ASM cell proliferation and promoted apoptosis. These findings highlight a novel role for the NF-κB in murine ASM cell phenotypic modulation and provide a potential target for therapeutic intervention for asthma. PMID:26722396

  16. Nuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model.

    PubMed

    Qiu, Chen; Zhang, Jian; Su, Meiping; Fan, Xiujun

    2015-01-01

    Airway smooth muscle cells (ASMCs) phenotype modulation, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to airway proliferative diseases such as allergic asthma. Nuclear Factor-κB (NF-κB) has been reported as a key regulator for the occurrence and development of asthma. However, little is known regarding its role in ASM cell phenotypic modulation. To elucidate the role of NF-κB in regulating ASM cells phenotypic modulation, we investigated the effects of NF-κB on ASM cells contractile marker protein expression, and its impact on proliferation and apoptosis. We found that chronic asthma increased the activation of NF-κB in the primary murine ASM cells with a concomitant marked decrease in the expression of contractile phenotypic marker protein including smooth muscle alpha-actin (α-SMA). Additionally, we used the normal ASM cells under different processing to build the phenotype switching when we found the activation of NF-κB. Meanwhile, the expression of α-SMA in asthma was significantly increased by the NF-κB blocker. NF-κB blocker also suppressed asthma mouse ASM cell proliferation and promoted apoptosis. These findings highlight a novel role for the NF-κB in murine ASM cell phenotypic modulation and provide a potential target for therapeutic intervention for asthma.

  17. Effects of beta 2-adrenoceptor agonists on anti-IgE-induced contraction and smooth muscle reactivity in human airways.

    PubMed Central

    Gorenne, I; Labat, C; Norel, X; De Montpreville, V; Guillet, M C; Cavero, I; Brink, C

    1995-01-01

    1. The beta 2-adrenoceptor agonists, salbutamol, salmeterol and RP 58802 relaxed basal tone of human isolated bronchial smooth muscle. Salmeterol- and RP 58802-induced relaxations persisted for more than 4 h when the medium was constantly renewed after treatment. 2. Salbutamol, salmeterol and RP 58802 reversed histamine-induced contractions in human airways (pD2 values: 6.15 +/- 0.21, 6.00 +/- 0.19 and 6.56 +/- 0.12, respectively). 3. Anti-IgE-induced contractions were significantly inhibited immediately after pretreatment of preparations with beta 2-adrenoceptor agonists (10 microM). However, when tissues were treated with beta 2-agonists and then washed for a period of 4 h, salmeterol was the only agonist which significantly inhibited the anti-IgE response. 4. Histamine response curves were shifted to the right immediately after pretreatment of tissues with the beta 2-adrenoceptor agonists (10 microM; 20 min), but maximal contractions were not affected. After a 4 h washing period, the histamine curves were not significantly different from controls. Concentration-effect curves to acetylcholine (ACh) or leukotriene C4 (LTC4) were not significantly modified after beta 2-agonist pretreatment. 5. These results suggest that beta 2-adrenoceptor agonists may prevent anti-IgE-induced contraction by inhibition of mediator release rather than alterations of those mechanisms involved in airway smooth muscle contraction. PMID:7780648

  18. Airway smooth muscle cells synthesize hyaluronan cable structures independent of inter-alpha-inhibitor heavy chain attachment.

    PubMed

    Lauer, Mark E; Fulop, Csaba; Mukhopadhyay, Durba; Comhair, Suzy; Erzurum, Serpil C; Hascall, Vincent C

    2009-02-20

    The covalent association of inter-alpha-inhibitor-derived heavy chains (HCs) with hyaluronan was first described in synovial fluid from arthritic patients and later described as a structural and functional component of hyaluronan "cable" structures produced by many different cells and stimuli. HC transfer has been shown to be mediated by the protein product of TSG-6 (tumor necrosis factor-stimulated gene 6). Considering the accumulation of hyaluronan in airways following asthmatic attacks and the subsequent infiltration of leukocytes, we sought to characterize HC substitution of hyaluronan "cables" in primary mouse airway smooth muscle cells (MASM) and primary human airway smooth muscle cells (HASM). We found that cells derived from mice lacking TSG-6 had no defect in hyaluronan production or hyaluronan-mediated leukocyte adhesion when treated with the viral mimic poly(I,C). Functional hyaluronan cables were induced by cycloheximide in the confirmed absence of protein synthesis, with or without simultaneous treatment with poly(I,C). We characterized the species specificity of the antibody other investigators used to describe the HC-hyaluronan complex of hyaluronan cables and found minimal affinity to bovine-derived HCs in contrast to HCs from mouse and human sera. Thus, we cultured MASM and HASM cells in serum from these three sources and analyzed hyaluronan extracts for HCs and other hyaluronan-binding proteins, using parallel cumulus cell-oocyte complex (COC) extracts as positive controls. We conclude that, if hyaluronan cables derived from MASM and HASM cells are substituted with HCs, the amount of substitution is significantly below the limit of detection when compared with COC extracts of similar hyaluronan mass.

  19. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    SciTech Connect

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan Cui, Yong-Yao

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  20. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET.

    PubMed

    Clifford, Rachel L; Patel, Jamie K; John, Alison E; Tatler, Amanda L; Mazengarb, Lisa; Brightling, Christopher E; Knox, Alan J

    2015-05-01

    Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.

  1. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.

    PubMed

    Brook, Bindi S

    2014-04-15

    Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of "force transmission pathways"; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior.

  2. Bisulfite and sulfite as derivatives of sulfur dioxide alters biomechanical behaviors of airway smooth muscle cells in culture.

    PubMed

    Song, Aijing; Lin, Feng; Li, Jianming; Liao, Qingfeng; Liu, Enmei; Jiang, Xuemei; Deng, Linhong

    2014-02-01

    Sulfur dioxide (SO2) is a common air pollutant that triggers asthmatic symptoms, but its toxicological mechanisms are not fully understood. Specifically, it is unclear how SO2 in vivo affects airway smooth muscle (ASM) cells of which the mechanics is known to ultimately mediate airway hyperresponsiveness (AHR) - a hallmark feature of asthma. To this end, we investigated the effects of bisulfite/sulfite (1:3 M/M in neutral fluid to simulate the in vivo derivatives of inhaled SO2 in the airways), on the viability, migration, stiffness and contractility of ASM cells cultured in vitro. The results showed that bisulfite/sulfite consistently increased viability, migration, F-actin intensity and stiffness of ASM cells in similar fashion as concentration increasing from 10(-4) to 10(-1) mmol/L. However, bisulfite/sulfite increased the ASM cell contractility induced by KCl only at the concentration between 10(-4) and 10(-3) mmol/L (p < 0.05), while having no consistent effect on that induced by histamine. At the concentration of 10(0) mmol/L, bisulfite/sulfite became acutely toxic to the ASM cells. Taken together, the data suggest that SO2 derivatives at low levels in vivo may directly increase the mass, stiffness and contractility of ASM cells, which may help understand the mechanism in which specific air pollutants contribute in vivo to the pathogenesis of asthma.

  3. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  4. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    PubMed

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  5. [Role of bronchodilators in therapy for COPD-mechanisms of LABA and LAMA on airway smooth muscle].

    PubMed

    Kume, Hiroaki

    2016-05-01

    Long-acting β2-adrenergic receptor agonists (LABAs) and anticholinergics (LAMAs) are widely used clinically as therpy for COPD. Clinical reports have demonstrated that LABAs (salmeterol, formoterol, indacaterol, olodaterol, vilanterol) and LAMAs (tiotropium, glycopyrronium, umeclidinium, aclidinium) are useful to improving symptoms and lung function, and to reducing exacerbation and hospitarization. LABAs expect salmeterol are strong partial agonists, and LAMAs are non-specific antagonists. Ca2+ dynamics and Ca2+ sensitization contribute to relaxation of airway smooth muscle in these bronchodilators. LABAs act on orthosteric and allosteric sites on the β2-adrenergic receptors. In contrast, LAMAs act not only on orthosteric site on the muscarinic receptors, but also allosteric site on the β2-adrenergic receptors, leading to enhancing β2-adrenergic action. Allosteric GPCR modulation is involved in the synergistic effects between LABAs and LAMAs. PMID:27254952

  6. The effect of Shenmai injection on the proliferation of Rat airway smooth muscle cells in asthma and underlying mechanism

    PubMed Central

    2013-01-01

    Background Over-proliferation of airway smooth muscle cell (ASMC) is one of the important contributors to airway remodeling in asthma. The aim of this study was to investigate the effect of Shenmai injection (SMI) on the proliferation of the rat ASMC in asthma. Methods Rats were randomly divided into three groups: the control group, the asthma group, and the SMI treatment group. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry staining were used to detect the mRNA and protein expression of transient receptor potential vanilloid 1 (TRPV1) and proliferating cell nuclear antigen (PCNA) in rat ASMC respectively. Intracellular Ca2+ concentration ( [Ca2+]i ) in rat ASMC were measured with Fluo-3/AM by confocal microscopy. The proliferation was detected by MTT assay. Results Compared with the control group, the asthma group showed an increased expression of TRPV1 and [Ca2+]i in rat ASMC. The expression of PCNA and absorbance of MTT assay in asthma rat ASMC was also significantly increased. SMI could significantly decrease the expression of TRPV1 channel and [Ca2+]i in the asthmatic rat ASMC. Furthermore, the expression of PCNA and absorbance of MTT assay in asthmatic rat ASMC was significantly reduced after SMI treatment. Conclusions SMI may prevent asthma-induced ASMC over-proliferation probably by inhibiting the expression of TRPV1 channel, which regulates the intracellular calcium concentration. PMID:24010863

  7. Differential effects of inhaled methacholine on circumferential wall and vascular smooth muscle of third-generation airways in awake sheep.

    PubMed

    McLeod, Damian; Parsons, Gibbe; Gunther, Robert; Quail, Anthony; Cottee, David; White, Saxon

    2012-10-15

    Evolution and natural selection ensure that specific mechanisms exist for selective airway absorption of inhaled atmospheric molecules. Indeed, nebulized cholinoceptor agonists used in asthma-challenge tests may or may not enter the systemic circulation. We examined the hypothesis that inhaled cholinoceptor agonists have selective access. Six sheep were instrumented under general anesthesia (propofol 5 mg/kg iv, 2-3% isoflurane-oxygen), each with pulsed-Doppler blood flow transducers mounted on the single bronchial artery and sonomicrometer probes mounted on the intrapulmonary third-generation lingula lobe bronchus. Continuous measurements were made of bronchial blood flow (Q(br)), Q(br) conductance (C(br)), bronchial hemicircumference (CIRC(br)), and bronchial wall thickness (WALL TH(br)) in recovered, standing, awake sheep. Methacholine (MCh; 0.125-2.0 μg/kg iv), at the highest dose, caused a 233% rise in Q(br) (P < 0.05) and a 286% rise in C(br) (P < 0.05). CIRC(br) fell to 90% (P < 0.05); WALL TH(br) did not change. In contrast, nebulized MCh (1-32 mg/ml), inhaled through a mask at the highest dose, caused a rise in ventilation and a rise in Q(br) proportional to aortic pressure without change in C(br). CIRC(br) fell to 91% (P < 0.01), and WALL TH(br) did not change. Thus inhaled MCh has access to cholinoceptors of bronchial circumferential smooth muscle to cause airway lumen narrowing but effectively not to those of the systemic bronchovascular circulation. It is speculated that the mechanism is selective neuroparacrine inhibition of muscarinic acetylcholine receptors (M3 bronchovascular cholinoceptors) by prostanoids released by intense MCh activation of epithelial and mucosal cells lining the airway. PMID:22898550

  8. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  9. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells.

    PubMed

    Camoretti-Mercado, Blanca; Pauer, Susan H; Yong, Hwan Mee; Smith, Dan'elle C; Deshpande, Deepak A; An, Steven S; Liggett, Stephen B

    2015-01-01

    Asthma is characterized by airway inflammation and airflow obstruction from human airway smooth muscle (HASM) constriction due to increased local bronchoconstrictive substances. We have recently found bitter taste receptors (TAS2Rs) on HASM, which increase [Ca2+]i and relax the muscle. We report here that some, but not all, TAS2R agonists decrease [Ca2+]i and relax HASM contracted by G-protein coupled receptors (GPCRs) that stimulate [Ca2+]i. This suggests both a second pathway by which TAS2Rs relax, and, a heterogeneity of the response phenotype. We utilized eight TAS2R agonists and five procontractile GPCR agonists in cultured HASM cells. We find that heterogeneity in the inhibitory response hinges on which procontractile GPCR is activated. For example, chloroquine inhibits [Ca2+]i increases from histamine, but failed to inhibit [Ca2+]i increases from endothelin-1. Conversely, aristolochic acid inhibited [Ca2+]i increases from endothelin-1 but not histamine. Other dichotomous responses were found when [Ca2+]i was stimulated by bradykinin, angiotensin, and acetylcholine. There was no association between [Ca2+]i inhibition and TAS2R subtype, nor whether [Ca2+]i was increased by Gq- or Gi-coupled GPCRs. Selected studies revealed a correlation between [Ca2+]i inhibition and HASM cell-membrane hyperpolarization. To demonstrate physiologic correlates, ferromagnetic beads were attached to HASM cells and cell stiffness measured by magnetic twisting cytometry. Consistent with the [Ca2+]i inhibition results, chloroquine abolished the cell stiffening response (contraction) evoked by histamine but not by endothelin-1, while aristolochic acid inhibited cell stiffening from endothelin-1, but not from histamine. In studies using intact human bronchi, these same differential responses were found. Those TAS2R agonists that decreased [Ca2+]i, promoted hyperpolarization, and decreased HASM stiffness, caused relaxation of human airways. Thus TAS2Rs relax HASM in two ways: a low

  10. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1.

    PubMed

    Dekkers, Bart G J; Naeimi, Saeideh; Bos, I Sophie T; Menzen, Mark H; Halayko, Andrew J; Hashjin, Goudarz Sadeghi; Meurs, Herman

    2015-02-01

    Hypothyroidism may reduce, whereas hyperthyroidism may aggravate, asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway smooth muscle (ASM) mass, may be involved. To address this hypothesis, we investigated the effects of triiodothyronine (T3) and l-thyroxine (T4) in the absence and presence of the profibrotic transforming growth factor (TGF)-β1 on human ASM cell phenotype switching. T3 (1-100 nM) and T4 (1-100 nM) did not affect basal ASM proliferation. However, when combined with TGF-β1 (2 ng/ml), T4 synergistically increased the proliferative response, whereas only a minor effect was observed for T3. In line with a switch from a contractile to a proliferative ASM phenotype, T4 reduced the TGF-β1-induced contractile protein expression by ∼50%. Cotreatment with T3 reduced TGF-β1-induced contractile protein expression by ∼25%. The synergistic increase in proliferation was almost fully inhibited by the integrin αvβ3 antagonist tetrac (100 nM), whereas no significant effects of the thyroid receptor antagonist 1-850 (3 μM) were observed. Inhibition of MEK1/2, downstream of the integrin αvβ3, also inhibited the T4- and TGF-β1-induced proliferative responses. Collectively, the results indicate that T4, and to a lesser extent T3, promotes a proliferative ASM phenotype in the presence of TGF-β1, which is predominantly mediated by the membrane-bound T4 receptor αvβ3. These results indicate that thyroid hormones may enhance ASM remodeling in asthma, which could be of relevance for hyperthyroid patients with this disease. PMID:25480330

  11. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1.

    PubMed

    Dekkers, Bart G J; Naeimi, Saeideh; Bos, I Sophie T; Menzen, Mark H; Halayko, Andrew J; Hashjin, Goudarz Sadeghi; Meurs, Herman

    2015-02-01

    Hypothyroidism may reduce, whereas hyperthyroidism may aggravate, asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway smooth muscle (ASM) mass, may be involved. To address this hypothesis, we investigated the effects of triiodothyronine (T3) and l-thyroxine (T4) in the absence and presence of the profibrotic transforming growth factor (TGF)-β1 on human ASM cell phenotype switching. T3 (1-100 nM) and T4 (1-100 nM) did not affect basal ASM proliferation. However, when combined with TGF-β1 (2 ng/ml), T4 synergistically increased the proliferative response, whereas only a minor effect was observed for T3. In line with a switch from a contractile to a proliferative ASM phenotype, T4 reduced the TGF-β1-induced contractile protein expression by ∼50%. Cotreatment with T3 reduced TGF-β1-induced contractile protein expression by ∼25%. The synergistic increase in proliferation was almost fully inhibited by the integrin αvβ3 antagonist tetrac (100 nM), whereas no significant effects of the thyroid receptor antagonist 1-850 (3 μM) were observed. Inhibition of MEK1/2, downstream of the integrin αvβ3, also inhibited the T4- and TGF-β1-induced proliferative responses. Collectively, the results indicate that T4, and to a lesser extent T3, promotes a proliferative ASM phenotype in the presence of TGF-β1, which is predominantly mediated by the membrane-bound T4 receptor αvβ3. These results indicate that thyroid hormones may enhance ASM remodeling in asthma, which could be of relevance for hyperthyroid patients with this disease.

  12. Selective targeting of the α5-subunit of GABAA receptors relaxes airway smooth muscle and inhibits cellular calcium handling

    PubMed Central

    Yocum, Gene T.; Siviski, Matthew E.; Yim, Peter D.; Fu, Xiao Wen; Poe, Michael M.; Cook, James M.; Harrison, Neil; Perez-Zoghbi, Jose; Emala, Charles W.

    2015-01-01

    The clinical need for novel bronchodilators for the treatment of bronchoconstrictive diseases remains a major medical issue. Modulation of airway smooth muscle (ASM) chloride via GABAA receptor activation to achieve relaxation of precontracted ASM represents a potentially beneficial therapeutic option. Since human ASM GABAA receptors express only the α4- and α5-subunits, there is an opportunity to selectively target ASM GABAA receptors to improve drug efficacy and minimize side effects. Recently, a novel compound (R)-ethyl8-ethynyl-6-(2-fluorophenyl)-4-methyl-4H-benzo[f]imidazo[1,5-a][1,4] diazepine-3-carboxylate (SH-053-2′F-R-CH3) with allosteric selectivity for α5-subunit containing GABAA receptors has become available. We questioned whether this novel GABAA α5-selective ligand relaxes ASM and affects intracellular calcium concentration ([Ca2+]i) regulation. Immunohistochemical staining localized the GABAA α5-subunit to human ASM. The selective GABAA α5 ligand SH-053-2′F-R-CH3 relaxes precontracted intact ASM; increases GABA-activated chloride currents in human ASM cells in voltage-clamp electrophysiology studies; and attenuates bradykinin-induced increases in [Ca2+]i, store-operated Ca2+ entry, and methacholine-induced Ca2+ oscillations in peripheral murine lung slices. In conclusion, selective subunit targeting of endogenous α5-subunit containing GABAA receptors on ASM may represent a novel therapeutic option to treat severe bronchospasm. PMID:25659897

  13. Contribution of SRF, Elk-1, and myocardin to airway smooth muscle remodeling in heaves, an asthma-like disease of horses.

    PubMed

    Chevigny, Mylène; Guérin-Montpetit, Karine; Vargas, Amandine; Lefebvre-Lavoie, Josiane; Lavoie, Jean-Pierre

    2015-07-01

    Myocyte hyperplasia and hypertrophy contribute to the increased mass of airway smooth muscle (ASM) in asthma. Serum-response factor (SRF) is a transcription factor that regulates myocyte differentiation in vitro in vascular and intestinal smooth muscles. When SRF is associated with phosphorylated (p)Elk-1, it promotes ASM proliferation while binding to myocardin (MYOCD) leading to the expression of contractile elements in these tissues. The objective of this study was therefore to characterize the expression of SRF, pElk-1, and MYOCD in ASM cells from central and peripheral airways in heaves, a spontaneously occurring asthma-like disease of horses, and in controls. Six horses with heaves and five aged-matched controls kept in the same environment were studied. Nuclear protein expression of SRF, pElk-1, and MYOCD was evaluated in peripheral airways and endobronchial biopsies obtained during disease remission and after 1 and 30 days of naturally occurring antigenic exposure using immunohistochemistry and immunofluorescence techniques. Nuclear expression of SRF (P = 0.03, remission vs. 30 days) and MYOCD (P = 0.05, controls vs. heaves at 30 days) increased in the peripheral airways of horses with heaves during disease exacerbation, while MYOCD (P = 0.04, remission vs. 30 days) decreased in the central airways of control horses. No changes were observed in the expression of pElk-1 protein in either tissue. In conclusion, SRF and its cofactor MYOCD likely contribute to the hypertrophy of peripheral ASM observed in equine asthmatic airways, while the remodeling of the central airways is more static or involves different transcription factors.

  14. Characterization of neural control and contractile function in airway smooth muscle of the ferret.

    PubMed

    Maize, D F; Fedan, J S; Dey, R D

    1998-02-01

    Several recent studies have characterized neuroanatomical and neurophysiological aspects of ferret airways, but regional differences in reactivity and cholinergic, adrenergic and non-adrenergic-non-cholinergic (NANC) neural responses have not been examined. The aim of this study was to characterize the contractile and relaxant response elicited by electrical field stimulation (EFS), and the contractions induced by cholinergic agonists in isolated ferret tracheal and bronchial preparations. EFS produced frequency-dependent contractions and relaxations. Contractions in both the trachea and bronchi were inhibited by atropine and potentiated by neostigmine. Tracheal relaxations were found to be entirely adrenergic, but bronchial relaxations were mediated by a combination of adrenergic and inhibitory NANC (i-NANC) innervations. Trachea and bronchi were more sensitive to methacholine (MCh) and carbachol than to acetylcholine (ACh); middle tracheal segments being more sensitive to ACh than distal segments, however, in the presence of neostigmine ACh potency was equal in both segments. The results suggest that regional differences exist in cholinergic responsiveness of ferret trachea and bronchi, resulting from differences in ACh degradation.

  15. Comparative Study of Protective Effects of Salbutamol and Beclomethasone against Insulin Induced Airway Hyper-reactivity on Isolated Tracheal Smooth Muscle of Guinea Pig

    PubMed Central

    Sharif, Mahjabeen; Tayyaba Khan, Bushra; Bakhtiar, Salman; Anwar, Mohammad Asim

    2015-01-01

    Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and beclomethasone against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. Effects of varying concentrations of insulin (10-7 to 10-3 M), insulin pretreated with fixed concentration of salbutamol (10-7 M) and beclomethasone (10-6 M) were studied on isolated tracheal tissue of guinea pig by constructing cumulative concentration response curves. Changes in tracheal smooth muscle contractions were recorded on four channel oscillograph. The mean ± SEM of maximum amplitudes of contraction with increasing concentrations of insulin, insulin pretreated with fixed concentration of salbutamol and beclomethasone were 35 ± 1.13 mm, 14.55 ± 0.62 mm and 22 ± 1.154 mm respectively. Although salbutamol and beclomethasone both had a profound inhibitory effect on insulin induced airway hyper-reactivity, yet salbutamol is more efficacious than beclomethasone. So we suggest that pretreatment of inhaled insulin with salbutamol may be preferred over beclomethasone in amelioration of its potential respiratory adverse effects such as bronchoconstriction. PMID:25901165

  16. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism.

    PubMed

    Wu, Yidi; Gunst, Susan J

    2015-05-01

    Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.

  17. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  18. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  19. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  20. Stereoselectivity of tradinterol's inhibition on proliferation of airway smooth muscle cells induced by acetylcholine through suppressing Ca(2+) signalling.

    PubMed

    Song, X; Zhang, Y; Wang, H; Wen, H; Zhao, C; Lan, Y; Pan, L; Zhang, C; Cheng, M

    2016-06-01

    The objective of this study is to investigate whether the inhibition of tradinterol (SPFF) against acetylcholine (ACh)-induced proliferation is mediated by Ca(2+) signaling in airway smooth muscle cells (ASMCs), and whether stereoselectivity of the drug exists. Guinea pig ASMCs were primarily prepared with the method described and treated with ACh combined to SPFF isomers for 24 or 48 hours, respectively. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to determine the proliferation of the guinea pig ASMCs. Ca(2+) fluorescent intensity in the guinea pig ASMCs, expressed with percentage increase in fluorescence when the intensity was determined with varioskan flash or shown with percentage increase in Geo Mean (GM) measured with flow cytometry, was recorded. Images of the intensity were obtained with fluorescent microscope. 2-APB, an (inositol 1,4,5-trisphosphate receptor) IP3R blocker, and NiCl2, a store-operated channel (SOC) inhibitor, were used to investigate the mechanism of SPFF isomers regulating intracellular Ca(2+) via IP3R on sarcoplasmic reticulum (SR) and/or SOC on plasma membrane. (-)SPFF and (±)SPFF, treated for 48 hours, showed significant inhibition against ACh-induced proliferation. The Ca(2+) elevation induced by ACh was concentration-dependently suppressed by SPFF isomers. (-)SPFF is the most effective but the potency of (±)SPFF is less than that of the former and stronger than that of (+)SPFF based on the half maximal inhibitory concentration (IC50) value. No significant additive effect was observed when (-)SPFF/(±)SPFF was used alone and combined with NiCl2/2-APB. As far as (+)SPFF is concerned, no similar phenomenon was observed. (-)SPFF and (±)SPFF but (+)SPFF showed significant inhibition against the percentage increase in fluorescence induced by CaCl2. It is likely that the influence of IP2RSOC-mediated Ca(2+) signaling in ASMCs helps (-)SPFF and (±)SPFF contribute to the suppression of ASMCs

  1. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    PubMed

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  2. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    PubMed

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  3. Exogenous S100A8 protein inhibits PDGF-induced migration of airway smooth muscle cells in a RAGE-dependent manner.

    PubMed

    Xu, Yu-Dong; Wei, Ying; Wang, Yu; Yin, Lei-Miao; Park, Gyoung-Hee; Liu, Yan-Yan; Yang, Yong-Qing

    2016-03-25

    S100A8 is an important member of the S100 protein family, which is involved in intracellular and extracellular regulatory activities. We previously reported that the S100A8 protein was differentially expressed in the asthmatic respiratory tracts. To understand the potential role of S100A8 in asthma, we investigated the effect of recombinant S100A8 protein on the platelet-derived growth factor (PDGF)-induced migration of airway smooth muscle cells (ASMCs) and the underlying molecular mechanism by using multiple methods, such as impedance-based xCELLigence migration assay, transwell migration assays and wound-healing assays. We found that exogenous S100A8 protein significantly inhibited PDGF-induced ASMC migration. Furthermore, the migration inhibition effect of S100A8 was blocked by neutralizing antibody against the receptor for advanced glycation end-products (RAGE), a potential receptor for the S100A8 protein. These findings provide direct evidence that exogenous S100A8 protein inhibits the PDGF-induced migration of ASMCs through the membrane receptor RAGE. Our study highlights a novel role of S100A8 as a potential means of counteracting airway remodeling in chronic airway diseases.

  4. β2-Adrenoceptor agonist-mediated inhibition of human airway smooth muscle cell proliferation: importance of the duration of β2-adrenoceptor stimulation

    PubMed Central

    Stewart, Alastair G; Tomlinson, Paul R; Wilson, John W

    1997-01-01

    Airway hyperresponsiveness in asthma has been ascribed to airway wall thickening as a result of smooth muscle proliferation and hypertrophy. We have previously shown that continuous exposure to the β2-adrenoceptor agonist, salbutamol inhibits mitogen-induced proliferation of airway smooth muscle cells. In the present study, the effects of variable durations and repeated periods of exposure to β2-adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle have been investigated to model some of the possible pharmacokinetic profiles of these agents following inhalation. DNA synthesis was measured by [3H]-thymidine incorporation. Shorter periods of exposure (up to 2.5 h) of airway smooth muscle cells to salbutamol (100 nM) commencing 30 min before thrombin (0.3 u ml−1) stimulation had no effect on the subsequent increase in [3H]-thymidine incorporation. However, inhibition by salbutamol was evident with a 4.5 h exposure and was maximal after an 8.5 h exposure. Similar patterns of results were observed when fenoterol (100 nM) was used in place of salbutamol as the β2-adrenoceptor agonist or when epidermal growth factor (300 pM) was used in place of thrombin as the mitogen. Salbutamol had no effect on thrombin-stimulated [3H]-leucine incorporation after 8.5 h of exposure, but a statistically significant effect was observed after 48 h of exposure. Experiments in which DNA synthesis was measured up to 52 h after the addition of thrombin indicated that exposure to salbutamol during the first 8 h of mitogen stimulation delayed rather than inhibited the DNA synthesis. Addition of salbutamol (100 nM) at different times either before or up to 24 h after the addition of thrombin indicated that [3H]-thymidine incorporation (measured between 24 and 28 h after thrombin) could be significantly attenuated when salbutamol was added as late as 18 h after the addition of thrombin. The effects of more prolonged exposure to

  5. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells.

    PubMed

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  6. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    PubMed Central

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G.

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  7. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  8. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  9. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  10. Upregulation of TRPM7 augments cell proliferation and interleukin-8 release in airway smooth muscle cells of rats exposed to cigarette smoke

    PubMed Central

    LIN, XIAOLING; YANG, CHENG; HUANG, LINJIE; CHEN, MING; SHI, JIANTING; OUYANG, LIHUA; TANG, TIANTIAN; ZHANG, WEI; LI, YIQUN; LIANG, RUIYUN; JIANG, SHANPING

    2016-01-01

    Proliferation and synthetic function (i.e. the capacity to release numerous chemokines and cytokines) of airway smooth muscle cells (ASMCs) are important in airway remodeling induced by cigarette smoke exposure. However, the molecular mechanism has not been clarified. Transient receptor potential cation channel subfamily M member 7 (TRPM7) is expressed ubiquitously and is crucial for the cellular physiological function of many cell types. The present study aimed to detect the expression of TRPM7 in ASMCs from smoke-exposed rats and determine the importance of TRPM7 in proliferation and interleukin-8 (IL-8) release. ASMCs were isolated and cultured from smoke-exposed rats. Expression levels of TRPM7 were determined by reverse transcription-polymerase chain reaction, western blot analysis and immunofluorescence. TRPM7 was silenced with TRPM7-short hairpin RNA lentivirus vector. DNA synthesis, cell number and IL-8 release of ASMCs induced by cigarette smoke extract (CSE) and tumor necrosis factor-α (TNF-α) were assessed using [3H]-thymidine incorporation assay, hemocytometer and enzyme-linked immunosorbent assay, respectively. It was determined that mRNA and protein expression levels of TRPM7 were increased in ASMCs from smoke-exposed rats. Stimulation with CSE or TNF-α elevated DNA synthesis, cell number and IL-8 release were more marked in ASMCs from smoke-exposed rats. Silencing of TRPM7 reduced DNA synthesis, cell number and IL-8 release induced by CSE or TNF-α in ASMCs from smoke-exposed rats. In conclusion, expression of TRPM7 increased significantly in ASMCs from smoke-exposed rats and the upregulation of TRPM7 led to augmented cell proliferation and IL-8 release in ASMCs from rats exposed to cigarette smoke. PMID:27108806

  11. Propofol protects against opioid-induced hyperresponsiveness of airway smooth muscle in a horse model of target-controlled infusion anaesthesia.

    PubMed

    Calzetta, Luigino; Soggiu, Alessio; Roncada, Paola; Bonizzi, Luigi; Pistocchini, Elena; Urbani, Andrea; Rinaldi, Barbara; Matera, Maria Gabriella

    2015-10-15

    General anaesthesia in horses is associated with elevated mortality rate in subjects suffering of heaves. Target-controlled infusion (TCI) of sedative-hypnotic medications and opioids represents a total intravenous anaesthesia (TIVA) method validated in veterinary medicine. Since there are no data concerning the impact of these classes of drugs in inducing bronchial hyperresponsiveness (BHR) in horses, the aim of this study was to investigate the effect propofol and remifentanil on the contractile response of equine airway smooth muscle. The influence of propofol and remifentanil on the contractile response of equine isolated bronchi to electrical field stimulation (EFS) was assessed. The role of capsaicin-sensitive sensory nerves, inducible nitric oxide synthase (iNOS) and neurokinin 2 (NK2) receptor was also assessed. The interaction analysis was performed by Bliss Independence theory. Experiments were repeated in desensitized and passively sensitized airways. Remifentanil induced BHR in both non-sensitized and passively sensitized bronchi, (+56.33±8.01% and +99.10±14.52%, respectively; P<0.01 vs. control) and propofol significantly prevented this effect (P>0.05 vs. remifentanil). The inactivation of capsaicin-sensitive sensory nerves via desensitization and blocking NK2 receptor inhibited the BHR remifentanil-induced (P>0.05 vs. controls). The inhibition of iNOS reverted the protective effect of propofol on the BHR induced by remifentanil (non-sensitized: +47.11±7.70%; passively sensitized: +70.51±11.39%; P<0.05 vs. control). Propofol synergistically interacted (overall ≈40%) in preventing the remifentanil-induced BHR. Remifentanil induces BHR via stimulating capsaicin-sensitive sensory nerves that facilitate the cholinergic neurotransmission through the activation of NK2 receptor. The propofol/remifentanil combination may be safely administered in course of TCI-TIVA procedures also in heaves affected horses.

  12. Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway.

    PubMed

    Ramírez-Lee, Manuel A; Rosas-Hernández, Héctor; Salazar-García, Samuel; Gutiérrez-Hernández, José Manuel; Espinosa-Tanguma, Ricardo; González, Francisco J; Ali, Syed F; González, Carmen

    2014-01-13

    Silver nanoparticles (AgNPs) are used to manufacture materials with new properties and functions. However, little is known about their toxic or beneficial effects on human health, especially in the respiratory system, where its smooth muscle (ASM) regulates the airway contractility by different mediators, such as acetylcholine (ACh) and nitric oxide (NO). The aim of this study was to evaluate the effects of AgNPs on ASM cells. Exposure to AgNPs induced ACh-independent expression of the inducible nitric oxide synthase (iNOS) at 100 μg/mL, associated with excessive production of NO. AgNPs induced the muscarinic receptor activation, since its blockage with atropine and blockage of its downstream signaling pathway inhibited the NO production. AgNPs at 10 and 100 μg/mL induced ACh-independent prolonged cytotoxicity and decreased cellular proliferation mediated by the muscarinic receptor-iNOS pathway. However, the concentration of 100 μg/mL of AgNPs induced muscarinic receptor-independent apoptosis, suggesting the activation of multiple pathways. These data indicate that AgNPs induce prolonged cytotoxic and anti-proliferative effects on ASM cells, suggesting an activation of the muscarinic receptor-iNOS pathway. Further investigation is required to understand the full mechanisms of action of AgNPs on ASM under specific biological conditions.

  13. Long Term and Standard Incubations of WST-1 Reagent Reflect the Same Inhibitory Trend of Cell Viability in Rat Airway Smooth Muscle Cells

    PubMed Central

    Yin, Lei-Miao; Wei, Yin; Wang, Yu; Xu, Yu-Dong; Yang, Yong-Qing

    2013-01-01

    The WST-1 assay is an efficient test for cell viability measurement and the standard incubation time is 2h. In order to test if one-time addition of WST-1 reagent can reflect the relative cell viability trend of the testing agents at different time points, the effects of 2h standard incubation time and long term incubation time (2h+24h, 2h+48h) of WST-1 were compared in the rat airway smooth muscle cells (ASM cells) after adding of the testing protein MRP-14. Our study demonstrated that the effect of different dosages of the protein after 2h WST-1 incubation on ASM cells showed a tendency of inhibition and achieved the maximal inhibition effect at 72h. The relative cell viability trend of the 2h+24h group was the same to that of the 2h WST-1 incubation, which means that 24h prolonged incubation time of WST-1 reagent could still reflect the relative cell viability trend. In conclusion, the study suggested that the WST-1 is a proper candidate reagent for continuous monitation of cell viability. PMID:23289007

  14. A new class of nitric oxide-releasing derivatives of cetirizine; pharmacological profile in vascular and airway smooth muscle preparations

    PubMed Central

    Larsson, A-K; Fumagalli, F; DiGennaro, A; Andersson, M; Lundberg, J; Edenius, C; Govoni, M; Monopoli, A; Sala, A; Dahlén, S-E; Folco, G C

    2007-01-01

    Background and purpose: The pharmacological properties of compounds NCX 1512 and NCX 1514, synthesized by linking the histamine H1-receptor antagonist cetirizine to NO-releasing spacer groups, are reported. The aim was to establish if the compounds retained the antihistamine action of the parent compound, to assess their efficacy as NO donors and to test if they had broader antiallergic activity than cetirizine in the lung. Experimental approach: Antihistamine activity of NCX 1512 and NCX 1514 was investigated in vitro in the guinea pig ileum, in tracheal rings (GPTR) and lung parenchymal strips (GPLP) of the guinea-pig. The NO-releasing capacity was investigated in vascular preparations; the isolated rabbit and guinea-pig aorta and guinea-pig pulmonary artery. Kinetics of NO release were assessed in a rat whole blood assay. Key results: Both NCX 1512 and NCX 1514 retained activity as H1-receptor antagonists in the guinea pig ileum and airway preparations. The NO-releasing NCX compounds relaxed the rabbit aorta, an action prevented by the guanylyl cyclase inhibitor ODQ (10 μM). NCX 1512 and NCX 1514 did not relax the antigen (ovalbumin) pre-contracted GPTR, whereas the NO donors NCX 2057 and DEA-NONOate relaxed guinea-pig pre-contracted vascular and tracheal preparations. Cetirizine (1–100 μM) and NCX 1512 (1–100 μM) reduced the cumulative (0.01–100 μg ml−1) ovalbumin-induced constriction in GPTR, but had no significant effect in GPLP. Conclusions and implications: NCX 1512 and NCX 1514 act as antihistamines and NO donors. However, there was no improved effect compared to cetirizine on antigen-induced constriction of the central and peripheral lung. PMID:17351654

  15. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  16. Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca(2+) regulation.

    PubMed

    Jia, Li; Delmotte, Philippe; Aravamudan, Bharathi; Pabelick, Christina M; Prakash, Y S; Sieck, Gary C

    2013-10-01

    Inflammation elevates intracellular Ca(2+) ([Ca(2+)]i) concentrations in airway smooth muscle (ASM). Store-operated Ca(2+) entry (SOCE) is an important source of [Ca(2+)]i mediated by stromal interaction molecule-1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca(2+) depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca(2+) release-activated Ca(2+) channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein-tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca(2+)-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca(2+) depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca(2+) depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca(2+)]i, and decreased SR Ca(2+) content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness. PMID:23713409

  17. Role of cyclo-oxygenase-2 induction in interleukin-1β induced attenuation of cultured human airway smooth muscle cell cyclic AMP generation in response to isoprenaline

    PubMed Central

    Pang, Linhua; Holland, Elaine; Knox, Alan J

    1998-01-01

    Airway smooth muscle (ASM) in human asthma shows reduced relaxation and cyclic AMP generation in response to β-adrenoceptor agonists. IL-β attenuates cyclic AMP generation but the underlying mechanism is unclear. We have reported that IL-1β induces cyclo-oxygenase-2 (COX-2) in human ASM cells and results in a marked increase in prostanoid generation with PGE2 and PGI2 as the major products.We investigated the role of COX-2 induction and prostanoid release (measured as PGE2) in IL-1β induced attenuation of cyclic AMP generation in response to the β-adrenoceptor agonist isoprenaline (ISO).Pre-treatment of human ASM cells with IL-1β significantly attenuated cyclic AMP generation in response to high concentrations of ISO (1.0–10.0 μM) in a time- and concentration-dependent manner. The effect was accompanied by a high concentration of PGE2 release. The non-selective COX inhibitor indomethacin (Ind), the selective COX-2 inhibitor NS-398, the protein synthesis inhibitors cycloheximide (CHX) and actinomycin D and the steroid dexamethasone (Dex) all abolished the PGE2 release and prevented the attenuated cyclic AMP generation.COX substrate arachidonic acid time- and concentration-dependently mimicked IL-1β induced attenuation and the effect was prevented by the non-selective COX inhibitors Ind and flurbiprofen, but not by NS-398, CHX and Dex.In contrast to IL-1β, TNFα and IFNγ, which are ineffective in inducing COX-2 and releasing PGE2 from human ASM cells, did not affect the cyclic AMP formation.Our study demonstrates that COX-2 induction and the consequent release of prostanoids plays a crucial role in IL-1β induced attenuation of human ASM cell cyclic AMP response to ISO. PMID:9863663

  18. Tumor Necrosis Factor Alpha Inhibits L-Type Ca2+ Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway

    PubMed Central

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca2+ channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway. PMID:27445440

  19. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway.

    PubMed

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María; Montaño, Luis M

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  20. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway.

    PubMed

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María; Montaño, Luis M

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway. PMID:27445440

  1. LncRNAs BCYRN1 promoted the proliferation and migration of rat airway smooth muscle cells in asthma via upregulating the expression of transient receptor potential 1

    PubMed Central

    Zhang, Xiao-Yu; Zhang, Luo-Xian; Tian, Cui-Jie; Tang, Xue-Yi; Zhao, Li-Min; Guo, Ya-Li; Cheng, Dong-Jun; Chen, Xian-Liang; Ma, Li-Jun; Chen, Zhuo-Chang

    2016-01-01

    Background: Long noncoding RNAs (lncRNAs) played important roles in several biological processes through regulating the expression of protein. However, the function of lncRNA BCYRN1 in airway smooth muscle cells (ASMCs) has not been reported. Methods: Male Sprague-Dawley (SD) rats were divided into control and asthma groups and the ovalbumin (OVA) model was constructed. The expression of BCYRN1 and transient receptor potential 1 (TRPC1) were detected in the ASMCs separated from these rats. Then 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay, Roche real-time cell analyzer (RTCA) DP assay and Transwell cell migration assay were performed to detect the effect of BCYRN1 on the viability/proliferation and migration of ASMCs. RNA pull-down assays and RNA immunoprecipitation assay were used to identify and verify the binding between BCYRN1 and TRPC1. Inspiratory resistance and expiratory resistance were measured in OVA challenged rats with BCYRN1 knockdown. Results: We foundthe high expression of BCYRN1 and TRPC1 in asthma groups and ASMCs treated with PDGF-BB. Overexpression of BCYRN1 greatly promoted the proliferation and migration of ASMCs. In addition,TRPC1 overexpression reversed the function of si-BCYRN1 indecreasing the viability/proliferation and migration of ASMCs treated with PDGF-BB. BCYRN1 could up-regulate the protein level of TRPC1 through increasing the stability of TRPC1. Finally, we found that BCYRN1 knockdown reduced the inspiratory resistance and expiratory resistance in OVA challenged rats. Conclusion: Our study indicated that BCYRN1 promotedthe proliferation and migration of rat ASMCs in asthma via upregulating the expression of TRPC1. PMID:27648131

  2. Divergent modulation of Rho‐kinase and Ca2+ influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle

    PubMed Central

    Shaifta, Yasin; Irechukwu, Nneka; Prieto‐Lloret, Jesus; MacKay, Charles E; Marchon, Keisha A; Ward, Jeremy P T

    2015-01-01

    Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease. PMID:26294392

  3. Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling

    PubMed Central

    Stewart, A G; Xia, Y C; Harris, T; Royce, S; Hamilton, J A; Schuliga, M

    2013-01-01

    BACKGROUND AND PURPOSE The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH Human ASM cells were incubated with plasminogen (0.5–50 μg·mL−1) or plasmin (0.5–50 mU·mL−1) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [3H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS Plasminogen (5 μg·mL−1)-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL−1) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma. PMID:24111848

  4. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation

    PubMed Central

    Komalavilas, Padmini; Penn, Raymond B.; Flynn, Charles R.; Thresher, Jeffrey; Lopes, Luciana B.; Furnish, Elizabeth J.; Guo, Manhong; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.; Brophy, Colleen M.

    2009-01-01

    Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics. PMID:17993590

  5. LncRNAs BCYRN1 promoted the proliferation and migration of rat airway smooth muscle cells in asthma via upregulating the expression of transient receptor potential 1

    PubMed Central

    Zhang, Xiao-Yu; Zhang, Luo-Xian; Tian, Cui-Jie; Tang, Xue-Yi; Zhao, Li-Min; Guo, Ya-Li; Cheng, Dong-Jun; Chen, Xian-Liang; Ma, Li-Jun; Chen, Zhuo-Chang

    2016-01-01

    Background: Long noncoding RNAs (lncRNAs) played important roles in several biological processes through regulating the expression of protein. However, the function of lncRNA BCYRN1 in airway smooth muscle cells (ASMCs) has not been reported. Methods: Male Sprague-Dawley (SD) rats were divided into control and asthma groups and the ovalbumin (OVA) model was constructed. The expression of BCYRN1 and transient receptor potential 1 (TRPC1) were detected in the ASMCs separated from these rats. Then 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay, Roche real-time cell analyzer (RTCA) DP assay and Transwell cell migration assay were performed to detect the effect of BCYRN1 on the viability/proliferation and migration of ASMCs. RNA pull-down assays and RNA immunoprecipitation assay were used to identify and verify the binding between BCYRN1 and TRPC1. Inspiratory resistance and expiratory resistance were measured in OVA challenged rats with BCYRN1 knockdown. Results: We foundthe high expression of BCYRN1 and TRPC1 in asthma groups and ASMCs treated with PDGF-BB. Overexpression of BCYRN1 greatly promoted the proliferation and migration of ASMCs. In addition,TRPC1 overexpression reversed the function of si-BCYRN1 indecreasing the viability/proliferation and migration of ASMCs treated with PDGF-BB. BCYRN1 could up-regulate the protein level of TRPC1 through increasing the stability of TRPC1. Finally, we found that BCYRN1 knockdown reduced the inspiratory resistance and expiratory resistance in OVA challenged rats. Conclusion: Our study indicated that BCYRN1 promotedthe proliferation and migration of rat ASMCs in asthma via upregulating the expression of TRPC1.

  6. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    PubMed

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.

  7. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    PubMed Central

    Fukunaga, Kentaro; Kume, Hiroaki; Oguma, Tetsuya; Shigemori, Wataru; Tohda, Yuji; Ogawa, Emiko; Nakano, Yasutaka

    2016-01-01

    Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors. PMID:27657061

  8. TNFα and IFNγ Synergistically Enhance Transcriptional Activation of CXCL10 in Human Airway Smooth Muscle Cells via STAT-1, NF-κB, and the Transcriptional Coactivator CREB-binding Protein

    PubMed Central

    Clarke, Deborah L.; Clifford, Rachel L.; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J.

    2010-01-01

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease. PMID:20833730

  9. TNFα and IFNγ synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-κB, and the transcriptional coactivator CREB-binding protein.

    PubMed

    Clarke, Deborah L; Clifford, Rachel L; Jindarat, Sarawut; Proud, David; Pang, Linhua; Belvisi, Maria; Knox, Alan J

    2010-09-17

    Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.

  10. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  11. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype‑3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells.

    PubMed

    Liu, Yuan-Hua; Wu, Song-Ze; Wang, Gang; Huang, Ni-Wen; Liu, Chun-Tao

    2015-06-01

    The persistent administration of β2‑adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long‑acting β2‑adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti‑α‑smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C‑β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5‑trisphosphate (IP3) was determined using an enzyme‑linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time‑ and dose‑dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol‑induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR‑cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol‑induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  12. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  13. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  14. Determination of mass changes in phosphatidylinositol 4,5-bisphosphate and evidence for agonist-stimulated metabolism of inositol 1,4,5-trisphosphate in airway smooth muscle.

    PubMed Central

    Chilvers, E R; Batty, I H; Challiss, R A; Barnes, P J; Nahorski, S R

    1991-01-01

    Stimulation of muscarinic receptors in bovine tracheal smooth muscle (BTSM) causes a sustained increase in muscle tone, but a transient increase in the second messenger Ins(1,4,5)P3. To examine whether this brief increase in Ins(1,4,5)P3 mass results from transient formation or is due to agonist-stimulation of Ins(1,4,5)P3 metabolism, we have studied the relationship between mass changes in PtdIns(4,5)P2 and Ins(1,4,5)P3 accumulation, and changes in [3H]InsP3, [3H]PtdIns, [3H]PtdInsP1 and [3H]PtdInsP2 in carbachol-stimulated myo-[3H]inositol-prelabelled BTSM slices. Carbachol (0.1 mM) caused a rapid transient increase in Ins(1,4,5)P3 concentration (basal, 12.9 +/- 0.8 pmol/mg of protein; 5 s carbachol treatment, 27.1 +/- 1.5 pmol/mg of protein), with values returning to basal levels by 30 s, but a sustained accumulation of total [3H]InsP3s, with [3H]Ins(1,3,4)P3 being the predominant isomer present at later time points. In contrast, PtdIns(4,5)P2 mass, determined by radioreceptor assay of Ins(1,4,5)P3 in desalted alkaline hydrolysates of acidified chloroform/methanol tissue extracts, declined rapidly (basal, 941 +/- 22 pmol/mg of protein; 120 s carbachol, 365 +/- 22 pmol/mg of protein; t1/2 14 s) and remained at this new steady-state level for at least 20 min in the continued presence of carbachol. Addition of 10 microM-atropine 2 min after carbachol caused a prompt return of PtdIns(4,5)P2 concentration to prestimulated values (t1/2 210 s). Ongoing resynthesis of PtdIns(4,5)P2 after carbachol stimulation was demonstrated in [3H]inositol-labelled tissue by observing a persistent increase in the specific radioactivity of [3H]PtdInsP2, shown to be exclusively [3H]PtdIns(4,5)P2, over a 10 min period. These findings strongly suggest the occurrence of persistent receptor-mediated increases in PtdIns(4,5)P2 hydrolysis and Ins(1,4,5)P3 formation which, in conjunction with the transient accumulation of Ins(1,4,5)P3 observed, provide evidence that regulation of the

  15. Small Heat Shock Proteins in Smooth Muscle

    PubMed Central

    Salinthone, Sonemany; Tyagi, Manoj; Gerthoffer, William T.

    2008-01-01

    The small heat shock proteins (HSPs) HSP20, HSP27 and αB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems. PMID:18579210

  16. beta-hexosaminidase-induced activation of p44/42 mitogen-activated protein kinase is dependent on p21Ras and protein kinase C and mediates bovine airway smooth-muscle proliferation.

    PubMed

    Lew, D B; Dempsey, B K; Zhao, Y; Muthalif, M; Fatima, S; Malik, K U

    1999-07-01

    Late-phase and sustained activation of p44/42(MAPK) has been reported to be a critical factor in cell mitogenesis. We therefore hypothesized that p44/42(MAPK) is involved in mannosyl-rich glycoprotein-induced mitogenesis in bovine airway smooth-muscle cells (ASMC). Treatment of adherent ASMC with beta-hexosaminidase A (Hex A, 50 nM), an endogenous mannosyl-rich glycoprotein, resulted in a late-onset (30-min) activation of p44/42(MAPK) that lasted for 4 h. Activation of p44/42(MAPK) induced by Hex A was inhibited by an 18-mer phosphorothioate-derivatized antisense oligonucleotide (1-5 microM) directed to human p44(MAPK); the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059 (5 microM); the p42(MAPK) inhibitor Tyrphostin AG-126 (0.2 microM); the farnesyl transferase inhibitors SCH-56582 (10 microM) and FPT III (10 miroM), which inhibit p21Ras activation; and Calphostin C (0.2 microM), an inhibitor of protein kinase C. These agents also inhibited Hex A-induced cell proliferation in bovine ASMC. These data suggest that Hex A activates p44/42(MAPK) in a p21Ras- and PKC-dependent manner and that this activation mediates Hex A- induced mitogenesis in bovine ASMC.

  17. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body.

  18. Long-term effects of acupuncture treatment on airway smooth muscle in a rat model of smoke-induced chronic obstructive pulmonary disease

    PubMed Central

    Li, Jia; Wu, Song; Tang, Hongtu; Huang, Wei; Wang, Lushan; Zhou, Huanjiao; Zhou, Miao; Wang, Hua; Li, Jing

    2016-01-01

    Background Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases. It is a chronic inflammatory process characterised by airway obstruction and progressive lung inflammation, associated with difficulty breathing and insensitivity to corticosteroid therapy. Although there is some preliminary evidence to suggest a beneficial effect of acupuncture on COPD, its mechanism of action has not been investigated. Our aim was to examine the anti-inflammatory effects of acupuncture in a rat model of COPD induced by exposure to cigarette smoke (CS). Methods Sixty Sprague–Dawley rats were exposed to the smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months to induce COPD and treated with acupuncture at BL13 (Feishu), BL23 (Shenshu) and Dingchuan (COPD+Acupuncture, n=15), sham acupuncture (COPD+Sham, n=15) or left untreated (n=15). Exposed rats were compared with controls not exposed to CS (control, n=15). Pulmonary function was measured, and tumour necrosis factor-α (TNF-α) and interleukin-8 (IL-8) levels were determined in bronchoalveolar lavage fluid by ELISA. Histone deacetylase 2 (HDAC2) protein and mRNA expression were examined in lung tissue and in bronchus. Results Acupuncture treatment appeared to protect pulmonary function and reduce the COPD-induced inflammatory response by decreasing cell inflammation and the production of TNF-α and IL-8. Acupuncture also enhanced HDAC2 mRNA and protein expression, suggesting a possible direct effect on protein structure through post-translational modifications. Conclusions Our results suggest that acupuncture regulates inflammatory cytokines and contributes to lung protection in a rat model of smoke-induced COPD by modulating HDAC2. PMID:26345700

  19. Abnormal tracheal smooth muscle function in the CF mouse

    PubMed Central

    Wallace, Helen L; Southern, Kevin W; Connell, Marilyn G; Wray, Susan; Burdyga, Theodor

    2013-01-01

    Increased airway smooth muscle (ASM) contractility is thought to underlie symptoms of airway hyperresponsiveness (AHR). In the cystic fibrosis (CF) airway, ASM anomalies have been reported, but have not been fully characterized and the underlying mechanisms are largely unknown. We examined ASM in an adult CF mouse tracheal ring preparation, and determined whether changes in contractility were associated with altered ASM morphology. We looked for inherent changes in the cellular pathways involved in contractility, and characterized trachea morphology in the adult trachea and in an embryonic lung culture model during development. Results showed that that there was a reduction in tracheal caliber in CF mice as indicated by a reduction in the number of cartilage rings; proximal cross-sectional areas of cftr−/− tracheas and luminal areas were significantly smaller, but there was no difference in the area or distribution of smooth muscle. Morphological differences observed in adult trachea were not evident in the embryonic lung at 11.5 days gestation or after 72 h in culture. Functional data showed a significant reduction in the amplitude and duration of contraction in response to carbachol (CCh) in Ca-free conditions. The reduction in contraction was agonist specific, and occurred throughout the length of the trachea. These data show that there is a loss in the contractile capacity of the CF mouse trachea due to downregulation of the pathway specific to acetylcholine (ACh) activation. This reduction in contraction is not associated with changes in the area or distribution of ASM. PMID:24400140

  20. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  1. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  2. Effects of hydrogen sulphide in smooth muscle.

    PubMed

    Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E

    2016-02-01

    In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.

  3. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation

    PubMed Central

    1986-01-01

    A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions. PMID:3539945

  4. Autophagic regulation of smooth muscle cell biology

    PubMed Central

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  5. Upper airway muscles awake and asleep.

    PubMed

    Sériès, Frédéric

    2002-06-01

    Upper airway (UA) structures are involved in different respiratory and non-respiratory tasks. The coordination of agonist and antagonist UA dilators is responsible for their mechanical function and their ability to maintain UA patency throughout the respiratory cycle. The activity of these muscles is linked with central respiratory activity but also depends on UA pressure changes and is greatly influenced by sleep. UA muscles are involved in determining UA resistance and stability (i.e. closing pressure), and the effect of sleep on these variables may be accounted for by its effect on tonic and phasic skeletal muscle activities. The mechanical effects of UA dilator contraction also depend on their physiological properties (capacity to generate tension in vitro, activity of the anaerobic enzymatic pathway, histo-chemical characteristics that may differ between subjects who may or may not have sleep-related obstructive breathing disorders). These characteristics may represent an adaptive process to an increased resistive loading of these muscles. The apparent discrepancy between the occurrence of UA closure and an increased capacity to generate tension in sleep apnea patients may be due to a reduction in the effectiveness of UA muscle contraction in these patients; such an increase in tissue stiffness could be accounted for by peri-muscular tissue characteristics. Therefore, understanding of UA muscle physiological characteristics should take into account its capacity for force production and its mechanical coupling with other UA tissues. Important research goals for the future will be to integrate these issues with other physiological features of the disease, such as UA size and dimension, histological characteristics of UA tissues and the effect of sleep on muscle function. Such integration will better inform understanding of the role of pharyngeal UA muscles in the pathophysiology of the sleep apnea/hypopnea syndrome. PMID:12531123

  6. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  7. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles

    PubMed Central

    Perrino, Brian A

    2016-01-01

    An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract. PMID:26701920

  8. Action of acetylcholine on smooth muscle.

    PubMed

    Bolton, T B; Lim, S P

    1991-01-01

    Contraction of smooth muscle by acetylcholine is mediated by activation of muscarinic receptors of which M2 and M3 subtypes are present in longitudinal muscle of guinea pig intestine. In single cells, muscarinic receptor activation evokes calcium release from stores which raises the internal free calcium concentration and causes opening of calcium-activated potassium channels. The rise in internal calcium suppresses the voltage-dependent inward calcium current. A third important effect is the opening of channels which cause depolarization of the membrane and so increase action potential discharge and contraction in the whole muscle. These channels were studied by voltage-clamp of single cells from longitudinal muscle of rabbit small intestine. They were found to be permeable to Na and K but not detectably permeable to Cl. They can pass Ca but the amount entering the cell is not sufficient to raise the internal calcium concentration appreciably.

  9. Gene transfer by adenovirus in smooth muscle cells.

    PubMed

    Yu, M F; Ewaskiewicz, J I; Adda, S; Bailey, K; Harris, V; Sosnoski, D; Tomasic, M; Wilson, J; Kotlikoff, M I

    1996-08-01

    We report adenovirus-mediated gene transfer into airway smooth muscle cells in cultured cells and organ-cultured tracheal segments. Incubation of cultured rat tracheal myocytes with virus (5 x 10(8) pfu/ml) for 6 h resulted in beta-galactosidase expression in 94.8 +/- 2.5% of cells (n = 4). Following incubation of thin (less than 200 microns diameter) equine trachealis muscle segments with virus in organ culture (5 x 10(8)-5 x 10(10) pfu/ml) the average expression of the Lac Z gene was approximately 19 +/- 10% (n = 9). Expression was markedly improved, however, in segments from neonatal rats (13-21 days). In two experiments in which the mucosa and serosa were removed, nearly all cells expressed beta-galactosidase, whereas in a third experiment in which the tissue was not dissected, about 40% of cells were stained. Viral infection had no effect on tension development of strips following organ culture. In vitro gene transfer may provide a useful method to alter protein expression and examine the effect of this alteration on excitation/contraction coupling in smooth muscle.

  10. Smooth muscle tumours of the alimentary tract.

    PubMed Central

    Diamond, T.; Danton, M. H.; Parks, T. G.

    1990-01-01

    Neoplasms arising from smooth muscle of the gastrointestinal (GI) tract are uncommon, comprising only 1% of gastrointestinal tumours. A total of 51 cases of smooth muscle tumour of the GI tract were analysed; 44 leiomyomas and 7 leiomyosarcomas. Lesions occurred in all areas from the oesophagus to the rectum, the stomach being the commonest site. Thirty-six patients had clinical features referable to the tumour. The tumour was detected during investigation or management of an unrelated disease process in 15 patients. The clinical presentation varied depending on tumour location, but abdominal pain and GI bleeding were the commonest presenting symptoms. The lesion was demonstrated preoperatively, mainly by endoscopy and barium studies, in 27 patients. Surgical excision was the treatment of choice, where possible. There was no recurrence in the leiomyoma group but four patients died in the leiomyosarcoma group. Although rare, smooth muscle tumours should be considered in situations where clinical presentation and investigations are not suggestive of any common GI disorder. The preoperative assessment and diagnosis is difficult because of the variability in clinical features and their inaccessibility to routine GI investigation. It is recommended that, where possible, the lesion, whether symptomatic or discovered incidentally, should be excised completely to achieve a cure and prevent future complications. Images Figure 3 Figure 4 PMID:2221768

  11. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    PubMed

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  12. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  13. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    PubMed

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells.

  14. O3-induced mucosa-linked airway muscle hyperresponsiveness in the guinea pig

    SciTech Connect

    Murlas, C.G.; Murphy, T.P.; Chodimella, V. )

    1990-07-01

    We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.

  15. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  16. Urethane and contraction of vascular smooth muscle.

    PubMed Central

    Altura, B. M.; Weinberg, J.

    1979-01-01

    1 In vitro studies were undertaken on rat aortic strips and portal vein segments in order to determine whether or not the anaesthetic, urethane, can exert direct actions on vascular smooth muscle. 2 Urethane was found to inhibit development of spontaneous mechanical activity. This action took place with a urethane concentration as little as one tenth of that found in anaesthetic plasma concentratios, i.e., 10(-3) M. 3 Urethane (10(-3 to 10(-1) M) dose-dependently attenuated contractions induced by adrenaline, angiotensin and KCl. These inhibitory actions were observed with urethane added either before or after the induced contractions. 4 Ca2+-induced contractions of K+-depolarized aortae and portal veins were also attenuated, dose-dependently, by urethane. 5 All of these inhibitory effects were completely, and almost immediately, reversed upon washing out the anaesthetic from the organ baths. 6 A variety of pharmacological antagonists failed to mimic or affect the inhibitory effects induced by urethane. 7 These data suggest that plasma concentrations of urethane commonly associated with induction of surgical anaesthesia can induce, directly, relaxation of vascular muscle. PMID:497529

  17. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  18. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  19. Mechanotransduction in colonic smooth muscle cells.

    PubMed

    Young, S H; Ennes, H S; Mayer, E A

    1997-11-15

    We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+]i) with peak of 422.7 +/- 43.8 nm above an average resting [Ca2+]i of 104.8 +/- 10.9 nM (n = 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+]i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+]i recovery was either abolished or reduced to less than or = 15% of control values. In contrast, no significant effect of gadolinium chloride (100 microM) or lanthanum chloride (25 microM) on either peak transient or prolonged [Ca2+]i recovery was observed. Pretreatment of cells with thapsigargin (1 microM) resulted in a 25% reduction of the mechanically induced peak [Ca2+]i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+]i transient peak. [Ca2+]i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 microM) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+]i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store.

  20. Vascular Smooth Muscle Cells in Atherosclerosis.

    PubMed

    Bennett, Martin R; Sinha, Sanjay; Owens, Gary K

    2016-02-19

    The historical view of vascular smooth muscle cells (VSMCs) in atherosclerosis is that aberrant proliferation of VSMCs promotes plaque formation, but that VSMCs in advanced plaques are entirely beneficial, for example preventing rupture of the fibrous cap. However, this view has been based on ideas that there is a homogenous population of VSMCs within the plaque, that can be identified separate from other plaque cells (particularly macrophages) using standard VSMC and macrophage immunohistochemical markers. More recent genetic lineage tracing studies have shown that VSMC phenotypic switching results in less-differentiated forms that lack VSMC markers including macrophage-like cells, and this switching directly promotes atherosclerosis. In addition, VSMC proliferation may be beneficial throughout atherogenesis, and not just in advanced lesions, whereas VSMC apoptosis, cell senescence, and VSMC-derived macrophage-like cells may promote inflammation. We review the effect of embryological origin on VSMC behavior in atherosclerosis, the role, regulation and consequences of phenotypic switching, the evidence for different origins of VSMCs, and the role of individual processes that VSMCs undergo in atherosclerosis in regard to plaque formation and the structure of advanced lesions. We think there is now compelling evidence that a full understanding of VSMC behavior in atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.

  1. Nox regulation of smooth muscle contraction.

    PubMed

    Ritsick, Darren R; Edens, William A; Finnerty, Victoria; Lambeth, J David

    2007-07-01

    The catalytic subunit gp91phox (Nox2) of the NADPH oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology are being extensively studied in many laboratories, little is known about in vivo functions of Noxes. Here, we establish and use an inducible system for RNAi to discover functions of dNox, an ortholog of human Nox5 in Drosophila. We report here that depletion of dNox in musculature causes retention of mature eggs within ovaries, leading to female sterility. In dNox-depleted ovaries and ovaries treated with a Nox inhibitor, muscular contractions induced by the neuropeptide proctolin are markedly inhibited. This functional defect results from a requirement for dNox-for the proctolin-induced calcium flux in Drosophila ovaries. Thus, these studies demonstrate a novel biological role for Nox-generated ROS in mediating agonist-induced calcium flux and smooth muscle contraction.

  2. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    PubMed Central

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  3. Traction in smooth muscle cells varies with cell spreading

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  4. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis.

    PubMed

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. As observed in this case, when performing laparoscopic surgery in order to excise malignant tumors of intra-abdominal or pelvic organs, it can be difficult for surgeons to distinguish the metastatic tumors from benign nodular pelvic wall lesions, including endometriosis, based on the gross findings only. Therefore, an intraoperative frozen section biopsy of the pelvic wall nodules should be performed to evaluate the peritoneal involvement by malignant tumors. Moreover, this report implies that peritoneal endometriosis, as well as rectovaginal endometriosis, can clinically present as nodular lesions if obvious smooth muscle metaplasia is present. The pathological investigation of smooth muscle cells in peritoneal lesions can contribute not only to the precise diagnosis but also to the structure and function of smooth muscle cells and related cells involved in the histogenesis of peritoneal endometriosis.

  5. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease.

  6. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  7. Localization of phospholamban in smooth muscle using immunogold electron microscopy

    PubMed Central

    1988-01-01

    Phospholamban, the putative regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, was immunolocalized in canine visceral and vascular smooth muscle. Gently disrupted tissues were labeled with an affinity-purified phospholamban polyclonal antibody and indirect immunogold, using preembedding techniques. The sarcoplasmic reticulum of smooth muscle cells was specifically labeled with patches of immunogold distributed in a nonuniform fashion, while the sarcolemma did not appear to contain any phospholamban. The outer nuclear envelopes were also observed to be heavily labeled with the affinity- purified phospholamban polyclonal antibody. These findings suggest that phospholamban may play a role in the regulation of cytoplasmic and intranuclear calcium levels in smooth muscle cells. PMID:3417762

  8. Tobacco constituents are mitogenic for arterial smooth-muscle cells

    SciTech Connect

    Becker, C.G.; Hajjar, D.P.; Hefton, J.M.

    1985-07-01

    Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.

  9. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    PubMed

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-01

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  10. Caffeine relaxes smooth muscle through actin depolymerization.

    PubMed

    Tazzeo, Tracy; Bates, Genevieve; Roman, Horia Nicolae; Lauzon, Anne-Marie; Khasnis, Mukta D; Eto, Masumi; Janssen, Luke J

    2012-08-15

    Caffeine is sometimes used in cell physiological studies to release internally stored Ca(2+). We obtained evidence that caffeine may also act through a different mechanism that has not been previously described and sought to examine this in greater detail. We ruled out a role for phosphodiesterase (PDE) inhibition, since the effect was 1) not reversed by inhibiting PKA or adenylate cyclase; 2) not exacerbated by inhibiting PDE4; and 3) not mimicked by submillimolar caffeine nor theophylline, both of which are sufficient to inhibit PDE. Although caffeine is an agonist of bitter taste receptors, which in turn mediate bronchodilation, its relaxant effect was not mimicked by quinine. After permeabilizing the membrane using β-escin and depleting the internal Ca(2+) store using A23187, we found that 10 mM caffeine reversed tone evoked by direct application of Ca(2+), suggesting it functionally antagonizes the contractile apparatus. Using a variety of molecular techniques, we found that caffeine did not affect phosphorylation of myosin light chain (MLC) by MLC kinase, actin-filament motility catalyzed by MLC kinase, phosphorylation of CPI-17 by either protein kinase C or RhoA kinase, nor the activity of MLC-phosphatase. However, we did obtain evidence that caffeine decreased actin filament binding to phosphorylated myosin heads and increased the ratio of globular to filamentous actin in precontracted tissues. We conclude that, in addition to its other non-RyR targets, caffeine also interferes with actin function (decreased binding by myosin, possibly with depolymerization), an effect that should be borne in mind in studies using caffeine to probe excitation-contraction coupling in smooth muscle.

  11. Changes in neuroreceptor function of tracheal smooth muscle following acute ozone exposure of guinea pigs.

    PubMed

    van Hoof, H J; Voss, H P; Kramer, K; Boere, A J; Dormans, J A; van Bree, L; Bast, A

    1997-07-11

    We studied the effect of in vivo ozone inhalation (3 ppm, 2 h) on neuroreceptor function in guinea pig tracheal smooth muscle in vitro and the role of the epithelial layer in this process. Changes in smooth muscle tension after stimulation of the muscarinic- and beta-adrenergic receptor were recorded isometrically and stained tracheal tissue sections were histologically evaluated for changes in the epithelial and smooth muscle layer. Ozone exposure resulted in an increase in maximal contraction following stimulation of the muscarinic receptor, whereas pD2 values remained unchanged. After stimulation of the beta-adrenergic receptor no increase in maximal relaxation but only an increase in pD2 value was observed after correction for differences in precontraction level in control- and ozone-exposed situations. Mechanical removal of the epithelial layer resulted in a slight increase of the maximal contraction level after stimulation with methacholine in the control situation, whereas exposure to ozone resulted in a strong decrease of the maximal contraction level under these conditions. Histological stainings showed a slight and focal influx of neutrophilic granulocytes in the epithelial layer, submucosal layer and airway lumen after exposure to ozone. These data support the idea that ozone is able to increase the maximal degree of airway narrowing upon muscarinergic stimulation, i.e. a hyperreactivity response. The results also suggest that functionally altered epithelium plays an important role in the process of ozone-induced hyperreactivity, possibly linked with an early inflammatory response.

  12. Neuroblastoma cell lines showing smooth muscle cell phenotypes.

    PubMed

    Sugimoto, T; Mine, H; Horii, Y; Takahashi, K; Nagai, R; Morishita, R; Komada, M; Asada, Y; Sawada, T

    2000-12-01

    Neuroblastoma is a tumor that is derived from the neural crest. Recent studies demonstrated that several human neuroblastoma cell lines exhibit at least three morphologic types: neuroblastic (N)-type, substrate-adhesive (S)-type and intermediate (I)-type cells. However, the origin of the S-type cells has not been clearly identified. In this study, the expressions of smooth muscle-specific proteins (desmin, alpha-smooth muscle actin, basic calponin and the smooth muscle myosin heavy-chain isoforms of SM1 and SM2) in three parent and four cloned neuroblastoma cell lines, composed of S-type cells, were examined by indirect immunofluorescence, Western blot and/or by reverse transcription-polymerase chain reaction (RT-PCR). Desmin was found in two of the seven cell lines, and alpha-smooth muscle actin and basic calponin were detected in all of seven of the cell lines. In three parent cell lines and one cloned cell line composed of N-type cells, none of three smooth muscle-specific proteins were detected. In smooth muscle myosin heavy-chain isoforms, SM1 was detected in two parent cell lines composed of S-type cells (MP-N-MS and KP-N-YS) by immunofluorescence, Western blot and/or by RT-PCR, whereas the SM2 isoform was detected in one parent cell line (MP-N-MS) by RT-PCR. These findings indicate that S-type cells have either the immature or mature smooth muscle cell phenotype, and neural crest cells very likely have the ability of to differentiate into smooth muscle cells in the human system.

  13. Influence of sleep on response to negative airway pressure of tensor palatini muscle and retropalatal airway.

    PubMed

    Wheatley, J R; Tangel, D J; Mezzanotte, W S; White, D P

    1993-11-01

    Increased retropalatal airway resistance may be caused by a sleep-induced loss of palatal muscle activity and a diminished ability of these muscles to respond to the increasing intrapharyngeal negative pressure that develops during sleep. To investigate these possibilities, in six normal subjects, we determined the effect of non-rapid-eye-movement sleep on 1) the tensor palatini (TP) electromyogram (EMG) response to rapid-onset negative-pressure generations (NPG) in the upper airway and 2) the collapsibility of the retropalatal airway during these NPGs. During wakefulness, the change in TP EMG from basal to peak levels (during NPG) was 19.8 +/- 3.2 arbitrary units (P < 0.005). This was markedly reduced during sleep (3.6 +/- 1.5 arbitrary units; P < 0.001). The latency of the TP EMG response was 48.5 +/- 5.6 ms during wakefulness but was prolonged during sleep (105.0 +/- 12.2 ms; P < 0.02). The peak transpalatal pressure during NPG (a measure of airway collapse) was 2.1 +/- 0.7 cmH2O during wakefulness and increased to 5.3 +/- 0.8 cmH2O during sleep (P < 0.05). We conclude that the brisk reflex response of the TP muscle to negative pressure during wakefulness is markedly reduced during non-rapid-eye-movement sleep, in association with a more collapsible retropalatal airway. We speculate that the reduction in this TP reflex response contributes to retropalatal airway narrowing during sleep in normal subjects.

  14. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography

    PubMed Central

    Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P.; Towse, Theodore F.; Damon, Bruce M.

    2015-01-01

    Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features. PMID:26010830

  15. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  16. Benzydamine Oral Spray Inhibiting Parasympathetic Function of Tracheal Smooth Muscle

    PubMed Central

    Chao, Pin-Zhir; Lee, Fei-Peng

    2015-01-01

    Objectives Benzydamine is a nonsteroidal anti-inflammatory agents agent with anti-inflammatory and local anesthesia properties that is available in the entire world as an oral spray for oral mucositis patients who are suffering from radiation effects. The effect of benzydamine on oral mucositis in vivo is well known; however, the effect of the drug on tracheal smooth muscle has rarely been explored. During administration of the benzydamine for oral symptoms, it might affect the trachea via oral intake or inhalation. Methods We examined the effectiveness of benzydamine on isolated rat tracheal smooth muscle. The following assessments of benzydamine were performed: effect on tracheal smooth muscle resting tension; effect on contraction caused by 10-6M methacholine as a parasympathetic mimetic; and effect of the drug on electrically induced tracheal smooth muscle contractions. Results Addition of methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of benzydamine at doses of 10-5M or above elicited a significant relaxation response to 10-6M methacholine-induced contraction. Benzydamine could inhibit electrical field stimulation-induced spike contraction. It alone had a minimal effect on the basal tension of trachea as the concentration increased. Conclusion This study indicated that high concentrations of benzydamine might actually inhibit parasympathetic function of the trachea. Benzydamine might reduce asthma attacks in oral mucositis patients because it could inhibit parasympathetic function and reduce methacholine-induced contraction of tracheal smooth muscle. PMID:25729498

  17. Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Mair, Christina E; Liu, Rongxia; Atanasov, Atanas G; Wimmer, Laurin; Nemetz-Fiedler, Daniel; Sider, Nadine; Heiss, Elke H; Mihovilovic, Marko D; Dirsch, Verena M; Rollinger, Judith M

    2015-08-01

    Successful vascular healing after percutaneous coronary interventions is related to the inhibition of abnormal vascular smooth muscle cell proliferation and efficient re-endothelialization. In the search for vascular smooth muscle cell anti-proliferative agents from natural sources we identified piperine (1), the main pungent constituent of the fruits from Piper nigrum (black pepper). Piperine inhibited vascular smooth muscle cell proliferation with an IC50 of 21.6 µM, as quantified by a resazurin conversion assay. Investigations of ten piperamides isolated from black pepper fruits and 15 synthesized piperine derivatives resulted in the identification of three potent vascular smooth muscle cell proliferation inhibitors: the natural alkaloid pipertipine (4), and the two synthetic derivatives (2E,4E)-N,N-dibutyl-5-(3,5-dimethoxyphenyl)penta-2,4-dienamide (14) and (E)-N,N-dibutyl-3-(naphtho[2,3-d][1,3]dioxol-5-yl)acrylamide (20). They showed IC50 values of 3.38, 6.00, and 7.85 µM, respectively. Furthermore, the synthetic compound (2E,4E)-5-(4-fluorophenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (12) was found to be cell type selective, by inhibiting vascular smooth muscle cell proliferation with an IC50 of 11.8 µM without influencing the growth of human endothelial cells. PMID:26132851

  18. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  19. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  20. Role of ROCK expression in gallbladder smooth muscle contraction.

    PubMed

    Wang, Bin; Ding, You-Ming; Wang, Chun-Tao; Wang, Wei-Xing

    2015-08-01

    Cholelithiasis is a common medical condition whose incidence rate is increasing yearly, while its pathogenesis has yet to be elucidated. The present study assessed the expression of Rho-kinase (ROCK) in gallbladder smooth muscles and its effect on the contractile function of gallbladder smooth muscles during gallstone formation. Thirty male guinea pigs were randomly divided into three groups: The control group, the gallstone model group and the fasudil interference group. The fasting volume (FV) and bile capacity of the gallbladder (FB) as well as the total cholesterol (TC) and triglyceride (TG) contents of the gallbladder bile were determined. In addition, the gallbladder was dissected to identify whether any gallstones had formed. Part of the gallbladder tissue specimens were used for immunohistochemical analysis of ROCK expression in gallbladder smooth muscles. The results showed that four guinea pigs in the model group and eight in the fasudil group displayed gallstone formation, while there was no gallstone formation in the control group. The FV and FB were significantly increased in the model and fasudil groups. Similarly, the TC and TG contents of gallbladder bile were increased in these groups. The positive expression rate of ROCK in gallbladder smooth muscles in the model and fasudil groups was significantly reduced compared with that in the control group (P<0.05). The results of the present study indicated that the reduction of ROCK expression in guinea pig gallbladder smooth muscles weakened gallbladder contraction and thereby promoted gallstone formation.

  1. Impact of obstructive apnea syndrome on upper airway respiratory muscles.

    PubMed

    Svanborg, Eva

    2005-07-28

    This article reviews studies of upper airway muscles in humans, with emphasis on muscle fiber structural and electrophysiological changes observed in patients with obstructive sleep apnea syndrome (OSAS). The concept of OSAS as a progressive disease is discussed and also possible causes. These include local nervous lesions in the upper airway, both motor and sensory. Previous muscle biopsy studies have given evidence for motor neuron lesions such as, e.g., the phenomenon of type grouping in histological sections. New data obtained with concentric needle EMG recordings from the palatopharyngeus muscles are also presented. In 10/12 OSAS patients there were typical findings indicating motor neuropathy (reduced EMG activity at maximal voluntary effort, long and polyphasic motor-unit potentials and, in two cases, spontaneous denervation activity), whereas such findings were only present in 3/15 patients with habitual snoring. This supports the hypothesis that progression from habitual snoring to the clinical disease of OSAS could be attributed to peripheral neurogenic lesions. PMID:16054444

  2. Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation

    PubMed Central

    Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.

    2016-01-01

    Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414

  3. Congenital smooth muscle hamartoma of the palpebral conjunctiva.

    PubMed

    Mora, L Evelyn; Rodríguez-Reyes, Abelardo A; Vera, Ana M; Rubio, Rosa Isela; Mayorquín-Ruiz, Mariana; Salcedo, Guillermo

    2012-01-01

    Smooth muscle hamartoma is defined as a disorganized focus or an overgrowth of mature smooth muscle, generally with low capacity of autonomous growth and benign behavior. The implicated tissues are mature and proliferate in a disorganized fashion. A healthy 5-day-old Mexican boy was referred to the authors' hospital in México city for evaluation of a "cystic" lesion of the right eye that had been noted since birth. The pregnancy and delivery were unremarkable. On physical examination, there was a reddish-pink soft lesion with a tender "cystic" appearance, which was probably emerging from the upper eyelid conjunctiva, which measured 2.7 cm in its widest diameter and transilluminated. Ultrasound imaging revealed an anterior "cystic" lesion with normally formed phakic eye. An excisional biopsy was performed, and the lesion was dissected from the upper tarsal subconjunctival space. Subsequent histologic and immunohistochemical findings were consistent with the diagnosis of congenital smooth muscle hamartoma (CSMH) of the tarsal conjunctiva. The authors' research revealed that only one case of CSMH localized in the conjunctiva (Roper GJ, Smith MS, Lueder GT. Congenital smooth muscle hamartoma of the conjunctival fornix. Am J Ophthalmol. 1999;128:643-4) has been reported to date in the literature. To the best of the authors' knowledge, this current case would be the second case reported of CSMH in this anatomic location. Therefore, the authors' recommendation is to include CSMH in the differential diagnosis of a cystic mass that presents in the fornix and palpebral conjunctiva.

  4. Carbon monoxide effects on calcium levels in vascular smooth muscle

    SciTech Connect

    Lin, H.; McGrath, J.J.

    1988-01-01

    Previously the authors showed that carbon monoxide (CO) relaxes vascular smooth muscle in the working heart and thoracic aorta preparation perfused with hemoglobin-free, Krebs-Henseleit (KH) solution. The CO-induced relaxation was not caused by hypoxia, nor was it mediated by adrenergic influences, adenosine, or prostaglandins. In these studies the effect of CO on calcium (Ca/sup + +/) concentrations in vascular smooth muscle was determined using /sup 45/Ca as a tracer. Isolated rat thoracic aorta segments were incubated with /sup 45/Ca and gassed with O/sub 2/, N/sub 2/, or CO for 60 min. Verapamil was used to verify the effectiveness of the test system. Ca/sup + +/ concentrations were 488 /+ -/ 35 and 515 /+ -/ 26 mM/g tissue (X /+ -/ SE) in aortic rings gassed with O/sub 2/ and N/sub 2/, respectively. CO reduced Ca/sup + +/ concentrations significantly (P<0.01) by 29% to 369 /+ -/ 18 mM/g tissue. Verapamil treatment reduced Ca/sup + +/ concentrations by 40% to 314 /+ -/ 23 mM/g tissue. These results suggest that CO relaxes vascular smooth muscle and dilates blood vessels by decreasing Ca/sup + +/ concentrations in vascular smooth muscle.

  5. New insights in endothelial and smooth muscle cell communication.

    PubMed

    Conejo, Víctor Arana; De Haro, Roberto; Sosa-Melgarejo, Jorge; Méndez, José D

    2007-01-01

    Based on immunohistochemical techniques against connexins and the intercellular flux of staining molecules, it has previously been shown that electrotonic communication occurs among endothelial and vascular smooth muscle cells, this due to the presence of myoendothelial gap junctions. The aim of this study was to evaluate the density of myoendothelial contacts in the left coronary and internal mammary arteries as well as in the left saphenous vein by means of electron microscopy, the distance between both cells participating in an myoendothelial contact with a semi-automatic image analysis system and the presence of homocellular and heterocellular gap junctions between endothelial and smooth muscle cells by using the immunohistochemical technique and confocal microscopy in thoracic aorta were also analyzed. The results are that all blood vessels studied present myoendothelial contacts, while density studies show that they are more abundant in the saphenous vein. The myoendothelial contact distance is constant and in no case the cytoplasmic processes reach the plasma membrane of the partner cell toward which they are advanced. Homocellular gap junctions were found between smooth muscle cells and between endothelial cells. Heterocellular gap junctions were absent, evidencing the possibility that signaling molecules between endothelial and smooth muscle cells may be transferred through plasma membranes as was once thought and not necessarily by electrotonic communication. PMID:17383847

  6. The pharmacology of a molluscan smooth muscle.

    PubMed

    TWAROG, B M

    1959-09-01

    The effects of a number of pharmacologically active substances on contraction and on membrane polarization of the anterior byssal retractor muscle of Mytilus edulis, L., have been studied. Tetramethylammonium bromide, trimethyl(4-oxopentyl)ammonium chloride and nicotine, like acetylcholine, produced depolarization and sustained contraction. Nicotine, on repeated application, lost acetylcholine-like activity and effectively blocked acetylcholine. In order of decreasing potency, methanthelinium, tubocurarine, benzoquinonium, tetraethylammonium, atropine, pentamethonium, and decamethonium blocked acetylcholine action. These agents did not show initial acetylcholine-like action and did not relax sustained contractions. Adrenaline, noradrenaline, tyramine, dibenamine, phentolamine, and lysergic acid diethylamide relaxed sustained contractions without reducing initial depolarization and tension development in response to acetylcholine or electrical stimuli. Adrenaline and noradrenaline often caused depolarization and contraction when first applied, and displayed relaxing action on subsequent application.

  7. Inhibition of tracheal smooth muscle contraction and myosin phosphorylation by ryanodine

    SciTech Connect

    Gerthoffer, W.T.; Murphey, K.A.; Khoyi, M.A.

    1988-08-01

    Previous studies have shown that muscarinic activation of airway smooth muscle in low Ca++ solutions increases myosin phosphorylation without increasing tension. Blocking Ca++ influx reduced phosphorylation, but not to basal levels. It was proposed that release of intracellular Ca++ contributed to dissociation of phosphorylation and contraction. To test this hypothesis the effects of ryanodine were studied under similar conditions. Ryanodine (10(-7) to 10(-5) M) antagonized caffeine-induced contraction of canine tracheal smooth muscle. Ryanodine also reduced carbachol-induced contractions and carbachol-induced myosin phosphorylation. The effect of ryanodine on potassium and serotonin-induced contractions was also investigated to test for a nonspecific inhibitory effect. In contrast to the effect on carbachol responses, ryanodine (10(-5) M) potentiated the contractile response to low concentrations of serotonin and potassium, but had no effect on the maximum response to either stimulant. Carbachol (10(-6) M) and ryanodine (10(-5) M) both significantly decreased /sup 45/Ca++ content of tracheal muscle. The effect of ryanodine and carbachol together on /sup 45/Ca++ content was not greater than either drug alone suggesting that ryanodine reduces the caffeine and carbachol responses by depleting releaseable Ca++ stores. Ryanodine significantly reduced Ca++-induced contraction and myosin phosphorylation in carbachol-stimulated muscle, suggesting that some of the Ca++ responsible for elevated phosphorylation is released from the sarcoplasmic reticulum.

  8. Effect of potassium and acetylcholine on canine intestinal smooth muscle.

    PubMed

    Hara, Y; Szurszewski, J H

    1986-03-01

    Mechanical and intracellular electrical activity were recorded simultaneously from small intestinal smooth muscle of the dog. Tonic and phasic contractions due to exogenous acetylcholine and elevated external K+ concentration were spike-dependent in longitudinal and inner circular muscle layers and spike-independent in the outer circular muscle layer. Voltage-tension curves were generated by graded depolarization of the membrane. In spike-dependent longitudinal and inner circular muscle layers the threshold voltage for initiation of spikes and contraction was approximately --53 mV. In spike-independent outer circular muscle layer the voltage threshold for contraction was approximately -42 mV. The resting membrane potential in longitudinal and inner circular muscle layers was close to the voltage threshold for initiation of spikes and contraction. In contrast, in the outer circular muscle it was approximately 20 mV more negative to the voltage threshold for contraction. In the outer circular muscle layer of whole-thickness preparations an increase in the amplitude of phasic contractions caused by acetylcholine was associated with an increase in the amplitude of the slow waves. Tone was related to the resting membrane potential. In preparations of isolated outer circular muscle acetylcholine caused depolarization of the membrane potential, slow waves and phasic contractions; comparable depolarization by increases in external K+ concentration did not induce slow waves or phasic contractions. Comparison of the effect of acetylcholine on outer circular muscle with the voltage-tension curve for this muscle layer showed that the top of the slow wave was associated with just the contractile force predicted by the voltage-tension curve. This suggests that acetylcholine altered the force of phasic contraction of the outer circular muscle through a voltage-dependent mechanism. In non-neural cells located on the serosal side of the outer circular muscle layer of the dog, cat

  9. Influence of wakefulness on pharyngeal airway muscle activity

    PubMed Central

    Lo, Yu‐Lun; Jordan, Amy S; Malhotra, Atul; Wellman, Andrew; Heinzer, Raphael A; Eikermann, Matthias; Schory, Karen; Dover, Louise; White, David P

    2007-01-01

    Background Whether loss of wakefulness itself can influence pharyngeal dilator muscle activity and responsiveness is currently unknown. A study was therefore undertaken to assess the isolated impact of sleep on upper airway muscle activity after minimising respiratory/mechanical inputs. Methods Ten healthy subjects were studied. Genioglossus (GG), tensor palatini (TP) and diaphragm (DIA) electromyography (EMG), ventilation and sleep‐wake status were recorded. Non‐invasive positive pressure ventilation was applied. Expiratory pressure was adjusted to yield the lowest GGEMG, thereby minimising airway negative pressure (mechanoreceptor) effects. Inspiratory pressure, respiratory rate and inspiratory time were adjusted until the subjects ceased spontaneous ventilation, thereby minimising central respiratory input. Muscle activity during wakefulness, wake‐sleep transitions, stable non‐rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep were evaluated in the supine position. Results In transitions from wakefulness to sleep, significant decrements were observed in both mean GGEMG and TPEMG (1.6 (0.5)% to 1.3 (0.4)% of maximal GGEMG; 4.3 (2.3)% to 3.7 (2.1)% of maximal TPEMG). Compared with sleep onset, the activity of TP during stable NREM sleep and REM sleep was further decreased (3.7 (2.1)% vs 3.0 (2.0)% vs 3.0 (2.0)% of maximal EMG). However, GGEMG was only further reduced during REM sleep (1.3 (0.4)% vs 1.0 (0.3)% vs 1.1 (0.4)% of maximal EMG). Conclusion This study suggests that wakefulness per se, independent of respiratory/mechanical stimuli, can influence pharyngeal dilator muscle activity. PMID:17389755

  10. Motilin receptors on isolated gastric smooth muscle cells.

    PubMed

    Louie, D S; Owyang, C

    1988-02-01

    Motilin has a stimulating effect on gastrointestinal motility. The mechanism of its action is not known. Direct and neuronal effects have been postulated. To determine if receptors are present on smooth muscle cells we investigated the effect of synthetic porcine motilin and its interaction with acetylcholine on isolated guinea pig gastric smooth muscle cells. Motilin elicited a dose-dependent contraction of gastric smooth muscle cells. Minimal (8.3 +/- 1.3%) and maximal (33.9 +/- 2.4%) responses were observed at 10(-12) and 10(-6) M, respectively. The ED50 of motilin was 10(-9) M. Acetylcholine also elicited a dose-response muscle contraction with a maximal response observed at 10(-7) M. Atropine (10(-7) M) completely inhibited the maximal response to acetylcholine but did not have any effect on the contractile response to motilin. In addition, dibutyryl guanosine 3',5'-cyclic monophosphate (10(-3) M) and substance P antagonist, spantide (10(-4) M), also did not inhibit the action of motilin. Acetylcholine (10(-11) M) shifted the dose-response curve of motilin to the left by 1.5 log units. The maximal response to the combination of motilin (10(-6) M) and acetylcholine (10(-11) M) was 32 +/- 3.2%, which was similar to the maximal response to motilin alone. It is concluded that distinct motilin and muscarinic receptors are present on guinea pig gastric smooth muscle cells. The interaction between motilin and acetylcholine is additive and not potentiative.

  11. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  12. Effects of oxymetazoline on isolated rat's tracheal smooth muscle.

    PubMed

    Wang, Hsing-Won; Wu, Chi-Chung

    2008-06-01

    Oxymetazoline is often used as a decongestant in rhinitis patients who are suffering from nasal obstruction. It is used as a nasal drop or spray solution. The effect on nasal mucosa in vitro or in vivo is well known. However, the effect of the drug on tracheal smooth muscle has rarely been explored. During administration of the drug to the nose, it might affect the trachea via inhalation. We used our preparation to test the effectiveness of oxymetazoline on isolated rat's tracheal smooth muscle. A 5 mm long portion of rat trachea was submersed in 30 ml Kreb's solution in a muscle bath at 37 degrees C. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured using a transducer connected to a Pentium III computer equipped with polygraphy software. The following assessments were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6)M methacholine as a parasympathetic mimetic; (3) effect of oxymetazoline on electrically induced tracheal smooth muscle contractions. Addition of parasympathetic mimetics to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of oxymetazoline induced a significant relaxation response when the preparation was up to 10(-4) M. At the same concentration, the drug also could inhibit EFS induced spike contraction. Oxymetazoline had negligible effect on the basal tension of trachea as the concentration increased. The degree of drug-induced tracheal contraction or relaxation was dose-dependent. The study indicated that high concentrations of oxymetazoline might actually antagonize cholinergic receptors of the trachea.

  13. Effect of subchronic in vivo exposure to nitrogen dioxide on lung tissue inflammation, airway microvascular leakage, and in vitro bronchial muscle responsiveness in rats.

    PubMed Central

    Chitano, P; Rado, V; Di Stefano, A; Papi, A; Boniotti, A; Zancuoghi, G; Boschetto, P; Romano, M; Salmona, M; Ciaccia, A; Fabbri, L M; Mapp, C E

    1996-01-01

    OBJECTIVES: In a previous study on bronchoalveolar lavage fluid from rats exposed in vivo for seven days to 10 ppm nitrogen dioxide (NO2), it has been shown that there is an influx of macrophages into the airways. The present study investigated the effect of seven day exposure to 10 ppm NO2, on: (a) lung tissue inflammation and morphology; (b) airway microvascular leakage; (c) in vitro contractile response of main bronchi. METHODS: Lung tissue was studied by light microscopy, after fixing the lungs by inflation with 4% formalin at a pressure of 20 cm H2O. Microvascular leakage was measured by extravasation of Evans blue dye in the larynx, trachea, main bronchi, and intrapulmonary airways. Smooth muscle responsiveness was evaluated by concentration-responses curves to acetylcholine (10(-9)-10(-3) M), serotonin (10(-9)-10(-4) M), and voltage-response curves (12-28 V) to electrical field stimulation. RESULTS: Histology showed an increased total inflammation at the level of respiratory bronchioles and alveoli. No influx of inflammatory cells was found in the main bronchi. A loss of cilia in the epithelium of small airways and ectasia of alveolar capillaries was also found. By contrast, no alterations to microvascular permeability or modification of bronchial smooth muscle responsiveness was found. CONCLUSIONS: Subchronic exposure to 10 ppm NO2 causes airway inflammation and structural damage, but does not cause any persistent alteration to microvascular permeability or bronchial smooth muscle responsiveness in rats. Images Figure 1 PMID:8758032

  14. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification.

    PubMed

    Leopold, Jane A

    2015-05-01

    Vascular calcification is highly prevalent and, when present, is associated with major adverse cardiovascular events. Vascular smooth muscle cells play an integral role in mediating vessel calcification by undergoing differentiation to osteoblast-like cells and generating matrix vesicles that serve as a nidus for calcium-phosphate deposition in the vessel wall. Once believed to be a passive process, it is now recognized that vascular calcification is a complex and highly regulated process that involves activation of cellular signaling pathways, circulating inhibitors of calcification, genetic factors, and hormones. This review will examine several of the key mechanisms linking vascular smooth muscle cells to vessel calcification that may be targeted to reduce vessel wall mineralization and, thereby, reduce cardiovascular risk.

  15. Action on ileal smooth muscle of synthetic detergents and pardaxin.

    PubMed

    Primor, N

    1986-01-01

    Pardaxin (PX), a toxic and repellent substance isolated from the Red Sea flatfish, causes a sharp ball-like profile of drop of saline placed on a hydrophobic film to turn into a flattened one. This effect results with a decrease of the contact angle (theta) from 96 degrees to a maximum of 42 degrees at 10(-4) M of PX. The action of sodium dodecyl sulphate (SDS), a synthetic anionic detergent, benzalkonium chloride (BAC) cationic detergent and pardaxin (PX) a toxic protein with detergent properties, were studied in the ileal guinea-pig longitudinal smooth muscle preparation. SDS (4 X 10(-4) M) and PX (5 X 10(-6) M) diminished the muscle contractile response to field stimulation (0.1 Hz, 1 msec) and to acetylcholine (Ach) and to histamine and elicited a prolonged (4-6 min) TTX-insensitive muscle contraction. The dose dependence of muscle contraction to SDS and PX was found to be sigmoidal and occurred over a narrow range of concentrations. The SDS- but not PX-induced muscle contraction could be reduced by diphenhydramine (H1 antihistamine). BAC (10(-5)-10(-4) M) suppressed the muscle's contractile response to electrical stimulation (0.1 Hz, 1 msec), to Ach, histamine and 5-hydroxytryptamine but did not produce muscle contraction. PX at concentrations higher than 5 X 10(-6) M is a potent detergent and at this concentration shares several pharmacological similarities with SDS.

  16. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells

    PubMed Central

    Rodríguez, Larissa V.; Alfonso, Zeni; Zhang, Rong; Leung, Joanne; Wu, Benjamin; Ignarro, Louis J.

    2006-01-01

    Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific α actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. PMID:16880387

  17. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  18. Ultrastructural Changes of the Smooth Muscle in Esophageal Atresia.

    PubMed

    Al-Shraim, Mubarak M; Eid, Refaat A; Musalam, Adel Osman; Radad, Khaled; Ibrahim, Ashraf H M; Malki, Talal A

    2015-01-01

    Esophageal atresia (EA) with or without tracheo-esophageal fistula (TEF) is a relatively rare congenital anomaly. Despite the advances in the management techniques and neonatal intensive care, esophageal dysmotility remains a very common problem following EA/TEF repair. Our current study aimed to describe the most significant ultrastructural changes of the smooth muscle cells (SMCs) trying to highlight some of the underlying mechanisms of esophageal dysmotility following EA/TEF repair. Twenty-three biopsies were obtained from the tip of the lower esophageal pouch (LEP) of 23 patients during primary repair of EA/TEF. Light microscopic examination was performed with hematoxylin and eosin (HE), and Van Gieson's stains. Ultrastructural examination was done using transmission electron microscopy (TEM). Histopathological examination showed distortion of smooth muscle layer and deposition of an abundant amount of fibrous tissue in-between smooth muscles. Using TEM, SMCs exhibited loss of the cell-to-cell adhesion, mitochondrial vacuolation, formation of myelin figures, and apoptotic fragmentation. There were also plasmalemmal projections and formation of ghost bodies. Interestingly, SMCs were found extending pseudopodia-like projections around adjacent collagen fibers. Engulfed collagen fibers by SMCs underwent degradation within autophagic vacuoles. Degeneration of SMCs and deposition of abundant extracellular collagen fibers are prominent pathological changes in LEP of EA/TEF. These changes might contribute to the pathogenesis of esophageal dysmotility in patients who have survived EA/TEF. PMID:26548437

  19. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction. PMID:26874281

  20. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    SciTech Connect

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of ({sup 35}S)-sodium sulfate and ({sup 3}H)-serine or ({sup 3}H)-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of {sup 35}S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect.

  1. EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity

    PubMed Central

    Darrah, Rebecca; McKone, Edward; O'Connor, Clare; Rodgers, Christine; Genatossio, Alan; McNamara, Sharon; Gibson, Ronald; Stuart Elborn, J.; Ennis, Madeleine; Gallagher, Charles G.; Kalsheker, Noor; Aitken, Moira; Wiese, Dawn; Dunn, John; Smith, Paul; Pace, Rhonda; Londono, Douglas; Goddard, Katrina A. B.; Knowles, Michael R.

    2010-01-01

    Airway inflammation and pulmonary disease are heterogeneous phenotypes in cystic fibrosis (CF) patients, even among patients with the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. Endothelin, a proinflammatory peptide and smooth muscle agonist, is increased in CF airways, potentially contributing to the pulmonary phenotype. Four cohorts of CF patients were screened for variants in endothelin pathway genes to determine whether any of these variants associated with pulmonary function. An initial cohort of 808 CF patients homozygous for the common CF mutation, ΔF508, showed significant association for polymorphisms in the endothelin receptor A gene, EDNRA (P = 0.04), but not in the related endothelin genes (EDN1, EDN2, EDN3, or EDNRB) or NOS1, NOS2A, or NOS3. Variants within EDNRA were examined in three additional cohorts of CF patients, 238 patients from Seattle, WA, 303 from Ireland and the U.K., and 228 from Cleveland, OH, for a total of 1,577 CF patients. The three additional groups each demonstrated a significant association between EDNRA 3′-untranslated region (UTR) variant rs5335 and pulmonary function (P = 0.002). At the molecular level, single nucleotide primer extension assays suggest that the effect of the variants is quantitative. EDNRA mRNA levels from cultured primary tracheal smooth muscle cells are greater for the allele that appears to be deleterious to lung function than for the protective allele, suggesting a mechanism by which increased receptor function is harmful to the CF airway. Finally, cell proliferation studies using human airway smooth muscle cells demonstrated that cells homozygous for the deleterious allele proliferate at a faster rate than those homozygous for the protective allele. PMID:20028935

  2. Regulatory and Catalytic Domain Dynamics of Smooth Muscle Myosin Filaments†

    PubMed Central

    Li, Hui-Chun; Song, Likai; Salzameda, Bridget; Cremo, Christine R.; Fajer, Piotr G.

    2016-01-01

    Domain dynamics of the chicken gizzard smooth muscle myosin catalytic domain (heavy chain Cys-717) and regulatory domain (regulatory light chain Cys-108) were determined in the absence of nucleotides using saturation-transfer electron paramagnetic resonance. In unphosphorylated synthetic filaments, the effective rotational correlation times, τr, were 24 ± 6 μs and 441 ± 79 μs for the catalytic and regulatory domains, respectively. The corresponding amplitudes of motion were 42 ± 4° and 24 ± 9° as determined from steady-state phosphorescence anisotropy. These results suggest that the two domains have independent mobility due to a hinge between the two domains. Although a similar hinge was observed for skeletal myosin (Adhikari and Fajer (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 9643–9647. Brown et al. (2001) Biochemistry 40, 8283–8291), the latter displayed higher regulatory domain mobility, τr = 40 ± 3 μs, suggesting a smooth muscle specific mechanism of constraining regulatory domain dynamics. In the myosin monomers the correlation times for both domains were the same (~4 μs) for both smooth and skeletal myosin, suggesting that the motional difference between the two isoforms in the filaments was not due to intrinsic variation of hinge stiffness. Heavy chain/regulatory light chain chimeras of smooth and skeletal myosin pinpointed the origin of the restriction to the heavy chain and established correlation between the regulatory domain dynamics with the ability of myosin to switch off but not to switch on the ATPase and the actin sliding velocity. Phosphorylation of smooth muscle myosin filaments caused a small increase in the amplitude of motion of the regulatory domain (from 24 ± 4° to 36 ± 7°) but did not significantly affect the rotational correlation time of the regulatory domain (441 to 408 μs) or the catalytic domain (24 to 17 μs). These data are not consistent with a stable interaction between the two catalytic domains in

  3. Serotonin induces pulmonary artery smooth muscle cell migration

    PubMed Central

    Day, Regina M.; Agyeman, Abena S.; Segel, Michael J.; Chévere, Rubén D.; Angelosanto, Jill M.; Suzuki, Yuichiro J.; Fanburg, Barry L.

    2007-01-01

    The chronic phase of pulmonary arterial hypertension (PAH) is associated with vascular remodeling, especially thickening of the smooth muscle layer of large pulmonary arteries and muscularization of small pulmonary vessels, which normally have no associated smooth muscle. Serotonin (5-hydroxytryptamine, 5-HT) has been shown to induce proliferation and hypertrophy of pulmonary artery smooth muscle cells (PASMC), and may be important for in vivo pulmonary vascular remodeling. Here, we show that 5-HT stimulates migration of pulmonary artery PASMC. Treatment with 5-HT for 16 h increased migration of PASMC up to four-fold as monitored in a modified Boyden chamber assay. Increased migratory responses were associated with cellular morphological changes and reorganization of the actin cytoskeleton. 5-HT-induced alterations in morphology were previously shown in our laboratory to require cAMP [Lee SL, Fanburg BL. Serotonin produces a configurational change of cultured smooth muscle cells that is associated with elevation of intracellular cAMP. J Cell Phys 1992;150(2):396–405], and the 5-HT4 receptor was pharmacologically determined to be the primary activator of cAMP in bovine PASMC [Becker BN, Gettys TW, Middleton JP, Olsen CL, Albers FJ, Lee SL, et al. 8-Hydroxy-2-(di-n-propylamino)tetralin-responsive 5-hydroxytryptamine4-like receptor expressed in bovine pulmonary artery smooth muscle cells. Mol Pharmacol 1992;42(5):817–25]. We examined the role of the 5-HT4 receptor and cAMP in 5-HT-induced bovine PASMC migration. PASMC express 5-HT4 receptor mRNA, and a 5-HT4 receptor antagonist and a cAMP antagonist completely blocked 5-HT-induced cellular migration. Consistent with our previous report that a cAMP-dependent Cl− channel is required for 5-HT-induced morphological changes in PASMC, phenylanthranilic acid, a Cl− channel blocker, inhibited actin cytoskeletal reorganization and migration produced by 5-HT. We conclude that 5-HT stimulates PASMC migration and

  4. Mediators and mechanisms of relaxation in rabbit urethral smooth muscle

    PubMed Central

    Waldeck, Kristian; Ny, Lars; Persson, Katarina; Andersson, Karl-Erik

    1998-01-01

    Electrophysiological and mechanical experiments were performed to investigate whether the nitric oxide (NO)-mediated relaxation of rabbit urethral smooth muscle is associated with a hyperpolarization of the membrane potential. In addition, a possible role for vasoactive intestinal peptide (VIP) and carbon monoxide (CO) as relaxant agents in rabbit urethra was investigated. Immunohistochemical experiments were performed to characterize the NO-synthase (NOS) and VIP innervation. Possible target cells for NO were studied by using antisera against cyclic GMP. The cyclic GMP-immunoreactivity was investigated on tissues pretreated with 1 mM IBMX, 0.1 mM zaprinast and 1 mM sodium nitroprusside. Intracellular recordings of the membrane potential in the circular smooth muscle layer revealed two types of spontaneous depolarizations, slow waves with a duration of 3–4 s and an amplitude of 30–40 mV, and faster (0.5–1 s), more irregular depolarizations with an amplitude of 5–15 mV. The resting membrane potential was 39±1 mV (n=12). Application of NO (30 μM), CO (30 μM) or VIP (1 μM) did not change the resting membrane potential. Both NO (1–100 μM) and VIP (1 nM–1 μM) produced concentration-dependent relaxations amounting to 87±4% and 97±2% (n=6), respectively. The relaxant effect of CO (1–30 μM) amounted to 27±4% (n=5) at the highest concentration used. Immunohistochemical experiments revealed a rich supply of NOS-immunoreactive nerve fibres in the smooth muscle layers. Numerous spinous cyclic GMP-immunoreactive cells were found interspersed between the smooth muscle bundles, mainly localized in the outer layer. These cells had long processes forming a network surrounding the smooth muscle bundles. VIP-immunoreactivity was sparse in comparison to NOS-immunoreactive nerves. The rich supply of NOS-immunoreactive nerve fibres supports the view that NO is an important NANC-mediator in the rabbit urethra. In contrast to several

  5. Bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of Althaea root on isolated tracheobronchial smooth rat muscle

    PubMed Central

    Alani, Behrang; Zare, Mohammad; Noureddini, Mahdi

    2015-01-01

    Background: The smooth muscle contractions of the tracheobronchial airways are mediated through the balance of adrenergic, cholinergic and peptidergic nervous mechanisms. This research was designed to determine the bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of root Althaea on the isolated tracheobronchial smooth muscle of the rat. Materials and Methods: In this experimental study, 116 tracheobronchial sections (5 mm) from 58 healthy male Sprague-Dawley rats were dissected and divided into 23 groups. The effect of methanolic and aqueous extracts of the root Althaea was assayed at different concentrations (0.2, 0.6, 2.6, 6.6, 14.6 μg/ml) and epinephrine (5 μm) in the presence and absence of propranolol (1 μM) under one g tension based on the isometric method. This assay was recorded in an organ bath containing Krebs-Henseleit solution for tracheobronchial smooth muscle contractions using potassium chloride (KCl) (60 mM) induction. Results: Epinephrine (5 μm) alone and root methanolic and aqueous extract concentrations (0.6-14.6 μg/ml) reduced tracheobronchial smooth muscle contractions induced using KCl (60 mM) in a dose dependent manner. Propranolol inhibited the antispasmodic effect of epinephrine on tracheobronchial smooth muscle contractions, but could not reduce the antispasmodic effect of the root extract concentrations. Conclusion: The methanolic and aqueous extracts of Althaea root inhibited the tracheobronchial smooth muscle contractions of rats in a dose dependent manner, but B-adrenergic receptors do not appear to engage in this process. Understanding the mechanism of this process can be useful in the treatment of pulmonary obstructive diseases like asthma. PMID:25879003

  6. Adaptive response of pulmonary arterial smooth muscle to length change.

    PubMed

    Syyong, Harley; Cheung, Christine; Solomon, Dennis; Seow, Chun Y; Kuo, Kuo H

    2008-04-01

    Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12-16 s, 20 V, 60 Hz). The length-force relationship was determined at L(ref) to 0.6 L(ref), where L(ref) was a reference length close to the in situ length of PASM. The response to length oscillations was determined at L(ref), after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from L(ref) to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% L(ref) caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension. PMID:18218913

  7. Pre- and post-junctional effects of VIP-like peptides in guinea pig tracheal smooth muscle.

    PubMed

    Shigyo, M; Aizawa, H; Koto, H; Matsumoto, K; Takata, S; Hara, N

    1997-01-01

    To determine the role of VIP-like peptides on neurotransmission of vagus nerve, we evaluated the effects of helodermin, helospectin, and vasoactive intestinal peptide (VIP) on the contraction of guinea pig tracheal smooth muscle evoked by electrical field stimulation (EFS) or the exogenous application of actylcholine (ACh). Isometric tension of tracheal strips was measured in the presence of indomethacin (10(-6) M) and of guanethidine (10(-6) M). VIP (10(-9) M to 10(-7) M) significantly suppressed the contraction evoked by EFS. VIP, at concentrations of 10(-9) M and 10(-8) M, did not affect the ACh-evoked contraction, but a concentration of 10(-7) M suppressed ACh-evoked contraction. Helospectin and helodermin (10(-8) M and 10(-7) M) significantly suppressed the EFS-evoked contraction, but 10(-9) M showed no effect. Helospectin and helodermin had no effect on the ACh sensitivity of smooth muscle up to 10(-8) M, but a concentration of 10(-7) M suppressed the ACh-evoked contraction. These results indicate that helodermin, helospectin, and VIP exert both pre- and post-junctional inhibitory effects on the airway smooth muscle of guinea pigs. These peptides, thus, inhibited tracheal smooth muscle contraction prejunctionally at low concentrations, and acted postjunctionally at higher concentrations. PMID:9044477

  8. STIMULANT ACTIONS OF VOLATILE ANAESTHETICS ON SMOOTH MUSCLE.

    PubMed

    RANG, H P

    1964-04-01

    A number of volatile anaesthetics, and some compounds synthesized in the search for new anaesthetics, have been tested on guinea-pig intestinal smooth muscle in vitro. All the compounds produced a contractile response. This effect did not correlate well with convulsant activity in vivo among the compounds tested. Two kinds of stimulant effect were distinguishable: (1) Rapid, transient contractions, abolished by cocaine or lachesine; most of the anaesthetics in clinical use had this action. (2) Slow, sustained contractions, unaffected by cocaine or lachesine; this effect predominated among the fluorinated ring compounds. Hexamethonium and mepyramine did not affect the contractile response to any of the compounds. The first type of effect presumably represents excitation of postganglionic nerve cells, while the second type is a direct action on the muscle cell. The action of perfluorobenzene, which is of the latter kind, was studied further. Adrenaline and lack of calcium diminished the contraction in parallel with the contraction to histamine, which suggests that the cell membrane was the site of action; in contrast to the stimulant action of histamine or acetylcholine, the effect was highly temperature-sensitive, being almost abolished by cooling to 32 degrees C, and enhanced at 40 degrees C. The depressant action of anaesthetics on smooth muscle is affected very little by temperature changes. These findings are discussed in relation to other observations which suggest a stimulant action of volatile anaesthetics on excitable tissues. Protein denaturation is tentatively suggested as a mechanism of action.

  9. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  10. Mechanics of smooth muscle in isolated single microvessels.

    PubMed

    Gore, R W; Davis, M J

    1984-01-01

    In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.

  11. MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells.

    PubMed

    Liao, Guoning; Panettieri, Reynold A; Tang, Dale D

    2015-09-01

    The nonreceptor tyrosine kinase c-Abl has a role in regulating smooth muscle cell proliferation, which contributes to the development of airway remodeling in chronic asthma. MicroRNAs (miRs) are small noncoding RNA molecules that regulate gene expression by binding to complementary sequences in the 3' untranslated regions (3' UTR) of target mRNAs. Previous analysis suggests that miR-203 is able to bind to the 3' UTR of human c-Abl mRNA. In this report, treatment with miR-203 attenuated the expression of c-Abl mRNA and protein in human airway smooth muscle (HASM) cells. Furthermore, transfection with an miR-203 inhibitor enhanced the expression of c-Abl at mRNA and protein levels in HASM cells. Treatment with platelet-derived growth factor (PDGF) induced the proliferation and ERK1/2 phosphorylation in HASM cells. Exposure to miR-203 attenuated the PDGF-stimulated proliferation and ERK1/2 phosphorylation in HASM cells. The expression of c-Abl at protein and mRNA levels was higher in asthmatic HASM cells, whereas the level of miR-203 was reduced in asthmatic HASM cells as compared to control HASM cells. Taken together, our present results suggest that miR-203 is a negative regulator of c-Abl expression in smooth muscle cells. miR-203 regulates smooth muscle cell proliferation by controlling c-Abl expression, which in turn modulates the activation of ERK1/2.

  12. Pericytes are progenitors for coronary artery smooth muscle

    PubMed Central

    Volz, Katharina S; Jacobs, Andrew H; Chen, Heidi I; Poduri, Aruna; McKay, Andrew S; Riordan, Daniel P; Kofler, Natalie; Kitajewski, Jan; Weissman, Irving; Red-Horse, Kristy

    2015-01-01

    Epicardial cells on the heart’s surface give rise to coronary artery smooth muscle cells (caSMCs) located deep in the myocardium. However, the differentiation steps between epicardial cells and caSMCs are unknown as are the final maturation signals at coronary arteries. Here, we use clonal analysis and lineage tracing to show that caSMCs derive from pericytes, mural cells associated with microvessels, and that these cells are present in adults. During development following the onset of blood flow, pericytes at arterial remodeling sites upregulate Notch3 while endothelial cells express Jagged-1. Deletion of Notch3 disrupts caSMC differentiation. Our data support a model wherein epicardial-derived pericytes populate the entire coronary microvasculature, but differentiate into caSMCs at arterial remodeling zones in response to Notch signaling. Our data are the first demonstration that pericytes are progenitors for smooth muscle, and their presence in adult hearts reveals a new potential cell type for targeting during cardiovascular disease. DOI: http://dx.doi.org/10.7554/eLife.10036.001 PMID:26479710

  13. Contractile properties of isolated vascular smooth muscle after photoradiation

    SciTech Connect

    Freas, W.; Hart, J.L.; Golightly, D.; McClure, H.; Muldoon, S.M.

    1989-03-01

    The purpose of this study was to characterize the responses of various types of vascular smooth muscle to conditions that would be encountered during photodynamic therapy, namely laser illumination of photosensitizer-pretreated tissue. Vascular smooth muscle obtained from representative canine, rodent, and rabbit vascular beds was cut into rings and placed in organ baths (37 degrees C, aerated with 95% O2-5% CO2). These vessels were pretreated for 30 min with the photosensitizer hematoporphyrin derivative (HpD, 3-30 micrograms/ml) washed, and then exposed to red laser light (633 nm, 1-3.5 mW) for up to 20 min. Under basal tension conditions laser illumination of HpD-pretreated vessels resulted in an increase in tension, whereas laser illumination of vessels not exposed to HpD did not contract. This sustained contraction was not reversed by washing the tissue with fresh Krebs-Ringer solution. Responses to norepinephrine, transmural electrical stimulation, and elevated concentrations of KCl were reduced in blood vessels tested after HpD laser illumination. Laser-induced contractions of canine carotid arteries did not require the presence of an intact vascular endothelium. Vascular effect of these photosensitizers appears to involve the formation of oxygen-derived radicals. This preparation could provide a good model for examining the effects of free radicals on vascular physiology.

  14. Biophysical Induction of Vascular Smooth Muscle Cell Podosomes

    PubMed Central

    Kim, Na Young; Kohn, Julie C.; Huynh, John; Carey, Shawn P.; Mason, Brooke N.; Vouyouka, Ageliki G.; Reinhart-King, Cynthia A.

    2015-01-01

    Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs. PMID:25785437

  15. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  16. Isolation of human umbilical arterial smooth muscle cells (HUASMC).

    PubMed

    Ribeiro, Maximiano P; Relvas, Ricardo; Chiquita, Samuel; Correia, Ilídio J

    2010-07-03

    The human umbilical cord (UC) is a biological sample that can be easily obtained just after birth. This biological sample is, most of the time, discarded and their collection does not imply any added risk to the newborn or mother s health. Moreover no ethical concerns are raised. The UC is composed by one vein and two arteries from which both endothelial cells (ECs) and smooth muscle cells (SMCs), two of the main cellular components of blood vessels, can be isolated. In this project the SMCs were obtained after enzymatic treatment of the UC arteries accordingly the experimental procedure previously described by Jaffe et al. After cell isolation they were kept in t-flash with DMEM-F12 supplemented with 5% of fetal bovine serum and were cultured for several passages. Cells maintained their morphological and other phenotypic characteristics in the different generations. The aim of this study was to isolate smooth muscle cells in order to use them as models for future assays with constrictor drugs, isolate and structurally characterize L-type calcium channels, to study cellular and molecular aspects of the vascular function and to use them in tissue engineering.

  17. Calcium oscillations in human mesenteric vascular smooth muscle.

    PubMed

    Navarro-Dorado, Jorge; Garcia-Alonso, Mauricio; van Breemen, Cornelis; Tejerina, Teresa; Fameli, Nicola

    2014-02-28

    Phenylephrine (PE)-induced oscillatory fluctuations in intracellular Ca(2+) concentration ([Ca(2+)]i) of vascular smooth muscle have been observed in many blood vessels isolated from a wide variety of mammals. Paradoxically, until recently similar observations in humans have proven elusive. In this study, we report for the first time observations of adrenergically-stimulated [Ca(2+)]i oscillations in human mesenteric artery smooth muscle. In arterial segments preloaded with Fluo-4 AM and mounted on a myograph on the stage of a confocal microscope, we observed PE-induced oscillations in [Ca(2+)]i, which initiated and maintained vasoconstriction. These oscillations present some variability, possibly due to compromised health of the tissue. This view is corroborated by our ultrastructural analysis of the cells, in which we found only (5 ± 2)% plasma membrane-sarcoplasmic reticulum apposition, markedly less than measured in healthy tissue from laboratory animals. We also partially characterized the oscillations by using the inhibitory drugs 2-aminoethoxydiphenyl borate (2-APB), cyclopiazonic acid (CPA) and nifedipine. After PE contraction, all drugs provoked relaxation of the vessel segments, sometimes only partial, and reduced or inhibited oscillations, except CPA, which rarely caused relaxation. These preliminary results point to a potential involvement of the sarcoplasmic reticulum Ca(2+) and inositol 1,4,5-trisphosphate receptor (IP3R) in the maintenance of the Ca(2+) oscillations observed in human blood vessels. PMID:24508261

  18. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  19. Affinities of pirenzepine for muscarinic cholinergic receptors in membranes isolated from bovine tracheal mucosa and smooth muscle

    SciTech Connect

    Madison, J.M.; Jones, C.A.; Tom-Moy, M.; Brown, J.K.

    1987-03-01

    Muscarinic cholinergic receptors have been classified into subtypes based on their high (M-1 subtype) or low (M-2 subtype) affinities for the nonclassic antagonist pirenzepine, and this classification has important experimental and therapeutic implications. Because muscarinic receptors are abundant in the airways where they mediate several different cellular responses, the goal of this study was to characterize the affinities of pirenzepine for the muscarinic receptors in bovine tracheal mucosa and smooth muscle. After isolating membrane particulates from mucosa and smooth muscle, as well as from bovine cerebral cortex (a known source of M-1 receptors), we used /sup 3/H-quinuclidinyl benzilate to label muscarinic receptors in the particulates and performed competition radioligand binding assays in the presence of either atropine or pirenzepine. Receptors from all 3 tissues (mucosa, smooth muscle, and cerebral cortex) were of a relatively uniform affinity for atropine (range of KI values: 0.8 +/- 0.4 X 10(-9) to 2.4 +/- 1.7 X 10(-9) M), as would be predicted for this classic muscarinic antagonist. By contrast, affinities for pirenzepine differed depending on the tissue. In cerebral cortex, the majority of receptors were of high affinity for pirenzepine (KI = 1.8 +/- 1.4 X 10(-8) M). In both mucosa and smooth muscle, receptors were of low affinity for pirenzepine (Kl = 4.8 +/- 0.4 to 6.9 +/- 3.8 X 10(-7) M). We conclude that muscarinic cholinergic receptors in bovine tracheal mucosa and smooth muscle are predominantly of the M-2 subtype.

  20. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  1. Voltage-Clamp Studies on Uterine Smooth Muscle

    PubMed Central

    Anderson, Nels C.

    1969-01-01

    These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366

  2. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent. PMID:9063094

  3. Smooth muscle pseudotumours: a potentially confusing artefact of rectal biopsy.

    PubMed Central

    Dankwa, E K; Davies, J D

    1988-01-01

    An artefactual smooth muscle lesion was found in seven of 500 consecutive rectal biopsy specimens. The lesions had the deceptive appearance of a genuine tumour although none of the patients with the lesion had presented with a rectal mucosal swelling. The morphology of the lesion and its poor reproducibility under experimental conditions suggested that it was an artefact of the biopsy procedure: it was easily reproduced in resected specimens of large bowel using punch or basket forceps but not when using flat forceps. The presence of the lesion seems to depend on the type of forceps used rather than on differences in deployment and seems to be caused by avulsion of the superficial part of the muscularis propria and its incorporation into the tissues included in rectal biopsy specimens. Images Fig 2 Fig 3 Fig 1 Fig 4 PMID:3045159

  4. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent.

  5. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  6. Circular smooth muscle contributes to esophageal shortening during peristalsis

    PubMed Central

    Vegesna, Anil K; Chuang, Keng-Yu; Besetty, Ramashesai; Phillips, Steven J; Braverman, Alan S; Barbe, Mary F; Ruggieri, Michael R; Miller, Larry S

    2012-01-01

    AIM: To study the angle between the circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) fibers in the distal esophagus. METHODS: In order to identify possible mechanisms for greater shortening in the distal compared to proximal esophagus during peristalsis, the angles between the LSM and CSM layers were measured in 9 cadavers. The outer longitudinal layer of the muscularis propria was exposed after stripping the outer serosa. The inner circular layer of the muscularis propria was then revealed after dissection of the esophageal mucosa and the underlying muscularis mucosa. Photographs of each specimen were taken with half of the open esophagus folded back showing both the outer longitudinal and inner circular muscle layers. Angles were measured every one cm for 10 cm proximal to the squamocolumnar junction (SCJ) by two independent investigators. Two human esophagi were obtained from organ transplant donors and the angles between the circular and longitudinal smooth muscle layers were measured using micro-computed tomography (micro CT) and Image J software. RESULTS: All data are presented as mean ± SE. The CSM to LSM angle at the SCJ and 1 cm proximal to SCJ on the autopsy specimens was 69.3 ± 4.62 degrees vs 74.9 ± 3.09 degrees, P = 0.32. The CSM to LSM angle at SCJ were statistically significantly lower than at 2, 3, 4 and 5 cm proximal to the SCJ, 69.3 ± 4.62 degrees vs 82.58 ± 1.34 degrees, 84.04 ± 1.64 degrees, 84.87 ± 1.04 degrees and 83.72 ± 1.42 degrees, P = 0.013, P = 0.008, P = 0.004, P = 0.009 respectively. The CSM to LSM angle at SCJ was also statistically significantly lower than the angles at 6, 7 and 8 cm proximal to the SCJ, 69.3 ± 4.62 degrees vs 80.18 ± 2.09 degrees, 81.81 ± 1.75 degrees and 80.96 ± 2.04 degrees, P = 0.05, P = 0.02, P = 0.03 respectively. The CSM to LSM angle at 1 cm proximal to SCJ was statistically significantly lower than at 3, 4 and 5 cm proximal to the SCJ, 74.94 ± 3.09 degrees vs 84.04 ± 1

  7. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  8. Pasteur effect in vascular and intestinal smooth muscle.

    PubMed

    Pettersson, G; Lundholm, L

    1985-01-01

    The increase in lactate production on changing from aerobic to anaerobic conditions, i.e. the Pasteur effect, has been reported to be small in vascular muscle and especially in aorta. It has been suggested that this may be an artefact caused by damage to the intimal endothelium. We have compared the Pasteur effect in different kinds of pig arteries, but also in rabbit colon. The aerobic lactate production in 60 min was 11-15 mumol/g in the aorta and the carotid artery, but 3 mumol/g in the mesenteric and renal arteries and 4 mumol/g in the rabbit colon. The increase in lactate production under anaerobic conditions was 12-20 mumol/g/60 min in the carotid artery, aorta and rabbit colon and 10 mumol/g/60 min in the mesenteric and renal arteries. When calculated in per cent, the Pasteur effect was greater in the mesenteric artery than in the aorta, but the actual rise in lactate production in mumol/g was higher in the aorta and carotid artery. The high aerobic lactate production of smooth muscle in vitro may be related to its low ability to oxidize glucose; some other substrates may be preferentially oxidized when present in vitro or in vivo.

  9. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  10. Calcium ion-regulated thin filaments from vascular smooth muscle.

    PubMed Central

    Marston, S B; Trevett, R M; Walters, M

    1980-01-01

    Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g. PMID:6446898

  11. Denatonium and 6-n-Propyl-2-thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse.

    PubMed

    Sakai, Hiroyasu; Sato, Ken; Kai, Yuki; Chiba, Yoshihiko; Narita, Minoru

    2016-01-01

    Recently the global expression of taste 2 receptors (TAS2Rs) on smooth muscle cells in human airways was demonstrated. Here, the effects of agonists of taste receptor, type 2, denatonium and 6-n-propyl-2-thiouracil, on smooth-muscle contraction were examined in the rat and mouse. Contractions induced by carbachol (CCh), high K(+), and sodium fluoride, but not calyculin-A, were inhibited significantly in the presence of a TAS2R agonist in the bronchial smooth muscle of mice. The contraction induced by CCh was inhibited by TAS2R agonists in ileal smooth muscle. Phenylephrine-induced contraction was also inhibited by TAS2R agonists in aortic smooth muscle. Gastrointestinal motility and blood pressure were attenuated by administration of TAS2R agonists in vivo. These findings suggest that TAS2R may be receptor for endogenous biologically active substances as well as for bitter tastes on the tongue. TAS2R signaling could be employed in the development of anti-asthmatic, anti-spasmodic, and anti-hypertensive drugs.

  12. Denatonium and 6-n-Propyl-2-thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse.

    PubMed

    Sakai, Hiroyasu; Sato, Ken; Kai, Yuki; Chiba, Yoshihiko; Narita, Minoru

    2016-01-01

    Recently the global expression of taste 2 receptors (TAS2Rs) on smooth muscle cells in human airways was demonstrated. Here, the effects of agonists of taste receptor, type 2, denatonium and 6-n-propyl-2-thiouracil, on smooth-muscle contraction were examined in the rat and mouse. Contractions induced by carbachol (CCh), high K, and sodium fluoride, but not calyculin-A, were inhibited significantly in the presence of a TAS2R agonist in the bronchial smooth muscle of mice. The contraction induced by CCh was inhibited by TAS2R agonists in ileal smooth muscle. Phenylephrine-induced contraction was also inhibited by TAS2R agonists in aortic smooth muscle. Gastrointestinal motility and blood pressure were attenuated by administration of TAS2R agonists in vivo. These findings suggest that TAS2R may be receptor for endogenous biologically active substances as well as for bitter tastes on the tongue. TAS2R signaling could be employed in the development of anti-asthmatic, anti-spasmodic, and anti-hypertensive drugs. PMID:27110632

  13. Denatonium and 6-n-Propyl-2-thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse.

    PubMed

    Sakai, Hiroyasu; Sato, Ken; Kai, Yuki; Chiba, Yoshihiko; Narita, Minoru

    2016-01-01

    Recently the global expression of taste 2 receptors (TAS2Rs) on smooth muscle cells in human airways was demonstrated. Here, the effects of agonists of taste receptor, type 2, denatonium and 6-n-propyl-2-thiouracil, on smooth-muscle contraction were examined in the rat and mouse. Contractions induced by carbachol (CCh), high K(+), and sodium fluoride, but not calyculin-A, were inhibited significantly in the presence of a TAS2R agonist in the bronchial smooth muscle of mice. The contraction induced by CCh was inhibited by TAS2R agonists in ileal smooth muscle. Phenylephrine-induced contraction was also inhibited by TAS2R agonists in aortic smooth muscle. Gastrointestinal motility and blood pressure were attenuated by administration of TAS2R agonists in vivo. These findings suggest that TAS2R may be receptor for endogenous biologically active substances as well as for bitter tastes on the tongue. TAS2R signaling could be employed in the development of anti-asthmatic, anti-spasmodic, and anti-hypertensive drugs. PMID:26567724

  14. Acetylcholine activates an inward current in single mammalian smooth muscle cells.

    PubMed

    Benham, C D; Bolton, T B; Lang, R J

    Acetylcholine, the major excitatory neurotransmitter to the smooth muscle of mammalian intestine, is known to depolarize smooth muscle cells with an apparent increase in membrane conductance. However, the ionic mechanisms that are triggered by muscarinic receptor activation and underlie this response are poorly understood, due in part to the technical problems associated with the electrophysiological study of smooth muscle. The muscarinic action of acetylcholine in certain neurones has been shown to involve the switching off of a resting K+ current (M-current) and a similar mechanism has recently also been identified in smooth muscle of amphibian stomach. We have now applied the patch-clamp technique to single smooth muscle cells of rabbit jejunum and find that muscarinic receptor activation switches on a nonselective, voltage-sensitive inward current. In addition, acetylcholine activates and then suppresses spontaneous K+ current transients, which are probably triggered by rises in intracellular Ca2+ in these cells.

  15. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    PubMed

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-01

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  16. The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles

    PubMed Central

    Perez, Jose F.; Sanderson, Michael J.

    2005-01-01

    Increased resistance of airways or blood vessels within the lung is associated with asthma or pulmonary hypertension and results from contraction of smooth muscle cells (SMCs). To study the mechanisms regulating these contractions, we developed a mouse lung slice preparation containing bronchioles and arterioles and used phase-contrast and confocal microscopy to correlate the contractile responses with changes in [Ca2+]i of the SMCs. The airways are the focus of this study. The agonists, 5-hydroxytrypamine (5-HT) and acetylcholine (ACH) induced a concentration-dependent contraction of the airways. High concentrations of KCl induced twitching of the airway SMCs but had little effect on airway size. 5-HT and ACH induced asynchronous oscillations in [Ca2+]i that propagated as Ca2+ waves within the airway SMCs. The frequency of the Ca2+ oscillations was dependent on the agonist concentration and correlated with the extent of sustained airway contraction. In the absence of extracellular Ca2+ or in the presence of Ni2+, the frequency of the Ca2+ oscillations declined and the airway relaxed. By contrast, KCl induced low frequency Ca2+ oscillations that were associated with SMC twitching. Each KCl-induced Ca2+ oscillation consisted of a large Ca2+ wave that was preceded by multiple localized Ca2+ transients. KCl-induced responses were resistant to neurotransmitter blockers but were abolished by Ni2+ or nifedipine and the absence of extracellular Ca2+. Caffeine abolished the contractile effects of 5-HT, ACH, and KCl. These results indicate that (a) 5-HT and ACH induce airway SMC contraction by initiating Ca2+ oscillations, (b) KCl induces Ca2+ transients and twitching by overloading and releasing Ca2+ from intracellular stores, (c) a sustained, Ni2+-sensitive, influx of Ca2+ mediates the refilling of stores to maintain Ca2+ oscillations and, in turn, SMC contraction, and (d) the magnitude of sustained airway SMC contraction is regulated by the frequency of Ca2+ oscillations

  17. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle

    PubMed Central

    Maguire, Janet J; Johnson, Christopher M; Mockridge, James W; Davenport, Anthony P

    1997-01-01

    We have characterized the human smooth muscle endothelin converting enzyme (ECE) present in the media of the endothelium-denuded human umbilical vein preparation. Endothelin-1 (ET-1) and ET-2 were potent constrictors of umbilical vein with EC50 values of 9.2 nM and 29.6 nM, respectively. ET-1 was at least 30 times more potent than ET-3 suggesting the presence of constrictor ETA receptors. Little or no response was obtained to the ETB-selective agonist sarafotoxin 6c. These data suggest that endothelin-mediated vasoconstriction is via ETA receptors in this preparation. Autoradiographical visualization of endothelin receptors with subtype selective ligands confirmed the predominance of the ETA receptor in the media of umbilical vein. High density of binding was obtained with the ETA selective [125I]-PD151242, with much lower levels detected with the ETB selective [125I]-BQ3020. Big ET-1 (EC50=42.7 nM) and big ET-2(1-38) (EC50=99.0 nM) were less potent than ET-1 and ET-2, respectively. Big ET-2(1-38) was more potent than its isoform big ET-2(1-37) with concentration–response curves to big ET-2(1-37) incomplete at 300 nM. No response was obtained to big ET-3 at concentrations up to 700 nM. The C-terminal fragments, big ET-1(22-38) and big ET-2(22-38) were inactive. Responses to ET-1 were unaffected by either the neutral endopeptidase (NEP) inhibitor thiorphan (10−5 M) or by the dual NEP/ECE inhibitor phosphoramidon (10−5 M). Big ET-1 was also unaffected by thiorphan but antagonized in a concentration-dependent manner by phosphoramidon (10−5 M and 10−4 M). Addition of all four big endothelin peptides to human umbilical vein preparations resulted in detectable amounts of ET-IR in the bathing medium. Therefore, although big ET-3 was functionally inactive this reflects the low potency of ET-3 at the ETA receptor rather than the lack of ability of this smooth muscle ECE to convert big ET-3 to ET-3. To conclude we have demonstrated the presence

  18. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  19. Protein kinase C, arachidonate metabolism, and tracheal smooth muscle - effects of temperature

    SciTech Connect

    Huang, C.; Baraban, J.; Menkes, H.

    1986-03-01

    Cooling causes airway obstruction in asthma. Contractions of airway smooth muscle may be produced through the phosphatidylinositol cycle and the activation of protein kinase C. Protein kinase C can be activated directly with phorbol esters. The authors studied the effects of temperature on responses to phorbol 12,13-diacetate (PDA) in guinea pig tracheal rings bathed in Krebs-Henseleit solution. At 37/sup 0/C, 1 ..mu..M PDA relaxed the tissue (tension fell 0.60 +/- S.E. 0.04 g). At 27/sub 0/C, 1 ..mu..M PDA contracted the tissue (tension rose 0.050 +/- 0.05 g). In comparison, near maximum contractions produced by 4 ..mu..M carbachol were 2.00 +/- 0.09 g at 37/sub 0/C and 1.90 +/- 0.09 g at 27/sup 0/C. Butler-Gralla et al. showed that phorbol esters may stimulate the release of arachidonic acid from cultured cells. In order to determine whether arachidonate metabolites play a role in responses observed in guinea pig trachea, the authors used indomethacin (a cyclooxygenase inhibitor), FPL 55712 (a leukotriene receptor antagonist) and Na arachidonate. At 37/sup 0/C, 3 ..mu..M indomethacin pretreatment abolished relaxationby 1 uM PDA. At 27/sup 0/C, 10 uM FPL 55712 pretreatment abolished contractions by 1 ..mu..M PDA. Like PDA, 1 ..mu..M Na arachidonate produced relaxation at 37/sup 0/C and contraction at 27/sup 0/C. The authors conclude that the effects of PDA at different temperatures parallel the effects of Na arachidonate. These results suggest that the effects of PDA in the guinea pig trachea are related to the release of endogenous arachidonic acid and that the cyclooxygenase pathway predominates at high temperature and the lipoxygenase pathway predominates at low temperature.

  20. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    PubMed

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  1. Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent

    PubMed Central

    Carberry, Jayne C.; Jordan, Amy S.; White, David P.; Wellman, Andrew; Eckert, Danny J.

    2016-01-01

    Study Objectives: An anatomically narrow/highly collapsible upper airway is the main cause of obstructive sleep apnea (OSA). Upper airway muscle activity contributes to airway patency and, like apnea severity, can be sleep stage dependent. Conversely, existing data derived from a small number of participants suggest that upper airway collapsibility, measured by the passive pharyngeal critical closing pressure (Pcrit) technique, is not sleep stage dependent. This study aimed to determine the effect of sleep stage on Pcrit and upper airway muscle activity in a larger cohort than previously tested. Methods: Pcrit and/or muscle data were obtained from 72 adults aged 20–64 y with and without OSA.Pcrit was determined via transient reductions in continuous positive airway pressure (CPAP) during N2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Genioglossus and tensor palatini muscle activities were measured: (1) awake with and without CPAP, (2) during stable sleep on CPAP, and (3) in response to the CPAP reductions used to quantify Pcrit. Results: Pcrit was 4.9 ± 1.4 cmH2O higher (more collapsible) during REM versus SWS (P = 0.012), 2.3 ± 0.6 cmH2O higher during REM versus N2 (P < 0.001), and 1.6 ± 0.7 cmH2O higher in N2 versus SWS (P = 0.048). Muscle activity decreased from wakefulness to sleep and from SWS to N2 to REM sleep for genioglossus but not for tensor palatini. Pharyngeal muscle activity increased by ∼50% by breath 5 following CPAP reductions. Conclusions: Upper airway collapsibility measured via the Pcrit technique and genioglossus muscle activity vary with sleep stage. These findings should be taken into account when performing and interpreting “passive” Pcrit measurements. Citation: Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. SLEEP 2016;39(3):511–521. PMID:26612386

  2. Extracellular calcium sensing in rat aortic vascular smooth muscle cells

    SciTech Connect

    Smajilovic, Sanela; Hansen, Jakob Lerche; Christoffersen, Tue E.H.

    2006-10-06

    Extracellular calcium (Ca2+o) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca2+o stimulates proliferation of the cells. The effects of Ca2+o were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca2+o-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca2+o-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.

  3. Monoamine sensitivity of smooth muscle in vivo in nociception disorders.

    PubMed

    Del Bianco, P L; Franchi, G; Anselmi, B; Sicuteri, F

    1982-01-01

    A significant degree of supersensitivity to 5-HT and DA was detected when carrying out the computerized venotest on migraine patients during an attack. A similar supersensitivity was observed during morphine abstinence and naloxone-precipitated withdrawal in addicts. Mild abstinence after slight and short morphine treatment provoked monoamine supersensitivity in volunteers. In these conditions, the administration of morphine inhibited the 5-HT and DA supersensitivity. In spontaneous central panalgesia, monoamine supersensitivity is detectable, as well as in panalgesia induced in headache sufferers by means of PCPA 5-HT deprivation. By means of the venotest, the ergot derivatives were confirmed as being partial 5-HT agonists. These drugs can also carry out their therapeutic activity by potentiating 5-HT at a central level in 5-HT-deficient neurons. The presence of opiate receptors in the human vein is stressed. The high supersensitivity of the venous smooth muscle to 5-HT and DA both in headache and systemic pain sufferers and during morphine withdrawal suggests a pathophysiological analogy between these conditions.

  4. Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds.

    PubMed

    Elsayed, Yahya; Lekakou, Constantina; Labeed, Fatima; Tomlins, Paul

    2016-01-01

    Crosslinked, multi-layer electrospun gelatin fiber scaffolds with generally ±45 degree fiber orientation have been used to grow human umbilical vein smooth muscle cells (HUVSMCs) to create a vascular tunica media graft. Scaffolds of different fiber diameter (2-5 μm in wet state), pore size, and porosity (16-21% in wet state) were assessed in terms of cell adherence and viability, cell proliferation, and migration in both in-plane and transverse directions through the scaffold as a function of time under static cell culture conditions. HUVSMC cell viability reached between 80 and 92% for all scaffolds after 9 days in culture. HUVSMCs adhered, elongated, and orientated in the fiber direction, and migrated through a scaffold thickness of 200-235 μm 9 days post-seeding under static conditions. The best scaffold was then used to assess the tissue engineering of HUVSMCs under dynamic conditions for a rotating, cell seeded, tubular scaffold in the bioreactor containing the culture medium. Dynamic conditions almost doubled the rate of cell proliferation through the scaffold, forming full tissue throughout a scaffold of 250-300 μm thickness 6 days post-seeding.

  5. Contraction of gut smooth muscle cells assessed by fluorescence imaging.

    PubMed

    Tokita, Yohei; Akiho, Hirotada; Nakamura, Kazuhiko; Ihara, Eikichi; Yamamoto, Masahiro

    2015-03-01

    Here we discuss the development of a novel cell imaging system for the evaluation of smooth muscle cell (SMC) contraction. SMCs were isolated from the circular and longitudinal muscular layers of mouse small intestine by enzymatic digestion. SMCs were stimulated by test agents, thereafter fixed in acrolein. Actin in fixed SMCs was stained with phalloidin and cell length was determined by measuring diameter at the large end of phalloidin-stained strings within the cells. The contractile response was taken as the decrease in the average length of a population of stimulated-SMCs. Various mediators and chemically identified compounds of daikenchuto (DKT), pharmaceutical-grade traditional Japanese prokinetics, were examined. Verification of the integrity of SMC morphology by phalloidin and DAPI staining and semi-automatic measurement of cell length using an imaging analyzer was a reliable method by which to quantify the contractile response. Serotonin, substance P, prostaglandin E2 and histamine induced SMC contraction in concentration-dependent manner. Two components of DKT, hydroxy-α-sanshool and hydroxy-β-sanshool, induced contraction of SMCs. We established a novel cell imaging technique to evaluate SMC contractility. This method may facilitate investigation into SMC activity and its role in gastrointestinal motility, and may assist in the discovery of new prokinetic agents. PMID:25837933

  6. Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory.

    PubMed

    Gomez, Delphine; Swiatlowska, Pamela; Owens, Gary K

    2015-12-01

    Vascular smooth muscle cells (SMCs), like all cells, acquire a cell-specific epigenetic signature during development that includes acquisition of a unique repertoire of histone and DNA modifications. These changes are postulated to induce an open chromatin state (referred to as euchromatin) on the repertoire of genes that are expressed in differentiated SMC, including SMC-selective marker genes like Acta2 and Myh11, as well as housekeeping genes expressed by most cell types. In contrast, genes that are silenced in differentiated SMC acquire modifications associated with a closed chromatin state (ie, heterochromatin) and transcriptional silencing. Herein, we review mechanisms that regulate epigenetic control of the differentiated state of SMC. In addition, we identify some of the major limitations in the field and future challenges, including development of innovative new tools and approaches, for performing single-cell epigenetic assays and locus-selective editing of the epigenome that will allow direct studies of the functional role of specific epigenetic controls during development, injury repair, and disease, including major cardiovascular diseases, such as atherosclerosis, hypertension, and microvascular disease, associated with diabetes mellitus.

  7. Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo?

    PubMed

    Doyon, Marielle; Hale, Taben Mary; Huot-Marchand, Julie-Emilie; Wu, Rong; de Champlain, Jacques; DeBlois, Denis

    2011-01-01

    It has been reported that HMG-CoA reductase inhibitors such as atorvastatin induce vascular smooth muscle cell (SMC) apoptosis in vitro. However, this effect remains to be demonstrated in vivo. The present studies were designed to test the ability of atorvastatin to induce SMC apoptosis in vivo, using the spontaneously hypertensive rat (SHR) as a well-known reference model of SMC apoptosis induction in vivo by cardiovascular drugs including the calcium channel blocker amlodipine. Atorvastatin was administered to SHR for 3 or 6 weeks either alone or together with amlodipine, a drug combination clinically available to patients. Primary endpoints included aortic medial hypertrophy and aortic SMC hyperplasia, internucleosomal DNA fragmentation and expression of the apoptosis regulatory proteins Bax and Bcl-2. The SHR aorta showed no evidence of SMC apoptosis induction by atorvastatin, even at the high dose of 50 mg kg(-1) day(-1), although the statin significantly reduced oxidative stress after 3 weeks and blood pressure after 6 weeks of administration. Amlodipine-induced regression of aortic hypertophy and aortic SMC hyperplasia were dose- and time-dependent, but there was no interaction between atorvastatin and amlodipine in modulating the primary endpoints. These results do not support the notion that atorvastatin induces SMC apoptosis in the aortic media in vivo.

  8. Identification of possible adenosine receptors in vascular smooth muscle

    SciTech Connect

    Doctrow, S.R.

    1985-01-01

    Adenosine is a vasodilator and has been implicated in increased blood flow in tissues that undergo energy deficiency. During conditions such as hypoxia and ischemia, adenosine is produced and is said to increase blood flow by relaxing the vascular smooth muscle (VSM) lining the resistance vessels. The goal of this research was to identify receptors that might be responsible for adenosine-mediated VSM relaxation. When an insoluble fraction from calf aortic VSM was incubated with /sup 32/P-ATP, two components were phosphorylated. One was identified as myosin light chain by MW, pl, and immunoprecipitation. The other product was identified as phosphatidylinositol-4-phosphate (DPI) by tic. Both phosphorylations were inhibited by adenosine and by 5'-chloro-5'-deoxyadenosine (Cl-Ado). DPI production was much more sensitive to the nucleosides than was myosin phosphorylation. Neither inhibition involved change in cAMP production. Phosphatidylinositol (Pl) kinase in the VSM membranes required magnesium, was activated and solubilized by Triton X-100, and phosphorylated both endogenous and exogenous Pl. Cl-Ado inhibited Pl kinase in a manner competitive with respect to ATP and noncompetitive with respect to Pl. Adenosine and adenosine analogs modified in the ribose ring were inhibitors with potencies comparable to that of Cl-Ado. Adenine nucleotides and purine-modified adenosine analogs were weaker inhibitors than Cl-Ado.

  9. Upregulation of decorin by FXR in vascular smooth muscle cells

    SciTech Connect

    He Fengtian; Zhang Qiuhong; Kuruba, Ramalinga; Gao Xiang; Li Jiang; Li Yong; Gong Wei; Jiang, Yu; Xie Wen; Li Song

    2008-08-08

    Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.

  10. SREBP inhibits VEGF expression in human smooth muscle cells

    SciTech Connect

    Motoyama, Koka; Fukumoto, Shinya . E-mail: sfukumoto@med.osaka-cu.ac.jp; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  11. Arterial Myogenic Activation through Smooth Muscle Filamin A.

    PubMed

    Retailleau, Kevin; Arhatte, Malika; Demolombe, Sophie; Peyronnet, Rémi; Baudrie, Véronique; Jodar, Martine; Bourreau, Jennifer; Henrion, Daniel; Offermanns, Stefan; Nakamura, Fumihiko; Feng, Yuanyi; Patel, Amanda; Duprat, Fabrice; Honoré, Eric

    2016-03-01

    Mutations in the filamin A (FlnA) gene are frequently associated with severe arterial abnormalities, although the physiological role for this cytoskeletal element remains poorly understood in vascular cells. We used a conditional mouse model to selectively delete FlnA in smooth muscle (sm) cells at the adult stage, thus avoiding the developmental effects of the knockout. Basal blood pressure was significantly reduced in conscious smFlnA knockout mice. Remarkably, pressure-dependent tone of the resistance caudal artery was lost, whereas reactivity to vasoconstrictors was preserved. Impairment of the myogenic behavior was correlated with a lack of calcium influx in arterial myocytes upon an increase in intraluminal pressure. Notably, the stretch activation of CaV1.2 was blunted in the absence of smFlnA. In conclusion, FlnA is a critical upstream element of the signaling cascade underlying the myogenic tone. These findings allow a better understanding of the molecular basis of arterial autoregulation and associated disease states. PMID:26923587

  12. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  13. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues.

    PubMed

    Li, Jia; Chen, Shu; Cleary, Rachel A; Wang, Ruping; Gannon, Olivia J; Seto, Edward; Tang, Dale D

    2014-08-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.

  14. Voltage-gated potassium+ channel expression in coronary artery smooth muscle cells of SHR and WKY.

    PubMed

    Hu, Zhi; Ma, Aiqun; Zhang, Yushun; Xi, Yutao; Fan, Lihong; Wang, Tingzhong; Zhang, Tingting

    2014-12-01

    This study aims to compare the expression of genes and the molecular characteristic of voltage-gated K(+) channels, which make great effort in maintaining and controlling smooth muscle contraction, cellular membrane potential, and intracellular calcium ion currents in artery smooth muscle cells of SHR and WKY. Expression of potassium ions family in coronary artery was detected through reverse transcription polymerase chain reaction quantitatively. Significant levels of voltage-gated K(+) channels α1.2, α1.5, and β1.1 expression were all proved to be significantly higher in smooth muscles of SHR than WKY. Whole-cell voltage-gated K(+) channel currents were larger in SHR artery smooth muscles than the ones of WKY. Moreover, the voltage dependence of voltage-gated potassium channel activation was more negative in artery smooth muscle of SHR than that of WKY, while voltage dependence of availability was not different. The above diversity of voltage-gated potassium channel detected in gene expression and electrical character in coronary artery smooth muscle of SHR than that of WKY might be an underling mechanism associated with the membrane potential depolarization in artery smooth muscle of SHR.

  15. Smooth muscle in the wall of the developing human urinary bladder and urethra.

    PubMed Central

    Gilpin, S A; Gosling, J A

    1983-01-01

    A series of human fetal and neonatal specimens ranging in age from the second month of intrauterine development to 4 1/2 years after birth has been examined using histological and histochemical techniques. In both sexes histologically differentiated smooth muscle cells were evident in the bladder wall from the 52 mm crown-rump length stage onwards--urethral smooth muscle was not distinguishable until 119 mm crown-rump length. In addition to relatively late differentiation, urethral smooth muscle was histochemically distinct from the urinary bladder detrusor muscle. Sex differences in the arrangement and innervation of smooth muscle in the proximal urethra have also been observed, and these findings lend support to the presence of a pre-prostatic urethra sphincter. It seems likely that this sphincter acts principally to prevent reflux of ejaculate into the bladder during seminal emission. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:6654742

  16. Vasculo-smooth muscle hamartomatous structure is linked to morphogenesis of colorectal polypoid adenoma.

    PubMed

    Nakayama, Hirofumi; Enzan, Hideaki; Yasui, Wataru

    2015-06-01

    To investigate the difference of surrounding stromal structure between the polypoid and flat adenomas in the colorectum, we performed microscopic study including immunohistochemistry in a total of 32 colorectal adenomas (typical 24 polypoid and eight flat adenomas), especially focusing on vessels around muscularis mucosa. All 24 polypoid adenomas accompanied vasculo-smooth muscle hamartomatous structure in association with muscularis mucosa and submucosal vessels, whereas none of eight flat adenomas had vasculo-smooth muscle hamartomatous structure; surrounding muscularis mucosa and submucosa of the flat adenomas are identical to those of normal colorectal tissue. Vasculo-smooth muscle hamartomatous structure is linked to the morphogenesis of colorectal polypoid adenomas.

  17. Effect of histamine on contractile activity of smooth muscles in bovine mesenteric lymph nodes.

    PubMed

    Lobov, G I; Pan'kova, M N

    2012-02-01

    The effects of histamine and mechanisms of its action on the capsular smooth muscle cells of mesenteric lymph nodes were examined on isolated capsular strips under isometric conditions. Histamine (1×10(-8)-5×10(-7) M) decreased the tone of capsular smooth muscle cells and the frequency of phasic contractions. At high concentrations (more than 5×10(-6) M), histamine increased the amplitude and frequency of phasic contractions against the background of increased tonic stress. The effects of histamine were dose-dependent and were realized via direct stimulation of H(1)- and H(2)-receptors on the membrane of smooth muscle cells.

  18. Lead acetate action on anaphylactic response of guinea pig smooth muscle.

    PubMed

    Gijón, E; Cartas, L; García, X

    2001-01-01

    Experiments were performed to evaluate lead acetate effects on the anaphylactic contraction in guinea pigs smooth muscles. Aortic rings from guinea pigs exposed to lead acetate developed an anaphylactic contraction significantly lower than the contraction induced by the antigen in controls. In the smooth muscle of the intestine, lead acetate did not modify the anaphylactic response. Lead induced immunosuppression of the anaphylactic response of aortic rings, whereas sodium acetate had no effect on the anaphylactic reaction of the guinea pig smooth muscle. The amplitude of the norepinephrine contraction was not modified by lead nor by sodium acetate.

  19. Regulation of smooth muscle cell phenotype by glycosaminoglycan identity.

    PubMed

    Qu, Xin; Jimenez-Vergara, Andrea Carolina; Munoz-Pinto, Dany J; Ortiz, Diana; McMahon, Rebecca E; Cristancho, Deissy; Becerra-Bayona, Silvia; Guiza-Arguello, Viviana; Grande-Allen, K Jane; Hahn, Mariah S

    2011-03-01

    The retention of lipoproteins in the arterial intima is an initial event in early atherosclerosis and occurs, in part, through interactions between negatively charged glycosaminoglycans (GAGs) and the positively charged residues of apolipoproteins. Smooth muscle cells (SMCs) which infiltrate into the lipoprotein-enriched intima have been observed to transform into lipid-laden foam cells. This phenotypic switch is associated with SMC acquisition of a macrophage-like capacity to phagocytose lipoproteins and/or of an adipocyte-like capacity to synthesize fatty acids de novo. The aim of the present work was to explore the impact of GAG identity on SMC foam cell formation using a scaffold environment intended to be mimetic of early atherosclerosis. In these studies, we focused on chondroitin sulfate C (CSC), dermatan sulfate (DS), and an intermediate molecular weight hyaluronan (HAIMW, ∼400 kDa), the levels and/or distribution of each of which are significantly altered in atherosclerosis. DS hydrogels were associated with greater SMC phagocytosis of apolipoprotein B than HAIMW gels. Similarly, only SMCs in DS constructs maintained increased expression of the adipocyte marker A-FABP relative to HAIMW gels over 35 days of culture. The increased SMC foam cell phenotype in DS hydrogels was reflected in a corresponding decrease in SMC myosin heavy chain expression in these constructs relative to HAIMW gels at day 35. In addition, this DS-associated increase in foam cell formation was mirrored in an increased SMC synthetic phenotype, as evidenced by greater levels of collagen type I and glucose 6-phosphate dehydrogenase in DS gels than in HAIMW gels. Combined, these results support the increasing body of literature that suggests a critical role for DS-bearing proteoglycans in early atherosclerosis. PMID:21094702

  20. Interaction of smooth muscle caldesmon with calmodulin mutants.

    PubMed

    Medvedeva, M V; Bushueva, T L; Shirinsky, V P; Lukas, T J; Watterson, D M; Gusev, N B

    1995-02-20

    The interaction of avian smooth muscle caldesmon with calmodulin (CaM) was investigated by studying the ability of selected mutant calmodulins to induce fluorescence changes in caldesmon. Different types of CaM mutants were used including point charge mutants, cluster mutations, and mutations which alter the calcium binding of CaM. The caldesmon binding properties were only slightly affected by E84K-CaM or by the double mutation E84Q/E120Q-CaM. Affinity of calmodulin to caldesmon was decreased 2-4 times by point mutation G33V-CaM, double mutation E84K/E120K-CaM, deletion of residues 82-84, and by cluster mutations DEE118-120-->KKK or EEE82-84-->KKK. Mutations of the first (E31A-CaM) and the second (E67A-CaM) calcium binding sites reduced the affinity of calmodulin to caldesmon by at least 5-fold; in addition these calmodulin mutants exhibited smaller changes in the fluorescence spectra of caldesmon. Simultaneous mutation of the two negatively charged clusters of calmodulin EEE82-84-->KKK and DEE118-120-->KKK resulted in a more than 15-fold decrease in the affinity of calmodulin for caldesmon. The data indicate that charged and uncharged amino acids in both halves of CaM play an important role in the binding of calmodulin to caldesmon, and that Ca2+ binding must be maintained in the amino-terminal sites for maximal interaction with caldesmon.

  1. Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype

    PubMed Central

    Gutierrez-Pajares, Jorge L.; Iturrieta, Jeannette; Dulam, Vipin; Wang, Yu; Pavlides, Stephanos; Malacari, Gabriella; Lisanti, Michael P.; Frank, Philippe G.

    2015-01-01

    Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis. PMID:26664898

  2. Distribution of a lanthanide (147 Pm) in vascular smooth muscle.

    PubMed

    Weiss, G B; Goodman, F R

    1976-08-01

    In order to ascertain whether trivalent rare earth ions such as lanthanum (La+++) penetrate the cell membrane under physiological conditions, the extracellular and cellular distribution of promethium (147 Pm), a carrier-free rare earth radioisotope, was examined in rabbit aortic smooth muscle. As the duration of incubation was lengthened, uptake of 147Pm continued to increase; it was inhibited by La+++ and other rare earth ions (Nd+++, Lu+++) only when the 147 Pm/rare earth concentration ratio exceeded 1:10(6). However, equally high concentrations of Ca++ had no effect on 147Pm uptake. Efflux of 147Pm was only transiently increased by 1.5 mM La+++, and exposure to 0.05 mM EDTA elicited an increased 147Pm efflux with both transient and maintained components. The magnitude of the EDTA-induced increase in 147 Pm efflux was similar over a 30-fold range of EDTA concentration (0.05-1.5 mM); the limiting factor for 147Pm efflux is the rate of 147Pm desorption from the tissue rather than the extracellular concentration of EDTA. Loss of 147Pm in the presence of 0.05 mM EDTA could be described in terms of two specific washout components (the more rapid of which included 147Pm within the extracellular space and the slower of which had half-times of washout of approximately 7-10 minutes). Uptake of 147Pm was inhibited by lowering the incubation solution temperature to 0 degrees C or by procaine. However, concentrations of metabolic inhibitors (iodoacetate and dinitrophenol) which diminish loss of Ca++ from the cell did not decrease either the uptake or efflux of 147Pm. Thus, significant quantities of 147Pm do not appear to be accumulated within the cell or transported out of the cell; distribution of 147Pm can be most simply described in terms of a binding at and desorption from surface acessible fiber sites.

  3. Real-time in vivo proteomic identification of novel kinase substrates in smooth muscle.

    PubMed

    Wooldridge, Anne A; Haystead, Timothy A

    2007-01-01

    Relaxation of smooth muscle can occur through agonists (such as nitric oxide) that activate guanylyl cyclase and stimulate the production of cGMP, activating its target, cGMP-dependent protein kinase (PKG). This kinase can raise the Ca2+ threshold for contraction, thus causing Ca2+ desensitization, but the mechanism for this event is not completely understood. Ca2+ sensitization/desensitization pathways are essential for maintenance of normal smooth muscle tone, and abnormalities in these pathways have been shown to be key components in the pathogenesis of diseases such as hypertension and asthma in humans. Our laboratory has devised a proteomic method to specifically address the question of what proteins are early phosphorylation targets in calcium desensitization. Using ileum smooth muscle, we metabolically labeled the muscle with (32P)-orthophosphate, permeabilized the muscle, established constant calcium concentrations, and stimulated with 8-bromo-cGMP, which activates PKG. Proteins whose phosphorylation state changed in response to cGMP at constant levels of calcium were separated with two-dimensional gel electrophoresis, identified by autoradiography, and sequenced with nanospray mass spectrometry. Using this technique, we identified a previously uncharacterized PKG phosphoprotein, which we have termed CHASM (Calponin Homology Smooth Muscle protein). Using physiological muscle bath contraction studies, we have validated CHASM as a component of calcium desensitization pathways in smooth muscle.

  4. Investigation of the mechanism of lead toxicity in avian crop smooth muscle

    SciTech Connect

    Boyer, I.J.

    1985-01-01

    There are definite toxic responses attributable to smooth muscle changes in humans and other animals exposed to lead. The mechanisms for such effects are not understood. Lead poisoning is manifested by crop dysfunction in pigeons. The effect may be the result of toxicity at sites associated with lead-induced ataxia, such as the cerebellum, or at sites on the smooth muscle structure and the associated nerve plexuses. The author found that lead-induced ataxia is separable from lead-induced crop dysfunction depending on the route of lead exposure and the dosage regimen. This suggests that crop stasis is not the indirect result of toxic effects in the cerebellum or other sites associated with ataxia. A bathing medium was devised for working with muscle strips in vitro which accommodates the solubility characteristics of lead and supports the activity of crop smooth muscle. Lead concentrations on the order of 0.1 mM in this medium cause relaxation of crop smooth muscle. Circular muscle is more sensitive to Pb/sup 2 +/ than is longitudinal muscle, in agreement with the effects of other smooth muscle agonists.

  5. Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network

    PubMed Central

    2014-01-01

    Background Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. Results Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other’s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. Conclusions Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors. PMID:25015411

  6. Characterization of human aortic smooth muscle cells expressing HPV16 E6 and E7 open reading frames.

    PubMed Central

    Conroy, S. C.; Hart, C. E.; Perez-Reyes, N.; Giachelli, C. M.; Schwartz, S. M.; McDougall, J. K.

    1995-01-01

    A comparative study of human papillomavirus type 16 E6E7-transfected and normal human aortic smooth muscle cells by morphological, electron microscopic, immunofluorescent, and biochemical analyses demonstrated that the E6E7-expressing cells retained much of the phenotype of normal aortic smooth muscle cells, including expression of smooth muscle markers and appropriate growth responses to PDGF and heparin. These cells differed from normal vascular smooth muscle cells in that they had slightly altered morphology and a higher growth rate that was not due to an autocrine response to secreted PDGF, and they contained more polyribosomes than normal smooth muscle cells. Images Figure 2 Figure 4 Figure 5 PMID:7677186

  7. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors.

    PubMed

    Markowski, Dominique Nadine; Huhle, Sonja; Nimzyk, Rolf; Stenman, Göran; Löning, Thomas; Bullerdiek, Jörn

    2013-03-01

    Mutations of the mediator subcomplex 12 gene (MED12) recently have been described in a large group of uterine leiomyomas (UL) but only in a single malignant uterine smooth muscle tumor. To further address the occurrence of fibroid-type MED12 mutations in smooth muscle tumors, we have analyzed samples from 34 leiomyosarcomas (LMS), 21 UL, two extrauterine leiomyomas (EL), and 10 canine genital leiomyomas for the presence of MED12 mutations of the UL-type. Interestingly, besides UL MED12 mutations were found in one uterine LMS, one EL, and two canine vaginal leiomyomas. The results confirm the occurrence of fibroid-type MED12 mutations in malignant uterine smooth muscle tumors thus suggesting a rare but existing leiomyoma-LMS sequence. In addition, for the first time MED12 mutations are reported in smooth muscle tumors in a non-primate mammalian species. PMID:23225304

  8. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function.

    PubMed

    Roffel, A F; Elzinga, C R; Van Amsterdam, R G; De Zeeuw, R A; Zaagsma, J

    1988-08-01

    Previous work showing that AF-DX 116, a cardioselective muscarinic antagonist in functional experiments, does not discriminate between muscarinic receptors in bovine cardiac and tracheal membranes has been extended. In addition to AF-DX 116 we used the muscarinic antagonists, atropine, pirenzepine, 4-DAMP methobromide, gallamine, hexahydrosiladifenidol and methoctramine, in radioligand binding experiments on bovine cardiac left ventricular and tracheal smooth muscle membranes. The functional antagonism of the methacholine-induced contraction of bovine tracheal smooth muscle strips was also evaluated. An excellent correlation was found for all compounds between the binding affinities for muscarinic receptors in cardiac and tracheal smooth muscle membranes; moreover, the affinities found in cardiac membranes correspond with the pA2 values reported for atrial preparations of rat and guinea pig. However, significant and occasionally marked discrepancies were found between binding and functional affinities of these muscarinic antagonists on bovine tracheal smooth muscle. PMID:3215279

  9. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase.

    PubMed Central

    Mollace, V.; Salvemini, D.; Anggard, E.; Vane, J.

    1991-01-01

    1. Incubation of smooth muscle cells (SMC) from bovine aorta for 3 min with human washed platelets treated with indomethacin (10 microM) promoted a cell number-related inhibition of platelet aggregation induced by thrombin (40 mu ml-1). This inhibition was not attributable to products of the cyclo-oxygenase pathway for the SMC were also treated with indomethacin (10 microM). 2. The inhibitory activity of the SMC on platelet aggregation was enhanced by incubating the SMC with E. coli lipopolysaccharide (LPS, 0.5 micrograms ml-1) for a period of 9 to 24 h. This effect was attenuated when cycloheximide (10 micrograms ml-1) was incubated together with LPS. Cycloheximide did not prevent the inhibitory activity of the non-treated cells. 3. The inhibition of platelet aggregation obtained with non-treated or LPS-treated SMC was potentiated by superoxide dismutase (SOD, 60 u ml-1) and ablated by oxyhaemoglobin (OxyHb, 10 microM). Preincubation of the SMC with NG-monomethyl-L-arginine (L-NMMA, 30-300 microM) for 60 min prevented their antiaggregatory activity. This effect was reversed by concurrent incubation with L-arginine (L-Arg, 100 microM) but not with D-arginine (D-Arg, 100 microM). 4. Exposure of the non-treated SMC (5 x 10(5) cells) to stirring (1000 r.p.m., 37 degrees C) for 10 min led to a significant increase in their levels of guanosine 3':5'-cyclic monophosphate (cyclic GMP) but not adenosine 3':5'-cyclic monophosphate (cyclic AMP). L-NMMA (300 microM) attenuated the increase in cyclic GMP induced by stirring but did not affect the basal levels of cyclic GMP in the cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1724627

  10. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells.

    PubMed

    Whitesell, Thomas R; Kennedy, Regan M; Carter, Alyson D; Rollins, Evvi-Lynn; Georgijevic, Sonja; Santoro, Massimo M; Childs, Sarah J

    2014-01-01

    Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.

  11. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury

    PubMed Central

    2014-01-01

    Background The origins of neointimal smooth muscle cells that arise following vascular injury remains controversial. Studies have suggested that these cells may arise from previously differentiated medial vascular smooth muscle cells, resident stem cells or blood born progenitors. In the current study we examined the contribution of the previously differentiated vascular smooth muscle cells to the neointima that forms following carotid artery ligation. Methods We utilized transgenic mice harboring a cre recombinase-dependent reporter gene (mTmG). These mice express membrane targeted tandem dimer Tomato (mTomato) prior to cre-mediated excision and membrane targeted EGFP (mEGFP) following excision. The mTmG mice were crossed with transgenic mice expressing either smooth muscle myosin heavy chain (Myh11) or smooth muscle α-actin (Acta2) driven tamoxifen regulated cre recombinase. Following treatment of adult mice with tamoxifen these mice express mEGFP exclusively in differentiated smooth muscle cells. Subsequently vascular injury was induced in the mice by carotid artery ligation and the contribution of mEGFP positive cells to the neointima determined. Results Analysis of the cellular composition of the neointima that forms following injury revealed that mEGFP positive cells derived from either Mhy11 or Acta2 tagged medial vascular smooth muscle cells contribute to the majority of neointima formation (79 ± 17% and 81 ± 12%, respectively). Conclusion These data demonstrate that the majority of the neointima that forms following carotid ligation is derived from previously differentiated medial vascular smooth muscle cells. PMID:25309723

  12. Distinct apolipoprotein E isoform preference for inhibition of smooth muscle cell migration and proliferation.

    PubMed

    Zeleny, Michelle; Swertfeger, Debi K; Weisgraber, Karl H; Hui, David Y

    2002-10-01

    The current study compared the effectiveness of the various human apolipoprotein E (apoE) isoforms in inhibiting platelet-derived growth factor- (PDGF-) stimulated smooth muscle cell proliferation and migration. The incubation of primary mouse aortic smooth muscle cells with apoE3 resulted in dose-dependent inhibition of smooth muscle cells stimulated by 10 ng/mL PDGF. Greater than 50% inhibition of smooth muscle cell proliferation was observed at 15 microg/mL of human apoE3. Human apoE2 was less effective, requiring a higher concentration to achieve inhibition comparable to that of apoE3. Human apoE4 was the least effective of the apoE isoforms with no significant inhibition of cell proliferation observed at concentrations up to 15 microg/mL. Interestingly, apoE inhibition of PDGF-directed smooth muscle cell migration did not show preference for any apoE isoforms. Human apoE2, apoE3, and apoE4 were equally effective in inhibiting smooth muscle cell migration toward PDGF. These results are consistent with previous data showing that apoE inhibition of smooth muscle cell proliferation is mediated through its binding to heparan sulfate proteoglycans, whereas its inhibition of cell migration is mediated via binding to the low-density lipoprotein receptor related protein. The low efficiency of apoE4 to inhibit smooth muscle cell proliferation also suggested another mechanism to explain the association between the apolipoprotein epsilon4 allele with increased risk of coronary artery disease. PMID:12269825

  13. Enhancement of the responsiveness of vas deferens and ileum smooth muscle in sensitized guinea pigs: in vitro study.

    PubMed

    Bidon, J C; Blin, M; Gogny, M; Vu, A T; Jondet, A

    1994-05-01

    Changes in the reactivity of the ileum (to histamine and barium chloride) and vas deferens (to acetylcholine and barium chloride), isolated from actively egg albumen-sensitized guinea pigs, have been investigated. The study was performed on 2 guinea pig strains: the Dunkin-Hartley strain, usually used as an airway allergic model, and the BFA strain. In actively sensitized guinea pigs of both strains, concentration-response curves exhibited a significant dose-dependent upward shift compared to those obtained in control guinea pigs. The maximal contraction strength calculated from these curves was significantly enhanced in both sensitized guinea pig strains, without a change in EC50 values. This study showed that the active antigen sensitization procedure involved several smooth muscle functions, and not exclusively the trachea. PMID:7950408

  14. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  15. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  16. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA.

  17. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction.

    PubMed

    Wang, Tao; Wang, Ruping; Cleary, Rachel A; Gannon, Olivia J; Tang, Dale D

    2015-04-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.

  18. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  19. Regulation of smooth muscle cell growth by endothelium-derived factors.

    PubMed Central

    Scott-Burden, T; Vanhoutte, P M

    1994-01-01

    The endothelium is a source of molecules that either stimulate or inhibit the proliferation of the underlying smooth muscle cells. In the normal, healthy vessel wall the smooth muscle cells are quiescent, but they proliferate when damage to the endothelium occurs. The implication of such observations is that although the endothelium provides a source of growth factors, their stimulatory activity on smooth muscle cells is countered by endothelium-derived growth inhibitors. The inhibitors appear to comprise at least 3 distinct types of molecules: heparin/heparan sulfate; transforming growth factor beta; and nitric oxide. Each molecule inhibits growth of cultured smooth muscle cells by mechanisms that remain to be elucidated and are discussed in this communication. Heparin/heparan sulfate is the most thoroughly characterized of the 3, and has been used for clinical intervention to prevent restenosis. Transforming growth factor beta exhibits bimodal activity on growth, acting as a stimulant at low levels and as an inhibitor at elevated concentrations. Nitric oxide mediated vasorelaxation is dependent upon activation of soluble guanylate cyclase. Because elevation of cyclic guanosine monophosphate in smooth muscle cells depresses their proliferation, nitric oxide would appear to possess the properties necessary to inhibit vascular smooth muscle cell proliferation. PMID:8180516

  20. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  1. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  2. Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells.

    PubMed

    Rosenberg, Josef; Byrtus, Miroslav; Stengl, Milan

    2016-10-01

    Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be

  3. OUABAIN- AND MARINOBUFAGENIN-INDUCED PROLIFERATION OF HUMAN UMBILICAL VEIN SMOOTH MUSCLE CELLS AND A RAT VASCULAR SMOOTH MUSCLE CELL LINE, A7R5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the growth-promoting effects of 2 sodium pump-selective cardiotonic steroids, ouabain and marinobufagenin, on cultured cells from vascular smooth muscle (VSMCs) from human umbilical vein and a rat VSMC line, A7r5. Both ouabain and marinobufagenin activated proliferation of these cells in...

  4. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    PubMed Central

    Marion, Sarah B; Mangel, Allen W

    2014-01-01

    For decades, it was believed that the diameter of gastrointestinal smooth muscle cells is sufficiently narrow, and that the diffusion of calcium across the plasma membrane is sufficient, to support contractile activity. Thus, depolarization-triggered release of intracellular calcium was not believed to be operative in gastrointestinal smooth muscle. However, after the incubation of muscle segments in solutions devoid of calcium and containing the calcium chelator ethylene glycol tetraacetic acid, an alternative electrical event occurred that was distinct from normal slow waves and spikes. Subsequently, it was demonstrated in gastrointestinal smooth muscle segments that membrane depolarization associated with this alternative electrical event triggered rhythmic contractions by release of intracellular calcium. Although this concept of depolarization-triggered calcium release was iconoclastic, it has now been demonstrated in multiple gastrointestinal smooth muscle preparations. On the basis of these observations, we investigated whether a rhythmic electrical and mechanical event would occur in aortic smooth muscle under the same calcium-free conditions. The incubation of aortic segments in a solution with no added calcium plus ethylene glycol tetraacetic acid induced a fast electrical event without corresponding tension changes. On the basis of the frequency of these fast electrical events, we pursued, contrary to what has been established dogma for more than three centuries, the question of whether the smooth muscle wall of the aorta undergoes rhythmic activation during the cardiac cycle. As with depolarization-triggered contractile activity in gastrointestinal smooth muscle, it was “well known” that rhythmic activation of the aorta does not occur in synchrony with the heartbeat. In a series of experiments, however, it was demonstrated that rhythmic contractions occur in the aortic wall in synchrony with the heartbeat and share a common pacemaker with the heart

  5. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo Jung; Cena, Jonathan; Schulz, Richard; Daniel, Edwin E

    2008-01-01

    Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism. PMID:18400048

  6. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  7. A prospective randomized control study comparing classic laryngeal mask airway with Guedel's airway for tracheal tube exchange and smooth extubation

    PubMed Central

    Jain, Shruti; Nazir, Nazia; Khan, Rashid M.; Ahmed, Syed M.

    2016-01-01

    Introduction: Extubation in deep plane of anesthesia followed by Guedel's oropharyngeal airway (OPA™) insertion is a routine method to avoid hemodynamic changes associated with tracheal extubation. Exchange of endotracheal tube (ETT) with Classic laryngeal mask airway (LMA™) prior to emergence from anesthesia also serves similar purpose. We had compared the hemodynamic changes involved during this ETT/LMA™ and ETT/OPA™ exchange technique. Material and Methods: This was a randomized prospective study on ASA I and 2 patients undergoing elective surgery under general anesthesia. These patients were randomly divided into two groups i.e. OPA group and LMA group of 50 patients each. Hemodynamic parameters i.e. systolic blood pressure (SBP) and heart rate (HR) were recorded during exchange of ETT with OPA™ or LMA™. Coughing / bucking during removal of OPA™ and LMA™, and presence of post operative sore throat for both the groups were also graded and recorded. Data within the groups have been analyzed using paired “t” test while those between the groups were analyzed using unpaired “t” test. Chi square test was used to analyze grades of coughing and post operative sore throat. Results: In both groups, hemodynamic parameters rose significantly as OPA™/LMA™ was placed (P < 0.05) and then started declining. Hemodynamic parameters continued to fall in LMA group after extubation. However in OPA group, hemodynamic parameters continued to rise even after extubation and declined only when OPA™ was removed. There was no statistical significant difference between the LMA and OPA group in respect to coughing and post operative sore throat. Conclusion: LMA™ is superior to OPA™ for exchange of ETT as it provides greater hemodynamic stability. PMID:27746550

  8. Pleomorphic rhabdomyosarcoma showing smooth-muscle and fibrohistiocytic differentiation: a single case report.

    PubMed

    Eyden, Brian

    2010-02-01

    Rhabdomyosarcoma has traditionally been subclassified into alveolar, embryonal, and pleomorphic variants. Less commonly, spindle-cell, neuroendocrine, sclerosing, and lipid-rich or clear-cell subtypes are seen. The author recently encountered a myogenic sarcoma, with all the common markers of rhabdomyosarcoma, but expressing the unusual features of alpha-smooth-muscle actin and abundant rough endoplasmic reticulum (rER). This myogenic sarcoma, therefore, exhibited four lines of differentiation, and is documented here. The patient was a 65-year-old man with an inguinal soft tissue mass. Following surgical excision, the patient was given radiotherapy and was well without disease after 6 years. The tumor was positive for vimentin, desmin, alpha-smooth-muscle actin, alpha-sarcomeric actin, myogenin, MyoD1, and CD68. Cytoplasm was dominated by abundant rER intermingled with lipid droplets and lysosomes. Cell surfaces exhibited microvillous processes and focal adhesions, but no lamina. Subplasmalemmal smooth-muscle-type myofilaments with focal densities and rare sarcomeric filaments were seen. The low level of expression of some markers was interpreted as consistent with a poorly differentiated tumor. Given the four lines of differentiation--striated muscle, smooth muscle, fibroblastic, and histiocytic--a name reflecting its phenotype would be pleomorphic rhabdomyosarcoma showing smooth-muscle and fibrohistiocytic differentiation. PMID:20070153

  9. Participation of bivalent ions in the acetylcholine-provoked gastric smooth-muscle phasis contractions.

    PubMed

    Boev, K; Papasova, M

    1976-01-01

    Experiments were carried out on muscle strips from cat antrum. Acetylcholine added to Ca++ -free medium containing EDTA (10-5M) exerted no effect on the phasic contractions of the gastric smooth muscle. Ba++at low concentrations (0,1 to 0,5mM) replaced Ca++with respect to the acetylcholine effect. On the background of blocked cholinergic (atropine 10-5M) and adrenergic (phentolamine 10-5 M and propranolol 10-5M) structures Ba++ provoked slow potentials and cotractions with a frequency of 9 to 10 cpm. delta600 (10-5M) blocked the Ba++-induced myogenic electrical and contractile activities of the smooth muscle. The role of the cholinergic structures for synchronizing the electrical and contractile activities of the smooth muscle is considered.

  10. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles.

    PubMed

    Devine, C E; Somlyo, A V; Somlyo, A P

    1972-03-01

    The sarcoplasmic reticulum (SR) was studied in the smooth muscles of rabbit main pulmonary artery, mesenteric vein, aorta, mesenteric artery, taenia coli, guinea pig mesenteric artery, and human uterus, and correlated with contractions of the smooth muscles in Ca-free media. SR volumes were determined in main pulmonary artery (5.1%), aorta (5%), portal-anterior mesenteric vein (2.2%), taenia coli (2%), and mesenteric artery (1.8%): because of tangentially sectioned membranes these estimates are subject to a correction factor of up to +50% of the values measured. Smooth muscles that contained a relatively large volume of SR maintained significant contractile responses to drugs in the virtual absence of extracellular calcium at room temperatures, while smooth muscles that had less SR did not. The unequal maximal contractions of main pulmonary artery elicited by different drugs were also observed in Ca-free, high potassium-depolarizing solution, indicating that they were secondary to some mechanism independent of changes in membrane potential or calcium influx. Longitudinal tubules of SR run between and are fenestrated about groups of surface vesicles separated from each other by intervening dense bodies. Extracellular markers (ferritin and lanthanum) entered the surface vesicles, but not the SR. The peripheral SR formed couplings with the surface membrane: the two membranes were separated by gaps of approximately 10 nm traversed by electron-opaque connections suggestive of a periodicity of approximately 20-25 nm. These couplings are considered to be the probable sites of electromechanical coupling in twitch smooth muscles. Close contacts between the SR and the surface vesicles may have a similar function, or represent sites of calcium extrusion. The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.

  11. Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis.

    PubMed

    Zhang, Douglas; Sun, Michael B; Lee, Junmin; Abdeen, Amr A; Kilian, Kristopher A

    2016-05-01

    The reliable generation of smooth muscle cells is important for a number of tissue engineering applications. Human mesenchymal stem cells (MSCs) are a promising progenitor of smooth muscle, with high expression of smooth muscle markers observed in a fraction of isolated cells, which can be increased by introduction of soluble supplements that direct differentiation. Here we demonstrate a new micropatterning technique, where peptides of different ligand affinity can be microcontact printed onto an inert background, to explore MSC differentiation to smooth muscle through controlled biochemical and biophysical cues alone. Using copper-catalyzed alkyne-azide cycloaddition (CuAAC), we patterned our surfaces with RGD peptide ligands-both a linear peptide with low integrin affinity and a cyclic version with high integrin affinity-for the culture of MSCs in shapes with various aspect ratios. At low aspect ratio, ligand affinity is a prime determinant for smooth muscle differentiation, while at high aspect ratio, ligand affinity has less of an effect. Pathway analysis reveals a role for focal adhesion turnover, Rac1, RhoA/ROCK, and calpain during smooth muscle differentiation of MSCs in response to cell shape and the affinity of the cell adhesion interface. Controlling integrin-ligand affinity at the biomaterials interface is important for mediating adhesion but may also prove useful for directing smooth muscle myogenesis. Peptide patterning enables the systematic investigation of single to multiple peptides derived from any protein, at different densities across a biomaterials surface, which has the potential to direct multiple MSC differentiation outcomes without the need for soluble supplements.

  12. Pentosan polysulfate decreases prostate smooth muscle proliferation and extracellular matrix turnover.

    PubMed

    Elliot, S J; Zorn, B H; McLeod, D G; Moul, J W; Nyberg, L; Striker, L J; Striker, G E

    2003-01-01

    Benign prostatic hyperplasia (BPH) involves proliferation of smooth muscle cells and increased deposition of extracellular matrix (ECM). We recently found that pentosan polysulfate (PPS) has marked effects on growth and ECM of smooth muscle cells derived from vascular tissues. We examined smooth muscle cells cultured from human prostates and the effects of PPS on their growth and ECM production. Fragments of surgical prostatectomy specimens were diced, digested with collagenase (0.01%), and placed in culture medium supplemented with 20% fetal bovine serum. Outgrowths of elongated cells were characterized by light microscopic examination and immunohistochemical techniques by the presence of F-actin, alpha-smooth muscle actin, and myosin, which is a characteristic of smooth muscle cells. Two independent isolates were propagated, and growth curves and ECM production were assessed in the presence and absence of PPS (10 or 100 microg/ml). PPS decreased cell number beginning at day 1 and throughout the incubation period, up to 4 days. The amount of the ECM degradative enzymes, metallo-proteinases MMP-9 and MMP-2, was examined by zymography. PPS did not alter the amount of MMP-2 in the supernatants but MMP-9 was increased 234.4 +/- 17.23-fold over control cells. Tissue inhibitor of MMP (TIMPS), examined by reverse zymography, increased 200% over control. The amount of alpha I type (IV) and alpha I type (I) collagen released in the supernatant, measured by ELISA, significantly decreased in PPS-treated cultures. In conclusion, we found that the administration of PPS decreased proliferation as well as ECM production in prostate smooth muscle. Since smooth muscle proliferation and ECM are involved in the pathophysiology of BPH, PPS may have therapeutic potential.

  13. Inhibition of the Ca sup 2+ -ATPase of vascular smooth muscle sarcoplasmic reticulum by superoxide radicals

    SciTech Connect

    Suzuki, Yuichiro; Ford, G.D. )

    1991-03-15

    The effect of oxygen free radicals generated by hypoxanthine plus xanthine oxidase on the Ca{sup 2+}-ATPase of sarcoplasmic reticulum from bovine aortic smooth muscle were studied. Exogenous hypoxanthine plus xanthine oxidase produced an hypoxanthine concentration dependent inhibition of the Ca{sup 2+}-ATPase. The inhibition could be completely blocked by superoxide dismutase but not by either mannitol or deferoxamine. Direct addition of reagent hydrogen peroxide in the {mu}M range did not cause significant inhibition. These results suggest that superoxide is the primary damaging species. Additionally, 1.16 {plus minus} 0.17 mU/g wet wt of xanthine oxidase activity were detected in the post-nuclear supernatant of bovine aortic smooth muscle, suggesting the existence of a possible intracellular source of superoxide. This value was calculated to be approximately 5 mU/ml by using a usual value of vascular smooth muscle cellular volume. Thus the level of endogenous xanthine oxidase resident in vascular smooth muscle is comparable with the level of exogenous xanthine oxidase used in the present study. These findings suggest a potential role of xanthine oxidase-generated superoxide in free radical injury to vascular smooth muscle.

  14. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle.

    PubMed

    Rattan, Satish; Ali, Mehboob

    2015-04-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22.

  15. Axl modulates immune activation of smooth muscle cells in vein graft remodeling.

    PubMed

    Batchu, Sri N; Xia, Jixiang; Ko, Kyung Ae; Doyley, Marvin M; Abe, Jun-Ichi; Morrell, Craig N; Korshunov, Vyacheslav A

    2015-09-15

    The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.

  16. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    PubMed

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice.

  17. Urinary Bladder Smooth Muscle Engineered from Adipose Stem Cells and a Three Dimensional Synthetic Composite

    PubMed Central

    Jack, Gregory S.; Zhang, Rong; Lee, Min; Xu, Yuhan; Wu, Ben; Rodríguez, Larissa V.

    2009-01-01

    Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats (n=45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo. Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells. PMID:19345408

  18. Influences on vascular wall smooth muscle cells with novel short-duration thermal angioplasty

    NASA Astrophysics Data System (ADS)

    Kunio, M.; Shimazaki, N.; Arai, T.; Sakurada, M.

    2012-02-01

    We investigated the influences on smooth muscle cells after our novel short-duration thermal angioplasty, Photo-thermo Dynamic Balloon Angioplasty (PTDBA), to reveal the mechanism that can suppress neo-intimal hyperplasia after PTDBA. We obtained the sufficient arterial dilatations by short-duration heating (<=15 s, <70°C) and low dilatation pressure (<0.4 MPa) without arterial injuries in our previous in vivo studies. Smooth muscle cells, which play most important role in chronic treatment effects, were heated during PTDBA and stretch-fixed after PTDBA. The dead cell rate by heating, estimated by Arrhenius equation with A=2.5x1016 s-1 and Ea=1.17×105 J mol-1, was 15.7+/-2.2% after PTDBA. The measured deformation rate of smooth muscle cells' nuclei was 1.6+/-0.1 after PTDBA in vivo. We found that the expression of smooth muscle cells' growth factor after PTDBA was inhibited 0.52 fold compared to that after the conventional balloon angioplasty in vivo. The measured neo-intimal hyperplasia occupancy rate was less than 20% after PTDBA in vivo. We prospect that the inhibition of the growth factor's expression by stretch-fixing may result to suppress the neo-intimal hyperplasia. In addition, the decrease of smooth muscle cells' density in the vessel media by heating might be another reason for the neo-intimal hyperplasia suppression.

  19. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    PubMed

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy. PMID:27468462

  20. Calcium distribution in aortic smooth muscle cells of deoxycorticosterone-hypertensive rats. A quantitative cytochemical study.

    PubMed

    Nickerson, P A; Yang, F

    1988-04-01

    The effect of deoxycorticosterone (DOC)-induced hypertension on the calcium content within the aorta was studied before the increase in pressure (one week) and after the pressure had reached hypertensive levels (4 weeks). The volume density of free calcium detected ultrastructurally by pyroantimonate precipitation was quantitated by stereological techniques in aortic smooth muscle cells. An increase in the volume density of electron opaque precipitate was observed in the cytoplasm at one week of DOC treatment when neither the systolic blood pressure, the thickness of the media nor volume fraction of medial smooth muscle as compared to the extracellular space was increased significantly. The total aortic calcium as measured by atomic absorption spectroscopy was not increased at one week. By 4 weeks when the rats were hypertensive, the cytoplasmic free calcium in the smooth muscle cells and the number of peripherally-located cytoplasmic vesicles with precipitate was increased significantly. Total aortic calcium was also increased significantly in the DOC-saline group but not in the DOC group drinking tap water or in the saline drinking controls. An elevation of calcium within the cytoplasm of vascular smooth muscle cells may precede the development of hypertension and play a role in the pathogenesis of the increased blood pressure, increased medial thickness and hypertrophy of the vascular smooth muscle cells.

  1. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle

    SciTech Connect

    Chadwick, C.C.; Saito, A.; Fleischer, S. )

    1990-03-01

    The release of Ca{sup 2+} from internal stores is requisite to muscle contraction. In skeletal muscle and heart, the Ca{sup 2+} release channels (ryanodine receptor) of sarcoplasmic reticulum, involved in excitation-contraction coupling, have recently been isolated and characterized. In smooth muscle, inositol 1,4,5-trisphosphate (IP{sub 3}) is believed to mobilize Ca{sup 2+} from internal stores and thereby modulate contraction. The authors describe the isolation of an IP{sub 3} receptor from smooth muscle. Bovine aorta smooth muscle microsomes were solubilized with 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate, and the IP{sub 3} receptor was purified by sucrose gradient centrifugation and column chromatography with heparin-agarose and wheat germ agglutinin-agarose. The receptor is an oligomer of a single polypeptide with a M{sub r} of 224,000 as determined by SDS/PAGE. Negative-staining electron microscopy reveals that the receptor is a large pinwheel-like structure having surface dimensions of {approx}250 {times} 250 {angstrom} with fourfold symmetry. The IP{sub 3} receptor from smooth muscle is similar to the ryanodine receptor with regard to its large size and fourfold symmetry, albeit distinct with regard to appearance, protomer size, and ligand binding.

  2. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine. PMID:26185330

  3. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

    PubMed

    Neshatian, Leila; Strege, Peter R; Rhee, Poong-Lyul; Kraichely, Robert E; Mazzone, Amelia; Bernard, Cheryl E; Cima, Robert R; Larson, David W; Dozois, Eric J; Kline, Crystal F; Mohler, Peter J; Beyder, Arthur; Farrugia, Gianrico

    2015-09-15

    Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle and to examine the effects of ranolazine on Na(+) current, mechanosensitivity, and smooth muscle contractility. Inward currents were recorded by whole cell voltage clamp from freshly dissociated human colon SMCs at rest and with shear stress. SCN5A mRNA and NaV1.5 protein were examined by RT-PCR and Western blots, respectively. Ascending human colon strip contractility was examined in a muscle bath preparation. SCN5A mRNA and NaV1.5 protein were identified in human colon circular muscle. Freshly dissociated human colon SMCs had Na(+) currents (-1.36 ± 0.36 pA/pF), shear stress increased Na(+) peaks by 17.8 ± 1.8% and accelerated the time to peak activation by 0.7 ± 0.3 ms. Ranolazine (50 μM) blocked peak Na(+) current by 43.2 ± 9.3% and inhibited shear sensitivity by 25.2 ± 3.2%. In human ascending colon strips, ranolazine decreased resting tension (31%), reduced the frequency of spontaneous events (68%), and decreased the response to smooth muscle electrical field stimulation (61%). In conclusion, SCN5A-encoded NaV1.5 is found in human colonic circular smooth muscle. Ranolazine blocks both peak amplitude and mechanosensitivity of Na(+) current in human colon SMCs and decreases contractility of human colon muscle strips. Our data provide a likely mechanistic explanation for constipation induced by ranolazine.

  4. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency

    PubMed Central

    Shaw, Rachel K.; Issekutz, Andrew C.; Fraser, Robert; Schmit, Pierre; Morash, Barb; Monaco-Shawver, Linda; Orange, Jordan S.

    2012-01-01

    EBV-associated smooth muscle tumors are found in immunocompromised patients, most commonly HIV/AIDS. We present a 12-year-old girl with the first documented case of EBV-related smooth muscle tumors in the presence of a rare classic NK cell deficiency. This sheds light on the role of NK cells in controlling EBV-related smooth muscle tumors. PMID:22427204

  5. Relaxation of uterine and aortic smooth muscle by glaucolides D and E from Vernonia liatroides.

    PubMed

    Campos, María; Oropeza, Martha; Ponce, Héctor; Fernández, Jaquelina; Jimenez-Estrada, Manuel; Torres, Héctor; Reyes-Chilpa, Ricardo

    2003-01-01

    Vernonia spp. (Asteraceae) are used in herbolaria in Latin America in menstrual and stomach disorders, suggesting smooth muscle relaxing properties of some of their chemical constituents. For pharmacological support for this belief, sesquiterpene lactones glaucolides D and E were assayed on isolated rat smooth muscle. Glaucolide E proved more potent than glaucolide D to relax high KCl- or noradrenaline-induced contractions in aorta and to relax the high KCl-contraction in uterus. Hirsutinolide-type sesquiterpene lactone also was tested but displayed no effect. Relaxation of smooth muscle by structurally related sesquiterpene lactone parthenolide has been attributed mainly to the alpha-methylene gamma-lactone moiety; because glaucolides D and E lack this functional group, their relaxant properties may rely on other alkylating sites such as C10 of the germacra-1(10),4-diene-4-epoxide skeleton.

  6. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms

    PubMed Central

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed. PMID:26468456

  7. Cannabinoid CB{sub 1} receptor inhibition decreases vascular smooth muscle migration and proliferation

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Hasko, Gyoergy; Pacher, Pal

    2008-12-26

    Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli and chemoattractants such as platelet-derived growth factor (PDGF) are key events in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation and migration in various cell types through cannabinoid receptors. Here we investigated the effects of CB{sub 1} receptor antagonist rimonabant (SR141716A), which has recently been shown to have anti-atherosclerotic effects both in mice and humans, on PDGF-induced proliferation, migration, and signal transduction of human coronary artery smooth muscle cells (HCASMCs). PDGF induced Ras and ERK 1/2 activation, while increasing proliferation and migration of HCASMCs, which were dose dependently attenuated by CB{sub 1} antagonist, rimonabant. These findings suggest that in addition to improving plasma lipid alterations and decreasing inflammatory cell migration and inflammatory response, CB{sub 1} antagonists may exert beneficial effects in atherosclerosis and restenosis by decreasing vascular smooth muscle proliferation and migration.

  8. Cinematographic analysis of vascular smooth muscle cell interactions with extracellular matrix.

    PubMed

    Absher, M; Baldor, L

    1991-01-01

    The interactions of vascular smooth muscle cells with growth modulators and extracellular matrix molecules may play a role in the proliferation and migration of these cells after vascular injury and during the development of atherosclerosis. Time-lapse cinematographic techniques have been used to study cell division and migration of bovine carotid artery smooth muscle cells in response to matrix molecules consisting of solubilized basement membrane (Matrigel) and type I collagen. When cells were grown adjacent to Matrigel, both migration and cell proliferation were increased and interdivision time was shortened. Cells grown in Matrigel or in type I collagen had markedly reduced migration rates but interdivision time was not altered. Further, diffusible components of the Matrigel were found to stimulate proliferation of the smooth muscle cells.

  9. [Influence of prostatilen on smooth muscle organs functional activity in surgical patients (clinical and experimental study)].

    PubMed

    Al'-Shukri, S Kh; Aĭvazian, A I; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1999-01-01

    The action of prostatilen on contractile activity of smooth muscles of isolated line slices of urine bladder of Wistar rats (myography) and arterial vessels of cat kidneys (resistography) was studied. On the basis of clinical cases effectiveness of prostatilen was analysed as a treatment restorting urine bladder function in acute reflex urinary retention after operations in the area of rectal sphincter, as well as in treatment of patients with chronic prostatitis. It is shown, that prostatilen produces contractile action on smooth muscles of renal blood vessels in cats and urine bladder walls in rats and it raises contractile activity of smooth muscles of human urine bladder. The results of experimental and clinical investigations make it possible to recommend the application of this bioregulating preparation for treatment and prophylaxis of disturbances in urination.

  10. Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease

    PubMed Central

    Pfaltzgraff, Elise R.; Bader, David M.

    2015-01-01

    Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. PMID:25546231

  11. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  12. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    PubMed

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  13. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    PubMed

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  14. An In Vitro Murine Model of Vascular Smooth Muscle Cell Mineralization.

    PubMed

    Kelynack, Kristen J; Holt, Stephen G

    2016-01-01

    Vascular calcification (VC) is seen ubiquitously in aging blood vessels and prematurely in disease states like renal failure. It is thought to be driven by a number of systemic and local factors that lead to extra-osseous deposition of mineral in the vascular wall and valves as a common endpoint. The response of resident vascular smooth muscle cell to these dystrophic signals appears to be important in this process. Whilst in vivo models allow the observation of global changes in a pro-calcific environment, identifying the specific cells and mechanisms involved has been largely garnered from in vitro experiments, which provide added benefits in terms of reproducibility, cost, and convenience. Here we describe a 7-21 day cell culture model of calcification developed using immortalized murine vascular smooth muscle cells (MOVAS-1). This model provides a method by which vascular smooth muscle cell involvement and manipulation within a mineralizing domain can be studied.

  15. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors

    PubMed Central

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio. PMID:26191133

  16. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors.

    PubMed

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio.

  17. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    PubMed

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.

  18. Intestinal smooth muscle phenotype determines enteric neuronal survival via GDNF expression.

    PubMed

    Han, T Y; Lourenssen, S; Miller, K G; Blennerhassett, M G

    2015-04-01

    Intestinal inflammation causes initial axonal degeneration and neuronal death, as well as the proliferation of intestinal smooth muscle cells (ISMC), but subsequent axonal outgrowth leads to re-innervation. We recently showed that expression of glial cell-derived neurotrophic factor (GDNF), the critical neurotrophin for the post-natal enteric nervous system (ENS) is upregulated in ISMC by inflammatory cytokines, leading us to explore the relationship between ISMC growth and GDNF expression. In co-cultures of myenteric neurons and ISMC, GDNF or fetal calf serum (FCS) was equally effective in supporting neuronal survival, with neurons forming extensive axonal networks among the ISMC. However, only GDNF was effective in low-density cultures where neurons lacked contact with ISMC. In early-passage cultures of colonic circular smooth muscle cells (CSMC), polymerase chain reaction (PCR) and western blotting showed that proliferation was associated with expression of GDNF, and the successful survival of neonatal neurons co-cultured on CSMC was blocked by vandetanib or siGDNF. In tri-nitrobenzene sulfonic acid (TNBS)-induced colitis, immunocytochemistry showed the selective expression of GDNF in proliferating CSMC, suggesting that smooth muscle proliferation supports the ENS in vivo as well as in vitro. However, high-passage CSMC expressed significantly less GDNF and failed to support neuronal survival, while expressing reduced amounts of smooth muscle marker proteins. We conclude that in the inflamed intestine, smooth muscle proliferation supports the ENS, and thus its own re-innervation, by expression of GDNF. In chronic inflammation, a compromised smooth muscle phenotype may lead to progressive neural damage. Intestinal stricture formation in human disease, such as inflammatory bowel disease (IBD), may be an endpoint of failure of this homeostatic mechanism.

  19. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.

  20. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    SciTech Connect

    Alexander, J.J.; Miguel, R.; Graham, D. )

    1991-03-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process.

  1. Inhibitory effect of beta3-adrenoceptor agonist in lower esophageal sphincter smooth muscle: in vitro studies.

    PubMed

    Sarma, D N K; Banwait, Kuldip; Basak, Ashim; DiMarino, Anthony J; Rattan, Satish

    2003-01-01

    We investigated the effects of (R,R)-5-[2-[2-3-chlorophenyl)-2-hydroxyethyl] - amino]propyl] - 1,3 - benzodioxole - 2, 2 - dicarboxylate (CL 316243) (a typical beta3-agonist) on the spontaneously tonic smooth muscle of the lower esophageal sphincter (LES). Studies were carried out in smooth muscle strips and smooth muscle cells (SMCs) of opossum LES. Isometric tension was recorded in the basal state and after CL 316243, and before and after beta3-antagonist (S)-N-[4-[2-[[3-[-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]ethyl]phenyl]benzenesulfonamide (L 748337) and nonselective antagonist propranolol. In some experiments, the effects of nonadrenergic noncholinergic (NANC) nerve activation by electrical field stimulation (EFS) were also examined. The effects of CL 316243 were compared with those of nonselective beta-agonist isoproterenol. CL 316243 caused a concentration-dependent relaxation of the LES smooth muscle. The relaxant action of CL 316243 was determined to be directly at the smooth muscle because it remained unmodified by the neurotoxin tetrodotoxin and other neurohumoral antagonists, and also was observed in the SMCs. L 748337 selectively antagonized the relaxant effect of CL 316243 and, conversely, had no significant effect on the inhibitory actions of isoproterenol. CL 316243 (1 x 10(-8) M) caused an augmentation of NANC relaxation in the LES. Another beta3-agonist, (S)-4-[hydroxy-3-phenoxy-propylamino-ethoxy]-N-(2-methoxyethyl)-phenoxyacetamide (ZD 7114), also caused concentration-dependent full relaxation of the LES that was selectively antagonized by beta3-anatagonist 3-(2-ethylphenoxy)-1-[(1S)1,2,3,4-tetrahydronaphth-1-ylaminol]-(2S)-2-propanol oxalate (SR 59230A). These studies defined the effects of characteristic inhibitory beta3-adrenoceptors in the spontaneously tonic LES smooth muscle and suggested a potential therapeutic role in the esophageal motility disorders characterized by hypertensive LES. PMID:12490574

  2. Predicted EC50 and EC95 of Remifentanil for Smooth Removal of a Laryngeal Mask Airway Under Propofol Anesthesia

    PubMed Central

    Yoo, Ji Young; Kwak, Hyun Jeong; Lee, Kyung Cheon; Kim, Go Wun

    2015-01-01

    Purpose The purpose of this study was to determine the effect-site concentration (Ce) of remifentanil in 50% of patients (EC50) and 95% of patients (EC95) for smooth laryngeal mask airway (LMA) removal in adults under propofol and remifentanil anesthesia. Materials and Methods Twenty-five patients of ASA physical status I-II and ages 18-60 years who were to undergo minor gynecological or orthopedic surgery were assessed in this study. Anesthesia was induced and maintained with propofol and remifentanil target-controlled infusion (TCI). Remifentanil was maintained at a predetermined Ce during the emergence period. The modified Dixon's up-and-down method was used to determine the remifentanil concentration, starting from 1.0 ng/mL (step size of 0.2 ng/mL). Successful removal of the LMA was regarded as absence of coughing/gagging, clenched teeth, gross purposeful movements, breath holding, laryngospasm, or desaturation to SpO2<90%. Results The mean±SD Ce of remifentanil for smooth LMA removal after propofol anesthesia was 0.83±0.16 ng/mL. Using isotonic regression with a bootstrapping approach, the estimated EC50 and EC95 of remifentanil Ce were 0.91 ng/mL [95% confidence interval (CI), 0.77-1.07 ng/mL] and 1.35 ng/mL (95% CI, 1.16-1.38 ng/mL), respectively. Conclusion Our results showed that remifentanil TCI at an established Ce is a reliable technique for achieving safe and smooth emergence without coughing, laryngospasm, or other airway reflexes. PMID:26069139

  3. Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.

    PubMed

    Mezzanotte, W S; Tangel, D J; White, D P

    1996-06-01

    Current evidence suggests that patients with obstructive sleep apnea (OSA) may have augmented pharyngeal dilator muscle activity during wakefulness, to compensate for deficient anatomy. However, the isolated effect of sleep on the activity of these muscles (comparing OSA patients with controls) has not been studied. We therefore determined waking levels of genioglossus (GG) and tensor palatini (TP) muscle activity (% of maximum electromyographic [EMG] activity) in 10 OSA patients and eight controls, and then assessed the impact of the first two breaths of sleep (theta electroencephalographic [EEG] activity) following a period of stable wakefulness. Apnea patients demonstrated greater genioglossal (27.4 +/- 4.0 versus 10.7 +/- 2.1%) and tensor palatini (31.9 +/- 6.5 versus 10.6 +/- 1.9%) EMG activity than did controls during wakefulness. This augmented muscle activity in apnea patients could be reduced to near control levels during wakefulness with the application of continuous positive airway pressure (CPAP) to the upper airway. At sleep onset, control subjects demonstrated small but consistent decrements in the activity of both the TP and GG muscles. On the other hand, apnea patients demonstrated large, significantly greater decrements in TP EMG at sleep onset than did the control subjects. The effect of sleep on GG EMG in apnea patients was inconsistent, with most (n = 7) demonstrating large (significantly larger than controls) decrements in genioglossal activity. However, three OSA patients demonstrated small increments in GG EMG at sleep onset despite falling TP EMG and obstructive apnea or hypopnea. We conclude that sleep onset is associated with significantly larger decrements in TP muscle EMG activity in OSA patients than in controls, which may represent a loss of neuromuscular compensation that is present during wakefulness. However, our results for the GG muscle were more variable, and did not always support this hypothesis.

  4. Accumulation of ceroid in smooth muscle indicates severe malabsorption and vitamin E deficiency.

    PubMed Central

    Stamp, G W; Evans, D J

    1987-01-01

    Four patients had accumulation of ceroid in smooth muscle (lipofuscinosis), which indicated severe or uncontrolled malabsorption, with confirmed vitamin E deficiency in three cases. The distribution of the pigment was systematic, and there seemed to be an association between malabsorption syndrome and vitamin E deficiency. Vitamin E supplementation seems to be indicated in such patients, and it is suggested that studies of smooth muscle function should be made in cases of heavy accumulation of ceroid. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 PMID:3624501

  5. Isolation and Culture of Aortic Smooth Muscle Cells and In Vitro Calcification Assay.

    PubMed

    Villa-Bellosta, Ricardo; Hamczyk, Magda R

    2015-01-01

    Elevated serum phosphorus is a major risk factor for vascular calcification, which is characterized by the presence of calcium phosphate deposits, mainly hydroxyapatite crystals. In vitro studies of phosphate-induced calcification show that vascular smooth muscle cells undergo calcification with features similar to those observed in pathological vascular calcification in vivo, including the presence of hydroxyapatite crystals. Here, we describe the double-collagenase digestion method for isolating vascular smooth muscle cells from aorta, and a method for inducing calcification in vitro using high phosphate concentration.

  6. Induced Pluripotent Stem Cell-derived Vascular Smooth Muscle Cells: Methods and Application

    PubMed Central

    Dash, Biraja C.; Jiang, Zhengxin; Suh, Carol; Qyang, Yibing

    2015-01-01

    Vascular smooth muscle cells (VSMCs) play a major role in the pathophysiology of cardiovascular diseases. The advent of induced pluripotent stem cell (iPSC) technology and their capability to differentiation into virtually every cell type in the human body make this field a ray of hope for vascular regenerative therapy and for understanding disease mechanism. In this review, we first discuss the recent iPSC technology and vascular smooth muscle development from embryo and then examine different methodology to derive VSMCs from iPSCs and their applications in regenerative therapy and disease modeling. PMID:25559088

  7. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    NASA Astrophysics Data System (ADS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-11-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms.

  8. Smooth muscle overexpression of IGF-I induces a novel adaptive response to small bowel resection.

    PubMed

    Knott, Andrew W; Juno, Russell J; Jarboe, Marcus D; Profitt, Sherri A; Erwin, Christopher R; Smith, Eric P; Fagin, James A; Warner, Brad W

    2004-09-01

    Prior studies of intestinal adaptation after massive small bowel resection (SBR) have focused on growth factors and their effects on amplification of the gut mucosa. Because adaptive changes have also been described in intestinal smooth muscle, we sought to determine the effect of targeted smooth muscle growth factor overexpression on resection-induced intestinal adaptation. Male transgenic mice with smooth muscle cell overexpression of insulin-like growth factor I (IGF-I) by virtue of an alpha-smooth muscle actin promoter were obtained. SMP8 IGF-I transgenic (IGF-I TG) and nontransgenic (NT) littermates underwent 50% proximal SBR or sham operation and were then killed after 3 or 28 days. NT mice showed the expected alterations in mucosal adaptive parameters after SBR, such as increased wet weight and villus height. The IGF-I TG mice had inherently taller villi, which did not increase significantly after SBR. In addition, IGF-I TG mice had a 50% postresection persistent increase in remnant intestinal length, which was associated with an early decline and later increase in relative mucosal surface area. These results indicate that growth factor overexpression within the muscularis layer of the bowel wall induces significant postresection adaptive intestinal lengthening and a unique mucosal response. IGF-I signaling within the muscle wall may play an important role in the pathogenesis of resection-induced adaptation.

  9. Orai1 forms a signal complex with SK3 channel in gallbladder smooth muscle.

    PubMed

    Song, Kai; Zhong, Xing-Guo; Xia, Xian-Ming; Huang, Jun-Hao; Fan, Yi-Fei; Yuan, Ren-Xiang; Xue, Nai-Rui; Du, Juan; Han, Wen-Xiu; Xu, A-Man; Shen, Bing

    2015-10-23

    Orai1 is one of the key components of store-operated Ca(2+) entry (SOCE) involved in diverse physiological functions. Orai1 may associate with other proteins to form a signaling complex. In the present study, we investigated the interaction between Orai1 and small conductance Ca(2+)-activated potassium channel 3 (SK3). With the use of RNA interference technique, we found that the SOCE and its associated membrane hyperpolarization were reduced while Orai1 was knocked down by a specific Orai1 siRNA in guinea pig gallbladder smooth muscle. However, with the use of isometric tension measurements, our results revealed that agonist-induced muscle contractility was significantly enhanced after Orai1 protein was knocked down or the tissue was treated by SK3 inhibitor apamin, but not affected by larger conductance Ca(2+)-activated potassium channel inhibitor iberiotoxin or intermediate conductance Ca(2+)-activated potassium channel inhibitor TRAM-34. In addition, in the presence of apamin, Orai1 siRNA had no additional effect on agonist-induced contraction. In coimmunoprecipitation experiment, SK3 and Orai1 pulled down each other. These data suggest that, Orai1 physically associated with SK3 to form a signaling complex in gallbladder smooth muscle. Ca(2+) entry via Orai1 activates SK3, resulting in membrane hyperpolarization in gallbladder smooth muscle. This hyperpolarizing effect of Orai1-SK3 coupling could serve to prevent excessive contraction of gallbladder smooth muscle in response to contractile agonists.

  10. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  11. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    PubMed Central

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  12. Action of the calcium antagonists cocaine and ethanol on contraction and potassium efflux of smooth muscle.

    PubMed

    HURWITZ, L; BATTLE, F; WEISS, G B

    1962-11-01

    Isolated longitudinal smooth muscle from guinea pig ileum exposed to a high potassium depolarizing medium exhibited a sustained increase in muscle tone and an increase in potassium efflux. When the concentration of calcium ion in the medium was elevated the increase in muscle tone was enhanced, but the change in potassium efflux was reduced slightly. Lowering the calcium concentration diminished the increase in muscle tone. Both cocaine and ethanol completely inhibited the sustained contraction of potassium-depolarized fibers. Addition of excess calcium ion reversed these inhibitions. Cocaine acted primarily like a competitive antagonist; and ethanol, like an indirect antagonist of calcium, ion. Under certain conditions acetylcholine potentiated the reversal by calcium ion of the drug-induced inhibitions. The two inhibitory drugs had dissimilar effects on potassium efflux from smooth muscle fibers immersed in Tyrode solution. Cocaine depressed and ethanol enhanced this membrane process. However, the increase in potassium efflux induced by acetylcholine was inhibited by ethanol. This inhibition also was reversed by increasing the concentration of calcium ion in the medium. The data suggested that calcium activates and cocaine and ethanol inhibit a cellular reaction which occurs beyond the point of membrane depolarization and is essential for smooth muscle contraction. Furthermore, calcium serves to depress membrane excitability, but appears to have a specific stimulatory role in the acetylcholine-induced increase in potassium efflux from longitudinal fibers.

  13. Cooperative signaling by TGF-β1 and WNT-11 drives sm-α-actin expression in smooth muscle via Rho kinase-actin-MRTF-A signaling.

    PubMed

    Kumawat, Kuldeep; Koopmans, Tim; Menzen, Mark H; Prins, Alita; Smit, Marieke; Halayko, Andrew J; Gosens, Reinoud

    2016-09-01

    Airway smooth muscle (ASM) remodeling is a key feature in asthma and includes changes in smooth muscle-specific gene and protein expression. Despite this being a major contributor to asthma pathobiology, our understanding of the mechanisms governing ASM remodeling remains poor. Here, we studied the functional interaction between WNT-11 and TGF-β1 in ASM cells. We demonstrate that WNT-11 is preferentially expressed in contractile myocytes and is strongly upregulated following TGF-β1-induced myocyte maturation. Knock-down of WNT-11 attenuated TGF-β1-induced smooth muscle (sm)-α-actin expression in ASM cells. We demonstrate that TGF-β1-induced sm-α-actin expression is mediated by WNT-11 via RhoA activation and subsequent actin cytoskeletal remodeling, as pharmacological inhibition of either Rho kinase by Y27632 or actin remodeling by latrunculin A attenuated sm-α-actin induction. Moreover, we show that TGF-β1 regulates the nuclear expression of myocardin-related transcription factor-A (MRTF-A) in a Rho kinase-dependent fashion, which in turn mediates sm-α-actin expression. Finally, we demonstrate that TGF-β1-induced MRTF-A nuclear translocation is dependent on endogenous WNT-11. The present study thus demonstrates a WNT-11-dependent Rho kinase-actin-MRTF-A signaling axis that regulates the expression of sm-α-actin in ASM cells.

  14. Simulations demonstrate a simple network to be sufficient to control branch point selection, smooth muscle and vasculature formation during lung branching morphogenesis.

    PubMed

    Cellière, Géraldine; Menshykau, Denis; Iber, Dagmar

    2012-08-15

    Proper lung functioning requires not only a correct structure of the conducting airway tree, but also the simultaneous development of smooth muscles and vasculature. Lung branching morphogenesis is strongly stereotyped and involves the recursive use of only three modes of branching. We have previously shown that the experimentally described interactions between Fibroblast growth factor (FGF)10, Sonic hedgehog (SHH) and Patched (Ptc) can give rise to a Turing mechanism that not only reproduces the experimentally observed wildtype branching pattern but also, in part counterintuitive, patterns in mutant mice. Here we show that, even though many proteins affect smooth muscle formation and the expression of Vegfa, an inducer of blood vessel formation, it is sufficient to add FGF9 to the FGF10/SHH/Ptc module to successfully predict simultaneously the emergence of smooth muscles in the clefts between growing lung buds, and Vegfa expression in the distal sub-epithelial mesenchyme. Our model reproduces the phenotype of both wildtype and relevant mutant mice, as well as the results of most culture conditions described in the literature. PMID:23213471

  15. Simulations demonstrate a simple network to be sufficient to control branch point selection, smooth muscle and vasculature formation during lung branching morphogenesis

    PubMed Central

    Cellière, Géraldine; Menshykau, Denis; Iber, Dagmar

    2012-01-01

    Summary Proper lung functioning requires not only a correct structure of the conducting airway tree, but also the simultaneous development of smooth muscles and vasculature. Lung branching morphogenesis is strongly stereotyped and involves the recursive use of only three modes of branching. We have previously shown that the experimentally described interactions between Fibroblast growth factor (FGF)10, Sonic hedgehog (SHH) and Patched (Ptc) can give rise to a Turing mechanism that not only reproduces the experimentally observed wildtype branching pattern but also, in part counterintuitive, patterns in mutant mice. Here we show that, even though many proteins affect smooth muscle formation and the expression of Vegfa, an inducer of blood vessel formation, it is sufficient to add FGF9 to the FGF10/SHH/Ptc module to successfully predict simultaneously the emergence of smooth muscles in the clefts between growing lung buds, and Vegfa expression in the distal sub-epithelial mesenchyme. Our model reproduces the phenotype of both wildtype and relevant mutant mice, as well as the results of most culture conditions described in the literature. PMID:23213471

  16. Indirect airway challenges.

    PubMed

    Joos, G F; O'Connor, B; Anderson, S D; Chung, F; Cockcroft, D W; Dahlén, B; DiMaria, G; Foresi, A; Hargreave, F E; Holgate, S T; Inman, M; Lötvall, J; Magnussen, H; Polosa, R; Postma, D S; Riedler, J

    2003-06-01

    Indirect challenges act by causing the release of endogenous mediators that cause the airway smooth muscle to contract. This is in contrast to the direct challenges where agonists such as methacholine or histamine cause airflow limitation predominantly via a direct effect on airway smooth muscle. Direct airway challenges have been used widely and are well standardised. They are highly sensitive, but not specific to asthma and can be used to exclude current asthma in a clinic population. Indirect bronchial stimuli, in particular exercise, hyperventilation, hypertonic aerosols, as well as adenosine, may reflect more directly the ongoing airway inflammation and are therefore more specific to identify active asthma. They are increasingly used to evaluate the prevalence of bronchial hyperresponsiveness and to assess specific problems in patients with known asthma, e.g. exercise-induced bronchoconstriction, evaluation before scuba diving. Direct bronchial responsiveness is only slowly and to a modest extent, influenced by repeated administration of inhaled steroids. Indirect challenges may reflect more closely acute changes in airway inflammation and a change in responsiveness to an indirect stimulus may be a clinically relevant marker to assess the clinical course of asthma. Moreover, some of the indirect challenges, e.g. hypertonic saline and mannitol, can be combined with the assessment of inflammatory cells by induction of sputum.

  17. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system

    PubMed Central

    Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard

    2015-01-01

    ABSTRACT At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. PMID:26621831

  18. Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells

    PubMed Central

    Alexandrova, Elena; Nassa, Giovanni; Corleone, Giacomo; Buzdin, Anton; Aliper, Alexander M.; Terekhanova, Nadezhda; Shepelin, Denis; Zhavoronkov, Alexander; Tamm, Michael; Milanesi, Luciano; Weisz, Alessandro

    2016-01-01

    Background Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (p<0.05) or 103 (p<0.01) are differentially active in asthma, with profiles that clearly characterize BSM cells of asthmatic individuals. Notably, we identified 7 clusters of coherently acting pathways functionally related to the disease, with ISPs down-regulated in asthma mostly targeting cell death-promoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology. PMID:26863634

  19. [Myxoid mesenchymal tumors of uterus: endometrial stromal and smooth muscle tumors, myxoid variant].

    PubMed

    Chesnais, Anne-Laure; Watkin, Emmanuel; Beurton, Daniel; Devouassoux-Shisheboran, Mojgan

    2011-06-01

    Four myxoid variant of uterine mesenchymal tumors are reported. One was a low grade stromal sarcoma with infiltrative margins and the others were well circumscribed tumors corresponding to an endometrial stromal nodule and two leiomyomas. They were hypocellular neoplasms composed of stellated cells with an abundant Alcian Blue positive myxoid matrix. The myxoid nature of the neoplasms obscured their cellular nature and made the distinction between smooth muscle and endometrial stromal tumors difficult. Endometrial stromal tumors, showed very focal areas of small basophilic cells, characteristic of endometrial stroma. The diagnosis was based on the presence of a spiral arteriolar network, a CD10 positivity as well as the absence of h-caldesmon and desmin expression. The two myxoid leiomyomas showed more spindle cells and a desmin expression while h-caldesmon was negative and CD10 focally positive in both cases. Myxoid variant of endometrial stromal tumors does not necessarily exhibit the typical morphology of endometrial stroma. They may demonstrate morphological features of smooth muscle tumors in the uterus. Also, myxoid changes in uterin smooth muscle tumors may modify the classical immunoreactivity of smooth muscle markers in these tumors and make it difficult to distinguish between benign and malignant neoplasms. An immunohistochemical panel of antibodies including CD10, h-caldesmon and desmin may help in establishing the correct diagnosis.

  20. Smooth Muscle Cell Contraction Increases the Critical Buckling Pressure of Arteries

    PubMed Central

    Hayman, Danika M.; Zhang, Jinzhou; Liu, Qin; Xiao, Yangming; Han, Hai-Chao

    2012-01-01

    Recent in vitro experiments demonstrated that arteries under increased internal pressure or decreased axial stretch may buckle into the tortuous pattern that is commonly observed in aging or diseased arteries in vivo. It suggests that buckling is a possible mechanism for the development of artery tortuosity. Vascular tone has significant effects on arterial mechanical properties but its effect on artery buckling is unknown. The objective of this study was to determine the effects of smooth muscle cell contraction on the critical buckling pressure of arteries. Porcine common carotid arteries were perfused in an ex vivo organ culture system overnight under physiological flow and pressure. The perfusion pressure was adjusted to determine the critical buckling pressure of these arteries at in vivo and reduced axial stretch ratios (1.5 and 1.3) at baseline and after smooth muscle contraction and relaxation stimulated by norepinephrine and sodium nitroprusside, respectively. Our results demonstrated that the critical buckling pressure was significantly higher when the smooth muscle was contracted compared with relaxed condition (97.3mmHg versus 72.9mmHg at axial stretch ratio of 1.3 and 93.7mmHg vs 58.6mmHg at 1.5, p<0.05). These results indicate that arterial smooth muscle cell contraction increased artery stability. PMID:23261241

  1. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    SciTech Connect

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-04-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.

  2. Smooth muscle cell contraction increases the critical buckling pressure of arteries.

    PubMed

    Hayman, Danika M; Zhang, Jinzhou; Liu, Qin; Xiao, Yangming; Han, Hai-Chao

    2013-02-22

    Recent in vitro experiments demonstrated that arteries under increased internal pressure or decreased axial stretch may buckle into the tortuous pattern that is commonly observed in aging or diseased arteries in vivo. It suggests that buckling is a possible mechanism for the development of artery tortuosity. Vascular tone has significant effects on arterial mechanical properties but its effect on artery buckling is unknown. The objective of this study was to determine the effects of smooth muscle cell contraction on the critical buckling pressure of arteries. Porcine common carotid arteries were perfused in an ex vivo organ culture system overnight under physiological flow and pressure. The perfusion pressure was adjusted to determine the critical buckling pressure of these arteries at in vivo and reduced axial stretch ratios (1.5 and 1.3) at baseline and after smooth muscle contraction and relaxation stimulated by norepinephrine and sodium nitroprusside, respectively. Our results demonstrated that the critical buckling pressure was significantly higher when the smooth muscle was contracted compared with relaxed condition (97.3mmHg vs 72.9mmHg at axial stretch ratio of 1.3 and 93.7mmHg vs 58.6mmHg at 1.5, p<0.05). These results indicate that arterial smooth muscle cell contraction increased artery stability.

  3. Cross-bridge regulation by Ca(2+)-dependent phosphorylation in amphibian smooth muscle.

    PubMed

    Wingard, C J; Nowocin, J M; Murphy, R A

    2001-12-01

    A covalent regulatory mechanism involving Ca(2+)-dependent cross-bridge phosphorylation determines both the number of cycling cross bridges and cycling kinetics in mammalian smooth muscle. Our objective was to determine whether a similar regulatory mechanism governed smooth muscle contraction from a poikilothermic amphibian in a test of the hypothesis that myosin regulatory light chain (MRLC) phosphorylation could modulate shortening velocity. We measured MRLC phosphorylation of Rana catesbiana urinary bladder strips at 25 degrees C in tonic contractions in response to K+ depolarization, field stimulation, or carbachol stimulation. The force-length relationship was characterized by a steep ascending limb and a shallow descending limb. There was a rapid rise in unloaded shortening velocity early in a contraction, which then fell and was maintained at low rates while high force was maintained. In support of the hypothesis, we found a positive correlation of the level of myosin phosphorylation and an estimate of tissue shortening velocity. These results suggest that MRLC phosphorylation in amphibian smooth muscle modulates both the number of attached cross bridges (force) and the cross-bridge cycling kinetics (shortening velocity) as in mammalian smooth muscle. PMID:11705760

  4. Myocardin restores erectile function in diabetic rats: phenotypic modulation of corpus cavernosum smooth muscle cells.

    PubMed

    He, S; Zhang, T; Liu, Y; Liu, L; Zhang, H; Chen, F; Wei, A

    2015-04-01

    This study aimed to investigate whether gene transfer of myocardin to the penis of diabetic rats can modulate corpus cavernosum smooth muscle (CCSM) cells phenotype and restore erectile function. Five normal control rats, and 22 diabetic rats were randomly divided into four groups: rats transfected with adCMV-myocardin (N = 6), treated with empty vector (N = 6), injected with medium (N = 5), and sham-operated rats (N = 5). The erectile response was measured 7 days after transfection. The percent of smooth muscle and the expressions of SMα-actin, smooth muscle myosin heavy chain (SMMHC), calponin were evaluated. The increases in intracorporal pressure(ICP)/mean arterial pressure and total ICP in response to nerve stimulation in the adCMV-myocardin treated rats were significantly greater than those in the empty vector (P < 0.001 and P < 0.001), medium only (P < 0.001 and P < 0.001), and sham-operated rats (P < 0.001 and P < 0.001). The suppressed expressions of SMα-actin, SMMHC and calponin were completely restored, and the amount of smooth muscle in diabetic rats were not restored after treatment. It is concluded that myocardin ameliorated erectile responses in diabetic rats mainly via promoting phenotypic modulation of CCSM cells from a proliferative to a contractile state.

  5. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    PubMed Central

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-01-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells. PMID:27507785

  6. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    PubMed

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  7. Effects of sumatriptan nasal spray (Imigran) on isolated rat's tracheal smooth muscle.

    PubMed

    Cheng, Li-Hsiang; Wu, Pei-Chuan; Liu, Shao-Cheng; Chiu, Feng-Shiang; Chu, Yueng-Hsiang; Chang, Ying-Nan; Wang, Hsing-Won

    2015-10-01

    Sumatriptan (Imigran) is a potent and highly selective 5-HT1 receptor agonist often used in treating acute migraine. Intranasal sumatriptan is well absorbed and is generally effective in relieving headache. However, the effects of Imigran given intratracheally have rarely been well explored. We aimed to verify the effect of Imigran, which acts on the tracheal smooth muscle directly in vitro. We examined the effectiveness of Imigran on isolated rat tracheal smooth muscle by testing: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6) M methacholine as a parasympathetic mimetic; (3) effect of the drugs on electrically induced tracheal smooth muscle contractions. The results indicated that the addition of methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. The addition of Imigran at doses of 10(-5) M or above elicited a significant relaxation response to 10(-6) M methacholine-induced contraction. Imigran could inhibit electrical field stimulation-induced spike contraction. It also had a minimal effect on the basal tension of trachea as the concentration increased. The study indicated high concentrations of Imigran could cause bronchodilation to reduce asthma attacks not only by blocking parasympathetic tone, but also by directly antagonizing the effect of cholinergic receptors.

  8. Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel.

    PubMed

    Choi, Jong Seob; Piao, Yunxian; Seo, Tae Seok

    2014-01-01

    The circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel is reported to form an in vivo-like smooth muscle cell layer. To construct a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, a half-circular polydimethylsiloxane (PDMS) microchannel is first fabricated by soft lithography using a convex PDMS mold. Then, the orthogonally microwrinkle patterns are generated inside the half-circular microchannel by a strain responsive wrinkling method. During the UV treatment on a PDMS substrate with uniaxial 40% stretch and a subsequent strain releasing step, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel are generated, which can guide the circumferential alignment of HASMCs during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs reveal the in vivo-like cell phenotype. Finally, a fully circular microchannel is produced by bonding two half-circular microchannels, and the HASMCs are cultured circumferentially inside the channels with high alignment and viability for 5 days. These results demonstrated the creation of an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide a bioassay platforms for in-depth study of HASMC biology and vascular function.

  9. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study.

    PubMed

    Quijano, J C; Raynaud, F; Nguyen, D; Piacentini, N; Meister, J J

    2016-01-01

    Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells. PMID:27507785

  10. Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel.

    PubMed

    Choi, Jong Seob; Piao, Yunxian; Seo, Tae Seok

    2014-01-01

    The circumferential alignment of human aortic smooth muscle cells (HASMCs) in an orthogonally micropatterned circular microfluidic channel is reported to form an in vivo-like smooth muscle cell layer. To construct a biomimetic smooth muscle cell layer which is aligned perpendicular to the axis of blood vessel, a half-circular polydimethylsiloxane (PDMS) microchannel is first fabricated by soft lithography using a convex PDMS mold. Then, the orthogonally microwrinkle patterns are generated inside the half-circular microchannel by a strain responsive wrinkling method. During the UV treatment on a PDMS substrate with uniaxial 40% stretch and a subsequent strain releasing step, the microwrinkle patterns perpendicular to the axial direction of the circular microchannel are generated, which can guide the circumferential alignment of HASMCs during cultivation. The analysis of orientation angle, shape index, and contractile protein marker expression indicates that the cultured HASMCs reveal the in vivo-like cell phenotype. Finally, a fully circular microchannel is produced by bonding two half-circular microchannels, and the HASMCs are cultured circumferentially inside the channels with high alignment and viability for 5 days. These results demonstrated the creation of an in vivo-like 3D smooth muscle cell layer in the circular microfluidic channel which can provide a bioassay platforms for in-depth study of HASMC biology and vascular function. PMID:24120039

  11. Access of blood-borne vasoconstrictors to the arteriolar smooth muscle.

    PubMed

    Lew, M J; Duling, B R

    1992-01-01

    In vitro experiments have shown that luminally applied water-soluble vasoactive materials have limited access to arteriolar smooth muscle cells, and as a result, the responses to such agents applied luminally are less than the responses to those applied adventitially. To determine the extent to which this 'compartmentation' influences arteriolar responsiveness to blood-borne water-soluble vasoconstrictors in vivo, we applied phenylephrine, vasopressin and angiotension II to arterioles in the hamster cheek pouch both by luminal perfusion, and by topical application to the arteriolar smooth muscle via micropipettes. The arterioles were about 2 orders of magnitude more sensitive to these water-soluble vasoconstrictors when they were applied topically than when they were applied luminally. In contrast, the arterioles were almost equally sensitive to the lipid-soluble alpha 1-adrenoceptor agonist SKF 89748-A applied by either route. The venular wall appears to be much less effective as a barrier than the arteriolar endothelium. Phenylephrine and vasopressin both elicited large arteriolar constrictions when perfused through venules in close proximity to the arteriole, and these constrictions were larger than those observed when the drug was applied to the arteriole's own lumen. Our observations confirm that the arteriolar endothelium can inhibit the direct access of water-soluble blood-borne agents to the arteriolar smooth muscle in vivo, and they suggest that the capillaries and venules could be the primary routes of access for water-soluble agents from the blood to the arteriolar smooth muscle. PMID:1391555

  12. FosB regulates stretch-induced expression of extracellular matrix proteins in smooth muscle.

    PubMed

    Ramachandran, Aruna; Gong, Edward M; Pelton, Kristine; Ranpura, Sandeep A; Mulone, Michelle; Seth, Abhishek; Gomez, Pablo; Adam, Rosalyn M

    2011-12-01

    Fibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored. Herein, we identify a novel role for the AP-1 subunit FosB in stretch-induced ECM expression in SMCs. The DNA-binding activity of AP-1 increased after stretch stimulation of SMCs in vitro. In contrast to c-Jun and c-fos, which are also activated by the SMC mitogen platelet-derived growth factor, FosB was only activated by stretch. FosB silencing attenuated the expression of the profibrotic factors tenascin C (TNC) and connective tissue growth factor (CTGF), whereas forced expression of Jun~FosB stimulated TNC and CTGF promoter activity. Chromatin immunoprecipitation revealed enrichment of AP-1 at the TNC and CTGF promoters. Bladder distension in vivo enhanced nuclear localization of c-jun and FosB. Finally, the distension-induced expression of TNC and CTGF in the detrusor smooth muscle of bladders from wild-type mice was significantly attenuated in FosB-null mice. Together, these findings identify FosB as a mechanosensitive regulator of ECM production in smooth muscle. PMID:21996678

  13. Modeling smooth muscle cell proliferation of coronary artery expanded with a drug eluting stent

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2010-03-01

    The drug eluting coronary stent is for the treatment of narrowed coronary artery. A high strength balloon is used to open the narrowed vessel and leave behind a tiny metal mesh, or stent, to mechanically prevent the vessel from re-narrowing and biologically slow down proliferation of the smooth muscle cells. However, the drug eluting stents that had better performance also more seriously prevented the healing processes of the vessels, which could cause serious thrombotic reactions. In this study, we assume the healing process is controlled by proper proliferation of smooth cells. We also assume that the inflammation reactions and mechanical traction drive the smooth muscle cells to proliferate while the drug loaded in the stents drives the processes at the opposite direction. Numerical calculation was applied to the system. The drug distribution and elution durations, inflammation reactions and mechanical traction were discussed.

  14. [Effect of adrenaline on the proliferation of the tunica media smooth muscle cells of rat aorta in culture].

    PubMed

    Blaes, N; Bourdillon, M C; Crouzet, B; Suplisson, A; Boissel, J P

    1980-03-24

    The proliferation of Rat medial aortic smooth muscle cells in secondary cultures is increased with adrenalin. The maximal effect is obtained after 3 days and the increase is dose-dependent. Thus adrenalin might be one of the factors responsible for the proliferation of smooth muscle cells that could play a key role in the formation of the atherosclerotic plaque in vivo.

  15. The induction of YAP expression following arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation

    PubMed Central

    Wang, Xiaobo; Hu, Guoqing; Gao, Xiangwei; Wang, Yong; Zhang, Wei; Harmon, Erin Yund; Zhi, Xu; Xu, Zhengping; Lennartz, Michelle R.; Barroso, Margarida; Trebak, Mohamed; Chen, Ceshi; Zhou, Jiliang

    2012-01-01

    Objective Abnormal proliferation and migration of vascular smooth muscle cells (SMCs) are the key events in the progression of neointima formation in response to vascular injury. The goal of this study is to investigate the functional role of a potent oncogene YAP in smooth muscle phenotypic modulation in vitro and in vivo. Methods and Results In vitro in cell culture and in vivo in both mouse and rat arterial injury models YAP expression is significantly induced and correlated with the vascular SMC synthetic phenotype. Over-expression of YAP promotes SMC migration and proliferation while attenuating smooth muscle contractile gene expression. Conversely, knocking-down endogenous YAP in SMCs up-regulates smooth muscle gene expression but attenuates SMC proliferation and migration. Consistent with this, knocking-down YAP expression in a rat carotid balloon injury model and genetic deletion of YAP specifically in vascular SMCs in mouse after carotid artery ligation injury attenuates injury-induced smooth muscle phenotypic switch and neointima formation. Conclusions YAP plays a novel integrative role in smooth muscle phenotypic modulation by inhibiting smooth muscle-specific gene expression while promoting smooth muscle proliferation and migration in vitro and in vivo. Blocking the induction of YAP would be a potential therapeutic approach for ameliorating vascular occlusive diseases. PMID:22922963

  16. Assembly of smooth muscle myosin minifilaments: effects of phosphorylation and nucleotide binding

    PubMed Central

    1987-01-01

    Small bipolar filaments, or "minifilaments," are formed when smooth muscle myosin is dialyzed against low ionic strength pyrophosphate or citrate/Tris buffers. Unlike synthetic filaments formed at approximately physiological ionic conditions, minifilaments are homogeneous as indicated by their hypersharp boundary during sedimentation velocity. Electron microscopy and hydrodynamic techniques were used to show that 20-22S smooth muscle myosin minifilaments are 380 nm long and composed of 12-14 molecules. By varying solvents, a continuum of different size polymers in the range of 15-30S could be obtained. Skeletal muscle myosin, in contrast, preferentially forms a stable 32S minifilament (Reisler, E., P. Cheung, and N. Borochov. 1986. Biophys. J. 49:335-342), suggesting underlying differences in the assembly properties of the two myosins. Addition of salt to the smooth muscle myosin minifilaments caused unidirectional growth into a longer "side-polar" type of filament, whereas bipolar filaments were consistently formed by skeletal muscle myosin. As with synthetic filaments, addition of 1 mM MgATP caused dephosphorylated minifilaments to dissociate to a mixture of folded monomers and dimers. Phosphorylation of the regulatory light chain prevented disassembly by nucleotide, even though it had no detectable effect on the structure of the minifilament. These results suggest that differences in filament stability as a result of phosphorylation are due largely to conformational changes occurring in the myosin head, and are not due to differences in filament packing. PMID:2826495

  17. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    PubMed

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging.

  18. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    SciTech Connect

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of (/sup 3/H)-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the ..cap alpha..1 and ..cap alpha..2 chains of type I and the ..cap alpha..1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells.

  19. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells.

    PubMed

    Stringa, E; Knäuper, V; Murphy, G; Gavrilovic, J

    2000-06-01

    Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix. PMID:10806116

  20. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  1. AMPK Dilates Resistance Arteries via Activation of SERCA and BKCa Channels in Smooth Muscle.

    PubMed

    Schneider, Holger; Schubert, Kai Michael; Blodow, Stephanie; Kreutz, Claus-Peter; Erdogmus, Serap; Wiedenmann, Margarethe; Qiu, Jiehua; Fey, Theres; Ruth, Peter; Lubomirov, Lubomir T; Pfitzer, Gabriele; Mederos Y Schnitzler, Michael; Hardie, D Grahame; Gudermann, Thomas; Pohl, Ulrich

    2015-07-01

    The protective effects of 5'-AMP-activated protein kinase (AMPK) on the metabolic syndrome may include direct effects on resistance artery vasomotor function. However, the precise actions of AMPK on microvessels and their potential interaction are largely unknown. Thus, we set to determine the effects of AMPK activation on vascular smooth muscle tone and the underlying mechanisms. Resistance arteries isolated from hamster and mouse exhibited a pronounced endothelium-independent dilation on direct pharmacological AMPK activation by 2 structurally unrelated compounds (PT1 and A769662). The dilation was associated with a decrease of intracellular-free calcium [Ca(2+)]i in vascular smooth muscle cell. AMPK stimulation induced activation of BKCa channels as assessed by patch clamp studies in freshly isolated hamster vascular smooth muscle cell and confirmed by direct proof of membrane hyperpolarization in intact arteries. The BKCa channel blocker iberiotoxin abolished the hyperpolarization but only partially reduced the dilation and did not affect the decrease of [Ca(2+)]i. By contrast, the sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA) inhibitor thapsigargin largely reduced these effects, whereas combined inhibition of SERCA and BKCa channels virtually abolished them. AMPK stimulation significantly increased the phosphorylation of the SERCA modulator phospholamban at the regulatory T17 site. Stimulation of smooth muscle AMPK represents a new, potent vasodilator mechanism in resistance vessels. AMPK directly relaxes vascular smooth muscle cell by a decrease of [Ca(2+)]i. This is achieved by calcium sequestration via SERCA activation, as well as activation of BKCa channels. There is in part a mutual compensation of both calcium-lowering mechanisms. However, SERCA activation which involves an AMPK-dependent phosphorylation of phospholamban is the predominant mechanism in resistance vessels.

  2. Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model

    PubMed Central

    Qin, Harry H.; Dunn, James C.Y.

    2011-01-01

    Background Small intestinal submucosa (SIS) is a porcine-derived, acellular, collagen-based matrix that has been tested without seeded smooth muscle cells (SMCs) for intestinal tissue engineering. We examined the expression patterns of contractile proteins of SIS with SMCs implanted in an in vivo rodent model. Materials and methods Intestinal SMCs were isolated from Lewis rat pups. Four-ply tubular SMCs-seeded SIS or blank SIS scaffolds were implanted in an adult rat jejunal interposition model. Recipients were sacrificed at 2, 4, and 8 weeks following the implantation. The retrieved specimens were examined using antibodies against contractile proteins of SMCs. Results Cultured intestinal SMCs expressed α-smooth muscle actin (α-SMA), calponin, and less smooth muscle myosin heavy chain (SM-MHC) in vitro. Cell-seeded SIS scaffolds contracted significantly over 8 weeks of implantation but were comparable to SIS scaffolds without cell seeding. Implanted cell-seeded SIS scaffolds at 2 weeks expressed extensive α-SMA, some calponin, and minimal SM-MHC. At 4 weeks, α-SMA-expressing cells decreased significantly, whereas calponin or SM-MHC expressing cells were rarely detected. A small number of α-SMA-expressing cells were present at 8 weeks, whereas more calponin or SM-MHC expressing cells emerged in proximity with the anastomotic interface. Conclusions Cell-seeded SIS contracted significantly after implantation, but the expressions of contractile proteins were present at the site of SIS interposition. No organized smooth muscle was formed at the site of implantation. A better scaffold design is needed to produce structured smooth muscle. PMID:21937060

  3. Bumetanide-sensitive sodium-22 transport in vascular smooth muscle cell of the spontaneously hypertensive rat

    SciTech Connect

    Tokushige, A.; Kino, M.; Tamura, H.; Hopp, L.; Searle, B.M.; Aviv, A.

    1986-05-01

    The effect of bumetanide, a known probe of Na+, K+ cotransport, on /sup 22/Na+ uptake and washout was examined in serially passed cultured vascular smooth muscle cells of spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and Wistar rats. In Ca2+-deficient medium, the drug exerted the greatest effect on /sup 22/Na+ washout in vascular smooth muscle cells from SHR and the least effect on cells from WKY. The respective mean values for the apparent bumetanide-sensitive /sup 22/Na+ washout rate constants (Ke; X 10(-2)/min) were 7.2, 4.3, and 1.7 for cells from SHR, WKY, and Wistar rats. In both 1 mM Ca2+ and Ca2+-deficient medium, in the presence of 1 mM ouabain, vascular smooth muscle cells from SHR had the highest plateau phase of /sup 22/Na+ uptake among the three cell preparations. All cells exhibited higher /sup 22/Na+ uptake in Ca2+-deficient medium than in 1 mM Ca2+ medium. Under this condition, bumetanide caused an additional rise in steady state /sup 22/Na+ uptake that was most pronounced in cells from SHR (21.3% versus 16.6% for Wistar rats and 4.8% for WKY). This finding indicates that a quantitatively greater inhibition of washout than of the uptake component of the bumetanide-sensitive /sup 22/Na+ transport occurs in Ca2+-deficient medium. It is concluded that, in Ca2+-deficient medium, the bumetanide-sensitive /sup 22/Na+ washout is higher in vascular smooth muscle cells of SHR than in those of normotensive controls and that this phenomenon reflects a higher Na+ turnover in vascular smooth muscle cell in the hypertensive rat strain.

  4. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals.

  5. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle

    PubMed Central

    1988-01-01

    The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges. PMID:3216188

  6. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    PubMed

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  7. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion

    PubMed Central

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-01

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  8. Inhibitory action of acetylcholine on the smooth muscle from the lower esophageal sphincter.

    PubMed

    Velkova, V; Papasova, M; Boev, K; Bonev, A

    1979-01-01

    The effect of acetylcholine (Ach) on smooth-muscle strips isolated along the transversal axis of cat lower esophageal sphincter (LES) is studied. Ach in low concentrations (10(-11)--10(-9) g/ml) causes contraction of the muscle strips. Increase of the concentration to 10(-8) g/ml leads to biphasic effect: contraction with relaxation. Inhibitory response predominates at Ach 10(-6) and 10(-5) g/ml. Atropine (10(-6) M) eliminates the excitatory phase but it has no effect on the second relaxation phase. Propranolol (10(-6), 2 X 10(-6) M) as well as phentolamine turn the inhibitory response to Ach into contraction. Noradrenaline leads to LES contraction while isoprenaline induces relaxation. In smooth-muscle LES strips from cats pretreated with reserpine (1 mg/kg for 3 days), Ach in the concentrations used (10(-5), 10(-6) g/ml) leads to contraction. The changes observed are membrane-dependent -- the contraction is accompanied by depolarization, relaxation by hyperpolarization. The inhibitory effect of Ach on LES smooth muscle is discussed in the light of the hypothesis of Burn and Rand (1960) about the release of noradrenaline under the effect of Ach.

  9. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    SciTech Connect

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.

  10. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    PubMed

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  11. A preliminary study of the effect of essential oils on skeletal and smooth muscle in vitro.

    PubMed

    Lis-Balchin, M; Hart, S

    1997-11-01

    The pharmacological activity of nine commercial essential oils was studied on the rat isolated phrenic nerve diaphragm preparation and compared with activity on field-stimulated guinea-pig ileum preparations. The essential oils at final bath concentrations of 2 x 10(-5) and 2 x 10(-4) g/ml produced four different effects on skeletal muscle, whilst only a contracture with or without a decrease in response to field stimulation in smooth muscle. The first type of effect on skeletal muscle involved a contracture and inhibition of the twitch response to nerve stimulation shown by a sample of clary sage, dill, fennel, frankincense and nutmeg; a second, shown by thyme produced a contracture without a change in the twitch response; a third, shown by lavender reduced the twitch response alone and the fourth, shown by camphor, increased the size of the twitch response. Angelica root oil at the highest concentration studied showed no response on skeletal muscle. PMID:9421254

  12. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  13. Photoaffinity labelling of smooth-muscle myosin by methylanthraniloyl-8-azido-ATP.

    PubMed

    Maruta, S; Ikebe, M

    1993-06-01

    Methylanthraniloyl-8-azido-ATP (Mant-8-N3-ATP), which binds to the 20 kDa C-terminal tryptic fragment of skeletal-muscle myosin subfragment-1 [Maruta, Miyanishi and Matsuda (1989) Eur. J. Biochem. 184, 213-221], was synthesized and used as a probe of the conformational change of smooth-muscle myosin. Mant-8-N3-ATP, like ATP, induced the formation of the 10 S conformation at low ionic strength. In the presence of vanadate, smooth-muscle myosin formed a stable complex with Mant-8-N3-ADP, and this complex showed the 10 S-->6 S transition of myosin. ATP-binding sites for 6 S (extended state) and 10 S (folded state) myosin were studied by photolabelling of myosin with Mant-8-N3-ADP. For both 6 S and 10 S myosin, Mant-8-N3-ATP was incorporated into the 29 kDa N-terminal tryptic fragment of myosin heavy chain. This is unlike the labelling of skeletal-muscle myosin, in which the 20 kDa C-terminal fragment is labelled. The labelling of 29 kDa fragment was diminished significantly by addition of ATP. These results suggest that the conformation of the ATP-binding site of smooth-muscle myosin is different from that of skeletal-muscle myosin. To examine further the possible differences in the labelling site between 6 S and 10 S myosin, the affinity-labelled 29 kDa fragment was subjected to complete proteolysis by lysylendo-peptidase. The fluorescent-labelled-peptide map suggested that the Mant-8-N3-ADP-binding sites for 6 S and 10 S myosin were identical.

  14. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  15. Se Enhances MLCK Activation by Regulating Selenoprotein T (SelT) in the Gastric Smooth Muscle of Rats.

    PubMed

    Li, Jia-Ping; Zhou, Jing-Xuan; Wang, Qi; Gu, Gao-Qin; Yang, Shi-Jin; Li, Cheng-Ye; Qiu, Chang-Wei; Deng, Gan-Zhen; Guo, Meng-Yao

    2016-09-01

    Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT.

  16. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function

    PubMed Central

    Kleinhenz, Jennifer M.; Murphy, Tamara C.; Pokutta-Paskaleva, Anastassia P.; Gleason, Rudolph L.; Lyle, Alicia N.; Taylor, W. Robert; Blount, Mitsi A.; Cheng, Juan; Yang, Qinglin; Sutliff, Roy L.; Hart, C. Michael

    2015-01-01

    Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis. PMID:26451838

  17. [Ionic mechanisms of endothelium-dependent relaxation of vascular smooth muscle under the action of acetylcholine].

    PubMed

    Taranenko, V M; Talaeva, T V; Bratus', V V

    1988-04-01

    Acetylcholine and nitroglycerin were shown to induce relaxation in muscles of the ring vascular segments of canine coronary arteries and rabbit aortic archs, the magnitude of the reaction depending on the level of initial tonic tension. Methylene blue abolished the relaxation. Mechanical removal of endothelium abolished the reaction to acetylcholine but not to nitroglycerin. Verapamil decreased the relaxation by 70%. The endothelium-dependent relaxation seems to be connected mainly with a decrease in the calcium entering vascular smooth muscle cells through voltage-dependent channels.

  18. TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle.

    PubMed

    Zheng, Xiaoxu; Reho, John J; Wirth, Brunhilde; Fisher, Steven A

    2015-02-15

    Diversity of smooth muscle within the vascular system is generated by alternative splicing of exons, yet there is limited understanding of its timing or control mechanisms. We examined splicing of myosin phosphatase regulatory subunit (Mypt1) exon 24 (E24) in relation to smooth muscle myosin heavy chain (Smmhc) and smoothelin (Smtn) alternative exons (Smmhc E6 and Smtn E20) during maturation of mouse mesenteric artery (MA) smooth muscle. The role of transformer 2β (Tra2β), a master regulator of splicing in flies, in maturation of arterial smooth muscle was tested through gene inactivation. Splicing of alternative exons in bladder smooth muscle was examined for comparative purposes. MA smooth muscle maturation began after postnatal week 2 and was complete at maturity, as indicated by switching to Mypt1 E24+ and Smtn E20- splice variants and 11-fold induction of Smmhc. Similar changes in bladder were complete by postnatal day 3. Splicing of Smmhc E6 was temporally dissociated from Mypt1 E24 and Smtn E20 and discordant between arteries and bladder. Tamoxifen-induced smooth muscle-specific inactivation of Tra2β within the first week of life but not in maturity reduced splicing of Mypt1 E24 in MAs. Inactivation of Tra2β causing a switch to the isoform of MYPT1 containing the COOH-terminal leucine zipper motif (E24-) increased arterial sensitivity to cGMP-mediated relaxation. In conclusion, maturation of mouse MA smooth muscle begins postnatally and continues until sexual maturity. TRA2β is required for specification during this period of maturation, and its inactivation alters the contractile properties of mature arterial smooth muscle.

  19. HEF-19-induced relaxation of colonic smooth muscles and the underlying mechanisms

    PubMed Central

    Wei, Yuan-Yuan; Sun, Lu-Lu; Fu, Shou-Ting

    2013-01-01

    AIM: To investigate the relaxant effect of chromane HEF-19 on colonic smooth muscles isolated from rabbits, and the underlying mechanisms. METHODS: The relaxant effect and action mechanisms of HEF-19 were investigated using descending colon smooth muscle of the rabbits. Preparations 1 cm long were mounted in 15-mL tissue baths containing Tyrode’s solution, maintained at 37 ± 0.5 °C and aerated with a mixture of 5% CO2 in oxygen (Carbogen). The tension and amplitude of the smooth muscle strips were recorded after adding HEF-19 (10-6, 10-5 and 10-4 mol/L). After cumulative administration of four antispasmodic agents, including acetylcholine chloride (Ach) (10-4 mol/L), histamine (10-4 mol/L), high-K+ (60 mmol/L) and BaCl2 (8.2 mmol/L), HEF-19 (3 × 10-7-3 × 10-4 mol/L) was added to investigate the relaxant effect of HEF-19. CaCl2 (10-4-2.5 × 10-3 mol/L) was added cumulatively to the smooth muscle preparations pretreated with and without HEF-19 (1 × 10-6 or 3 × 10-6 mol/L) and verapamil (1 × 10-7 mol/L) to study the mechanisms involved. Finally, phasic contraction was induced with ACh (15 × 10-6 mol/L), and CaCl2 (4 × 10-3 mol/L) was added to the smooth muscle preparations pretreated with and without HEF-19 (3 × 10-6 mol/L or 1 × 10-5 mol/L) and verapamil (1 × 10-7 mol/L) in calcium-free medium to further study the underlying mechanisms. RESULTS: HEF-19 (1 × 10-6, 1 × 10-5 and 1 × 10-4 mol/L) suppressed spontaneous contraction of rabbit colonic smooth muscles. HEF-19 (3 × 10-7-3 × 10-4 mol/L) relaxed in a concentration-dependent manner colonic smooth muscle preparations pre-contracted with BaCl2, high-K+ solution, Ach or histamine with respective EC50 values of 5.15 ± 0.05, 5.12 ± 0.08, 5.58 ± 0.16 and 5.25 ± 0.24, thus showing a spasmolytic activity. HEF-19 (1 × 10-6 mol/L and 3 × 10-6 mol/L) shifted the concentration-response curves of CaCl2 to the right and depressed the maximum response to CaCl2. The two components contracted by Ach were

  20. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  1. Active substance from the serum of laying hens and its effect on uterine smooth muscles.

    PubMed

    Nikolov, A

    1989-01-01

    Blood serum from laying hens has an excitatory effect on isolated uterine smooth muscles of laying hens. This excitatory effect is not observed for the blood serum of pullets and cocks. After ultrafiltration and gel filtration on Sephadex G25, it was found that the excitatory effect of the blood serum was due to a low-molecular substance (m.w. below 5000 Da). The effect of this active substance was found to be inhibited by indomethacin, brufen and SC 19220. The presence of this substance in the serum of laying hens and its contractile effects, which are probably associated with prostaglandin mechanisms of regulation in the uterine smooth muscles, suggests that it is associated in the processes of oviposition in hens.

  2. Substance P, like acetylcholine, augments one type of Ca2+ current in isolated smooth muscle cells.

    PubMed

    Clapp, L H; Vivaudou, M B; Singer, J J; Walsh, J V

    1989-03-01

    Electrophysiological recordings from freshly-dissociated smooth muscle cells from toad stomach revealed that substance P enhances one of two types of Ca2+ currents. That is, substance P enhances the slowly inactivating, high-threshold current but not the fast inactivating, low-threshold current. Acetylcholine has the same effect, but the acetylcholine action is blocked by atropine whereas the substance P action is not, indicating that the two agents act at different receptor sites. Thus, substance P, like acetylcholine, has a dual excitatory action on the smooth muscle cells employed in these studies, enhancing a specific type of Ca2+ current, as demonstrated here, and suppressing a voltage-sensitive K+ conductance, as previously described [Sims, S.M., Walsh, J.V., Jr. & Singer, J.J. (1986) Am. J. Physiol. 251, C580-C587].

  3. Vasopressin induced production of inositol trisphosphate and calcium efflux in a smooth muscle cell line

    SciTech Connect

    Doyle, V.M.; Rueegg, U.T.

    1985-08-30

    Phosphatidylinositol metabolism and /sup 45/Ca/sup 2 +/ efflux were examined in a vascular smooth muscle cell line (A7r5). (Arg 8)Vasopressin stimulated the rapid formation (measurable at 1 sec) of inositol phosphates in a concentration-dependent manner. The time course for formation of inositol phosphates was similar to that for /sup 45/Ca/sup 2 +/ efflux from preloaded cells. The efflux of /sup 45/Ca/sup 2 +/ in response to (Arg8)vasopressin could be inhibited by a vasopressin antagonist. This supports the hypothesis that inositol 1,4,5-trisphosphate plays a role in vasopressin stimulated calcium mobilization from an intracellular source in cultured vascular smooth muscle cells.

  4. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  5. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    PubMed

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  6. Smooth Muscle Tumor Originating in the Pleura: A Case Report and Updated Literature Review

    PubMed Central

    Zarubin, Vadim; Zarineh, Alireza

    2016-01-01

    Smooth muscle tumors (SMTs) of the pleura are exceptionally rare. At present and to the best of these authors' knowledge, there are only 17 cases reported in the literature. We describe a case of a 51-year-old woman who complained of left sided pleuritic chest pain. Further, computed tomography (CT) revealed a left sided localized pleural-based mass involving the 9th rib. She underwent an interventional radiology guided percutaneous core biopsy of the lesion, which disclosed a “Smooth Muscle Tumor of Undetermined Malignant Potential (SMT-UMP).” A video-assisted thoracoscopic surgery (VATS) was performed for diagnosis and treatment purposes. Resections of the pleural-based mass and 9th rib were performed. SMT-UMP was the definitive diagnosis. PMID:27747117

  7. Stimulatory effect of lysophosphatidic acids on uterine smooth muscles of non-pregant rats.

    PubMed

    Tokumura, A; Fukuzawa, K; Yamada, S; Tsukatani, H

    1980-05-01

    Lysophosphatidic acids stimulated isolated uterine smooth muscle dose-dependently. The contractions were not reduced by pretreatment with atropine or an anti-5-hydroxytryptaminic agent. The potency depended on the nature of the acyl chain in the molecule. Of the compounds with a saturated fatty acyl group tested, the most effective were myristoyl- and lauroyl-lysophosphatidic acid. In a series of unsaturated lysophosphatidic acids, the potency increased with the number of cis double bonds in the acyl chain, and linolenoyl-lysophosphatidic acid was the most active. When injected intravenously, these compounds induced an immediate rise in blood pressure and intrauterine pressure, like prostaglandin F2 alpha: The order of potency of their effects on the intact uterus was consistent with that of their effects on isolated uterine smooth muscle, but not with that of their hypertensive effects in rats.

  8. Prediction of peak forces for a shortening smooth muscle tissue subjected to vibration.

    PubMed

    Pidaparti, Ramana M; Dhanaraj, Nandhini; Meiss, Richard A

    2008-01-01

    The objective of the present study is to investigate the peak forces for a tracheal smooth muscle tissue subjected to an applied longitudinal vibration following isotonic shortening. A non-linear finite element analysis was carried out to simulate the vibratory response under experimental conditions that corresponds to forced length oscillations at 33 Hz for 1 second. The stiffness change and hysteresis estimated from the experimental data was used in the analysis. The finite element results of peak forces are compared to the experimental data obtained. The comparison of results indicate that the approach and the vibratory response obtained may be useful for describing the cross-bridge de-attachments within the cells as well as connective tissue connections characteristic of tracheal smooth muscle tissue.

  9. The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications

    PubMed Central

    Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien

    2014-01-01

    Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297

  10. [Inspiratory muscle resistance to fatigue during exercise and simulated airway obstruction].

    PubMed

    Segizbaeva, M O; Aleksandrova, N P

    2014-01-01

    Respiratory muscle fatigue can develop during simulated airway obstruction. The aim of this study was to characterize the pattern of inspiratory muscle fatigue and to assess the resistance to fatigue of diaphragm (D), parasternal (PS), sternocleidomastoid (SM) and scalene (SC). 8 healthy untrained subjects participated in this study. To identify signs of inspiratory muscles fatigue development electromyographic activity of D, PS, SCM and SC was recorded during 5-min exercise with loaded breathing (40 cm H2O/L · s(-1)). The before-to-after exercise measurements of maximal inspiratory pressure (MIP) and EMG power spectrum changes were performed. Maximal inspiratory pressure declined about 12% after exercise test compared with control, whereas the peak magnitude of integrated electrical activity of D, PS, SCM and SC during post-exercise Muller's maneuver was significantly greater than in pre-exercise test in all subjects. The extent ofinspiratory muscles fatigue was evaluated by analysis of shift in centroid frequency (fc) of EMG power spectrum. All subjects demonstrated a significant reduction in fc of PS, SCM and SC.fc of D was not changed. Diaphragm is more resistantto fatigue during obstructive breathing compared with PS, SCM and SC. The data suggest that the reduction of maximum inspiratory pressure in chronic obstructive pulmonary disease also caused primarily by the weakening of the accessory muscles, while the weakness of the diaphragm may occur in the later stages of the disease. The functional failure of accessory muscles is an additional factor, which, along with the additional breathing resistance increases the load on the diaphragm, promoting its fatigue and reduced respiratory reserve.

  11. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  12. BMP-2 gene expression and effects on human vascular smooth muscle cells.

    PubMed

    Willette, R N; Gu, J L; Lysko, P G; Anderson, K M; Minehart, H; Yue, T

    1999-01-01

    Bone morphogenetic proteins (BMPs) and their serine/threonine kinase receptors have been identified in atherosclerotic arteries and vascular smooth muscle cells, respectively. Thus, BMPs (the largest subfamily of the TGF-beta superfamily) have been implicated in the pathogenesis of atherosclerosis. However, the origins of BMP biosynthesis and the functional roles of BMP in blood vessels are unclear. The present study explored BMP-2 gene expression in various human blood vessels and vascular cell types. Functional in vitro studies were also performed to determine the effects of recombinant human BMP-2 on migration (transwell assay) and proliferation ([3H]-thymidine incorporation) of human aortic vascular smooth muscle cells (HASMC). RT-PCR experiments revealed BMP-2 gene expression in normal and atherosclerotic human arteries as well as cultured human aortic and coronary vascular smooth muscle cells, human umbilical vein endothelial cells (HUVECs) and human macrophages. In cellular migration studies, incubation with BMP-2 produced efficacious (smooth muscle cell response to vascular injury. PMID:10213907

  13. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis

    PubMed Central

    Heise, Rebecca L.; Parekh, Aron; Joyce, Erinn M.; Chancellor, Michael B.; Sacks, Michael S.

    2011-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with

  14. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    PubMed

    Heise, Rebecca L; Parekh, Aron; Joyce, Erinn M; Chancellor, Michael B; Sacks, Michael S

    2012-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with

  15. Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle.

    PubMed

    Clark, Jill H; Kinnear, Nicholas P; Kalujnaia, Svetlana; Cramb, Gordon; Fleischer, Sidney; Jeyakumar, Loice H; Wuytack, Frank; Evans, A Mark

    2010-04-30

    In pulmonary arterial smooth muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) may induce constriction and dilation in a manner that is not mutually exclusive. We show here that the targeting of different sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA) and RyR subtypes to discrete SR regions explains this paradox. Western blots identified protein bands for SERCA2a and SERCA2b, whereas immunofluorescence labeling of isolated pulmonary arterial smooth muscle cells revealed striking differences in the spatial distribution of SERCA2a and SERCA2b and RyR1, RyR2, and RyR3, respectively. Almost all SERCA2a and RyR3 labeling was restricted to a region within 1.5 microm of the nucleus. In marked contrast, SERCA2b labeling was primarily found within 1.5 microm of the plasma membrane, where labeling for RyR1 was maximal. The majority of labeling for RyR2 lay in between these two regions of the cell. Application of the vasoconstrictor endothelin-1 induced global Ca(2+) waves in pulmonary arterial smooth muscle cells, which were markedly attenuated upon depletion of SR Ca(2+) stores by preincubation of cells with the SERCA inhibitor thapsigargin but remained unaffected after preincubation of cells with a second SERCA antagonist, cyclopiazonic acid. We conclude that functionally segregated SR Ca(2+) stores exist within pulmonary arterial smooth muscle cells. One sits proximal to the plasma membrane, receives Ca(2+) via SERCA2b, and likely releases Ca(2+) via RyR1 to mediate vasodilation. The other is located centrally, receives Ca(2+) via SERCA2a, and likely releases Ca(2+) via RyR3 and RyR2 to initiate vasoconstriction.

  16. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    SciTech Connect

    Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun; Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  17. Antimuscarinic action of liriodenine, isolated from Fissistigma glaucescens, in canine tracheal smooth muscle.

    PubMed

    Lin, C H; Yang, C M; Ko, F N; Wu, Y C; Teng, C M

    1994-12-01

    1. The antimuscarinic properties of liriodenine, isolated from Fissistigma glaucescens, were compared with methoctramine (cardioselective M2 antagonist) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, smooth muscle selective M3 antagonist) by radioligand binding tests, functional tests and measurements of second messenger generation in canine cultured tracheal smooth muscle cells. 2. Liriodenine, pirenzepine, methoctramine and 4-DAMP displaced [3H]-N-methyl scopolamine ([3H]-NMS) binding in a concentration-dependent manner with Ki values of 2.2 +/- 0.4 x 10(-6), 3.3 +/- 0.7 x 10(-7), 8.9 +/- 2.3 x 10(-8) and 2.3 +/- 0.6 x 10(-9) M, respectively. The curves for competitive inhibition of [3H]-NMS with liriodenine, methoctramine and 4-DAMP were best fitted according to a two site model of binding, but pirenzepine was best fitted according to a model with one site. 3. Liriodenine and 4-DAMP displayed a high affinity for blocking tracheal contraction (pKB = 5.9 and 9.1, respectively) and inositol phosphate formation (pKB = 6.0 and 8.9, respectively), but a low affinity for antagonism of cyclic AMP inhibition (pKB = 4.7 and 7.8, respectively). 4. Methoctramine blocked cyclic AMP inhibition with a high affinity (pKB = 7.4), but it antagonized tracheal contraction and inositol phosphate formation with a low affinity (pKB = 6.1 and 6.0, respectively). 5. In conclusion, both M2 and M3 muscarinic receptor subtypes coexist in canine tracheal smooth muscle and are coupled to the inhibition of cyclic AMP formation and phosphoinositide breakdown, respectively. The antimuscarinic characteristics of liriodenine are similar to those of 4-DAMP. It may act as a selective M3 receptor antagonist in canine tracheal smooth muscle.

  18. Antimuscarinic action of liriodenine, isolated from Fissistigma glaucescens, in canine tracheal smooth muscle.

    PubMed Central

    Lin, C H; Yang, C M; Ko, F N; Wu, Y C; Teng, C M

    1994-01-01

    1. The antimuscarinic properties of liriodenine, isolated from Fissistigma glaucescens, were compared with methoctramine (cardioselective M2 antagonist) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, smooth muscle selective M3 antagonist) by radioligand binding tests, functional tests and measurements of second messenger generation in canine cultured tracheal smooth muscle cells. 2. Liriodenine, pirenzepine, methoctramine and 4-DAMP displaced [3H]-N-methyl scopolamine ([3H]-NMS) binding in a concentration-dependent manner with Ki values of 2.2 +/- 0.4 x 10(-6), 3.3 +/- 0.7 x 10(-7), 8.9 +/- 2.3 x 10(-8) and 2.3 +/- 0.6 x 10(-9) M, respectively. The curves for competitive inhibition of [3H]-NMS with liriodenine, methoctramine and 4-DAMP were best fitted according to a two site model of binding, but pirenzepine was best fitted according to a model with one site. 3. Liriodenine and 4-DAMP displayed a high affinity for blocking tracheal contraction (pKB = 5.9 and 9.1, respectively) and inositol phosphate formation (pKB = 6.0 and 8.9, respectively), but a low affinity for antagonism of cyclic AMP inhibition (pKB = 4.7 and 7.8, respectively). 4. Methoctramine blocked cyclic AMP inhibition with a high affinity (pKB = 7.4), but it antagonized tracheal contraction and inositol phosphate formation with a low affinity (pKB = 6.1 and 6.0, respectively). 5. In conclusion, both M2 and M3 muscarinic receptor subtypes coexist in canine tracheal smooth muscle and are coupled to the inhibition of cyclic AMP formation and phosphoinositide breakdown, respectively. The antimuscarinic characteristics of liriodenine are similar to those of 4-DAMP. It may act as a selective M3 receptor antagonist in canine tracheal smooth muscle. PMID:7889303

  19. Digital Imaging Fluorescence Microscopy Reveals Intracellular Calcium Ions In Living Cardiac And Smooth Muscle Cells.

    NASA Astrophysics Data System (ADS)

    Gil Wier, W.; Goldman, William F.

    1988-06-01

    We have used digital video microscopy to study the relationship of intracellular calcium ion concentration ([Ca2+]i) to the function of living cardiac and vascular smooth muscle cells. The technical goal of our work is to obtain, with high spatial and temporal resolution, "maps" of [Ca2+]i inside single living cells. To relate [Ca2+]i to cell function, such "maps" can be used in conjunction with measurements of cell electrical activity, contractile activity or biochemical assays.

  20. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    SciTech Connect

    Edwards, I.J.; Wagner, W.D.; Owens, R.T. )

    1990-03-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with (35S)sulfate and (3H)serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in (35S)sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of (3H)serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion.

  1. Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis

    PubMed Central

    Hunter, Larry W; Charlesworth, Jon E; Yu, Sam; Lieske, John C; Miller, Virginia M

    2014-01-01

    Background Nano-sized complexes of calcium phosphate mineral and proteins (calcifying nanoparticles [CNPs]) serve as mineral chaperones. Thus, CNPs may be both a result and cause of soft tissue calcification processes. This study determined if CNPs could augment calcification of arterial vascular smooth muscle cells in vitro. Methods CNPs 210 nm in diameter were propagated in vitro from human serum. Porcine aortic smooth muscle cells were cultured for up to 28 days in medium in the absence (control) or presence of 2 mM phosphate ([P] positive calcification control) or after a single 3-day exposure to CNPs. Transmission electron-microscopy was used to characterize CNPs and to examine their cellular uptake. Calcium deposits were visualized by light microscopy and von Kossa staining and were quantified by colorimetry. Cell viability was quantified by confocal microscopy of live-/dead-stained cells and apoptosis was examined concurrently by fluorescent labeling of exposed phosphatidylserine. Results CNPs, as well as smaller calcium crystals, were observed by transmission electron-microscopy on day 3 in CNP-treated but not P-treated cells. By day 28, calcium deposits were visible in similar amounts within multicellular nodules of both CNP- and P-treated cells. Apoptosis increased with cell density under all treatments. CNP treatment augmented the density of apoptotic bodies and cellular debris in association with mineralized multicellular nodules. Conclusion Exogenous CNPs are taken up by aortic smooth muscle cells in vitro and potentiate accumulation of smooth-muscle-derived apoptotic bodies at sites of mineralization. Thus, CNPs may accelerate vascular calcification. PMID:24920905

  2. Immunolocalization of BMP-6, a novel TGF-beta-related cytokine, in normal and atherosclerotic smooth muscle cells.

    PubMed

    Schluesener, H J; Meyermann, R

    1995-03-01

    We have analyzed expression of a novel transforming growth factor type beta (TGF-beta)-related cytokine, bone morphogenetic protein-6 (BMP-6) in normal and atherosclerotic brain arteries. BMP-6 immunoreactivity was detected in smooth muscle cells of normal cerebral blood vessels. It is also expressed by smooth muscle cells of intimal plaques in atherosclerotically changed blood vessels. The BMPs regulate tissue modeling and remodeling and aberrant expression of BMPs might contribute to smooth muscle cell migration, proliferation, tissue reorganization and macrophage attraction, which are known mechanisms of atherosclerotic plaque formation. PMID:7605353

  3. Long-Term Expression of Human Adenosine Deaminase in Vascular Smooth Muscle Cells of Rats: A Model for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Lynch, Carmel M.; Clowes, Monika M.; Osborne, William R. A.; Clowes, Alexander W.; Dusty Miller, A.

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli β-galactosidase gene or a human adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  4. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest

    PubMed Central

    Manderfield, Lauren J.; Aghajanian, Haig; Engleka, Kurt A.; Lim, Lillian Y.; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N.; Epstein, Jonathan A.

    2015-01-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. PMID:26253400

  5. Globular adiponectin reduces vascular calcification via inhibition of ER-stress-mediated smooth muscle cell apoptosis

    PubMed Central

    Lu, Yan; Bian, Yunfei; Wang, Yueru; Bai, Rui; Wang, Jiapu; Xiao, Chuanshi

    2015-01-01

    Objective: This study aims to explore the mechanism of globular adiponectin inhibiting vascular calcification. Methods: We established drug-induced rat vascular calcification model, globular adiponectin was given to observe the effect of globular Adiponectin on the degree of calcification. The markers of vascular calcification and apoptosis were also investigated. Meanwhile, the in vitro effect of globular Adiponectin on vascular calcification was also evaluated using primary cultured rat vascular smooth muscle cells. Results: We found that globular adiponectin could inhibit drug-induced rat vascular calcification significantly in vivo. The apoptosis of vascular smooth muscle cells was also reduced. The possible mechanism could be the down-regulation of endoplasmic reticulum stress by globular adiponectin. Experiments in primary cultured vascular smooth muscle cells also confirmed that globular adiponectin could reduce cell apoptosis to suppress vascular calcification via inhibition of endoplasmic reticulum stress. Conclusions: This study confirmed that globular adiponectin could suppress vascular calcification; one of the mechanisms could be inhibition of endoplasmic reticulum stress to reduce cell apoptosis. It could provide an effective method in the therapy of vascular calcification-associated diseases. PMID:26045760

  6. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  7. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  8. Orai1 forms a signal complex with BKCa channel in mesenteric artery smooth muscle cells.

    PubMed

    Chen, Meihua; Li, Jie; Jiang, Feifei; Fu, Jie; Xia, Xianming; Du, Juan; Hu, Min; Huang, Junhao; Shen, Bing

    2016-01-01

    Orai1, a specific nonvoltage-gated Ca(2+) channel, has been found to be one of key molecules involved in store-operated Ca(2+) entry (SOCE). Orai1 may associate with other proteins to form a signaling complex, which is essential for regulating a variety of physiological functions. In this study, we studied the possible interaction between Orai1 and large conductance Ca(2+)-activated potassium channel (BKC a). Using RNA interference technique, we demonstrated that the SOCE and its associated membrane hyperpolarization were markedly suppressed after knockdown of Orai1 with a specific Orai1 siRNA in rat mesenteric artery smooth muscle. Moreover, isometric tension measurements showed that agonist-induced vasocontraction was increased after Orai1 was knocked down or the tissue was incubated with BKC a blocker iberiotoxin. Coimmunoprecipitation data revealed that BKC a and Orai1 could reciprocally pull down each other. In situ proximity ligation assay further demonstrated that Orai1 and BKC a are in close proximity. Taken together, these results indicate that Orai1 physically associates with BKC a to form a signaling complex in the rat mesenteric artery smooth muscle. Ca(2+) influx via Orai1 stimulates BKC a, leading to membrane hyperpolarization. This hyperpolarizing effect of Orai1-BKC a coupling could contribute to reduce agonist-induced membrane depolarization, therefore preventing excessive contraction of the rat mesenteric artery smooth muscle in response to contractile agonists.

  9. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    SciTech Connect

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  10. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    PubMed

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration.

  11. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice

    SciTech Connect

    Orlandi, Augusto . E-mail: orlandi@uniroma2.it; Ferlosio, Amedeo; Gabbiani, Giulio; Spagnoli, Luigi Giusto; Ehrlich, Paul H.

    2005-12-10

    Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less {alpha}2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of {alpha}-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express {alpha}-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-{alpha}2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-{alpha}1 and anti-{alpha}2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs.

  12. Laminin alpha5 chain is required for intestinal smooth muscle development.

    PubMed

    Bolcato-Bellemin, Anne Laure; Lefebvre, Olivier; Arnold, Christiane; Sorokin, Lydia; Miner, Jeffrey H; Kedinger, Michèle; Simon-Assmann, Patricia

    2003-08-15

    Laminins (comprised of alpha, beta, and gamma chains) are heterotrimeric glycoproteins integral to all basement membranes. The function of the laminin alpha5 chain in the developing intestine was defined by analysing laminin alpha5(-/-) mutants and by grafting experiments. We show that laminin alpha5 plays a major role in smooth muscle organisation and differentiation, as excessive folding of intestinal loops and delay in the expression of specific markers are observed in laminin alpha5(-/-) mice. In the subepithelial basement membrane, loss of alpha5 expression was paralleled by ectopic or accelerated deposition of laminin alpha2 and alpha4 chains; this may explain why no obvious defects were observed in the villous form and enterocytic differentiation. This compensation process is attributable to mesenchyme-derived molecules as assessed by chick/mouse alpha5(-/-) grafted associations. Lack of the laminin alpha5 chain was accompanied by a decrease in epithelial alpha3beta1 integrin receptor expression adjacent to the epithelial basement membrane and of Lutheran blood group glycoprotein in the smooth muscle cells, indicating that these receptors are likely mediating interactions with laminin alpha5-containing molecules. Taken together, the data indicate that the laminin alpha5 chain is essential for normal development of the intestinal smooth muscle and point to possible mesenchyme-derived compensation to promote normal intestinal morphogenesis when laminin alpha5 is absent.

  13. Smooth Muscle Cells of Penis in the Rat: Noninvasive Quantification with Shear Wave Elastography

    PubMed Central

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Purpose. Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Materials and Methods. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Results. Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was −0.618 (p < 0.001). The result of TS had been plotted against the AP measurements. The relation between the two results has been fitted with quadric curve; the goodness-of-fit index was 0.364 (p < 0.001). Conclusions. The level of SMCs in penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively. PMID:26550573

  14. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation.

    PubMed

    Ilagan, Bernadette G; Amsden, Brian G

    2009-09-01

    Photocrosslinked, biodegradable elastomers based on aliphatic polyesters have many desirable features as scaffolds for smooth muscle tissue engineering. However, they lack cell adhesion motifs. To address this shortcoming, two different modification procedures were studied utilizing a high and a low crosslink density elastomer: base etching and the incorporation of acryloyl-poly(ethylene glycol) (PEG)-Gly-Arg-Gly-Asp-Ser (GRGDS) into the elastomer network during photocrosslinking. Base etching improved surface hydrophilicity without altering surface topography, but did not improve bovine aortic smooth muscle cell adhesion. Incorporation of PEG-GRGDS into the elastomer network significantly improved cell adhesion for both high and low crosslink density elastomers, with a greater effect with the higher crosslink density elastomer. Incorporation of GRGDS into the high crosslink density elastomer also enhanced smooth muscle cell proliferation, while proliferation on the low crosslink density unmodified, base etched, and PEG-GRGDS incorporated elastomers was significantly greater than on the high crosslink density unmodified and base etched elastomer. PMID:19375999

  15. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells.

    PubMed

    Chen, X L; Tummala, P E; Olbrych, M T; Alexander, R W; Medford, R M

    1998-11-01

    Monocyte infiltration into the vessel wall, a key initial step in the process of atherosclerosis, is mediated in part by monocyte chemoattractant protein-1 (MCP-1). Hypertension, particularly in the presence of an activated renin-angiotensin system, is a major risk factor for the development of atherosclerosis. To investigate a potential molecular basis for a link between hypertension and atherosclerosis, we studied the effects of angiotensin II (Ang II) on MCP-1 gene expression in rat aortic smooth muscle cells. Rat smooth muscle cells treated with Ang II exhibited a dose-dependent increase in MCP-1 mRNA accumulation that was prevented by the AT1 receptor antagonist losartan. Ang II also activated MCP-1 gene transcription. Inhibition of NADH/NADPH oxidase, which generates superoxide and H2O2, with diphenylene iodonium or apocynin decreased Ang II-induced MCP-1 mRNA accumulation. Induction of MCP-1 gene expression by Ang II was inhibited by catalase, suggesting a second messenger role for H2O2. The tyrosine kinase inhibitor genistein and the mitogen-activated protein kinase kinase inhibitor PD098059 inhibited Ang II-induced MCP-1 gene expression, consistent with a mitogen-activated protein kinase-dependent signaling mechanism. Ang II may thus promote atherogenesis by direct activation of MCP-1 gene expression in vascular smooth muscle cells.

  16. Allosteric interactions of three muscarine antagonists at bovine tracheal smooth muscle and cardiac M2 receptors.

    PubMed

    Roffel, A F; Elzinga, C R; Meurs, H; Zaagsma, J

    1989-03-01

    The kinetics of [3H]dexetimide dissociation from muscarine receptors in bovine cardiac left ventricular and tracheal smooth muscle membranes were studied in the absence and presence of three muscarine antagonists. It was found that [3H]dexetimide dissociation from cardiac muscarine receptors was monophasic and very fast (half life less than 1 min) and was slowed by the cardioselective muscarine antagonists, gallamine, methoctramine and AF-DX 116, concentration dependently. [3H]Dexetimide dissociation from tracheal muscarine receptors was biphasic, with a fast phase (half-life less than 1 min) followed after 4-5 min by a slow phase (half-life = 38.5 min). The fast component, but not the slow component, was slowed by the muscarine antagonists with concentration dependencies very similar to those found in the heart. We conclude from these data that the major population of tracheal smooth muscle muscarine receptors resembles the cardiac M2 type not only with respect to equilibrium binding affinities but also with respect to the secondary, allosteric binding site on the muscarine receptor. The results also imply that the cardiac receptor subtype is much more sensitive to allosteric modulation than the glandular/smooth muscle receptor subtype. PMID:2714370