Science.gov

Sample records for airway surface layer

  1. A model for the volume regulatory mechanism of the Airway Surface Layer

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Rubinstein, Michael; Davis, C. William; Tarran, Robert; Boucher, Richard

    2006-03-01

    The airway surface layer (ASL) of a lung consists of two parts: a mucus layer with thickness of about 30 μm in contact with air and a periciliary layer (PCL) of about 7 μm below. Mucus collects dust and bacteria and is swept to throat by beating cilia, while riding on top of PCL. It is important that the thickness of PCL is matched with the length of cilia in order to optimize clearance of mucus. Decrease of PCL thickness would finally lead to an occlusion of the respiratory system. Experiments show that the height of PCL stays constant after removing mucus. When modifying height or composition of this open PCL by removing fluid or adding isotonic solution leads to the same final height of PCL. Thus, there must be a regulatory mechanism, that controls height, i.e. ASL volume. Additional experiments show that mechanical stimulus of the cells like shear leads to an increase of ASL volume, thus, the cell is able to actively adjust this volume. Based on these observations a class of models is introduced that describes the experiments and a specific minimum model for the given problem is proposed.

  2. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  3. Two layer fluid stress analysis during airway closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James

    2009-11-01

    The airways are lined with a film consisting of two immiscible liquids, a serous layer and a more viscous mucus layer. Due to a surface tension driven instability, a liquid plug can form that obstructs the passage of air along the airways provided the ratio of the film thickness to the tube radius is greater than a critical value ˜0.12. In this study, we assume that the liquid layers are Newtonian, the surface tension is constant at the interfaces and the air-core phase is passive. We solve the Navier-Stokes and continuity equations subject to interfacial stress conditions and kinematic boundary conditions numerically using a finite volume approach in conjunction with a sharp interface method for the interfaces. Surface tension, viscosity and film thickness ratios can be altered by disease, and their influence on the closure instability is investigated. Results show that the shear and normal stresses along the airway walls can be strong enough to injure airway epithelial cells. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  4. Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia

    PubMed Central

    Lee, Hyun Jae; Yoo, Jee Eun; Namkung, Wan; Cho, Hyung-Ju; Kim, Kyubo; Kang, Joo Wan; Yoon, Joo-Heon; Choi, Jae Young

    2015-01-01

    Pendrin is an anion exchanger whose mutations are known to cause hearing loss. However, recent data support the linkage between pendrin expression and airway diseases, such as asthma. To evaluate the role of pendrin in the regulation of the airway surface liquid (ASL) volume and mucin expression, we investigated the function and expression of pendrin and ion channels and anion exchangers. Human nasal epithelial cells were cultured from 16 deaf patients carrying pendrin mutations (DFNB4) and 17 controls. The cells were treated with IL-13 to induce mucus hypersecretion. Airway surface liquid thickness was measured and real-time polymerase chain reaction was performed targeting various transporters and MUC5AC. Anion exchanger activity was measured using a pH-sensitive fluorescent probe. Periodic acid-Schiff staining was performed on the cultured cells and inferior turbinate tissues. The ASL layer of the nasal epithelia from DFNB4 subjects was thicker than the controls, and the difference became more prominent following IL-13 stimulation. There was no difference in anion exchange activity after IL-13 treatment in the cells from DFNB4 patients, while it increased in the controls. Goblet cell metaplasia induced by IL-13 treatment seen in the controls was not observed in the DFNB4 cells. Furthermore, the periodic acid-Schiff staining-positive area was lesser in the inferior turbinate tissues from DFNB4 patients that those from controls. Pendrin plays a critical role in ASL volume regulation and mucin expression as pendrin-deficient airway epithelial cells are refractory to stimulation with IL-13. Specific blockers targeting pendrin in the airways may therefore have therapeutic potential in the treatment of allergic airway diseases. PMID:26243215

  5. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  6. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  7. Compliant layer chucking surface

    DOEpatents

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  8. Surface fluid absorption and secretion in small airways

    PubMed Central

    Shamsuddin, A K M; Quinton, P M

    2012-01-01

    Native small airways must remain wet enough to be pliable and support ciliary clearance, but dry enough to remain patent for gas flow. The airway epithelial lining must both absorb and secrete ions to maintain a critical level of fluid on its surface. Despite frequent involvement in lung diseases, the minuscule size has limited studies of peripheral airways. To meet this challenge, we used a capillary to construct an Ussing chamber (area <1 mm2) to measure electrolyte transport across small native airways (∼1 mm ø) from pig lung. Transepithelial potentials (Vt) were recorded in open circuit conditions while applying constant current pulses across the luminal surface of dissected airways to calculate transepithelial electrical conductance (Gt) and equivalent short circuit current () in the presence and absence of selected Na+ and Cl− transport inhibitors (amiloride, GlyH-101, Niflumic acid) and agonists (Forskolin + IBMX, UTP). Considered together the responses suggest an organ composed of both secreting and absorbing epithelia that constitutively and concurrently transport fluids into and out of the airway, i.e. in opposite directions. Since the epithelial lining of small airways is arranged in long, accordion-like rows of pleats and folds that run axially down the lumen, we surmise that cells within the pleats are mainly secretory while the cells of the folds are principally absorptive. This structural arrangement could provide local fluid transport from within the pleats toward the luminal folds that may autonomously regulate the local surface fluid volume for homeostasis while permitting acute responses to maintain clearance. PMID:22547637

  9. Nucleotide release provides a mechanism for airway surface liquid homeostasis.

    PubMed

    Lazarowski, Eduardo R; Tarran, Robert; Grubb, Barbara R; van Heusden, Catharina A; Okada, Seiko; Boucher, Richard C

    2004-08-27

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.

  10. Nucleotide Release Provides a Mechanism for Airway Surface Liquid Homeostasis*

    PubMed Central

    Lazarowski, Eduardo R.; Tarran, Robert; Grubb, Barbara R.; van Heusden, Catharina A.; Okada, Seiko; Boucher, Richard C.

    2010-01-01

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca2+- and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A2b adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N6-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolayers that endogenously express a luminal A2b adenosine receptor, we found that basal as well as forskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A2b receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis. PMID:15210701

  11. Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea.

    PubMed

    Luan, Xiaojie; Campanucci, Verónica A; Nair, Manoj; Yilmaz, Orhan; Belev, George; Machen, Terry E; Chapman, Dean; Ianowski, Juan P

    2014-09-02

    Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation.

  12. The Martian surface layer

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Moore, Henry J.

    1992-01-01

    The global characteristics of the Martian surface layer are discussed on the basis of thermal, albedo, color, and radar data for the region between approximately 60 deg S and 60 deg N. Thermal data reveal the presence of large low- and high-inertia regions of the northern hemisphere, with much of the south covered by material of moderate inertia. There is a strong anticorrelation between inertia and albedo, a correlation between inertia and rock abundance, and, over much of the planet, a correlation of radar-derived density with inertia. Viking Orbiter color data indicate the presence of three major surface materials: low-inertia, bright-red material that is presumably dust; high-inertia, dark-grey material interpreted to be lithic material mixed with palagonitelike dust; and moderate-inertia, dark-red material that is rough at subpixel scales and interpreted to be indurated. Observations from the Viking landing sites show rocks, fines of varying cohesion and crusts. These sites have indications of aeolian erosion and deposition in the recent past.

  13. Regulation of airway surface liquid volume and mucus transport by active ion transport.

    PubMed

    Tarran, Robert

    2004-01-01

    Mucus clearance is an important component of the lung's innate defense against disease, and the ability of the airways to clear mucus is strongly dependent on the volume of liquid on airway surfaces. Whether airway surface liquid (ASL) volume is maintained by passive surface forces or by active ion transport is controversial yet crucial to the understanding of how this system operates in both health and disease. In support of active ion transport being the major determinant of ASL volume, we have demonstrated that normal airway epithelia sense and autoregulate ASL height (volume) by adjusting the rates of Na+ absorption and Cl- secretion to maintain mucus transport.

  14. In situ measurement of airway surface liquid [K+] using a ratioable K+-sensitive fluorescent dye.

    PubMed

    Namkung, Wan; Song, Yuanlin; Mills, Aaron D; Padmawar, Prashant; Finkbeiner, Walter E; Verkman, A S

    2009-06-05

    The airway surface liquid (ASL) is the thin fluid layer lining airway surface epithelial cells, whose volume and composition are tightly regulated and may be abnormal in cystic fibrosis (CF). We synthesized a two-color fluorescent dextran to measure ASL [K(+)], TAC-Lime-dextran-TMR, consisting of a green-fluorescing triazacryptand K(+) ionophore-Bodipy conjugate, coupled to dextran, together with a red fluorescing tetramethylrhodamine reference chromophore. TAC-Lime-dextran-TMR fluorescence was K(+)-selective, increasing >4-fold with increasing [K(+)] from 0 to 40 mm. In well differentiated human airway epithelial cells, ASL [K(+)] was 20.8 +/- 0.3 mm and decreased by inhibition of the Na(+)/K(+) pump (ouabain), ENaC (amiloride), CF transmembrane conductance regulator (CFTR(inh)-172), or K(+) channels (TEA or XE991). ASL [K(+)] was increased by forskolin but not affected by Na(+)/K(+)/2Cl(-) cotransporter inhibition (bumetanide). Functional and expression studies indicated the involvement of [K(+)] channels KCNQ1, KCNQ3, and KCNQ5 as determinants of ASL [K(+)]. [K(+)] in CF cultures was similar to that in non-CF cultures, suggesting that abnormal ASL [K(+)] is not a factor in CF lung disease. In intact airways, ASL [K(+)] was also well above extracellular [K(+)]: 22 +/- 1 mm in pig trachea ex vivo and 16 +/- 1 mm in mouse trachea in vivo. Our results provide the first noninvasive measurements of [K(+)] in the ASL and indicate the involvement of apical and basolateral membrane ion transporters in maintaining a high ASL [K(+)].

  15. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  16. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  17. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    NASA Astrophysics Data System (ADS)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  18. Mars Surface Layers in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 May 2002) Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani. The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed. The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

  19. Mars Surface Layers in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani.

    The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed.

    The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

  20. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  1. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  2. Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins

    PubMed Central

    Hodges, Robin R.; Dartt, Darlene A.

    2014-01-01

    The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract. PMID:23954166

  3. Measurement of the Airway Surface Liquid Volume with Simple Light Refraction Microscopy

    PubMed Central

    Harvey, Peter R.; Tarran, Robert; Garoff, Stephen

    2011-01-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air–liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays. PMID:21239602

  4. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface.

    PubMed

    Miyawaki, Shinjiro; Tawhai, Merryn H; Hoffman, Eric A; Wenzel, Sally E; Lin, Ching-Long

    2017-04-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11 % of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches.

  5. Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl− channel function

    PubMed Central

    Song, Yuanlin; Namkung, Wan; Nielson, Dennis W.; Lee, Jae-Woo; Finkbeiner, Walter E.

    2009-01-01

    The airway surface liquid (ASL) is the thin fluid layer lining the airways whose depth may be reduced in cystic fibrosis. Prior measurements of ASL depth have been made in airway epithelial cell cultures. Here, we established methodology to measure ASL depth to ∼1-μm accuracy in ex vivo fragments of freshly obtained human and pig tracheas. Airway fragments were mounted in chambers designed for perfusion of the basal surface and observation of the apical, fluorescently stained ASL by scanning confocal microscopy using a high numerical aperture lens immersed in perfluorocarbon. Measurement accuracy was verified using standards of specified fluid thickness. ASL depth in well-differentiated primary cultures of human nasal respiratory epithelium was 8.0 ± 0.5 μm (SE 10 cultures) under basal conditions, 8.4 ± 0.4 μm following ENaC inhibition by amiloride, and 14.5 ± 1.2 μm following CFTR stimulation by cAMP agonists. ASL depth in human trachea was 7.0 ± 0.7 μm under basal conditions, 11.0 ± 1.7 μm following amiloride, 17.0 ± 3.4 μm following cAMP agonists, and 7.1 ± 0.5 μm after CFTR inhibition. Similar results were found in pig trachea. This study provides the first direct measurements of ASL depth in intact human airways and indicates the involvement of ENaC sodium channels and CFTR chloride channels in determining ASL depth. We suggest that CF lung disease may be caused by the inability of CFTR-deficient airways to increase their ASL depth transiently following secretory stimuli that in non-CF airways produce transient increases in ASL depth. PMID:19820035

  6. Nanoengineering Catalyst Supports via Layer-by Layer Surface Functionalization

    SciTech Connect

    Yan, Wenfu; Mahurin, Shannon Mark; Overbury, Steven {Steve} H; Dai, Sheng

    2006-01-01

    Recent progress in the layer-by-layer surface modification of oxides for the preparation of highly active and stable gold nanocatalysts is briefly reviewed. Through a layer-by-layer surface modification approach, the surfaces of various catalyst supports including both porous and nonporous silica materials and TiO{sub 2} nanoparticles were modified with monolayers or multilayers of distinct metal oxide ultra-thin films. The surface-modified materials were used as supports for Au nanoparticles, resulting in highly active nanocatalysts for low-temperature CO oxidation. Good stability against sintering under high-temperature treatment was achieved for a number of the Au catalysts through surface modification of the support material. The surface modification of supports can be a viable route to control both the composition and structure of support and nanoparticle interfaces, thereby tailoring the stability and activity of the supported catalyst systems.

  7. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma

    PubMed Central

    Kasahara, K; Shiba, K; Ozawa, T; Okuda, K; Adachi, M

    2002-01-01

    Background: The epithelial reticular basement membrane (Rbm) of the airway wall thickens in patients with asthma. However, whether the thickening parallels whole airway wall thickening, which limits airflow, is unknown. The aim of this study was to examine the correlation between the bronchial Rbm thickening and whole airway wall thickening in asthma. In addition, the association of Rbm and whole wall thickening with airflow obstruction was examined. Methods: Forty nine patients with asthma and 18 healthy control subjects took part in the study. The Rbm thickness was measured in bronchial biopsy specimens and whole airway wall thickness was assessed with high resolution computed tomographic (HRCT) scanning after pretreatment with oral steroids for 2 weeks and inhaled ß2 agonist to minimise reversible changes of the airway walls. The percentage airway wall area (WA%; defined as (wall area/total airway area) x 100) and percentage airway wall thickness (WT%; defined as [(ideal outer diameter – ideal luminal diameter)/ideal outer diameter] x 100) were determined from HRCT scans to assess whole airway wall thickness. Spirometric tests were also performed. Results: WA% and WT% were higher in patients with asthma than in healthy subjects. Both WA% and WT% were strongly correlated with Rbm thickness. Moreover, these three indices of airway wall thickness were inversely correlated with the percentage of predicted forced expiratory volume in 1 second in patients with asthma. Conclusions: These findings indicate that Rbm thickening parallels whole airway wall thickening which can cause irreversible airflow obstruction in patients with asthma. PMID:11867829

  8. The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition.

    PubMed

    Tarran, R; Grubb, B R; Gatzy, J T; Davis, C W; Boucher, R C

    2001-08-01

    Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The "compositional" hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The "volume" hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a "reservoir" to buffer periciliary liquid layer height (7 microm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology.

  9. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    PubMed Central

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  10. In Vivo Airway Surface Liquid Cl− Analysis with Solid-State Electrodes

    PubMed Central

    Caldwell, Ray A.; Grubb, Barbara R.; Tarran, Robert; Boucher, Richard C.; Knowles, Michael R.; Barker, Pierre M.

    2002-01-01

    The pathogenesis of cystic fibrosis (CF) airways disease remains controversial. Hypotheses that link mutations in CFTR and defects in ion transport to CF lung disease predict that alterations in airway surface liquid (ASL) isotonic volume, or ion composition, are critically important. ASL [Cl−] is pivotal in discriminating between these hypotheses, but there is no consensus on this value given the difficulty in measuring [Cl−] in the “thin” ASL (∼30 μm) in vivo. Consequently, a miniaturized solid-state electrode with a shallow depth of immersion was constructed to measure ASL [Cl−] in vivo. In initial experiments, the electrode measured [Cl−] in physiologic salt solutions, small volume (7.6 μl) test solutions, and in in vitro cell culture models, with ≥93% accuracy. Based on discrepancies in reported values and/or absence of data, ASL Cl− measurements were made in the following airway regions and species. First, ASL [Cl−] was measured in normal human nasal cavity and averaged 117.3 ± 11.2 mM (n = 6). Second, ASL [Cl−] measured in large airway (tracheobronchial) regions were as follows: rabbit trachea and bronchus = 114.3 ± 1.8 mM; (n = 6) and 126.9 ± 1.7 mM; (n = 3), respectively; mouse trachea = 112.8 ± 4.2 mM (n = 13); and monkey bronchus = 112.3 ± 10.9 mM (n = 3). Third, Cl− measurements were made in small (1–2 mm) diameter airways of the rabbit (108.3 ± 7.1 mM, n = 5) and monkey (128.5 ± 6.8 mM, n = 3). The measured [Cl−], in excess of 100 mM throughout all airway regions tested in multiple species, is consistent with the isotonic volume hypothesis to describe ASL physiology. PMID:11773234

  11. Uncertainties in Surface Layer Modeling

    NASA Astrophysics Data System (ADS)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  12. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  13. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    PubMed

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  14. Comparative study of the surface layer density of liquid surfaces

    NASA Astrophysics Data System (ADS)

    Chacón, E.; Fernández, E. M.; Duque, D.; Delgado-Buscalioni, R.; Tarazona, P.

    2009-11-01

    Capillary wave fluctuations blur the inherent structure of liquid surfaces in computer simulations. The intrinsic sampling method subtracts capillary wave fluctuations and yields the intrinsic surface structure, leading to a generic picture of the liquid surface. The most relevant magnitude of the method is the surface layer density ns that may be consistently determined from different properties: the layering structure of the intrinsic density profiles, the turnover rate for surface layer particles, and the hydrodynamic damping rate of capillary waves. The good agreement among these procedures provides evidence for the physical consistency of the surface layering hypothesis, as an inherent physical property of the liquid surfaces. The dependence of the surface compactness, roughness, and exchange rate with temperature is analyzed for several molecular interaction models.

  15. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    PubMed

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  16. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  17. Surface layering effect of diluted Intralipid

    NASA Astrophysics Data System (ADS)

    Foschum, F.; Bodenschatz, N.; Krauter, P.; Nothelfer, S.; Liemert, A.; Simon, E.; Kröner, S.; Kienle, A.

    2015-07-01

    In this study the formation of a surface layer on top of an Intralipid dilution was studied. By use of spatial frequency reflectance and spatially resolved reflectance the surface layer could be characterized. The influence on the determination of the optical properties assuming a semi-infinite medium in the theory was investigated. By use of an angularly resolved reflectance device the formation even on a horizontally orientated glass slide could be shown.

  18. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea.

    PubMed

    Kawai, M; Kirkness, J P; Yamamura, S; Imaizumi, K; Yoshimine, H; Oi, K; Ayuse, T

    2013-10-01

    Surface tension may have important role for maintaining upper airway patency in patients with obstructive sleep apnoea. It has been demonstrated that elevated surface tension increases the pharyngeal pressures required to reopen the upper airway following collapse. The aim of the study was to evaluate the associations between the concentrations of endogenous surfactants in saliva with indices of upper airway patency in obstructive sleep apnoea. We studied 20 male patients with obstructive sleep apnoea (age: 60·3 ± 10·3 years; BMI: 25·9 ± 4·6 kg m(-2); AHI: 41·5 ± 18·6 events h(-1)). We obtained 100-μL samples of saliva prior to overnight polysomnographic sleep study. The surface tension was determined using the pull-off force technique. The concentration of phosphatidylcholine (PC) was evaluated by liquid chromatography-mass spectrometry (LC-MS/MS). Regression analysis between apnoea, hypopnoea and apnoea/hypopnoea indices and the ratio of hypopnoea time/total disordered breathing time (HT/DBT) with surface tension and PC were performed. P < 0·05 was considered significant. The mean saliva surface tension was 48·8 ± 8·0 mN m(-1) and PC concentration was 15·7 ± 11·1 nM. The surface tension was negatively correlated with the PC concentration (r = -0·48, P = 0·03). There was a significant positive correlation between surface tension with hypopnoea index (r = 0·50, P = 0·03) and HT/DBT (r = 0·6, P = 0·006), but not apnoea or apnoea/hypopnoea index (P > 0·11). Similarly, PC concentration negatively correlated with hypopnoea index (r = -0·45, P = 0·04) and HT/DBT (r = -0·6, P = 0·004), but not with apnoea index or AHI (P > 0·08). An increase in salivary PC concentration may increase upper airway patency in obstructive sleep apnoea through a reduction in surface tension.

  19. Surface layering properties of Intralipid phantoms.

    PubMed

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-07

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  20. Surface layering properties of Intralipid phantoms

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-01

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  1. Surface Chemistry in Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    2007-11-02

    example, where a thin film of a material is formed an atomic layer at a time. That is, surface limited reactions are used to deposit individual atomic...The present studies were designed to investigate these surface limited reactions. To determine what the structures of the deposits were, and how that structure influenced subsequent deposition .

  2. Desiccation and hypertonicity of the airway surface fluid and thermally induced asthma.

    PubMed

    Kotaru, Chakradhar; Hejal, Rana B; Finigan, J H; Coreno, Albert J; Skowronski, Mary E; Brianas, Lori; McFadden, E R

    2003-01-01

    To determine whether drying and hypertonicity of the airway surface fluid (ASF) are involved in thermally induced asthma, nine subjects performed isocapnic hyperventilation (HV) (minute ventilation 62.2 +/- 8.3 l/min) of frigid air (-8.9 +/- 3.3 degrees C) while periciliary fluid was collected endoscopically from the trachea. Osmolality was measured by freezing-point depression. The baseline 1-s forced expiratory volume was 73 +/- 4% of predicted and fell 26.4% 10 min postchallenge (P > 0.0001). The volume of ASF collected was 11.0 +/- 2.2 microl at rest and remained constant during and after HV as the airways narrowed (HV 10.6 +/- 1.9, recovery 6.5 +/- 1.7 microl; P = 0.18). The osmolality also remained stable throughout (rest 336 +/- 16, HV 339 +/- 16, and recovery 352 +/- 19 mosmol/kgH(2)O, P = 0.76). These data demonstrate that airway desiccation and hypertonicity of the ASF do not develop during hyperpnea in asthma; therefore, other mechanisms must cause exercise- and hyperventilation-induced airflow limitation.

  3. Longitudinal vortices in concave surface boundary layer

    NASA Astrophysics Data System (ADS)

    Crane, R. I.,; Winoto, S. H.

    1980-01-01

    Local measurements of mean and fluctuating velocity by laser anemometer were made inside the developing concave surface boundary layer in a free surface water channel at Reynolds numbers up to 16000. Concave surface radius was 3.5 times channel width and the ratio of spanwise mean boundary layer thickness to surface radius ranged between 0.03 and 0.11. Systems of longtitudinal vortices developed without artificial triggering. Vortex wavelength varied across the span by as much as a factor of 2, but mean wavelength was typically 1.3 times the boundary layer thickness and did not vary significantly in the flow direction. Continuous vortex growth at Reynolds number = 9800 contrasted with apparent breakup of the vortices at Reynolds number = 16000.

  4. Surface layer effects on waste glass corrosion

    SciTech Connect

    Feng, X.

    1993-12-31

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties.

  5. Non-Genomic Estrogen Regulation of Ion Transport and Airway Surface Liquid Dynamics in Cystic Fibrosis Bronchial Epithelium

    PubMed Central

    Saint-Criq, Vinciane; Kim, Sung Hoon; Katzenellenbogen, John A.; Harvey, Brian J.

    2013-01-01

    Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells. PMID:24223826

  6. Lipoxin A4 Stimulates Calcium-Activated Chloride Currents and Increases Airway Surface Liquid Height in Normal and Cystic Fibrosis Airway Epithelia

    PubMed Central

    Al-Alawi, Mazen; Costello, Richard W.; McNally, Paul; Chiron, Raphaël; Harvey, Brian J.; Urbach, Valérie

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl− secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA4 is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA4 are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA4 produced a rapid and transient increase in intracellular Ca2+. We have investigated, the effect of LXA4 on Cl− secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA4 stimulated a rapid intracellular Ca2+ increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA4 stimulated whole-cell Cl− currents which were inhibited by NPPB (calcium-activated Cl− channel inhibitor), BAPTA-AM (chelator of intracellular Ca2+) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA4 increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA4 effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl− secretion. The LXA4 stimulation of intracellular Ca2+, whole-cell Cl− currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA4 in the stimulation of intracellular Ca2+ signalling leading to Ca2+-activated Cl− secretion and enhanced ASL height in non-CF and CF bronchial epithelia. PMID:22662206

  7. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    PubMed

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF.

  8. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  9. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  10. Microthermal Instrument for Measuring Surface Layer Seeing

    NASA Astrophysics Data System (ADS)

    Li, Xue-Bao; Zheng, Yan-Fang; Deng, Lin Hua; Xu, Guang

    2012-02-01

    Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

  11. Dynamic air layer on textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  12. Influence of breathing route on upper airway lining liquid surface tension in humans

    PubMed Central

    Verma, Manisha; Seto-Poon, Margaret; Wheatley, John R; Amis, Terence C; Kirkness, Jason P

    2006-01-01

    We have recently demonstrated that the severity of sleep-disordered breathing in obstructive sleep apnoea hypopnoea syndrome (OSAHS) can be reduced by lowering the surface tension (γ) of the upper airway lining liquid (UAL). Morning xerostomia (related to oral breathing during sleep) is reported by most OSAHS patients. In the present study we examine relationships between breathing route, oral mucosal ‘wetness’ and the γ of UAL. We studied eight healthy subjects (age, 25 ± 5 years [mean ± s.d.]; body-mass index, 23 ± 2 kg m−2) during a 120 min challenge of both nasal-only breathing (mouth taped) and oral-only breathing (nose clip), each on a separate day (randomized). Both oral mucosal ‘wetness’ (5 s contact gravimetric absorbent paper strip method) and the γ (‘pull-off’ force technique) of 0.2 μl samples of UAL obtained from the posterior pharyngeal wall were measured at 15 min intervals (mouth tape removed and replaced as required). Upper airway mucosal ‘wetness’ increased during 120 min of nasal breathing from 4.0 ± 0.4 (mean ± s.e.m.) to 5.3 ± 0.3 μl (5 s)−1 but decreased from 4.5 ± 0.4 to 0.1 ± 0.2 μl (5 s)−1 with oral breathing (both P < 0.001, repeated-measures ANOVA, Tukey's multiple comparison test, post hoc test). Concurrently, the γ of UAL decreased from 59.3 ± 2.2 to 51.8 ± 0.98 mN m−1 with nasal breathing but increased from 64.4 ± 2.7 to 77.4 ± 1.1 mN m−1 with oral breathing (P < 0.001). For the group and all conditions studied, γ of UAL values strongly correlated with upper airway mucosal ‘wetness’ (correlation coefficient, r2=−0.34, P < 0.001; linear regression). We conclude that oral breathing increases and nasal breathing decreases the γ of UAL in healthy subjects during wakefulness. We speculate that nasal breathing in OSAHS patients during sleep may promote a low γ of UAL that may contribute to reducing the severity of sleep-disordered breathing. PMID:16690717

  13. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  14. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    PubMed Central

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-01-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks. PMID:28272499

  15. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  16. Models of muco-ciliary transport and tracer dispersion in airway surface liquid

    NASA Astrophysics Data System (ADS)

    Smith, David; Blake, John; Gaffney, Eamonn

    2003-11-01

    The airways of the lungs are protected by a thin layer of mucus ( 5-15 microns) which traps dust and other pathogens. The mucus plaque is secreted by specialised epithelial cells, then transported axially towards the pharynx by the action of a dense mat of beating cilia. The cilia beat in a watery `periciliary liquid' (PCL). According to previous theoretical analysis, axial transport of PCL is relatively small, consistent with an impermeable epithelium. However, tracer dispersion experiments by Matsui et al. (1998) appear to show large axial transport, consistent with a highly permeable epithelium. The resolution of the question of the amount of absorption of PCL is related to the issue of the pathogensis of cystic fibrosis lung disease. We present the results of a new model of mucociliary transport which combines the best features of several very different previous models. We also present a model of tracer dispersion and show how this can be used to interpret the findings of Matsui et al. and relate them to our theoretical results.

  17. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  18. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis.

  19. Carbides composite surface layers produced by (PTA)

    SciTech Connect

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  20. Automated segmentation of porcine airway wall layers using optical coherence tomography: comparison with manual segmentation and histology

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Lee, Anthony M. D.; Candido, Tara; MacAulay, Calum; Lane, Pierre; Lam, Stephen; Coxson, Harvey O.

    2014-03-01

    The objective was to develop an automated optical coherence tomography (OCT) segmentation method. We evaluated three ex-vivo porcine airway specimens; six non-sequential OCT images were selected from each airway specimen. Histology was also performed for each airway and histology images were co-registered to OCT images for comparison. Manual segmentation of the airway luminal area, mucosa area, submucosa area and the outer airway wall area were performed for histology and OCT images. Automated segmentation of OCT images employed a despecking filter for pre-processing, a hessian-based filter for lumen and outer airway wall area segmentation, and K-means clustering for mucosa and submucosa area segmentation. Bland-Altman analysis indicated that there was very little bias between automated OCT segmentation and histology measurements for the airway lumen area (bias=-6%, 95% CI=-21%-8%), mucosa area, (bias=-4%, 95% CI=-14%-5%), submucosa area (bias=7%, 95% CI=-7%-20%) and outer airway wall area segmentation results (bias=-5%, 95% CI=-14%-5%). We also compared automated and manual OCT segmentation and Bland-Altman analysis indicated that there was negligible bias between luminal area (bias=4%, 95% CI=1%-8%), mucosa area (bias=-3%, 95% CI=-6%-1%), submucosa area (bias=-2%, 95% CI=-10%-6%) and the outer airway wall (bias=-3%, 95% CI=-13%-6%). The automated segmentation method for OCT airway imaging developed here allows for accurate and precise segmentation of the airway wall components, suggesting that translation of this method to in vivo human airway analysis would allow for longitudinal and serial studies.

  1. Acoustic tomography in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Ziemann, A.; Arnold, K.; Raabe, A.

    1999-01-01

    Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique) is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

  2. Surface Layer Turbulence During a Frontal Passage

    SciTech Connect

    Piper, M; Lundquist, J K

    2004-06-15

    Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from the MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation rate

  3. Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO).

    PubMed

    Iwaszko-Simonik, Alicja; Niedzwiedz, Artur; Graczyk, Stanislaw; Slowikowska, Malwina; Pliszczak-Krol, Aleksandra

    2015-03-15

    Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system.

  4. The Lowest Atmosphere: Atmospheric Boundary Layer Including Atmospheric Surface Layer.

    DTIC Science & Technology

    1996-04-01

    troposphere" as a result of frictional forces. A good definition of the atmospheric boundary layer (ABL) (provided to me by the late Dr. Rudy...wind extends light flag. Raises dust and loose paper; small branches are moved. Small trees in leaf begin to sway; crested wavelets form on inland...Calm. Sea like a mirror. Light air Ripples like scales, no foam crest. Light breeze Small wavelets ; crests have glassy appearance, do not break

  5. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  6. COMPUTER SIMULATIONS OF LUNG AIRWAY STRUCTURES USING DATA-DRIVEN SURFACE MODELING TECHNIQUES

    EPA Science Inventory

    ABSTRACT

    Knowledge of human lung morphology is a subject critical to many areas of medicine. The visualization of lung structures naturally lends itself to computer graphics modeling due to the large number of airways involved and the complexities of the branching systems...

  7. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  8. Contact mechanics for layered materials with randomly rough surfaces.

    PubMed

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  9. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  10. Tunable hybrid surface waves supported by a graphene layer

    NASA Astrophysics Data System (ADS)

    Iorsh, I. V.; Shadrivov, I. V.; Belov, P. A.; Kivshar, Yu. S.

    2013-05-01

    We study electromagnetic waves localized near the surface of a semi-infinite dielectric medium covered by a graphene layer in the presence of a strong external magnetic field. We demonstrate that a novel type of hybrid TE-TM polarized surface plasmons can propagate along the graphene layer. We analyze the effect of the Hall conductivity on the polarization properties of these hybrid surface waves and suggest a possibility to tune the graphene plasmons by the external magnetic field.

  11. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    PubMed Central

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  12. Preservation of Archaeal Surface Layer Structure During Mineralization

    NASA Astrophysics Data System (ADS)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  13. Preservation of Archaeal Surface Layer Structure During Mineralization

    PubMed Central

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  14. Ameriflux data used for verification of surface layer parameterizations

    NASA Astrophysics Data System (ADS)

    Tassone, Caterina; Ek, Mike

    2015-04-01

    The atmospheric surface-layer parameterization is an important component in a coupled model, as its output, the surface exchange coefficients for momentum, heat and humidity, are used to determine the fluxes of these quantities between the land-surface and the atmosphere. An accurate prediction of these fluxes is therefore required in order to provide a correct forecast of the surface temperature, humidity and ultimately also the precipitation in a model. At the NOAA/NCEP Environmental Modeling Center, a one-dimensional Surface Layer Simulator (SLS) has been developed for simulating the surface layer and its interface. Two different configurations of the SLS exist, replicating in essence the way in which the surface layer is simulated in the GFS and the NAM, respectively. Input data for the SLS are the basic atmospheric quantities of winds, temperature, humidity and pressure evaluated at a specific height above the ground, surface values of temperature and humidity, and the momentum roughness length z0. The output values of the SLS are the surface exchange coefficients for heat and momentum. The exchange coefficients computed by the SLS are then compared with independent estimates derived from measured surface heat fluxes. The SLS is driven by a set of Ameriflux data acquired at 22 stations over a period of several years. This provides a large number of different vegetation characteristics and helps ensure statistical significance. Even though there are differences in the respective surface layer formulations between the GFS and the NAM, they are both based on similarity theory, and therefore lower boundary conditions, i.e. roughness lengths for momentum and heat, and profile functions are among the main components of the surface layer that need to be evaluated. The SLS is a very powerful tool for this type of evaluation. We present the results of the Ameriflux comparison and discuss the implications of our results for the surface layer parameterizations of the NAM

  15. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Libing; Fu, Li; Wang, Hong-Fei; Yang, Bin

    2017-03-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass.

  16. Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy

    PubMed Central

    Zhang, Libing; Fu, Li; Wang, Hong-fei; Yang, Bin

    2017-01-01

    Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass. PMID:28290542

  17. Acoustic Tomography of the Atmospheric Surface Layer

    DTIC Science & Technology

    2014-11-28

    resolution of an ultrasonic anemometer , it was suggested that one consider it is as a small acoustic tomography array and apply appropriate inverse...Fairall, D. Keith Wilson, Ludovic Bariteau. Sonic Anemometer as a Small Acoustic Tomography Array, Boundary-Layer Meteorology, (08 2013): 0. doi...Received Paper 3.00 S. N. Vecherin, V. E. Ostashev, D. K. Wilson, A. Grached. Utilization of an acoustic tomography array as a large sonic anemometer

  18. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  19. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  20. Bioactive macroporous titanium surface layer on titanium substrate.

    PubMed

    Kim, H M; Kokubo, T; Fujibayashi, S; Nishiguchi, S; Nakamura, T

    2000-12-05

    A macroporous titanium surface layer is often formed on titanium and titanium alloy implants for morphological fixation of the implants to bone via bony ingrowth into the porous structure. The surface of titanium metal was recently shown to become highly bioactive by being subjected to 5.0 M-NaOH treatment at 60 degrees C for 24 h and subsequent heat treatment at 600 degrees C for 1 h. In the present study, the NaOH and heat treatments were applied to a macroporous titanium surface layer formed on titanium substrate by a plasma spraying method. The NaOH and heat treatments produced an uniform amorphous sodium titanate layer on the surface of the porous titanium. The sodium titanate induced a bonelike apatite formation in simulated body fluid at an early soaking period, whereby the apatite layer grew uniformly along the surface and cross-sectional macrotextures of the porous titanium. This indicates that the NaOH and heat treatments lead to a bioactive macroporous titanium surface layer on titanium substrate. Such a bioactive macroporous layer on an implant is expected not only to enhance bony ingrowth into the porous structure, but also to provide a chemical integration with bone via apatite formation on its surface in the body.

  1. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  2. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  3. Amplification of nonlinear surface waves in an inhomogeneous transition layer

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Gradov, O. M.

    1991-12-01

    A plasma with a boundary transition layer of variable depth in the presence of a powerful electromagnetic field is considered. It is shown that a displacement of the boundary will grow, and will propagate as a nonlinear surface wave in the direction in which the depth of the transition layer decreases.

  4. Turbulent Boundary Layer Flow over Superhydrophobic Surfaces

    DTIC Science & Technology

    2013-05-10

    determined by the user via variable -frequency drive units that control the pumps . The water tunnel is able to produce friction Reynolds numbers up to 4000 and...gradient flow. The test surface is affixed to the bottom wall. Water from the holding tank is pumped into the tunnel at a specific speed ...as a plane moving through the air, a car driving down the road (through air), and a ship traveling through water. Based on an object’s geometry and

  5. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  6. Boundary layer flow visualisation patterns on a riblet surface

    NASA Astrophysics Data System (ADS)

    Clark, D. G.

    Boundary layer flow visualization methods, developed at Queen Mary and Westfield College, have been applied to a riblet surface. The results reveal cellular crossflows developing in the grooves between the riblets. These local flor regimes appear to have little direct effect on the flow in the wall layers immediately adjacent to them. Qualitatively, the behavior of the wall layers appears to be that which would be expected if a virtual surface existed at a level slightly above the riblet tops, but a tendency for the origin of longitudinal eddy pairs to become anchored to the top of a riblet is noted.

  7. Turbulent swirling layer with free surface

    NASA Astrophysics Data System (ADS)

    Bardet, Philippe; Peterson, Per; Savas, Omer

    2007-11-01

    A turbulent annular liquid wall jet, or vortex tube, generated by helical injection inside a tube was characterized experimentally. The resulting hollow confined swirling layer is proposed for use in a thick liquid first-wall chamber concept for inertial fusion power plants. The velocity fields were measured with a single camera split-screen stereoscopic particle image velocimetry scheme. The flow was studied at 5 stations between 1.5 and 4.5 ``vortex tube'' diameters downstream of the injection nozzle in a horizontal plane that coincides with the tube axis. Up to 1024 independent realizations were recorded and analyzed for Reynolds numbers ranging from 3,200 to 14,000 at each station. The turbulent structures are non-isotropic and non-homogeneous. Gradients in average velocity and Reynolds stress result in turbulent kinetic energy production. Between 1.5 and 3.5 diameters, the average azimuthal velocity profile alone is non uniform away from the wall. Persistent large vortical structures are observed. The turbulent kinetic energy decreases slowly with distance while the dissipation decreases rapidly. At 4.5 diameters, the wall effect influences strongly the average velocity profiles. The vortical structures disappear and the turbulent kinetic energy increases.

  8. Double Charged Surface Layers in Lead Halide Perovskite Crystals.

    PubMed

    Sarmah, Smritakshi P; Burlakov, Victor M; Yengel, Emre; Murali, Banavoth; Alarousu, Erkki; El-Zohry, Ahmed M; Yang, Chen; Alias, Mohd S; Zhumekenov, Ayan A; Saidaminov, Makhsud I; Cho, Namchul; Wehbe, Nimer; Mitra, Somak; Ajia, Idris; Dey, Sukumar; Mansour, Ahmed E; Abdelsamie, Maged; Amassian, Aram; Roqan, Iman S; Ooi, Boon S; Goriely, Alain; Bakr, Osman M; Mohammed, Omar F

    2017-03-08

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  9. Hyperbolic Spirals as Surface Structures in Thin Layers.

    PubMed

    Weh, Lothar

    2001-03-15

    When thin layers of 4-chloro-3-methylphenol and a copolymer of methyl(methacrylate) and maleic acid dissolved in acetone are dried by solvent evaporation, various surface structures appear. Besides linear surface deformations that can ramify like fractals, spirals of the hyperbolic type have been found. The surface structures are due to crystallization processes and flows caused by surface tension differences. The spirals are surface elevations with grooves on both sides as shown by surface profile measurements by means of a microscope interferometer. The addition of surfactants reduces the structure formation. A large surfactant concentration prevents the structure formation. Copyright 2001 Academic Press.

  10. Modeling cross-hatch surface morphology in growing mismatched layers

    NASA Astrophysics Data System (ADS)

    Andrews, A. M.; Speck, J. S.; Romanov, A. E.; Bobeth, M.; Pompe, W.

    2002-02-01

    We propose and investigate a model for the development of cross-hatch surface morphology in growing mismatched layers. The model incorporates two important elements: (i) strain relaxation due to dislocation glide in the layer (film) interior that is also associated with misfit dislocation formation at the film/substrate interface and (ii) lateral surface transport that eliminates surface steps that originated from dislocation glide. A combination of dislocation-assisted strain relaxation and surface step flow leads to the appearance of surface height undulations during layer growth. A Monte Carlo simulation technique was applied to model dislocation nucleation events in the course of strain relaxation. The simulation was used to model the influence of dislocations on film surface height profiles. The surface height displacement was calculated from the analytic elasticity solutions for edge dislocations near a free surface. The results of the modeling predict that the average amplitude of the surface undulations and their apparent wavelength both increase with increasing film relaxation and film thickness. The developed cross-hatch pattern is characterized by an atomically smooth but mesoscopically (lateral dimensions ˜0.1-10 μm) rough surface morphology. The conclusions of the model are in agreement with atomic force microscopy observations of cross-hatch surface relief in In0.25Ga0.75As/GaAs samples grown well beyond the critical thickness for misfit dislocation formation.

  11. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  12. Certification of hardened surface layers by magnetic and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Mitropol'skaya, S. Yu.

    2013-07-01

    The possibilities of certification of hardened surface layers by measurement of coercive force, eddy current inspection and analysis of the field dependence of differential magnetic permeability μ d ( H) are considered. The advantages of analysis of the pattern of peaks on the μ d ( H) dependence for estimating the state of surface-hardened steels subjected to subsequent force loading are shown.

  13. Multi-layer enhancement to polysilicon surface-micromachining technology

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  14. Surface-stabilized nonferromagnetic ordering of a layered ferromagnetic manganite.

    PubMed

    Nascimento, V B; Freeland, J W; Saniz, R; Moore, R G; Mazur, D; Liu, H; Pan, M H; Rundgren, J; Gray, K E; Rosenberg, R A; Zheng, H; Mitchell, J F; Freeman, A J; Veltruska, K; Plummer, E W

    2009-11-27

    An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state.

  15. Vapor layer evolution during drop impact on a heated surface

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  16. Nonlinear Surface Transport in the Thin Double-Layer Limit

    NASA Astrophysics Data System (ADS)

    Chu, Kevin; Bazant, Martin

    2006-03-01

    At high applied electric fields, ionic transport within the double layer plays a significant role in the overall response of electrokinetic systems. It is well-known that surface transport processes, including surface electromigration, surface diffusion and surface advection, may impact the strength of electrokinetic phenomena by affecting both the zeta-potential and the magnitude of the tangential electric field. Therefore, it is important to include these effects when formulating the effective boundary conditions for the equations that govern electrokinetic flow outside of the double layer. In this talk, we discuss the application of a general formulation of ``surface conservation laws'' for diffuse boundary layers to derive effective boundary conditions that capture the physics of electrokinetic surface transport. Previous analyses (e.g. Deryagin & Dukhin 1969) are only valid for weak applied fields and are based on a linearization of the concentration and potential about a reference solution, but our results are fully nonlinear and hold at large applied fields as long as the double layer is sufficiently thin. We compare our nonlinear surface transport theory with existing linear analogues and apply it to the canonical problem of induced-charge electro-osmosis around a metal sphere or cylinder in a strong DC field.

  17. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  18. Atomic and molecular layer deposition for surface modification

    SciTech Connect

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  19. Multi-layer surface profiling using gated wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen

    2015-01-01

    Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.

  20. Patterning and pattern selection in a surface layer: Feedback between point defects population and surface layer temperature variations

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.; Lysenko, Irina O.

    2016-12-01

    We study dynamics of pattern formation in a prototype system of nonequilibrium point defects in thin foils under sustained nonequilibrium conditions. A reaction-diffusion model describing spatio-temporal behaviour of both vacancy population and local temperature of a surface layer is used. It is shown that pattern selection processes caused by coupling between defect population and local temperature of a surface are realized. Associated oscillatory dynamics of main statistical moments of both vacancy concentration field and surface layer temperature is analysed in detail. It is found that during the system evolution spatial distribution of local temperature variations of the surface layer relates to vacancy population distribution. It is shown that the mean size of vacancy clusters (from 30 nm up to 300 nm) evolves in oscillatory manner due to pattern selection processes. Morphology of defect complexes can be controlled by defects generation rate.

  1. Synthesis and characterization of macromolecular layers grafted to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Burtovyy, Oleksandr

    The composition and behavior of surfaces and interfaces play a pivotal role in dictating the overall efficiency of the majority of polymeric materials and devices. Surface properties of the materials can be altered using surface modification techniques. It is necessary to highlight that successful methods of surface modification should affect only the upper layer of the polymer material without changing bulk properties. The processes must introduce new functionalities to the surface, optimize surface roughness, lubrication, hydrophobicity, hydrophilicity, adhesion, conductivity, and/or biocompatibility. Research presented in this dissertation is dedicated to the synthesis, characterization, and application of thin macromolecular layers anchored to polymer substrates. Specifically, attachment of functional polymers via a "grafting to" approach has been extensively studied using PET and nylon model substrates. First, poly(glycidyl methacrylate) was used to introduce permanent functionalities to the model substrates by anchoring it to model films. Then, three different functional polymers were grafted on top of the previous layer. As one part of this study, the temperature and time dependence of grafting functional layers were studied. The surface coverage by hydrophobic polymer was determined from experimental data and predicted by a model. In general, the model has a high degree of predictive capability. Next, surface modification of polymeric fibers and membranes is presented as an important application of the polymer thin layers targeted in the study. Specifically, the procedures developed for surface modification of model substrates was employed for modification of PET, nylon, and cotton fabrics as well as PET track-etched membranes. Since epoxy groups are highly reactive in various chemical reactions, the approach becomes virtually universal, allowing both various surfaces and end-functionalized macromolecules to be used in the grafted layer synthesis. PET

  2. Surface modes in sheared boundary layers over impedance linings

    NASA Astrophysics Data System (ADS)

    Brambley, E. J.

    2013-08-01

    Surface modes, being duct modes localized close to the duct wall, are analysed within a lined cylindrical duct with uniform flow apart from a thin boundary layer. As well as full numerical solutions of the Pridmore-Brown equation, simplified mathematical models are given where the duct lining and boundary layer are lumped together and modelled using a single boundary condition (a modification of the Myers boundary condition previously proposed by the author), from which a surface mode dispersion relation is derived. For a given frequency, up to six surface modes are shown to exist, rather than the maximum of four for uniform slipping flow. Not only is the different number and behaviour of surface modes important for frequency-domain mode-matching techniques, which depend on having found all relevant modes during matching, but the thin boundary layer is also shown to lead to different convective and absolute stability than for uniform slipping flow. Numerical examples are given comparing the predictions of the surface mode dispersion relation to full solutions of the Pridmore-Brown equation, and the accuracy with which surface modes are predicted is shown to be significantly increased compared with the uniform slipping flow assumption. The importance of not only the boundary layer thickness but also its profile (tanh or linear) is demonstrated. A Briggs-Bers stability analysis is also performed under the assumption of a mass-spring-damper or Helmholtz resonator impedance model.

  3. Surface stress of graphene layers supported on soft substrate

    PubMed Central

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-01-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates. PMID:27166087

  4. Passive hypervelocity boundary layer control using an ultrasonically absorptive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at Mach 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  5. Passive hypervelocity boundary layer control using an acoustically absortive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at M = 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  6. Facing extremes: archaeal surface-layer (glyco)proteins.

    PubMed

    Eichler, Jerry

    2003-12-01

    Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.

  7. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  8. Wetting layer of copper on the tantalum (001) surface

    NASA Astrophysics Data System (ADS)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  9. Surface reactions on thin layers of silane coupling agents

    SciTech Connect

    Kurth, D.G.; Bein, T. )

    1993-11-01

    The reactivity of immobilized functional groups in thin layers of (3-aminopropyl)triethoxysilane (APS), (3-mercaptopropyl)trimethoxysilane, (3-bromopropyl)trimethoxysilane, and (8-bromooctyl)trimethoxysilane on oxidized aluminum substrates was studied with reflection-adsorption infrared spectroscopy (RAIR), optical ellipsometry and contact-angle measurements. Mass changes on the surface associated with the surface-confined reactions were measured with the quartz crystal microbalance (QCM). Single layers of (3-aminopropyl)triethoxysilane on oxidized aluminum react with chlorodimethylsilane to give [(-O)[sub 3]Si(CH[sub 2])[sub 3]NH[sub 2][sup +]SiMe[sub 2]H]Cl[sup [minus

  10. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    SciTech Connect

    Purswani, J. M.; Gall, D.

    2008-08-15

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at T{sub s}=100 deg. C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82{+-}0.03 and a mound radius r{sub c} that increases from 31{+-}8 to 39{+-}6 nm for increasing layer thickness t=24-120 nm. In situ annealing at 200 and 300 deg. C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness {sigma}. This effect is most pronounced for t=24 nm, for which r{sub c} increases from 31{+-}8 to 70{+-}20 nm and {sigma} decreases from 1.3{+-}0.1 to 0.74{+-}0.08 nm, resulting in a decrease in the average surface slope from {chi}=7 deg. to 2 deg. and an increase in the average terrace width w{sub T} by more than a factor of 4. In contrast, w{sub T} increases by only 20% for t=120 nm. This remarkable difference between 'thin' and 'thick' layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t=24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t=120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  11. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  12. Surface modification of layered zirconium phosphate with PNIPAM.

    PubMed

    Wang, Xuezhen; Zhao, Di; Medina, Ilse B Nava; Diaz, Agustin; Wang, Huiliang; Clearfield, Abraham; Mannan, M Sam; Cheng, Zhengdong

    2016-04-04

    A new method was reported to modify layered zirconium phosphate (ZrP) with thermoresponsive polymer PNIPAM (poly N-isopropylacrylamide). PNIPAM was proved to be covalently grafted onto ZrP. (60)Co γ-rays irradiation produced peroxide groups on the surface which, upon heating, initiated free radical polymerization and subsequent attachment of PNIPAM.

  13. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  14. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  15. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  16. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

  17. Tuning surface plasmons in graphene ribbons with liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Viktor Yu.; Bunning, Timothy J.; Evans, Dean R.

    2016-09-01

    Surface plasmons in graphene possess stronger mode confinement and lower propagation loss. One way to excite the surface plasmons is placing a periodic array of graphene nano-ribbons on top of a dielectric substrate. However once the system is fabricated it is not possible to change its optical properties. Liquid crystals (LC) are a uniaxial medium with an optical axis easily controlled by external stimuli. We suggest tuning the surface plasmons in an array of graphene ribbons by placing a LC slab on top of the ribbons. A voltage applied to the LC layer shifts the graphene ribbons plasmonic notch and changes its depth.

  18. Effects of second hand smoke on airway secretion and mucociliary clearance

    PubMed Central

    Liu, Yanyan; Di, Y. Peter

    2012-01-01

    The airway acts as the first defense against inhaled pathogens and particulate matter from the environment. One major way for the airway to clear inhaled foreign objects is through mucociliary clearance (MCC), an important component of the respiratory innate immune defense against lung disease. MCC is characterized by the upward movement of mucus by ciliary motion that requires a balance between the volume and composition of the mucus, adequate periciliary liquid (PCL) volume, and normal ciliary beat frequency (CBF). Airway surface fluid (ASL) is a thin layer liquid that consists of the highly viscous mucus upper “gel” layer, and the watery lubricating lower “sol” layer. Mucus production, secretion and clearance are considered to play a critical role in maintenance of airway health because it maintains hydration in the airway and traps particulates, bacteria, and viruses. Different types of epithelial cells, including secretory cells, and ciliated cells, contribute to the MCC function. Cigarette smoke (CS) contains chemicals and particulates that significantly affect airway secretion. Active and passive CS-induced chronic obstructive pulmonary disease (COPD) is frequently associated with hyperplasia of goblet cells and submucosal glands (SMGs), thus increasing the secretory capacity of the airways that impairs MCC. PMID:22973232

  19. All-nanoparticle layer-by-layer surface modification of micro- and ultrafiltration membranes.

    PubMed

    Escobar-Ferrand, Luis; Li, Diya; Lee, Daeyeon; Durning, Christopher J

    2014-05-20

    Layer-by-layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for surface modification of polymeric micro- and ultrafiltration (MF/UF) membranes to produce novel thin film composite (TFC) membranes intended for nanofiltration (NF) and reverse osmosis (RO) applications. A wide variety of porous substrate membranes with different surface characteristics are successfully employed. This report gives detailed results for polycarbonate track etched (PCTE), polyethersulfone (PES), and sulfonated PES (SPEES) MF/UF substrates. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those in prior works for solid substrates (e.g., Lee et al.). Appropriate selection of the pH for anionic and cationic particle deposition enables construction of nanoparticle-only layers 100-1200 nm in thickness atop the original porous membrane substrates. The surface layer thickness appears to vary linearly with the number of bilayers deposited, i.e., with the number of anionic/cationic deposition cycles. The deposition process is optimized to eliminate drying-induced cracking and improve mechanical durability via thickness control and postdeposition hydrothermal treatment. "Dead-end" permeation tests using dextran standards reveal the hydraulic characteristics and separations capability for the PCTE-based TFC membranes. The results show that nanoparticle-based LbL surface modification of MF and UF rated media can produce TFC membranes with NF capabilities.

  20. The Role of Surface Layer Processes in Solid Propellant Combustion.

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Satyanarayanan R.

    The qualitative multidimensional theory of composite solid propellant combustion based on the sandwich burning methodology was applied to certain specific problems: (a) burning rate enhancement by ferric oxide, (b) plateau burning behavior caused by binder melt flow effects, and (c) characterization of the combustion of new energetic oxidizers--ADN and HNIW. Exothermic reactions at the interfacial contact lines between AP particles and the binder in the surface layer of the burning propellant assume significance in the presence of ferric oxide, and control the burning rate. Binder melt flow covers adjacent AP particle surfaces increasingly at higher pressures, and disperses the O/F leading edge flames attached to coarse particles. It also causes fine AP/binder matrix areas on the surface not to support a steady premixed flame at intermediate pressures, resulting in an overall decrease in the burning rate with increasing pressure, which implies plateau or mesa effects. ADN self -deflagration rate is significantly higher than that of AP, and controls the sandwich burning rate to a great extent. The O/F flame of ADN and binder still behaves as rate limiting, although strongly supported by ADN self-deflagration. ADN melts and vaporizes substantially before the binder, allowing for the possibility of complex physical processes in the surface layer. The strong exothermic decomposition of HNIW at moderate temperatures causes the oxidizer particles in the surface layer to be the sites of burning rate control. The problems addressed in this study combinedly point to the significance of crucial surface layer processes under the situations of interest, and signal a need to characterize such processes directly and in greater detail.

  1. Experimental study of shear layer instability below a free surface

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-11-01

    Relaxation of a laminar boundary layer at a free surface is an inviscidly unstable process and can lead to millimeter-scale surface waves, influencing interfacial processes. Due to the small time- and length-scales involved, previous experimental studies have been limited to visual observations and point-wise measurements of the surface profile to determine instability onset and frequency. However, effects of viscosity, surface tension, and non-linearity of the wave profile have not been systematically studied. In fact, no data have been reported on the velocity fields associated with this instability. In the present study, planar laser induced fluorescence and particle image velocimetry provide surface profiles coupled with liquid phase velocity fields for this instability in a time resolved manner. Wave steepness (ak, with a the amplitude and k the wave number) and Reynolds and Weber numbers based on momentum thickness range from 0 to 1.2, 143 to 177, and 4.79 to 6.61, respectively. Large datasets are analyzed to gain statistical information on the surface behavior. Discrete vortices are resolved, showing that the shear layer becomes unstable and rolls up above a Reynolds number of 140. The detection onset and steepness of the subsequent surface deformation by the vortices depend upon the Weber number. Non-linear behavior such as vortex motion and wave profile asymmetry are observed at steepness larger than 0.5.

  2. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  3. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected.

  4. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases.

    PubMed

    Hirsh, Andrew J; Stonebraker, Jaclyn R; van Heusden, Catja A; Lazarowski, Eduardo R; Boucher, Richard C; Picher, Maryse

    2007-09-11

    Adenosine is a multifaceted signaling molecule mediating key aspects of innate and immune lung defenses. However, abnormally high airway adenosine levels exacerbate inflammatory lung diseases. This study identifies the mechanisms regulating adenosine elimination from the apical surface of human airway epithelia. Experiments conducted on polarized primary cultures of nasal and bronchial epithelial cells showed that extracellular adenosine is eliminated by surface metabolism and cellular uptake. The conversion of adenosine to inosine was completely inhibited by the adenosine deaminase 1 (ADA1) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA). The reaction exhibited Km and Vmax values of 24 microM and 0.14 nmol x min(-1) x cm(-2). ADA1 (not ADA2) mRNA was detected in human airway epithelia. The adenosine/mannitol permeability coefficient ratio (18/1) indicated a minor contribution of paracellular absorption. Adenosine uptake was Na+-dependent and was inhibited by the concentrative nucleoside transporter (CNT) blocker phloridzin but not by the equilibrative nucleoside transporter (ENT) blocker dipyridamole. Apparent Km and Vmax values were 17 microM and 7.2 nmol x min(-1) x cm(-2), and transport selectivity was adenosine = inosine = uridine > guanosine = cytidine > thymidine. CNT3 mRNA was detected throughout the airways, while CNT2 was restricted to nasal epithelia. Inhibition of adenosine elimination by EHNA or phloridzin raised apical adenosine levels by >3-fold and stimulated IL-13 and MCP-1 secretion by 6-fold. These responses were reproduced by the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA) and blocked by the adenosine receptor antagonist, 8-(p-sulfophenyl) theophylline (8-SPT). This study shows that adenosine elimination on human airway epithelia is mediated by ADA1, CNT2, and CNT3, which constitute important regulators of adenosine-mediated inflammation.

  5. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion

    PubMed Central

    Garnett, James Peter; Kalsi, Kameljit K.; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L.

    2016-01-01

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3− transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3− removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3−, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD. PMID:27897253

  6. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H(+) secretion.

    PubMed

    Garnett, James Peter; Kalsi, Kameljit K; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L

    2016-11-29

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3(-) transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3(-) removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H(+) co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H(+) secretion by secreting HCO3(-), a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.

  7. Surface properties of solids and surface acoustic waves: Application to chemical sensors and layer characterization

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.

    1995-09-01

    A general phenomenological approach is given for the description of mechanical surface properties of solids and their influence on surface acoustic wave propogation. Surface properties under consideration may be changes of the stress distribution in subsurface atomic layers, the presence of adsorbed gas molecules, surface degradation as a result of impacts from an aggressive environment, damage due to mechanical manufacturing or polishing, deposition of thin films or liquid layers, surface corrugations, etc. If the characteristic thickness of the affected layers is much less than the wavelengths of the propagating surface waves, then the effects of all these irregularities can be described by means of non-classical boundary conditions incorporating the integral surface parameters such as surface tension, surface moduli of elasticity and surface mass density. The effect of surface properties on the propagation of Rayleigh surface waves is analysed in comparison with the results of traditional approaches, in particular with Auld's energy perturbation method. One of the important implications of the above-mentioned boudnary conditions is that they are adequate for the description of the effect of rarely distributed adsorbed atoms or molecules. This allows, in particular, to obtain a rigorous theoretical description of chemical sensors using surface acoustic waves and to derive analytical expressions for their sensitivity.

  8. The measurement of boundary layers on a compressor blade in cascade. II - Suction surface boundary layers

    NASA Technical Reports Server (NTRS)

    Deutsch, Steven; Zierke, William C.

    1987-01-01

    A one-component laser Doppler velocimeter (LDV) has been used to measure the two-dimensional, periodic flow field about a double circular arc, compressor blade in cascade. Eleven boundary layer profiles were taken on both the pressure and suction surfaces of the blade, and two were taken in the near wake. In this part of the study, the LDV system is described and the suction surface flow field is documented. The suction surface profiles appear to separate both at the leading edge and again somewhat beyond midchord; the leading edge separation apparently reattaches by 2.6 percent chord.

  9. Layer-by-layer rose petal mimic surface with oleophilicity and underwater oleophobicity.

    PubMed

    Huang, Hsiu-chin; Zacharia, Nicole S

    2015-01-20

    Surfaces designed with specific wetting properties are still a key challenge in materials science. We present here a facile preparation of a surface assembled by the layer-by-layer technique, using a colloidal dispersion of ionomer particles and linear polyethylene imine. The colloidal ethylene-co-methacrylic acid (EMAA) particles are on the order of half a micron in size with surface features from 40 to 100 nm in width. The resultant surface has roughness on two length scales, one on the micron scale due to the packing of particles and one on the nanoscale due to these surface features on the EMAA particles. This hierarchical structure results in a hydrophobic surface with good water pinning properties (∼550 μN). We show that there is a balance between maximizing contact angle and water pinning force. Furthermore, this surface is oleophilic with regard to many organic solvents, also demonstrating underwater oleophobicity, and given the difference in wetting between aqueous and organic phases, this material may be a candidate material for oil/water separations.

  10. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    PubMed Central

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M.; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R.; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  11. Lag model for turbulent boundary layers over rough bleed surfaces

    NASA Astrophysics Data System (ADS)

    Lee, J.; Sloan, M. L.; Paynter, G. C.

    1994-07-01

    Boundary-layer mass removal (bleed) through spanwise bands of holes on a surface is used to prevent or control separation and to stabilize the normal shock in supersonic inlets. The addition of a transport equation lag relationship for eddy viscosity to the rough wall algebraic turbulence model of Cebeci and Chang was found to improve agreement between predicted and measured mean velocity distributions downstream of a bleed band. The model was demonstrated for a range of bleed configurations, bleed rates, and local freestream Mach numbers. In addition, the model was applied to the boundary-layer development over acoustic lining materials for the inlets and nozzles of commercial aircraft. The model was found to yield accurate results for integral boundary-layer properties unless there was a strong adverse pressure gradient.

  12. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  13. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  14. Arctic Cloud-driven Mixed Layers and Surface Coupling State

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Solomon, A.; de Boer, G.

    2013-12-01

    Arctic low-level clouds interact with the atmosphere and underlying surface via many inter-related processes. The balance of cloud radiative warming and cooling effects imparts a strong control on the net surface energy budget. Cloud-driven atmospheric circulations can impact surface turbulent heat fluxes and influence the vertical mixing of atmospheric state parameters and aerosols. Large-scale advection of heat and moisture provides the background context within which these local interactions unfold. Importantly, these radiative, dynamical, and advective processes also contribute to a complex web of self-sustaining cloud processes that can promote cloud maintenance over long periods of time. We examine many of these processes, with a specific focus on the dynamical linkages between Arctic clouds and the surface that influence low-level atmospheric structure and mixing. Comprehensive, ground-based observations from meteorological towers, remote-sensors, and radiosondes are used to simultaneously characterize surface fluxes, atmospheric structure, cloud properties, in-cloud motions, and the depth of the cloud-driven mixed layer in multiple Arctic environments. Relationships among these parameters are explored to elucidate the properties of the system that determine the degree of vertical atmospheric mixing and the coupling state between cloud and surface. The influence of temperature and moisture inversions on this system is also explored. Transitions in the coupling state are utilized to illustrate the relative roles of different processes. Cases from a coastal Arctic site at Barrow, Alaska and a station embedded in the Arctic sea-ice pack are used to contrast conditional influences related to season and surface type. It is found that over sea-ice, where surface turbulent fluxes are weak, the coupling of cloud-level processes to the surface layer is largely due to proximity of the cloud-driven mixed layer to the surface, which appears to be primarily influenced by

  15. Leaching of cement: Study of the surface layer

    SciTech Connect

    Faucon, P.; Le Bescop, P.; Adenot, F.; Bonville, P.; Jacquinot, J.F.; Pineau, F.; Felix, B.

    1996-11-01

    Short-lived, and possibly long-lived, radioactive waste is, or will be, stored in concrete containers (casks, disposal structures, etc.). To predict the safety of these containers, the composition and structure of the material when degraded must be known. Leaching of cement pastes shows that the properties of the surface layer are similar whether or not the cement paste contains slag. Substantial amounts of calcium, and smaller amounts of silicon, are leached out. Iron and magnesium are not released, but their content in the surface layer increases, with respect to an internal reference. Magnesium precipitates in the form of hydrotalcite, whereas the calcium of calcium silicate hydrates (CSH) is replaced by iron and dissolves out. Hydrogarnets undergo little, or no, leaching.

  16. Magnetic Or Optical Surface Layer Would Indicate Strain

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1995-01-01

    In proposed method of obtaining information on strain at surface of material specimen, magnetic coat (like that on magnetic tape) or optical coat (like that on compact disk) applied to all or part of surface monitored. Coating layer and associated measuring equipment, taken together, constitute system called "material strain monitor" (MSM). MSM important in research in materials and mechanics; in particular, expected to compete strongly with systems based on image-analysis and laser techniques now being developed to obtain information on strain fields.

  17. Nonatopic asthma: in vivo airway hyperreactivity adoptively transferred to naive mice by THY-1(+) and B220(+) antigen-specific cells that lack surface expression of CD3.

    PubMed Central

    Geba, G P; Wegner, C D; Wolyniec, W W; Li, Y; Askenase, P W

    1997-01-01

    To investigate the cellular immune events contributing to airway hyperreactivity (AHR), we studied an in vivo mouse model induced by the hapten picryl (trinitrophenyl) chloride (PCl). Mice were immunized by cutaneous contact sensitization with PCl and airway challenged subsequently with picryl sulfonic acid (PSA) antigen (Ag). Increased airway resistance was produced late (24 h) after Ag challenge, disappeared by 48 h, and was associated with no decrease in diffusion capacity. AHR could be produced in PCl immune/ PSA challenged mice on day 7 or even, with challenge, as early as 1 d after contact sensitization, after adoptive transfer of immune cells lacking CD3(+) contact sensitivity effector T cells, or after transfer of Ag-specific lymphoid cells depleted of conventional T lymphocytes with surface determinants for CD3, CD4, CD8, TCR-beta, or TCR-delta molecules. Further experiments showed that development of AHR depended upon transfer of immune cells expressing surface membrane Thy-1 and B220 (CD45RA) determinants. We concluded that a novel population of Ag-specific lymphoid cells with a defined surface phenotype (Thy-1(+), CD3(-), CD4(-), CD8(-), TCR-alphabeta-, TCR-gammadelta-, and CD45RA+) is required in a mouse model for the development of AHR. PMID:9241124

  18. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    NASA Astrophysics Data System (ADS)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  19. Turbulence effects on concentration statistics in the atmospheric surface layer

    SciTech Connect

    Biltoft, C.; Bowers, J.; Yee, E.; Klewicki, J.; Metzger, M.

    1996-12-31

    The dispersion of windborne material released near the earth`s surface is strongly influenced by this impenetrable boundary, which inhibits downward mixing and creates sharp vertical gradients in wind, temperature, turbulence. These strong gradients and the continuous creation of turbulence at the surface cause a rapid evolution of the vertical concentration structure for material released into the atmospheric surface layer (ASL). Recent developments in fast-response instrumentation and an increased realization of potential hazards from the release of common industrial chemicals into the ASL have led to a series of tripartite (US, UK, Canada) field experiments at the US Army Dugway Proving Ground, Utah. This paper contains a preliminary analysis of the data from the most recent follow-on experiments, which included measurements of the vertical profiles of mean and peak concentrations.

  20. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian

    2015-12-07

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  1. Turbulent boundary layer measurements over high-porosity surfaces

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2016-11-01

    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  2. Multi-layer topological transmissions of spoof surface plasmon polaritons

    PubMed Central

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than −0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above −1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits. PMID:26939995

  3. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y. H.

    2015-12-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and HOBE sites are

  4. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  5. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  6. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis

    PubMed Central

    Campόdonico, Victoria L; Gadjeva, Mihaela; Paradis-Bleau, Catherine; Uluer, Ahmet; Pier, Gerald B

    2013-01-01

    Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism. PMID:18262467

  7. Corrosion of Metal Films with Defective Surface Protection Layers.

    DTIC Science & Technology

    1980-07-01

    Evaporation 5 x I0- 100-150 25-35 S-Gun Sputtering 2 x 10-3 (argon) 6 35 was applied and patterned. Aqua regia was used to remove the platinum down to...Dielectric Layers Electrochemical Measurements Aluminum Thin Films Surface pH Measurements Gold Thin Films TRACT (Contfne o- reverse aide Hf nec.eary...between lines and line resis- tance were monitored at intervals. In one case, the potential was reversed after a certain time. Cathodic corrosion was

  8. Development of the camshaft with surface remelted chilled layer

    SciTech Connect

    Nonoyama, H.; Morita, A.; Fukuizumi, T.; Nakakobara, T.

    1986-01-01

    A camshaft for an automobile engine is generally made of chilled case iron. But, because of increased demand for higher performance engines, a camshaft with many cam-faces has been expected. The cam intervals were necessarily narrow. So it was difficult to manufacture the conventional chilled cast iron camshaft at a moderate price. In the case of a rocker-arm type valve mechanism, higher wear resistance was necessary. After due consideration to solve these problems, development of surface remelted chilled layer camshafts by Toyota's unique manufacturing method has been accomplished. In this paper, the excellent wear resistance, the low manufacturing cost and the characteristic manufacturing method are described.

  9. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum.

  10. Surface potentials and layer charge distributions in few-layer graphene films.

    PubMed

    Datta, Sujit S; Strachan, Douglas R; Mele, E J; Johnson, A T Charlie

    2009-01-01

    Graphene-derived nanomaterials are emerging as ideal candidates for postsilicon electronics. Elucidating the electronic interaction between an insulating substrate and few-layer graphene (FLG) films is crucial for device applications. Here, we report electrostatic force microscopy (EFM) measurements revealing that the FLG surface potential increases with film thickness, approaching a "bulk" value for samples with five or more graphene layers. This behavior is in sharp contrast with that expected for conventional conducting or semiconducting films, and derives from unique aspects of charge screening by graphene's relativistic low energy carriers. EFM measurements resolve previously unseen electronic perturbations extended along crystallographic directions of structurally disordered FLGs, likely resulting from long-range atomic defects. These results have important implications for graphene nanoelectronics and provide a powerful framework by which key properties can be further investigated.

  11. Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping.

    PubMed

    Ji, Muwei; Xu, Meng; Zhang, Jun; Liu, Jiajia; Zhang, Jiatao

    2016-02-25

    A controllable aqueous oxidation reaction enabled layer-by-layer corrosion has been proposed to prepare high-quality two-dimensional (2D) semiconductor nanocrystals with single layer accuracy and well-retained hexagonal shapes. The appropriate oxidizing agent, such as H2O2, Fe(NO3)3, and HNO3, could not only corrode the layered-crystalline-structured Bi2Te3 nanoplates layer-by-layer to be a single quintuple layer, but also replace the organic barriers to be ionic ligands on the surface synergistically. AFM analysis was used to confirm the layer-by-layer exfoliation from the side to the center. Together with precise XRD, LRTEM and HRTEM characterizations, the controllable oxidation reaction enabled aqueous layer-by-layer corrosion mechanism has been studied.

  12. Multi-layer relaxations of Li surfaces from First Principles

    NASA Astrophysics Data System (ADS)

    Fei, Weiben; Staikov, Pavlin; Kara, Abdelkader; Rahman, Talat. S.

    1996-03-01

    We have undertaken a systematic study of the multi-layer relaxations of low Miller indices Li surfaces for both bcc and fcc structures. These calculations are done using ab initio, norm-conserving, non-local and soft pseudopotentials with partial core correction, and a plane wave basis. A preconditioned steepest descent method (N. Chetty, M. Weinert, T. S. Rahman, and J. W. Davenport, Phys. Rev. B 52) (1995) 6313. is used to solve iteratively Kohn-Sham equations for a given set of atomic positions. The different relaxation patterns are interpreted in terms of the surface electronic environments. The charge density profiles for these fully relaxed systems are examined and contrasted with the unrelaxed counterparts.

  13. Thermodynamics of elastic strength of the metal surface layer

    NASA Astrophysics Data System (ADS)

    Andreev, Yu. Ya.; Kiselev, D. A.

    2013-07-01

    This paper presents a physicochemical model that establishes a connection between the elastic strength of the surface layer (SL) of metal and its surface Gibbs energy. The elastic limit of SL along the low-index face of the metal single crystal under stress during the transition from elastic to plastic deformation was calculated. Calculation shows that the elastic limit of metal SL with fcc and bcc structures is approximately three orders of magnitude higher than the yield strength of these metals in bulk and close to nanohardness of the metals, in particular; for Cu(111) и Al(111), it is 5.3 and 2.8 GPa, respectively. In the light of the proposed model, the effect of lowering the elastic strength of metal SL due to adsorption of surfactant is formulated.

  14. Enhancing surface coverage and growth in layer-by-layer assembly of protein nanoparticles.

    PubMed

    Mohanta, Vaishakhi; Patil, Satish

    2013-10-29

    Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO(-)). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.

  15. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    NASA Astrophysics Data System (ADS)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free

  16. Water-soluble sacrificial layers for surface micromachining.

    PubMed

    Linder, Vincent; Gates, Byron D; Ryan, Declan; Parviz, Babak A; Whitesides, George M

    2005-07-01

    This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography.

  17. Imaging Layers Based on Surface-Initiated Polymers

    NASA Astrophysics Data System (ADS)

    Montague, Martha; Edwards, Erik; Nealey, Paul

    2002-03-01

    Photoresist structures at the 70 nm and 50 nm technology nodes are of molecular dimensions, and allowable tolerances and margins are of atomic dimensions. It is unclear whether current resist processing based on preferential solubility of protected or deprotected polymer molecules in aqueous base will afford the necessary process latitude at this scale. We are developing thin film imaging materials (100 to 200 nm thick) composed of polymer chains that are grafted (polymerized) directly on the surface of the substrate. These brushes have been grown from silicon wafers using "living" free radical initiators that are tethered to the surface of the wafer. We pattern this system by taking advantage of chemical amplification. An acid-labile linkage was incorporated into the tether of the polymer brush, and by using a photo acid generator we can create acid in exposed regions of our imaging layer. This strategy allows us to decouple the imaging process from the chemistry of the polymer. The resist then can be designed to optimize properties such as transparency and etch resistance. We will evaluate the imaging layers for process latitude and resolution.

  18. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  19. Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates

    SciTech Connect

    Clancey, Joel W.; Cavanagh, Andrew S.; Kukreja, Ratandeep S.; Kongkanand, Anusorn; George, Steven M.

    2015-01-15

    Platinum (Pt) atomic layer deposition (ALD) usually yields Pt nanoparticles during initial film growth. In contrast, deposition of continuous and ultrathin Pt films is needed for many important applications, such as the oxygen reduction reaction in polymer electrolyte membrane (PEM) fuel cells. A continuous and high radius of curvature Pt film is more stable and has a higher area-specific activity than the Pt nanoparticles commonly used in PEM fuel cells. However, the Pt film must be ultrathin and have a large surface area to be cost effective. In this paper, a review of earlier Pt ALD studies on flat substrates is presented that demonstrates that tungsten, with a higher surface energy than platinum, can serve as an adhesion layer to achieve Pt ALD films that are continuous at ultrathin thicknesses of ∼1.5 nm. This work utilized MeCpPtMe{sub 3} and H{sub 2} plasma as the Pt ALD reactants. The deposition of continuous and ultrathin Pt ALD films using MeCpPtMe{sub 3} and H{sub 2} plasma as the reactants is then studied on two high surface area substrate materials: TiO{sub 2} nanoparticles and 3M nanostructured thin film (NSTF). Transmission electron microscopy (TEM) showed uniform and continuous Pt films with thicknesses of ∼4 nm on the TiO{sub 2} nanoparticles. TEM with electron energy loss spectroscopy analysis revealed W ALD and Pt ALD films with thicknesses of ∼3 nm that were continuous and conformal on the high aspect ratio NSTF substrates. These results demonstrate that cost effective use of Pt ALD on high surface area substrates is possible for PEM fuel cells.

  20. Evolution of vortex-surface fields in transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  1. Effects of surface barrier layer in AlGaAs/GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Urabe, Hiroyuki; Kuramoto, Makoto; Nakano, Tomohiro; Kawaharazuka, Atsushi; Makimoto, Toshiki; Horikoshi, Yoshiji

    2015-09-01

    In this paper, we report the effects of surface barrier layers on the characteristics of AlGaAs/GaAs solar cells. The external quantum efficiency (EQE) spectra for AlGaAs barrier samples with different barrier layer AlAs fractions and thickness of the surface barrier layer were measured to increase the solar cell efficiency. The results show that the surface barrier layer is effective to block diffusing photoexcited electrons to the surface while the thicker barrier layer absorbs higher energy photons to generate carriers which recombine at the surface. The optimal surface barrier structure is a 50 nm thick Al0.7Ga0.3As.

  2. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  3. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    PubMed

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  4. Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives.

    PubMed

    Niu, Jia; Liu, Zhihua; Fu, Long; Shi, Feng; Ma, Hongwei; Ozaki, Yukihiro; Zhang, Xi

    2008-10-21

    In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus providing a new approach toward fabrication of nanostructured molecularly imprinted thin films. It involves preassembly of poly(acrylic acid) (PAA) conjugated of the theophylline residue template via a disulfide bridge, denoted as PAAtheo 15, in solution, and layer-by-layer (LbL) assembly of PAAtheo 15 and a positively charged photoreactive diazo resin (DAR) to form multilayer thin film with designed architecture. After photo-cross-linking of the film and template removal, binding sites specific to 7-(beta-hydroxyethyl)theophylline (Theo-ol) molecules are introduced within the film. Binding assay demonstrates that the SMILbL has a high selectivity of SMILbL to Theo-ol over caffeine. A control experiment demonstrates that the selectivity of SMILbL derives from nanostructured recognition sites among the layers. The imprinting amount per unit mass of the film can be 1 order of magnitude larger than that of the conventional bulk molecular imprinting systems. As this concept of construction SMILbL can be easily extended to the other molecules by the following similar protocol: its applications in building many other different molecular recognition systems are greatly anticipated.

  5. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  6. Role of the endothelial surface layer in neutrophil recruitment.

    PubMed

    Marki, Alex; Esko, Jeffrey D; Pries, Axel R; Ley, Klaus

    2015-10-01

    Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.

  7. Generic nitric oxide (NO) generating surface by immobilizing organoselenium species via layer-by-layer assembly.

    PubMed

    Yang, Jun; Welby, Jenna L; Meyerhoff, Mark E

    2008-09-16

    A universal nitric oxide (NO) generating surface is assembled via Layer-by-Layer (LbL) deposition of sodium alginate (Alg) and organoselenium modified polyethyleneimine (SePEI) on quartz and polymeric substrates. The immobilized SePEI species is capable of catalytically decomposing S-nitrosothiol species (RSNO) to NO in the presence of thiol reducing agents (e.g., glutathione, cysteine, etc.). The stepwise buildup of the multilayer films is monitored by UV-vis spectroscopy, SEM and surface contact angle measurements. X-ray photoelectron spectroscopy is used to study the stoichiometry between the polyanion and polycation, and also the presence of Se in the catalytic LbL film. A reductive annealing process is necessary to improve the stability of freshly coated multilayer films via chain rearrangement. Chemiluminescence measurements illustrate the ability of the LbL films to generate NO from S-nitrosoglutathione (GSNO) in the presence of glutathione (GSH). Enhanced NO fluxes can be achieved by increasing the number of catalytic (SePEI/Alg) bilayers coated on the substrates. Nitric oxide generation is observed even after prolonged contact with sheep whole blood. Preliminary applications of this LbL on silicone rubber tubings and polyurethane catheters reveal similar NO generation behavior from these biomedical grade polymeric substrates.

  8. Modelling boundary layer flow over barnacle-fouled surfaces

    NASA Astrophysics Data System (ADS)

    Sadique, Jasim; Yang, Xiang; Meneveau, Charles; Mittal, Rajat

    2014-11-01

    Macro-biofouling is a critical concern for the marine industry. However, there is little data on flow and drag over such surfaces. Accurate modelling of such multi-scale flows remains a big challenge. Such simulations are vital in providing insights into the fundamental flow physics, and they can be used to estimate the timing, need and effectiveness of measures used to counteract bio-fouling. This talk focuses on the use of a sharp-interface immersed boundary method coupled with a wall model and large-eddy simulations to carry out accurate simulations of a turbulent boundary layer flow over macro-fouled surfaces. For the current study, high resolution scans of barnacles were used to create simple geometrical representations. Simulations were then carried out to test how well these simpler geometric models mimic the flow over actual barnacles. Simulations of array of modeled barnacles, with different barnacle densities have also been carried out and we present results on the effect distribution density on the flow physics and drag on the surfaces. This work is funded by ONR Grant N00014-12-1-0582.

  9. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  10. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  11. Interaction of compliant surfaces with transitional and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, M.; Riley, J. J.; Blackwelder, R. F.

    The interaction of plastisol gel coatings of different thicknesses and shear moduli with transitional and turbulent boundary layers was investigated over a range of velocities. Whenever the free-stream velocity within the fluid was comparable to the transverse wave speed within the solid, large-amplitude static-divergence waves appeared on the surface of the solid. The amplitude of the waves was always of the order of the coating thickness. As the free-stream velocity increased, the waves became less two-dimensional and developed larger variations in their amplitude along the crests. This disturbance led to the formation of additional waves downstream having a shorter span. Ways of reducing or eliminating the static-divergence waves are briefly discussed.

  12. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  13. Surface Layer Turbulence Measurements during a Frontal Passage.

    NASA Astrophysics Data System (ADS)

    Piper, M.; Lundquist, Julie K.

    2004-07-01

    Very little is known about the nature of turbulence in the transition zone of a synoptic-scale cold front, especially at the dissipative scales. Lacking this knowledge, accurate models of surface frontogenesis are compromised. To address this problem, high-frequency measurements from sonic and hot-wire anemometers are used to analyze the finescale turbulence in the atmospheric surface layer (ASL) within a cold front observed in the MICROFRONTS field experiment. To quantify the turbulence in the front, velocity spectra and dissipation rates are calculated as functions of time and stability in the ASL. The normalized first and second moments of the one-dimensional velocity spectrum conform to the scaling suggested by Kolmogorov's equilibrium hypotheses, even during the intense turbulence associated with the frontal passage. The spectra compare well with other data collected at high Reλ in the ASL, but not as well with a recent model of the dissipative range of turbulence. Dissipation rate is calculated with one direct and two indirect techniques. The calculations from the different techniques compare well with one another and, when nondimensionalized, with a historical expression for dissipation rate as a function of ASL stability. The magnitude of the dissipation rate increases by an order of magnitude to a maximum value of 1.2 m2 s-3 during the frontal passage compared to prefrontal values of 0.05 m2 s-3; the latter is typical for a slightly stable nighttime boundary layer over land. These results can be used in assessing the effects of turbulence in traditional semigeostrophic models of frontal collapse. The dissipation rate calculations may be of particular use to modelers.


  14. Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2016-11-01

    Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.

  15. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone*

    PubMed Central

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S.; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-01-01

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca2+- and voltage-dependent K+ (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  16. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    NASA Astrophysics Data System (ADS)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  17. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  18. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis.

    PubMed

    Silva, Carlos A M; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S; Oliveira, Albanita V; Bermudez, Luiz E; Pessolani, Maria C V

    2013-07-01

    This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.

  19. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  20. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  1. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  2. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  3. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential.

    PubMed

    Higgins, Gerard; Ringholz, Fiona; Buchanan, Paul; McNally, Paul; Urbach, Valérie

    2015-01-01

    Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation.

  4. Enrichment and association of lead and bacteria at particulate surfaces in a salt-marsh surface layer

    USGS Publications Warehouse

    Harvey, R.W.; Lion, Leonard W.; Young, L.Y.; Leckie, J.O.

    1982-01-01

    The particle-laden surface layer (approx 150-370 mu m) and subsurface waters of a South San Francisco Bay salt marsh were sampled over 2 tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of Pb and bacteria. Laboratory studies examined the ability of a bacterial isolate from the surface layer and a bacterial 'film-former' to sorb Pb at environmentally significant concentrations in seawater. Degrees by which Pb concentrated in the surface layer relative to the subsurface strongly correlated with enrichments of surface layer bacteria (bacterioneuston). A significant fraction of the bacterioneuston and surface layer Pb were associated with particles. Particle-bound bacterioneuston may interact with Pb at particulate surfaces in this microenvironment.

  5. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  6. Surface pressure fluctuations in hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1974-01-01

    The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.

  7. Region-based geometric modelling of human airways and arterial vessels.

    PubMed

    Ding, Songlin; Ye, Yong; Tu, Jiyuan; Subic, Aleksandar

    2010-03-01

    Anatomically precise geometric models of human airways and arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The established geometric modelling methods become invalid when the model consists of bronchioles or small vessels. This paper presents a new method for reconstructing the entire airway tree and carotid vessels from point clouds obtained from CT or MR images. A novel layer-by-layer searching algorithm has been developed to recognize branches of the airway tree and arterial vessels from the point clouds. Instead of applying uniform accuracy to all branches regardless of the number of available points, the surface patches on each branch are constructed adaptively based on the number of available elemental points, which leads to the elimination of distortions occurring at small bronchi and vessels.

  8. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    SciTech Connect

    Zakharov, A. M. Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-15

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  9. Modification of surface oxide layers of titanium targets for increasing lifetime of neutron tubes

    NASA Astrophysics Data System (ADS)

    Zakharov, A. M.; Dvoichenkova, O. A.; Evsin, A. E.

    2015-12-01

    The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.

  10. Measurements of turbulent boundary layer flow and surface fluxes over roughness and temperature transitions

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2016-11-01

    Often natural and engineered surfaces have spatially heterogeneous properties at a variety of scales that affect the structure of the turbulent boundary layer, which is no longer in equilibrium with the local surface. Predicting the spatial distributions of surface momentum and scalar fluxes over heterogeneous surfaces remains a challenge. We present measurements made in a thermally stratified boundary layer wind tunnel to characterize the turbulent flow and surface fluxes for abrupt transitions in surface temperature and roughness. We compare the development of internal boundary layers for momentum and heat, and associated mean surface flux for two cases. The first is a smooth boundary layer with an abrupt change in surface temperature and the second also involves a change from a fully rough to a smooth wall. The effects of roughness change on surface heat flux and implications for prediction are examined. The data will be compared to typical models that utilize Monin-Obukhov similarity theory.

  11. Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality

    NASA Astrophysics Data System (ADS)

    Li, Guicai; Yang, Ping; Huang, Nan

    Layer-by-layer assembly as a versatile bottom-up nanofabrication technique has been widely used in the development of biomimetic materials with superior mechanical and biological properties. In this study, layer-by-layer assembled heparin/fibronectin biofunctional films were fabricated on titanium (Ti) surface to enhance the blood anticoagulation and accelerate the endothelialization simultaneously. The wettability and chemical changes of the assembled films were investigated by static water contact angle measurement and fourier transform infrared spectroscopy (FTIR). The morphology of modified Ti surfaces were observed using scanning electron microscopy (SEM). The real time assembly process was in-situ monitored by quartz crystal microbalance with dissipation (QCM-D). The stability of the films was evaluated by measuring the changes in wettability and the quantity of heparin and fibronectin on the surfaces. The anticoagulation properties of the films were quantitatively rated using Activated partial thromboplastin time (APTT) analysis. New peaks of hydroxyl and amino group were observed on the assembled Ti srufaces by FTIR. The contact angles varied among the films with different bilayer numbers, indicating the successful graft of the heparin and fibronectin layer-by-layer. QCM-D results showed that the frequency shift increased with the bilayer numbers, and the heparin and fibronectin could form multilayers. The assembly films were stable after incubation in PBS for 24 h based on the results of the contact angle measurement and the quantity of heparin and fibronectin analysis. APTT results suggested that the assembled films kept excellent antithrombotic properties. All these results revealed that the assembled heparin/fibronectin films with stabiltiy and anticoagulation property could be firmly formed on titanium surfaces. Our study further demonstrates that layer-by-layer assembly of heparin and fibronectin will provide a potential and effective tool for

  12. Heat budget of the surface mixed layer south of Africa

    NASA Astrophysics Data System (ADS)

    Faure, Vincent; Arhan, Michel; Speich, Sabrina; Gladyshev, Sergey

    2011-10-01

    ARGO hydrographic profiles, two hydrographic transects and satellite measurements of air-sea exchange parameters were used to characterize the properties and seasonal heat budget variations of the Surface Mixed Layer (SML) south of Africa. The analysis distinguishes the Subtropical domain (STZ) and the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone (AZ) of the Antarctic Circumpolar Current. While no Subantarctic Mode Water forms in that region, occurrences of deep SML (up to ˜450 m) are observed in the SAZ in anticyclones detached from the Agulhas Current retroflection or Agulhas Return Current. These are present latitudinally throughout the SAZ, but preferentially at longitudes 10-20° E where, according to previous results, the Subtropical Front is interrupted. Likely owing to this exchange window and to transfers at the Subantarctic Front also enhanced by the anticyclones, the SAZ shows a wide range of properties largely encroaching upon those of the neighbouring domains. Heat budget computations in each zone reveal significant meridional changes of regime. While air-sea heat fluxes dictate the heat budget seasonal variability everywhere, heat is mostly brought through lateral geostrophic advection by the Agulhas Current in the STZ, through lateral diffusion in the SAZ and through air-sea fluxes in the PFZ and AZ. The cooling contributions are by Ekman advection everywhere, lateral diffusion in the STZ (also favoured by the ˜10° breach in the Subtropical Front) and geostrophic advection in the SAZ. The latter likely reflects an eastward draining of water warmed through mixing of the subtropical eddies.

  13. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  14. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil.

    PubMed

    Xu, Lirong; Zhou, Xin; Tian, Wei Quan; Gao, Teng; Zhang, Yan Feng; Lei, Shengbin; Liu, Zhong Fan

    2014-09-01

    The integration of 2D covalent organic frameworks (COFs) with atomic thickness with graphene will lead to intriguing two-dimensional materials. A surface-confined covalently bonded Schiff base network was prepared on single-layer graphene grown on copper foil and the dynamic reaction process was investigated with scanning tunneling microscopy. DFT simulations provide an understanding of the electronic structures and the interactions between the surface COF and graphene. Strong coupling between the surface COF and graphene was confirmed by the dispersive bands of the surface COF after interaction with graphene, and also by the experimental observation of tunneling condition dependent contrast of the surface COF.

  15. An analysis of pollutant gas transport and absorption in pulmonary airways

    SciTech Connect

    Grotberg, J.B.; Sheth, B.V.; Mockros, L.F. )

    1990-05-01

    A mathematical model of ozone absorption, or for any soluble gas that has similar transport properties, is developed for a branching network of liquid-lined cylinders. In particular, we investigate specific flow regimes for finite length tubes where boundary layer phenomena and entrance effects exist in high Reynolds and Peclet (Pe) number airways. The smaller airways which have lower Reynolds and Peclet number flows are modelled by incorporating the detailed analysis found in (10) and modifying it for airways which have alveolated surfaces. We also consider a reacting gas and treat specific regimes where the reaction front is located at the air-liquid interface, within the liquid or at the liquid-tissue interface. Asymptotic methods are used in regions of the tracheobronchial tree where Pe much less than 1 and Pe much greater than 1. In addition, the fact that the radial transport parameter gamma much less than 1 for this toxin, and others such as nitrous oxides, is employed to simplify the analysis. The ozone concentrations, airway absorption and tissue dose are examined as a function of airway generation for several values of the governing parameters. The general result is a maximal dosing in airway generations 17 to 18 that is much larger (up to an order of magnitude) than the predictions of previous theories.

  16. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates.

    PubMed

    Li, Hui; Peng, Lincai

    2015-06-25

    To confer cellulose fibers antimicrobial and antioxidant activities, chitosan (CS)/lignosulfonates (LS) multilayers were constructed on fibers surfaces through layer-by-layer deposition technique. The formation of CS/LS multilayers on cellulose fibers surfaces was verified by X-ray photoelectron spectroscopy (XPS) and zeta potential measurement. The surface morphologies of CS/LS multilayers on fibers surfaces were observed by atomic force microscopy (AFM). The results showed that characteristic element (i.e. N and S element) content increased with increasing bilayers number, the surface LS content increased linearly as a function of bilayers. Zeta potential of modified fibers was inversed after deposition of each layer. AFM phase images indicated that the cellulose microfibrils on fibers surfaces were gradually covered by granular LS aggregate. The antimicrobial testing results demonstrated that CS/LS multilayers modified fibers with CS in the outermost layer exhibited higher antimicrobial activity against Escherichia coli. The antioxidant testing results showed that antioxidant activity of CS/LS multilayers modified fibers was better than that of original fibers under the same oxidation conditions.

  17. Surface coating for flame retardant behavior of cotton fabric by layer-by-layer processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardant behavior has been prepared by the layer-by layer assemblies of branched polyethylenimine (BPEI), kaolin, urea, diammonium phosphate (dibasic) on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared wi...

  18. Turbulent structure of scalars in the eddy surface layer over land and sea

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2015-04-01

    Turbulent structure of scalars in the 'eddy surface layer' over land and sea. In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer (eddy surface layer), especially the shape of the spectra of the wind components and corresponding fluxes. However, the structure of temperature and humidity fluctuations in the eddy surface layer shows quite different behaviour. In particular the efficiency of turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with standard similarity theory. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the height of the eddy surface layer and not the height above the surface. All these features are found to be similar in measurements at a marine site, a flat land site and during hurricane conditions (hurricane Fabian and Isabel). Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694.. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  19. Metal ceramic alloy structure and surface layer modification during electron-ion-plasma irradiation of its surface

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, Yu. F.; Shilko, E. V.; Mokhovikov, A. A.; Baohai, Yu; Tianyng, Xiong; Hua, Xu Yun; Lisheng, Zhong

    2016-11-01

    The paper presents research findings on the problems of electron-beam irradiation in noble gases plasma with different indexes of ionizing energy and atomic weight, and a surface layer structure modification versus a surface layer microhardness, wear and bending resistances and corrosion stability of 50% TiC/50% (Ni + 20% Cr) metal ceramic alloy samples. Discussions on the issues of the ways impulse electron-beam irradiation in the conditions of various types of noble gas plasma influences the mechanism of a metal ceramic alloy surface layer structure-phase state modification has been also presented.

  20. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Sun, S. L.; Cheng, Y. L.; Chen, G. S.; Chin, T. S.

    2016-02-01

    The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO4. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  1. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.

  2. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

    PubMed Central

    Bridge, Jack C.; Aylott, Jonathan W.; Brightling, Christopher E.; Ghaemmaghami, Amir M.; Knox, Alan J.; Lewis, Mark P.; Rose, Felicity R.A.J.; Morris, Gavin E.

    2015-01-01

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments. PMID:26275100

  3. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall.

    PubMed

    Bridge, Jack C; Aylott, Jonathan W; Brightling, Christopher E; Ghaemmaghami, Amir M; Knox, Alan J; Lewis, Mark P; Rose, Felicity R A J; Morris, Gavin E

    2015-07-31

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments.

  4. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  5. Overlap region in turbulent boundary layer over a rough surface

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2010-11-01

    The one term non-linear outer layer in George & Castillo (1997, AMR 50, 689), based on their AIP argument, was matched with inner wall layer leading to power law velocity, which denied very existence of traditional log law, while Clauser (1956) patched same outer layer with inner wall log law. Jones, Nickles & Marusic (2008, JFM 616, 195) proposal that free stream velocity (in GC97) and friction velocity (in Coles 1956) are potentially valid scalings according to their theoretical criterion in the outer layer, is misleading, being not correct. Further, in Nishioka (2010, FDR 42, 45502-5) and Prandtl (1935, AT) the additive constant in power law velocity is singular at large Reynolds numbers is also not correct, and this constant is shown to be zero. In the present work, two terms outer layer expansion is considered where leading term scales with free steam velocity and first order with friction velocity. The leading term turns out to be a non-linear wake type equation through application of Izakson-Millikan- Kolmogorov hypothesis. The first order terms lead to alternate functional equations, arising from ratios of two successive derivatives of the functional equations, each of which admits two functional solutions, the power law velocity profile in addition to log law velocity profile. The comparison with extensive data on rough & smooth walls also provide strong support to present work.

  6. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-04-01

    We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.

  7. Effect of Surface Layer on Electromechanical Stability of Tweezers and Cantilevers Fabricated from Conductive Cylindrical Nanowires

    NASA Astrophysics Data System (ADS)

    Keivani, Maryam; Koochi, Ali; Sedighi, Hamid M.; Abadyan, Mohamadreza; Farrokhabadi, Amin; Shahedin, Abed Moheb

    2016-12-01

    Herein, the impact of surface layer on the stability of nanoscale tweezers and cantilevers fabricated from nanowires with cylindrical cross section is studied. A modified continuum based on the Gurtin-Murdoch surface elasticity is applied for incorporating the presence of surface layer. Considering the cylindrical geometry of the nanowire, the presence of the Coulomb attraction and dispersion forces are incorporated in the derived formulations. Three different approaches, i.e. numerical differential quadrature method (DQM), an approximated homotopy perturbation method (HPM) and developing lumped parameter model (LPM) have been employed to solve the governing equations. The impact of surface layer on the instability of the system is demonstrated.

  8. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  9. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-05-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  10. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  11. Turbulent boundary layer on perforated surfaces with vector injection

    NASA Astrophysics Data System (ADS)

    Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.

    1980-10-01

    The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.

  12. Expansible apparatus for removing the surface layer from a concrete object

    DOEpatents

    Allen, Charles H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.

  13. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    NASA Astrophysics Data System (ADS)

    Uğur, Şule S.; Sarıışık, Merih; Aktaş, A. Hakan; Uçar, M. Çiğdem; Erden, Emre

    2010-07-01

    ZnO nanoparticle-based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.

  14. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    PubMed Central

    2010-01-01

    ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties. PMID:20596450

  15. An uptake of cationized ferritin by alveolar type I cells in airway-instilled goat lung: distribution of anionic sites on the epithelial surface.

    PubMed

    Atwal, O S; Viel, L; Minhas, K J

    1990-07-01

    The present study has investigated ultrastructural localization of anionic sites on the luminal surface of the alveolar epithelium of goat lung by direct airway instillation of cationized ferritin (CF) in the cranial lobe of the right lung through a bronchoscope. The cationic probe decorated preferentially the luminal plasmalemmal vesicles and plasmalemma proper of alveolar type I cell. This indicated the presence of highly charged anionic microdomains at these binding sites. The ligand was internalized in the free plasmalemmal vesicles of alveolar type I cell within 2 min. Heavy decoration of vesicles at 5 min of perfusion indicated that the amount of CF internalization increased with its concentration in the alveoli. It is suggested that exposure of alveolar surface to several gases of ruminal-origin induces changes in the surface charge of luminal plasmalemma of alveolar type I cells. The significance of these anionic plasmalemmal sites is discussed in relation to the adjustment of osmotic pressure gradient across the alveolar-capillary membrane of the ruminant lung.

  16. Ionic Referencing in Surface Plasmon Microscopy: Visualization of the Difference in Surface Properties of Patterned Monomolecular Layers.

    PubMed

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M

    2017-04-04

    An approach for visualization of patterned monomolecular layers in surface plasmon microscopy (SPM) is suggested. The development of hidden image in SPM is achieved by referencing of images obtained in the presence of electrolytes with a high molar refraction of either anions or cations. A formation of diffuse layer near the charged surface areas leads to the redistribution of ions. The ratio of SPM images allows one to visualize this redistribution and to distinguish surface areas with different properties. The approach is unobtrusive and robust; it can be used with most surface plasmon resonance (SPR) imaging instruments.

  17. Method for removing surface-damaged layers from nickel alloys

    NASA Technical Reports Server (NTRS)

    Fawley, R. W.

    1968-01-01

    Electrical discharge machining /EDM/ damaged layer can be effectively removed from Rene 41, Inconel 625, Inconel 718, and Monel K-500 by abrasive-grit blasting or electropolishing /at room temperature/ at a current density of 5A/inches squared in a water solution of phosphoric and sulfuric acids.

  18. Surface structure of thin pseudomorphous GeSi layers

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. F.; Pchelyakov, O. P.

    2015-11-01

    Reflection high-energy electron diffraction (RHEED) was used to study the evolution of thin GexSi1-x film surface superstructures s in the course of molecular beam epitaxy. The (2 × N) superstructure of the epitaxial film surface at periodicity N from 14 to 8, the latter being characteristic of pure germanium at the Si(1 0 0) surface. The epitaxial film thickness that is required for the formation of the (2 × 8) superstructure depends on the deposition temperature and germanium content in the solid solution. The germanium segregation on the growing film surface is shown to be responsible for the observed superstructural changes.

  19. Deformation and annealing textures of surface layers of copper sheets cold-rolled under unlubricated condition

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Sik; Han, Heung Nam; Lee, Dong Nyung

    2017-01-01

    The texture of rolled sheets is known to vary with depth from the shear texture in the surface layer to the planestrain-compression texture in the center layer. This study has interpreted the deformation and annealing textures evolved in the surface layer of a four-layered-copper sheet cold-rolled by 93% reduction in thickness without lubrication at room temperature. The surface and center layers were separated from the cold-rolled four-layered copper sheet. The deformed surface layer was annealed for 1 h at 823 K. The deformation texture of the surface layer could be simulated by straining the {112}<111> oriented fcc crystals by a true strain of 2.66 in the rolling direction at 0 ≤ | e 13/ e 11| ≤ 1.4, where eij are the displacement gradients and the subscripts 1 and 3 represent the sheet rolling and sheet surface normal directions, respectively, using a visco-plastic self-consistent scheme. The annealing texture could be approximated by the simulated shear deformation orientations plus near the {001}<100> orientation that was approximated by the recrystallization orientations calculated from the simulated deformation orientations. The recrystallization orientations were calculated by the strain-energy-release-maximization theory for the recrystallization texture evolution.

  20. Deformation of graphene on an oxidizing nickel surface: the role of graphene layer number

    NASA Astrophysics Data System (ADS)

    George, Lijin; Shaina, P. R.; Gupta, Aparna; Das Gupta, Nandita; Jaiswal, Manu

    2016-11-01

    Few-layer graphene grown on nickel substrates by chemical vapour deposition is typically characterised by thickness inhomogeneity. In this work, we investigate the thickness-dependent changes induced in graphene during the surface oxidation of the underlying metal. Temperature-dependent Raman spectroscopy and scanning electron microscopy are used to monitor the lattice strain and defect formation induced in graphene, as well as the oxidation of Ni surface. Significant lattice strain is induced in thin layers of graphene (1-2 layers) during the oxidation process, for T > 400 °C. This is followed by the formation of boundary-type defects, and graphene loses structural integrity. In contrast, lattice strain induced in thicker graphene (up to 7 layers) during the metal surface oxidation is quite subdued. These thicker layers de-pin and remain structurally intact even after the underneath metal surface has oxidized.

  1. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  2. Transient Heat Transfer in a Semitransparent Radiating Layer with Boundary Convection and Surface Reflections

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.

  3. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  4. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  5. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  6. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  7. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  8. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  9. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  10. Layer-by-layer assembly of conjugated polyelectrolytes on magnetic nanoparticle surfaces.

    PubMed

    Sun, Bin; Zhang, Yang; Gu, Ke-Jun; Shen, Qun-Dong; Yang, Yan; Song, Heng

    2009-05-19

    Composite nanoparticles with magnetic core and fluorescent shell were facilely prepared by the layer-by-layer deposition of conjugated polyelectrolytes over the negatively charged nanoparticles (NPs) of superparamagnetic iron oxide. The alternate assembly of cationic and anionic fluorescent polyelectrolytes leads to reversal in the sign of zeta-potentials. The even numbers of adsorption layer corresponding to the anionic polyelectrolyte (PFS) have negative values (-13 to -24 mV), whereas odd numbers of coating relative to the cationic polyelectrolyte (PFN) have positive values (26 to 28 mV). The composite nanoparticles can respond to both external magnetic field and ultraviolet light excitation. Forster resonance energy transfer (FRET) between oppositely charged polyelectrolytes (PFN and ThPFS) layers was also found, indicating dense packing of the polymer coatings. The fluorescence of the positively charged nanoparticles (NPs/PFN) can be quenched with very high efficiency by a small molecule anionic quencher [Fe(CN)6(4-)], while the same quencher has far less effect on the fluorescence of the negatively charged nanoparticles (NPs/PFN/PFS).

  11. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  12. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  13. Surface Display of Foreign Epitopes on the Lactobacillus brevis S-Layer

    PubMed Central

    Åvall-Jääskeläinen, Silja; Kylä-Nikkilä, Kari; Kahala, Minna; Miikkulainen-Lahti, Terhi; Palva, Airi

    2002-01-01

    So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure. PMID:12450814

  14. Surface display of foreign epitopes on the Lactobacillus brevis S-layer.

    PubMed

    Avall-Jääskeläinen, Silja; Kylä-Nikkilä, Kari; Kahala, Minna; Miikkulainen-Lahti, Terhi; Palva, Airi

    2002-12-01

    So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.

  15. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces.

    PubMed

    Gentile, Piergiorgio; Frongia, Maria E; Cardellach, Mar; Miller, Cheryl A; Stafford, Graham P; Leggett, Graham J; Hatton, Paul V

    2015-07-01

    In order to achieve high local biological activity and reduce the risk of side effects of antibiotics in the treatment of periodontal and bone infections, a localised and temporally controlled delivery system is desirable. The aim of this research was to develop a functionalised and resorbable surface to contact soft tissues to improve the antibacterial behaviour during the first week after its implantation in the treatment of periodontal and bone infections. Solvent-cast poly(d,l-lactide-co-glycolide acid) (PLGA) films were aminolysed and then modified by Layer-by-Layer technique to obtain a nano-layered coating using poly(sodium4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) as polyelectrolytes. The water-soluble antibiotic, metronidazole (MET), was incorporated from the ninth layer. Infrared spectroscopy showed that the PSS and PAH absorption bands increased with the layer number. The contact angle values had a regular alternate behaviour from the ninth layer. X-ray Photoelectron Spectroscopy evidenced two distinct peaks, N1s and S2p, indicating PAH and PSS had been introduced. Atomic Force Microscopy showed the presence of polyelectrolytes on the surface with a measured roughness about 10nm after 20 layers' deposition. The drug release was monitored by Ultraviolet-visible spectroscopy showing 80% loaded-drug delivery in 14 days. Finally, the biocompatibility was evaluated in vitro with L929 mouse fibroblasts and the antibacterial properties were demonstrated successfully against the keystone periodontal bacteria Porphyromonas gingivalis, which has an influence on implant failure, without compromising in vitro biocompatibility. In this study, PLGA was successfully modified to obtain a localised and temporally controlled drug delivery system, demonstrating the potential value of LbL as a coating technology for the manufacture of medical devices with advanced functional properties.

  16. Three-layer model for the surface second-harmonic generation yield including multiple reflections

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Mendoza, Bernardo S.

    2016-09-01

    We present the three-layer model to calculate the surface second-harmonic generation (SSHG) yield. This model considers that the surface is represented by three regions or layers. The first layer is the vacuum region with a dielectric function ɛv(ω ) =1 from where the fundamental electric field impinges on the material. The second layer is a thin layer (ℓ ) of thickness d characterized by a dielectric function ɛℓ(ω ) , and it is in this layer where the SSHG takes place. The third layer is the bulk region denoted by b and characterized by ɛb(ω ) . Both the vacuum and bulk layers are semi-infinite. The model includes the multiple reflections of both the fundamental and the second-harmonic (SH) fields that take place at the thin layer ℓ . We obtain explicit expressions for the SSHG yield for the commonly used s and p polarizations of the incoming 1 ω and outgoing 2 ω electric fields, where no assumptions for the symmetry of the surface are made. These symmetry assumptions ultimately determine which components of the surface nonlinear second-order susceptibility tensor χ (-2 ω ;ω ,ω ) are different from zero, and thus contribute to the SSHG yield. Then, we particularize the results for the most commonly investigated surfaces, the (001), (110), and (111) crystallographic faces, taking their symmetries into account. We use the three-layer model and compare it against the experimental results of a Si(111)(1 ×1 ):H surface, as a test case, and use it to predict the SSHG yield of a Si(001)(2 ×1 ) surface.

  17. Characteristics of surface layer proteins from two new and native strains of Lactobacillus brevis.

    PubMed

    Mobarak Qamsari, Elahe; Kasra Kermanshahi, Rouha; Erfan, Mohammad; Ghadam, Parinaz; Sardari, Soroush; Eslami, Neda

    2017-02-01

    In this work, some important characteristics of surface layer (S-layer) proteins extracted from two new and native Lactobacillus strains, L.brevis KM3 and L.brevis KM7, were investigated. The presence of S-layer on the external surface of L.brevis KM3 was displayed by thin sectioning and negative staining. SDS-PAGE analysis were shown same dominant protein bands approximately around 48kDa for both S-layer proteins. Moreover, the S-layer reappeared when LiCl treated cells were allowed to grow again. Protein secondary structure and thermal behavior were evaluated by using circular dichroism (CD) and differential scanning calorimetry (DSC), respectively. Both S-layer proteins had high content of β-sheet and low amount of α-helix. The thermograms of lyophilized S-layer proteins of L.brevis KM3 and L.brevis KM7 showed one transition peak at 67.9°C and 59.14°C, respectively. To determine monodispersity of extracted S-layer proteins, dynamic light scattering (DLS) was used. The results indicated that the main population of S-layer molecules in two tested lactobacillus strains were composed of monomer with an expected diameter close to 10nm. Furthermore, Zeta potential measurements were showed positive potential for both S-layer proteins, as expected. Our results could be used as the basis for biotechnological applications of these two new S-layer proteins.

  18. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  19. Fluid-membrane tethers: Minimal surfaces and elastic boundary layers

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.; Huber, Greg; Goldstein, Raymond E.

    2002-04-01

    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.

  20. Evaluation of parameterization for turbulent fluxes of momentum and heat in stably stratified surface layers

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Foken, Th.

    2003-04-01

    General Circulation Models calculate the energy exchange between surface and atmosphere by means of parameterisations for turbulent fluxes of momentum and heat in the surface layer. However, currently implemented parameterisations after Louis (1979) create large discrepancies between predictions and observational data, especially in stably stratified surface layers. This work evaluates a new surface layer parameterisation proposed by Zilitinkevich et al. (2002), which was specifically developed to improve energy flux predictions in stable stratification. The evaluation comprises a detailed study of important surface layer characteristics, a sensitivity study of the parameterisation, and a direct comparison to observational data from Antarctica and predictions by the Louis (1979) parameterisation. The stability structure of the stable surface layer was found to be very complex, and strongly influenced fluxes in the surface layer. The sensitivity study revealed that the new parameterisation depends strongly on the ratio between roughness length and roughness temperature, which were both observed to be very variable parameters. The comparison between predictions and measurements showed good agreement for momentum fluxes, but large discrepancies for heat fluxes. A stability dependent evaluation of selected data showed better agreement for the new parameterisation of Zilitinkevich et al. (2002) than for the Louis (1979) scheme. Nevertheless, this comparison underlines the need for more detailed and physically sound concepts for parameterisations of heat fluxes in stably stratified surface layers. Zilitinkevich, S. S., V. Perov and J. C. King (2002). "Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in General Circulation Models." Q. J. R. Meteorol. Soc. 128(583): 1571--1587. Louis, J. F. (1979). "A Parametric Model of Vertical Eddy Fluxes in the Atmosphere." Bound.-Layer Meteor. 17(2): 187--202.

  1. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  2. Modification of surface layer of magnesium oxide via partial dissolution and re-growth of crystallites

    NASA Astrophysics Data System (ADS)

    Gao, Zhiming; Wei, Lingyan; Yan, Tingting; Zhou, Ming

    2011-02-01

    A procedure to modify surface layer of metal oxide is presented. By way of partial dissolution and re-growth of crystallites, a new MgO surface layer on the “core” of the original MgO particles was formed. XRD analyses indicate that the new surface layer is different from the original MgO particles in crystallinity. Thus a higher reducibility of surface non-lattice oxygen species is generated. As the extent of dissolution and re-growth of crystallites increased, reducible surface non-lattice oxygen species increased, which led to a lowering of surface non-lattice oxygen concentration on the X%-MgO catalysts in the OCM reaction atmosphere. This is considered to be the major reason for decreasing of CO2 formation.

  3. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  4. Performance surfaces of a single-layer perceptron.

    PubMed

    Shynk, J J

    1990-01-01

    A perceptron learning algorithm may be viewed as a steepest-descent method whereby an instantaneous performance function is iteratively minimized. An appropriate performance function for the most widely used perceptron algorithm is described and it is shown that the update term of the algorithm is the gradient of this function. An example is given of the corresponding performance surface based on Gaussian assumptions and it is shown that there is an infinity of stationary points. The performance surfaces of two related performance functions are examined. Computer simulations that demonstrate the convergence properties of the adaptive algorithms are given.

  5. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    SciTech Connect

    Renk, Timothy J. Turman, Bob Senft, Donna Sorensen, Neil R. Stinnett, Regan Greenly, John B. Thompson, Michael O. Buchheit, Rudolph G.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  6. A manufacturing method for multi-layer polysilicon surface-micromachining technology

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.

    1998-01-01

    An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

  7. [Study on the modified surface layers of the CIGS thin films by Raman spectra].

    PubMed

    Liu, Wei; Sun, Yun; Li, Feng-Yan; He, Qing; Li, Chang-Jian; Tian, Jian-Guo

    2007-04-01

    In the present paper, the properties of Cu(In(1-x) Ga(x)) Se2 (CIGS) thin film absorber materials for the solar cells obtained by selenization of the precursors with In-rich or CuGa-rich surface layers were studied by XRD, SEM and Raman spectra. The photovoltaic devices based on the absorbers were measured and analyzed by illuminated J-V curve subsequently. The performance of the device constructed by the absorbers obtained by selenization of the precursors with CuGa-rich surface layer was improved greatly compared to that with In-rich surface layer. Through Raman spectra measurement, it was found that the Raman peak of the A1 mode was shifted for the CuGa-rich one, which is verified that the band gap of the surface layers was elevated. Moreover the value of increased Ga contents within the surface region of films were calculated by the relation between the Raman shifts and the Ga contents. As a result, the devices based on the thin films with the elevated surface energy band by selenizing the precursors with the CuGa-rich surface layer improved further the V(oc) and FF by about 74 mV and 8% respectively compared to that of corresponding to the one with In-rich surface layers, so that the conversion efficiency of the photovoltaic devices based on these thin films with CuGa-rich surface layer was improved by up to 9.4%. Meanwhile Raman scattering spectroscopy has proven to be a very powerful and useful technique for the surface analysis of such thin film solar cell semiconducuor materials.

  8. Submesoscale Flows and Mixing in the Ocean Surface Layer Using the Regional Oceanic Modeling System (ROMS)

    DTIC Science & Technology

    2013-09-30

    DISTRIBUTION A: Approved for public release; distribution unlimited. Submesoscale Flows and Mixing in the Ocean Surface Layer Using the Regional...long-term goals of this project are to further the insight into the dynamics of submesoscale flow in the oceanic surface layer. Using the regional...oceanic modeling system (ROMS) we aim to understand the impact of submesoscale processes on the mixing at small scales of tracers and the transfer of

  9. Submesoscale Flows and Mixing in the Oceanic Surface Layer Using the Regional Oceanic Modeling System (ROMS)

    DTIC Science & Technology

    2014-09-30

    Submesoscale Flows and Mixing in the Oceanic Surface Layer Using the Regional Oceanic Modeling System (ROMS) M. Jeroen Molemaker (PI) James C...long-term goals of this project are to further the insight into the dynamics of submesoscale flow in the oceanic surface layer. Using the Regional...Oceanic Modeling System (ROMS), we aim to understand the impact of submesoscale processes on tracer mixing at small scales and the transfer of energy

  10. Nanostructured Hardening of Hard Alloys Surface Layers Through Electron Irradiation in Heavy Inert Gas Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, Yu F.; Ivanov, K. V.; Mokhovikov, A. A.; Baohai, Yu; Hua, Xu Yun

    2016-08-01

    The paper presents research and experimental findings which prove that metal ceramic composite surface layer contains micro constituents’ hierarchies in the form of secondary nano sized inclusions inside ceramic phases. These inclusions have typical dimensions from several tens to several hundreds of nano meters. It has been shown that multi level structure-phase condition, developed in a nano sized area, effects physical and tribological properties of a metal ceramic composite surface layer.

  11. The near-neutral atmospheric surface layer: turbulence and non-stationarity.

    PubMed

    Metzger, M; McKeon, B J; Holmes, H

    2007-03-15

    The neutrally stable atmospheric surface layer is used as a physical model of a very high Reynolds number, canonical turbulent boundary layer. Challenges and limitations with this model are addressed in detail, including the inherent thermal stratification, surface roughness and non-stationarity of the atmosphere. Concurrent hot-wire and sonic anemometry data acquired in Utah's western desert provide insight to Reynolds number trends in the axial velocity statistics and spectra.

  12. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation.

    PubMed

    Xu, Mingsheng; Fujita, Daisuke; Chen, Hongzheng; Hanagata, Nobutaka

    2011-07-01

    We report that few-layer hexagonal boron nitride (h-BN) nanosheets can be produced by using a surface segregation method. The formation of h-BN sheets is via an intermediate boron-nitrogen buffer layer. Our results suggest that surface segregation of boron and nitrogen from a solid source is an alternative approach to tailoring synthesis of h-BN sheets for potential applications such as in graphene electronics.

  13. Radiation and surface waves of a microstrip antenna covered with a dielectric layer

    NASA Astrophysics Data System (ADS)

    Hoorfar, Ahmad; Gupta, K. C.; Chang, D. C.

    1990-01-01

    The effects of a thick cover layer on the radiation characteristics of a microstrip patch antenna are investigated. A magnetic line source model has been used to derive explicit expressions for the far field, radiated power, directivity, and surface wave of the antenna. Numerical results are presented to show the effects of a lossless as well as a lossy dielectric cover layer on the surface waves and the radiated power.

  14. Highly stable surface functionalization of microgas chromatography columns using layer-by-layer self-assembly of silica nanoparticles.

    PubMed

    Wang, Dong; Shakeel, Hamza; Lovette, John; Rice, Gary W; Heflin, James R; Agah, Masoud

    2013-09-03

    A controllable and high-yield surface functionalization of silicon microchannels using layer-by-layer (LbL) self-assembly of SiO2 nanoparticles (SNPs) is presented. The application of SNPs (45 nm average diameter) coating as a stationary phase for chromatographic separation is also demonstrated with surface functionalization using chloroalkylsilanes. This method facilitates a simple, low-cost, and parallel processing scheme that also provides homogeneous and stable nanoparticle-based stationary phases with ease of control over the coating thickness. The SNP-functionalized microfabricated columns with either single capillary channels (1 m long, 150 μm wide, 240 μm deep) or very narrow multicapillary channels (25 cm long, 30 μm wide, 240 μm deep, 16 parallel channels) successfully separated a multicomponent gas mixture with a wide range of boiling points with high reproducibility.

  15. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  16. Enabling organosilicon chemistries on inert polymer surfaces with a vapor-deposited silica layer.

    PubMed

    Anderson, A; Ashurst, W R

    2009-10-06

    Given the large surface area-to-volume ratios commonly encountered in microfluidics applications, the ability to engineer the chemical properties of surfaces encountered in these applications is critically important. However, as various polymers are rapidly replacing glass and silicon as the chosen materials for microfluidics devices, the ability to easily modify the surface chemistry has been diminished by the relatively inert nature of some commonly employed polymer surfaces, such as poly(methyl methacrylate) (PMMA), polystyrene, and polydimethylsiloxane (PDMS). This paper describes the low-temperature, vapor-phase deposition of robust silica layers to PMMA, polystyrene, and PDMS surfaces, which enables the functionalization of these surfaces by standard organosilane chemistries. Attenuated total reflection infrared spectroscopy, contact angle goniometry, ellipsometry, and atomic force microscopy are used to characterize the silica layers that form on these surfaces. Aqueous immersion experiments indicate that the silica layer has excellent stability in aqueous environments, which is a prerequisite for microfluidics applications, but for PMMA surfaces, low adhesion of the silica layer to the underlying substrate is problematic. For PDMS substrates, the presence of the silica layer helps to slow the process of hydrophobic recovery, which is an additional advantage.

  17. Effect of Initial Microtopography and Ultrasonic Treatment Mode on Steel Surface Layer Quality

    NASA Astrophysics Data System (ADS)

    Zaitsev, K. V.; Lychagin, D. V.; Arkhipova, D. A.

    2016-04-01

    The article presents results of studies on the effect of pre-lathed surface micro-relief on surface micro-hardness after ultrasonic plastic treatment, as well as the effect of ultrasonic treatment on structure and properties of surface layers of steels 20 and 40X. The effect of ultrasonic treatment processing modes on roughness and micro-hardness of the surface layers was studied. It is shown that roughness values as well as form of ridges and grooves, obtained by pre-lathing, effect the growth of micro-hardness values after ultrasonic plastic treatment.

  18. Microstructures of Si surface layers implanted with Cu

    NASA Astrophysics Data System (ADS)

    Follstaedt, D. M.; Myers, S. M.

    Microstructures of Si ion-implanted with Cu have been characterized by TEM after annealing. For 1.2 at.%, the Cu is trapped at planar defects, but for 10 at.%, (eta)-Cu3Si forms and Cu diffuses at its equilibrium solubility. These observations allow proper evaluation of the binding energies of Cu to previously formed internal cavities (2.2 eV) and (eta)-Cu3Si (1.7 eV). The 10 at.% Cu layer promotes oxidation of Si catalyzed by (eta)-Cu3Si. The microstructures also indicate that Si implanted with (approximately)2 at.% Cu reforms epitaxially with embedded defects after 8 hr at 700C, but for (approximately)10 at.% Cu, epitaxy is not recovered after 6 hours at 600C.

  19. Microstructures of Si surface layers implanted with Cu

    SciTech Connect

    Follstaedt, D.M.; Myers, S.M.

    1993-12-31

    Microstructures of Si ion-implanted with Cu have been characterized by TEM after annealing. For 1.2 at.%, the Cu is trapped at planar defects, but for 10 at.%, {eta}-Cu{sub 3}Si forms and Cu diffuses at its equilibrium solubility. These observations allow proper evaluation of the binding energies of Cu to previously formed internal cavities (2.2 eV) and {eta}-Cu{sub 3}Si (1.7 eV). The 10 at.% Cu layer promotes oxidation of Si catalyzed by {eta}-Cu{sub 3}Si. The microstructures also indicate that Si implanted with {approximately}2 at.% Cu reforms epitaxially with embedded defects after 8 hr at 700C, but for {approximately}10 at.% Cu, epitaxy is not recovered after 6 hours at 600C.

  20. On the coupling between a supersonic boundary layer and a flexible surface

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    The coupling between a two-dimensional, supersonic, laminar boundary layer and a flexible surface is studied using direct numerical computations of the Navier-Stokes equations coupled with the plate equation. The flexible surface is forced to vibrate by plane acoustic waves at normal incidence emanated by a sound source located on the side of the flexible surface opposite to the boundary layer. The effect of the source excitation frequency on the surface vibration and boundary layer stability is analyzed. We find that, for frequencies near the fifth natural frequency of the surface or lower, large disturbances are introduced in the boundary layer which may alter its stability characteristics. The interaction between a stable two-dimensional disturbance of Tollmien-Schlichting (TS) type with the vibrating surface is also studied. We find that the disturbance level is higher over the vrating flexible surface than that obtained when the surface is rig id, which indicates a strong coupling between flow and structure. However, in the absence of the sound source the disturbance level over the rigid and flexible surfaces are identical. This result is due to the high frequency of the TS disturbance which does not couple with the flexible surface.

  1. EMF measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions

    NASA Astrophysics Data System (ADS)

    Shishkovskiy, I.; Sherbakov, V.; Morozov, Yu.

    2007-06-01

    Rapid prototyping (RP) and manufacturing (M) is a novel layer-by-layer fabrication technique which has become increasingly popular due to its inherent flexibility for the manufacture of simple and complex 3D parts. Early we had been shown opportunity of selective laser sintering (SLS) of different type powder systems (intermetallics, ceramics, ferrites, high-temperature superconductors), traditional use for self-propagated high-temperature synthesis (SHS). The non-thermal heating affect of an external electromagnetic field during SHS is related to the specific system under study due to differences in movement of defects and ions at the 'plasma-like' molten combustion wave front. We have developed and refined the testing scheme for electro-thermal phenomena studies which can directly influence on the SHS combustion wave front. This work studies electromotive force (EMF) measurements across the front of combustion wave during layer by layer surface laser sintering of exothermal powder compositions (Ni-Ti, Ni-Al). Analysis using an analog-digital-analog computer converter allowed some control of the laser movement and hence some control of the exothermal reaction - in so doing it provided near optimum conditions for forming layered 3D articles. Comparative results of structural-phase transformation during laser control SHS in reaction-capable compositions are presented.

  2. Formation of nanocrystalline layers by surface severe plastic deformation and pulsed plasma electrolytic carburizing.

    PubMed

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2010-07-01

    Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.

  3. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  4. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  5. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    SciTech Connect

    Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  6. A surface layer variance heat budget for ENSO

    NASA Astrophysics Data System (ADS)

    Boucharel, Julien; Timmermann, Axel; Santoso, Agus; England, Matthew H.; Jin, Fei-Fei; Balmaseda, Magdalena A.

    2015-05-01

    Characteristics of the El Niño-Southern Oscillation (ENSO), such as frequency, propagation, spatial extent, and amplitude, strongly depend on the climatological background state of the tropical Pacific. Multidecadal changes in the ocean mean state are hence likely to modulate ENSO properties. To better link background state variations with low-frequency amplitude changes of ENSO, we develop a diagnostic framework that determines locally the contributions of different physical feedback terms on the ocean surface temperature variance. Our analysis shows that multidecadal changes of ENSO variance originate from the delicate balance between the background-state-dependent positive thermocline feedback and the atmospheric damping of sea surface temperatures anomalies. The role of higher-order processes and atmospheric and oceanic nonlinearities is also discussed. The diagnostic tool developed here can be easily applied to other tropical ocean areas and climate phenomena.

  7. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    PubMed Central

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  8. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways.

    PubMed

    Euba, Begoña; Moleres, Javier; Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.

  9. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways

    PubMed Central

    Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence. PMID:25894755

  10. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  11. Remote sensing of Arctic boundary layer clouds above snow surfaces

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Wendisch, Manfred

    2015-04-01

    In the Arctic remote sensing of clouds using reflected solar radiation is mostly related to high uncertainties as the contrast between the bright sea ice and snow surface and the clouds is low. Additionally, uncertainties result from variation of the snow grain size which changes the absorption of solar radiation similarly to the size of cloud particles. This is a major issue for understanding the response of Arctic clouds to climate warming as the quantification of cloud properties in this remote region mostly relies on satellite observations. We used spectral radiation measurements of the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) to improve common used cloud remote sensing algorithms in case of snow surfaces. The measurements were collected during the airborne research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) above the Canadian Beaufort where both sea ice covered and ice free ocean areas were present during the observation period. Based on the spectral absorption characteristics of snow and clouds (assuming to be dominated by the liquid fraction) a combination of wavelengths was found which allows to separate the impact of clouds and snow surface on the reflected radiation measured above the clouds. While snow grain size dominates the absorption at a wavelength of 1.0 μm, information on cloud optical thickness and cloud particle effective radius can be extracted at wavelengths of 1.7 μm and 2.1 μm, respectively. Based on radiative transfer simulations lookup tables for the retrieval algorithm were calculated and used to estimate the theoretical uncertainties of the retrieval. It was found that using ratios instead of absolute radiances reduces the uncertainties significantly. The new algorithm was applied to a specific case observed during the VERDI campaign where a stratocumulus clouds was located above an ice edge. It could be shown that the method works also over water

  12. The Houston Urban Heat Island: Surface Temperature, Aerosol Mixing Layer Height, and Surface Wind Field Relationships

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Senff, C. J.

    2007-12-01

    Both Dallas and Houston, Texas have comprehensive networks of surface meteorology and chemistry sensors. The similarities of the networks and lack of terrain in Dallas and Houston allow for the comparison of their urban heat islands (UHI). The Dallas UHI, unperturbed by thermal flows driven by the land/sea temperature difference, is a well-defined phenomenon over the summers of 2000-2006. Including all weather conditions, the average nighttime T(urban) - T(rural) temperature difference was between 1.5° and 2.0° C and the average daytime difference was ~ 1.0° C. Analysis of Houston temperature data, however, revealed a different picture due to the bay and gulf breezes. While the Houston UHI was a distinct phenomenon, even when including all weather conditions, the bay or gulf breeze modified the Houston UHI by cooling the city. Average nighttime T(urban) - T(rural) temperature differences in Houston were between 1.75° and 2.75° C. However, during the day, the rural areas to the north and west of the city were often warmer than the downtown area during afternoon hours as a result of the sea breeze. Averaging the Houston T(urban) - T(rural) temperature differences over the summers of 2000-2006 indicated a very small urban-rural temperature difference between 1400 to 1600 LST. In some individual years, such as 2000, 2003, 2005 and 2006, the urban areas were actually cooler than the rural areas, on average, in the mid-afternoon. These years had more bay breeze/gulf breeze activity to cool the urban area. We will also look at how land use, the UHI, and boundary-layer winds impact the horizontal distribution of boundary layer heights over the Houston area, as calculated from backscatter measurements from TOPAZ, an ozone and aerosol profiling lidar deployed on a NOAA Twin Otter in the summer of 2006 during the Texas Air Quality Study II.

  13. Smoking-Associated Disordering of the Airway Basal Stem/Progenitor Cell Metabotype

    PubMed Central

    Deeb, Ruba S.; Walters, Matthew S.; Strulovici-Barel, Yael; Chen, Qiuying; Gross, Steven S.

    2016-01-01

    The airway epithelium is a complex pseudostratified multicellular layer lining the tracheobronchial tree, functioning as the primary defense against inhaled environmental contaminants. The major cell types of the airway epithelium include basal, intermediate columnar, ciliated, and secretory. Basal cells (BCs) are the proliferating stem/progenitor population that differentiate into the other specialized cell types of the airway epithelium during normal turnover and repair. Given that cigarette smoke delivers thousands of xenobiotics and high levels of reactive molecules to the lung epithelial surface, we hypothesized that cigarette smoke broadly perturbs BC metabolism. To test this hypothesis, primary airway BCs were isolated from healthy nonsmokers (n = 11) and healthy smokers (n = 7) and assessed by global metabolic profiling by liquid chromatography–mass spectrometry. The analysis identified 52 significant metabolites in BCs differentially expressed between smokers and nonsmokers (P < 0.05). These changes included metabolites associated with redox pathways, energy production, and inflammatory processes. Notably, BCs from smokers exhibited altered levels of the key enzyme cofactors/substrates nicotinamide adenine dinucleotide, flavin adenine dinucleotide, acetyl coenzyme A, and membrane phospholipid levels. Consistent with the high burden of oxidants in cigarette smoke, glutathione levels were diminished, whereas 3-nitrotyrosine levels were increased, suggesting that protection of airway epithelial cells against oxidative and nitrosative stress is significantly compromised in smoker BCs. It is likely that this altered metabotype is a reflection of, and likely contributes to, the disordered biology of airway BCs consequent to the stress cigarette smoking puts on the airway epithelium. PMID:26161876

  14. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Plaut, J.J.

    2000-01-01

    Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.

  15. Influence of transverse surface waves on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Ash, R. L.; Cary, A. M., Jr.; Bushnell, D. M.

    1977-01-01

    Wavy wall experiments using solid waves and progressive waves have been reported. For this paper, the major effects of waviness of the wall on the flow are identified as due to oscillatory curvature (convex-concavity) and oscillatory acceleration/deceleration of the flow, which imposes a highly nonequilibrium influence upon the turbulence structure. The theoretical analysis in this presentation takes into account proper turbulence modeling (including the nonequilibrium effects) for the wavy wall problem. The analysis proceeds in three stages: (1) inviscid solution for induced pressure due to the physical wall, (2) solution of a turbulent boundary layer with pressure gradients and curvature effects in the modeling from which the profile correction is computed, and (3) induced pressure computations for the corrected profile. The phase shift of pressure perturbations with respect to the physical wall can be predicted, and pressure drag and skin friction drag can be estimated, with nonlinear viscous effects included. Comparison of the theoretical estimates with experimental data are also presented.

  16. Polyethylenimine surface layer for enhanced virus immobilization on cellulose

    NASA Astrophysics Data System (ADS)

    Tiliket, Ghania; Ladam, Guy; Nguyen, Quang Trong; Lebrun, Laurent

    2016-05-01

    Thin regenerated cellulose films are prepared by hydrolysis of cellulose acetate (CA). A polycation, namely polyethylenimine (PEI), is then adsorbed onto the films. From QCM-D analysis, PEI readily adsorbs from a 0.1% w/v solution in NaCl 0.2 M (ca. 100 ng cm-2). Further PEI adsorption steps at higher PEI concentrations induce a linear growth of the PEI films, suggesting that free adsorption sites still exist after the initial adsorption. The adsorbed PEI chains are resistant to variations of the ionic strength up to NaCl 1 M. Promisingly, the adsorption of T4D bacteriophages are 15-fold more efficient onto the PEI-treated, compared to the native regenerated cellulose films, as measured by QCM-D. This confirms the strong affinity between the negatively charged viruses and PEI, even at low PEI concentration, probably governed by strong electrostatic attractive interactions. This result explains the remarkable improvement of the affinity of medical masks for virus droplets when one of their cellulose layers was changed by two-PEI-functionalized cellulose-based filters.

  17. Hematite Surface Activation by Chemical Addition of Tin Oxide Layer.

    PubMed

    Carvalho, Waldemir M; Souza, Flavio L

    2016-09-05

    In this study, the effect of tin (Sn(4+) ) modification on the surface of hematite electrodes synthesized by an aqueous solution route at different times (2, 5, 10, 18, and 24 h) is investigated. As confirmed from X-ray diffraction results, the as-synthesized electrode exhibits an oxyhydroxide phase, which is converted into a pure hematite phase after being subjected to additional thermal treatment at 750 °C for 30 min. The tin-modified hematite electrode is prepared by depositing a solution of Sn(4+) precursor on the as-synthesized electrode, followed by thermal treatment under the same abovementioned conditions. This modification results in an enhancement of the photocurrent response for all hematite electrodes investigated and attains the highest values of around 1.62 and 2.3 mA cm(-2) at 1.23 and 1.4 V versus RHE, respectively, for electrodes obtained in short synthesis times (2 h). Contact angle measurements suggest that the deposition of Sn(4+) on the hematite electrode provides a more hydrophilic surface, which favors a chemical reaction at the interface between the electrode and electrolyte. This result generates new perspectives for understanding the deposition of Sn(4+) on the hematite electrode surface, which is in contrast with several studies previously reported; these studies state that the enhancement in photocurrent density is related to either the induction of an increased donor charge density or shift in the flat-band potential, which favors charge separation.

  18. Effect of tethering on the surface dynamics of a thin polymer melt layer

    SciTech Connect

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; Narayanan, Suresh; Satija, Sushil; Foster, Mark D.

    2016-05-13

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.

  19. Effect of tethering on the surface dynamics of a thin polymer melt layer

    DOE PAGES

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; ...

    2016-05-13

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of “untethered chains” a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. Furthermore, the portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. They provide a route formore » tailoring polymer layer surface properties such as wetting, adhesion and friction, since these hybrid samples contain a covalently tethered layer at the bottom, does not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates.« less

  20. Surface treatment for the atomic layer deposition of HfO2 on silicon

    NASA Astrophysics Data System (ADS)

    Damlencourt, J.-F.; Renault, O.; Martin, F.; Séméria, M.-N.; Billon, T.; Bedu, F.

    2005-04-01

    The atomic layer deposition (ALD) of HfO2 on silicon with a Cl2 surface treatment is investigated by physicochemical and electrical techniques. The specificity of this treatment is to create, on a HF-dipped silicon surface, the nucleation sites necessary for the ALD growth. The growth rates obtained by spectroscopic ellipsometry and total x-ray fluorescence spectroscopy indicate that the nucleation sites (i.e., the -OH groups), which are necessary to perform some bidimensional ALD growth, are generated during this surface treatment. After deposition of thin HfO2 layers (from a few monolayers up to 8.7nm), a very thin parasitic SiOx layer, underneath 1 monolayer of Hf silicate, is observed by x-ray photoelectron spectroscopy. Nevertheless, an equivalent oxide thickness of 1.1nm is obtained with an as-deposited 3.7nm thick HfO2 layer.

  1. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    SciTech Connect

    Kumaki, Masafumi; Steski, Dannie; Kanesue, Takeshi; Ikeda, Shunsuke; Okamura, Masahiro; Washio, Masakazu

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  2. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  3. Identification and characterization of the surface-layer protein of Clostridium tetani.

    PubMed

    Qazi, Omar; Brailsford, Alan; Wright, Anne; Faraar, Jeremy; Campbell, Jim; Fairweather, Neil

    2007-09-01

    Many bacterial species produce a paracrystalline layer, the surface layer, which completely surrounds the exterior of the cell. In some bacteria, the surface layer is implicated in pathogenesis. Two proteins present in cell wall extracts from Clostridium tetani have been investigated and identified one of these has been unambiguously as the surface-layer protein (SLP). The gene, slpA, has been located in the genome of C. tetani E88 that encodes the SLP. The molecular mass of the protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is considerably larger than that predicted from the gene; however the protein does not appear to be glycosylated. Furthermore, analysis of five C. tetani strains, including three recent clinical isolates, shows considerable variation in the sizes of the SLP.

  4. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    NASA Astrophysics Data System (ADS)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  5. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  6. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium.

    PubMed

    Bucior, Iwona; Pielage, Julia F; Engel, Joanne N

    2012-01-01

    Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful

  7. Semi-analytical model for quasi-double-layer surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Shuming; Wang, Yaohua

    2016-11-01

    To realize scale quantum processors, the surface-electrode ion trap is an effective scaling approach, including single-layer, double-layer, and quasi-double-layer traps. To calculate critical trap parameters such as the trap center and trap depth, the finite element method (FEM) simulation was widely used, however, it is always time consuming. Moreover, the FEM simulation is also incapable of exhibiting the direct relationship between the geometry dimension and these parameters. To eliminate the problems above, House and Madsen et al. have respectively provided analytic models for single-layer traps and double-layer traps. In this paper, we propose a semi-analytical model for quasi-double-layer traps. This model can be applied to calculate the important parameters above of the ion trap in the trap design process. With this model, we can quickly and precisely find the optimum geometry design for trap electrodes in various cases.

  8. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua

    2016-09-01

    This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.

  9. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  10. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  11. Surface waves and space charge layers in a spatially inhomogeneous plasma

    SciTech Connect

    Kuzelev, M. V.; Romanov, R. V.; Rukhadze, A. A.; Khundzhua, N. G.

    2007-12-15

    A theory of surface waves in a layer of a spatially inhomogeneous cold electron plasma is presented. Four types of surface waves are revealed, and the conditions under which they can exist are determined. Complex frequency spectra are obtained, and the mechanisms for wave damping by plasma inhomogeneity are discussed.

  12. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers

    PubMed Central

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-01-01

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5 nm to 20 nm, the dipole surface plasmon resonances shifted from 470 nm to 410 nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5 nm to 20 nm, the dipole surface plasmon resonances changed from 450 nm to 490 nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect. PMID:26218501

  13. Experimental Study on Surface Characteristics of Laser Cladding Layer Regulated by High-Frequency Microforging

    NASA Astrophysics Data System (ADS)

    Fan, Xiang Fang; Zhou, Ju; Qiu, Chang Jun; He, Bin; Ye, Jiang; Yuan, Bo; Pi, Zhengqing

    2011-03-01

    High-frequency microforging technology is used to produce micrometer-scale plastic deformation on the surface of material out of the vibration impact of a forging punch, and the cumulative effect of its various frequencies on micrometer-scale plastic deformation can cause changes of surface microstructure and mechanical properties. This study used (1) a self-made machine to treat NiCrBSi alloy, (2) a mechanical comparator and optical microscopy (OM) to study the geometric characteristics of plastic deformation, (3) OM and scanning electric microscopy (SEM) to observe influence on surface microstructure and cracking behavior of the laser cladding layer under microforging, (4) x-ray diffractometer (XRD) to measure the surface residual stress of laser cladding layer before and after forging, and (5) microhardness tester and wearing experimental machine to study changes of microhardness, friction coefficient, and wear characteristics of laser cladding layer after microforging. The results have shown that high-frequency microforging could produce plastic deformation about 150 μm deep on the surface of NiCrBSi alloy clad by laser. Regular dendrite and eutectic crystallization microstructure, which is a peculiar characteristic of the laser cladding layer, was broken into pieces and formed residual compression residual stress on the surface. Resistance to cracking of laser cladding layer improved greatly, microhardness and wearability increased, and the friction coefficient did not under go a noticeable change.

  14. Nanostructure of NiTi surface layers after Ta ion implantation

    NASA Astrophysics Data System (ADS)

    Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu.

    2016-11-01

    The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 and 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.

  15. Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique.

    PubMed

    Lin, Chien-Hong; Cho, Hsien-Lung; Yeh, Yi-Hsing; Yang, Ming-Chien

    2015-12-01

    The surface wettability and anti-protein adsorption of a silicone-based hydrogel that was synthesized by a block copolymer of polydimethylsiloxane (PDMS) and poly (ethylene glycol) methacrylate (PEGMA) was improved via polyelectrolyte multilayer (PEM) immobilization. Polysaccharide PEMs of chitosan (CS, as a positive-charged agent) and hyaluronic acid (HA, as a negative-charged and anti-adhesive agent) were successfully assembled on the PDMS-PU-PEGMA silicone hydrogel in a layer-by-layer (LBL) self-assembly manner. Atomic force microscopy (AFM) and dyeing data verified the progressive buildup of the PEM silicone hydrogel. The results showed that the contact angle of the silicone hydrogel decreased with an increase in the number of PEM grafting layers. Furthermore, after immobilizing five layers of CS/HA, the protein adsorption decreased from 78 ± 11 to 26 ± 4 μg/cm(2) for HSA and from 55 ± 10 to 20 ± 4 μg/cm(2) for lysozymes. This indicates that CS/HA PEM-immobilized silicone hydrogels can resist protein adsorption. Furthermore, these hydrogels were non-cytotoxic according to an in vitro L929 fibroblast assay. Overall, the results demonstrated that the modified silicone hydrogels exhibited hydrophilicity and anti-protein adsorption, as well as relatively high oxygen permeability and optical transparency. Therefore, they would be applicable as a contact lens material.

  16. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans

    SciTech Connect

    Arbing, Mark A.; Chan, Sum; Shin, Annie; Phan, Tung; Ahn, Christine J.; Rohlin, Lars; Gunsalus, Robert P.

    2012-09-05

    Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two 'homologous' tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The {beta}-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.

  17. Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia.

    PubMed

    Sekot, Gerhard; Posch, Gerald; Oh, Yoo Jin; Zayni, Sonja; Mayer, Harald F; Pum, Dietmar; Messner, Paul; Hinterdorfer, Peter; Schäffer, Christina

    2012-06-01

    The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium.

  18. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans.

    PubMed

    Arbing, Mark A; Chan, Sum; Shin, Annie; Phan, Tung; Ahn, Christine J; Rohlin, Lars; Gunsalus, Robert P

    2012-07-17

    Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two "homologous" tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The β-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.

  19. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques.

    PubMed

    Ding, Peishan; Wu, Huimei; Fang, Lei; Wu, Ming; Liu, Rongyu

    2014-07-01

    During infection, recruited phagocytes transmigrate across the epithelium to remove the pathogens deposited on the airway surface. However, it is difficult to directly observe cellular behaviors (e.g., transmigration) in single-cell layer cultures or in live animals. Combining a three-dimensional (3D) cell coculture model mimicking airway infection with time-lapse confocal imaging as a four-dimensional technique allowed us to image the behaviors of macrophages in 3D over time. The airway infection model was moved to a glass-bottomed dish for live-cell imaging by confocal laser scanning microscopy. Using time-lapse confocal imaging, we recorded macrophages transmigrating across the polyethylene terephthalate (PET) membrane of the inserts through the 5-μm pores in the PET membrane. Macrophages on the apical side of the insert exhibited essentially three types of movements, one of which was transmigrating across the epithelial cell monolayer and arriving at the surface of monolayer. We found that adding Staphylococcus aureus to the model increased the transmigration index but not the transmigration time of the macrophages. Only in the presence of S. aureus were the macrophages able to transmigrate across the epithelial cell monolayer. Apical-to-basal transmigration of macrophages was visualized dynamically. We also imaged the macrophages phagocytizing S. aureus deposited on the surface of the monolayer in the airway infection model. This work provides a useful tool to study the cellular behaviors of immune cells spatially and temporally during infection.

  20. Measurements of surface layer of the articular cartilage using microscopic techniques

    NASA Astrophysics Data System (ADS)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  1. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  2. Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins.

    PubMed

    Jing, Hua; Takagi, Junichi; Liu, Jin-huan; Lindgren, Sara; Zhang, Rong-guang; Joachimiak, A; Wang, Jia-huai; Springer, Timothy A

    2002-10-01

    The surface layer of archaeobacteria protects cells from extreme environments and, in Methanosarcina, may regulate cell adhesion. We identify three domain types that account for the complete architecture of numerous Methanosarcina surface layer proteins (SLPs). We solve the crystal structure for two of these domains, which correspond to the two N-terminal domains of an M. mazei SLP. One domain displays a unique, highly symmetrical, seven-bladed beta propeller fold, and the other belongs to the polycystic kidney disease (PKD) superfamily fold. The third domain is predicted to adopt a beta helix fold. These domains have homologs in metazoan cell surface proteins, suggesting remarkable relationships between domains in archaeal SLPs and metazoan cell surface proteins.

  3. A Numerical Model of Viscoelastic Layer Entrainment by Airflow in Cough

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin M.

    2008-07-01

    Coughing is an alternative mode of ensuring mucus clearance in the lung when normal cilia induced flow breaks down. A numerical model of this process is presented with the following aspects. (1) A portion of the airway comprising the first three bronchus generations is modeled as radially reinforced elastic tubes. Elasticity equations are solved to predict airway deformation under effect of airway pressure. (2) The compressible, turbulent flow induced by rapid lung contraction is modeled by direct numerical simulation for Reynolds numbers in the range 5,000-10,000 and by Large Eddy Simulation for Reynolds numbers in the range 5,000-40,000. (3) A two-layer model of the airway surface liquid (ASL) covering the airway epithelial layer is used. The periciliary liquid (PCL) in direct contact with the epithelial layer is considered to be a Newtonian fluid. Forces modeling cilia beating can act upon this layer. The mucus layer between the PCL and the interior airflow is modeled as an Oldroyd-B fluid. The overall computation is a fluid-structure interaction simulation that tracks changes in ASL thickness and airway diameters that result from impulsive airflow boundary conditions imposed at bronchi ends. In particular, the amount of mucus that is evacuated from the system is computed as a function of cough intensity and mucus rheological properties.

  4. Seasonality of submesoscale flows in the ocean surface boundary layer

    NASA Astrophysics Data System (ADS)

    Buckingham, Christian E.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Brannigan, Liam; Lazar, Ayah; Marshall, David P.; George Nurser, A. J.; Damerell, Gillian; Heywood, Karen J.; Belcher, Stephen E.

    2016-03-01

    A signature of submesoscale flows in the upper ocean is skewness in the distribution of relative vorticity. Expected to result for high Rossby number flows, such skewness has implications for mixing, dissipation, and stratification within the upper ocean. An array of moorings deployed in the Northeast Atlantic for 1 year as part of the experiment of the Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS) reveals that relative vorticity is positively skewed during winter even though the scale of the Rossby number is less than 0.5. Furthermore, this skewness is reduced to zero during spring and autumn. There is also evidence of modest seasonal variations in the gradient Rossby number. The proposed mechanism by which relative vorticity is skewed is that the ratio of lateral to vertical buoyancy gradients, as summarized by the inverse gradient Richardson number, restricts its range during winter but less so at other times of the year. These results support recent observations and model simulations suggesting that the upper ocean is host to a seasonal cycle in submesoscale turbulence.

  5. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2013-12-01

    ⪉bel{sec:abstract} Snow surface temperature is a key control on energy exchanges at the snow surface, particularly net longwave radiation and turbulent energy fluxes. The snow surface temperature is in turn controlled by the balance between various external fluxes and the conductive heat flux, internal to the snowpack. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we examine the parameterization of snow surface temperature in single layer snowmelt models from the perspective of heat conduction into a semi-infinite medium. We evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We also introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and Subnivean snow laboratory at Niwot Ridge, CO. These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and

  6. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits

    PubMed Central

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm2; P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm2; > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities. PMID:28018231

  7. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits.

    PubMed

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na(+)/K(+)-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm(2); P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm(2); > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  8. Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters.

    PubMed

    Walker, S G; Smith, S H; Smit, J

    1992-03-01

    Several methods for isolation of the paracrystalline surface (S) layer protein (RsaA) of Caulobacter crescentus CB15A were evaluated. Treatment of cells with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer at pH 2 was the most effective means of selectively removing RsaA from cells, and after neutralization, the protein was capable of reassembling into a paracrystalline structure. Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid treatment could also be used to extract RsaA and yielded protein capable of reassembly. The success of the methods was likely related to disruption of calcium-mediated bonding; calcium was required for recrystallization, while magnesium and strontium ions were ineffective. Antibody was raised against purified RsaA and, along with the S-layer extraction techniques, was used to evaluate 42 strains of caulobacters isolated from a variety of aquatic and wastewater treatment locations. A single characteristic protein could be isolated from the 35 strains that produced an S layer; with one exception, no proteins were extracted from strains that had no S layer. The presumed S-layer proteins ranged in size from 100 to 193 kDa. All of these proteins specifically reacted with anti-RsaA serum by Western immunoblot analysis. In strain CB15A, a specific S-layer-associated oligosaccharide has been proposed to be involved in a calcium-mediated attachment of the S layer to the cell surface. This molecule was detected by Western immunoblotting with a specific antiserum and on polyacrylamide gels stained for polysaccharides. A comparable band was found in all S-layer-producing strains and for most, S-layer-associated oligosaccharide-specific antibody reacted with them in Western analysis. Overall, in freshwater caulobacters at least portions of their S-layer structures appear to be strongly conserved entities, as well as the means of attachment to the cell surface.

  9. The measurement of boundary layers on a compressor blade in cascade. III - Pressure surface boundary layers and the near wake

    NASA Technical Reports Server (NTRS)

    Deutsch, Steven; Zierke, William C.

    1987-01-01

    A one-component laser Doppler velocimeter (LDV) has been used to measure the two-dimensional periodic flow field about a double circular arc, compressor blade in cascade. Eleven boundary layer profiles were taken on both the pressure and suction surfaces of the blade, and two profiles were taken in the near wake. In this part of the study, the detailed LDV studies are described. The measurements indicate that the onset of transition occurs near 60 percent chord. The lack of a logarithmic region in the data measured at 97.9 percent chord indicates that transition is not complete. The thin laminar boundary layers near the leading edge led to some measurement problems, characterized by large turbulence intensities, in using the LDV.

  10. Insight in layer-by-layer assembly of cysteamine and L-cysteine on the copper surface by electrochemistry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Ping; Shen, Shu; Li, Chuan-Chuan; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2015-02-01

    In this work, we examined the relationship between the anticorrosion behavior and the structure of the cysteamine/L-cysteine layer-by-layer coating on the copper surface via the self-assembled monolayers (SAMs) technique with electrochemistry and surface-enhanced Raman scattering (SERS) spectroscopy. SERS results elucidated the layer-by-layer adsorption mechanism of cysteamine/L-cysteine at the copper surface. Electrochemical investigations explored the inhibition behavior of cysteamine/L-cysteine for copper from corrosion with a high protection efficiency of 91.4%.

  11. Effect of surface energy and seed layer annealing temperature on ZnO seed layer formation and ZnO nanowire growth

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sub; Mahmud, Imtiaz; Shin, Han Jae; Park, Min-Kyu; Ranjkesh, Amid; Lee, Do Kyung; Kim, Hak-Rin

    2016-01-01

    We discuss the effects of surface energy and seed layer annealing temperature (Tannealing) on seed layer growth and hydrothermally-grown zinc oxide (ZnO) nanowires (NWs). In this work, by varying the ultraviolet ozone (UVO) treatment times on a silicon surface, the surface energy conditions for the seed layer formation changed and the seed layer was annealed under different Tannealing conditions. Under a lower surface energy condition of the substrate, with increasing Tannealing, the coverage density and the average thickness of the seed layer increased, but island-like growth was observed. This case was inevitably accompanied by an increase in surface roughness, which resulted in agglomerated low density growth of ZnO NWs. After sufficient UVO treatment, hydroxyl groups on the silicon surface activated the ZnO seed layer formation in the chemical reaction and increased the bonding energy between the active nucleation sites of the seed layer and the substrate surface. This ensured higher coverage density of the seed layer with lower surface roughness under the same Tannealing condition, thereby providing the ZnO NW growth with an enhanced density and aspect ratio as well as good crystallinity.

  12. Effects of mixed discrete surface charges on the electrical double layer.

    PubMed

    Jiménez-Ángeles, Felipe

    2012-08-01

    Adsorption of surface coions and charge reversal are induced at the electrical double layer of a wall charged with positive and negative surface sites next to an electrolyte solution. While for the considered surface charge density these effects are found over a wide range of conditions, they are not observed for the typically employed surface models in equivalent conditions. Important consequences in electrophoresis experiments for different colloids with equal effective surface charge density are foreseen. This study is carried out by means of molecular dynamics simulations.

  13. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  14. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C{sub 60} layers

    SciTech Connect

    Tsukanov, D. A. Saranin, A. A.; Ryzhkova, M. V.; Borisenko, E. A.; Zotov, A. V.

    2015-01-05

    Electrical conductance of sodium-doped C{sub 60} ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)√3 × √3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C{sub 60} ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C{sub 60} layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC{sub 60} and Na{sub 2}C{sub 60} compound layers.

  15. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    1983-01-01

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  16. Properties of surface layers on titanium alloys produced by plasma carboxynitriding process

    SciTech Connect

    Wierzchon, T.; Fleszar, A.; Krupaand, D.; Narbutta, L.

    1995-12-31

    The recent rapid progress in technique requires that the titanium alloys should have better resistance to frictional wear and to the action of corrosive agents. These requirements can be satisfied by producing surface layers of specified microstructure and phase composition. The present paper describes a modification of the plasma discharge nitriding treatment of titanium alloys, i.e., the glow discharge assisted oxycarbonitriding, which by introducing oxygen, nitrogen and carbon into the surface zone of the layer (a TI(NCO) type layer) improves its useful properties, primarily the resistance to frictional wear and the resistance to corrosion. This is so since titanium shows a good affinity to oxygen, carbon and nitrogen, whereas the chemical composition of the layer depends on the chemical composition of the low-temperature plasma that forms under the conditions of glow discharge.

  17. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  18. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  19. Effect of Thermal Conductivity on the Knudsen Layer at Ablative Surfaces (Postprint)

    DTIC Science & Technology

    2008-02-13

    Enskog expansion method for solving the Boltz- mann equation22 based on the assumption that the molecular mean-free path is much smaller than...Following Anisimov’s method ,9 let us write the velocity distribution function in the kinetic layer with the evaporating surface in the following form, Fig. 1...kinetic layer and xT= dln T /dx−1 is the characteristic gradient length. Condition 11 is needed for the Chapman–Enskog expansion method and Eq. 7

  20. The influence of surface layer salinity on wintertime convection in Wilkinson Basin, Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Taylor, Maureen H.; Mountain, David G.

    2009-02-01

    Observations suggest that the interannual variability of wintertime convection in Wilkinson Basin (WB) during 1977-2005 is related to the variation in the surface layer salinity in the western Gulf of Maine (wGOM). When the winter convection is stronger (weaker), the resulting deep-layer temperatures in the wGOM are colder (warmer), and the likelihood of deep winter mixing is greater when the wGOM salinities are high. This hypothesis was tested using a one-dimensional mixed layer model to simulate the water column structure over the cooling period. Comparisons were made between the convection potential for the range of observed late-fall salinity values. Model results indicated that the mixed layer depth could deepen by as much as 50% when the surface layer salinities in the wGOM were high. Sensitivity tests revealed that the surface layer salinity variability, and its influence on the water column density structure, was a significant factor, along with local climate variability, in determining the observed time series trend in springtime bottom layer temperatures. Density distributions in the wGOM in high salinity years suggested that winter-cooled water from the adjacent shallow coastal areas could become sufficiently dense to cascade into the deeper layers of WB and enhanced the convective cooling. The interannual variation in wintertime convection and in the resulting density structure has important implications for biological processes. The associated variation in deeper layer temperatures has been shown to influence the spatial distribution, timing of spawning, and growth rates of many demersal and mid-water fishery populations.

  1. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface.

    PubMed

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-11

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  2. Magnetic field-related heating instabilities in the surface layers of the sun and stars

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Rosner, R.; Vaiana, G. S.

    1982-01-01

    The stability of a magnetized low-density plasma to current-driven filamentation instabilities is investigated and the results are applied to the surface layers of stars. Unlike previous studies, the initial (i.e., precoronal) state of the stellar surface atmosphere is taken to be a low-density, optically thin magnetized plasma in radiative equilibrium. The linear analysis shows that the surface layers of main-sequence stars (including the sun) which are threaded by magnetic fields are unstable; the instabilities considered lead to structuring perpendicular to the ambient magnetic fields. These results suggest that relatively modest surface motions, in conjunction with the presence of magnetic fields, suffice to account for the presence of inhomogeneous chromospheric and coronal plasma overlying a star's surface.

  3. Control of the boundary layer separation about an airfoil by active surface heating

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Badavi, Forooz F.; Noonan, Kevin W.

    1988-01-01

    Application of active control to separated flow on the RC(6)-08 airfoil at high angle of attack by localized surface heating is numerically simulated by integrating the compressible two-dimensional nonlinear Navier-Stokes equations solver. Active control is simulated by local modification of the temperature boundary condition over a narrow strip on the upper surface of the airfoil. Both mean and perturbed profiles are favorably altered when excited with the same natural frequency of the shear layer by moderate surface heating for both laminar and turbulent separation. The shear layer is found to be very sensitive to localized surface heating in the vicinity of the separation point. The excitation field at the surface sufficiently altered both the local as well as the global circulation to cause a significant increase in lift and reduction in drag.

  4. INDUCED SPUTUM DERIVES FROM THE CENTRAL AIRWAYS: CONFIRMATION USING A RADIOLABELED AEROSOL BOLUS DELIVERY TECHNIQUE

    EPA Science Inventory

    Indirect evidence suggests that induced sputum derives from the surfaces of the bronchial airways. To confirm this experimentally, we employed a radiolabeled aerosol bolus delivery technique that preferentially deposits aerosol in the central airways in humans. We hypothesized th...

  5. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III, James Edward; Mazur, Eric

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  6. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  7. Scaling laws of passive tracer dispersion in the turbulent surface layer.

    PubMed

    Skvortsov, Alex; Jamriska, Milan; Dubois, Timothy C

    2010-11-01

    Experimental results for passive tracer dispersion in the turbulent surface layer under stable conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of three mechanisms: relative dispersion (celebrated Richardson's mechanism), shear dispersion (particle separation due to variation of the mean velocity field) and specific surface-layer dispersion (induced by the gradient of the energy dissipation rate in the turbulent surface layer). The latter mechanism results in the rather slow (ballistic) law for the mean squared particle separation. Based on a simplified Langevin equation for particle separation we found that the ballistic regime always dominates at large times. This conclusion is supported by our extensive atmospheric observations. Exit-time statistics are derived from the experimental data set and show a reasonable match with the simple dimensional asymptotes for different mechanisms of tracer dispersion, as well as predictions of the multifractal model and experimental data from other sources.

  8. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    SciTech Connect

    Bashchenko, Lyudmila P. Gromov, Viktor E. Budovskikh, Evgenii A. Soskova, Nina A.; Ivanov, Yurii F.

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  9. Synthesis and sorption properties of porous layers of cyclames on a modified polyvinyl chloride surface

    NASA Astrophysics Data System (ADS)

    Tsivadse, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Shapokhina, O. P.

    2012-03-01

    The structure and adsorption properties of the porous layers of synthesized ethanol-cyclames and sodium acetate cyclames on a surface of polyvinyl chloride (PVC) encapsulating fibers of the asbestos tissue of chrysotile asbestos are studied. It is established that PVC is linked to the silicon-oxygen chains of magnesium hydrosilicate; the capsule ensures the stability of the asbestos tissue under the action of the concentrated solutions of acids and alkalis; its exterior reproduces the fiber surface and has a typical microrelief; and there are voids in the layers. We conclude that the specific surface of layers and the volume of the adsorption space are larger than those of the initial fibers, and the statistical capacity upon the adsorption of water vapor and polar and nonpolar organic molecules depends on the nature and affinity for cyclames.

  10. Transport numbers in the surface layers of asymmetric membranes from initial time measurements

    SciTech Connect

    Compan, V.; Lopez, M.L. ); Sorensen, T.S. ); Garrido, J. )

    1994-09-08

    The initial time asymmetry potentials of two ultra filtration membranes (cellulose acetate and polysulfone membranes) were measured in electrochemical cells using Ag/AgCl electrodes and NaCl solutions. The concentration in the two electrode chambers differed slightly by a fixed concentration difference. Either the membranes were brought to equilibrium with the left-hand solution and subsequently exposed to the right-hand solution at the right-hand face, or the procedure was reversed. From such measurements it is possible to evaluate the transport numbers corresponding to each of the two surface layers of the membrane under conditions such that the effects of autoprotolysis of water and of foreign ions may be neglected. These measurements permit a description of each of the surface layers of the membranes and make possible an electrochemical characterization of the asymmetry of ultrafiltration membranes. The asymmetry is given by the difference between surface layer transport numbers. 31 refs., 13 figs., 4 tabs.

  11. The effects of oxalate treatment on the smear layer of ground surfaces of human dentine.

    PubMed

    Pashley, D H; Galloway, S E

    1985-01-01

    The layer was evaluated by scanning electron microscopy and by measurement of hydraulic conductance before and after 2-min topical treatment with potassium chloride, neutral potassium oxalate, half-neutralized oxalic acid or both neutral and acidic oxalates. The treated smear layers were then re-evaluated microscopically and functionally both before and after acid challenge. The layers treated with KCl were not altered either microscopically or functionally and were susceptible to acid etching. Dentine surfaces treated with either oxalate solutions became less permeable and were acid-resistant.

  12. Resonance oscillation damping of a scanning microscope probe by a near-surface viscous liquid layer

    NASA Astrophysics Data System (ADS)

    Maslenikov, I. I.; Reshetov, N. V.

    2016-05-01

    Viscous liquid layer motion between a probe with a tip shaped as a paraboloid of revolution and a surface is considered for semicontact-mode operation of a scanning probe microscope. The presence of a viscous liquid layer leads to energy dissipation and is one of the factors responsible for the decrease in the probe oscillation amplitude. The Reynolds equation for viscous liquid motion is used to obtain an analytic solution to the problem. The formula derived for the loss is compared with experimental data obtained for probes and layers with various curvature radii and viscosities.

  13. Removal of the organic surface layer in combined sewer sediment using a flushing gate.

    PubMed

    Laplace, D; Oms, C; Ahyerre, M; Chebbo, O; Lemasson, J; Felouzis, L

    2003-01-01

    Recent research identified the different sources of pollution of wet weather Combined Sewers Overflows (CSOs): it appeared that the deposits in sewers, and especially an organic layer situated at the water-sediment interface, may contribute 40-70% to the total pollution load of CSOs. Using the cyclic flush Hydrass gate, we generated increased water flows during dry weather. The effects of flushing the deposits have been analysed: the eroded particles sampled during the first flush wave show pollutant characteristics similar to characteristics measured in the organic layer. The organic layer that has formed on the surface of deposits can thus be washed off before rainstorms occur using the cyclic flushing technique.

  14. Surface characterization of artificial corrosion layers on copper alloy reference materials

    NASA Astrophysics Data System (ADS)

    Constantinides, I.; Adriaens, A.; Adams, F.

    2002-04-01

    This paper describes the surface characterization of artificial patina layers on five different copper alloys. The chemical composition of the examined bronzes covers the major families of archaeological copper alloys from antiquity until the Roman period. The patina layers of the five samples were formed under identical conditions by electrochemical means. Light microscopy, scanning electron microscopy with energy dispersive X-ray micro analysis (SEM-EDX) and Fourier transform infrared spectroscopy (FTIR) were used to describe the main properties of the patina layers. The results were interpreted and classified according to an existing corrosion model for copper alloys.

  15. Turbulent dusty boundary layer in an ANFO surface-burst explosion

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.

    1992-01-01

    This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.

  16. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  17. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood

    NASA Astrophysics Data System (ADS)

    Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika

    2017-02-01

    Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.

  18. Zipper and layer-by-layer assemblies of artificial photosystems analyzed by combining optical and piezoelectric surface techniques.

    PubMed

    Porus, Mariya; Maroni, Plinio; Bhosale, Rajesh; Sakai, Naomi; Matile, Stefan; Borkovec, Michal

    2011-06-07

    Quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) were used to study zipper and layer-by-layer multilayer assemblies of artificial photosystems based on naphthalenediimides (NDIs) attached to an oligophenylethynyl (OPE-NDI) or p-oligophenyl (POP-NDI) backbone in dry and wet state. For the most interesting OPE-NDI zipper, one obtains for the dry film a monolayer thickness of 1.85 nm and a density of 1.58 g/cm(3), while the wet film has a larger monolayer thickness of 3.6 nm with a water content of 36%. The dry thickness of a monolayer in OPE-NDI zippers corresponds to about one-half of the length of the OPE scaffold in agreement with the proposed structure of the zipper. The low water content of the OPE-NDI films confirms their compact structure. The dry monolayer thickness of the POP-NDI films of 1.45 nm is smaller than that for the OPE-NDI films, which is probably related to a tilt of the POP scaffolds within the adsorbed layer. The POP-NDI films swell in water much more substantially, suggesting a much more open structure. These features are in excellent agreement with the better photophysical performance of the OPE-NDI assemblies when compared to the POP-NDI films.

  19. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    SciTech Connect

    Tsai, Ming-Hung; Haung, Chiung-Fang; Shyu, Shih-Shiun; Chou, Yen-Ru; Lin, Ming-Hong; Peng, Pei-Wen; and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  20. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  1. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p(++)-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  2. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  3. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  4. Martian Buried Basins and Implications for Characteristics of the Burial Layer and Underlying Surface

    NASA Technical Reports Server (NTRS)

    Sarid, A. R.; Frey, H. V.; Roark, J. H.

    2003-01-01

    Deciphering the cratering record on Mars has been challenging because it may reflect the changes in both the population of impactors and in the resurfacing processes on Mars. However, it is possible to determine the breadth of impactors captured in the cratering record. Extensive areas of resurfacing are of particular interest because they likely contain material from various ages in Martian history. By deducing the impact populations in both surface and underlying layers of terrain, it is possible to determine the age of the layers and constrain theories on the development of the Martian surface. However, to do so requires a method of "seeing" impact features which are no longer visible.

  5. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  6. Surface modification of carbon post arrays by atomic layer deposition of ZnO film.

    PubMed

    Lee, Hyun Ae; Byun, Young-Chul; Singh, Umesh; Cho, Hyoung J; Kim, Hyoungsub

    2011-08-01

    The applicability of atomic layer deposition (ALD) process to the carbon microelectromechanical system technology was studied for a surface modification method of the carbon post electrodes. A conformal coating of the ALD-ZnO film was successfully demonstrated on the carbon post arrays which were fabricated by the traditional photolithography and subsequent two-step pyrolysis. A significant Zn diffusion into the underlying carbon posts was observed during the ALD process. The addition of a sputter-deposited ZnO interfacial layer efficiently blocked the Zn diffusion without altering the microstructure and surface morphology of the ALD-ZnO film.

  7. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    SciTech Connect

    Kopanitsa, D. G. Ustinov, A. M.; Potekaev, A. I.; Klopotov, A. A.; Kopanitsa, G. D.

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  8. The effect of surface layer properties on bendability of ultra-high strength steel

    NASA Astrophysics Data System (ADS)

    Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili

    2016-10-01

    Bendability is an important property for ultra-high strength steel because air-bending is the most common forming process for the material. In this paper the bendability of two ultra-high strength steels with similar mechanical properties but different bendability was investigated using tensile testing with optical strain measurements. The tensile tests were conducted also for specimens cut from the surface layer and the middle layer of the sheet. It was discovered that the mechanical properties of the surface of the sheet affect the bendability in great manner.

  9. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    NASA Astrophysics Data System (ADS)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  10. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    PubMed

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-08

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (<20 nm) and exhibited nanoporous and homogeneous morphology. The electronic and optical properties of the films were investigated by UV-vis spectrophotometry and ultraviolet photoelectron spectroscopy. The films behave as nanoscale heterojunctions, and the presence of WO3 nanoparticles caused a decrease in the optical band gap of the bilayers compared to that of pure LbL TiO2 films. The TiO2/WO3 thin films exhibited high hydrophilicity, which is enhanced after exposition to UV light, and they can efficiently oxidize gaseous acetaldehyde under UV(A) irradiation. Photonic efficiencies of ξ = 1.5% were determined for films constituted by 30 TiO2/WO3 bilayers in the presence of 1 ppm of acetaldehyde, which are ∼2 times higher than those observed for pure LbL TiO2 films. Therefore, these films can act as efficient and cost-effective layers for self-cleaning, antifogging applications.

  11. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    SciTech Connect

    Proslier, T.; Zasadzinski, J.; Moore, J.; Pellin, M.; Elam, J.; Cooley, L.; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  12. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  13. Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  14. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  15. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  16. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers

    NASA Astrophysics Data System (ADS)

    Tetreault-Friend, Melanie; Azizian, Reza; Bucci, Matteo; McKrell, Thomas; Buongiorno, Jacopo; Rubner, Michael; Cohen, Robert

    2016-06-01

    Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (˜20 nm), there is an optimum layer thickness (˜2 μm), for which the CHF value is maximum, corresponding to ˜115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (˜100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (˜1 μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.

  17. A general process for in situ formation of functional surface layers on ceramics.

    PubMed

    Ishikawa, Toshihiro; Yamaoka, Hiroyuki; Harada, Yoshikatsu; Fujii, Teruaki; Nagasawa, Toshio

    2002-03-07

    Ceramics are often prepared with surface layers of different composition from the bulk, in order to impart a specific functionality to the surface or to act as a protective layer for the bulk material. Here we describe a general process by which functional surface layers with a nanometre-scale compositional gradient can be readily formed during the production of bulk ceramic components. The basis of our approach is to incorporate selected low-molecular-mass additives into either the precursor polymer from which the ceramic forms, or the binder polymer used to prepare bulk components from ceramic powders. Thermal treatment of the resulting bodies leads to controlled phase separation ('bleed out') of the additives, analogous to the normally undesirable outward loss of low-molecular-mass components from some plastics; subsequent calcination stabilizes the compositionally changed surface region, generating a functional surface layer. This approach is applicable to a wide range of materials and morphologies, and should find use in catalysts, composites and environmental barrier coatings.

  18. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    NASA Astrophysics Data System (ADS)

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-11-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g-1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g-1 at 1C (250 mA g-1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface.

  19. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation.

    PubMed

    Maibach, Julia; Jeschull, Fabian; Brandell, Daniel; Edström, Kristina; Valvo, Mario

    2017-04-12

    One obstacle in sodium ion batteries is the lack of suitable anode materials. As recently shown, the most common anode material of the state of the art lithium ion batteries, graphite, can be used for sodium ion storage as well, if ether-based electrolyte solvents are used. These solvents cointercalate with the sodium ions leading to the highly reversible formation of ternary graphite intercalation compounds (t-GIC). In order for the solvent cointercalation to work efficiently, it is expected that only a very thin surface layer forms during electrochemical cycling. In this article, we therefore present the first dedicated study of the surface layer evolution on t-GICs using soft X-ray photoelectron spectroscopy. This technique with its inherent high surface sensitivity and low probing depth is an ideal tool to study the underlying interfacial reactions during the sodiation and desodiation of graphite. In this report, we apply this approach to graphite composite electrodes cycled in Na half cells with a 1 M sodium bis(fluorosulfonyl)imide/tetraethylene glycol dimethyl ether (NaFSI/TEG-DME) electrolyte. We have found a surface layer on the cycled electrodes, mainly composed of salt decomposition products and hydrocarbons, in line with irreversible capacity losses observed in the electrochemical cycling. Although this surface layer does not seem to block cointercalation completely, it seems to affect its efficiency resulting in a low Coulombic efficiency of the studied battery system.

  20. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  1. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    PubMed Central

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-01-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178

  2. Gallium nitride surface protection during RTA annealing with a GaOxNy cap-layer

    NASA Astrophysics Data System (ADS)

    Khalfaoui, Wahid; Oheix, T.; Cayrel, F.; Benoit, R.; Yvon, A.; Collard, E.; Alquier, D.

    2016-04-01

    Gallium nitride (GaN) is generally considered a good candidate for power electronic devices such as Schottky barrier diodes (SBDs). Nevertheless, GaN has a strong sensitivity to high temperature treatments and a cap-layer is mandatory to protect the material surface during annealing at high temperature such as post-implantation treatments. In this work, an oxidized gallium nitride layer (GaOxNy) was generated with Oxford PECVD equipment using a N2O plasma treatment to protect the GaN surface during a rapid thermal annealing (RTA), in the range of 1000 °C-1150 °C for a few minutes. Before annealing, c-TLM patterns were processed on the GaOxNy/GaN sample to characterize its sheet resistance. After the N2O plasma treatment, the sample exhibited lower sheet resistance, indicating a better n-type conduction of the GaOxNy layer due to an excess of free carriers, compared to the as-grown GaN layer. The GaOxNy/GaN surface was then annealed at 1150 °C for 3 min and observed through AFM imaging. The surface exhibited a good quality with a low roughness, nevertheless, a low density of small hexagonal pits appeared after annealing. Finally, studies to determine an efficient etching process of the GaOxNy cap-layer were conducted using both chemical and physical approaches. We observed that efficient etching of the layer was achieved using a heated hydrofluoridric acid (HF 25%) solution. To conclude, GaOxNy has proved to be an efficient cap-layer for GaN protection at high temperature.

  3. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets.

  4. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  5. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  6. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius.

    PubMed

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Steudtner, Robin; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2015-02-14

    The complexation of U(vi) at the proteinaceous surface layer (S-layer) of the archaeal strain Sulfolobus acidocaldarius was investigated over a pH range from pH 1.5 to 6 at the molecular scale using time-resolved laser-induced fluorescence spectroscopy (TRLFS) and U L(III)-edge extended X-ray absorption fine structure (EXAFS). The S-layer, which represents the interface between the cell and its environment, is very stable against high temperatures, proteases, and detergents. This allowed the isolation and purification of S-layer ghosts (= empty cells) that maintain the size and shape of the cells. In contrast to many other microbial cell envelope compounds the studied S-layer is not phosphorylated, enabling the investigation of uranyl carboxylate complexes formed at microbial surfaces. The latter are usually masked by preferentially formed uranyl phosphate complexes. We demonstrated that at highly acidic conditions (pH 1.5 to 3) no uranium was bound by the S-layer. In contrast to that, at moderate acidic pH conditions (pH 4.5 and 6) a complexation of U(vi) at the S-layer via deprotonated carboxylic groups was stimulated. Titration studies revealed dissociation constants for the carboxylic groups of glutamic and aspartic acid residues of pK(a) = 4.78 and 6.31. The uranyl carboxylate complexes formed at the S-layer did not show luminescence properties at room temperature, but only under cryogenic conditions. The obtained luminescence maxima are similar to those of uranyl acetate. EXAFS spectroscopy demonstrated that U(vi) in these complexes is mainly coordinated to carboxylate groups in a bidentate binding mode. The elucidation of the molecular structure of these complexes was facilitated by the absence of phosphate groups in the studied S-layer protein.

  7. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-07-01

    Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE-244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1-3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300-1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu2O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu2O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu2O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key corrosion components for both sets of coins with S, most likely as Ag2S, concentrated towards the surface while the Cl, most likely as AgCl, penetrated deeper. Schema to understand the overall chemistry of the corrosion layers present on these silver alloy coins were developed from the equipment limitations encountered and are presented.

  8. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms

    NASA Astrophysics Data System (ADS)

    Thadathil, Pankajakshan; Suresh, I.; Gautham, S.; Prasanna Kumar, S.; Lengaigne, Matthieu; Rao, R. R.; Neetu, S.; Hegde, Akshay

    2016-08-01

    Surface layer temperature inversion (SLTI), a warm layer sandwiched between surface and subsurface colder waters, has been reported to frequently occur in conjunction with barrier layers in the Bay of Bengal (BoB), with potentially commensurable impacts on climate and postmonsoon tropical cyclones. Lack of systematic measurements from the BoB in the past prevented a thorough investigation of the SLTI spatiotemporal variability, their formation mechanisms, and their contribution to the surface temperature variations. The present study benefits from the recent Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoys located in BoB along 90°E at 4°N, 8°N, 12°N, and 15°N over the 2006-2014 period. Analysis of data from these RAMA buoys indicates that SLTI forms after the summer monsoon and becomes fully developed during winter (December-February). SLTI exhibits a strong geographical dependency, with more frequent (80% times during winter) and intense inversions (amplitude, ΔT ˜ 0.7°C) occurring only in the northern BoB compared to central and southern Bay. SLTI also exhibits large interannual and intraseasonal variations, with intraseasonal amplitude significantly larger (ΔT ˜ 0.44°C) than the interannual amplitude (˜0.26°C). Heat budget analysis of the mixed layer reveals that the net surface heat loss is the most dominant process controlling the formation and maintenance of SLTI. However, there are instances of episodic advection of cold, low-saline waters over warm-saline waters leading to the formation of SLTI as in 2012-2013. Vertical processes contribute significantly to the mixed layer heat budget during winter, by warming the surface layer through entrainment and vertical diffusion.

  9. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  10. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  11. Roughness Characterization of and Turbulent Boundary Layer Flow over flat Snow Surfaces

    NASA Astrophysics Data System (ADS)

    Gromke, C.; Guala, M.; Manes, C.; Walter, B.; Lehning, M.

    2009-12-01

    The surface roughness is essential for all turbulent exchange processes within the lower part of the atmospheric boundary layer. Consequently, a proper representation of the surfaces roughness is needed in every mathematical description of near surface mass-, energy- and momentum exchange processes. Considering the vertical mean velocity profile of turbulent boundary layer flow, this is done by assigning an aerodynamic roughness length z0 to the surface. We followed two procedures to describe the roughness of freshly fallen snow surfaces. First, photographs of snow surfaces have been taken and evaluated using digital image analysis giving snow surface contour line coordinates. Applying structure functions to the snow surface coordinates and statistical fitting procedures, resulted in classes of surface characteristic length scales and scaling exponents. These results allow to identify the deposition process of snow fall as scaling exponents corresponded to that of Ballistic Deposition. Moreover, the resulting characteristic length scales can be assigned to typical particle size and aggregation size length scales consistent with results found by Lowe et al. (2007) and Manes et al. (2008). Second, aerodynamic roughness lengths z0 have been estimated from log-law fitting of velocity profiles over the snow surfaces measured in the SLF cold atmospheric boundary layer wind tunnel. The aerodynamic roughness lengths found are in general agreement with available literature data and suggest the presence of aerodynamically rough regimes with flow independent z0. In the synthesis of both approaches, we found evidence for a linear relationship between one class of surface characteristic length scales, which is associated with typical snow particle sizes, and aerodynamic roughness lengths z0. The correlation with the aggregation length scale is weaker for the few (4) samples analyzed thus far. The relatively weak pronounced scale separation between particle and aggregation size

  12. Surface-sensitive reflection-mode EXAFS from layered sample systems: the influence of surface and interface roughness.

    PubMed

    Keil, P; Lützenkirchen-Hecht, D

    2009-07-01

    The calculation of reflection-mode grazing-incidence X-ray absorption spectra from single surfaces and (multi-)layered systems is studied here. In particular, the influence of the surface and interface roughness was investigated in detail. Simulations of grazing-incidence reflection-mode EXAFS spectra using a simple Fresnel theory neglecting any effect of roughness are compared with the Névot-Croce model and the elaborated distorted-wave Born approximation which both include surface and interface roughness. Data are presented for clean gold surfaces, where the strong influence of the surface roughness on the resulting spectra is demonstrated. Furthermore, in the case of layered systems, the influence of both the outer (air or vacuum side) surface roughness and the inner interface roughness on the reflection-mode EXAFS spectra is evaluated. The practical consequences of the observed correlations are discussed, and a quantitative data analysis of a copper sample that was oxidized in ambient air for several months is shown, including the evaluation of specular reflectivity profiles at fixed energy.

  13. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  14. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  15. Minimum Thickness Requirements for Asphalt Surface Course and Base Layer in Airfield Pavements

    DTIC Science & Technology

    2011-08-01

    e.g., Donovan and Tutumluer 2008, 2009; Tao et al. 2010), a waterproof surface, protection from foreign object damage (FOD), and a durable surface...mechanisms for premature deterioration, and quantify the service life of thin asphalt concrete pavements. Six sections with different layer...32,500 7,794 The full-scale test data analysis led to a conclusion that the Department of Defense’s (DoD) minimum asphalt concrete thickness

  16. Helioseismic Imaging of Supergranulation throughout the Sun’s Near-Surface Shear Layer

    NASA Astrophysics Data System (ADS)

    Greer, Benjamin J.; Hindman, Bradley W.; Toomre, Juri

    2016-06-01

    We present measurements of the Sun’s sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10-40 m s-1 (or equivalently 1-3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of downflows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the downflows have a Rossby radius of deformation equal to the depth of the shear layer and we suggest that this equality may not be coincidental.

  17. Finishing and Inspection of Model Surfaces for Boundary Layer Transition Tests

    NASA Technical Reports Server (NTRS)

    Wilkins, Max E.; Darsow, John F.

    1959-01-01

    Techniques which have been used for finishing and quantitatively specifying surface roughness on boundary-layer-transition models are reviewed. The appearance of a surface as far as roughness is concerned can be misleading when viewed either by the eye or with the aid of a microscope. The multiple-beam interferometer and the wire shadow method provide the best simple means of obtaining quantitative measurements.

  18. Atomic Layer Epitaxy of Group IV Materials: Surface Processes, Thin Films, Devices and their Characterization

    DTIC Science & Technology

    1993-12-01

    U AD-A274 325 Semiannual Technical Report U Atomic Layer Epitaxy of Group IV Materials: Surface Processes, Thin Films, Devices and Their... Group IV Materials: Surface Processes, Thin 414v001---01 Films, Devices and Their Characterization 1114SS S. AUTHOS) N00179 Robert F. Davis, Salah... Conformal deposition of SiC has been demonstrated within trenches etched into Si(100) wafers. P-type films have also been achieved using Al as a

  19. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    PubMed Central

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of ‘design-and-build' 2D layered heterojunctions for large-scale exploration and applications. PMID:28146147

  20. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    NASA Astrophysics Data System (ADS)

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-02-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of `design-and-build' 2D layered heterojunctions for large-scale exploration and applications.

  1. Neutrally Stratified Turbulent Ekman Boundary Layer: Universal Similarity for a Transitional Rough Surface

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2009-08-01

    The geostrophic Ekman boundary layer for large Rossby number ( Ro) has been investigated by exploring the role played by the mesolayer (intermediate layer) lying between the traditional inner and outer layers. It is shown that the velocity and Reynolds shear stress components in the inner layer (including the overlap region) are universal relations, explicitly independent of surface roughness. This universality of predictions has been supported by observations from experiment, field and direct numerical simulation (DNS) data for fully smooth, transitionally rough and fully rough surfaces. The maxima of Reynolds shear stresses have been shown to be located in the mesolayer of the Ekman boundary layer, whose scale corresponds to the inverse square root of the friction Rossby number. The composite wall-wake universal relations for geostrophic velocity profiles have been proposed, and the two wake functions of the outer layer have been estimated by an eddy viscosity closure model. The geostrophic drag and cross-isobaric angle predictions yield universal relations, which are also supported by extensive field, laboratory and DNS data. The proposed predictions for the geostrophic drag and the cross-isobaric angle compare well with data for Rossby number Ro ≥ 105. The data show low Rossby number effects for Ro < 105 and higher-order effects due to the mesolayer compare well with the data for Ro ≥ 103.

  2. Surface ventilation of the Black Sea's cold intermediate layer in the middle of the western gyre

    NASA Astrophysics Data System (ADS)

    Gregg, M. C.; Yakushev, E.

    2005-02-01

    Understanding the origin of the shallow temperature minimum, known as the Cold Intermediate Layer (CIL), in the Black Sea has long been hampered by the scarcity of winter observations. During March 2003, we observed a cold-air outbreak over the center of the Black Sea's Western Gyre. Freezing winds drove convection that cooled the surface mixed layer to 6.1°C and deepened it to 40 m, directly ventilating the upper 80% of the CIL, whose lower boundary was at 49 m. Concentrations of dissolved oxygen were 350 μM in the mixed layer and decreased rapidly to 70 μM at the base of the CIL, 9 m below the mixed layer. A few meters deeper, at the top of the Sub-Oxic Layer (SOL), both oxygen and hydrogen sulfide became undetectable (<5 μM and <1 μM, respectively). Microstructure profiles revealed intermittent turbulence in the oxycline below the mixed layer. Average rates of turbulent dissipation were 10-9-10-8 W kg-1. The accompanying mixing produced diapycnal diffusivities, Kρ, that were only (1-4) × 10-6 m2 s-1. Consequently, turbulent fluxes were too weak to renew significantly either the lower 20% of the CIL or the SOL, whose top was 4 m below the bottom of the CIL and hence well-removed from direct surface replenishment.

  3. SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure.

    PubMed

    Du, Jianke; Xian, Kai; Wang, Ji

    2009-01-01

    SH surface acoustic wave (SH-SAW) propagation in a cylindrically layered magneto-electro-elastic structure is investigated analytically, where a piezomagnetic (or piezoelectric) material layer is bonded to a piezoelectric (or piezomagnetic) substrate. By means of transformation, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions imply that the displacements, shear stresses, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The magneto-electrically open and shorted conditions at cylindrical surface are taken to solve the problem. The phase velocity is numerically calculated for different thickness of the layer and wavenumber for piezomagnetic ceramics CoFe(2)O(4) and piezoelectric ceramics BaTiO(3). The effects of magnetic permeability on propagation properties of SH-SAW are discussed in detail. The distributions of displacement, magnetic potential and magneto-electromechanical coupling factor are also figured and discussed.

  4. Effects of surface source/sink distributions on the flux-gradient similarity in the unstable surface layer

    NASA Astrophysics Data System (ADS)

    Huo, Qing; Cai, Xuhui; Kang, Ling; Zhang, Hongsheng; Song, Yu

    2015-01-01

    Based on the micrometeorological measurements at a heterogeneous farmland in the North China Plain, this study focused on the effects of surface source/sink distributions on the flux-gradient similarity theory in the unstable surface layer. Firstly, the quality of the micrometeorological measurements was evaluated by the analysis of the surface energy balance closure and the integral turbulence characteristics. In general, a 22 % deficit of energy balance was found at this site, with the sum of sensible and latent heat being smaller than the available energy. The normalized standard deviations of turbulent quantities behaved in accordance with Monin-Obukhov similarity theory. However, slight departures from the classical formulations might be caused by the surface heterogeneity. Then, the applicability of flux-gradient similarity over the heterogeneous surface was examined. The observed normalized wind gradients agreed with the classical universal function established over homogeneous surface. However, due to the effects of surface source/sink distributions, the observed normalized humidity and temperature gradients deviated from the classical universal functions. Our study shows that the classical universal functions, when adjusted by a coefficient considering the effects of surface heterogeneity, can be utilized to estimate fluxes via gradient method even though over the heterogeneous surface. This adjustment coefficient was found to decrease linearly from unity with the increase of the absolute value of the vertical flux divergence.

  5. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  6. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet; Selby, Gregory V.

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting (T-S) mode shapes due to surface-roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong nonlinear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of nonlinear receptivity effects for certain combinations of surface roughness elements.

  7. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  8. [Investigation of the surface layer of 3D-matrices for tissue engineering].

    PubMed

    Chernonosova, V S; Kvon, R I; Kiseleva, E V; Stepanova, A O; Laktionov, P P

    2017-01-01

    Electrospinning is a convenient and promising manufacturing method a variety of materials for tissue engineering. 3D matrices fabricated by electrospinning from solutions of polycaprolactone with human serum albumin or gelatin in 1,1,1,3,3,3-hexafluoroisopropanol were studied. The microstructure of the 3D matrices and surface of the fibers were investigated using scanning electron microscopy. Protein distribution in the surface layer was studied by modification of protein amino groups with N-(2-hydroxyethyl)phenazine and X-ray photoelectron spectroscopy. It was shown, that concentration of the proteins in the surface layer of fibers exceeded their concentration in the initial electrospun solution up to 12 times and the surface layer was enriched in the protein inversely to the concentration of the protein in solution. The minor part of the proteins was released from fibers during first 30-60 min after swelling in water. Treatment of matrices with proteinase K hydrolyzed about 1/3 of the surface exposed human serum albumin. Thus, both methods can be used to study the surface content of the materials produced by electrospinning from blends of synthetic and natural polymers, however X-ray photoelectron spectroscopy appears to be more convenient and informative.

  9. A unified account of perceptual layering and surface appearance in terms of gamut relativity.

    PubMed

    Vladusich, Tony; McDonnell, Mark D

    2014-01-01

    When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.

  10. The mechanical properties of a surface-modified layer on poly(dimethylsiloxane)

    PubMed Central

    Mills, K. L.; Zhu, Xiaoyue; Takayama, Shuichi; Thouless, M. D.

    2009-01-01

    Surface-modification of the elastomer poly(dimethylsiloxane) by exposure to oxygen plasma for four minutes creates a thin, stiff film. In this study, the thickness and mechanical properties of this surface-modified layer were determined. Using the phase image capabilities of a tapping-mode atomic-force microscope, the surface-modified region was distinguished from the bulk PDMS; specifically, it suggested a graded surface layer to a depth of about 200 nm. Load-displacement data for elastic indentation using a compliant AFM cantilever was analyzed as a plate bending on an elastic foundation to determine the elastic modulus of the surface (37 MPa). An applied uniaxial strain generated a series of parallel nano-cracks with spacing on the order of a few microns. Numerical analyses of this cracking phenomenon showed that the depth of these cracks was in the range of 300–600 nm and that the surface layer was extremely brittle, with its toughness in the range of 0.1–0.3 J/m2. PMID:19779588

  11. The dynamic deformation of a layered viscoelastic medium under surface excitation

    PubMed Central

    Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.

    2015-01-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography (OCT) system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. PMID:25974168

  12. Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments - a review

    SciTech Connect

    Garratt, J.R. )

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in 20 or so atmospheric general circulation models (GCMs) are summarized. only a few of these have had significant sensitivity studies published. The sensitivity studies focus upon the parameterization of land- surface processes and specification of land-surface properties including albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. Few conclusive studies have been carried out on the impact of a gross roughness-length change. A canopy scheme in a GCM ensures the combined impacts of roughness, albedo, and soil-moisture availability upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. Four studies show that replacing tropical forest with a degraded pasture results in decreased evaporation and precipitation, and increased near-surface air temperatures. Sensitivity studies suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Amazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits. Three major tasks for the researcher of development and validation of atmospheric boundary-layer and surface schemes are detailed.

  13. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  14. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.

    PubMed

    Liu, Changsheng; Chen, Chien-Wen; Ducheyne, Paul

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 degrees C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO(4) and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 microm and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  15. Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum.

    PubMed

    Sleytr, U B; Thorne, K J

    1976-04-01

    Clostridum thermosaccharolyticum and Clostridium thermohydrosulfuricum possess as outermost cell wall layer a tetragonal or hexagonal ordered array of macromolecules. The subunits of the surface layer can be detached from isolated cell walls with urea (8M) or guanidine-HCl (4 to 5 M). Triton X-100, dithiothreitol, ethylenediaminetetracetate, and KCl (3 M) had no visible effect on the regular arrays. Sodium dodecyl sulfate-polyacrylamide electrophroesis showed that, in both organisms, the surface layer is composed of glycoprotein of molecular weight 140,000. The glycoprotein from both microorganisms has a predominantly acidic amino acid composition and an acidic isoelectric point after isoelectric focusing on polyacrylamide gels. The glycocomponent is composed of glucose, galactose, mannose, and rhamnose.

  16. The development of self-expanding peripheral stent with ion-modified surface layer

    NASA Astrophysics Data System (ADS)

    Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.

    2016-11-01

    In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.

  17. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    PubMed

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process.

  18. Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate

    SciTech Connect

    Lovygin, M. V. Borgardt, N. I.; Kazakov, I. P.; Seibt, M.

    2015-03-15

    A thin Al layer grown by molecular-beam epitaxy on a misoriented GaAs (100) substrate is studied by transmission electron microscopy. Electron diffraction data and bright-field, dark-field, and high-resolution images show that, in the layer, there are Al grains of three types of crystallographic orientation: Al (100), Al (110), and Al (110)R. The specific structural features of the interfaces between the differently oriented grains and substrate are studied by digital processing of the high-resolution images. From quantitative analysis of the dark-field images, the relative content and sizes of the differently oriented grains are determined. It is found that atomic steps at the substrate surface cause an increase in the fraction and sizes of Al (110)R grains and a decrease in the fraction of Al (100) grains, compared to the corresponding fractions and sizes in the layer grown on a singular substrate surface.

  19. Mass transport in a thin layer of power-law mud under surface waves

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Bai, Yuchuan; Xu, Dong

    2017-02-01

    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  20. The surface layer protein of Bacillus thuringiensis CTC forms unique intracellular parasporal inclusion body.

    PubMed

    Zhu, Chenguang; Yu, Ziniu

    2008-08-01

    Bacillus thuringiensis subsp. finitimus strain CTC forms round parasporal inclusion body. The inclusion body protein gene ctc has been cloned and characterized. Sequence homology analysis reveals that the amino acid sequence of CTC protein shows 87% identity with the surface layer (S-layer) protein Sap (GenBank Z36946) in B. anthracis. In this report, transmission electron microscope observation showed that CTC formed intracellular parasporal inclusion body and sheet structure of S-layer-like protein at the spore phase. Furthermore, the ctc gene was transformed into an acrystalliferous B. thuringiensis strain BMB171. The resulting transformant could form parasporal body which had the same shape and molecular weight of protein with that of B. thuringiensis CTC. These results, together with the sequence homology analysis of ctc gene, confirmed that the unique intracellular parasporal inclusion body of B. thuringiensis was comprised of S-layer protein.

  1. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  2. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  3. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  4. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    SciTech Connect

    Kozelskaya, Anna Kazachenok, Marina Sinyakova, Elena Pochivalov, Yurii Perevalova, Olga; Panin, Alexey Hairullin, Rustam

    2015-10-27

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries Σ7b and Σ11b are unable to be strong obstacles for propagation of dislocations and other twins.

  5. A SIMPLE, EFFICIENT SOLUTION OF FLUX-PROFILE RELATIONSHIPS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    This note describes a simple scheme for analytical estimation of the surface layer similarity functions from state variables. What distinguishes this note from the many previous papers on this topic is that this method is specifically targeted for numerical models where simplici...

  6. Tensile strength of oxygen plasma-created surface layer of PDMS

    NASA Astrophysics Data System (ADS)

    Ohishi, Taiki; Noda, Haruka; Matsui, Tsubasa S.; Jile, Huge; Deguchi, Shinji

    2017-01-01

    Polydimethylsiloxane (PDMS) is a commonly used silicone elastomer with broad applications. Particularly for bioengineering use, PDMS is treated with oxygen plasma with which its surface is oxidized to allow positive interaction with water and live cells. In exchange for the acquisition of hydrophilicity, the oxidized PDMS becomes mechanically brittle so that resulting formation of cracks affects the system in various ways. However, tensile strength (TS), which is an inherent capacity of a material to withstand tensile loads before breaking and is thus a key parameter limiting the use of the material, remains unclear regarding oxidized PDMS. Here we determine the TS of oxide layers created on the surface of PDMS based on micro-stretch experiments using a custom-made device. We show that the surface layer displays cracks upon tensile loading of small strains of within 10% to have a TS of ~10-100 kPa, which is approximately two orders of magnitude lower than that of unmodified PDMS. We further show that the TS sharply decreases with oxidation duration to become highly brittle, while the thickness of the resulting oxide layer finally reaches a plateau even with prolonged plasma treatment. Consequently, we suggest that gradual surface modification of PDMS takes place only within a finite region even with prolonged plasma treatment, as distinct from previously held assumptions. These quantitative data provide critical design information for the oxide layer of plasma-hydrophilized PDMS.

  7. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  8. Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors.

    PubMed

    Länge, Kerstin; Rapp, Michael

    2008-06-15

    Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass adsorption or change of viscoelasticity in the sensing layer. Intermediate hydrogel layers have been proven to be useful to immobilize capture molecules or ligands corresponding to the analyte. However, the SAW signal response strongly depends on the morphology of the hydrogel due to different relative changes of its acoustomechanical parameters such as viscoelasticity and density. In this work five aminodextrans (AMD) and one diamino polyethylene glycol (DA-PEG) were used as intermediate hydrogel layers. Sensors with immobilized streptavidin and samples containing biotinylated bovine serum albumin were used to exemplify affinity assays based on immobilized capture molecules for protein detection. The effects of the three-dimensional AMDs and the two-dimensional (2D) DA-PEG on the SAW signal response were investigated. The signal height decreased with increasing molar mass and increasing amount of immobilized AMD. Consequently, thin hydrogel layers are ideal to obtain optimum signal responses in this type of assay, whereas it is not necessarily a 2D hydrogel that gives the best results.

  9. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  10. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    SciTech Connect

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  11. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  12. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis

    PubMed Central

    Depluverez, Sofie; Devos, Simon; Devreese, Bart

    2016-01-01

    Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems. PMID:27625638

  13. Surface Layer turbulence profiling with the SL-SLODAR and LUSCI at ESO Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Sarazin, M.; Char, F.; González Ávila, C.; Navarrete, J.; Tokovinin, A.; Wilson, R. W.; Butterley, T.

    2014-10-01

    In the context of the Surface Layer investigation at ESO Paranal Observatory, a Surface Layer Slope Detection And Ranging (SL-SLODAR) instrument prototype has been used at Paranal during 2012, while Lunar Scintillometer (LuSci) measurements campaigns are being carried out since 2008. Simultaneous Surface Layer profiling data from the two instruments are analysed in order to compare the two instruments to enforce their reliability and finely characterize the Paranal Surface Layer profile. BETA is the slope of the turbulence power spectrum delivered by the SL-SLODAR. It is intended purely as a diagnostic tool to indicate whether the Cn2 profile can be trusted. When BETA is significantly less than 3.667 (Kolmogorov law value) this generally indicates that the wind speed is low and the data sets are too short to fully sample the low frequency components of the turbulence. Around the Kolmogorov value, the integrals form the SL-SLODAR and LuSci are pretty much the same. This is valid also in the first 20 m above ground only (SL). Both instruments agree very well when the wind speed on the Paranal platform is higher than 3 m/s. This last result suggests that wind speed higher than 3 m/s allow to have more reliable turbulence profile measurements from both instruments for further analyses of the Surface Layer. Furthermore, the disagreement of the two instruments in connection with wind speed lower than 3 m/s also suggests that the wind speed is a critical parameter to be taken into account before the treatment of the data.

  14. The boundary layer over turbine blade models with realistic rough surfaces

    NASA Astrophysics Data System (ADS)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  15. Thermal modeling of the near surface layer at the Beagle 2 landing site in Isidis Planitia

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Benkhoff, J.

    2003-04-01

    Beagle 2, the Lander of the ESA Mars Express mission, is scheduled to land in the Isidis Planitia basin in January 2004. The lander has a strong focus on exobiological studies. Therefore the prime question is, whether the landing site might provide an environment suitable for hosting exobiological activity. In order to address this question we have performed a detailed thermal modeling of the near surface temperature distribution using the Mars Surface Layer Thermal Model (MaSLaTMo) recently developed in our group. The model includes a detailed treatment of the energy transfer into the surface, including energy transported by gas flux and energy used to sublimate and provided by recondensation of volatiles within the surface. It allows to study the thermal and physical propertied of a near surface layer on Mars with a high spatial resolution. For the study presented here we have performed a 1D analysis up to a depth of 50m below the surface. We have assumed a porous base material layer with a constant heat conductivity, covered by a dust layer on the surface. The thermal properties of the dust layer have been derived from the the albedo and thermal inertia measurements as provided by the TES instrument on Mars Global Surveyor (Mellon 2000, Christensen 2001). A number of scenarios have been studied for the thermal and physical properties of the base material. As expected this has a significant effects on the temperature distribution in the first 1-2m below the surface. The modeling has shown that the first few centimeters below the surface are highly thermal stressed and therefore are most probably a hostile environment for biological activity. However the temperature gradient with depth is very steep and in only 10cm depth the temperatures do not vary more than approximately 10K over an annual cycle with a medium value of 200-230K depending on the thermal and physical parameters of the base material and dust cover. Farmer et al. (1979) noted, that subsurface pore

  16. Grafting of PMMA brushes layer on Cu surface to create a stable superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Cai, Junyan; Li, Ming

    2016-11-01

    In this paper, poly(methyl methacrylate) (PMMA) brushes were grafted on Cu micro-cone structured substrate by a simple one-step cathodic electro-initiated polymerization method which was carried out in aqueous solution at room temperature in the open air. The PMMA brushes were continuous, uniform and thickness-controllable, and it covalently bonded to the Cu surface. In the brushes, nitrophenyl moieties acted as cross-linker between PMMA chains. After removed from the solution followed by treated with water, the PMMA brushes (basically a hydrophilic material)/micro-cone structured Cu surface was hydrophilic with water contact angle (CA) of 74.4°. However, it exhibited superhydrophobicity by treating it in the acetone. The conversion from hydrophilic surface to superhydrophobic one may due to rearrangement of nitrophenyl moieties and PMMA chains at the topmost of the brushes. In addition, its water CA increased with grafting time of the brushes from 145° to about 166°, because there was no available space in thinner film for group reorientation. The surface was conversed to hydrophilic again after treated with hot water, but it was still superhydrophobic after treated in water at room temperature. This revealed that the group reorientation also easily occurred in hot water like in the acetone. More importantly, the surface retained good superhydrophobic stability in acidic environment and in long-time storage. Furthermore, the superhydrophobic surface had excellent resistance that can provide effective protection for the bare Cu substrate.

  17. Inversion layer on the Ge(001) surface from the four-probe conductance measurements

    SciTech Connect

    Wojtaszek, Mateusz; Lis, Jakub Zuzak, Rafal; Such, Bartosz; Szymonski, Marek

    2014-07-28

    We report four-probe conductance measurements with sub-micron resolution on atomically clean Ge(001) surfaces. A qualitative difference between n-type and p-type crystals is observed. The scaling behavior of the resistance on n-type samples indicates two-dimensional current flow, while for the p-type crystal a three-dimensional description is appropriate. We interpret this in terms of the formation of an inversion layer at the surface. This result points to the surface states, i.e., dangling bonds, as the driving force behind band bending in germanium. It also explains the intrinsic character of band bending in germanium.

  18. Engineering topological superconductors using surface atomic-layer/molecule hybrid materials

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2015-08-01

    Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.

  19. Optical properties of surface layers of Co-based amorphous metallic alloys

    NASA Astrophysics Data System (ADS)

    Poperenko, L. V.; Kravets, V. G.; Lysenko, S. I.; Vinnichenko, K. L.

    2005-04-01

    The modification of roughness and structure of the surface layers of a cobalt-based amorphous metal alloy after thermal treatment at elevated and cryogenic temperatures and under the influence of an external magnetic field is studied by light scattering and atomic force microscopy. The parameters of the surface roughness were calculated from the measured indicatrices of light scattering. It is shown that heating of the metal ribbons to T=350-475 °C partially relieves stresses arising in the course of the ribbon preparation and increases the surface roughness compared to freshly prepared samples.

  20. Reduction of microbial contamination on the surfaces of layer houses using slightly acidic electrolyzed water.

    PubMed

    Ni, L; Cao, W; Zheng, W C; Zhang, Q; Li, B M

    2015-11-01

    The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efficiency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m(2), respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative

  1. Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications

    PubMed Central

    Sotiri, Irini; Overton, Jonathan C; Waterhouse, Anna

    2016-01-01

    Surface fouling and undesired adhesion are nearly ubiquitous problems in the medical field, complicating everything from surgeries to routine daily care of patients. Recently, the concept of immobilized liquid (IL) interfaces has been gaining attention as a highly versatile new approach to antifouling, with a wide variety of promising applications in medicine. Here, we review the general concepts behind IL layers and discuss the fabrication strategies on medically relevant materials developed so far. We also summarize the most important findings to date on applications of potential interest to the medical community, including the use of these surfaces as anti-thrombogenic and anti-bacterial materials, anti-adhesive textiles, high-performance coatings for optics, and as unique platforms for diagnostics. Although the full potential and pitfalls of IL layers in medicine are just beginning to be explored, we believe that this approach to anti-adhesive surfaces will prove broadly useful for medical applications in the future. PMID:27022136

  2. Tunable surface electron spin splitting with electric double-layer transistors based on InN.

    PubMed

    Yin, Chunming; Yuan, Hongtao; Wang, Xinqiang; Liu, Shitao; Zhang, Shan; Tang, Ning; Xu, Fujun; Chen, Zhuoyu; Shimotani, Hidekazu; Iwasa, Yoshihiro; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2013-05-08

    Electrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices.

  3. Uniform coating of high aspect ratio surfaces through atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Nolan, Mark; Povey, Ian; Elliot, Simon; Cordero, Nicolas; Pemble, Martyn; Shortt, Brian; Bavdaz, Marcos

    2012-09-01

    Innovative X-ray ray imaging optic technologies, Silicon Pore Optics for example, are often characterised by large length to pore diameter aspect ratios. Such ratios present challenges to the deposition of reflectivity enhancing metallic coatings onto the mirror substrate surfaces. The technique of Atomic Layer Deposition (ALD) is perfectly suited to addressing this challenge due to the inherent self-limiting nature of the process which yields highly uniform coatings with surface roughness compatible with the requirements of high resolution X-ray imaging. We describe the results of a project aimed at developing an optimised ALD reactor and process to coat the internal wall surfaces of high aspect ratio samples with a uniform and smooth metallic layer. For sample substrates of aspect ratio ~100 the reactor has realised an average gradient of 1nm in the thickness of an Al2O3 coating on the internal walls of a 76 mm long glass tube.

  4. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  5. Surface thermodynamic homeostasis of salivary conditioning films through polar-apolar layering.

    PubMed

    van der Mei, Henny C; White, Don J; Atema-Smit, Jelly; Geertsema-Doornbusch, Gésinda I; Busscher, Henk J

    2012-02-01

    Salivary conditioning films (SCFs) form on all surfaces exposed to the oral cavity and control diverse oral surface phenomena. Oral chemotherapeutics and dietary components present perturbations to SCFs. Here we determine the surface energetics of SCFs through contact angle measurements with various liquids on SCFs following perturbations with a variety of chemotherapeutics as well as after renewed SCF formation. Sixteen-hour SCFs on polished enamel surfaces were treated with a variety of chemotherapeutics, including toothpastes and mouthrinses. After treatment with chemotherapeutics, a SCF was applied again for 3 h. Contact angles with four different liquids on untreated and treated SCF-coated enamel surfaces were measured and surface free energies were calculated. Perturbations either caused the SCF to become more polar or more apolar, but in all cases, renewed SCF formation compensated these changes. Thus, a polar SCF attracts different salivary proteins or adsorbs proteins in a different conformation to create a more apolar SCF surface after renewed SCF formation and vice versa for apolar SCFs. This polar-apolar layering in SCF formation presents a powerful mechanism in the oral cavity to maintain surface thermodynamic homeostasis--defining oral surface properties within a narrow, biological range and influencing chemotherapeutic strategies. Surface chemical changes brought about by dietary or chemotherapeutic perturbations to SCFs make it more polar or apolar, but new SCFs are rapidly formed compensating for changes in surface energetics.

  6. The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation.

    PubMed

    Shimotahira, Naohiro; Oogai, Yuichi; Kawada-Matsuo, Miki; Yamada, Sakuo; Fukutsuji, Kenji; Nagano, Keiji; Yoshimura, Fuminobu; Noguchi, Kazuyuki; Komatsuzawa, Hitoshi

    2013-04-01

    Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called "red complex," which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis.

  7. The Surface Layer of Tannerella forsythia Contributes to Serum Resistance and Oral Bacterial Coaggregation

    PubMed Central

    Shimotahira, Naohiro; Oogai, Yuichi; Kawada-Matsuo, Miki; Yamada, Sakuo; Fukutsuji, Kenji; Nagano, Keiji; Yoshimura, Fuminobu; Noguchi, Kazuyuki

    2013-01-01

    Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called “red complex,” which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis. PMID:23357386

  8. A novel ellipsometer for measuring thickness of oxide layer on the surface of silicon sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Li, Yan

    2008-03-01

    The Avogadro constant NA is used as one of the several possible routes to redefinition of the kilogram in metrology today. Usually in order to accurately determine NA, the volume of a perfect single crystal silicon sphere of nearly 1 kg mass should be measured with a high relative uncertainty, i.e. about 1×10 -8. However, the oxide layer grown on the surface of the silicon sphere causes a remarkable systematic difference between the measured and real diameters. A novel ellipsometer has been developed to determine the thickness of the oxide layer accurately and automatically. The arrangement of this instrument is suitable for measuring the layer on the sphere surface. What's more, the measuring is faster by optimizing the parameters and developing the algorithm of calculating the thickness and refractive index of the oxide layer. The preliminary simulation result has present. Thus, the uncertainty of the diameter measurement caused by the oxide layer can be observably reduced. And the further improving of this ellipsometer is discussed in the end.

  9. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  10. Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela

    2007-09-01

    The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.

  11. Frication Property of Mo-Cr-Infiltrated Steel Layer by Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Xu, Jinyong; Kang, Zhicheng; Liu, Yanping; Wang, Jianzhong; Gao, Yuan; Xu, Zhong

    2006-07-01

    Introduced in this article is the technique to acquire a high performance strengthened layer on carbon steel samples, namely, plasma alloying on the surface of Q235 steel and heat treatment technology. With this technique the alloying elements of Mo, Cr, and C can be obtained on the surface of Q235 steel samples. The content of the constituent elements is approximately up to high speed steels (HSS). The surface property required for the HSS after hardening and low tempering is attained. In the test, the alloying elements Mo and Cr were penetrated into the Q235 steel samples by glow discharge sputtering so that the content of the alloyed layer on the surface of the Q235 steel samples was about 20% Mo and 10% Cr. Two kinds of experiments were conducted. One was to carry out ultra-saturated carburization. The alloyed layer's composition was similar to molybdenum HSS with surface carburizing of more than 2.0%. The carbides of the alloyed layer were compact, uniform and disperse without a coarse eutectic ledeburite structure. The another was ion nitriding after the alloying elements of Mo and Cr were penetrated. The first process included hardening with low tempering and hardening with cryogenic treatment for 2 hr and low tempering. The second one was ion nitriding only. It was found that the surface hardness after cryogenic treatment is up to 1600 HV, much higher than that without cryogenic treatment. The abrasion test results indicate that, without the penetrated alloy elements Mo and Cr and without cryogenic treatment and ion nitriding, the friction coefficient is lower by one order of magnitude. The change in relative resistance is similar to the change in the friction coefficient, but without a proportional relationship.

  12. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    PubMed

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.

  13. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  14. Helioseismic Imaging of Supergranulation throughout the Sun's Near-Surface Shear Layer

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley; Greer, Benjamin; Toomre, Juri

    2016-05-01

    We present measurements of the Sun's sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3-D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10 - 30 m s-1 (or equivalently 1 - 3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of down flows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the transit time is roughly equal to a solar rotation period and we suggest this equality may not be coincidental.

  15. Surface fluxes of trace gases derived from convective-layer profiles

    SciTech Connect

    Davis, K.J.

    1992-01-01

    Non-local gradient and variance functions relating the surface and entrainment fluxes of a passive scalar to the mean mixing ratio and variance profiles in the cloud-free, convective boundary layer have been determined from large eddy simulations. These functions can be used to calculate the surface and entrainment fluxes of trace gases over a large area, given profile measurements within the convective boundary layer. This dissertation develops the convective layer gradient technique for estimating fluxes and demonstrates two potentially valuable applications. An attempt is made to verify the large eddy simulation gradient functions with aircraft observations from the First ISLSCP Field Experiment and the San Joaquin Valley Air Quality Study. Results show general agreement with the simulated gradient functions but precise comparison is made difficult by scatter in the aircraft derived functions. The gradient functions are used to estimate forest emissions of nonmethane hydrocarbons using tethered balloon profiles. Mean emission estimates from profiles collected during the Amazon Boundary Layer Experiment 2A and the Rural Oxidants in the Southern Environment I experiment show good agreement with estimates made from budget arguments. Daytime isoprene emissions from the dry season Amazon are estimated. Summer, daytime isoprene, alpha-pinene, and beta-pinene emissions from an Alabama pine-oak forest are estimated. This technique provides a valuable means of measuring biogenic hydrocarbon emissions, a precursor to photochemical ozone production. The convective layer gradient technique holds the potential for remote estimation of surface fluxes over large areas using remote profiling technology, such as Differential Absorption Lidar (DIAL). The minimum signal-to-noise ratio for successful ozone deposition estimates using this DIAL system and the convective layer gradient technique was less than the signal-to-noise level in the analyzed DIAL observations.

  16. Faraday instability of a two-layer liquid film with a free upper surface

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2016-06-01

    We study the linear stability of a laterally extended flat two-layer liquid film under the influence of external vertical vibration. The first liquid layer rests on a vibrating solid plate and is overlaid by a second layer of immiscible fluid with deformable upper surface. Surface waves, excited as the result of the Faraday instability, can be characterized by a time-dependent relative amplitude of the displacements of the liquid-liquid and the liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic) mode and the antiphase displacement corresponds to the varicose thinning mode. We numerically determine the stability threshold in the vibrated two-layer film and compute the dispersion relation together with the decay rates of the surface waves in the absence of vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the system with heavier fluid on top of a lighter fluid is analyzed.

  17. New strategy to create ultra-thin surface layer of grafted amphiphilic macromolecules.

    PubMed

    Lazutin, A A; Govorun, E N; Vasilevskaya, V V; Khokhlov, A R

    2015-05-14

    It was found first that macromolecules made of amphiphilic monomer units could form spontaneously an ultra-thin layer on the surface which the macromolecules are grafted to. The width of such layer is about double size of monomer unit consisting of hydrophilic A (repulsive) and hydrophobic (attractive) B beads. The hydrophilic A beads are connected in a polymer chain while hydrophobic B beads are attached to A beads of the backbone as side groups. Three characteristic regimes are distinguished. At low grafting density, the macromolecules form ultra-thin micelles of the shape changing with decrease of distance d between grafting points as following: circular micelles-prolonged micelles-inverse micelles-homogeneous bilayer. Those micelles have approximately constant height and specific top-down A-BB-A structure. At higher grafting density, the micelles start to appear above the single bilayer of amphiphilic macromolecules. The thickness of grafted layer in these cases is different in different regions of grafting surface. Only at rather high density of grafting, the height of macromolecular layer becomes uniform over the whole grafting surface. The study was performed by computer modeling experiments and confirmed in framework of analytical theory.

  18. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  19. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Plaut, J. J.

    1999-01-01

    The martian polar layered deposits (PLD) are probably the best source of information about the recent climate history of Mars, but their origin and the mechanisms of accumulation are still a mystery. The polar layers are sedimentary deposits that most planetary scientists believe are composed of water ice and varying amounts of wind-blown dust, but their composition is poorly constrained. Interpretation of the observed polar stratigraphy in terms of global climate changes is complicated by the significant difference in surface ages between the north and south PLD inferred from crater statistics. While no craters have been found in the north PLD, the surface of the south PLD appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. Using medium-resolution Viking imagery, Plaut et al. found at least 15 impact craters in the southern layered deposits and concluded that their surface is 120 +/- 40 million years old. In contrast, Cutts et al. found no fresh impact craters larger than about 300 meters in summertime images of the north polar layered deposits. Additional information is contained in the original extended abstract.

  20. Influence of Surface-Based Stable Layer Development on Asian Dust Behaviour Over Tokyo

    NASA Astrophysics Data System (ADS)

    Tsunematsu, Nobumitsu; Iwai, Hironori; Ishii, Shoken; Yasui, Motoaki; Murayama, Yasuhiro; Mizutani, Kohei

    2009-05-01

    The relationship between local meteorological fields and the behaviour of airborne Asian dust that arrived in the Tokyo metropolitan area on 1 April 2007 with the passage of a synoptic-scale cold front has been investigated through Doppler lidar observations, experiments using a regional atmospheric numerical model, and analyses of surface and upper-air meteorological observations. Results of the Doppler lidar observations showed that the Asian dust passed above the metropolitan area with strong south-westerly winds with speeds of 15-26 m s-1. Meteorological fields reproduced by the numerical experiments showed the development of a surface-based stable layer in the metropolitan area caused by nocturnal radiational cooling near the ground surface and south-westerly warm air advection at upper levels. The blocking effect of the mountainous region located to the west of the metropolitan area induced an area of stagnant air inside the metropolitan area and promoted the stable layer development. Although strong downdrafts prevailed in the upper air, the airborne Asian dust did not spread to the ground when the stable layer was formed. These results strongly indicate that the developed stable layer prevented strong downdrafts from spreading to the ground, acting as an obstacle to the transport of the Asian dust particles from the upper air towards the ground. This is considered to be one of the main causes of the low appearance frequency of Asian dust phenomena near the ground in the Tokyo metropolitan area and eastern Japan.

  1. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  2. Identification of Dimeric Methylalumina Surface Species during Atomic Layer Deposition Using Operando Surface-Enhanced Raman Spectroscopy.

    PubMed

    Hackler, Ryan A; McAnally, Michael O; Schatz, George C; Stair, Peter C; Van Duyne, Richard P

    2017-02-15

    Operando surface-enhanced Raman spectroscopy (SERS) was used to successfully identify hitherto unknown dimeric methylalumina surface species during atomic layer deposition (ALD) on a silver surface. Vibrational modes associated with the bridging moieties of both trimethylaluminum (TMA) and dimethylaluminum chloride (DMACl) surface species were found during ALD. The appropriate monomer vibrational modes were found to be absent as a result of the selective nature of SERS. Density functional theory (DFT) calculations were also performed to locate and identify the expected vibrational modes. An operando localized surface plasmon resonance (LSPR) spectrometer was utilized to account for changes in SER signal as a function of the number of ALD cycles. DMACl surface species were unable to be measured after multiple ALD cycles as a result of a loss in SERS enhancement and shift in LSPR. This work highlights how operando optical spectroscopy by SERS and LSPR scattering are useful for probing the identity and structure of the surface species involved in ALD and, ultimately, catalytic reactions on these support materials.

  3. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  4. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  5. Observations of a shock and a recombination layer at the contact surface of Comet Halley

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Altwegg, K.; Balsiger, H.; Fuselier, S. A.; Ip, W.-H.

    1989-01-01

    Results are presented on observations in the vicinity of the contact surface of the Comet Halley, obtained by the Giotto ion mass spectrometer, with emphasis placed on two specific events observed in this region on the inbound pass. One was a burst of energized ions (about 20 eV) of 2-sec duration observed two seconds before the contact surface was encountered, which coincided with a pulse in magnetic field strength interpreted by Neubauer (1988) as a fast-mode shock traveling away from the contact surface. The second was a sharp spike in ion densities observed at the contact surface by the mass analyzer, centered approximately at the inner edge of the contact surface. This ion-density spike is interpreted as a boundary layer into which the radial ionospheric flow enters and piles up; the density increase is limited by recombination.

  6. Uptake and transport of B12-conjugated nanoparticles in airway epithelium☆

    PubMed Central

    Fowler, Robyn; Vllasaliu, Driton; Falcone, Franco H.; Garnett, Martin; Smith, Bryan; Horsley, Helen; Alexander, Cameron; Stolnik, Snow

    2013-01-01

    Non-invasive delivery of biotherapeutics, as an attractive alternative to injections, could potentially be achieved through the mucosal surfaces, utilizing nanoscale therapeutic carriers. However, nanoparticles do not readily cross the mucosal barriers, with the epithelium presenting a major barrier to their translocation. The transcytotic pathway of vitamin B12 has previously been shown to ‘ferry’ B12-decorated nanoparticles across intestinal epithelial (Caco-2) cells. However, such studies have not been reported for the airway epithelium. Furthermore, the presence in the airways of the cell machinery responsible for transepithelial trafficking of B12 is not widely reported. Using a combination of molecular biology and immunostaining techniques, our work demonstrates that the bronchial cell line, Calu-3, expresses the B12-intrinsic factor receptor, the transcobalamin II receptor and the transcobalamin II carrier protein. Importantly, the work showed that sub-200 nm model nanoparticles chemically conjugated to B12 were internalised and transported across the Calu-3 cell layers, with B12 conjugation not only enhancing cell uptake and transepithelial transport, but also influencing intracellular trafficking. Our work therefore demonstrates that the B12 endocytotic apparatus is not only present in this airway model, but also transports ligand-conjugated nanoparticles across polarised epithelial cells, indicating potential for B12-mediated delivery of nanoscale carriers of biotherapeutics across the airways. PMID:24008152

  7. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis.

    PubMed

    Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani

    2013-07-09

    A three-wavelength angular-scanning surface plasmon resonance based analysis has been utilized for characterizing optical properties of organic nanometer-thick layers with a wide range of thicknesses. The thickness and refractive index were determined for sample layers with thicknesses ranging from subnanometer to hundreds of nanometers. The analysis approach allows for simultaneous determination of both the refractive index and thickness without prior knowledge of either the refractive index or the thickness of the sample layers and without the help of other instruments, as opposed to current methods and approaches for characterizing optical properties of organic nanometer-thick layers. The applicability of the three-wavelength angular-scanning surface plasmon resonance approach for characterizing thin and thick organic layers was demonstrated by ex situ deposited mono- and multilayers of stearic acid and hydrogenated soy phosphatidylcholine and in situ layer-by-layer deposition of two different polyelectrolyte multilayer systems. In addition to the three-wavelength angular-scanning surface plasmon resonance approach, another surface plasmon resonance optical phenomenon, i.e., the surface plasmon resonance waveguide mode, was utilized to characterize organic sample layers whose thicknesses border the micrometer scale. This was demonstrated by characterizing both in situ layer-by-layer deposited polyelectrolyte multilayer systems and an ex situ deposited spin-coated polymer layer.

  8. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    NASA Astrophysics Data System (ADS)

    Mertens, M.; Mohr, M.; Brühne, K.; Fecht, H. J.; Łojkowski, M.; Święszkowski, W.; Łojkowski, W.

    2016-12-01

    In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in microbiological investigations. Multi-terminated arrays show identical surface roughness and at the same time differences in hydrophobicity. These arrays have been visualized with scanning electron microscopy (SEM) and lateral force microscopy (LFM).

  9. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.

    PubMed

    Chibowski, Emil J

    2005-05-30

    Using the literature data of the advancing and receding contact angles for water, diiodomethane and hexadecane measured on various hydrophobic silyl layers (mostly monolayers) produced on silicon wafers the apparent surface free energies gamma(s)(tot) were calculated by applying new model of the contact angle hysteresis interpretation. It was found that, for the same silyl layer, the calculated gamma(s)(tot) values to some degree depended on the probe liquid used. Therefore, thus calculated the surface free energies should be considered as apparent ones. Moreover, also the values of the dispersion component gamma(s)(d) of these layers depend on the probe liquid used, but to a less degree. This must be due to the strength of the force field originating from the probe liquid and the spacing between the interacting molecules. The relationships between gamma(s)(tot) and gamma(s)(d) are discussed on the basis of the equations derived. It may be postulated that applying proposed model of the contact angle hysteresis and calculating the apparent total surface free energies and the dispersion contributions better insight into wetting properties of the silyled silicon surface can be achieved.

  10. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages.

    PubMed

    Collins, Laura E; Lynch, Mark; Marszalowska, Izabela; Kristek, Maja; Rochfort, Keith; O'Connell, Mary; Windle, Henry; Kelleher, Dermot; Loscher, Christine E

    2014-05-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhoea worldwide, and if the bacterium is not cleared effectively it can pose a risk of recurrent infections and complications such as colitis, sepsis and death. In this study we demonstrate that surface layer proteins from the one of the most frequently acquired strains of C. difficile, activate mechanisms in murine macrophage in vitro that are associated with clearance of bacterial infection. Surface layer proteins (SLPs) isolated from C. difficile induced the production of pro-inflammatory cytokines and chemokines and increased macrophage migration and phagocytotic activity in vitro. Furthermore, we also observed up-regulation of a number of cell surface markers on the macrophage, which are important in pathogen recognition and antigen presentation. The effects of SLPs on macrophages were reversed in the presence of a p38 inhibitor, indicating the potential importance of this signalling protein in how SLP activates the immune system. In conclusion this study shows that surface layer proteins from a common strain of C. difficile can activate a clearance response in macrophage and suggests that these proteins are important in clearance of C. difficile infection. Understanding how the immune system clears C. difficile infection could offer important insights for new treatment strategies.

  11. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  12. Cooling of the magma ocean due to accretional disruption of the surface insulating layer

    NASA Technical Reports Server (NTRS)

    Sasaki, Sho

    1992-01-01

    Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.

  13. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  14. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  15. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  16. IMMUNO-ELECTRON MICROSCOPE ANALYSIS OF THE SURFACE LAYERS OF THE UNFERTILISED SEA URCHIN EGG. II. LOCALISATION OF SURFACE ANTIGENS.

    PubMed

    BAXANDALL, J; PERLMANN, P; AFZELIUS, B A

    1964-12-01

    The immunological properties of the surface layers of Paracentrotus lividus eggs have been studied further by using ferritin-labelled antibody to localise specific antigenic sites. In order to detect a wider spectrum of antigenic determinants, several antisera against egg and jelly substance have been employed in combination with absorption procedures using lyophilised antigen. This use of absorbed antisera was made feasible by adding ferritin label in a second antiserum layer of ferritin-anti-gamma-globulin. Eggs were treated with antibody for short periods to detect antigenic sites without incurring structural changes (shown in previous paper) resulting from long antibody treatment. Unspecific ferritin uptake, found in pinocytotic vesicles and yolk granules, is considered in relation to yolk formation. The jelly layer, found to be immunologically heterogeneous, included one component interacting with antijelly gamma-globulin and one with antiegg gamma-globulin. The vitelline membrane proved to be rich in egg antigens (heat-stable and heat-labile). The role of this layer in specificity of fertilisation, parthenogenetic activation, and the possibility of being analogous to a basement membrane are discussed. Few antigenic sites were found on the plasma membrane with antiegg gamma-globulin. This gamma-globulin resulted in some specific labelling of cortical granules and its action is considered in relation to the permeability properties of the egg.

  17. Precipitation Hardening of Laser-Surfaced Layer of Maraging Alloy at the Surface of Steel 3Kh3M3F

    NASA Astrophysics Data System (ADS)

    Stavrev, D. S.; Shcherbakov, V. S.

    2016-09-01

    The structure and fracture behavior of a layer of maraging alloy deposited by laser surfacing on steel 3Kh3M3F is studied in the initial condition and after precipitation hardening at 550 and 600°C. Microhardness is measured in layer cross sections, and fractures after surfacing and aging are analyzed in an electron microscope.

  18. Linking boundary-layer circulations and surface processes during FIFE89. Part 1: Observational analysis

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Wai, Mickey M.-K.; Cooper, Harry J.; Rubes, Michael T.; Hsu, Ann

    1994-01-01

    Surface, aircraft, and satellite observations are analyzed for the 21-day 1989 intensive field campaign of the First ISLSCP Field Experiment (FIFE) to determine the effect of precipitation, vegetation, and soil moisture distributions on the thermal properties of the surface including the heat and moisture fluxes, and the corresponding response in the boundary-layer circulation. Mean and variance properties of the surface variables are first documented at various time and space scales. These calculations are designed to set the stage for Part 2, a modeling study that will focus on how time-space dependent rainfall distribution influences the intensity of the feedback between a vegetated surface and the atmospheric boundary layer. Further analysis shows strongly demarked vegetation and soil moisture gradients extending across the FIFE experimental site that were developed and maintained by the antecedent and ongoing spatial distribution of rainfall over the region. These gradients are shown to have a pronounced influence on the thermodynamic properties of the surface. Furthermore, perturbation surface wind analysis suggests for both short-term steady-state conditions and long-term averaged conditions that the gradient pattern maintained a diurnally oscillating local direct circulation with perturbation vertical velocities of the same order as developing cumulus clouds. Dynamical and scaling considerations suggest that the embedded perturbation circulation is driven by surface heating/cooling gradients and terrain ef fects rather than the manifestation of an inertial oscillation. The implication is that at even relatively small scales (less than 30 km), the differential evolution in vegetation density and soil moisture distribution over a relatively homogenous ecotone can give rise to preferential boundary-layer circulations capable of modifying local-scale horizontal and vertical motions.

  19. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  20. Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Li, Yin; Tang, Xiao; Hussain, G.; Zhao, Haofeng; Li, Qingfang; Adedotun, Adetunla

    2015-01-01

    Plasma surface tungstenizing was performed on Ti-Al-Nb substrate using the double-glow plasma surface alloying technique. The microstructure and composition of the tungstenized layer were determined by scanning electron microscope, X-ray diffraction and X-ray photoelectron spectroscopy. The mechanical properties of the substrate and the tungstenized layer were characterized by the dynamic micro-hardness and the elastic modulus. The results showed that the tungstenized layer was comprised of three distinct sub-layers namely sediment layer, transition layer and diffusion layer, with a total layer thickness of over 25 μm. The concentration of the tungsten decreased gradually as the layer depth increased and the continuous change in the tungsten content affects the mechanical properties of the alloyed layer. The dynamic micro-hardness and elastic modulus of the tungstenized layer and substrate were investigated by the depth-sensing nano-indentation measurement under different conditions. According to the findings, the values of dynamic micro-hardness exhibited no significant dependence on the indentation load. However, the elastic modulus of the tungstenized layer tended to decrease as the indentation load was increased. Furthermore, the dynamic micro-hardness and elastic modulus curves of the tungstenized layer revealed a pattern similar to the concentration distribution of the tungsten. Both surface micro-hardness and elastic modulus of plasma alloyed surface gradually decreased with the increase of indentation depth, most probably because of the three different regions in the alloyed layer. As for the mechanical properties, the tungstenized layer exhibited significantly higher dynamic micro-hardness and elastic modulus than the substrate. As the cyclic loading-unloading curves of the substrate and the tungstenized layer showed, the elastic recovery and uniform plastic deformation decrease and the fatigue damage of the tungstenized layer is lower than that of the

  1. Possibilities of tribospectroscopy using two indenters for identifying defects in the surface layer

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.

    2016-11-01

    Currently, for the study of the topography of material surface with nanoscale roughness tribospectroscopy is used as a method based on the analysis of the forces acting between two loading indenters and the sample surface. Recently, it has been shown theoretically that it is possible to determine nanodefects in the surface layer based on the analysis of the frictional force during sliding of one indenter. In this article, based on computer simulation by the method of movable cellular automata, we investigated the possibility of the tribospectroscopic method to identify nanodefects in the surface layer using a system of two indenters. For this purpose, we compared Fourier spectra for the normal and tangential components of the forces of interaction of both indenters for the cases of a defect-free sample and a sample with nanoscale plane cracks perpendicular to the studied surface. The data obtained from the numerical simulation showed that the presence of the second indenter provides additional useful information about the state of the sample surface, which is reflected in the estimates of the spectral density of the time history of the corresponding forces.

  2. Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials.

    PubMed

    Sedykh, A E; Gordeev, E G; Pentsak, E O; Ananikov, V P

    2016-02-14

    Graphene can efficiently shield chemical interactions and gradually decrease the binding to reactive defect areas. In the present study, we have used the observed graphene shielding effect to control the reactivity patterns on the carbon surface. The experimental findings show that a surface coating with a tiny carbon layer of 1-2 nm thickness is sufficient to shield the defect-mediated reactivity and create a surface with uniform binding ability. The shielding effect was directly observed using a combination of microscopy techniques and evaluated with computational modeling. The theoretical calculations indicate that a few graphene layers can drastically reduce the binding energy of the metal centers to the surface defects by 40-50 kcal mol(-1). The construction of large carbon areas with controlled surface reactivity is extremely difficult, which is a key limitation in many practical applications. Indeed, the developed approach provides a flexible and simple tool to change the reactivity patterns on large surface areas within a few minutes.

  3. Surface reactions during the atomic layer deposition of high-kappa dielectrics on III-V semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ye, Liwang

    The quality of the dielectric/semiconductor interface is one of the most critical parameters for the fabrication of high-speed and low-power-consumption III-V semiconductor based metal-oxide-semiconductor field effect transistors (MOSFETs), as it determines the device performance. This dissertation contains investigations of the deposition and interface of binary oxide films on GaAs(100) and InAs(100) surfaces aiming at understanding the removal of the surface native oxides during certain atomic layer deposition (ALD) processes. To accomplish that, two complementary experimental approaches have been used. Initially, films were deposited in a conventional ALD reactor and characterized ex situ using spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The systems examined were Ta2O 5 on GaAs(100) surfaces from pentakis(dimethylamino) tantalum (Ta(N(CH 3)2)5, PDMAT) and TiO2 on GaAs(100) and InAs(100) surfaces from tetrakis(dimethylamino) titanium (Ti(N(CH 3)2)4, TDMAT). For these systems, deposition at the optimal ALD temperature resulted in practically sharp interfaces. Indium oxides were found to diffuse through ~ 6 nm of TiO2 film and accumulate on the topmost film layer. For the ALD of Ta2O5 on GaAs(100) surfaces, native oxide removal was enhanced at deposition temperatures above the ALD window; for ALD of TiO2 on both GaAs(100) and InAs(100) surfaces, native oxide removal was enhanced as the deposition temperatures increased up to 250 A°C, while oxidation of the interface was observed for deposition above 300 A°C due to the formation of noncontinuous films. To elucidate the surface reactions occurring during the deposition, an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy apparatus was constructed and used to investigate the surface reactions during the ALD of TiO2 and HfO2 on GaAs(100) surfaces. The

  4. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  5. The effect of multiple layers of linens on surface interface pressure: results of a laboratory study.

    PubMed

    Williamson, Rachel; Lachenbruch, Charlie; Vangilder, Catherine

    2013-06-01

    Underpads and layers of linens are frequently placed under patients who are incontinent, have other moisture-related issues, and/or are immobile and cannot reposition independently. Many of these patients are also at risk for pressure ulcers and placed on pressure-redistribution surfaces. The purpose of this study was to measure the effects of linens and incontinence pads on interface pressure. Interface sacral pressures were measured (mm Hg) using a mannequinlike pelvic indenter that has pressure transducers integrated into the unit and is covered with a soft flesh-like elastomer. The indenter was loaded to simulate a median-weight male (80 kg/176 lb), and the testing was performed at head-of bed (HOB) angles of 0°, 30°, and 45°. Two different surfaces, a high performance low-air-loss support (LAL) surface and a standard foam support surface, were used and covered with a fitted sheet (FS) only or a combination of the FS and various incontinence pads and transfer sheets. Linen combinations typically used for relatively immobile patients (n = 4), moisture management (n = 4), and moisture management and immobility (n = 1) were tested, as was the heavy use of linens/pads (nine layers, n = 1). All combinations were tested 10 times at HOB angles of 0°, 30°, and 45°. The highest pressure observed was recorded (peak pressure). Ninety five percent (95%) confidence interval (CI) surrounding the mean of the 10 trials for each combination was calculated using the t-distribution; differences between means for all surface combinations were determined using one-way ANOVA with follow-up Fisher Hayter test. Results indicated that each incontinence pad, transfer sheet, or combination of linens significantly increased the mean peak sacral pressure when compared to a single FS on both the low-air-loss surface and the foam surface, regardless of the head-of-bed angle. The magnitude of peak sacral interface pressure increase for the LAL surface at 30° head-of-bed angle was 20

  6. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3

    PubMed Central

    Fukunishi, Kana; Miyakubi, Kana; Hatanaka, Mitsuko; Otsuru, Natsumi; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2014-01-01

    The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses. PMID:24623719

  7. Propagation characteristics of surface plasmon polariton modes in graphene layer with nonlinear magnetic cladding

    NASA Astrophysics Data System (ADS)

    Bhagyaraj, C.; Ajith, R.; Vincent, Mathew

    2017-03-01

    We study the dispersion characteristics of surface plasmon polariton modes guided through a graphene monolayer bounded with a nonlinear magnetic cladding and linear substrate. Nonlinear cladding with permeability μ ={μ }{{l}}+{μ }{{nl}}| {\\boldsymbol{H}}{| }2 provides an extra hand for controlling guided mode behavior externally. The presence of graphene layer enhances nonlinearity in the waveguide configuration thereby changing position of the self-focused peak of field components in the nonlinear medium. Also the propagation length of the fundamental mode strongly depends on the chemical potential of graphene layer. An appreciable increase in propagation length with increase in input power is observed. Phase constant and propagation length of the fundamental mode are calculated as a function of input mode power and graphene layer chemical potential over midinfrared frequencies.

  8. A new correlation effect in the Helmholtz and surface potentials of the electrical double layer.

    PubMed

    González-Tovar, Enrique; Jiménez-Angeles, Felipe; Messina, René; Lozada-Cassou, Marcelo

    2004-05-22

    The restricted primitive model of an electrical double layer around a spherical macroparticle is studied by using integral equation theories and Monte Carlo simulations. The resulting theoretical curves for the Helmholtz and surface potentials versus the macroparticle charge show an unexpected positive curvature when the ionic size of uni- and divalent electrolyte species is increased. This is a novel effect that is confirmed here by computer experiments. An explanation of this phenomenon is advanced in terms of the adsorption and layering of the electrolytic species and of the compactness of the diffuse double layer. It is claimed that the interplay between electrostatic and ionic size correlation effects, absent in the classical Poisson-Boltzmann view, is responsible for this singularity.

  9. A lag model for turbulent boundary layers developing over rough bleed surfaces

    NASA Technical Reports Server (NTRS)

    Lee, J.; Sloan, M. L.; Paynter, G. C.

    1993-01-01

    Boundary layer mass removal (bleed) through spanwise bands of holes on a surface is used to prevent or control separation and to stabilize the normal shock in supersonic inlets. The addition of a transport equation lag relationship for eddy viscosity to the rough wall algebraic turbulence model of Cebeci and Chang was found to improve agreement between predicted and measured mean velocity distributions downstream of a bleed band. The model was demonstrated for a range of bleed configurations, bleed rates, and local free stream Mach numbers. In addition, the model was applied to the boundary layer development over acoustic lining materials for the inlets and nozzles of commercial aircraft. The model was found to yield accurate results for integral boundary layer properties unless there was a strong adverse pressure gradient.

  10. Growth and characterization of organic layers deposited on porous-patterned Si surface

    NASA Astrophysics Data System (ADS)

    Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz

    2016-12-01

    The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.

  11. Fluoride and mineral redeposition in outermost layers of bovine enamel during surface softening.

    PubMed

    Rentsch, H; Merte, K; Zschau, H E; Plier, F; Otto, G; Vogt, J

    1990-01-01

    Mineral and fluoride concentration changes in the outermost layers of bovine enamel (depth less than 1 micron) were measured after demineralization in unbuffered hydroxyethylcellulose gels of pH = 5.4 with an intrinsic fluoride concentration of about 0.02 ppm. A combination of two nuclear analytical techniques, Rutherford backscattering spectrometry (RBS) and proton-induced gamma ray emission spectrometry (PIGE) was applied to determine the Ca/P molar ratios and F depth profiles, respectively. When compared to deeper layers, a reduced loss of mineral content is observed for the depth range of about 0-0.1 micron corresponding well with a F concentration increase from about 500 to about 5,000 ppm in the same range. These findings are interpreted as a fluoride-induced partial remineralization of the superficial surface layer during an overall demineralization process.

  12. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development

  13. Mechanism of interfacial layer suppression after performing surface Al(CH3)3 pretreatment during atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Xu, Min; Zhang, Chi; Ding, Shi-Jin; Lu, Hong-Liang; Chen, Wei; Sun, Qing-Qing; Zhang, David Wei; Wang, Li-Kang

    2006-11-01

    During atomic layer deposition of high permittivity (high-k) metal oxide gate dielectrics, an interfacial layer (IL) containing SiOx between high-k dielectric and Si substrate is almost unavoidable. However, an Al(CH3)3 (TMA) pretreatment for 3600s on H-terminated silicon surface can effectively reduce the interfacial layer from 1.7to0.5nm during atomic layer deposition of aluminum oxide. Interestingly, the surface TMA pretreatment increases the thickness of the initial IL during atomic layer deposition, but it greatly suppresses the final IL after 35 growth cycles. A reasonable mechanism is proposed based on the steric hindrance effect cofunctioning with the interfacial Al catalyzing effect.

  14. Chemical composition and structure of the TiNi alloy surface layer formed after electron-beam melting and crystallization

    NASA Astrophysics Data System (ADS)

    Neiman, Aleksei A.; Meisner, Lyudmila L.; Lotkov, Alexander I.; Koval, Nikolai N.; Teresov, Anton V.; Semin, Viktor O.; Gudimova, Ekaterina Yu.

    2016-11-01

    This paper presents the results of the chemical composition and structure of the NiTi surface layer after the single and ten-fold electron-beam treatment. Auger electron spectroscopy reveals that the electron-beam treatment of the NiTi surface layer results in its enrichment with carbon and oxygen and much greater depth extension than the thickness of the natural oxide layer of NiTi. Transmission electron microscopy shows the multilayer structure of the surface layer formed due to melting and crystallization.

  15. The influence of surface forces on the formation of structural peculiarities in the boundary layers of liquids and boundary phases

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.

    1992-05-01

    This article, mentioning the influence of surface forces on the formation and the properties of diffuse adsorption layers on the boundary of solution-substrate, is mainly about the influence of surface forces on the structure and properties of boundary layers of the liquid. It deals with the phenomena of formation of homogeneous liquid crystalline layers of nonmesogenic liquids, boundary phases and the properties of boundary nonhomogeneous layers of water and alcohols. In the conclusion the data on surface forces are given with the radius of action up to 100 μm, which are generated by leucocytes of blood plasma with the addition of a concentrated salt solution.

  16. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  17. Optimised 3D surface measurement of hydroxyapatite layers using adapted white light scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pecheva, Emilia; Montgomery, Paul; Montaner, Denis; Pramatarova, Lilyana; Zanev, Zenko

    2006-09-01

    Biomineralization is intensively studied at present due to its importance in the formation of bones, teeth, cartilage, etc. Hydroxyapatite is one of the most common natural biomaterials and the primary structural component of bones and teeth. We have grown bio-like hydroxyapatite layers in-vitro on stainless steel, silicon and silica glass by using a biomimetic approach (immersion in a supersaturated aqueous solution resembling the ion composition of human blood plasma). Using classical techniques such as stylus profiling, AFM or SEM, it was found difficult, destructive or time-consuming to measure the topography, thickness and profile of the heterogeneous, thick and rough hydroxyapatite layers. White light scanning interferometry, on the other hand, has been found to be particularly useful for analyzing such bio-like layers, requiring no sample preparation and being rapid and non-destructive. The results have shown a typical layer thickness of up to 20 μm and a rms roughness of 4 μm. The hydroxyapatite presents nonetheless a challenge for this technique because of its semi-translucence, high roughness and the presence of cavities within its volume. This results in varying qualities of fringe pattern depending on the area, ranging from classical fringes on smooth surfaces, to complex speckle-like fringes on rough surfaces, to multiple fringe signals along the optical axis in the presence of buried layers. In certain configurations this can affect the measurement precision. In this paper we present the latest results for optimizing the measurement conditions in order to reduce such errors and to provide additional useful information concerning the layer.

  18. Fine-scale wavelike structures in the surface-based turbulent layer at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Petenko, Igor; Argentini, Stefania; Kallistratova, Margarita; Mastrantonio, Giangiuseppe; Casasanta, Giampietro; Sozzi, Roberto; Conidi, Alessandro

    2016-04-01

    A long-term experiment to study the spatial and temporal structure of thermal turbulence in the extremely stable boundary layer was carried out at the Concordia station, Dome C in Antarctica during 2012. The atmospheric boundary layer at this site during the winter is strongly stably stratified with temperature inversions reaching a strength 35°C in 100-200 m. Despite high static stability, intense thermal turbulence occurs sometimes in the surface layer extending from the surface to heights of a few - a few tens of metres. The spatial and temporal structure of the turbulence was observed by an advanced high-resolution sodar in the height range from 2 m to 150 m with vertical resolution ≈ 2 m and time resolution of 2 s. The variation and statistics of the depth of the surface-based turbulent layer (STL) is determined for the entire winter period. The median value of the STL depth is found to be l6 m, while the depth of the inversion layer is of 125 m. The wind speed is a parameter that affects the formation and development of the STL. Typical patterns of turbulence structure as shown by the sodar echograms are analysed and classified. Wave activity within the STL is observed for a significant part of the time; the time scales that characterize these undulation processes are determined. Often regular trains of waves with periods of 30-60 s and a periodicity of 5-10 minutes are observed. Some characteristics of the wavelike structures (form, spatial and temporal scales) are determined and the correlation with meteorological parameters is analysed. The Richardson number estimated using the vertical profiles of temperature and wind velocity from the 45-m meteorological tower, indicates that in some cases significant turbulence may occurr even when Ri is larger than the critical value equal to 0.25.

  19. Modeling three-dimensional surface morphology of biocake layer in a membrane bioreactor based on fractal geometry.

    PubMed

    Zhao, Leihong; Yang, Lining; Lin, Hongjun; Zhang, Meijia; Yu, Haiying; Liao, Bao-Qiang; Wang, Fangyuan; Zhou, Xiaoling; Li, Renjie

    2016-12-01

    While the adsorptive fouling in membrane bioreactors (MBRs) is highly dependent of the surface morphology, little progress has been made on modeling biocake layer surface morphology. In this study, a novel method, which combined static light scattering method for fractal dimension (Df) measurement with fractal method represented by the modified two-variable Weierstrass-Mandelbrot function, was proposed to model biocake layer surface in a MBR. Characterization by atomic force microscopy showed that the biocake surface was stochastic, disorder, self-similarity, and with non-integer dimension, illustrating obvious fractal features. Fractal dimension (Df) of sludge suspension experienced a significant change with operation of the MBR. The constructed biocake layer surface by the proposed method was quite close to the real surface, showing the feasibility of the proposed method. It was found that Df was the critical factor affecting surface morphology, while other factors exerted moderate or minor effects on the roughness of biocake layer.

  20. ISEE particle observations of surface waves at the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Couzens, D.; Parks, G. K.; Anderson, K. A.; Lin, R. P.; Reme, H.

    1985-01-01

    The dual-spacecraft ISEE mission provides a unique opportunity to study the motions of the magnetopause and adjacent boundary layer. By comparing high-time-resolution energetic particle data from ISEE 1 to those of ISEE 2, the velocity and orientation of the inner boundary of the boundary layer can be determined. Two cases are presented. In one, tailward propagating sinusoidally shaped surface waves with a wavelength in excess of 42,000 km and an amplitude of approximately 5000 km are found. In the other, surface waves are indicated with a wavelength of approximately 40,000 km and an amplitude of approximately 11,000 km having steepened nonsinusoidal shapes. The existence of such large-amplitude waves suggests that the particle dynamics near the magnetopause support nonlinear processes.

  1. Investigations of surface acidities and pore size distributions of selected pillared layered materials

    SciTech Connect

    Odom, M.A.; Wade, K.L.; Morgan, D.M.; White, J.L.; Schroeder, N.C.

    1996-10-01

    Pillared Layered Materials (PLMs) are being designed for a variety of applications. Currently, PLMs are being prepared in this laboratory for the selective sorption of radionuclides from liquid-nuclear wastes. It is important to have a good understanding of characteristics, such as pore size distributions and surface acidities, in order to tailor there sizes and environments are manipulated by varying the layered materials and pillaring species used for preparing the PLM. A variety of techniques have been employed to study these characteristics. For this study the pore size distributions were derived by determining the sorption of hydrocarbons of various sizes and shapes into the PLMs. The surface acidities were probed by sorbing basic species, such as ammonia and pyridine, and assessing the interactions with the acid sites using FTIR spectroscopy.

  2. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  3. Titanium casting: the surface reaction layer of castings obtained using ultra-low-temperature molds.

    PubMed

    Kikuchi, H; Onouchi, M; Hsu, H C; Kurotani, T; Nishiyama, M

    2001-03-01

    To examine whether the surface reaction layer of titanium castings can be reduced by lowering the mold temperature during casting, we cast titanium at three mold temperatures, including an ultra-low temperature produced by cooling the mold with liquid nitrogen, then measured the tensile strength and elongation of the castings. The titanium was cast using a centrifugal casting machine, and the molds were incinerated according to the manufacturers' instructions. Castings were then made with the molds at 200 degrees C, 600 degrees C, and an ultra-low temperature (-196 degrees C). The castability of titanium cast in the mold at the ultra-low temperature was good. The Vickers hardness near the surface layer of castings decreased as the mold temperature decreased.

  4. Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine).

    PubMed

    Madkour, Sherif; Yin, Huajie; Füllbrandt, Marieke; Schönhals, Andreas

    2015-10-28

    Specific heat spectroscopy was used to study the dynamic glass transition of ultrathin poly(2-vinyl pyridine) films (thicknesses: 405-10 nm). The amplitude and the phase angle of