Sample records for airway tree segmentation

  1. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  2. Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David

    2009-02-01

    Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.

  3. Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs

    PubMed Central

    Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.

    2014-01-01

    A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692

  4. An iterative method for airway segmentation using multiscale leakage detection

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.

    2017-02-01

    There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.

  5. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  6. Three-dimensional murine airway segmentation in micro-CT images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.

    2007-03-01

    Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.

  7. Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Hoffman, Eric A.; Sieren, Jered P.; Saha, Punam K.

    2018-03-01

    Numerous large multi-center studies are incorporating the use of computed tomography (CT)-based characterization of the lung parenchyma and bronchial tree to understand chronic obstructive pulmonary disease status and progression. To the best of our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. A failure in even a fraction of segmentation results necessitates manual revision of all segmentation masks which is laborious considering the thousands of image data sets evaluated in large studies. In this paper, we present a novel CT-based airway tree segmentation algorithm using topological leakage detection and freeze-and-grow propagation. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity-based connectivity and a freeze-and-grow propagation algorithm to iteratively grow the airway tree starting from an initial seed inside the trachea. It begins with a conservative parameter and then, gradually shifts toward more generous parameter values. The method was applied on chest CT scans of fifteen subjects at total lung capacity. Airway segmentation results were qualitatively assessed and performed comparably to established airway segmentation method with no major visual leakages.

  8. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  9. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  10. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  11. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  12. A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree

    PubMed Central

    LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742

  13. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  14. Segmentation and visualization of tissues surrounding the airway in children via MRI

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Udupa, Jayaram K.; Odhner, Dewey; McDonough, Joseph M.; Arens, Raanan

    2003-05-01

    Continuing with our previous work of the segmentation and delineation of upper airway, the purpose of this work is to segment and delineate soft tissue organs surrounding the upper airway, such as adenoid, tonsils, fat pads and tongue, with the further goal of studying the relationship among the architectures of these structures, for understanding upper airway disorders in children. We use two MRI protocols, Axial T2 (used for adenoid, tonsil, and fat pads) and sagittal T1 (for tongue), to gather information about different aspects of the tissues. MR images are first corrected for background intensity variation and then the intensities are standardized. All segmentations are achieved via fuzzy connectedness algorithms with only limited operator interaction. A smooth 3D rendition of the upper airway and its surrounding tissues is displayed. The system has been tested utilizing 20 patient data sets. The tests indicate a 95% or better precision and accuracy for segmentation. The mean time taken per study is about 15 minutes including operator interaction time and processing time for all operations. This method provides a robust and fast means of assessing sizes, shapes, and the architecture of the tissues surrounding the upper airway, as well as providing data sets suitable for use in modeling studies of airflow and mechanics.

  15. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  16. Airway extraction from 3D chest CT volumes based on iterative extension of VOI enhanced by cavity enhancement filter

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku

    2017-03-01

    Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.

  17. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  18. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  19. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  20. Anatomy, pathology, and physiology of the tracheobronchial tree: emphasis on the distal airways.

    PubMed

    Hyde, Dallas M; Hamid, Qutayba; Irvin, Charles G

    2009-12-01

    This article covers the airway tree with respect to anatomy, pathology, and physiology. The anatomic portion discusses various primate groups so as to help investigators understand similarities and differences between animal models. An emphasis is on distal airway findings. The pathology section focuses on the inflammatory responses that occur in proximal and distal airways. The physiologic review brings together the anatomic and pathologic components to the functional state and proposes ways to evaluate the small airways in patients with asthma.

  1. Poor symptom control is associated with reduced CT scan segmental airway lumen area in smokers with asthma.

    PubMed

    Thomson, Neil C; Chaudhuri, Rekha; Spears, Mark; Messow, Claudia-Martina; MacNee, William; Connell, Martin; Murchison, John T; Sproule, Michael; McSharry, Charles

    2015-03-01

    Cigarette smoking is associated with worse symptoms in asthma and abnormal segmental airways in healthy subjects. We tested the hypothesis that current symptom control in smokers with asthma is associated with altered segmental airway dimensions measured by CT scan. In 93 subjects with mild, moderate, and severe asthma (smokers and never smokers), we recorded Asthma Control Questionnaire-6 (ACQ-6) score, spirometry (FEV1; forced expiratory flow rate, midexpiratory phase [FEF(25%-75%)]), residual volume (RV), total lung capacity (TLC), and CT scan measures of the right bronchial (RB) and left bronchial (LB) segmental airway dimensions (wall thickness, mm; lumen area, mm²) in the RB3/LB3, RB6/LB6, and RB10/LB10 (smaller) airways. The CT scan segmental airway (RB10 and LB10) lumen area was reduced in smokers with asthma compared with never smokers with asthma; RB10, 16.6 mm² (interquartile range, 12.4-19.2 mm²) vs 19.6 mm² (14.7-24.2 mm²) (P = .01); LB10, 14.8 mm² (12.1-19.0 mm²) vs 19.9 mm² (14.5-25.0 mm²) (P = .003), particularly in severe disease, with no differences in wall thickness or in larger airway (RB3 and LB3) dimensions. In smokers with asthma, a reduced lumen area in fifth-generation airways (RB10 or LB10) was associated with poor symptom control (higher ACQ-6 score) (-0.463 [-0.666 to -0.196], P = .001, and -0.401 [-0.619 to -0.126], P = .007, respectively) and reduced postbronchodilator FEF(25%-75%) (0.521 [0.292-0.694], P < .001, and [0.471 [0.236-0.654], P = .001, respectively) and higher RV/TLC %. The CT scan segmental airway lumen area is reduced in smokers with asthma compared with never smokers with asthma, particularly in severe disease, and is associated with worse current symptom control and small airway dysfunction.

  2. SU-C-BRA-07: Virtual Bronchoscopy-Guided IMRT Planning for Mapping and Avoiding Radiation Injury to the Airway Tree in Lung SAbR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawant, A; Modiri, A; Bland, R

    Purpose: Post-treatment radiation injury to central and peripheral airways is a potentially important, yet under-investigated determinant of toxicity in lung stereotactic ablative radiotherapy (SAbR). We integrate virtual bronchoscopy technology into the radiotherapy planning process to spatially map and quantify the radiosensitivity of bronchial segments, and propose novel IMRT planning that limits airway dose through non-isotropic intermediate- and low-dose spillage. Methods: Pre- and ∼8.5 months post-SAbR diagnostic-quality CT scans were retrospectively collected from six NSCLC patients (50–60Gy in 3–5 fractions). From each scan, ∼5 branching levels of the bronchial tree were segmented using LungPoint, a virtual bronchoscopic navigation system. The pre-SAbRmore » CT and the segmented bronchial tree were imported into the Eclipse treatment planning system and deformably registered to the planning CT. The five-fraction equivalent dose from the clinically-delivered plan was calculated for each segment using the Universal Survival Curve model. The pre- and post-SAbR CTs were used to evaluate radiation-induced segmental collapse. Two of six patients exhibited significant segmental collapse with associated atelectasis and fibrosis, and were re-planned using IMRT. Results: Multivariate stepwise logistic regression over six patients (81 segments) showed that D0.01cc (minimum point dose within the 0.01cc receiving highest dose) was a significant independent factor associated with collapse (odds-ratio=1.17, p=0.010). The D0.01cc threshold for collapse was 57Gy, above which, collapse rate was 45%. In the two patients exhibiting segmental collapse, 22 out of 32 segments showed D0.01cc >57Gy. IMRT re-planning reduced D0.01cc below 57Gy in 15 of the 22 segments (68%) while simultaneously achieving the original clinical plan objectives for PTV coverage and OAR-sparing. Conclusion: Our results indicate that the administration of lung SAbR can Result in significant

  3. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    NASA Astrophysics Data System (ADS)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree

  4. Anatomical modeling of the bronchial tree

    NASA Astrophysics Data System (ADS)

    Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian

    2010-02-01

    The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.

  5. Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-03-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.

  6. Image Segmentation Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  7. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review

    NASA Astrophysics Data System (ADS)

    van Rikxoort, Eva M.; van Ginneken, Bram

    2013-09-01

    Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.

  8. Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium

    PubMed Central

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-01-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. PMID:26097256

  9. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  10. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  11. Computer assisted detection of abnormal airway variation in CT scans related to paediatric tuberculosis.

    PubMed

    Irving, Benjamin J; Goussard, Pierre; Andronikou, Savvas; Gie, Robert; Douglas, Tania S; Todd-Pokropek, Andrew; Taylor, Paul

    2014-10-01

    Airway deformation and stenosis can be key signs of pathology such as lymphadenopathy. This study presents a local airway point distribution model (LA-PDM) to automatically analyse regions of the airway tree in CT scans and identify abnormal airway deformation. In our method, the airway tree is segmented and the centreline identified from each chest CT scan. Thin-plate splines, along with a local mesh alignment method for tubular meshes, are used to register the airways and develop point distribution models (PDM). Each PDM is then used to analyse and classify local regions of the airway. This LA-PDM method was developed using 89 training cases and evaluated on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases (with airway involvement) and non-TB cases (without airway involvement). The LA-PDM was able to accurately distinguish cases with airway involvement with an AUC of the ROC classification (and 95% confidence interval) of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90) for the RMB-RUL-BI region - outperforming a comparison method based on airway cross-sectional features. This has the potential to assist and improve airway analysis from CT scans by detecting involved airways and visualising affected airway regions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  13. A scalable approach for tree segmentation within small-footprint airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-05-01

    This paper presents a distributed approach that scales up to segment tree crowns within a LiDAR point cloud representing an arbitrarily large forested area. The approach uses a single-processor tree segmentation algorithm as a building block in order to process the data delivered in the shape of tiles in parallel. The distributed processing is performed in a master-slave manner, in which the master maintains the global map of the tiles and coordinates the slaves that segment tree crowns within and across the boundaries of the tiles. A minimal bias was introduced to the number of detected trees because of trees lying across the tile boundaries, which was quantified and adjusted for. Theoretical and experimental analyses of the runtime of the approach revealed a near linear speedup. The estimated number of trees categorized by crown class and the associated error margins as well as the height distribution of the detected trees aligned well with field estimations, verifying that the distributed approach works correctly. The approach enables providing information of individual tree locations and point cloud segments for a forest-level area in a timely manner, which can be used to create detailed remotely sensed forest inventories. Although the approach was presented for tree segmentation within LiDAR point clouds, the idea can also be generalized to scale up processing other big spatial datasets.

  14. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID

  15. Ventriculogram segmentation using boosted decision trees

    NASA Astrophysics Data System (ADS)

    McDonald, John A.; Sheehan, Florence H.

    2004-05-01

    Left ventricular status, reflected in ejection fraction or end systolic volume, is a powerful prognostic indicator in heart disease. Quantitative analysis of these and other parameters from ventriculograms (cine xrays of the left ventricle) is infrequently performed due to the labor required for manual segmentation. None of the many methods developed for automated segmentation has achieved clinical acceptance. We present a method for semi-automatic segmentation of ventriculograms based on a very accurate two-stage boosted decision-tree pixel classifier. The classifier determines which pixels are inside the ventricle at key ED (end-diastole) and ES (end-systole) frames. The test misclassification rate is about 1%. The classifier is semi-automatic, requiring a user to select 3 points in each frame: the endpoints of the aortic valve and the apex. The first classifier stage is 2 boosted decision-trees, trained using features such as gray-level statistics (e.g. median brightness) and image geometry (e.g. coordinates relative to user supplied 3 points). Second stage classifiers are trained using the same features as the first, plus the output of the first stage. Border pixels are determined from the segmented images using dilation and erosion. A curve is then fit to the border pixels, minimizing a penalty function that trades off fidelity to the border pixels with smoothness. ED and ES volumes, and ejection fraction are estimated from border curves using standard area-length formulas. On independent test data, the differences between automatic and manual volumes (and ejection fractions) are similar in size to the differences between two human observers.

  16. Composite cervical skin and cartilage flap provides a novel large airway substitute after long-segment tracheal resection.

    PubMed

    Fabre, Dominique; Singhal, Sunil; De Montpreville, Vincent; Decante, Benoit; Mussot, Sacha; Chataigner, Olivier; Mercier, Olaf; Kolb, Frederic; Dartevelle, Philippe G; Fadel, Elie

    2009-07-01

    Airway replacement after long-segment tracheal resection for benign and malignant disease remains a challenging problem because of the lack of a substitute conduit. Ideally, an airway substitute should be well vascularized, rigid, and autologous to avoid infections, airway stenosis, and the need for immunosuppression. We report the development of an autologous tracheal substitute for long-segment tracheal resection that satisfies these criteria and demonstrates excellent short-term functional results in a large-animal study. Twelve adult pigs underwent long-segment (6 cm, 60% of total length) tracheal resection. Autologous costal cartilage strips measuring 6 cm x 2 mm were harvested from the chest wall and inserted at regular 0.5-cm intervals between dermal layers of a cervical skin flap. The neotrachea was then scaffolded by rotating the composite cartilage skin flap around a silicone stent measuring 6 cm in length and 1.4 cm in diameter. The neotrachea replaced the long segment of tracheal resection, and the donor flap site was closed with a double-Z plasty. Animals were killed at 1 week (group I, n = 4), 2 weeks (group II, n = 4), and 5 weeks (group III, n = 4). In group III the stent was removed 1 week before death. Viability of the neotrachea was monitored by means of daily flexible bronchoscopy and histologic examination at autopsy. Long-term morbidity and mortality were determined by monitoring weight gain, respiratory distress, and survival. There was no mortality during the study period. Weight gain was appropriate in all animals. Daily bronchoscopy and postmortem histologic evaluation confirmed excellent viability of the neotrachea. There was no evidence of suture-line dehiscence. Five animals had distal granulomas that were removed by using rigid bronchoscopy. In group III 1 animal had tracheomalacia, which was successfully managed by means of insertion of a silicon stent. Airway reconstruction with autologous cervical skin flaps scaffolded with costal

  17. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  18. Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods

    PubMed Central

    Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas

    2015-01-01

    Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the

  19. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations inmore » airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.« less

  20. Investigation of pulmonary acoustic simulation: comparing airway model generation techniques

    NASA Astrophysics Data System (ADS)

    Henry, Brian; Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas

    2014-03-01

    Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable spectral, spatial and/or temporal changes in lung sound production and transmission. These changes, if properly quantified, might provide additional information about the etiology, severity and location of trauma, injury, or pathology. With this in mind, the authors are developing a comprehensive computer simulation model of pulmonary acoustics, known as The Audible Human Project™. Its purpose is to improve our understanding of pulmonary acoustics and to aid in interpreting measurements of sound and vibration in the lungs generated by airway insonification, natural breath sounds, and external stimuli on the chest surface, such as that used in elastography. As a part of this development process, finite element (FE) models were constructed of an excised pig lung that also underwent experimental studies. Within these models, the complex airway structure was created via two methods: x-ray CT image segmentation and through an algorithmic means called Constrained Constructive Optimization (CCO). CCO was implemented to expedite the segmentation process, as airway segments can be grown digitally. These two approaches were used in FE simulations of the surface motion on the lung as a result of sound input into the trachea. Simulation results were compared to experimental measurements. By testing how close these models are to experimental measurements, we are evaluating whether CCO can be used as a means to efficiently construct physiologically relevant airway trees.

  1. Device for Investigation of Mechanical Tension of Isolated Smooth Muscle Vessels and Airway Segments of Animals

    NASA Astrophysics Data System (ADS)

    Aleinik, A.; Karpovich, N.; Turgunova, N.; Nosarev, A.

    2016-11-01

    For the purpose of testing and the search for new drug compounds, designed to heal many human diseases, it is necessary to investigate the deformation of experimental tissue samples under influence of these drugs. For this task a precision force sensor for measuring the mechanical tension, produced by isolated ring segments of blood vessels and airways was created. The hardware and software systems for the study of changes in contractile responses of the airway smooth muscles and blood vessels of experimental animals was developed.

  2. A scale-based connected coherence tree algorithm for image segmentation.

    PubMed

    Ding, Jundi; Ma, Runing; Chen, Songcan

    2008-02-01

    This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.

  3. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  4. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    PubMed

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  5. Airway basement membrane perimeter in human airways is not a constant; potential implications for airway remodeling in asthma.

    PubMed

    McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L

    2004-08-01

    Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.

  6. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  7. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less

  8. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  9. Region Segmentation in the Frequency Domain Applied to Upper Airway Real-Time Magnetic Resonance Images

    PubMed Central

    Narayanan, Shrikanth

    2009-01-01

    We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005

  10. Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?

    PubMed Central

    Zhang, Baihua; Li, Jianhua; Yue, Yong; Qian, Wei

    2017-01-01

    Using computational fluid dynamics (CFD) method, the feasibility of simulating transient airflow in a CT-based airway tree with more than 100 outlets for a whole respiratory period is studied, and the influence of truncations of terminal bronchi on CFD characteristics is investigated. After an airway model with 122 outlets is extracted from CT images, the transient airflow is simulated. Spatial and temporal variations of flow velocity, wall pressure, and wall shear stress are presented; the flow pattern and lobar distribution of air are gotten as well. All results are compared with those of a truncated model with 22 outlets. It is found that the flow pattern shows lobar heterogeneity that the near-wall air in the trachea is inhaled into the upper lobe while the center flow enters the other lobes, and the lobar distribution of air is significantly correlated with the outlet area ratio. The truncation decreases airflow to right and left upper lobes and increases the deviation of airflow distributions between inspiration and expiration. Simulating the transient airflow in an airway tree model with 122 bronchi using CFD is feasible. The model with more terminal bronchi decreases the difference between the lobar distributions at inspiration and at expiration. PMID:29333194

  11. Bilayer segmentation of webcam videos using tree-based classifiers.

    PubMed

    Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan

    2011-01-01

    This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.

  12. Learning a constrained conditional random field for enhanced segmentation of fallen trees in ALS point clouds

    NASA Astrophysics Data System (ADS)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2018-06-01

    In this study, we present a method for improving the quality of automatic single fallen tree stem segmentation in ALS data by applying a specialized constrained conditional random field (CRF). The entire processing pipeline is composed of two steps. First, short stem segments of equal length are detected and a subset of them is selected for further processing, while in the second step the chosen segments are merged to form entire trees. The first step is accomplished using the specialized CRF defined on the space of segment labelings, capable of finding segment candidates which are easier to merge subsequently. To achieve this, the CRF considers not only the features of every candidate individually, but incorporates pairwise spatial interactions between adjacent segments into the model. In particular, pairwise interactions include a collinearity/angular deviation probability which is learned from training data as well as the ratio of spatial overlap, whereas unary potentials encode a learned probabilistic model of the laser point distribution around each segment. Each of these components enters the CRF energy with its own balance factor. To process previously unseen data, we first calculate the subset of segments for merging on a grid of balance factors by minimizing the CRF energy. Then, we perform the merging and rank the balance configurations according to the quality of their resulting merged trees, obtained from a learned tree appearance model. The final result is derived from the top-ranked configuration. We tested our approach on 5 plots from the Bavarian Forest National Park using reference data acquired in a field inventory. Compared to our previous segment selection method without pairwise interactions, an increase in detection correctness and completeness of up to 7 and 9 percentage points, respectively, was observed.

  13. Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography.

    PubMed

    Hao, J T; Li, M L; Tang, F L

    2008-01-01

    Accurate segmentation of the human vasculature is an important prerequisite for a number of clinical procedures, such as diagnosis, image-guided neurosurgery and pre-surgical planning. In this paper, an improved statistical approach to extracting whole cerebrovascular tree in time-of-flight magnetic resonance angiography is proposed. Firstly, in order to get a more accurate segmentation result, a localized observation model is proposed instead of defining the observation model over the entire dataset. Secondly, for the binary segmentation, an improved Iterative Conditional Model (ICM) algorithm is presented to accelerate the segmentation process. The experimental results showed that the proposed algorithm can obtain more satisfactory segmentation results and save more processing time than conventional approaches, simultaneously.

  14. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds

    Treesearch

    Elias Ayrey; Shawn Fraver; John A. Kershaw; Laura S. Kenefic; Daniel Hayes; Aaron R. Weiskittel; Brian E. Roth

    2017-01-01

    As light detection and ranging (LiDAR) technology advances, it has become common for datasets to be acquired at a point density high enough to capture structural information from individual trees. To process these data, an automatic method of isolating individual trees from a LiDAR point cloud is required. Traditional methods for segmenting trees attempt to isolate...

  15. Airflow structures and nano-particle deposition in a human upper airway model

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle

  16. A classification tree based modeling approach for segment related crashes on multilane highways.

    PubMed

    Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek

    2010-10-01

    This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials. The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times. From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes. The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths. Copyright © 2010. Published by Elsevier Ltd.

  17. Interleukin-1beta-induced airway hyperresponsiveness enhances substance P in intrinsic neurons of ferret airway.

    PubMed

    Wu, Z-X; Satterfield, B E; Fedan, J S; Dey, R D

    2002-11-01

    Interleukin (IL)-1beta causes airway inflammation, enhances airway smooth muscle responsiveness, and alters neurotransmitter expression in sensory, sympathetic, and myenteric neurons. This study examines the role of intrinsic airway neurons in airway hyperresponsiveness (AHR) induced by IL-1beta. Ferrets were instilled intratracheally with IL-1beta (0.3 microg/0.3 ml) or saline (0.3 ml) once daily for 5 days. Tracheal smooth muscle contractility in vitro and substance P (SP) expression in tracheal neurons were assessed. Tracheal smooth muscle reactivity to acetylcholine (ACh) and methacholine (MCh) and smooth muscle contractions to electric field stimulation (EFS) both increased after IL-1beta. The IL-1beta-induced AHR was maintained in tracheal segments cultured for 24 h, a procedure that depletes SP from sensory nerves while maintaining viability of intrinsic airway neurons. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the IL-1beta-induced hyperreactivity to ACh and MCh and to EFS in cultured tracheal segments. SP-containing neurons in longitudinal trunk, SP innervation of superficial muscular plexus neurons, and SP nerve fiber density in tracheal smooth muscle all increased after treatment with IL-1beta. These results show that IL-1beta-enhanced cholinergic airway smooth muscle contractile responses are mediated by the actions of SP released from intrinsic airway neurons.

  18. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  19. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  20. Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements

    NASA Astrophysics Data System (ADS)

    Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David

    2006-03-01

    The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.

  1. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.

    PubMed

    Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R

    2009-10-01

    Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.

  2. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  3. Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods.

    PubMed

    Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure

    2015-05-01

    In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.

  4. The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.

    PubMed

    Martin, J G; Duguet, A; Eidelman, D H

    2000-08-01

    Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.

  5. A study of crown development mechanisms using a shoot-based tree model and segmented terrestrial laser scanning data.

    PubMed

    Sievänen, Risto; Raumonen, Pasi; Perttunen, Jari; Nikinmaa, Eero; Kaitaniemi, Pekka

    2018-05-24

    Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions. The actual process of space filling by the crowns can be studied. Although the FSPM simulations are at organ scale, the data for their validation have usually been at more aggregated levels (whole-crown or whole-tree). Measurements made by terrestrial laser scanning (TLS) that have been segmented into elementary units (internodes) offer a phenotyping tool to validate the FSPM predictions at levels comparable with their detail. We demonstrate the testing of different formulations of crown development of Scots pine trees in the LIGNUM model using segmented TLS data. We made TLS measurements from four sample trees growing in a forest on a relatively poor soil from sapling size to mature stage. The TLS data were segmented into internodes. The segmentation also produced information on whether needles were present in the internode. We applied different formulations of crown development (flushing of buds and length of growth of new internodes) in LIGNUM. We optimized the parameter values of each formulation using genetic algorithms to observe the best fit of LIGNUM simulations to the measured trees. The fitness function in the estimation combined both tree-level characteristics (e.g. tree height and crown length) and measures of crown shape (e.g. spatial distribution of needle area). Comparison of different formulations against the data indicates that the Extended Borchert-Honda model for shoot elongation works best within LIGNUM. Control of growth by local density in the crown was important for all shoot elongation formulations. Modifying the number of lateral buds as a function of local density in the crown was the best way to accomplish density control. It was demonstrated how segmented TLS data can be used in the context of a shoot-based model to select model components.

  6. Multi-stage surgery for airway patency after metallic stent removal in benign laryngotracheal airway disease in two adolescents.

    PubMed

    Coordes, Annekatrin; Todt, Ingo; Ernst, Arne; Seidl, Rainer O

    2013-05-01

    Laryngotracheal stents may damage the highly complex laryngeal structures, impair voice and swallowing functions and cause tissue ingrowths, thereby necessitating airway patency interventions. In benign airway disease, the number of adolescents with laryngotracheal stents is therefore limited. We present two cases of laryngeal metallic stent placement following benign airway disease. Two adolescents presented with severe dyspnea and self-expandable metallic stent placement after benign laryngotracheal stenoses. Granulation tissue ingrowths required additional surgical interventions every 6-8 weeks to recanalize the stent lumen. We performed multi-stage surgery including removal of the embedded stent, segmental resection of the stenotic area, end-to-end-anastomosis and laryngotracheal reconstruction respectively, to achieve patent airway without tracheal cannulation. Montgomery T-tubes were temporarily inserted to bridge the complex reconstructions. In both adolescents, we achieved successful removal of the embedded stent and patent airway. Bilateral vocal fold paralysis required additional surgery to improve the final airway patency and vocal rehabilitation. Stent removal, segmental resection and laryngotracheal reconstruction provide the achievement of patent airway and allow decannulation. Temporary Montgomery T-tubes bridge complex laryngotracheal reconstructions. In benign laryngeal airway disease, stent placement should be avoided, especially in adolescents. Transfer to a specialist center should be considered prior to metallic stent implantation. In general, self-expanding tracheobronchial stents can be placed in selected patients where surgical interventions are limited. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  8. 13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF LAKE LADORA. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  9. Nerve growth factor-enhanced airway responsiveness involves substance P in ferret intrinsic airway neurons.

    PubMed

    Wu, Z-X; Dey, R D

    2006-07-01

    Nerve growth factor (NGF), a member of the neurotrophin family, enhances synthesis of neuropeptides in sensory and sympathetic neurons. The aim of this study was to examine the effect of NGF on airway responsiveness and determine whether these effects are mediated through synthesis and release of substance P (SP) from the intrinsic airway neurons. Ferrets were instilled intratracheally with NGF or saline. Tracheal smooth muscle contractility to methacholine and electrical field stimulation (EFS) was assessed in vitro. Contractions of isolated tracheal smooth muscle to EFS at 10 and 30 Hz were significantly increased in the NGF treatment group (10 Hz: 33.57 +/- 2.44%; 30 Hz: 40.12 +/- 2.78%) compared with the control group (10 Hz: 27.24 +/- 2.14%; 30 Hz: 33.33 +/- 2.31%). However, constrictive response to cholinergic agonist was not significantly altered between the NGF treatment group and the control group. The NGF-induced modulation of airway smooth muscle to EFS was maintained in tracheal segments cultured for 24 h, a procedure that causes a significant anatomic and functional loss of SP-containing sensory fibers while maintaining viability of intrinsic airway neurons. The number of SP-containing neurons in longitudinal trunk and superficial muscular plexus and SP nerve fiber density in tracheal smooth muscle all increased significantly in cultured trachea treated with NGF. Pretreatment with CP-99994, an antagonist of neurokinin 1 receptor, attenuated the NGF-induced increased contraction to EFS in cultured segments but had no effect in saline controls. These results show that the NGF-enhanced airway smooth muscle contractile responses to EFS are mediated by the actions of SP released from intrinsic airway neurons.

  10. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  11. Foetal airway motor tone in prenatal lung development of the pig.

    PubMed

    Sparrow, M P; Warwick, S P; Mitchell, H W

    1994-08-01

    The terminal airways from embryonic lung in situ or as explants exhibit rhythmic spontaneous contractions. Our objective was to see whether narrowing responses of the airways occurred throughout the bronchial tree in the first trimester foetus and, if so, to characterize them. The bronchial tree was freed of vasculature and parenchyma from the lungs of 20-35 g pig foetuses (44-48 days gestation). The airway lumen was visualized directly with transmitted light, and narrowing was recorded in real time by video-imaging microscopy. From the main stem bronchi to the terminal regions of late generation branches (20-35 microns i.d.) strong bronchoconstrictor responses to micromolar concentrations of acetylcholine (ACh), histamine, substance P and K+ depolarizing solution were seen, whilst inhibition of narrowing with beta-adrenoceptor agonists was evidence of beta-receptors on the smooth muscle. Moreover, strong narrowing responses to electrical field stimulation, which were blocked by atropine, indicated that functional cholinergic nerves were present. A remarkable display of spontaneous narrowing in the airways of many of the bronchial tree preparations caused the movement of lung liquid to and fro. We speculate that the bronchomotor tone and associated spontaneous activity, which move the lung fluid along the airways, serve to maintain an even positive pressure in localized areas of the bronchial tree which is essential to provide the stimulus for continued growth of the lung.

  12. Objective characterization of airway dimensions using image processing.

    PubMed

    Pepper, Victoria K; Francom, Christian; Best, Cameron A; Onwuka, Ekene; King, Nakesha; Heuer, Eric; Mahler, Nathan; Grischkan, Jonathan; Breuer, Christopher K; Chiang, Tendy

    2016-12-01

    With the evolution of medical and surgical management for pediatric airway disorders, the development of easily translated techniques of measuring airway dimensions can improve the quantification of outcomes of these interventions. We have developed a technique that improves the ability to characterize endoscopic airway dimensions using common bronchoscopic equipment and an open-source image-processing platform. We validated our technique of Endoscopic Airway Measurement (EAM) using optical instruments in simulation tracheas. We then evaluated EAM in a large animal model (Ovis aries, n = 5), comparing tracheal dimensions obtained with EAM to measurements obtained via 3-D fluoroscopic reconstruction. The animal then underwent resection of the measured segment, and direct measurement of this segment was performed and compared to radiographic measurements and those obtained using EAM. The simulation tracheas had a direct measurement of 13.6, 18.5, and 24.2 mm in diameter. The mean difference of diameter in simulation tracheas between direct measurements and measurements obtained using EAM was 0.70 ± 0.57 mm. The excised ovine tracheas had an average diameter of 18.54 ± 0.68 mm. The percent difference in diameter obtained from EAM and from 3-D fluoroscopic reconstruction when compared to measurement of the excised tracheal segment was 4.98 ± 2.43% and 10.74 ± 4.07% respectively. Comparison of these three measurements (EAM, measurement of resected trachea, 3-D fluoroscopic reconstruction) with repeated measures ANOVA demonstrated no statistical significance. Endoscopic airway measurement (EAM) provides equivalent measurements of the airway with the improved versatility of measuring non-circular and multi-level dimensions. Using optical bronchoscopic instruments and open-source image-processing software, our data supports preclinical and clinical translation of an accessible technique to provide objective quantification of airway diameter. Copyright

  13. HOCl causes airway substance P hyperresponsiveness and neutral endopeptidase hypoactivity.

    PubMed

    Murlas, C G; Murphy, T P; Lang, Z

    1990-06-01

    We investigated whether exposure of guinea pig tracheal tissue to hypochlorous acid (HOCl) or hydrogen peroxide (H2O2) by perfusion through the airway lumen affected the responsiveness of airway muscle to ACh, KCl, or substance P in the presence or absence of 1 microM phosphoramidon, an inhibitor of neutral endopeptidase (NEP). Pairs of tracheal segments were immersed in a Krebs solution (pH 7.40 at 37 degrees C) and connected to perfusion circuits so that the lumen of one segment of each pair could be perfused with Krebs solution while the other was perfused for the same time (10 min) with either 0.1 microM HOCl or 10 mM H2O2. Segments after perfusion were cut into rings of similar size and placed in muscle chambers so that airway muscle force generation in vitro could be measured on stimulation by cumulative agonist doses. In addition, cell homogenates were made from other, similarly perfused tracheal segments to assess NEP activity using reverse-phase, high-pressure liquid chromatography (HPLC). We found that smooth muscle of mucosa-intact guinea pig airways perfused with HOCl, but not H2O2, was hyperresponsive to substance P but not to ACh or KCl. HOCl-perfused rings were not different from Krebs solution-exposed rings pretreated with phosphoramidon. There was no increase in substance P responsiveness of HOCl-exposed airways in which the mucosa had been removed before testing in vitro. The substance P hyperresponsiveness of HOCl-exposed, mucosa-intact airways was associated with decreased NEP activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. [A strategy for assessing environmental influence on airway allergy using a regression binary tree-based method].

    PubMed

    Yoshioka, Fumi; Azuma, Emiko; Nakajima, Takae; Hashimoto, Masafumi; Toyoshima, Kyoichiro; Komachi, Yoshio

    2004-08-01

    To clarify the living environment factors that increase the risk of allergic sensitization to house dust mites, we applied a regression binary tree-based method (CART, Classification & Regression Trees) to an epidemiological study on airway allergy. The utility of the tree map in personal sanitary guidance for preventing allergic sensitization was examined with respect to feasibility and validity. A questionnaire was given to 386 healthy adult women, asking them about their individual living environments. Also, blood samples were collected to measure Dermatophagoides pteronyssinus (Dp)-specific IgE, the presence/absence of Dp-sensitization being expressed as positive/negative. The questionnaire consisted of nine items on (1) home ventilation by keeping windows open, (2) personal or family smoking habits, (3) use of air conditioners in hot weather, (4) type of flooring (tatami/wooden/carpet) in the living room, (5) visible mold proliferation in the kitchen, (6) type of housing (concrete/wooden), (7) residential area (heavy or light traffic area) (8) heating system (use of unventilated combustion appliances), and (9) frequency of cleaning (every day or less often). There also were queries on the past history of airway allergic diseases, such as bronchial asthma and allergic rhinitis. CART and a multivariate logistic regression analysis (MLRA) were performed. The subjects were first classified into two groups, with and without a history of airway allergic diseases (Groups WPH and WOPH). In each group, the involvement of living environment factors in Dp-sensitization was examined using CART and MLRA. In the MLRA study, individual living environment factors showed promotional or suppressive effects on Dp-sensitization with differences between the two groups. With respect to the CART results, the two groups were first split by the factor that had the most significant odds ratio for MLRA. In Group WPH, which had a Dp-sensitization risk of 19.5%, the first split was by the

  15. Neurokinin subtype receptors mediating substance P contraction in immature rabbit airways.

    PubMed

    Kazem, E; John, C; Tanaka, D T

    1996-01-01

    Two-week-old rabbit tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) segments were placed in organ baths, and isometric contractions to substance P (SP) were obtained. In the presence of phosphoramidon (PHOS), a neutral endopeptidase inhibitor, BSM segments were significantly more reactive and sensitive to SP than TSM segments. Neither neostigmine (NEO) nor atropine (ATR) eliminated these regional differences. Airway contractile responses to: 1) Senktide (NK-3 agonist); 2) neurokinin A (NKA, a NK-2 agonist); and 3) Septide (a highly selective NK-1 agonist) were separately obtained. In the presence of PHOS and NEO, Senktide was virtually inactive in both BSM and TSM. In the presence of PHOS, NEO, and ATR, NKA was equipotent in all airway segments; in contrast, the Septide response was significantly more reactive in BSM than in TSM segments. After inhibition of NK-1 activity with GR 82334, a competitive NK-1 receptor antagonist, the regional differences in SP reactivity were greatly diminished. This latter indication of a NK-1 contribution was confirmed using Septide-mediated inactivation of NK-1 receptors whereby the regional differences in airway sensitivity to SP were eliminated. These findings indicate that both endogenous neutral endopeptidase activity as well as NK-1 and NK-2 receptor influences may modulate the contractile responses to SP in immature rabbit airways.

  16. Multi-output decision trees for lesion segmentation in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Jog, Amod; Carass, Aaron; Pham, Dzung L.; Prince, Jerry L.

    2015-03-01

    Multiple Sclerosis (MS) is a disease of the central nervous system in which the protective myelin sheath of the neurons is damaged. MS leads to the formation of lesions, predominantly in the white matter of the brain and the spinal cord. The number and volume of lesions visible in magnetic resonance (MR) imaging (MRI) are important criteria for diagnosing and tracking the progression of MS. Locating and delineating lesions manually requires the tedious and expensive efforts of highly trained raters. In this paper, we propose an automated algorithm to segment lesions in MR images using multi-output decision trees. We evaluated our algorithm on the publicly available MICCAI 2008 MS Lesion Segmentation Challenge training dataset of 20 subjects, and showed improved results in comparison to state-of-the-art methods. We also evaluated our algorithm on an in-house dataset of 49 subjects with a true positive rate of 0.41 and a positive predictive value 0.36.

  17. Tree-space statistics and approximations for large-scale analysis of anatomical trees.

    PubMed

    Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen

    2013-01-01

    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.

  18. Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points

    NASA Astrophysics Data System (ADS)

    Weinheimer, Oliver; Wielpütz, Mark O.; Konietzke, Philip; Heussel, Claus P.; Kauczor, Hans-Ulrich; Brochhausen, Christoph; Hollemann, David; Savage, Dasha; Galbán, Craig J.; Robinson, Terry E.

    2017-02-01

    Cystic Fibrosis (CF) results in severe bronchiectasis in nearly all cases. Bronchiectasis is a disease where parts of the airways are permanently dilated. The development and the progression of bronchiectasis is not evenly distributed over the entire lungs - rather, individual functional units are affected differently. We developed a fully automated method for the precise calculation of lobe-based airway taper indices. To calculate taper indices, some preparatory algorithms are needed. The airway tree is segmented, skeletonized and transformed to a rooted acyclic graph. This graph is used to label the airways. Then a modified version of the previously validated integral based method (IBM) for airway geometry determination is utilized. The rooted graph, the airway lumen and wall information are then used to calculate the airway taper indices. Using a computer-generated phantom simulating 10 cross sections of airways we present results showing a high accuracy of the modified IBM. The new taper index calculation method was applied to 144 volumetric inspiratory low-dose MDCT scans. The scans were acquired from 36 children with mild CF at 4 time-points (baseline, 3 month, 1 year, 2 years). We found a moderate correlation with the visual lobar Brody bronchiectasis scores by three raters (r2 = 0.36, p < .0001). The taper index has the potential to be a precise imaging biomarker but further improvements are needed. In combination with other imaging biomarkers, taper index calculation can be an important tool for monitoring the progression and the individual treatment of patients with bronchiectasis.

  19. Relapsing polychondritis and airway involvement.

    PubMed

    Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David

    2009-04-01

    To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.

  20. Bronchoscopic management of critical central airway obstruction by thyroid cancer: Combination airway stenting using tracheal and inverted-Y carinal self-expanding metallic stents

    PubMed Central

    Madan, Karan; Shrestha, Prajowl; Garg, Rakesh; Hadda, Vijay; Mohan, Anant; Guleria, Randeep

    2017-01-01

    Central airway obstruction (CAO) can result from various benign and malignant etiologies. Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer. Rapid airway compromise is the main cause of death in ATC. We report a patient with ATC who presented with a large neck mass leading to CAO with long segment tracheal and right main bronchial compression and respiratory failure. Urgent Rigid Bronchoscopy was performed for airway stabilization and patient was managed with a combination airway stenting approach. A combination of self expanding, metallic, covered inverted Y and straight tracheal stents was used to stabilize the near complete airway structure. We herein highlight the role of therapeutic rigid bronchoscopy with airway stenting as an efficacious treatment modality for management of malignant CAO. PMID:28360477

  1. Airway Obstruction and the Unilateral Cleft Lip and Palate Deformity: Contributions by the Bony Septum.

    PubMed

    Friel, Michael T; Starbuck, John M; Ghoneima, Ahmed M; Murage, Kariuki; Kula, Katherine S; Tholpady, Sunil; Havlik, Robert J; Flores, Roberto L

    2015-07-01

    Patients with unilateral cleft lip and palate (CLP) deformities commonly develop nasal airway obstruction, necessitating septoplasty at the time of definitive rhinoplasty. We assessed the contribution of the bony septum to airway obstruction using computed tomography (CT) and cone beam CT (CBCT). A 2-year retrospective review of all subjects with unilateral CLP who underwent CBCT imaging (n = 22) and age-matched controls (n = 9) who underwent CT imaging was conducted. Control CT scans were used to determine the segment of nasal septum comprised almost entirely of bone. The CBCT of the nasal airway was assessed using Dolphin software to determine the contribution of the bony septum to septal deviation and airway obstruction. The nasal septum posterior to the midpoint between anterior and posterior nasal spine is comprised of 96% bone. The nasal airway associated with this posterior bony segment was 43.1% (P < 0.001) larger by volume on the non-cleft side in patients with unilateral CLP. The average septal deviation within the posterior bony segment was 5.4 mm, accounting for 74.4% of the maximal deviation within the nasal airway. The average airway stenosis within the posterior bony nasal airway was 0.45 mm (0-2.2 mm). In patients with unilateral CLP, the bony nasal septum can demonstrate significant deviation and airway stenosis. Surgeons should consider a bony septoplasty in their treatment algorithm in unilateral CLP patients who have reached skeletal maturity.

  2. External bioresorbable airway rigidification to treat refractory localized tracheomalacia.

    PubMed

    Gorostidi, François; Reinhard, Antoine; Monnier, Philippe; Sandu, Kishore

    2016-11-01

    Our study evaluates the efficacy of extraluminal bioresorbable plates to treat refractory localized airway malacia in patients undergoing corrective surgery for complex multilevel laryngotracheal stenosis. Retrospective case series. Secondary malacic airway segments were characterized (severity, site, type) by a dynamic transnasal flexible laryngotracheobronchoscopy before surgery. Extraluminal bioresorbable plates were used to stabilize the malacic segment through a transcervical approach under intraoperative flexible endoscopic guidance. Results were evaluated subjectively and by a postoperative dynamic endoscopy. We report our experience in seven patients (6 children, 1 adult). External tracheal stiffening allowed complete or partial resolution of refractory proximal airway malacia in six of seven complex cases described (result in one case is awaited). It allowed quick decannulation in four of seven patients who experienced multiple previous failures. Decannulation failures were due to recurrence of stenosis. With up to 2 years of follow-up, we report no direct complications related to the presence of extraluminal bioresorbable plates around the airway. Extraluminal biodegradable tracheal stiffening represents a valid therapeutic option in select cases of upper airway malacia. It can be highly useful in cases of complex multilevel airway obstructions. External stiffening needs to be planned on a case-to-case basis according to the type of malacia and must be performed under endoscopic guidance. 4. Laryngoscope, 126:2605-2610, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  4. Effect of Emphysema on CT Scan Measures of Airway Dimensions in Smokers

    PubMed Central

    Han, MeiLan K.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kim, Victor; Dransfield, Mark T.; Curran-Everett, Douglas; Schroeder, Joyce D.; Lynch, David A.; Tschirren, Juerg; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Background: In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). Methods: We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. Results: Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (−0.8% to −1.7% vs −1.9% to −2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. Conclusion: The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%. Trial registry: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov PMID:23460155

  5. Small Airways Dysfunction in Asthma: Evaluation and Management to Improve Asthma Control

    PubMed Central

    2014-01-01

    The small airways have been neglected for many years, but interest in the topic has been rekindled with recent advances in measurement techniques to assess this region and also the ability to deliver therapeutics to the distal airways. Current levels of disease control in asthmatic patients remain poor and there are several contributory factors including; poor treatment compliance, heterogeneity of asthma phenotypes and associated comorbidities. However, the proposition that we may not be targeting all the inflammation that is present throughout the whole respiratory tree may also be an important factor. Indeed decades ago, pathologists and physiologists clearly identified the importance of small airways dysfunction in asthmatic patients. With improved inhaler technology to deliver drug to target the whole respiratory tree and more sensitive measures to assess the distal airways, we should certainly give greater consideration to treating the small airway region when seeing our asthmatic patients in clinic. The aim of this review is to address the relevance of small airways dysfunction in the daily clinical management of patients with asthma. In particular the role of small particle aerosols in the management of patients with asthma will be explored. PMID:25228994

  6. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  7. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  8. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  9. Detection of Single Standing Dead Trees from Aerial Color Infrared Imagery by Segmentation with Shape and Intensity Priors

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-03-01

    Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which incorporate statistical information about prior distributions of both the image intensities and the shapes of the target objects. In the first step, we perform a Gaussian Mixture Model clustering in the pixel color space with priors on the cluster means, obtaining up to 3 components corresponding to dead trees, living trees, and shadows. We then refine the dead tree regions using a level set segmentation method enriched with a generative model of the dead trees' shape distribution as well as a discriminative model of their pixel intensity distribution. The iterative application of the statistical shape template yields the set of delineated dead crowns. The prior information enforces the consistency of the template's shape variation with the shape manifold defined by manually labeled training examples, which makes it possible to separate crowns located in close proximity and prevents the formation of large crown clusters. Also, the statistical information built into the segmentation gives rise to an implicit detection scheme, because the shape template evolves towards an empty contour if not enough evidence for the object is present in the image. We test our method on 3 sample plots from the Bavarian Forest National Park with reference data obtained by manually marking individual dead tree polygons in the images. Our results are scenario-dependent and range from a correctness/completeness of 0.71/0.81 up to 0.77/1, with an average center-of-gravity displacement of 3-5 pixels between the detected and reference polygons.

  10. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  11. Gender differences of airway dimensions in anatomically matched sites on CT in smokers.

    PubMed

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators

    2011-08-01

    There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.

  12. Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans

    NASA Astrophysics Data System (ADS)

    Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.

    2007-03-01

    We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.

  13. Modulating airway defenses against microbes.

    PubMed

    Reynolds, Herbert Y

    2002-05-01

    Prevention and treatment of respiratory infections remain an important health care challenge as the US population ages, contains more susceptible or high-risk people, and encounters new pathogens or antibiotic resistant bacteria. Reasonably protective vaccines against very common microbes are available for childhood and adult immunization, but, generally, these are underutilized. A broader definition of higher risk individuals is evolving, which will include more for immunization. Different approaches to vaccine development through design of new component vaccines are necessary. This review has updated host defense mechanisms at three levels in the human respiratory tract: naso-oropharynx (upper airways), conducting airways, and alveolar space. Examples of representative pathogenic microbes have been inserted at the respective airway segment where they may colonize or create infection (influenza, measles virus, Porphyromonas gingivalis causing periodontitis, Bordetella pertussis, Chlamydia pneumoniae, Streptococcus pneumoniae, and Bacillus anthracis ). Hopefully, microbe-host interactions will suggest new approaches for preventing these kinds of infections.

  14. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  15. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  16. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  18. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  19. Computer-aided pulmonary image analysis in small animal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next.more » The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.« less

  20. Substance P released from intrinsic airway neurons contributes to ozone-enhanced airway hyperresponsiveness in ferret trachea.

    PubMed

    Wu, Zhong-Xin; Satterfield, Brian E; Dey, Richard D

    2003-08-01

    Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.

  1. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    PubMed Central

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911

  2. Computational models of airway branching morphogenesis.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  4. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  5. Covered Balloon-Expanding Stents in Airway Stenosis.

    PubMed

    Majid, Adnan; Kheir, Fayez; Chung, Jey; Alape, Daniel; Husta, Bryan; Oh, Scott; Folch, Erik

    2017-04-01

    The balloon-expanding stents are widely available but rarely described for use within the tracheobronchial tree. This report describes our experience with these stents in airway stenosis particularly as a lobar salvage therapy. This was a retrospective review of all records in which the balloon-expanding stents were used at a tertiary medical center. Ages, sex, location of stenosis, etiology of stenosis, stent size, duration of stent placement and associated interventions for airway stenosis were recorded. Patient's self-reported respiratory symptoms, dyspnea scale, and radiographic imaging at baseline and after stent placement were also reported. Twenty-one Atrium iCAST stents were inserted in 18 patients with malignant and benign airway disease. The median age was 69.5 years (interquartile range, 53.5 to 74). Most stents (n=20, 95%) were deployed in the lobar airways. There was a significant improvement in the modified Medical Research Council dyspnea scale from median of 3 to 2 (P<0.05). Self-reported respiratory symptoms improved in 14 patients (78%, P<0.05). Radiographic improvement post Atrium iCAST stent placement was achieved in 15 patients (83%). No deaths were related to airway stenting complications. Adverse events related to stents included migration (n=2, 9.5%), granulation tissue formation (n=2, 9.5%) and mucus plugging (n=1, 4.8%). Lobar stenting with balloon-expanding metallic stents appears feasible, safe and improves symptoms as well as radiographic atelectasis in patients with lobar airway stenosis in this small case series. Larger studies are needed to confirm this observation and to address long-term safety.

  6. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  7. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice.

    PubMed

    Mhanna, M J; Ferkol, T; Martin, R J; Dreshaj, I A; van Heeckeren, A M; Kelley, T J; Haxhiu, M A

    2001-05-01

    The pulmonary disease of cystic fibrosis (CF) is characterized by persistent airway obstruction, which has been attributed to chronic endobronchial infection and inflammation. The levels of exhaled nitric oxide (NO) are reduced in CF patients, which could contribute to bronchial obstruction through dysregulated constriction of airway smooth muscle. Because airway epithelium from CF mice has been shown to have reduced expression of inducible NO synthase, we examined airway responsiveness and relaxation in isolated tracheas of CF mice. Airway relaxation as measured by percent relaxation of precontracted tracheal segments to electrical field stimulation (EFS) and substance P, a nonadrenergic, noncholinergic substance, was significantly impaired in CF mice. The airway relaxation in response to prostaglandin E2 was similar in CF and non-CF animals. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methylester reduced tracheal relaxation induced by EFS in wild-type animals but had virtually no effect in the CF mice. Conversely, exogenous NO and L-arginine, a NO substrate, reversed the relaxation defect in CF airway. We conclude that the relative absence of NO compromises airways relaxation in CF, and may contribute to the bronchial obstruction seen in the disease.

  8. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  9. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  11. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.

  12. Physiologic control. Anatomy and physiology of the airway circulation.

    PubMed

    Widdicombe, J

    1992-11-01

    Both for the nose and the lower airways there is an extensive subepithelial capillary network. That for the nose is fenestrated, and this is true for the tracheobronchial tree of rats, guinea pigs, and hamsters, and for that of human asthmatics. However, healthy humans, dogs, and sheep have capillaries without fenestrations except for those close to neuroepithelial bodies and submucosal glands. Deeper in the mucosa there is a capacitance system of vessels, conspicuous in the nose but present also in the lower airways of rabbits and sheep and, to a lesser extent, in those of dogs and humans. Both for the nose and the lower airways, parasympathetic nerves are vasodilator, sympathetic nerves are vasoconstrictor, and sensory nerves are able to release dilator neuropeptides. Most inflammatory and immunologic mediators are vasodilator. A conspicuous difference between the nasal and lower airway vasculatures is the presence of arteriovenous anastomoses only in the former. Countercurrent mechanisms also exist in the nose to increase its efficiency in air conditioning, but they have not been established for the trachea. The pulmonary vasculature could be part of such a system for the bronchi. Distension of the airway vasculature thickens the mucosa, probably both by vascular distension and by edema formation. The latter can lead to exudation into the airway lumen. These processes have not been well quantitated, and the balance sheet of capillary and capacitance vessel volumes, interstitial liquid volume, and exudate volume needs to be worked out in physiologic and pathologic conditions.

  13. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  14. Automated construction of arterial and venous trees in retinal images

    PubMed Central

    Hu, Qiao; Abràmoff, Michael D.; Garvin, Mona K.

    2015-01-01

    Abstract. While many approaches exist to segment retinal vessels in fundus photographs, only a limited number focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network, named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connectivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V) trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using an automatic vessel segmentation as input. PMID:26636114

  15. Automated construction of arterial and venous trees in retinal images.

    PubMed

    Hu, Qiao; Abràmoff, Michael D; Garvin, Mona K

    2015-10-01

    While many approaches exist to segment retinal vessels in fundus photographs, only a limited number focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network, named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connectivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V) trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using an automatic vessel segmentation as input.

  16. Interleukin(IL)-1 Regulates Ozone-enhanced Tracheal Smooth Muscle Responsiveness by Increasing Substance P (SP) Production in Intrinsic Airway Neurons of Ferret

    PubMed Central

    Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.

    2008-01-01

    Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561

  17. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.

    PubMed

    Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué

    2014-06-12

    Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a

  18. Study of the flow unsteadiness in the human airway using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Bernate, Jorge A.; Geisler, Taylor S.; Padhy, Sourav; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-08-01

    The unsteady flow in a patient-specific geometry of the airways is studied. The geometry comprises the oral cavity, orophrarynx, larynx, trachea, and the bronchial tree extending to generations 5-8. Simulations are carried out for a constant inspiratory flow rate of 60 liters/min, corresponding to a Reynolds number of 4213 for a nominal tracheal diameter of 2 cm. The computed mean flow field is compared extensively with magnetic resonance velocimetry measurements by Banko et al. [Exp. Fluids 56, 117 (2015), 10.1007/s00348-015-1966-y] carried out in the same computed-tomography-based geometry, showing good agreement. In particular, we focus on the dynamics of the flow in the bronchial tree. After becoming unsteady at a constriction in the oropharynx, the flow is found to be chaotic, exhibiting fluctuations with broad-band spectra even at the most distal airways in which the Reynolds numbers are as low as 300. An inertial range signature is present in the trachea but not in the bronchial tree where a narrower range of scales is observed. The unsteadiness is attributed to the convection of turbulent structures produced at the larynx as well as to local kinetic energy production throughout the bronchial tree. Production occurs predominantly at shear layers bounding geometry-induced separation regions.

  19. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study.

    PubMed

    Carlsten, Chris; Blomberg, Anders; Pui, Mandy; Sandstrom, Thomas; Wong, Sze Wing; Alexis, Neil; Hirota, Jeremy

    2016-01-01

    Traffic-related air pollution has been shown to augment allergy and airway disease. However, the enhancement of allergenic effects by diesel exhaust in particular is unproven in vivo in the human lung, and underlying details of this apparent synergy are poorly understood. To test the hypothesis that a 2 h inhalation of diesel exhaust augments lower airway inflammation and immune cell activation following segmental allergen challenge in atopic subjects. 18 blinded atopic volunteers were exposed to filtered air or 300 µg PM(2.5)/m(3) of diesel exhaust in random fashion. 1 h post-exposure, diluent-controlled segmental allergen challenge was performed; 2 days later, samples from the challenged segments were obtained by bronchoscopic lavage. Samples were analysed for markers and modifiers of allergic inflammation (eosinophils, Th2 cytokines) and adaptive immune cell activation. Mixed effects models with ordinal contrasts compared effects of single and combined exposures on these end points. Diesel exhaust augmented the allergen-induced increase in airway eosinophils, interleukin 5 (IL-5) and eosinophil cationic protein (ECP) and the GSTT1 null genotype was significantly associated with the augmented IL-5 response. Diesel exhaust alone also augmented markers of non-allergic inflammation and monocyte chemotactic protein (MCP)-1 and suppressed activity of macrophages and myeloid dendritic cells. Inhalation of diesel exhaust at environmentally relevant concentrations augments allergen-induced allergic inflammation in the lower airways of atopic individuals and the GSTT1 genotype enhances this response. Allergic individuals are a susceptible population to the deleterious airway effects of diesel exhaust. NCT01792232. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  1. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.

  2. Automatic segmentation of pulmonary fissures in x-ray CT images using anatomic guidance

    NASA Astrophysics Data System (ADS)

    Ukil, Soumik; Sonka, Milan; Reinhardt, Joseph M.

    2006-03-01

    The pulmonary lobes are the five distinct anatomic divisions of the human lungs. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the early detection of pathologies, and also for the regional functional analysis of the lungs. We have developed a two-step automatic method for the accurate segmentation of the three pulmonary fissures. In the first step, an approximation of the actual fissure locations is made using a 3-D watershed transform on the distance map of the segmented vasculature. Information from the anatomically labeled human airway tree is used to guide the watershed segmentation. These approximate fissure boundaries are then used to define the region of interest (ROI) for a more exact 3-D graph search to locate the fissures. Within the ROI the fissures are enhanced by computing a ridgeness measure, and this is used as the cost function for the graph search. The fissures are detected as the optimal surface within the graph defined by the cost function, which is computed by transforming the problem to the problem of finding a minimum s-t cut on a derived graph. The accuracy of the lobar borders is assessed by comparing the automatic results to manually traced lobe segments. The mean distance error between manually traced and computer detected left oblique, right oblique and right horizontal fissures is 2.3 +/- 0.8 mm, 2.3 +/- 0.7 mm and 1.0 +/- 0.1 mm, respectively.

  3. Mechanism for substance P-induced relaxation of precontracted airway smooth muscle during development.

    PubMed

    Mhanna, M J; Dreshaj, I A; Haxhiu, M A; Martin, R J

    1999-01-01

    Release of substance P (SP) from sensory nerve endings of the tracheobronchial system modulates airway smooth muscle contraction and may cause relaxation of precontracted airways. We sought to elucidate the effect of postnatal maturation on SP-induced relaxation of precontracted airways and determine the roles of endogenously generated nitric oxide (NO) and prostaglandins (PGs). Cylindrical airway segments were isolated from the midtrachea of rats at four different ages, 1, 2, and 4 wk and 3 mo, and contracted to 50-75% of the maximum response induced by bethanechol. SP was then administered in the absence and presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the PG inhibitor indomethacin, or both. Relaxation of airways with SP decreased significantly with advancing postnatal age. SP-induced tracheal relaxation was consistently attenuated by pretreatment with L-NAME, indomethacin, or both. In a different group of animals, L-NAME significantly attenuated the relaxant response of airways to PGE2 exposure, but indomethacin had no significant effect on the relaxant response to exogenous NO. We conclude that SP induces a relaxant effect on precontracted airway smooth muscle, which decreases with advancing age and is mediated via SP-induced release of NO and/or PG.

  4. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  5. Airway bypass treatment of severe homogeneous emphysema: taking advantage of collateral ventilation.

    PubMed

    Choong, Cliff K; Cardoso, Paulo F G; Sybrecht, Gerhard W; Cooper, Joel D

    2009-05-01

    Airway bypass is being investigated as a new form of minimally invasive therapy for the treatment of homogeneous emphysema. It is a bronchoscopic catheter-based procedure that creates transbronchial extra-anatomic passages at the bronchial segmental level. The passages are expanded, supported with the expectation that the patency is maintained by paclitaxel drug-eluting airway bypass stents. The concept of airway bypass has been demonstrated in two separate experimental studies. These studies have shown that airway bypass takes advantage of collateral ventilation present in homogeneous emphysema to allow trapped gas to escape and reduce hyperinflation. It improves lung mechanics, expiratory flow, and volume. Airway bypass stent placements have been shown to be feasible and safe in both animal and human studies. Paclitaxel-eluting airway bypass stents were found to prolong stent patency and were adopted for clinical studies. A study evaluating the early results of the clinical application of airway bypass with paclitaxel-eluting stents found that airway bypass procedures reduced hyperinflation and improved pulmonary function and dyspnea in selected subjects who have severe emphysema. The duration of benefit appeared to correlate with the degree of pretreatment hyperinflation. These preliminary clinical results supported further evaluation of the procedure and led to the EASE Trial. The EASE Trial is a prospective, multicenter, randomized, double-blind, sham-controlled study. The trial aims to evaluate the safety and effectiveness of the airway bypass to improve pulmonary function and reduce dyspnea in homogeneous emphysema subjects who have severe hyperinflation. The trial is presently ongoing worldwide, though enrollment was completed.

  6. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI.

    PubMed

    Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong

    2017-02-01

    We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.

  7. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.

    PubMed

    Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M

    2011-12-01

    Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.

  8. Bronchial lumen is the safer route for an airway exchange catheter in double-lumen tube replacement: preventable complication in airway management for thoracic surgery.

    PubMed

    Wu, Hsiang-Ling; Tai, Ying-Hsuan; Wei, Ling-Fang; Cheng, Hung-Wei; Ho, Chiu-Ming

    2017-10-01

    There is no current consensus on which lumen an airway exchange catheter (AEC) should be passed through in double-lumen endotracheal tube (DLT) to exchange for a single-lumen endotracheal tube (SLT) after thoracic surgery. We report an unusual case to provide possible solution on this issue. A 71-year-old man with lung adenocarcinoma had an event of a broken exchange catheter used during a DLT replacement with a SLT, after a video-assisted thoracic surgery. The exchange catheter was impinged at the distal tracheal lumen and snapped during manipulation. All three segments of the catheter were retrieved without further airway compromises. Placement of airway tube exchanger into the tracheal lumen of double-lumen tube is a potential contributing factor of the unusual complication. We suggest an exchange catheter be inserted into the bronchial lumen in optimal depth with the adjunct of video laryngoscope, as the safe method for double-lumen tube exchange.

  9. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE PAGES

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.; ...

    2016-05-04

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic

  10. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic

  11. Sensor-oriented feature usability evaluation in fingerprint segmentation

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yin, Yilong; Yang, Gongping

    2013-06-01

    Existing fingerprint segmentation methods usually process fingerprint images captured by different sensors with the same feature or feature set. We propose to improve the fingerprint segmentation result in view of an important fact that images from different sensors have different characteristics for segmentation. Feature usability evaluation, which means to evaluate the usability of features to find the personalized feature or feature set for different sensors to improve the performance of segmentation. The need for feature usability evaluation for fingerprint segmentation is raised and analyzed as a new issue. To address this issue, we present a decision-tree-based feature-usability evaluation method, which utilizes a C4.5 decision tree algorithm to evaluate and pick the best suitable feature or feature set for fingerprint segmentation from a typical candidate feature set. We apply the novel method on the FVC2002 database of fingerprint images, which are acquired by four different respective sensors and technologies. Experimental results show that the accuracy of segmentation is improved, and time consumption for feature extraction is dramatically reduced with selected feature(s).

  12. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  13. Quantification and Visualization of Variation in Anatomical Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenta, Nina; Datar, Manasi; Dirksen, Asger

    This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.

  14. Novel measurements of the length of the subglottic airway in infants and young children.

    PubMed

    Sirisopana, Metee; Saint-Martin, Christine; Wang, Ning Nan; Manoukian, John; Nguyen, Lily H P; Brown, Karen A

    2013-08-01

    To date, the lengths of the subglottic and tracheal airway segments have been measured from autopsy specimens. Images of the head and neck obtained from computerized tomography (CT) provide an alternate method. Our objective in this study was to identify anatomic landmarks from CT scans in infants and young children to estimate the lengths of the subglottic and tracheal airway segments and to correlate these lengths with age. We performed a retrospective analysis of CT images of the neck for various diagnostic indications in children ≤3 years. We obtained planes of reconstruction at the level of the vocal cords (VCs), cricoid cartilage, and carina (C) which were parallel to each other and perpendicular to sagittal long axis of the trachea. The lengths of the subglottic airway (LengthSG) and total length of the laryngotracheal airway (LengthVC-C) were measured from the distance between, respectively, the VC versus cricoid cartilage and the VC versus C planes of reconstruction. Tracheal length was then calculated as the difference between LengthVC-C and LengthSG. Fifty-six children met the inclusion criteria. There were 29 boys. The median weight was 10.7 kg (range 3.1-19.0 kg). Regression analysis yielded mean LengthSG (mm) = 7.8 + 0.03·corrected age (months), r(2) = 0.07, P = 0.056; lower and upper 95% confidence interval for β = 0.03 were -0.001 and 0061. The mean LengthSG was 8.4 mm with an SD of 1.4 mm. The 95th percentile for LengthSG was 10.8 mm, and the 5% to 95% interquartile range was 4.9 mm. The estimate for the 95% confidence interval of the 95th percentile was between 10.2 and 11.3 mm. The LengthVC-C increased with age: mean LengthVC-C (cm) = 5.3 + 0.05·corrected age (months), r(2) = 0.7, P < 0.001. Tracheal length also increased with age: mean tracheal length (cm) = 4.5 + 0.05·corrected age (months), r(2) = 0.6, P < 0.001. We report a novel estimate method for the lengths of the airway segments between the VC and C in 56 infants and young children

  15. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    PubMed

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  16. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  17. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  18. Airway-parenchymal interdependence

    PubMed Central

    Paré, Peter D; Mitzner, Wayne

    2015-01-01

    In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029

  19. Unimodality and Multimodality Cryodebridement for Airway Obstruction. A Single-Center Experience with Safety and Efficacy.

    PubMed

    Inaty, Hanine; Folch, Erik; Berger, Robert; Fernandez-Bussy, Sebastian; Chatterji, Sumit; Alape, Daniel; Majid, Adnan

    2016-06-01

    Cryodebridement (CD) refers to the removal of obstructive material from the lumen of the tracheobronchial tree by freezing with a cryoprobe, which is usually inserted through a flexible bronchoscope. This method of achieving instant recanalization of airways has been established for over 20 years, but published experience comprises limited case series. This study describes a single large-volume referral center experience, including clinical outcomes and safety profile. Electronic medical records of 156 patients who underwent bronchoscopic CD between December 2007 and March 2012 as the primary method to relieve airway obstruction were reviewed retrospectively. The most frequent cause of airway obstruction was malignancy (n = 88), with non-small-cell lung cancer and metastatic renal cell carcinoma being the most common etiologies. The site of obstruction was localized to the central airways in 63 patients (40%) and the distal airways in 44 patients (28%), and it was diffuse in 49 patients (32%). Bronchoscopic airway patency was achieved in 95% of patients, with the highest success rates found in those with obstruction localized in the central airways. Improvement in symptoms occurred in 118 (82%) of 144 symptomatic patients. Serious complications were reported in 17 patients (11%) and included respiratory distress, severe bleeding, airway injury, and hemodynamic instability. All patients responded to treatment, and no intra- or postoperative deaths were reported. CD, when used alone or in combination with other endoscopic treatment modalities, appears to be safe and effective in treating endoluminal airway obstruction.

  20. Childhood-Onset Asthma in Smokers. Association between CT Measures of Airway Size, Lung Function, and Chronic Airflow Obstruction

    PubMed Central

    Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.

    2014-01-01

    Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268

  1. Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.

    PubMed

    Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R

    2014-11-01

    Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  2. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.

  3. Morphology and Three-Dimensional Inhalation Flow in Human Airways in Healthy and Diseased Subjects

    NASA Astrophysics Data System (ADS)

    Van de Moortele, Tristan

    We investigate experimentally the relation between anatomical structure and respiratory function in healthy and diseased airways. Computed Tomography (CT) scans of human lungs are analyzed from the data base of a large multi-institution clinical study on Chronic Obstructive Pulmonary Disease (COPD). Through segmentation, the 3D volumes of the airways are determined at total lung capacity. A geometric analysis provides data on the morphometry of the airways, including the length and diameter of branches, the child-to-parent diameter ratio, and branching angles. While several geometric parameters are confirmed to match past studies for healthy subjects, previously unreported trends are reported on the length of branches. Specifically, in most dichotomous airway bifurcation, the branch of smaller diameter tends to be significantly longer than the one of larger diameter. Additionally, the branch diameter tends to be smaller in diseased airways than in healthy airways up to the 7th generation of bronchial branching. 3D fractal analysis is also performed on the airway volume. Fractal dimensions of 1.89 and 1.83 are found for healthy non-smokers and declining COPD subjects, respectively, furthering the belief that COPD (and lung disease in general) significantly affects the morphometry of the airways already in early stages of the disease. To investigate the inspiratory flow, 3D flow models of the airways are generated using Computer Aided Design (CAD) software and 3D printed. Using Magnetic Resonance Velocimetry (MRV), 3-component 3D flow fields are acquired for steady inhalation at Reynolds number Re 2000 defined at the trachea. Analysis of the flow data reveals that diseased subjects may experience greater secondary flow strength in their conducting airways, especially in deeper generations.

  4. Effects of street tree shade on asphalt concrete pavement performance

    Treesearch

    E.G. McPherson; J. Muchnick

    2005-01-01

    Forty-eight street segments were paired into 24 high-and low-shade pairs in Modesto, California, U.S. Field data were collected to calculate a Pavement Condition Index (PCI) and Tree Shade Index (TSI) for each segment. Statistical analyses found that greater PCI was associated with greater TSI, indicating that tree shade was partially responsible for reduced pavement...

  5. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial

  6. Drug induced sleep endoscopy: its role in evaluation of the upper airway obstruction and patient selection for surgical and non-surgical treatment

    PubMed Central

    De Vito, Andrea

    2018-01-01

    Sleep related breathing disorders cause obstruction of the upper airway which can be alleviated by continuous positive airway pressure (CPAP) therapy, oral devices or surgical intervention. Non-surgical treatment modalities are not always accepted by patients and in order to attain successful surgical outcomes, evaluation of the upper airway is necessary to carefully select the patients who would benefit from surgery. There are numerous techniques available to assess the upper airway obstruction and these include imaging, acoustic analysis, pressure transducer recording and endoscopic evaluation. It is essential to note that the nocturnal obstructive upper airway has limited muscle control compared to the tone of the upper airway lumen during wakefulness. Thus, if one were to attempt to identify the anatomical segments contributing to upper airway obstruction in sleep related breathing disorders; it must be borne in mind that evaluation of the airway must be performed if possible when the patient is awake and asleep albeit during drug induced sleep. This fact as such limits the use of imaging techniques for the purpose. Drug induced sleep endoscopy (DISE) was pioneered at Royal National Throat, Nose and Ear Hospital, London in 1990 and initially introduced as sleep nasendoscopy. The nomenclature and the technique has been modified by various Institutions but the core value of this evaluation technique remains similar and extremely useful for identifying the anatomical segment responsible for obstructing the upper airway during sleep in patients with sleep related breathing disorders. There have been numerous controversies that have surrounded this technique but over the last two decades most of these have been addressed and it now remains in the forefront of methods of evaluating the upper airway obstruction. A variety of sedative agents and different grading systems have been described and efforts to unify various aspects of the technique have been made. This

  7. Lung Metastases from Bile Duct Adenocarcinoma Mimicking Chronic Airway Infection and Causing Diagnostic Difficulty.

    PubMed

    Sato, Mitsuo; Okachi, Shotaro; Fukihara, Jun; Shimoyama, Yoshie; Wakahara, Keiko; Sakakibara, Toshihiro; Hase, Tetsunari; Onishi, Yasuharu; Ogura, Yasuhiro; Maeda, Osamu; Hasegawa, Yoshinori

    2018-05-15

    We herein report a case of lung metastases with unusual radiological appearances that mimicked those of chronic airway infection, causing diagnostic difficulty. A 60-year-old woman who underwent liver transplantation from a living donor was incidentally diagnosed with bile duct adenocarcinoma after a histopathological analysis of her explanted liver. Six months later, chest computed tomography (CT) revealed bilateral bronchogenic dissemination that had gradually worsened, suggesting chronic airway infection. A biopsy with bronchoscopy from a mass lesion beyond a segmental bronchus revealed adenocarcinoma identical to that of her bile duct adenocarcinoma, leading to the diagnosis of multiple lung metastases from bile duct adenocarcinoma.

  8. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  9. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    PubMed Central

    Keshavarz, Maryam; Schwarz, Heike; Hartmann, Petra; Wiegand, Silke; Skill, Melanie; Althaus, Mike; Kummer, Wolfgang; Krasteva-Christ, Gabriela

    2017-01-01

    An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/−) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT

  10. Laser applications in the tracheobronchial tree.

    PubMed

    Rebeiz, E E; Shapsay, S M; Ingrams, D R

    1996-12-01

    This article outlines the historical development of the use of lasers in the tracheobronchial tree, the current indications for the use of carbon dioxide and neodymium:yttrium-aluminum-garnet lasers, and the management of complications. The merits of other laser wavelengths are mentioned, including use of the potassium titanyl phosphate laser in the pediatric airway. Photodynamic therapy is discussed, and some future developments are introduced.

  11. Reproducibility of airway luminal size in asthma measured by HRCT.

    PubMed

    Brown, Robert H; Henderson, Robert J; Sugar, Elizabeth A; Holbrook, Janet T; Wise, Robert A

    2017-10-01

    Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876-883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.-High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability. NEW & NOTEWORTHY There is a surprising lack

  12. Liquid Therapy Delivery Models Using Microfluidic Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  13. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    PubMed

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Interplay between geometry and flow distribution in an airway tree.

    PubMed

    Mauroy, B; Filoche, M; Andrade, J S; Sapoval, B

    2003-04-11

    Uniform flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, by 3D numerical simulation of the Navier-Stokes equations, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure adequate fluid distribution through a tree.

  15. Probabilistic atlas based labeling of the cerebral vessel tree

    NASA Astrophysics Data System (ADS)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  16. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  17. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    PubMed

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  18. Airway stents

    PubMed Central

    Keyes, Colleen

    2018-01-01

    Stents and tubes to maintain the patency of the airways are commonly used for malignant obstruction and are occasionally employed in benign disease. Malignant airway obstruction usually results from direct involvement of bronchogenic carcinoma, or by extension of carcinomas occurring in the esophagus or the thyroid. External compression from lymph nodes or metastatic disease from other organs can also cause central airway obstruction. Most malignant airway lesions are surgically inoperable due to advanced disease stage and require multimodality palliation, including stent placement. As with any other medical device, stents have significantly evolved over the last 50 years and deserve an in-depth understanding of their true capabilities and complications. Not every silicone stent is created equal and the same holds for metallic stents. Herein, we present an overview of the topic as well as some of the more practical and controversial issues surrounding airway stents. We also try to dispel the myths surrounding stent removal and their supposed use only in central airways. At the end, we come to the long-held conclusion that stents should not be used as first line treatment of choice, but after ruling out the possibility of curative surgical resection or repair. PMID:29707506

  19. Lung Metastases from Bile Duct Adenocarcinoma Mimicking Chronic Airway Infection and Causing Diagnostic Difficulty

    PubMed Central

    Sato, Mitsuo; Okachi, Shotaro; Fukihara, Jun; Shimoyama, Yoshie; Wakahara, Keiko; Sakakibara, Toshihiro; Hase, Tetsunari; Onishi, Yasuharu; Ogura, Yasuhiro; Maeda, Osamu; Hasegawa, Yoshinori

    2017-01-01

    We herein report a case of lung metastases with unusual radiological appearances that mimicked those of chronic airway infection, causing diagnostic difficulty. A 60-year-old woman who underwent liver transplantation from a living donor was incidentally diagnosed with bile duct adenocarcinoma after a histopathological analysis of her explanted liver. Six months later, chest computed tomography (CT) revealed bilateral bronchogenic dissemination that had gradually worsened, suggesting chronic airway infection. A biopsy with bronchoscopy from a mass lesion beyond a segmental bronchus revealed adenocarcinoma identical to that of her bile duct adenocarcinoma, leading to the diagnosis of multiple lung metastases from bile duct adenocarcinoma. PMID:29279503

  20. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  1. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    PubMed

    Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W

    2017-01-01

    Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.

  2. Moving vehicles segmentation based on Gaussian motion model

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.

    2005-07-01

    Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.

  3. Regional shape-based feature space for segmenting biomedical images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.

    1993-07-01

    In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.

  4. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    PubMed

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  5. Determinants of peripheral airway function in adults with and without asthma.

    PubMed

    Robinson, Paul D; King, Gregory G; Sears, Malcolm R; Hong, Chuen Y; Hancox, Robert J

    2017-08-01

    Peripheral airway involvement in asthma remains poorly understood. We investigated impulse oscillometry (IOS) measures of peripheral airway function in a population-based birth cohort. Pre- and post-bronchodilator spirometry and IOS measures of respiratory resistance and reactance were measured in 915 participants at age 38 years. Current asthma was associated with impairments in both spirometry and IOS parameters. These impairments were greater in men and in those with childhood persistent asthma. Spirometry and IOS values for those whose asthma was in remission were not different to non-asthmatic participants. There were significant changes in IOS in both asthmatic and non-asthmatic participants after bronchodilator, but between-group differences persisted. Higher BMIs were associated with impairments in IOS but not spirometry. Cumulative tobacco use was associated with spirometric airflow obstruction in both sexes, whereas cannabis use was associated with impairments in IOS in women. Despite higher lifetime exposure, there were few associations between cannabis and IOS in men. Asthma is associated with abnormalities in IOS measures of peripheral airway dysfunction. This association is stronger in men and in those with asthma persisting since childhood. Tobacco and cannabis use are associated with different patterns of spirometry and IOS abnormalities and may affect the bronchial tree at different airway generations with differences in susceptibility between sexes. © 2017 Asian Pacific Society of Respirology.

  6. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  7. An axisymmetric single-path model for gas transport in the conducting airways.

    PubMed

    Madasu, Srinath; Borhan, All; Ultman, James S

    2006-02-01

    In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.

  8. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  9. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    PubMed

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  10. Electromigration resistance in a short three-contact interconnect tree

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Choi, Z.-S.; Thompson, C. V.; Gan, C. L.; Pey, K. L.; Choi, W. K.; Hwang, N.

    2006-05-01

    Electromigration has been characterized in via-terminated interconnect lines with additional vias in the middle, creating two adjacent segments that can be stressed independently. The mortality of a segment was found to depend on the direction and magnitude of the current in the adjacent segment, confirming that there is not a fixed value of the product of the current density and segment length, jL, that defines immortality in individual segments that are part of a multisegment interconnect tree. Instead, it is found that the probability of failure of a multisegment tree increases with the increasing value of an effective jL product defined in earlier work. However, contrary to expectations, the failures were still observed when (jL)eff was less than the critical jL product for which lines were found to be immortal in single-segment test structures. It is argued that this is due to reservoir effects associated with unstressed segments or due to liner failure at the central via. Multisegment test structures are therefore shown to reveal more types of failure mechanisms and mortality conditions that are not found in tests with single-segment structures.

  11. Parasympathetic Control of Airway Submucosal Glands: Central Reflexes and the Airway Intrinsic Nervous System

    PubMed Central

    Wine, Jeffrey J.

    2007-01-01

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  12. Modeling individual trees in an urban environment using dense discrete return LIDAR

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Madhurima; van Aardt, Jan A. N.; van Leeuwen, Martin

    2015-05-01

    The urban forest is becoming increasingly important in the contexts of urban green space, carbon sequestration and offsets, and socio-economic impacts. This has led to a recent increase in attention being paid to urban environmental management. Tree biomass, specifically, is a vital indicator of carbon storage and has a direct impact on urban forest health and carbon sequestration. As an alternative to expensive and time-consuming field surveys, remote sensing has been used extensively in measuring dynamics of vegetation and estimating biomass. Light detection and ranging (LiDAR) has proven especially useful to characterize the three dimensional (3D) structure of forests. In urban contexts however, information is frequently required at the individual tree level, necessitating the proper delineation of tree crowns. Yet, crown delineation is challenging for urban trees where a wide range of stress factors and cultural influences affect growth. In this paper high resolution LiDAR data were used to infer biomass based on individual tree attributes. A multi-tiered delineation algorithm was designed to extract individual tree-crowns. At first, dominant tree segments were obtained by applying watershed segmentation on the crown height model (CHM). Next, prominent tree top positions within each segment were identified via a regional maximum transformation and the crown boundary was estimated for each of the tree tops. Finally, undetected trees were identified using a best-fitting circle approach. After tree delineation, individual tree attributes were used to estimate tree biomass and the results were validated with associated field mensuration data. Results indicate that the overall tree detection accuracy is nearly 80%, and the estimated biomass model has an adjusted-R2 of 0.5.

  13. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation

    PubMed Central

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G

    2007-01-01

    Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839

  14. Computed tomography airway lumen volumetry in patients with acromegaly: Association with growth hormone levels and lung function.

    PubMed

    Camilo, Gustavo Bittencourt; Carvalho, Alysson Roncally Silva; Guimarães, Alan Ranieri Medeiros; Kasuki, Leandro; Gadelha, Mônica Roberto; Mogami, Roberto; de Melo, Pedro Lopes; Lopes, Agnaldo José

    2017-10-01

    The segmentation and skeletonisation of images via computed tomography (CT) airway lumen volumetry provide a new perspective regarding the incorporation of this technique in medical practice. Our aim was to quantify morphological changes in the large airways of patients with acromegaly through CT and, secondarily, to correlate these findings with hormone levels and pulmonary function testing (PFT) parameters. This was a cross-sectional study in which 28 non-smoker patients with acromegaly and 15 control subjects underwent CT analysis of airway lumen volumetry with subsequent image segmentation and skeletonisation. Moreover, all participants were subjected to PFT. Compared with the controls, patients with acromegaly presented higher diameters in the trachea, right main bronchus and left main bronchus. The patients with acromegaly also showed a higher tracheal sinuosity index (the deviation of a line from the shortest path, calculated by dividing total length by shortest possible path) than the controls [1.06 (1.02-1.09) vs. 1.03 (1.02-1.04), P = 0.04], and tracheal stenosis was observed in 25% of these individuals. The tracheal area was correlated with the levels of growth hormone (r s  = 0.45, P = 0.02) and insulin-like growth factor type I (r s  = 0.38, P = 0.04). The ratio between the forced expiratory flow and forced inspiratory flow at 50% of the forced vital capacity was correlated with the tracheal area (r s  = 0.36, P = 0.02) and Δ tracheal diameters (r s  = 0.58, P < 0.0001). Patients with acromegaly exhibit tracheobronchomegaly and tracheal sinuosity/stenosis. Moreover, there are associations between the results of CT airway lumen volumetry, hormone levels and functional parameters of large airway obstruction. © 2017 The Royal Australian and New Zealand College of Radiologists.

  15. Comparison of Manual and Automated Measurements of Tracheobronchial Airway Geometry in Three Balb/c Mice.

    PubMed

    Islam, Asef; Oldham, Michael J; Wexler, Anthony S

    2017-11-01

    Mammalian lungs are comprised of large numbers of tracheobronchial airways that transition from the trachea to alveoli. Studies as wide ranging as pollutant deposition and lung development rely on accurate characterization of these airways. Advancements in CT imaging and the value of computational approaches in eliminating the burden of manual measurement are providing increased efficiency in obtaining this geometric data. In this study, we compare an automated method to a manual one for the first six generations of three Balb/c mouse lungs. We find good agreement between manual and automated methods and that much of the disagreement can be attributed to method precision. Using the automated method, we then provide anatomical data for the entire tracheobronchial airway tree from three Balb/C mice. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2046-2057, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  17. Hyoid expansion with titanium plate and screw: a human cadaveric study using computer-assisted airway measurement.

    PubMed

    Toh, Song-Tar; Hsu, Pon-Poh; Tan, Kah Leong Alvin; Lu, Kuo-Sun Peter; Han, Hong-Juan

    2013-08-01

    Hyoid expansion with suspension can potentially increase the upper airway at the hypopharyngeal level, benefitting patients with sleep-related breathing disorder. To document the effect of hyoid expansion using titanium plate and screw on retrolingual hypopharyngeal airway dimension and to compare the airway dimension after isolated hyoid expansion with hyoid expansion + hyomandibular suspension. Anatomical cadaveric dissection study. This study was performed in a laboratory setting using human cadavers. This is an anatomical feasibility study of hyoid expansion using titanium plate and screw on 10 cadaveric human heads and necks. The hyoid bone is trifractured with bony cuts made just medial to the lesser cornu. The freed hyoid body and lateral segments are expanded and stabilized to a titanium adaptation plate. Computer-assisted airway measurement (CAM) was used to measure the airway dimension at the hypopharynx at the level of the tongue base before and after the hyoid expansion. The expanded hyoid bone was then suspended to the mandible, and the airway dimension was measured again with CAM. Airway dimension after isolated hyoid expansion with hyoid expansion with hyomandibular suspension. RESULTS Hyoid expansion with titanium plate and screw resulted in statistical significant increase in the retrolingual hypopharyngeal airway space in all of the 10 human cadavers. The mean (SD) increase in retroglossal area was 33.4 (13.2) mm² (P < .005) (range, 6.0-58.7 mm²). Hyoid expansion with hyomandibular suspension resulted in a greater degree of airway enlargement. The mean (SD) increase in retroglossal area was 99.4 (15.0) mm² (P < .005) (range, 81.9-127.5 mm²). The retrolingual hypopharyngeal airway space increased with hyoid expansion using titanium plate and screw in our human cadaveric study, measured using CAM. The degree of increase is further augmented with hyomandibular suspension.

  18. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system.

    PubMed

    Wine, Jeffrey J

    2007-04-30

    Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences

  19. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Copyright ©ERS 2015.

  20. The New Perilaryngeal Airway (CobraPLA™)1 Is as Efficient as the Laryngeal Mask Airway (LMA™)2, But Provides Better Airway Sealing Pressures

    PubMed Central

    Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.

    2006-01-01

    The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543

  1. Airway surface mycosis in chronic TH2-associated airway disease.

    PubMed

    Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-08-01

    Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  3. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  4. Airway Problems in Neonates—A Review of the Current Investigation and Management Strategies

    PubMed Central

    Mok, Quen

    2017-01-01

    Airway problems in the neonatal population are often life threatening and raise challenging issues in diagnosis and management. The airway problems can result from congenital or acquired lesions and can be broadly classified into those causing obstruction or those due to an abnormal “communication” in the airway. Many different investigations are now available to identify the diagnosis and quantify the severity of the problem, and these tests can be simple or invasive. Bronchography and bronchoscopy are essential to determine the extent and severity of the airway problem and to plan treatment strategy. Further imaging techniques help to delineate other commonly associated abnormalities. Echocardiography is also important to confirm any associated cardiac abnormality. In this review, the merits and disadvantages of the various investigations now available to the clinician will be discussed. The current therapeutic strategies are discussed, and the review will focus on the most challenging conditions that cause the biggest management conundrums, specifically laryngotracheal cleft, congenital tracheal stenosis, and tracheobronchomalacia. Management of acquired stenosis secondary to airway injury from endotracheal intubation will also be discussed as this is a common problem. Slide tracheoplasty is the preferred surgical option for long-segment tracheal stenosis, and results have improved significantly. Stents are occasionally required for residual or recurrent stenosis following surgical repair. There is sufficient evidence that a multidisciplinary team approach for managing complex airway issues provides the best results for the patient. There is ongoing progress in the field with newer diagnostic tools as well as development of innovative management techniques, such as biodegradable stents and stem cell-based tracheal transplants, leading to a much better prognosis for these children in the future. PMID:28424763

  5. An object-based approach for tree species extraction from digital orthophoto maps

    NASA Astrophysics Data System (ADS)

    Jamil, Akhtar; Bayram, Bulent

    2018-05-01

    Tree segmentation is an active and ongoing research area in the field of photogrammetry and remote sensing. It is more challenging due to both intra-class and inter-class similarities among various tree species. In this study, we exploited various statistical features for extraction of hazelnut trees from 1 : 5000 scaled digital orthophoto maps. Initially, the non-vegetation areas were eliminated using traditional normalized difference vegetation index (NDVI) followed by application of mean shift segmentation for transforming the pixels into meaningful homogeneous objects. In order to eliminate false positives, morphological opening and closing was employed on candidate objects. A number of heuristics were also derived to eliminate unwanted effects such as shadow and bounding box aspect ratios, before passing them into the classification stage. Finally, a knowledge based decision tree was constructed to distinguish the hazelnut trees from rest of objects which include manmade objects and other type of vegetation. We evaluated the proposed methodology on 10 sample orthophoto maps obtained from Giresun province in Turkey. The manually digitized hazelnut tree boundaries were taken as reference data for accuracy assessment. Both manually digitized and segmented tree borders were converted into binary images and the differences were calculated. According to the obtained results, the proposed methodology obtained an overall accuracy of more than 85 % for all sample images.

  6. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  7. Difficult airway response team: a novel quality improvement program for managing hospital-wide airway emergencies.

    PubMed

    Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A

    2015-07-01

    Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty

  8. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  9. Laryngeal mask airway for airway control during percutaneous dilatational tracheostomy.

    PubMed

    Pratt, T; Bromilow, J

    2011-11-01

    Percutaneous dilatational tracheostomy is a common bedside procedure in critical care for patients requiring prolonged mechanical ventilation. The traditional technique requires withdrawal of the endotracheal tube to a proximal position to facilitate tracheostomy insertion, but this carries the risk of inadvertent extubation and does not prevent cuff rupture. Use of a supraglottic airway such as the laryngeal mask airway may avoid these risks and could provide a safe alternative to the endotracheal tube. We present an appraisal of the literature to date. We found reasonable evidence to show improved ventilation and bronchoscopic visualisation with the laryngeal mask airway, but this has not been translated into improved outcome. There is currently insufficient evidence to draw conclusions about the safety of the laryngeal mask airway during percutaneous dilatational tracheostomy.

  10. Automatic segmentation of trees in dynamic outdoor environments

    USDA-ARS?s Scientific Manuscript database

    Segmentation in dynamic outdoor environments can be difficult when the illumination levels and other aspects of the scene cannot be controlled. Specifically in agricultural contexts, a background material is often used to shield a camera's field of view from other rows of crops. In this paper, we ...

  11. Exploring the context of the lung proteome within the airway mucosa following allergen challenge.

    PubMed

    Fehniger, Thomas E; Sato-Folatre, José-Gabriel; Malmström, Johan; Berglund, Magnus; Lindberg, Claes; Brange, Charlotte; Lindberg, Henrik; Marko-Varga, György

    2004-01-01

    The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.

  12. Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.

    PubMed

    Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q

    2017-06-01

    Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.

  13. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  14. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis.

    PubMed

    Tsukioka, Takuma; Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2016-01-01

    Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh-Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty.

  15. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  16. Binary partition tree analysis based on region evolution and its application to tree simplification.

    PubMed

    Lu, Huihai; Woods, John C; Ghanbari, Mohammed

    2007-04-01

    Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.

  17. Semantic Segmentation of Forest Stands of Pure Species as a Global Optimization Problem

    NASA Astrophysics Data System (ADS)

    Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V.

    2017-05-01

    Forest stand delineation is a fundamental task for forest management purposes, that is still mainly manually performed through visual inspection of geospatial (very) high spatial resolution images. Stand detection has been barely addressed in the literature which has mainly focused, in forested environments, on individual tree extraction and tree species classification. From a methodological point of view, stand detection can be considered as a semantic segmentation problem. It offers two advantages. First, one can retrieve the dominant tree species per segment. Secondly, one can benefit from existing low-level tree species label maps from the literature as a basis for high-level object extraction. Thus, the semantic segmentation issue becomes a regularization issue in a weakly structured environment and can be formulated in an energetical framework. This papers aims at investigating which regularization strategies of the literature are the most adapted to delineate and classify forest stands of pure species. Both airborne lidar point clouds and multispectral very high spatial resolution images are integrated for that purpose. The local methods (such as filtering and probabilistic relaxation) are not adapted for such problem since the increase of the classification accuracy is below 5%. The global methods, based on an energy model, tend to be more efficient with an accuracy gain up to 15%. The segmentation results using such models have an accuracy ranging from 96% to 99%.

  18. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  19. Nitric oxide airway diffusing capacity and mucosal concentration in asthmatic schoolchildren.

    PubMed

    Pedroletti, Christophe; Högman, Marieann; Meriläinen, Pekka; Nordvall, Lennart S; Hedlin, Gunilla; Alving, Kjell

    2003-10-01

    Asthmatic patients show increased concentrations of nitric oxide (NO) in exhaled air (Feno). The diffusing capacity of NO in the airways (Dawno), the NO concentrations in the alveoli and the airway wall, and the maximal airway NO diffusion rate have previously been estimated noninvasively by measuring Feno at different exhalation flow rates in adults. We investigated these variables in 15 asthmatic schoolchildren (8-18 y) and 15 age-matched control subjects, with focus on their relation to exhaled NO at the recommended exhalation flow rate of 0.05 L/s (Feno0.05), age, and volume of the respiratory anatomic dead space. NO was measured on-line by chemiluminescence according to the European Respiratory Society's guidelines, and the NO plateau values at three different exhalation flow rates (11, 99, and 382 mL/s) were incorporated in a two-compartment model for NO diffusion. The NO concentration in the airway wall (p < 0.001), Dawno (p < 0.01), and the maximal airway NO diffusion rate (p < 0.001) were all higher in the asthmatic children than in control children. In contrast, there was no difference in the NO concentration in the alveoli (p = 0.13) between the groups. A positive correlation was seen between the volume of the respiratory anatomic dead space and Feno0.05 (r = 0.68, p < 0.01), the maximal airway NO diffusion rate (r = 0.71, p < 0.01), and Dawno (r = 0.56, p < 0.01) in control children, but not in asthmatic children. Feno0.05 correlated better with Dawno in asthmatic children (r = 0.65, p < 0.01) and with the NO concentration in the airway wall in control subjects (r < 0.77, p < 0.001) than vice versa. We conclude that Feno0.05 increases with increasing volume of the respiratory anatomic dead space in healthy children, suggesting that normal values for Feno0.05 should be related to age or body weight in this age group. Furthermore, the elevated Feno0.05 seen in asthmatic children is related to an increase in both Dawno and NO concentration in the airway

  20. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  1. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  2. Airway management in neuroanesthesiology.

    PubMed

    Aziz, Michael

    2012-06-01

    Airway management for neuroanesthesiology brings together some key principles that are shared throughout neuroanesthesiology. This article appropriately targets the cervical spine with associated injury and the challenges surrounding airway management. The primary focus of this article is on the unique airway management obstacles encountered with cervical spine injury or cervical spine surgery, and unique considerations regarding functional neurosurgery are addressed. Furthermore, topics related to difficult airway management for those with rheumatoid arthritis or pituitary surgery are reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [The research on the airway hyperresponsiveness and IOS airway resistance index of industrial area resident].

    PubMed

    Xu, Jin; Wang, Zhen; Sun, Hongcun

    2015-09-01

    To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.

  4. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  5. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness

    PubMed Central

    Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.

    2009-01-01

    Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246

  6. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  7. Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Liao, Luhua; Li, Lemin; Wang, Sheng

    2006-12-01

    We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.

  8. Segmented polynomial taper equation incorporating years since thinning for loblolly pine plantations

    Treesearch

    A. Gordon Holley; Thomas B. Lynch; Charles T. Stiff; William Stansfield

    2010-01-01

    Data from 108 trees felled from 16 loblolly pine stands owned by Temple-Inland Forest Products Corp. were used to determine effects of years since thinning (YST) on stem taper using the Max–Burkhart type segmented polynomial taper model. Sample tree YST ranged from two to nine years prior to destructive sampling. In an effort to equalize sample sizes, tree data were...

  9. Airway recovery after face transplantation.

    PubMed

    Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan

    2014-12-01

    Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.

  10. Effects of lipopolysaccharide from Pseudomonas aeruginosa on airway smooth muscle functions in guinea pigs.

    PubMed

    Yamawaki, I; Tamaoki, J; Kanemura, T; Horii, S; Takizawa, T

    1990-01-01

    To elucidate the mechanisms of airway hyperreactivity induced by lipopolysaccharide (LPS), we studied isolated tracheal segments from guinea pigs under isometric conditions in vitro. Guinea pigs were injected intraperitoneally with endotoxin (1 mg/kg; LPS from Pseudomonas aeruginosa, serotype 10) for 4 days, and animals treated with sterile nonpyrogenic saline served as controls. Histological examination of trachea revealed moderate structural damage of epithelial layer in the LPS-treated group. Treatment with LPS potentiated the contractile responses of tracheal smooth muscle to acetylcholine, causing a leftward displacement of dose-response curves so that the EC50 values decreased from 1.1 +/- 3.7 x 10(-5) to 4.4 +/- 3.7 x 10(-7) M (mean +/- SE, p less than 0.01). Likewise, LPS shifted the dose-response curves for histamine and substance P to lower concentrations by approximately 0.5-1.0 log U. Each of these potentiations was not affected by pretreatment of tissues with indomethacin or propranolol. Addition of isoproterenol to tracheal segments precontracted with acetylcholine caused concentration-dependent relaxation, an effect that was significantly greater in controls than in the LPS-treated group. These results suggest that airway hyperreactivity induced by LPS in guinea pigs may be attributed to a decreased ability of respiratory epithelial cells to generate a relaxing factor.

  11. Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees.

    PubMed

    Tejesvi, Mysore V; Mahesh, Basavanna; Nalini, Monnanda S; Prakash, Harishchandra S; Kini, Kukkundoor R; Subbiah, Ven; Shetty, Hunthrike S

    2006-05-01

    Endophytic fungi represent an interesting group of microorganisms associated with the healthy tissues of terrestrial plants. They represent a large reservoir of genetic diversity. Fungal endophytes were isolated from the inner bark segments of ethnopharmaceutically important medicinal tree species, namely Terminalia arjuna, Crataeva magna, Azadirachta indica, Holarrhena antidysenterica, Terminalia chebula, and Butea monosperma (11 individual trees), growing in different regions of southern India. Forty-eight fungal species were recovered from 2200 bark segments. Mitosporic fungi represented a major group (61%), with ascomycetes (21%) and sterile mycelia (18%) the next major groups. Species of Fusarium, Pestalotiopsis, Myrothecium, Trichoderma, Verticillium, and Chaetomium were frequently isolated. Exclusive fungal taxa were recovered from five of the six plant species considered for the study of endophytic fungi. Rarefaction indices for species richness indicated the highest expected number of species for bark segments were isolated from T. arjuna and A. indica (20 species each) and from C. magna (18 species).

  12. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  13. Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees

    PubMed Central

    Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio

    2011-01-01

    Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465

  14. [Quality assurance in airway management: education and training for difficult airway management].

    PubMed

    Kaminoh, Yoshiroh

    2006-01-01

    Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.

  15. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  16. Extraglottic airway devices: technology update.

    PubMed

    Sharma, Bimla; Sahai, Chand; Sood, Jayashree

    2017-01-01

    Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.

  17. Stem Profile for Southern Equations for Southern Tree Species

    Treesearch

    Alexander Clark; Ray A. Souter; Bryce E. Schlaegel

    1991-01-01

    Form-class segmented-profile equations for 58 southern tree species and species groups are presented.The profile equations are based on taper data for 13,469 trees sampled in natural stands in many locations across the South.The profile equations predict diameter at any given height, height to give diameter, and volume between two heights.Equation coefficients for use...

  18. Study on the Secant Segmentation Algorithm of Rubber Tree

    NASA Astrophysics Data System (ADS)

    Li, Shute; Zhang, Jie; Zhang, Jian; Sun, Liang; Liu, Yongna

    2018-04-01

    Natural rubber is one of the most important materials in the national defense and industry, and the tapping panel dryness (TPD) of the rubber tree is one of the most serious diseases that affect the production of rubber. Although considerable progress has been made in the more than 100 years of research on the TPD, there are still many areas to be improved. At present, the method of artificial observation is widely used to identify TPD, but the diversity of rubber tree secant symptoms leads to the inaccurate judgement of the level of TPD. In this paper, image processing technology is used to separate the secant and latex, so that we can get rid of the interference factors, get the exact secant and latex binary image. By calculating the area ratio of the corresponding binary images, the grade of TPD can be classified accurately. and can also provide an objective basis for the accurate identification of the tapping panel dryness (TPD) level.

  19. Airway Protective Mechanisms

    PubMed Central

    Pitts, Teresa

    2014-01-01

    Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325

  20. The effect of body weight on distal airway function and airway inflammation.

    PubMed

    van de Kant, Kim D G; Paredi, Paolo; Meah, Sally; Kalsi, Harpal S; Barnes, Peter J; Usmani, Omar S

    Obesity is a global health problem that adversely influences the respiratory system. We assessed the effects of body mass index (BMI) on distal airway function and airway inflammation. Impulse oscillometry (IOS) as a measure of distal airway function, together with spirometry, were assessed in adults with a range of different BMIs. Airway inflammation was assessed with the fraction of exhaled nitric oxide (FeNO) and participants exhaled at various exhalation flows to determine alveolar and bronchial NO. In total 34 subjects were enrolled in the study; 19 subjects had a normal BMI (18.50-24.99), whilst 15 subjects were overweight (BMI 25.00-29.99), or obese (BMI ≥30). All subjects had normal spirometry. However, IOS measures of airway resistance (R) at 5Hz, 20Hz and frequency dependence (R 5-20 ) were elevated in overweight/obese individuals, compared to subjects with a normal BMI (median (interquartile range)); 5Hz: 0.41 (0.37, 0.45) vs. 0.32 (0.30, 0.37)kPa/l/s; 20Hz: 0.34 (0.30, 0.37) vs. 0.30 (0.26, 0.33)kPa/l/s; R 5-20 : 0.06 (0.04, 0.11) vs. 0.03 (0.01, 0.05)kPa/l/s; p<0.05), whereas airway reactance at 20Hz was decreased in overweight/obese individuals (20Hz: 0.07 (0.03, 0.09) vs. 0.10 (0.07, 0.13)kPa/l/s, p=0.009; 5Hz: -0.12 (-0.15, -0.10) vs. -0.10 (-0.13, -0.09)kPa/l/s, p=0.07). In contrast, within-breath IOS measures (a sign of expiratory flow limitation) and FeNO inflammatory measures, did not differ between groups (p>0.05). Being overweight has significant effects on distal and central airway function as determined by IOS, which is not detected by spirometry. Obesity does not influence airway inflammation as measured by FeNO. IOS is a reliable technique to identify airway abnormalities in the presence of normal spirometry in overweight people. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment.

    PubMed

    Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C

    2017-09-01

    Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction

  2. Definitive airway management after pre-hospital supraglottic airway insertion: Outcomes and a management algorithm for trauma patients.

    PubMed

    Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S

    2018-01-01

    Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Brain blood vessel segmentation using line-shaped profiles

    NASA Astrophysics Data System (ADS)

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-01

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  5. Critical Airway Team: A Retrospective Study of an Airway Response System in a Pediatric Hospital.

    PubMed

    Sterrett, Emily C; Myer, Charles M; Oehler, Jennifer; Das, Bobby; Kerrey, Benjamin T

    2017-12-01

    Objective Study the performance of a pediatric critical airway response team. Study Design Case series with chart review. Setting Freestanding academic children's hospital. Subjects and Methods A structured review of the electronic medical record was conducted for all activations of the critical airway team. Characteristics of the activations and patients are reported using descriptive statistics. Activation of the critical airway team occurred 196 times in 46 months (March 2012 to December 2015); complete data were available for 162 activations (83%). For 49 activations (30%), patients had diagnoses associated with difficult intubation; 45 (28%) had a history of difficult laryngoscopy. Results Activation occurred at least 4 times per month on average (vs 3 per month for hospital-wide codes). The most common reasons for team activation were anticipated difficult intubation (45%) or failed intubation attempt (20%). For 79% of activations, the team performed an airway procedure, most commonly direct laryngoscopy and tracheal intubation. Bronchoscopy was performed in 47% of activations. Surgical airway rescue was attempted 4 times. Cardiopulmonary resuscitation occurred in 41 activations (25%). Twenty-nine patients died during or following team activation (18%), including 10 deaths associated with the critical airway event. Conclusion Critical airway team activation occurred at least once per week on average. Direct laryngoscopy, tracheal intubation, and bronchoscopic procedures were performed frequently; surgical airway rescue was rare. Most patients had existing risk factors for difficult intubation. Given our rate of serious morbidity and mortality, primary prevention of critical airway events will be a focus of future efforts.

  6. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  7. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling.

    PubMed

    Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W

    2018-05-02

    Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.

  8. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  9. Summarized institutional experience of paediatric airway surgery†.

    PubMed

    Hoetzenecker, Konrad; Schweiger, Thomas; Schwarz, Stefan; Roesner, Imme; Leonhard, Matthias; Denk-Linnert, Doris-Maria; Schneider-Stickler, Berit; Bigenzahn, Wolfgang; Klepetko, Walter

    2016-04-01

    The management of paediatric airway stenosis is complex, and requires a dedicated team, consisting of thoracic surgeons, phoniatricians, logopaedics, paediatricians and anaesthetists. The majority of paediatric laryngotracheal stenosis is a sequela of prematurity and prolonged post-partal intubation/tracheostomy. Surgical correction is often difficult due to a frequent combination of glottic and subglottic defects. In 2012, the Laryngotracheal Program Vienna was launched. Since then, 18 paediatric patients were surgically treated for (laryngo-)tracheal problems. The median age of our patients was 26 months (range 2-180 months). Laryngotracheal stenosis extending up to the level of the vocal cords was evident in 9 patients. Three children were diagnosed with an isolated subglottic, and four with a short-segment tracheal stenosis or malacia. Two patients had a long-segment congenital malformation together with vascular ring anomalies. Five children were pretreated by rigid endoscopy before surgical correction, 12 of our 18 patients had a tracheostomy, 3 children were intubated at the time of operation. Different techniques of corrections were applied: laryngotracheal reconstruction (n = 4), extended partial cricotracheal resection (n = 4), cricotracheal resection with or without anterior split or dorsal mucosal flap (n = 4), slide tracheoplasty (n = 2), tracheal resection (n = 4). In 8 patients, a rib cartilage interposition was necessary in order to obtain a sufficient lumen enlargement and in 7 of these patients, an LT-Mold was placed to stabilize the reconstruction. We lost 2 patients, who were referred to our institution after failure of multiple preceding interventions, 2 and 3 months after the operation. Twelve patients are currently in an excellent condition, one is in an acceptable condition without a need for an intervention. Two patients required an endoscopic reintervention 18 and 33 months after the operation, 1 child is currently still cannulated

  10. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  11. Analysis of the interplay between neurochemical control of respiration and upper airway mechanics producing upper airway obstruction during sleep in humans.

    PubMed

    Longobardo, G S; Evangelisti, C J; Cherniack, N S

    2008-02-01

    Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles

  12. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  13. Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data.

    PubMed

    Kim, So-Ra; Kwak, Doo-Ahn; Lee, Woo-Kyun; oLee, Woo-Kyun; Son, Yowhan; Bae, Sang-Won; Kim, Choonsig; Yoo, Seongjin

    2010-07-01

    The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.

  14. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  15. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  16. A novel sub-shot segmentation method for user-generated video

    NASA Astrophysics Data System (ADS)

    Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.

  17. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2004-01-01

    A wealth of clinical observation has suggested that stress and asthma morbidity are associated. We have previously established a mouse model of stress-exacerbated allergic airway inflammation, which reflects major clinical findings. The aim of the current study was to investigate the role of the neurokinin- (NK-)1 receptor in the mediation of stress effects in allergic airway inflammation. BALB/c mice were systemically sensitized with ovalbumin (OVA) on assay days 1, 14, and 21 and repeatedly challenged with OVA aerosol on days 26 and 27. Sound stress was applied to the animals for 24 hours, starting with the first airway challenge. Additionally, one group of stressed and one group of nonstressed mice received the highly specific NK-1 receptor antagonist RP 67580. Bronchoalveolar lavage fluid was obtained, and cell numbers and differentiation were determined. Airway hyperreactivity was measured in vitro by electrical field stimulation of tracheal smooth-muscle elements. Application of stress in sensitized and challenged animals resulted in a significant increase in leukocyte number in the bronchoalveolar lavage fluid. Furthermore, stressed animals showed enhanced airway reactivity. The increase of inflammatory cells and airway reactivity was blocked by treatment of animals with the NK-1 receptor antagonist. These data indicate that the NK-1 receptor plays an important role in mediating stress effects in allergen-induced airway inflammation.

  18. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  19. Extraluminal biodegradable splint to treat upper airway anterior malacia: A preclinical proof of principle.

    PubMed

    Gorostidi, François; Courbon, Cécile; Burki, Marco; Reinhard, Antoine; Sandu, Kishore

    2018-02-01

    Upper airway malacia highly complicates the treatment of benign laryngotracheal stenosis, and no ideal option is available to date. We here explore the use of extraluminal biodegradable splints in an animal model of long-segment anterior tracheomalacia (TM). We show the efficacy, as well as the tissue tolerance, of a custom-made biodegradable extraluminal device surgically inserted around the trachea. Preclinical animal study. Anterior TM was induced in rabbits through an anterior neck approach by removing eight consecutive anterior tracheal rings without damaging the underlying mucosa. Malacia was corrected during the same surgery by pexy sutures, suspending the tracheal mucosa to an experimental biodegradable device. Symptoms, survival, and tissue reaction were compared to healthy and sham surgery controls. The model induced death by respiratory failure within minutes. Ten animals received the experimental treatment, and those who survived the perioperative period remained asymptomatic with a maximum follow-up of 221 days. Histological studies at programmed euthanasia showed complete degradation of the prosthesis, with significant remnant fibrosis around the trachea. However, the tracheal stiffness of test segments was comparatively less than that of control segments. Extraluminal biodegradable splints rescued animals with a condition otherwise incompatible with life. It was well tolerated, leaving peritracheal fibrosis that was not as stiff as normal trachea. The external tracheal stiffening was sufficient for the test animals to live through the phase of severe acute hypercollapsibility. This represents a valid option to help pediatric patients with laryngotracheal stenosis and associated cartilaginous airway malacia. NA. Laryngoscope, 128:E53-E58, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    NASA Astrophysics Data System (ADS)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  1. Cayenne aspiration: an unusual type of lower airway foreign-body aspiration

    PubMed Central

    Lin, Lianjun; Wang, Yuchuan; Zha, Xiankui; Tang, Fei; Lv, Liping; Liu, Xinmin

    2014-01-01

    Purpose Cayenne aspiration is an unusual type of foreign-body aspiration that is usually misdiagnosed. This article analyzes the clinical features of cayenne aspiration in the lower airway. Patients and methods Clinical data on eight adult patients with cayenne aspiration were retrospectively analyzed. Six were elderly patients. The data were collected from Peking University First Hospital and Anhui Chest Hospital between January 2010 and August 2014. Results The most common symptoms of cayenne aspiration were cough (eight cases, 100%) and sputum (five cases, 62.5%). Only one patient (12.5%) could supply the history of aspiration on his first visit to doctor and was diagnosed definitely without delay. The other seven cases were misdiagnosed as pneumonia and the time to accurate diagnosis was from 1 month to 6 months. The history of aspiration could be recalled after confirmed diagnosis for the other seven cases. The most common presentation shown by chest computed tomography (CT) was pneumonic opacity (eight cases, 100%). The existence of cayenne could not be detected by chest CT in any of the patients. All the patients were diagnosed definitively and managed successfully with flexible bronchoscopy. Cayenne was more often lodged in the right bronchus tree (seven cases, 87.5%), especially the right lower bronchus (four cases, 50%). The segment of cayenne was complete in five cases (62.5%) and scattered in three cases (37.5%). Conclusion The clinical features of cayenne aspiration are usually obscure and nonspecific which may lead to delay in diagnosis. Flexible bronchoscopy is safe and useful for early diagnosis and effective management. PMID:25473273

  2. Automated identification of best-quality coronary artery segments from multiple-phase coronary CT angiography (cCTA) for vessel analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Wei, Jun; Kazerooni, Ella A.

    2016-03-01

    We are developing an automated method to identify the best quality segment among the corresponding segments in multiple-phase cCTA. The coronary artery trees are automatically extracted from different cCTA phases using our multi-scale vessel segmentation and tracking method. An automated registration method is then used to align the multiple-phase artery trees. The corresponding coronary artery segments are identified in the registered vessel trees and are straightened by curved planar reformation (CPR). Four features are extracted from each segment in each phase as quality indicators in the original CT volume and the straightened CPR volume. Each quality indicator is used as a voting classifier to vote the corresponding segments. A newly designed weighted voting ensemble (WVE) classifier is finally used to determine the best-quality coronary segment. An observer preference study is conducted with three readers to visually rate the quality of the vessels in 1 to 6 rankings. Six and 10 cCTA cases are used as training and test set in this preliminary study. For the 10 test cases, the agreement between automatically identified best-quality (AI-BQ) segments and radiologist's top 2 rankings is 79.7%, and between AI-BQ and the other two readers are 74.8% and 83.7%, respectively. The results demonstrated that the performance of our automated method was comparable to those of experienced readers for identification of the best-quality coronary segments.

  3. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  4. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease.

    PubMed

    Wichtel, M; Gomez, D; Burton, S; Wichtel, J; Hoffman, A

    2016-07-01

    Agreement between airway reactivity measured by flowmetric plethysmography and histamine bronchoprovocation, and lower airway inflammation measured by bronchoalveolar lavage (BAL) cytology, has not been studied in horses with suspected inflammatory airway disease (IAD). We tested the hypothesis that airway reactivity is associated with BAL cytology in horses presenting for unexplained poor performance and/or chronic cough. Prospective clinical study. Forty-five horses, predominantly young Standardbred racehorses, presenting for unexplained poor performance or chronic cough, underwent endoscopic evaluation, tracheal wash, flowmetric plethysmography with histamine bronchoprovocation and BAL. Histamine response was measured by calculating PC35, the concentration of nebulised histamine eliciting an increase in Δflow of 35%. In this population, there was no significant correlation between histamine response and cell populations in BAL cytology. When airway hyperreactivity (AHR) was defined as ≥35% increase in Δflow at a histamine concentration of <6 mg/ml, 24 of the 45 horses (53%) were determined to have AHR. Thirty-three (73%) had either abnormal BAL cytology or AHR, and were diagnosed with IAD on this basis. Of horses diagnosed with IAD, 9 (27%) had an abnormal BAL, 11 (33%) had AHR and 13 (39%) had both. Airway reactivity and BAL cytology did not show concordance in this population of horses presenting for unexplained poor performance and/or chronic cough. Failure to include tests of airway reactivity may lead to underdiagnosis of IAD in young Standardbred racehorses that present with clinical signs suggestive of IAD. © 2015 EVJ Ltd.

  5. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  6. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  7. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  8. A Novel Self-Expandable, Radioactive Airway Stent Loaded with 125I Seeds: A Feasibility and Safety Study in Healthy Beagle Dog.

    PubMed

    Wang, Yong; Guo, Jin-He; Zhu, Guang-Yu; Zhu, Hai-Dong; Chen, Li; Lu, Jian; Wang, Chao; Teng, Gao-Jun

    2017-07-01

    Airway stent placement is an effective treatment for the immediate palliation of malignant airway obstruction. However, restenosis caused by tumor ingrowth and/or overgrowth after stenting is common. The purpose of this study was to investigate the feasibility and safety of a novel self-expandable stent loaded with 125 I seeds in healthy beagle dog. Under fluoroscopic guidance, forty-eight self-expandable airway stents loaded with 125 I seeds were perorally placed in the main trachea of 48 healthy beagle dogs, who were randomly divided into four groups (Group A: 0.3 mCi; Group B: 0.6 mCi; Group C: 0.9 mCi; Control group: 0 mCi). The estimated radiation dose was calculated using the isotropic point source approximation. Radiological follow-up examinations and histopathological examinations of stented tracheal segments and their adjacent organs and tissues were performed at 2, 4, 8, and 16 weeks following the stenting. All stents were successfully deployed in the targeted tracheal segment in the beagle dogs without procedure-related complications. Tracheal stenosis became severe gradually in all the four groups, which was not associated with the radioactivity of 125 I seeds (p > 0.05). The tracheal injury scores increased along with the higher dose of radioactive seeds which reached peak at 8 weeks and then turned back slightly at 16 weeks. The adjacent tissue did not show pathohistological changes under microscope, while mild and reversible ultrastructure changes were showed under electronic microscope. This study demonstrates that it is feasible and safe to insert this novel self-expandable airway stent loaded with 125 I seeds in healthy beagle dog.

  9. Inflammatory bowel disease and airway diseases.

    PubMed

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-09-14

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.

  10. Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.

    PubMed

    Kanazawa, H; Hirata, K; Yoshikawa, J

    1999-12-01

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05). These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

  11. Association of expiratory airway dysfunction with marked obesity in healthy adult dogs.

    PubMed

    Bach, Jonathan F; Rozanski, Elizabeth A; Bedenice, Daniela; Chan, Daniel L; Freeman, Lisa M; Lofgren, Jennifer L S; Oura, Trisha J; Hoffman, Andrew M

    2007-06-01

    To evaluate the effects of obesity on pulmonary function in healthy adult dogs. 36 Retrievers without cardiopulmonary disease. Dogs were assigned to 1 of 3 groups on the basis of body condition score (1 through 9): nonobese (score, 4.5 to 5.5), moderately obese (score, 6.0 to 6.5), and markedly obese (score, 7.0 to 9.0). Pulmonary function tests performed in conscious dogs included spirometry and measurement of inspiratory and expiratory airway resistance (R(aw)) and specific R(aw) (sR(aw)) during normal breathing and during hyperpnea via head-out whole-body plethysmography. Functional residual capacity (FRC; measured by use of helium dilution), diffusion capacity of lungs for carbon monoxide (DLCO), and arterial blood gas variables (PaO(2), PaCO(2), and alveolar-arterial gradient) were assessed. During normal breathing, body condition score did not influence airway function, DLCO, or arterial blood gas variables. During hyperpnea, expiratory sR(aw) was significantly greater in markedly obese dogs than nonobese dogs and R(aw) was significantly greater in markedly obese dogs, compared with nonobese and moderately obese dogs. Although not significantly different, markedly obese dogs had a somewhat lower FRC, compared with other dogs. In dogs, obesity appeared to cause airflow limitation during the expiratory phase of breathing, but this was only evident during hyperpnea. This suggests that flow limitation is dynamic and likely occurs in the distal (rather than proximal) portions of the airways. Further studies are warranted to localize the flow-limited segment and understand whether obesity is linked to exercise intolerance via airway dysfunction in dogs.

  12. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. Copyright © 2015 the American Physiological Society.

  13. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  14. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    PubMed

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Etiology and airway management in children with tracheobronchomalacia].

    PubMed

    Yin, Yong; Schonfeld, Tommy; Chen, Tong-xin

    2009-02-01

    To investigate etiology and airway management in children with tracheobronchomalacia. Bronchoscopic examinations were performed in 671 children. The cases with tracheomalacia and bronchomalacia were analyzed in etiopathogenesis and summarized their therapy simultaneously. Bronchoscopic examination indicated tracheomalacia and bronchomalacia in 148 cases, tracheomalacia in 77 cases and bronchomalacia in 71 cases. Among the cases with tracheomalacia, compression by vascular rings was found in 46 cases, incorporated congenital esophageal atresia with tracheoesophageal fistula was found in 5 cases, tracheomalacia was associated with tracheostoma and mechanical ventilation in 6 cases, with congenital airway malformation in 11 cases and isolated tracheomalacia was found in 4 cases. Among the cases with bronchomalacia, incorporated congenital cardiovascular malformation was found in 64 cases, congenital airway malformation in 6 cases and isolated bronchomalacia in 1 case. Ten children with anomalous innominate artery underwent aortopexy, twelve children with dextro-aorta arch with concomitant aberrant left subclavian artery and double aorta underwent arches vascular ring lysis, six children with pulmonary sling underwent plasty. Severe malacia segments were resected directly in four children during operation. Mechanical ventilation was performed in 38 children. Tracheostoma was performed in 4 children to treat tracheomalacia and bronchomalacia, it could relieve symptom to a certain extent. In 2 children metal stents were inserted into the bronchus for the treatment of bronchomalacia, one was successful and the other needed re-insertion of stent again, these two patients underwent balloon-dilatation in distal part of stent afterwards. The congenital cardiovascular malformation was the main reason to develop tracheobronchomalacia in children. The symptom of majority of the cases with cardiovascular malformation would be improved within 6 months after surgical intervention

  16. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  17. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  18. Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Liu, Yunhui

    2015-12-01

    Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.

  19. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    NASA Astrophysics Data System (ADS)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  20. Multiscale segmentation-aided digital image correlation for strain concentration characterization of a turbine blade fir-tree root

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Zhou, Yihao; Li, Yang; Chen, Jubing; Miao, Hong

    2018-04-01

    In this paper, a multiscale segmentation-aided digital image correlation method is proposed to characterize the strain concentration of a turbine blade fir-tree root during its contact with the disk groove. A multiscale approach is implemented to increase the local spatial resolution, as the strain concentration area undergoes highly non-uniform deformation and its size is much smaller than the contact elements. In this approach, a far-field view and several near-field views are selected, aiming to get the full-field deformation and local deformation simultaneously. To avoid the interference of different cameras, only the optical axis of the far-field camera is selected to be perpendicular to the specimen surface while the others are inclined. A homography transformation is optimized by matching the feature points, to rectify the artificial deformation caused by the inclination of the optical axis. The resultant genuine near-field strain is thus obtained after the transformation. A real-world experiment is carried out and the strain concentration is characterized. The strain concentration factor is defined accordingly to provide a quantitative analysis.

  1. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  2. FluReF, an automated flu virus reassortment finder based on phylogenetic trees.

    PubMed

    Yurovsky, Alisa; Moret, Bernard M E

    2011-01-01

    Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.

  3. Automated estimation of leaf distribution for individual trees based on TLS point clouds

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus

    2017-04-01

    Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation

  4. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  5. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between

  6. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  8. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  9. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.

  10. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    PubMed

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  11. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  12. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates.

    PubMed

    Hubble, Michael W; Wilfong, Denise A; Brown, Lawrence H; Hertelendy, Attila; Benner, Randall W

    2010-01-01

    Airway management is a key component of prehospital care for seriously ill and injured patients. Oral endotracheal intubation (OETI) is the definitive airway of choice in most emergency medical services (EMS) systems. However, OETI may not be an approved skill for some clinicians or may prove problematic in certain patients because of anatomic abnormalities, trauma, or inadequate relaxation. In these situations alternative airways are frequently employed. However, the reported success rates for these devices vary widely, and established benchmarks are lacking. We sought to determine pooled estimates of the success rates of alternative airway devices (AADs) and needle cricothyrotomy (NCRIC) and surgical cricothyrotomy (SCRIC) placement through a meta-analysis of the literature. We performed a systematic literature search for all English-language articles reporting success rates for AADs, SCRIC, and NCRIC. Studies of field procedures performed by prehospital personnel from any nation were included. All titles were reviewed independently by two authors using prespecified inclusion criteria. Pooled estimates of success rates for each airway technique were calculated using a random-effects meta-analysis model. Of 2,005 prehospital airway titles identified, 35 unique studies were retained for analysis of AAD success rates, encompassing a total of 10,172 prehospital patients. The success rates for SCRIC and NCRIC were analyzed across an additional 21 studies totaling 512 patients. The pooled estimates (and 95% confidence intervals [CIs]) for intervention success across all clinicians and patients were as follows: esophageal obturator airway-esophageal gastric tube airway (EOA-EGTA) 92.6% (90.1%-94.5%); pharyngeotracheal lumen airway (PTLA) 82.1% (74.0%-88.0%); esophageal-tracheal Combitube (ETC) 85.4% (77.3%-91.0%); laryngeal mask airway (LMA) 87.4% (79.0%-92.8%); King Laryngeal Tube airway (King LT) 96.5% (71.2%-99.7%); NCRIC 65.8% (42.3%-83.59%); and SCRIC 90.5% (84

  13. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    PubMed

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  14. Automatic Lung Lobe Segmentation Using Particles, Thin Plate Splines, and Maximum a Posteriori Estimation

    PubMed Central

    Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.

    2011-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396

  15. Clearance of Aspergillus fumigatus is impaired in the airway in allergic inflammation.

    PubMed

    Fukahori, Susumu; Matsuse, Hiroto; Tsuchida, Tomoko; Kawano, Tetsuya; Nishino, Tomoya; Fukushima, Chizu; Kohno, Shigeru

    2014-08-01

    Aspergillus fumigatus (Af) sometimes colonizes and persists within the respiratory tree in some patients with asthma. To date, the precise reasons why the clearance of Af is impaired in patients with asthma remain unknown. To characterize the effects of allergic airway inflammation on clearance of Af. Control and Dermatophagoides farinae (Df) allergen-sensitized BALB/c mice were intranasally infected with Af. After 2 and 9 days of infection, the pathology, fungal burden, and cytokine profile in lung tissue were compared. In a different set of experiments, the phagocytotic activity of alveolar macrophages and the expression of their pathogen recognition receptors also were determined. The Af conidia and neutrophilic airway inflammation disappeared by day 9 after infection in control mice. In Df-sensitized mice, Af conidia and neutrophilic and eosinophilic airway inflammation persisted at day 9 after infection. Compared with control mice, Df allergen-sensitized mice showed significant increases in interleukin (IL)-5 and decreases in IL-12 and interferon-γ in lung tissues at day 2 after infection. Most importantly, compared with Af-infected non-Df-sensitized mice, IL-17 in lung tissues was significantly decreased in Df allergen-sensitized Af-infected mice at day 2 after infection but was significantly increased at day 9. Alveolar macrophages isolated from Df allergen-sensitized mice exhibited significant decreases in phagocytotic activity and expression of Toll-like receptor-4 and dectin-1 compared with those from control mice. In the airway of patients with allergy, T-helper cell type 2-dominant immunity potentially affects the expression of pathogen recognition receptors and attenuates cellular defense against Af. Prolonged IL-17 production also could play an important role. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol.

    PubMed

    Cancado, Jose E; Mendes, Eliana S; Arana, Johana; Horvath, Gabor; Monzon, Maria E; Salathe, Matthias; Wanner, Adam

    2015-04-02

    In vitro and animal experiments have shown that the transport and signaling of β2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic β2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (ΔQ̇aw) were assessed. Mean ± SE EBC pH (units) and ΔQ̇aw (μl.min(-1).mL(-1)) were 6.4 ± 0.1 and 16.8 ± 1.9 during quiet breathing, 6.3 ± 0.1 and 14.5 ± 2.4 during eucapnic hyperventilation, 6.6 ± 0.2 and -0.2 ± 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 ± 0.1 and 2.0 ± 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). Albuterol responsiveness in the airway as assessed by ΔQ̇aw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic β2-adrenergic agonists during airway disease exacerbations associated with changes in pH. Registered at clinicaltrials.gov: NCT01216748 .

  17. Accessible light detection and ranging: estimating large tree density for habitat identification

    Treesearch

    Heather A. Kramer; Brandon M. Collins; Claire V. Gallagher; John Keane; Scott L. Stephens; Maggi Kelly

    2016-01-01

    Large trees are important to a wide variety of wildlife, including many species of conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging (LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting the LiDAR point cloud into...

  18. Motorcycle exhaust particles induce airway inflammation and airway hyperresponsiveness in BALB/C mice.

    PubMed

    Lee, Chen-Chen; Liao, Jiunn-Wang; Kang, Jaw-Jou

    2004-06-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperresponsiveness in laboratory animals. BALB/c mice were instilled intratracheally (i.t.) with 1.2 mg/kg and 12 mg/kg of MEP, which was collected from two-stroke motorcycle engines. The mice were exposed 3 times i.t. with MEP, and various parameters for airway inflammation and hyperresponsiveness were sequentially analyzed. We found that MEP would induce airway and pulmonary inflammation characterized by infiltration of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BALF) and inflammatory cell infiltration in lung. In addition, MEP treatment enhanced BALF interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) cytokine levels and serum IgE production. Bronchial response measured by unrestrained plethysmography with methacholine challenge showed that MEP treatment induced airway hyperresponsiveness (AHR) in BALB/c mice. The chemical components in MEP were further fractionated with organic solvents, and we found that the benzene-extracted fraction exerts a similar biological effect as seen with MEP, including airway inflammation, increased BALF IL-4, serum IgE production, and induction of AHR. In conclusion, we present evidence showing that the filter-trapped particles emitted from the unleaded-gasoline-fueled two-stroke motorcycle engine may induce proinflammatory and proallergic response profiles in the absence of exposure to allergen.

  19. Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard

    2016-04-01

    Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of

  20. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  1. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  2. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  3. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia.

  4. Postnatal airway growth in cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A

    2017-09-01

    Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.

  5. Object-based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    NASA Technical Reports Server (NTRS)

    Ransom, Kenneth J.; Montesano, Paul M.; Nelson, Ross F.

    2011-01-01

    The circumpolar taiga-tundra ecotone was delineated using an image segmentation based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 - 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation grouped pixels representing similar tree cover into polygonal features (objects) that form the map of the transition zone. Eachfeature represents an area much larger than the 500m MODIS pixel to characterize thepatterns of sparse forest patches on a regional scale. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1deg longitudinal interval in North America and Eurasia and (2) Landsat-derived Canadianproportion of forest cover for Canada. The adjusted TCC from MODIS VCF shows, on average, greater than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values between 5-20% , or (2) mean adjusted TCC values <5% but with a standard deviation > 5% were used to identify the ecotone.

  6. External stenting: A reliable technique to relieve airway obstruction in small children.

    PubMed

    Ando, Makoto; Nagase, Yuzo; Hasegawa, Hisaya; Takahashi, Yukihiro

    2017-05-01

    Airway obstruction in children may be caused by conditions such as vascular compression and congenital tracheobronchomalacia. Obstructive pulmonary vascular disease may be a detrimental sequel for patients with congenital heart disease. We evaluate our own original external stenting technique as a treatment option for these patients. Ninety-eight patients underwent external stenting (1997-2015). Cardiovascular anomalies were noted in 82 (83.7%). Nine patients had hypoplastic left heart syndrome and 6 had other types of single-ventricular hearts. The median age at the first operation was 7.2 months (range, 1.0-77.1 months). The mechanisms were tracheobronchomalacia with (n = 46) or without (n = 52) vascular compression. Patients underwent 127 external stentings for 139 obstruction sites (62 trachea, 55 left bronchus, and 22 right bronchus). The stent sizes varied from 12 to 16 mm. There were 14 (8 in the hospital and 6 after discharge) mortality cases. Nine required reoperation for restenosis and 3 required stent removal for infection. The actuarial freedom from mortality and any kind of reoperation was 74.7% ± 4.6% after 2.8 years. The negative pressure threshold to induce airway collapse for congenital malacia (n = 58) improved from -15.9 to -116.0 cmH 2 O. A follow-up computed tomography scan (>2.0 years interval from the operation; n = 23) showed the mean diameter of the stented segment at 88.5% ± 13.7% (bronchus) and 94.5% ± 8.2% (trachea) of the reference. External stenting is a reliable method to relieve airway compression for small children, allowing an age-proportional growth of the airway. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. The Creation and Statistical Evaluation of a Deterministic Model of the Human Bronchial Tree from HRCT Images.

    PubMed

    Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Caillibotte, Georges

    2016-01-01

    A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.

  8. Airway reopening through catastrophic events in a hierarchical network

    PubMed Central

    Baudoin, Michael; Song, Yu; Manneville, Paul; Baroud, Charles N.

    2013-01-01

    When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations. PMID:23277557

  9. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  10. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  11. Alcohol and Airways Function in Health and Disease

    PubMed Central

    Sisson, Joseph H.

    2007-01-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883

  12. Alcohol and airways function in health and disease.

    PubMed

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  13. Preexposure to ozone blocks the antigen-induced late asthmatic response of the canine peripheral airways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C.R.; Kleeberger, S.R.; Spannhake, E.W.

    1989-01-01

    The influence of exposure of the airways to ozone on acute allergic responsiveness has been investigated in several species. Little is known, however, about the effect of this environmental pollutant on the late asthmatic response (LAR) in animals in which it is exhibited. The purpose of this study was to evaluate this effect in the canine peripheral airways and to assess the potential role of mast cells in modulating the effect. A series of experiments on seven mongrel dogs demonstrated that the numbers of mast cells at the base of the epithelial region of small subsegmental airways exposed to 1more » ppm ozone for 5 min were significantly (p less than .01) increased 3 h following exposure compared to air exposed or nonexposed control airways. In a second series of experiments performed on eight additional mongrel dogs with inherent sensitivity to Ascaris suum antigen, antigen aerosol was administered to the sublobar segment 3 h following ozone preexposure when mast cell numbers were presumed to be increased. These experiments were performed to determine whether ozone preexposure could enhance the late-phase response to antigen by virtue of acutely increasing the number of mast cells available to bind the antigen. Four of the eight dogs tested displayed a late-phase response to antigen following air-sham preexposure. In these four dogs, simultaneous ozone preexposure of a contralateral lobe completely blocked the late-phase response to antigen. These results indicate that the consequences of a single exposure to ozone persist beyond its effects on acute antigen-induced bronchoconstriction and extend to the complex processes involved with the late response. This attenuating effect of ozone is seen under conditions where mast-cell numbers in the airways are increased above baseline levels.« less

  14. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    PubMed

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.

  15. Elevated Airway Purines in COPD

    PubMed Central

    Lazaar, Aili L.; Bordonali, Elena; Qaqish, Bahjat; Boucher, Richard C.

    2011-01-01

    Background: Adenosine and related purines have established roles in inflammation, and elevated airway concentrations are predicted in patients with COPD. However, accurate airway surface purine measurements can be confounded by stimulation of purine release during collection of typical respiratory samples. Methods: Airway samples were collected noninvasively as exhaled breath condensate (EBC) from 36 healthy nonsmokers (NS group), 28 healthy smokers (S group), and 89 subjects with COPD (29 with GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II, 29 with GOLD stage III, and 31 with GOLD stage IV) and analyzed with mass spectrometry for adenosine, adenosine monophosphate (AMP), and phenylalanine, plus urea as a dilution marker. Variable dilution of airway secretions in EBC was controlled using ratios to urea, and airway surface concentrations were calculated using EBC to serum urea-based dilution factors. Results: EBC adenosine to urea ratios were similar in NS (0.20 ± 0.21) and S (0.22 ± 0.20) groups but elevated in those with COPD (0.32 ± 0.30, P < .01 vs NS). Adenosine to urea ratios were highest in the most severely affected cohort (GOLD IV, 0.35 ± 0.34, P < .01 vs NS) and negatively correlated with FEV1 (r = −0.27, P < .01). Elevated AMP to urea ratios were also observed in the COPD group (0.58 ± 0.97 COPD, 0.29 ± 0.35 NS, P < .02), but phenylalanine to urea ratios were similar in all groups. Airway surface adenosine concentrations calculated in a subset of subjects were 3.2 ± 2.7 μM in those with COPD (n = 28) relative to 1.7 ± 1.5 μM in the NS group (n = 16, P < .05). Conclusions: Airway purines are present on airway surfaces at physiologically significant concentrations, are elevated in COPD, and correlate with markers of COPD severity. Purinergic signaling pathways are potential therapeutic targets in COPD, and EBC purines are potential noninvasive biomarkers. PMID:21454402

  16. Finding a good segmentation strategy for tree crown transparency estimation

    Treesearch

    Neil A. Clark; Sang-Mook Lee; Philip A. Araman

    2003-01-01

    Image segmentation is a general term for delineating image areas into informational categories. A wide variety of general techniques exist depending on application and the image data specifications. Specialized algorithms, utilizing components of several techniques, usually are needed to meet the rigors for a specific application. This paper considers automated color...

  17. Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.

    2017-12-01

    Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.

  18. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  19. The Difficult Airway Society 'ADEPT' guidance on selecting airway devices: the basis of a strategy for equipment evaluation.

    PubMed

    Pandit, J J; Popat, M T; Cook, T M; Wilkes, A R; Groom, P; Cooke, H; Kapila, A; O'Sullivan, E

    2011-08-01

    Faced with the concern that an increasing number of airway management devices were being introduced into clinical practice with little or no prior evidence of their clinical efficacy or safety, the Difficult Airway Society formed a working party (Airway Device Evaluation Project Team) to establish a process by which the airway management community within the profession could itself lead a process of formal device/equipment evaluation. Although there are several national and international regulations governing which products can come on to the market and be legitimately sold, there has hitherto been no formal professional guidance relating to how products should be selected (i.e. purchased). The Airway Device Evaluation Project Team's first task was to formulate such advice, emphasising evidence-based principles. Team discussions led to a definition of the minimum level of evidence needed to make a pragmatic decision about the purchase or selection of an airway device. The Team concluded that this definition should form the basis of a professional standard, guiding those with responsibility for selecting airway devices. We describe how widespread adoption of this professional standard can act as a driver to create an infrastructure in which the required evidence can be obtained. Essential elements are that: (i) the Difficult Airway Society facilitates a coherent national network of research-active units; and (ii) individual anaesthetists in hospital trusts play a more active role in local purchasing decisions, applying the relevant evidence and communicating their purchasing decisions to the Difficult Airway Society. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  20. Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree

    NASA Astrophysics Data System (ADS)

    Mauroy, Benjamin; Fausser, Christian; Pelca, Dominique; Merckx, Jacques; Flaud, Patrice

    2011-10-01

    Mucociliary clearance and cough are the two main natural mucus draining methods in the bronchial tree. If they are affected by a pathology, they can become insufficient or even ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the lungs acceptable. The manipulations of physical therapists are known to be very efficient clinically but they are mostly empirical since the biophysical mechanisms involved in these manipulations have never been studied. We develop in this work a model of mucus clearance in idealized rigid human bronchial trees and focus our study on the interaction between (1) tree geometry, (2) mucus physical properties and (3) amplitude of flow rate in the tree. The mucus is considered as a Bingham fluid (gel-like) which is moved upward in the tree thanks to its viscous interaction with air flow. Our studies point out the important roles played both by the geometry and by the physical properties of mucus (yield stress and viscosity). More particularly, the yield stress has to be overcome to make mucus flow. Air flow rate and yield stress determine the maximal possible mucus thickness in each branch of the tree at equilibrium. This forms a specific distribution of mucus in the tree whose characteristics are strongly related to the multi-scaled structure of the tree. The behavior of any mucus distribution is then dependent on this distribution. Finally, our results indicate that increasing air flow rates ought to be more efficient to drain mucus out of the bronchial tree while minimizing patient discomfort.

  1. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  2. The watering of tall trees--embolization and recovery.

    PubMed

    Gouin, Henri

    2015-03-21

    We can propound a thermo-mechanical understanding of the ascent of sap to the top of tall trees thanks to a comparison between experiments associated with the cohesion-tension theory and the disjoining pressure concept for liquid thin-films. When a segment of xylem is tight-filled with crude sap, the liquid pressure can be negative although the pressure in embolized vessels remains positive. Examples are given that illustrate how embolized vessels can be refilled and why the ascent of sap is possible even in the tallest trees avoiding the problem due to cavitation. However, the maximum height of trees is limited by the stability domain of liquid thin-films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Assessment of upper airway mechanics during sleep.

    PubMed

    Farré, Ramon; Montserrat, Josep M; Navajas, Daniel

    2008-11-30

    Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

  4. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  5. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Effects of the tripeptide substance P antagonist, FR113680, on airway constriction and airway edema induced by neurokinins in guinea-pigs.

    PubMed

    Murai, M; Morimoto, H; Maeda, Y; Fujii, T

    1992-06-24

    FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).

  7. How anaesthesiologists understand difficult airway guidelines-an interview study.

    PubMed

    Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan

    2017-11-01

    In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.

  8. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  9. Estimating the weight of crown segments for old-growth Douglas-fir and western hemlock.

    Treesearch

    J.A. Kendall Snell; Timothy A. Max

    1985-01-01

    The purpose of this study was to develop and validate estimators to predict total crown weight and weight of any segment of crown for old-growth felled and bucked Douglas-fir and western hemlock trees. Equations were developed for predicting weight of continuous live crown, total live crown, dead crown, any segment of live crown, and individual branches for old-growth...

  10. Airways, vasculature, and interstitial tissue: anatomically informed computational modeling of human lungs for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Abadi, Ehsan; Sturgeon, Gregory M.; Agasthya, Greeshma; Harrawood, Brian; Hoeschen, Christoph; Kapadia, Anuj; Segars, W. P.; Samei, Ehsan

    2017-03-01

    This study aimed to model virtual human lung phantoms including both non-parenchymal and parenchymal structures. Initial branches of the non-parenchymal structures (airways, arteries, and veins) were segmented from anatomical data in each lobe separately. A volume-filling branching algorithm was utilized to grow the higher generations of the airways and vessels to the level of terminal branches. The diameters of the airways and vessels were estimated using established relationships between flow rates and diameters. The parenchyma was modeled based on secondary pulmonary lobule units. Polyhedral shapes with variable sizes were modeled, and the borders were assigned to interlobular septa. A heterogeneous background was added inside these units using a non-parametric texture synthesis algorithm which was informed by a high-resolution CT lung specimen dataset. A voxelized based CT simulator was developed to create synthetic helical CT images of the phantom with different pitch values. Results showed the progressive degradation in depiction of lung details with increased pitch. Overall, the enhanced lung models combined with the XCAT phantoms prove to provide a powerful toolset to perform virtual clinical trials in the context of thoracic imaging. Such trials, not practical using clinical datasets or simplistic phantoms, can quantitatively evaluate and optimize advanced imaging techniques towards patient-based care.

  11. Are new supraglottic airway devices, tracheal tubes and airway viewing devices cost-effective?

    PubMed

    Slinn, Simon J; Froom, Stephen R; Stacey, Mark R W; Gildersleve, Christopher D

    2015-01-01

    Over the past two decades, a plethora of new airway devices has become available to the pediatric anesthetist. While all have the laudable intention of improving patient care and some have proven clinical benefits, these devices are often costly and at times claims of an advantage over current equipment and techniques are marginal. Supraglottic airway devices are used in the majority of pediatric anesthetics delivered in the U.K., and airway-viewing devices provide an alternative for routine intubation as well as an option in the management of the difficult airway. Yet hidden beneath the convenience of the former and the technology of the latter, the impact on basic airway skills with a facemask and the lack of opportunities to fine-tune the core skill of intubation represent an unrecognised and unquantifiable cost. A judgement on this value must be factored into the absolute purchase cost and any potential benefits to the quality of patient care, thus blurring any judgement on cost-effectiveness that we might have. An overall value on cost-effectiveness though not in strict monetary terms can then be ascribed. In this review, we evaluate the role of these devices in the care of the pediatric patient and attempt to balance the advantages they offer against the cost they incur, both financial and environmental, and in any quality improvement they might offer in clinical care. © 2014 John Wiley & Sons Ltd.

  12. How anaesthesiologists understand difficult airway guidelines—an interview study

    PubMed Central

    Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan

    2017-01-01

    Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973

  13. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device.

    PubMed

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-05-01

    Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway.

  14. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.

    PubMed

    Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E

    2002-02-01

    Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P < 0.0001). Within sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P < 0.005). Heartwood had only 2-10% of the respiratory potential of outer sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P < 0.0001). When scaled to the whole-tree level on a sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if

  15. A two-stage approach for fully automatic segmentation of venous vascular structures in liver CT images

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Tek, Hüseyin; Aach, Til

    2009-02-01

    The segmentation of the hepatic vascular tree in computed tomography (CT) images is important for many applications such as surgical planning of oncological resections and living liver donations. In surgical planning, vessel segmentation is often used as basis to support the surgeon in the decision about the location of the cut to be performed and the extent of the liver to be removed, respectively. We present a novel approach to hepatic vessel segmentation that can be divided into two stages. First, we detect and delineate the core vessel components efficiently with a high specificity. Second, smaller vessel branches are segmented by a robust vessel tracking technique based on a medialness filter response, which starts from the terminal points of the previously segmented vessels. Specifically, in the first phase major vessels are segmented using the globally optimal graphcuts algorithm in combination with foreground and background seed detection, while the computationally more demanding tracking approach needs to be applied only locally in areas of smaller vessels within the second stage. The method has been evaluated on contrast-enhanced liver CT scans from clinical routine showing promising results. In addition to the fully-automatic instance of this method, the vessel tracking technique can also be used to easily add missing branches/sub-trees to an already existing segmentation result by adding single seed-points.

  16. Open segmental fracture of both bone forearm and dislocation of ipsilateral elbow with extruded middle segment radius

    PubMed Central

    Kumar, Pawan; Manjhi, Lal Bahadur; Rajak, Ramesh Lal

    2013-01-01

    Extruded middle segment of radius with open segmental fracture both bone forearm and dislocation of ipsilateral elbow is a rare injury. A 12-year-old child presented to us within 4 hours following fall from tree. The child's mother was carrying a 12-cm-long extruded soiled segment of radius. The extruded bone was thoroughly washed. The medullary cavity was properly syringed with antiseptic solution. The bone was autoclaved and put in the muscle plane of the distal forearm after debridement of the wound. After 5 days, a 2.5-mm K-wire was introduced by retrograde method into the proximal radius by passing through the extruded segment. Another 2.5-mm K-wire was passed in ulna. The limb was evaluated clinicoradiologically every 2 weeks. The wound was healed by primary intention. At 4 months, the reposed bone appeared less dense radiologically and K-wire seemed to be out of the bone. In the subsequent months, the roentgenograms show remodeling of the extruded fragment. After 20 weeks, the K-wires were removed (first ulnar and then radial). Complete union was achieved with full range of movement except loss of few degrees of extension of elbow and thumb. This case is reported to show a good outcome following successful incorporation of an extruded segment of radius in an open fracture. PMID:23798764

  17. Incorporating additional tree and environmental variables in a lodgepole pine stem profile model

    Treesearch

    John C. Byrne

    1993-01-01

    A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...

  18. Use of a Supraglottic Airway to Relieve Ventilation-Impeding Gastric Insufflation During Emergency Airway Management in an Infant.

    PubMed

    Dodd, Kenneth W; Strobel, Ashley M; Driver, Brian E; Reardon, Robert F

    2016-10-01

    Positive-pressure bag-valve-mask ventilation during emergency airway management often results in significant gastric insufflation, which may impede adequate ventilation and oxygenation. Current-generation supraglottic airways have beneficial features, such as channels for gastric decompression while ventilation is ongoing. A 5-week-old female infant required resuscitation for hypoxemic respiratory failure caused by rhinovirus with pneumonia. Bag-valve-mask ventilation led to gastric insufflation that compromised ventilation, thereby interfering with intubation because of precipitous oxygen desaturation during laryngoscopy. A current-generation supraglottic airway (LMA Supreme; Teleflex Inc, Morrisville, NC) was used to facilitate gastric decompression while ventilation and oxygenation was ongoing. After gastric decompression, ventilation was markedly improved and the pulse oxygen saturation improved to 100%. Intubation was successful on the next attempt, without oxygen desaturation. Current-generation supraglottic airways have 3 distinct advantages compared with first-generation supraglottic airways, which make them better devices for emergency airway management: gastric decompression ports, conduits for intubation, and higher oropharyngeal leak pressures. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  19. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  20. Definitive airway management of patients presenting with a pre-hospital inserted King LT(S)-D laryngeal tube airway: a historical cohort study.

    PubMed

    Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A

    2016-03-01

    The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.

  1. Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Chuan; Chan, H.-P.; Sahiner, Berkman

    2007-12-15

    The authors are developing a computerized pulmonary vessel segmentation method for a computer-aided pulmonary embolism (PE) detection system on computed tomographic pulmonary angiography (CTPA) images. Because PE only occurs inside pulmonary arteries, an automatic and accurate segmentation of the pulmonary vessels in 3D CTPA images is an essential step for the PE CAD system. To segment the pulmonary vessels within the lung, the lung regions are first extracted using expectation-maximization (EM) analysis and morphological operations. The authors developed a 3D multiscale filtering technique to enhance the pulmonary vascular structures based on the analysis of eigenvalues of the Hessian matrix atmore » multiple scales. A new response function of the filter was designed to enhance all vascular structures including the vessel bifurcations and suppress nonvessel structures such as the lymphoid tissues surrounding the vessels. An EM estimation is then used to segment the vascular structures by extracting the high response voxels at each scale. The vessel tree is finally reconstructed by integrating the segmented vessels at all scales based on a 'connected component' analysis. Two CTPA cases containing PEs were used to evaluate the performance of the system. One of these two cases also contained pleural effusion disease. Two experienced thoracic radiologists provided the gold standard of pulmonary vessels including both arteries and veins by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. The accuracy of vessel tree segmentation was evaluated by the percentage of the 'gold standard' vessel center points overlapping with the segmented vessels. The results show that 96.2% (2398/2494) and 96.3% (1910/1984) of the manually marked center points in the arteries overlapped with segmented vessels for the case without and with other lung diseases. For the manually marked center points in all vessels including

  2. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Nasal high flow clears anatomical dead space in upper airway models

    PubMed Central

    Celik, Gülnaz; Feng, Sheng; Bartenstein, Peter; Meyer, Gabriele; Eickelberg, Oliver; Schmid, Otmar; Tatkov, Stanislav

    2015-01-01

    Recent studies showed that nasal high flow (NHF) with or without supplemental oxygen can assist ventilation of patients with chronic respiratory and sleep disorders. The hypothesis of this study was to test whether NHF can clear dead space in two different models of the upper nasal airways. The first was a simple tube model consisting of a nozzle to simulate the nasal valve area, connected to a cylindrical tube to simulate the nasal cavity. The second was a more complex anatomically representative upper airway model, constructed from segmented CT-scan images of a healthy volunteer. After filling the models with tracer gases, NHF was delivered at rates of 15, 30, and 45 l/min. The tracer gas clearance was determined using dynamic infrared CO2 spectroscopy and 81mKr-gas radioactive gamma camera imaging. There was a similar tracer-gas clearance characteristic in the tube model and the upper airway model: clearance half-times were below 1.0 s and decreased with increasing NHF rates. For both models, the anterior compartments demonstrated faster clearance levels (half-times < 0.5 s) and the posterior sections showed slower clearance (half-times < 1.0 s). Both imaging methods showed similar flow-dependent tracer-gas clearance in the models. For the anatomically based model, there was complete tracer-gas removal from the nasal cavities within 1.0 s. The level of clearance in the nasal cavities increased by 1.8 ml/s for every 1.0 l/min increase in the rate of NHF. The study has demonstrated the fast-occurring clearance of nasal cavities by NHF therapy, which is capable of reducing of dead space rebreathing. PMID:25882385

  4. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs.

    PubMed Central

    Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.

    1990-01-01

    1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168

  5. Terrestrial laser scanning for biomass assessment and tree reconstruction: improved processing efficiency

    NASA Astrophysics Data System (ADS)

    Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor

    2017-09-01

    Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.

  6. [Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.

    PubMed

    Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed

    2016-01-01

    Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  9. Airway obstruction in children with infectious mononucleosis.

    PubMed

    Wohl, D L; Isaacson, J E

    1995-09-01

    Epstein-Barr Virus (EBV) infection generally has a benign clinical course. Upper airway obstruction is a known complication requiring the otolaryngologist's attention. EBV is usually associated with adolescence but has been increasingly documented in younger children. We review 36 pediatric admissions for infectious mononucleosis over a 12-year period at our institution, 11 of which required consultation for airway obstruction. Airway management was based on clinical severity and ranged from monitored observation, with or without nasopharyngeal stenting, to prolonged intubation or emergent tonsilloadenoidectomy. A rare case of a four-year-old with near total upper airway obstruction secondary to panpharyngeal and transglottic inflammatory edema prompted this review and is reported. The otolaryngologist must recognize the potential severity of EBV-related airway compromise and be prepared to manage it.

  10. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation.

    PubMed

    Sverrild, A; Bergqvist, A; Baines, K J; Porsbjerg, C; Andersson, C K; Thomsen, S F; Hoffmann, H J; Gibson, P; Erjefält, J S; Backer, V

    2016-02-01

    Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway tissue. We compared the number and phenotype of mast cells, mRNA expression of mast cell-associated genes and number of eosinophils in airway tissue of subjects with asthma and healthy controls in relation to AHR to mannitol. Airway hyperresponsiveness to inhaled mannitol was measured in 23 non-smoking, corticosteroid-free asthmatic individuals and 10 healthy controls. Mast cells and eosinophils were identified in mucosal biopsies from all participants. Mast cells were divided into phenotypes based on the presence of chymase. mRNA expression of mast cell-associated genes was measured by real-time PCR. The proportion of submucosal MCTC was higher in asthmatic individuals with AHR to mannitol compared with asthmatic individuals without AHR (median: 40.3% vs. 18.7%, P = 0.03). Increased submucosal MCTC numbers were associated with increased levels of mRNA for thymic stromal lymphopoietin (TSLP) and CPA3 in asthmatics. Reactivity to mannitol correlated significantly with eosinophils in submucosa (r(s): 0.56, P = 0.01). Airway hyperresponsiveness to inhaled mannitol is associated with an altered submucosal mast cell profile in asthmatic individuals. This mast cell profile is associated with increased levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa. © 2015 John Wiley & Sons Ltd.

  11. On fractal properties of arterial trees.

    PubMed

    Zamir, M

    1999-04-21

    The question of fractal properties of arterial trees is considered in light of data from the extensive tree structure of the right coronary artery of a human heart. Because of the highly non-uniform structure of this tree, the study focuses on the purely geometrical rather than statistical aspects of fractal properties. The large number of arterial bifurcations comprising the tree were found to have a mixed degree of asymmetry at all levels of the tree, including the depth of the tree where it has been generally supposed that they would be symmetrical. Cross-sectional area ratios of daughter to parent vessels were also found to be highly mixed at all levels, having values both above and below 1.0, rather than consistently above as has been generally supposed in the past. Calculated values of the power law index which describes the theoretical relation between the diameters of the three vessel segments at an arterial bifurcation were found to range far beyond the two values associated with the cube and square laws, and not clearly favoring one or the other. On the whole the tree structure was found to have what we have termed "pseudo-fractal" properties, in the sense that vessels of different calibers displayed the same branching pattern but with a range of values of the branching parameters. The results suggest that a higher degree of fractal character, one in which the branching parameters are constant throughout the tree structure, is unlikely to be attained in non-uniform vascular structures. Copyright 1999 Academic Press.

  12. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a devic...

  13. Image segmentation using hidden Markov Gauss mixture models.

    PubMed

    Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M

    2007-07-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.

  14. Recurrent airway obstructions in a patient with benign tracheal stenosis and a silicone airway stent: a case report

    PubMed Central

    Sriram, KB; Robinson, PC

    2008-01-01

    Airway stents (silicone and metal stents) are used to treat patients with benign tracheal stenosis, who are symptomatic and in whom tracheal surgical reconstruction has failed or is not appropriate. However airway stents are often associated with complications such as migration, granuloma formation and mucous hypersecretion, which cause significant morbidity, especially in patients with benign tracheal stenosis and relatively normal life expectancy. We report a patient who had frequent critical airway obstructions over 8 years due to granuloma and mucus hypersecretion in a silicone airway stent. The problem was resolved when the silicone stent was removed and replaced with a covered self expanding metal stent. PMID:18840299

  15. Segmentation of hepatic artery in multi-phase liver CT using directional dilation and connectivity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Schnurr, Alena-Kathrin; Zidowitz, Stephan; Georgii, Joachim; Zhao, Yue; Razavi, Mohammad; Schwier, Michael; Hahn, Horst K.; Hansen, Christian

    2016-03-01

    Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent. The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diameter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and segmented vessel skeletons, resulting in an average of 0:55+/-0:27 and 12:7+/-7:9 mm (mean standard deviation), respectively.

  16. Heterogeneity in the Segmental Development of the Aortic Tree: Impact on Management of Genetically Triggered Aortic Aneurysms

    PubMed Central

    Sherif, Hisham M.F.

    2014-01-01

    An extensive search of the medical literature examining the development of the thoracic aortic tree reveals that the thoracic aorta does not develop as one unit or in one stage: the oldest part of the thoracic aorta is the descending aorta with the aortic arch being the second oldest, developing under influence from the neural crest cell. Following in chronological order are the proximal ascending aorta and aortic root, which develop from a conotruncal origin. Different areas of the thoracic aorta develop under the influence of different gene sets. These parts develop from different cell lineages: the aortic root (the conotruncus), developing from the mesoderm; the ascending aorta and aortic arch, developing from the neural crest cells; and the descending aorta from the mesoderm. Findings illustrate that the thoracic aorta is not a single entity, in developmental terms. It develops from three or four distinct areas, at different stages of embryonic life, and under different sets of genes and signaling pathways. Genetically triggered thoracic aortic aneurysms are not a monolithic group but rather share a multi-genetic origin. Identification of therapeutic targets should be based on the predilection of certain genes to cause aneurysmal disease in specific aortic segments. PMID:26798739

  17. Pressure-volume behavior of the upper airway.

    PubMed

    Fouke, J M; Teeter, J P; Strohl, K P

    1986-09-01

    The study was performed to investigate the relationship between force generation and upper airway expansion during respiratory efforts by upper airway muscles. In 11 anesthetized dogs we isolated the upper airway (nasal, oral, pharyngeal, and laryngeal regions) by transecting the cervical trachea and sealing the nasal and oral openings. During spontaneous respiratory efforts the pressure within the sealed upper airway, used as an index of dilating force, decreased during inspiration. On alternate breaths the upper airway was opened to a pneumotachograph, and an increase in volume occurred, also during inspiration. Progressive hyperoxic hypercapnia produced by rebreathing increased the magnitude of change in pressure and volume. At any level of drive, peak pressure or volume occurred at the same point during inspiration. At any level of drive, volume and pressure changes increased with end-expiratory occlusion of the trachea. The force-volume relationship determined from measurements during rebreathing was compared with pressure-volume curves performed by passive inflation of the airway while the animal was apneic. The relationship during apnea was 1.06 +/- 0.55 (SD) ml/cmH2O, while the force-volume relationship from rebreathing trials was -1.09 +/- 0.45 ml/cmH2O. We conclude that there is a correspondence between force production and volume expansion in the upper airway during active respiratory efforts.

  18. Durability of Silicone Airway Stents in the Management of Benign Central Airway Obstruction.

    PubMed

    Karush, Justin M; Seder, Christopher W; Raman, Anish; Chmielewski, Gary W; Liptay, Michael J; Warren, William H; Arndt, Andrew T

    2017-10-01

    The literature is devoid of a comprehensive analysis of silicone airway stenting for benign central airway obstruction (BCAO). With the largest series in the literature to date, we aim to demonstrate the safety profile, pattern of re-intervention, and duration of silicone airway stents. An institutional database was used to identify patients with BCAO who underwent rigid bronchoscopy with dilation and silicone stent placement between 2002 and 2015 at Rush University Medical Center. During the study period, 243 stents were utilized in 63 patients with BCAO. Pure tracheal stenosis was encountered in 71% (45/63), pure tracheomalacia in 11% (7/63), and a hybrid of both in 17% (11/63). Median freedom from re-intervention was 104 (IQR 167) days. Most common indications for re-intervention include mucus accumulation (60%; 131/220), migration (28%; 62/220), and intubation (8%; 18/220). The most common diameters of stent placed were 12 mm (94/220) and 14 mm (96/220). The most common lengths utilized were 30 mm (60/220) and 40 mm (77/220). Duration was not effected by stent size when placed for discrete stenosis. However, 14 mm stents outperformed 12 mm when tracheomalacia was present (157 vs. 37 days; p = 0.005). Patients with a hybrid stenosis fared better when longer stents were used (60 mm stents outlasted 40 mm stents 173 vs. 56 days; p = 0.05). Rigid bronchoscopy with silicone airway stenting is a safe and effective option for the management of benign central airway obstruction. Our results highlight several strategies to improve stent duration.

  19. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  20. Influenza infection causes airway hyperresponsiveness by decreasing enkephalinase.

    PubMed

    Jacoby, D B; Tamaoki, J; Borson, D B; Nadel, J A

    1988-06-01

    Ferret tracheal segments were infected with human influenza virus A/Taiwan/86 (H1N1) in vitro. After 4 days, the smooth muscle contractile responses to acetylcholine and to substance P were measured. The response to substance P was markedly accentuated, with a threefold increase in force of contraction at a substance P concentration of 10(-5) M, the highest concentration tested. In contrast, the response to acetylcholine was not affected by viral infection. Histological examination of tissues revealed extensive epithelial desquamation. Activity of enkephalinase (neutral metallo-endopeptidase, EC.3.4.24.11), an enzyme that degrades substance P, was decreased by 50% in infected tissues. Inhibiting enkephalinase activity by pretreating with thiorphan (10(-5) M) increased the response to substance P to the same final level in both infected and control tissues. Inhibiting other substance P-degrading enzymes including kininase II (angiotensin-converting enzyme), serine proteases, and aminopeptidases did not affect the response to substance P. Inhibiting cyclooxygenase and lipoxygenase activity using indomethacin and BW 755c did not affect hyperresponsiveness to substance P. Pretreating tissues with antagonists of alpha-adrenoceptors, beta-adrenoceptors, and H1 histamine receptors (phentolamine 10(-5) M, propranolol 5 X 10(-6) M, and pyrilamine 10(-5) M, respectively) had no effect on substance P-induced contraction. These results demonstrate that infection of ferret airway tissues with influenza virus increases the contractile response of airway smooth muscle to substance P. This effect is caused by decreased enkephalinase activity in infected tissues.

  1. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  2. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  3. Airway somatosensory deficits and dysphagia in Parkinson's disease.

    PubMed

    Hammer, Michael J; Murphy, Caitlin A; Abrams, Trisha M

    2013-01-01

    Individuals with Parkinson's disease (PD) often experience substantial impairment of swallow control, and are typically unaware of the presence or severity of their impairments suggesting that these individuals may also experience airway sensory deficits. However, the degree to which impaired swallow function in PD may relate to airway sensory deficits has yet to be formally tested. The purpose of this study was to examine whether airway sensory function is associated with swallow impairment in PD. Eighteen PD participants and 18 healthy controls participated in this study and underwent endoscopic assessment of airway somatosensory function, endoscopic assessment of swallow function, and clinical ratings of swallow and disease severity. PD participants exhibited abnormal airway somatosensory function and greater swallow impairment compared with healthy controls. Swallow and sensory deficits in PD were correlated with disease severity. Moreover, PD participants reported similar self-rated swallow function as healthy controls, and swallow deficits were correlated with sensory function suggesting an association between impaired sensory function and poor self-awareness of swallow deficits in PD. These results suggest that control of swallow is influenced by airway somatosensory function, that swallow-related deficits in PD are related to abnormal somatosensation, and that swallow and airway sensory function may degrade as a function of disease severity. Therefore, the basal ganglia and related neural networks may play an important role to integrate airway sensory input for swallow-related motor control. Furthermore, the airway deficits observed in PD suggest a disintegration of swallow-related sensory and motor control.

  4. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  5. Airway management after maxillectomy with free flap reconstruction.

    PubMed

    Brickman, Daniel S; Reh, Douglas D; Schneider, Daniel S; Bush, Ben; Rosenthal, Eben L; Wax, Mark K

    2013-08-01

    Maxillectomy defects require complex 3-dimensional reconstructions often best suited to microvascular free tissue transfer. Postoperative airway management during this procedure has little discussion in the literature and is often dictated by surgical dogma. The purpose of this article was to review our experience in order to evaluate the effect of airway management on perioperative outcomes in patients undergoing maxillectomy with free flap reconstruction. A retrospective chart review was performed on patients receiving maxillectomy with microvascular reconstruction at 2 institutions between 1999 and 2011. Patient's airways were managed with or without elective tracheotomy at the surgical team's discretion and different perioperative outcomes were measured. The primary outcome was incidence of airway complication including pneumonia and need for further airway intervention. Secondary outcome was measured as factors leading to perioperative performance of the tracheotomy. Seventy-nine of 143 patients received elective tracheotomy perioperatively. The incidence of airway complication was equivalent between groups (10.1% vs 9.4%; p = .89). Patients with cardiopulmonary comorbidities were more likely to receive perioperative tracheotomy (74.1% vs 50.9%; p = .03) without a difference in airway complications. Other patient cofactors did not have an impact on perioperative tracheotomy or airway complication rate. Elective tracheotomy may safely be avoided in a subset of patients undergoing maxillectomy with microvascular reconstruction. Elective tracheotomy should be considered in patients with cardiopulmonary risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  6. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol.

    PubMed

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. ISRCTN: 18528625.

  7. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol

    PubMed Central

    Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew

    2013-01-01

    Introduction Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. Methods and analysis The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Ethics and dissemination Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. Trial

  8. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochet, Nathalie, E-mail: nrochet@partners.org; Hauswald, Henrik; Schmaus, Martina

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, {<=}70). Results: EBRT had to be stopped prematurely inmore » 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.« less

  9. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  10. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  11. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  12. Color analysis of the human airway wall

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepa; McLennan, Geoffrey; Donnelley, Martin; Delsing, Angela; Suter, Melissa; Flaherty, Dawn; Zabner, Joseph; Hoffman, Eric A.; Reinhardt, Joseph M.

    2002-04-01

    A bronchoscope can be used to examine the mucosal surface of the airways for abnormalities associated with a variety of lung diseases. The diagnosis of these abnormalities through the process of bronchoscopy is based, in part, on changes in airway wall color. Therefore it is important to characterize the normal color inside the airways. We propose a standardized method to calibrate the bronchoscopic imaging system and to tabulate the normal colors of the airway. Our imaging system consists of a Pentium PC and video frame grabber, coupled with a true color bronchoscope. The calibration procedure uses 24 standard color patches. Images of these color patches at three different distances (1, 1.5, and 2 cm) were acquired using the bronchoscope in a darkened room, to assess repeatability and sensitivity to illumination. The images from the bronchoscope are in a device-dependent Red-Green-Blue (RGB) color space, which was converted to a tri-stimulus image and then into a device-independent color space sRGB image by a fixed polynomial transformation. Images were acquired from five normal human volunteer subjects, two cystic fibrosis (CF) patients and one normal heavy smoker subject. The hue and saturation values of regions within the normal airway were tabulated and these values were compared with the values obtained from regions within the airways of the CF patients and the normal heavy smoker. Repeated measurements of the same region in the airways showed no measurable change in hue or saturation.

  13. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  14. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    PubMed

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 76 FR 23687 - Amendment of Federal Airways; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends all Anchorage, AK, Federal airways... airways that currently use the Anchorage (ANC) VOR located on Fire Island, AK. The ANC VOR was upgraded to... Federal airways. * * * * * V-319 [Amended] From Yakutat, AK, via Johnstone Point, AK, INT Johnstone Point...

  16. Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, James C., E-mail: jross@bwh.harvard.edu; Surgical Planning Lab, Brigham and Women's Hospital, Boston, Massachusetts 02215; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts 02126

    2013-12-15

    Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and amore » novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The

  17. A framework for understanding shared substrates of airway protection

    PubMed Central

    TROCHE, Michelle Shevon; BRANDIMORE, Alexandra Essman; GODOY, Juliana; HEGLAND, Karen Wheeler

    2014-01-01

    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits. PMID:25141195

  18. Clinical review: Airway hygiene in the intensive care unit

    PubMed Central

    Jelic, Sanja; Cunningham, Jennifer A; Factor, Phillip

    2008-01-01

    Maintenance of airway secretion clearance, or airway hygiene, is important for the preservation of airway patency and the prevention of respiratory tract infection. Impaired airway clearance often prompts admission to the intensive care unit (ICU) and can be a cause and/or contributor to acute respiratory failure. Physical methods to augment airway clearance are often used in the ICU but few are substantiated by clinical data. This review focuses on the impact of oral hygiene, tracheal suctioning, bronchoscopy, mucus-controlling agents, and kinetic therapy on the incidence of hospital-acquired respiratory infections, length of stay in the hospital and the ICU, and mortality in critically ill patients. Available data are distilled into recommendations for the maintenance of airway hygiene in ICU patients. PMID:18423061

  19. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca

    Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is tomore » analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a

  20. Airway complications in the head injured.

    PubMed

    Woo, P; Kelly, G; Kirshner, P

    1989-07-01

    Fifty head-injured patients who had tracheostomy were followed during rehabilitation by video fiberoptic laryngoscopy examination. Complications of aspiration (23/50), airway stenosis (13/50), and phonation dysfunction (16/24) were followed. Spontaneous resolution of aspiration may require a prolonged course. A majority of patients (37/50) had improvement and could be decannulated. Prognostic factors correlated to eventual decannulation included age, level on the Glasgow Coma Outcome Scale, and type of head injury. Those with poor neurologic improvement and glottic incompetence (13/50) are poor candidates for decannulation. Significant airway stenosis can involve both laryngeal and tracheal sites. Neurologic dysfunction may complicate the decannulation process after airway anatomy has been restored by surgery. Dysphonia resulting from intubation, peripheral laryngeal and nerve injury, or central laryngeal movement dysfunction are common. Preventive maintenance with ongoing evaluation can avoid airway crises such as aspiration pneumonia, hemoptysis, and innominate artery.

  1. Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults.

    PubMed

    Zach, Jordan Alexander; Newell, John D; Schroeder, Joyce; Murphy, James R; Curran-Everett, Douglas; Hoffman, Eric A; Westgate, Philip M; Han, MeiLan K; Silverman, Edwin K; Crapo, James D; Lynch, David A

    2012-10-01

    (P < 0.001). Multivariate analysis of segmental airways showed that inner luminal area and WA% were significantly related to TLC(CT) (P < 0.001) and age (0.006). Moreover, WA% was associated with sex (P = 0.05), axial pixel size (P = 0.03), and slice interval (P = 0.04). Lastly, airway wall thickness was strongly influenced by axial pixel size (P < 0.001). Although the attenuation characteristics of normal lung differ by age and sex, these differences do not persist on multivariate analysis. Potential sources of variation in measurement of attenuation-based QCT parameters include depth of inspiration/expiration and scanner type. Tracheal air attenuation may partially correct variation because of scanner type. Sources of variation in QCT airway measurements may include age, sex, BMI, depth of inspiration, and spatial resolution.

  2. Videolaryngoscopy versus Fiber-optic Intubation through a Supraglottic Airway in Children with a Difficult Airway: An Analysis from the Multicenter Pediatric Difficult Intubation Registry.

    PubMed

    Burjek, Nicholas E; Nishisaki, Akira; Fiadjoe, John E; Adams, H Daniel; Peeples, Kenneth N; Raman, Vidya T; Olomu, Patrick N; Kovatsis, Pete G; Jagannathan, Narasimhan; Hunyady, Agnes; Bosenberg, Adrian; Tham, See; Low, Daniel; Hopkins, Paul; Glover, Chris; Olutoye, Olutoyin; Szmuk, Peter; McCloskey, John; Dalesio, Nicholas; Koka, Rahul; Greenberg, Robert; Watkins, Scott; Patel, Vikram; Reynolds, Paul; Matuszczak, Maria; Jain, Ranu; Khalil, Samia; Polaner, David; Zieg, Jennifer; Szolnoki, Judit; Sathyamoorthy, Kumar; Taicher, Brad; Riveros Perez, N Ricardo; Bhattacharya, Solmaletha; Bhalla, Tarun; Stricker, Paul; Lockman, Justin; Galvez, Jorge; Rehman, Mohamed; Von Ungern-Sternberg, Britta; Sommerfield, David; Soneru, Codruta; Chiao, Franklin; Richtsfeld, Martina; Belani, Kumar; Sarmiento, Lina; Mireles, Sam; Bilen Rosas, Guelay; Park, Raymond; Peyton, James

    2017-09-01

    The success rates and related complications of various techniques for intubation in children with difficult airways remain unknown. The primary aim of this study is to compare the success rates of fiber-optic intubation via supraglottic airway to videolaryngoscopy in children with difficult airways. Our secondary aim is to compare the complication rates of these techniques. Observational data were collected from 14 sites after management of difficult pediatric airways. Patient age, intubation technique, success per attempt, use of continuous ventilation, and complications were recorded for each case. First-attempt success and complications were compared in subjects managed with fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway and videolaryngoscopy had similar first-attempt success rates (67 of 114, 59% vs. 404 of 786, 51%; odds ratio 1.35; 95% CI, 0.91 to 2.00; P = 0.16). In subjects less than 1 yr old, fiber-optic intubation via supraglottic airway was more successful on the first attempt than videolaryngoscopy (19 of 35, 54% vs. 79 of 220, 36%; odds ratio, 2.12; 95% CI, 1.04 to 4.31; P = 0.042). Complication rates were similar in the two groups (20 vs. 13%; P = 0.096). The incidence of hypoxemia was lower when continuous ventilation through the supraglottic airway was used throughout the fiber-optic intubation attempt. In this nonrandomized study, first-attempt success rates were similar for fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway is associated with higher first-attempt success than videolaryngoscopy in infants with difficult airways. Continuous ventilation through the supraglottic airway during fiber-optic intubation attempts may lower the incidence of hypoxemia.

  3. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  4. Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.

    PubMed

    Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin

    2005-03-01

    This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.

  5. Dynamics of Gas Exchange through the Fractal Architecture of the Human Lung, Modeled as an Exactly Solvable Hierarchical Tree

    NASA Astrophysics Data System (ADS)

    Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan

    2008-03-01

    The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.

  6. Maxillary Expansion and Mandibular Setback Surgery With and Without Mandibular Anterior Segment Osteotomy to Correct Mandibular Prognathism With Obstructive Sleep Apnea.

    PubMed

    Han, Jeong Joon; Hong, Dong Hwan; Hwang, Soon Jung

    2017-05-01

    Mandibular prognathism is usually treated with mandibular setback surgery. However, this approach reduces the pharyngeal airway space, and can aggravate obstructive phenomena in patients with obstructive sleep apnea (OSA). While maxillary expansion is known to lead to an increase in the pharyngeal airway volume (PAS), its effect on the PAS in mandibular setback surgery has not yet been reported. The authors report a surgical approach with maxillary expansion in 2 patients with mandibular prognathism that was accompanied by OSA: maxillary midsagittal expansion with minimum maxillary advancement and minor mandibular setback without mandibular anterior segmental osteotomy (ASO) or major mandibular setback with mandibular ASO. Preoperative and postoperative computed tomography and polysomnography indicated that OSA was improved and pharyngeal airway space was increased or sustained, and the prognathic profile could be corrected to an acceptable facial esthetic profile. In summary, maxillary transversal expansion and mandibular setback with or without mandibular ASO can be successfully applied to treat mandibular prognathism with OSA.

  7. Airway growth and development: a computerized 3-dimensional analysis.

    PubMed

    Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri

    2012-09-01

    The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Airway hyperreactivity in asymptomatic military personnel.

    PubMed

    Morris, Michael J; Schwartz, Darin S; Nohrenberg, Jana L; Dooley, Sean N

    2007-11-01

    Asthma is frequently diagnosed in military personnel despite strict guidelines that disqualify persons with active disease or a recent history of asthma. It is generally considered incompatible with military service, because of the regular physical training, outdoor training exercises, and deployments to remote locations. The objective of this study was to determine the prevalence of airway hyperreactivity in asymptomatic military personnel, as an estimate of subclinical reactive airway disease. A prospective study of healthy, asymptomatic, military personnel with no previous history of asthma and <1 year on active duty status was conducted. After completion of a screening questionnaire, personnel underwent baseline spirometry with a portable spirometer. Personnel with obstructive indices (based on published guidelines) and matched control subjects participated in an exercise test (1.5-mile run), with pre- and postexercise spirometry. A total of 222 asymptomatic military personnel completed baseline spirometry, and 31 (14%) were found have airway obstruction. A normal matched control group of 31 military personnel and 26 personnel with obstruction performed exercise spirometry. Twenty-three percent of the participants with obstruction demonstrated increased airway hyper-reactivity after exercise, based on a reduction in forced expiratory volume at 1 second, compared with 19% of control subjects. Asymptomatic airway obstruction has a prevalence of 14% in young military personnel. A significant percentage of individuals also have evidence of worsening obstruction during exercise. These data suggest that screening spirometry may identify early reactive airway disease in asymptomatic individuals and should be considered as a method to identify persons predisposed to developing symptomatic asthma.

  9. Airway hyper-responsiveness to neurokinin A and bradykinin following Mycoplasma pneumoniae infection associated with reduced epithelial neutral endopeptidase.

    PubMed

    Tamaoki, J; Chiyotani, A; Tagaya, E; Araake, M; Nagai, A

    1998-09-01

    To determine whether mycoplasma infection produces airway hyper-responsiveness to tachykinins and bradykinin and, if so, to elucidate the role of neutral endopeptidase (NEP), isolated hamster tracheal segments were studied under isometric conditions in vitro. Nasal inoculation with Mycoplasma pneumoniae potentiated contractile responses to neurokinin A and bradykinin, causing a leftward shift of the dose-response curves to a lower concentration by 1 log unit for each agonist, whereas there was no response with acetylcholine. Pretreatment of tissues with the NEP inhibitor phosphoramidon augmented neurokinin A- and bradykinin-induced contractions in saline-treated control tissues, but did not further potentiate the responsiveness in M. pneumoniae-infected tissues. NEP activity in the tracheal epithelium, but not in epithelium-denuded tissues, was decreased in infected animals. These results suggest that M. pneumoniae infection causes airway bronchoconstrictor hyper-responsiveness to neurokinin A and bradykinin and that this effect may be associated with an inhibition of epithelial NEP activity.

  10. Gender-related difference in the upper airway dimensions and hyoid bone position in Chinese Han children and adolescents aged 6-18 years using cone beam computed tomography.

    PubMed

    Jiang, Ying-Ying; Xu, Xin; Su, Hong-Li; Liu, Dong-Xu

    2015-07-01

    To investigate the gender-related differences in upper airway dimensions and hyoid bone position in Chinese Han children and adolescents (6-18 years) using cone-beam computed tomography (CBCT). CBCT-scans of 119 boys and 135 girls were selected and divided into four groups (group 1: 6-9 years; group 2: 10-12 years; group 3: 13-15 years; group 4: 16-18 years). The airway dimensions including the cross-sectional area (CSA), anteroposterior (AP) and lateral (LAT) width, length (L), mean CSA and volume (VOL) of upper airway segmentations and hyoid bone position including 11 linear and three angular measurements were investigated using Materialism's interactive medical image control system (MIMICS) 16.01 software. Gender-related differences were analyzed by two independent sample t-tests. No gender-related difference was found in values of the facial morphology, airway dimensions and hyoid bone position for group 1 (p > 0.05). The children and adolescents in groups 2, 3 and 4 showed significant gender-related differences in the measurement results of facial morphology, airway dimensions and hyoid bone positions (p < 0.05). What's more, the measurement values of boys were obviously larger than those of girls except some measurements in group 2. The measurements of airway dimensions and hyoid bone positions have gender-related differences in children and adolescents aged 10-18 years. These results could be taken into consideration during orthodontic diagnosis and treatment.

  11. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  12. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  13. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  14. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  15. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  16. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway. (a...

  17. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  18. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a...

  19. FAMM Flap in Reconstructing Postsurgical Nasopharyngeal Airway Stenosis

    PubMed Central

    Nangole, Ferdinand Wanjala; Khainga, Stanley Ominde

    2014-01-01

    Introduction. Postsurgical nasopharyngeal airway stenosis can be a challenge to manage. The stenosis could be as a result of any surgical procedure in the nasopharyngeal region that heals extensive scarring and fibrosis. Objective. To evaluate patients with nasopharyngeal stenosis managed with FAMM flap. Study Design. Prospective study of patients with nasopharyngeal stenosis at the Kenyatta National Hospital between 2010 and 2013 managed with FAMM flap. Materials and Methods. Patients with severe nasopharyngeal airway stenosis were reviewed and managed with FAMM flaps at the Kenyatta National Hospital. Postoperatively they were assessed for symptomatic improvement in respiratory distress, patency of the nasopharyngeal airway, and donor site morbidity. Results. A total of 8 patients were managed by the authors in a duration of 4 years with nasopharyngeal stenosis. Five patients were managed with unilateral FAMM flaps in a two-staged surgical procedure. Four patients had complete relieve of the airway obstruction with a patent airway created. One patient had a patent airway created though with only mild improvement in airway obstruction. Conclusion. FAMM flap provides an alternative in the management of postsurgical severe nasopharyngeal stenosis. It is a reliable flap that is easy to raise and could provide adequate epithelium for the stenosed pharynx. PMID:25328699

  20. A child with a difficult airway: what do I do next?

    PubMed

    Engelhardt, Thomas; Weiss, Markus

    2012-06-01

    Difficulties in pediatric airway management are common and continue to result in significant morbidity and mortality. This review reports on current concepts in approaching a child with a difficult airway. Routine airway management in healthy children with normal airways is simple in experienced hands. Mask ventilation (oxygenation) is always possible and tracheal intubation normally simple. However, transient hypoxia is common in these children usually due to unexpected anatomical and functional airway problems or failure to ventilate during rapid sequence induction. Anatomical airway problems (upper airway collapse and adenoid hypertrophy) and functional airway problems (laryngospasm, bronchospasm, insufficient depth of anesthesia and muscle rigidity, gastric hyperinflation, and alveolar collapse) require urgent recognition and treatment algorithms due to insufficient oxygen reserves. Early muscle paralysis and epinephrine administration aids resolution of these functional airway obstructions. Children with an 'impaired' normal (foreign body, allergy, and inflammation) or an expected difficult (scars, tumors, and congenital) airway require careful planning and expertise. Training in the recognition and management of these different situations as well as a suitably equipped anesthesia workstation and trained personnel are essential. The healthy child with an unexpected airway problem requires clear strategies. The 'impaired' normal pediatric airway may be handled by anesthetists experienced with children, whereas the expected difficult pediatric airway requires dedicated pediatric anesthesia specialist care and should only be managed in specialized centers.

  1. Forced oscillometry track sites of airway obstruction in bronchial asthma.

    PubMed

    Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser

    2015-07-01

    Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Corticosteroid treatment inhibits airway hyperresponsiveness and lung injury in a murine model of chemical-induced airway inflammation.

    PubMed

    Wigenstam, Elisabeth; Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2012-11-15

    Exposure to toxic alkylating mustard agents causes both acute and long-term effects to the lungs as indicated by increased number of inflammatory cells in airways, lung edema and lung tissue fibrosis. We have previously demonstrated that treatment with the corticosteroid dexamethasone 1 h after lung exposure to the nitrogen mustard analog melphalan protects mice from acute and sub-acute inflammatory responses, as well as from lung tissue fibrosis. In order to address the importance of early anti-inflammatory treatment, we investigated the therapeutic effect of dexamethasone administered 1, 2 or 6 h following exposure to melphalan. C57BL/6 mice were exposed to melphalan and treated with dexamethasone 1, 2 or 6 h after exposure. Twenty hours or 14 days post exposure mice were subjected to analysis of respiratory mechanics where the effects of incremental doses of methacholine on central and peripheral lung components were measured. We also determined the amount of inflammatory cells in the bronchoalveolar lavage fluid and measured the amount of collagen content in the lungs. Melphalan exposure increased airway hyperresponsiveness in both central and peripheral airways and induced an airway inflammation dominated by infiltration of macrophages and neutrophils. Dexamethasone given 1 h after exposure to melphalan provided better protection against airway inflammation than administration 2 or 6 h after exposure. Collagen deposition 14 days after exposure was decreased due to dexamethasone treatment. Early treatment with dexamethasone is important in order to reduce the airway hyperresponsiveness and inflammation caused by toxic alkylating mustards such as melphalan. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Management of the difficult airway.

    PubMed

    Schwartz, D E; Wiener-Kronish, J P

    1991-09-01

    For clinicians involved in airway management, a plan of action for dealing with the difficult airway or a failed intubation should be developed well in advance of encountering a patient in whom intubation is not routine. When difficulty is anticipated, the equipment necessary for performing a difficult intubation should be immediately available. It also is prudent to have a surgeon skilled in performing a tracheotomy and a criothyroidotomy stand by. The intubation should be attempted in the awake state, preferably using the fiberoptic bronchoscope. The more challenging situation is when the difficult airway is confronted unexpectedly. After the first failed attempt at laryngoscopy, head position should be checked and the patient ventilated with oxygen by mask. A smaller styletted tube and possibly a different laryngoscope blade should be selected for a second attempt at intubation. The fiberoptic bronchoscope and other equipment for difficult intubation should be obtained. A second attempt should then be made. If this is unsuccessful, the patient should be reoxygenated, and assistance including a skilled anesthesiologist and surgeon should be summoned. On a third attempt, traction to the tongue can be applied by an assistant, a tube changer could be used to enter the larynx, or one of the other special techniques previously described can be used. If this third attempt fails, it may be helpful to have a physician more experienced in airway management attempt intubation after oxygen has been administered to the patient. If all attempts are unsuccessful, then invasive techniques to secure the airway will have to be performed.

  4. Monitoring individual tree-based change with airborne lidar.

    PubMed

    Duncanson, Laura; Dubayah, Ralph

    2018-05-01

    Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high-biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree-based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.

  5. Airway management of patients with traumatic brain injury/C-spine injury

    PubMed Central

    2015-01-01

    Traumatic brain injury (TBI) is usually combined with cervical spine (C-spine) injury. The possibility of C-spine injury is always considered when performing endotracheal intubation in these patients. Rapid sequence intubation is recommended with adequate sedative or analgesics and a muscle relaxant to prevent an increase in intracranial pressure during intubation in TBI patients. Normocapnia and mild hyperoxemia should be maintained to prevent secondary brain injury. The manual-in-line-stabilization (MILS) technique effectively lessens C-spine movement during intubation. However, the MILS technique can reduce mouth opening and lead to a poor laryngoscopic view. The newly introduced video laryngoscope can manage these problems. The AirWay Scope® (AWS) and AirTraq laryngoscope decreased the extension movement of C-spines at the occiput-C1 and C2-C4 levels, improving intubation conditions and shortening the time to complete tracheal intubation compared with a direct laryngoscope. The Glidescope® also decreased cervical movement in the C2-C5 levels during intubation and improved vocal cord visualization, but a longer duration was required to complete intubation compared with other devices. A lightwand also reduced cervical motion across all segments. A fiberoptic bronchoscope-guided nasal intubation is the best method to reduce cervical movement, but a skilled operator is required. In conclusion, a video laryngoscope assists airway management in TBI patients with C-spine injury. PMID:26045922

  6. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  7. Athletic Trainers' Knowledge Regarding Airway Adjuncts

    ERIC Educational Resources Information Center

    Edler, Jessica R.; Eberman, Lindsey E.; Kahanov, Leamor; Roman, Christopher; Mata, Heather Lynne

    2015-01-01

    Context: Research suggests that knowledge gaps regarding the appropriate use of airway adjuncts exist among various health care practitioners, and that knowledge is especially limited within athletic training. Objective: To determine the relationship between perceived knowledge (PK) and actual knowledge (AK) of airway adjunct use and the…

  8. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  9. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  10. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    PubMed

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  11. Impact of varying physical activity levels on airway sensitivity and bronchodilation in healthy humans.

    PubMed

    Smith, Joshua R; Kurti, Stephanie P; Johnson, Ariel M; Kolmer, Sarah A; Harms, Craig

    2015-12-01

    The purpose of this study was to determine if the amount of physical activity influences airway sensitivity and bronchodilation in healthy subjects across a range of physical activity levels. Thirty healthy subjects (age, 21.9 ± 2.6 years; 13 men/17 women) with normal pulmonary function reported to the laboratory on 2 separate occasions where they were randomized to breathe either hypertonic saline (HS) (nebulized hypertonic saline (25%) for 20 min) or HS followed by 5 deep inspirations (DIs), which has been reported to bronchodilate the airways. Pulmonary function tests (PFTs) were performed prior to both conditions and following the HS breathing or 5 DIs. Moderate to vigorous physical activity (MVPA) level was measured via accelerometer worn for 7 days. Following the HS breathing, forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) significantly decreased from baseline by -11.8% ± 8.4% and -9.3% ± 6.7%, respectively. A 2-segment linear model determined significant relationships between MVPA and percent change in FEV1 (r = 0.50) and FVC (r = 0.55). MVPA above ∼497 and ∼500 min/week for FEV1 and FVC, respectively, resulted in minor additional improvements (p > 0.05) in PFTs following the HS breathing. Following the DIs, FEV1 and FVC decreased (p < 0.05) by -7.3% ± 8.6% and -5.7% ± 5.7%, respectively, from baseline, but were not related (p > 0.05) to MVPA. In conclusion, these data demonstrate that higher MVPA levels attenuated airway sensitivity but not bronchodilation in healthy subjects.

  12. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  13. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  14. 75 FR 13079 - Action Affecting Export Privileges; MAHAN AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... AIRWAYS; Mahan Airways, Mahan Tower, No. 21, Azadegan St., M.A. Jenah Exp. Way, Tehran, Iran, Respondent... prohibited by the EAR by knowingly re-exporting to Iran three U.S.-origin aircraft, specifically Boeing 747s... (``Aircraft 4-6'') to Iran. As more fully discussed in the September 17, 2008 TDO Renewal Order, evidence...

  15. [A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation].

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anaesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  16. A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation.

    PubMed

    Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel

    Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical

  17. Three-dimensional inspiratory flow in a double bifurcation airway model

    NASA Astrophysics Data System (ADS)

    Jalal, Sahar; Nemes, Andras; Van de Moortele, Tristan; Schmitter, Sebastian; Coletti, Filippo

    2016-09-01

    The flow in an idealized airway model is investigated for the steady inhalation case. The geometry consists of a symmetric planar double bifurcation that reflects the anatomical proportions of the human bronchial tree, and a wide range of physiologically relevant Reynolds numbers ( Re = 100-5000) is considered. Using magnetic resonance velocimetry, we analyze the three-dimensional fields of velocity and vorticity, along with flow descriptors that characterize the longitudinal and lateral dispersion. In agreement with previous studies, the symmetry of the flow partitioning is broken even at the lower Reynolds numbers, and at the second bifurcation, the fluid favors the medial branches over the lateral ones. This trend reaches a plateau around Re = 2000, above which the turbulent inflow results in smoothed mean velocity gradients. This also reduces the streamwise momentum flux, which is a measure of the longitudinal dispersion by the mean flow. The classic Dean-type counter-rotating vortices are observed in the first-generation daughter branches as a result of the local curvature. In the granddaughter branches, however, the secondary flows are determined by the local curvature only for the lower flow regimes ( Re ≤ 250), in which case the classic Dean mechanism prevails. At higher flow regimes, the field is instead dominated by streamwise vortices extending from the daughter into the medial granddaughter branches, where they rotate in the opposite direction with respect to Dean vortices. Circulation and secondary flow intensity show a similar trend as the momentum flux, increasing with Reynolds number up to Re = 2000 and then dropping due to turbulent dissipation of vorticity. The streamwise vortices interact both with each other and with the airway walls, and for Re > 500 they can become stronger in the medial granddaughter than in the upstream daughter branches. With respect to realistic airway models, the idealized geometry produces weaker secondary flows

  18. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  19. Interventions designed using quality improvement methods reduce the incidence of serious airway events and airway cardiac arrests during pediatric anesthesia.

    PubMed

    Spaeth, James P; Kreeger, Renee; Varughese, Anna M; Wittkugel, Eric

    2016-02-01

    Although serious complications during pediatric anesthesia are less common than they were 20 years ago, serious airway events continue to occur. Based on Quality Improvement (QI) data from our institution, a QI project was designed to reduce the incidence of serious airway events and airway cardiac arrests. A quality improvement team consisting of members of the Department of Anesthesia was formed and QI data from previous years were analyzed. The QI team developed a Smart Aim, Key Driver Diagram, and specific Interventions that focused on the accessibility of emergency drugs, the use of nondepolarizing muscle relaxants for endotracheal intubation in children 2 years and younger, and the presence of anesthesia providers until emergence from anesthesia in high-risk patients. The percentage of cases where muscle relaxants were utilized in children 2 years and younger for endotracheal intubation and where atropine and succinylcholine were readily available increased at both our base and outpatient facilities. Over the 2.5-year study period, the incidence of serious airway events and airway cardiac arrests was reduced by 44% and 59%, respectively compared to the previous 2-year period. We utilized QI methodology to design and implement a project which led to greater standardization of clinical practice within a large pediatric anesthesia group. Based on an understanding of system issues impacting our clinical practice, we designed and tested interventions that led to a significant reduction in the incidence of serious airway events and airway cardiac arrests. © 2015 John Wiley & Sons Ltd.

  20. Tachykinin receptors in rabbit airways--characterization by functional, autoradiographic and binding studies.

    PubMed Central

    Black, J. L.; Diment, L. M.; Alouan, L. A.; Johnson, P. R.; Armour, C. L.; Badgery-Parker, T.; Burcher, E.

    1992-01-01

    1. In many species, both NK1 and NK2 tachykinin receptors appear to be important in mediating the contraction of airway smooth muscle. We have examined the distribution and characterization of receptors for tachykinins in rabbit airways using functional length tension studies, autoradiography and radioligand binding studies. 2. Contractile responses to tachykinins were elicited in four different areas of the respiratory tree--trachea, and three progressively more distal areas of the right bronchus. The NK2 receptor-preferring agonists, neurokinin A (NKA), neuropeptide gamma (NP gamma) and the NK2-selective [Lys5 MeLeu9, Nle10]-NKA(4-10) [NKA (4-10) analogue] produced similar contraction in all four areas. Substance P (SP) and the NK1-selective [Sar9,Met(O2)11]-SP (Sar-SP) exhibited a marked location-dependence in the magnitude of contraction, producing minimal contraction in the trachea and more proximal bronchi with contractions becoming progressively larger in the more distal airways. Senktide (which is selective for the NK3 receptor) produced negligible contraction in all areas. 3. The NK2-selective antagonist, MDL29,913, was a weak antagonist of NKA and NKA(4-10) analogue. At a concentration of 2 microM, it produced a small but significant shift in the response curve to NKA and a greater shift (8 fold) in the curve to NKA(4-10) analogue, but it had no effect on responses to Sar-SP. The non peptide NK1 receptor antagonist, CP-96,345, was also unexpectedly weak in this preparation. The pD2 value for Sar-SP was decreased 27 fold by CP-96,345 at a concentration of 1 microM, without alteration in the maximum response.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:1384914

  1. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    PubMed Central

    Sugar, Elizabeth A.; Brown, Robert H.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A.; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity. Objectives: To evaluate whether nocturnal CPAP decreased the provocative concentration of methacholine to reduce FEV1 by 20% (PC20). Methods: One hundred ninety-four individuals with asthma were randomized (1:1:1) to use CPAP with warmed, filtered, humidified air at night at pressures either less than 1 cm H2O (sham) or at 5 cm H2O or 10 cm H2O. The primary outcome was change in PC20 after 12 weeks. Measurements and Main Results: Adherence to CPAP was low in all groups. Regardless, all groups had a significant improvement in PC20, with 12 weeks/baseline PC20 ratios of 2.12, 1.73, and 1.78 for the sham, 5 cm H2O, and 10 cm H2O groups, respectively, and no significant differences between the active and sham groups. Changes in FEV1 and exhaled nitric oxide were minimal in all groups. The sham group had larger improvements in most patient-reported outcomes measuring asthma symptoms and quality of life, as well as sinus symptoms, than the 5 cm H2O group. The 10 cm H2O group showed similar but less consistent improvements in scores, which were not different from improvements in the sham group. Conclusions: Adherence to nocturnal CPAP was low. There was no evidence to support positive pressure as being effective for reducing airway reactivity in people with well-controlled asthma. Regardless, airway reactivity was improved in all groups, which may represent an effect of participating in a study and/or an effect of warm, humid, filtered air on airway reactivity. Clinical trial registered with www.clinicaltrials.gov (NCT01629823). PMID:27398992

  2. Infection-induced airway fibrosis in two rat strains with differential susceptibility.

    PubMed Central

    McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H

    1992-01-01

    Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760

  3. Infectious mononucleosis and bilateral peritonsillar abscesses resulting in airway obstruction.

    PubMed

    Burstin, P P; Marshall, C L

    1998-12-01

    Upper airway obstruction is an uncommon but recognized complication of infectious mononucleosis. The management depends upon the degree of airway compromise. In the case described, severe airway obstruction was treated by securing the airway with awake fibre-optic endoscopic intubation and then proceeding to tonsillectomy. Bilateral inferiorly loculated quinsies were encountered unexpectedly and drained. This is the first report of 'bilateral' quinsies, associated with infectious mononucleosis and severe airway obstruction. The association, pathogenesis and significance of this finding are also discussed.

  4. Removal of obstructing T-tube and stabilization of the airway.

    PubMed

    Athavale, Sanjay M; Dang, Jennifer; Rangarajan, Sanjeet; Garrett, Gaelyn

    2011-05-01

    Although they are extremely effective in maintaining tracheal and subglottic patency, T-tubes themselves can result in airway obstruction from plugging. Many practitioners educate patients on placing a small (5.0) endotracheal tube (ETT) through the tracheal limb of the T-tube if they develop airway obstruction. Unfortunately, this can be a difficult task to complete during acute airway obstruction. In this article, we describe a simple set of steps for rapid relief of airway obstruction and stabilization of the airway in the event of T-tube obstruction. This method requires removal of the T-tube with a Kelly clamp and stabilization of the airway with a tracheostomy tube. Although it is simple, we hope that this technique will prevent morbidity and mortality from acute airway obstructions related to T-tubes. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  5. Automatic identification of inertial sensor placement on human body segments during walking

    PubMed Central

    2013-01-01

    Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which

  6. Automatic identification of inertial sensor placement on human body segments during walking.

    PubMed

    Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H

    2013-03-21

    Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification

  7. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    PubMed

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  8. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  9. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  10. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  11. Central Airway Obstruction: Benign Strictures, Tracheobronchomalacia, and Malignancy-related Obstruction.

    PubMed

    Murgu, Septimiu Dan; Egressy, Katarine; Laxmanan, Balaji; Doblare, Guillermo; Ortiz-Comino, Rosamaria; Hogarth, D Kyle

    2016-08-01

    The purpose of this article is to provide an update on methods for palliating symptoms in patients with histologically benign and malignant central airway obstruction. We review the published literature within the past decade on postintubation, posttracheostomy, and TB- and transplant-related airway strictures; tracheobronchomalacia; and malignant airway obstruction. We review terminology, classification systems, and parameters that impact treatment decisions. The focus is on how airway stent insertion fits into the best algorithm of care. Several case series and cohort studies demonstrate that airway stents improve dyspnea, lung function, and quality of life in patients with airway obstruction. Airway stenting, however, is associated with high rates of adverse events and should be used only when curative open surgical interventions are not feasible or are contraindicated. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  12. Prehospital airway management on rescue helicopters in the United Kingdom.

    PubMed

    Schmid, M; Mang, H; Ey, K; Schüttler, J

    2009-06-01

    Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.

  13. CT-assessed large airway involvement and lung function decline in eosinophilic asthma: The association between induced sputum eosinophil differential counts and airway remodeling.

    PubMed

    Inoue, Hideki; Ito, Isao; Niimi, Akio; Matsumoto, Hisako; Matsuoka, Hirofumi; Jinnai, Makiko; Takeda, Tomoshi; Oguma, Tsuyoshi; Otsuka, Kojiro; Nakaji, Hitoshi; Tajiri, Tomoko; Iwata, Toshiyuki; Nagasaki, Tadao; Kanemitsu, Yoshihiro; Mishima, Michiaki

    2016-11-01

    Eosinophilic asthma (EA) is a distinct clinical phenotype characterized by eosinophilic airway inflammation and airway remodeling. Few studies have used computed tomography (CT) scanning to assess the association between sputum eosinophil differential counts and airway involvement. We aimed to investigate the clinical characteristics and airway involvement of EA, and to examine the correlation between induced sputum eosinophil differential counts and CT-assessed airway remodeling. We retrospectively divided 63 patients with stable asthma receiving inhaled corticosteroids into 2 groups: 26 patients with EA (sputum eosinophil >3%) and 37 patients with non-eosinophilic asthma (NEA). Clinical measurements such as spirometry, fractional exhaled nitric oxide levels (FeNO), and CT-assessed indices of airway involvement were compared between the groups. Multivariate analysis was performed to identify determinants of the percentage of wall area (WA%). The EA group had significantly longer asthma duration, lower pulmonary function, and higher FeNO than the NEA group. Also, the EA group had higher WA% and smaller airway luminal area than the NEA group. Sputum eosinophil differential counts and WA% were positively correlated. The multivariate linear regression analysis showed that the factors associated with WA% included sputum eosinophil differential counts, age, and body mass index. However, asthma duration was not associated with WA%. Our CT-assessed findings demonstrated large airway involvement in EA, and we observed a positive association between induced sputum eosinophil differential counts and WA%. The findings indicate that induced sputum eosinophil differential counts may be associated with airway remodeling in patients with stable asthma.

  14. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  15. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  16. Coronary artery analysis: Computer-assisted selection of best-quality segments in multiple-phase coronary CT angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-

    Purpose: The authors are developing an automated method to identify the best-quality coronary arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of coronary artery disease. Methods: After initialization with a manually identified seed point, each coronary artery tree is automatically extracted from multiple cCTA phases using our multiscale coronary artery response enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The coronary artery trees from multiple phases are thenmore » aligned by a global registration using an affine transformation with quadratic terms and nonlinear simplex optimization, followed by a local registration using a cubic B-spline method with fast localized optimization. The corresponding coronary arteries among the available phases are identified using a recursive coronary segment matching method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR) method. Four features are extracted from each corresponding segment as quality indicators in the original computed tomography volume and the straightened CPR volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for each corresponding segment. The segment with the highest WVE vote is then selected as the best-quality segment. In this study, the training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank vessel

  17. [Helium-Oxigen (Heliox) mixture in airway obstruction

    PubMed

    Ulhôa, C A; Larner, L

    2000-01-01

    OBJECTIVE: Demonstrate the effectiveness and the good outcome of the patients treated with helium-oxygen (Heliox) mixture. This mixture (Heliox) has been used in patients with airway obstruction, from different ethiologies, who did not respond to a conventional treatment with oxygen. METHODS: Case report of five patients that received Heliox as treatment for airway obstruction. All of them had good results without side effects during the treatment. CONCLUSION: Heliox is a promising treatment for severe airway obstruction with good results in a short period of time, until the final treatment is established.

  18. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  19. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  20. Are prehospital airway management resources compatible with difficult airway algorithms? A nationwide cross-sectional study of helicopter emergency medical services in Japan.

    PubMed

    Ono, Yuko; Shinohara, Kazuaki; Goto, Aya; Yano, Tetsuhiro; Sato, Lubna; Miyazaki, Hiroyuki; Shimada, Jiro; Tase, Choichiro

    2016-04-01

    Immediate access to the equipment required for difficult airway management (DAM) is vital. However, in Japan, data are scarce regarding the availability of DAM resources in prehospital settings. The purpose of this study was to determine whether Japanese helicopter emergency medical services (HEMS) are adequately equipped to comply with the DAM algorithms of Japanese and American professional anesthesiology societies. This nationwide cross-sectional study was conducted in May 2015. Base hospitals of HEMS were mailed a questionnaire about their airway management equipment and back-up personnel. Outcome measures were (1) call for help, (2) supraglottic airway device (SGA) insertion, (3) verification of tube placement using capnometry, and (4) the establishment of surgical airways, all of which have been endorsed in various airway management guidelines. The criteria defining feasibility were the availability of (1) more than one physician, (2) SGA, (3) capnometry, and (4) a surgical airway device in the prehospital setting. Of the 45 HEMS base hospitals questioned, 42 (93.3 %) returned completed questionnaires. A surgical airway was practicable by all HEMS. However, in the prehospital setting, back-up assistance was available in 14.3 %, SGA in 16.7 %, and capnometry in 66.7 %. No HEMS was capable of all four steps. In Japan, compliance with standard airway management algorithms in prehospital settings remains difficult because of the limited availability of alternative ventilation equipment and back-up personnel. Prehospital health care providers need to consider the risks and benefits of performing endotracheal intubation in environments not conducive to the success of this procedure.

  1. Nearest neighbor 3D segmentation with context features

    NASA Astrophysics Data System (ADS)

    Hristova, Evelin; Schulz, Heinrich; Brosch, Tom; Heinrich, Mattias P.; Nickisch, Hannes

    2018-03-01

    Automated and fast multi-label segmentation of medical images is challenging and clinically important. This paper builds upon a supervised machine learning framework that uses training data sets with dense organ annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation results are - for a nearest neighbor method - surprisingly accurate, robust as well as data and time efficient.

  2. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  3. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  4. Audience segmentation to promote lifestyle for cancer prevention in the Korean community.

    PubMed

    Jo, Heui-Sug; Jung, Su-Mi

    2011-01-01

    This study was designed to segment the audience group of '10 lifestyle for cancer prevention' based on demographic characteristics and the level of knowledge about each guideline for cancer prevention among the community in South Korea. Participants were chosen through stratified random sampling according to the age and gender distribution of Gangwon province in South Korea. A telephone survey was conducted from 6 to 15 calls among 2,025 persons on October 2008. A total of 1,687 persons completed the survey (response rate: 83.3%). Survey items were composed of socio-demographic characteristics such as age, gender, income, education, and residence area and the knowledge level of '10 guidelines for cancer prevention', developed by 'Korean Ministry of Health and Welfare' and covering smoking cessation, appropriate drinking, condom use, and regular physical activity and so on. We selected the priority needed to promote awareness and segmented the audience group based on the demographic characteristics, homogeneous with respect to the knowledge level using Answer Tree 3.0 with CHAID as a data mining algorithm. The results of analysis showed that each guideline of ' 10 lifestyle for cancer prevention' had its own segmented subgroup characterized by each demographic. Especially, residence area, city or county, and ages were the first split on the perceived level of knowledge and these findings suggested that segmentation of audiences for targeting is needed to deliver more effective education of patients and community people. In developing the strategy for effective education, the method of social marketing using the decision tree analysis could be a useful and appropriate tool. The study findings demonstrate the potential value of using more sophisticated strategies of designing and providing health information based on audience segmentation.

  5. Mechanisms of mechanical strain memory in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  6. Airway driving pressure and lung stress in ARDS patients.

    PubMed

    Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo

    2016-08-22

    Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.

  7. Airway disease phenotypes in animal models of cystic fibrosis.

    PubMed

    McCarron, Alexandra; Donnelley, Martin; Parsons, David

    2018-04-02

    In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.

  8. Infectious mononucleosis presenting as upper airway obstruction.

    PubMed

    Jain, Vivek; Singhi, Sunit; Desai, Ravi V

    2003-01-01

    Upper airway obstruction though a common complication of infectious mononucleosis is rarely considered in differential diagnosis of stridor. We report a three-year-old child who had upper airway obstruction due to infectious mononucleosis, managed conservatively with oxygen, intravenous fluids and steroids.

  9. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. From Fractal Trees to Deltaic Networks

    NASA Astrophysics Data System (ADS)

    Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.

    2013-12-01

    Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated

  11. Double stenting with silicone and metallic stents for malignant airway stenosis.

    PubMed

    Matsumoto, Keitaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi

    2017-08-01

    For severe malignant airway stenosis, there are several types of commercially available airway stents, and each has its own advantages and disadvantages. We herein describe the safety and efficacy of combination stenting with silicone and metallic stents for patients with extended malignant airway stenosis. Seven patients with malignant airway stenosis were treated via combination stenting with a silicone stent and a metallic stent for extended airway stenosis from the central to peripheral airways. Five patients were diagnosed with advanced esophageal cancer, two of whom had tracheoesophageal fistulas. One patient had adenoid cystic carcinoma, and another had mediastinal tumor. There were no specific complications related to the double stenting. Combination stenting with silicone and metallic stents proved to be a safe option for patients with severe, extended, and complicated malignant airway stenosis.

  12. Knowledge-based segmentation and feature analysis of hand and wrist radiographs

    NASA Astrophysics Data System (ADS)

    Efford, Nicholas D.

    1993-07-01

    The segmentation of hand and wrist radiographs for applications such as skeletal maturity assessment is best achieved by model-driven approaches incorporating anatomical knowledge. The reasons for this are discussed, and a particular frame-based or 'blackboard' strategy for the simultaneous segmentation of the hand and estimation of bone age via the TW2 method is described. The new approach is structured for optimum robustness and computational efficiency: features of interest are detected and analyzes in order of their size and prominence in the image, the largest and most distinctive being dealt with first, and the evidence generated by feature analysis is used to update a model of hand anatomy and hence guide later stages of the segmentation. Closed bone boundaries are formed by a hybrid technique combining knowledge-based, one-dimensional edge detection with model-assisted heuristic tree searching.

  13. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals

  14. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness.

    PubMed

    Le Guen, Morgan; Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Brollo, Marion; Longchampt, Elisabeth; Kleinmann, Philippe; Devillier, Philippe; Faisy, Christophe

    2016-11-14

    In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca 2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved

  15. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  16. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  17. A mathematical model of airway and pulmonary arteriole smooth muscle.

    PubMed

    Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James

    2008-03-15

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.

  18. A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle

    PubMed Central

    Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James

    2008-01-01

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464

  19. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount of pressure produced in a patient's airway during maximal inspiration. (b) Classification. Class II...

  20. Estimating Wood Volume for Pinus Brutia Trees in Forest Stands from QUICKBIRD-2 Imagery

    NASA Astrophysics Data System (ADS)

    Patias, Petros; Stournara, Panagiota

    2016-06-01

    Knowledge of forest parameters, such as wood volume, is required for a sustainable forest management. Collecting such information in the field is laborious and even not feasible in inaccessible areas. In this study, tree wood volume is estimated utilizing remote sensing techniques, which can facilitate the extraction of relevant information. The study area is the University Forest of Taxiarchis, which is located in central Chalkidiki, Northern Greece and covers an area of 58km2. The tree species under study is the conifer evergreen species P. brutia (Calabrian pine). Three plot surfaces of 10m radius were used. VHR Quickbird-2 images are used in combination with an allometric relationship connecting the Tree Crown with the Diameter at breast height (Dbh), and a volume table developed for Greece. The overall methodology is based on individual tree crown delineation, based on (a) the marker-controlled watershed segmentation approach and (b) the GEographic Object-Based Image Analysis approach. The aim of the first approach is to extract separate segments each of them including a single tree and eventual lower vegetation, shadows, etc. The aim of the second approach is to detect and remove the "noisy" background. In the application of the first approach, the Blue, Green, Red, Infrared and PCA-1 bands are tested separately. In the application of the second approach, NDVI and image brightness thresholds are utilized. The achieved results are evaluated against field plot data. Their observed difference are between -5% to +10%.

  1. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    NASA Astrophysics Data System (ADS)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  2. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  3. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  4. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  5. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle. (a...

  6. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.

    PubMed

    Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J

    2018-06-01

    Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

  7. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  8. A prospective study to evaluate and compare laryngeal mask airway ProSeal and i-gel airway in the prone position.

    PubMed

    Taxak, Susheela; Gopinath, Ajith; Saini, Savita; Bansal, Teena; Ahlawat, Mangal Singh; Bala, Manju

    2015-01-01

    Prone position is commonly used to provide surgical access to a variety of surgeries. In view of the advantages of induction of anesthesia in the prone position, we conducted a randomized study to evaluate and compare ProSeal laryngeal mask airway (LMA) and i-gel in the prone position. Totally, 40 patients of either sex as per American Society of Anesthesiologists physical status I or II, between 16 and 60 years of age, scheduled to undergo surgery in prone position were included in the study. After the patients positioned themselves prone on the operating table, anesthesia was induced by the standard technique. LMA ProSeal was used as an airway conduit in group 1 while i-gel was used in group 2. At the end of surgery, the airway device was removed in the same position. Insertion of airway device was successful in first attempt in 16, and 17 cases in ProSeal laryngeal mask airway (PLMA) and i-gel groups, respectively. A second attempt was required to secure the airway in 4 and 3 patients in PLMA and i-gel groups, respectively. The mean insertion time was 21.8 ± 2.70 s for group 1 and 13.1 ± 2.24 s for group 2, the difference being statistically significant (P < 0.05). The mean seal pressure in group 1 was 36 ± 6.22 cm H2 O and in group 2 was 25.4 ± 3.21 cm H2 O. The difference was statistically significant (P < 0.05). 13 patients in group 1 had fiberoptic bronchoscopy (FOB) grade 1 while it was 6 for group 2. The remaining patients in both groups had FOB grade 2. Insertion of supraglottic airways and conduct of anesthesia with them is feasible in the prone position. The PLMA has a better seal while insertion is easier with i-gel.

  9. Influence of Gender and Age on Upper-Airway Length During Development

    PubMed Central

    Ronen, Ohad; Malhotra, Atul; Pillar, Giora

    2008-01-01

    OBJECTIVE Obstructive sleep apnea has a strong male predominance in adults but not in children. The collapsible portion of the upper airway is longer in adult men than in women (a property that may increase vulnerability to collapse during sleep). We sought to test the hypothesis that in prepubertal children, pharyngeal airway length is equal between genders, but after puberty boys have a longer upper airway than girls, thus potentially contributing to this change in apnea propensity. METHODS Sixty-nine healthy boys and girls who had undergone computed tomography scans of their neck for other reasons were selected from the computed tomography archives of Rambam and Carmel hospitals. The airway length was measured in the midsagittal plane and defined as the length between the lower part of the posterior hard palate and the upper limit of the hyoid bone. Airway length and normalized airway length/body height were compared between the genders in prepubertal (4- to 10-year-old) and postpubertal (14- to 19-year-old) children. RESULTS In prepubertal children, airway length was similar between boys and girls (43.2 ± 5.9 vs 46.8 ± 7.7 mm, respectively). When normalized to body height, airway length/body height was significantly shorter in prepubertal boys than in girls (0.35 ± 0.03 vs 0.38 ± 0.04 mm/cm). In contrast, postpubertal boys had longer upper airways (66.5 ± 9.2 vs 52.2 ± 7.0 mm) and normalized airway length/body height (0.38 ± 0.05 vs 0.33 ± 0.05 mm/cm) than girls. CONCLUSIONS Although boys have equal or shorter airway length compared with girls among prepubertal children, after puberty, airway length and airway length normalized for body height are significantly greater in boys than in girls. These data suggest that important anatomic changes at puberty occur in a gender-specific manner, which may be important in explaining the male predisposition to pharyngeal collapse in adults. PMID:17908723

  10. Anatomic optical coherence tomography for dynamic imaging of the upper airway

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-03-01

    To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.

  11. Airway physical examination tests for detection of difficult airway management in apparently normal adult patients.

    PubMed

    Roth, Dominik; Pace, Nathan L; Lee, Anna; Hovhannisyan, Karen; Warenits, Alexandra-Maria; Arrich, Jasmin; Herkner, Harald

    2018-05-15

    The unanticipated difficult airway is a potentially life-threatening event during anaesthesia or acute conditions. An unsuccessfully managed upper airway is associated with serious morbidity and mortality. Several bedside screening tests are used in clinical practice to identify those at high risk of difficult airway. Their accuracy and benefit however, remains unclear. The objective of this review was to characterize and compare the diagnostic accuracy of the Mallampati classification and other commonly used airway examination tests for assessing the physical status of the airway in adult patients with no apparent anatomical airway abnormalities. We performed this individually for each of the four descriptors of the difficult airway: difficult face mask ventilation, difficult laryngoscopy, difficult tracheal intubation, and failed intubation. We searched major electronic databases including CENTRAL, MEDLINE, Embase, ISI Web of Science, CINAHL, as well as regional, subject specific, and dissertation and theses databases from inception to 16 December 2016, without language restrictions. In addition, we searched the Science Citation Index and checked the references of all the relevant studies. We also handsearched selected journals, conference proceedings, and relevant guidelines. We updated this search in March 2018, but we have not yet incorporated these results. We considered full-text diagnostic test accuracy studies of any individual index test, or a combination of tests, against a reference standard. Participants were adults without obvious airway abnormalities, who were having laryngoscopy performed with a standard laryngoscope and the trachea intubated with a standard tracheal tube. Index tests included the Mallampati test, modified Mallampati test, Wilson risk score, thyromental distance, sternomental distance, mouth opening test, upper lip bite test, or any combination of these. The target condition was difficult airway, with one of the following reference

  12. Scarring Airway Stenosis in Chinese Adults: Characteristics and Interventional Bronchoscopy Treatment

    PubMed Central

    Wang, Ting; Zhang, Jie; Qiu, Xiao-Jian; Wang, Juan; Pei, Ying-Hua; Wang, Yu-Ling

    2018-01-01

    Background: Scarring airway stenosis is commonly seen in China as compared to other developed countries, due to the high prevalence of tuberculosis. Nowadays, interventional bronchoscopy treatment has been widely used to treat this disease in China. This study demonstrated the characteristics of scarring airway stenosis in Chinese adults and retrospectively evaluated the efficacy of interventional bronchoscopy treatment of this disease. Methods: Patients with scarring airway stenosis from 18 tertiary hospitals were enrolled between January 2013 and June 2016. The causes, site, and length of scarring airway stenosis were analyzed, and the efficacy of the interventional bronchoscopy treatment was evaluated. Results: The final study cohort consisted of 392 patients. Endotracheobronchial tuberculosis (EBTB) was the most common cause of scarring airway stenosis (305/392, 77.8%) in Chinese adults with a high rate of incidence in young women. The left main bronchus was most susceptible to EBTB, and most posttuberculosis airway scarring stenosis length was 1.1–2.0 cm. The average clinical success rate of interventional bronchoscopy treatment for scarring airway stenosis in Chinese patients is 60.5%. The stent was inserted in 8.7% scarring airway stenosis in China. Conclusions: Scarring airway stenosis exhibits specific characteristics in Chinese patients. Interventional bronchoscopy is a useful and safe treatment method for the disease. PMID:29363641

  13. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    PubMed

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  14. Secreted mucins and airway bacterial colonization in non-CF bronchiectasis.

    PubMed

    Sibila, Oriol; Suarez-Cuartin, Guillermo; Rodrigo-Troyano, Ana; Fardon, Thomas C; Finch, Simon; Mateus, Eder Freddy; Garcia-Bellmunt, Laia; Castillo, Diego; Vidal, Silvia; Sanchez-Reus, Ferran; Restrepo, Marcos I; Chalmers, James D

    2015-10-01

    Secreted mucins play a key role in antibacterial defence in the airway, but have not previously been characterized in non-cystic fibrosis (CF) bronchiectasis patients. We aim to investigate the relationship between secreted mucins levels and the presence of bacterial colonization due to potentially pathogenic microorganisms (PPM) in the airways of stable bronchiectasis patients. Clinically stable bronchiectasis patients were studied prospectively at two centres. Patients with other pulmonary conditions were excluded. Spontaneous sputum was subject to bacterial culture, and secreted mucins (MUC2, MUC5AC and MUC5B) were measured in sputum supernatants by ELISA. A total of 50 patients were included. PPM were identified from sputum samples in 30 (60%), with Pseudomonas aeruginosa (n = 10) and Haemophilus influenzae (n = 10) as the most common PPM. There were no baseline differences among airway colonized and non-colonized patients. Patients with airways colonized by PPM presented higher levels of airway MUC2. No differences in MUC5AC levels were found among groups, whereas MUC5B levels were undetectable. Patients with P. aeruginosa colonization expressed the highest levels of MUC2. High levels of MUC2 and MUC5AC are also correlated with disease severity using the Bronchiectasis Severity Index. Airway MUC2 levels were higher in bronchiectasis patients colonized with PPM compared with those without airway colonization, especially in patients with P. aeruginosa. These findings suggest that airway-secreted mucins levels may play a role in the pathogenesis of airway infection in non-CF bronchiectasis. © 2015 Asian Pacific Society of Respirology.

  15. Classification of pulmonary airway disease based on mucosal color analysis

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  16. Use of an Airway Exchange Catheter-Assisted Extubation With Continuous End-Tidal Carbon Dioxide Monitoring in a Pediatric Patient With a Known Difficult Airway: A Case Report.

    PubMed

    Yegian, Courtney C; Volz, Lana M; Galgon, Richard E

    2018-05-11

    Tracheal extubation in children with known difficult airways is associated with an increased risk of adverse events. Currently, there is no reliable measure to predict the need for emergent reintubation due to airway inadequacy. Airway exchange catheter-assisted extubation has been shown to be a useful adjunct in decreasing the risk of adverse events due to failed extubation. We report a case of using an airway exchange catheter-assisted extubation with continuous end-tidal carbon dioxide monitoring for a pediatric patient with a known difficult airway.

  17. Comparing demographic, health status and psychosocial strategies of audience segmentation to promote physical activity.

    PubMed

    Boslaugh, Sarah E; Kreuter, Matthew W; Nicholson, Robert A; Naleid, Kimberly

    2005-08-01

    The goal of audience segmentation is to identify population subgroups that are homogeneous with respect to certain variables associated with a given outcome or behavior. When such groups are identified and understood, targeted intervention strategies can be developed to address their unique characteristics and needs. This study compares the results of audience segmentation for physical activity that is based on either demographic, health status or psychosocial variables alone, or a combination of all three types of variables. Participants were 1090 African-American and White adults from two public health centers in St Louis, MO. Using a classification-tree algorithm to form homogeneous groups, analyses showed that more segments with greater variability in physical activity were created using psychosocial versus health status or demographic variables and that a combination of the three outperformed any individual set of variables. Simple segmentation strategies such as those relying on demographic variables alone provided little improvement over no segmentation at all. Audience segmentation appears to yield more homogeneous subgroups when psychosocial and health status factors are combined with demographic variables.

  18. Tachykinin receptors and the airways.

    PubMed

    Frossard, N; Advenier, C

    1991-01-01

    The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.

  19. Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis.

    PubMed

    Murakawa, Tomohiro; Kerklo, Michelle M; Zamora, Martin R; Wei, Yi; Gill, Ronald G; Henson, Peter M; Grover, Frederick L; Nicolls, Mark R

    2005-04-01

    Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.

  20. Retrotracheal Extraskeletal Ewing's Sarcoma: Case Report and Discussion on Airway Management.

    PubMed

    Van Der Meer, Graeme; Linkhorn, Hannah; Gruber, Maayan; Mahadevan, Murali; Barber, Colin

    2017-03-01

    Extraskeletal Ewing's sarcoma is a rare tumor, and the management of airway compromise in case of cervical Ewing's sarcoma has not been established. This report describes the case of a patient with retrotracheal Ewing's sarcoma and discusses a successful approach to airway management. A 12-year-old male presented with a 2-week history of sore throat and sleep-disordered breathing and 48 hours of stridor. Imaging confirmed a retrotracheal soft tissue mass with airway compromise. A planned and controlled approach to his airway management resulted in a secure airway prior to definitive treatment.

  1. Airway responsiveness and airway remodeling after chronic exposure to procaterol and fenoterol in guinea pigs in vivo.

    PubMed

    Nishimura, Hideko; Tokuyama, Kenichi; Arakawa, Hirokazu; Ohki, Yasushi; Sato, Akira; Kato, Masahiko; Mochizuki, Hiroyuki; Morikawa, Akihiro

    2002-12-01

    Chronic exposure to fenoterol (FEN), a beta(2)-adrenergic receptor (beta(2)-AR) agonist, was shown to induce both airway hyperresponsiveness and airway remodeling in experimental animals. We wanted to know the effects of chronic exposure to procaterol (PRO), a beta(2)-AR agonist, on airway function and structure, because this agent is widely used as a bronchodilator in Japan. For comparison, the effects of FEN were also examined. Aerosolized PRO (0.1 or 1 mg/ml), FEN (1 mg/ml) or vehicle (0.9% NaCl) was given to guinea pigs 3 times a day for 6 weeks. Sublaryngeal deposition of these agents was calculated using radioisotopes. At 72 h after the last inhalation of PRO, FEN or vehicle, the dose-response relationship between lung resistance (R(L)) and intravenously administered acetylcholine (ACh) was measured. After measuring R(L), histological changes in noncartilaginous airway dimensions were evaluated. The amount of sublaryngeal deposition of 0.1 mg/ml PRO in the present study was speculated to be 100 times larger than that of therapeutic dose. ACh concentrations causing 2-fold, 10-fold and maximal increases in R(L) were not different in 4 groups tested. In the smaller membranous airways (<0.4 mm in diameter), but not the larger ones, thickening of adventitial areas was significantly greater in animals treated with beta(2)-AR agonists than in control animals (23 and 25, and 96% higher in animals treated with 0.1 and 1 mg/ml PRO or 1 mg/ml FEN, respectively). The degree of the increase was significantly less in PRO-treated animals than in FEN-treated animals (p < 0.01). Our results did not provide any evidence that regular inhalation of PRO at the therapeutic dose might induce bronchial hyperresponsiveness. In addition, huge amounts of PRO only caused a mild thickening of the adventitial areas, suggesting that PRO may be a weak inducer of airway remodeling compared with FEN. Copyright 2002 S. Karger AG, Basel

  2. Retinal blood vessel segmentation using fully convolutional network with transfer learning.

    PubMed

    Jiang, Zhexin; Zhang, Hao; Wang, Yi; Ko, Seok-Bum

    2018-04-26

    Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The role of anaerobic bacteria in the cystic fibrosis airway.

    PubMed

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  4. PoMo: An Allele Frequency-Based Approach for Species Tree Estimation

    PubMed Central

    De Maio, Nicola; Schrempf, Dominik; Kosiol, Carolin

    2015-01-01

    Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate than previous approaches. PMID:26209413

  5. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutrophil elastase inhibition attenuates allergic airway responses

    PubMed Central

    2013-01-01

    Background Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice. Methods BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge. Results Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice. Conclusion These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor

  6. Pharyngeal airway changes following maxillary expansion or protraction: A meta-analysis.

    PubMed

    Lee, W-C; Tu, Y-K; Huang, C-S; Chen, R; Fu, M-W; Fu, E

    2018-02-01

    The aim of this meta-analysis was to investigate the changes in airway dimensions after rapid maxillary expansion (RME) and facemask (FM) protraction. Using PubMed, Medline, ScienceDirect and Web of Science, only controlled clinical trials, published up to November 2016, with RME and/or FM as keywords that had ≥6 months follow-up period were included in this meta-analysis. The changes in pharyngeal airway dimension in both two-dimensional and three-dimensional images were included in the analysis. Nine studies met the criteria. There are statically significant changes in upper airway and nasal passage airway in the intervention groups as compared to the control groups, assessed in two-dimensional and three-dimensional images. However , in the lower airway and the airway below the palatal plane, no statistically significant changes are seen in 2D and 3D images. RME/FM treatments might increase the upper airway space in children and young adolescents. However, more RCTs and long-term cohort studies are needed to further clarify the effects on pharyngeal airway changes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  8. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model

    PubMed Central

    Jackson, George R.; Maione, Anna G.; Klausner, Mitchell

    2018-01-01

    Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643

  9. Multidisciplinary Difficult Airway Course: An Essential Educational Component of a Hospital-Wide Difficult Airway Response Program.

    PubMed

    Leeper, W Robert; Haut, Elliott R; Pandian, Vinciya; Nakka, Sajan; Dodd-O, Jeffrey; Bhatti, Nasir; Hunt, Elizabeth A; Saheed, Mustapha; Dalesio, Nicholas; Schiavi, Adam; Miller, Christina; Kirsch, Thomas D; Berkow, Lauren

    2018-04-05

    A hospital-wide difficult airway response team was developed in 2008 at The Johns Hopkins Hospital with three central pillars: operations, safety monitoring, and education. The objective of this study was to assess the outcomes of the educational pillar of the difficult airway response team program, known as the multidisciplinary difficult airway course (MDAC). The comprehensive, full-day MDAC involves trainees and staff from all provider groups who participate in airway management. The MDAC occurs within the Johns Hopkins Medicine Simulation Center approximately four times per year and uses a combination of didactic lectures, hands-on sessions, and high-fidelity simulation training. Participation in MDAC is the main intervention being investigated in this study. Data were collected prospectively using course evaluation survey with quantitative and qualitative components, and prepost course knowledge assessment multiple choice questions (MCQ). Outcomes include course evaluation scores and themes derived from qualitative assessments, and prepost course knowledge assessment MCQ scores. Tertiary care academic hospital center PARTICIPANTS: Students, residents, fellows, and practicing physicians from the departments of Surgery, Otolaryngology Head and Neck Surgery, Anesthesiology/Critical Care Medicine, and Emergency Medicine; advanced practice providers (nurse practitioners and physician assistants), nurse anesthetists, nurses, and respiratory therapists. Totally, 23 MDACs have been conducted, including 499 participants. Course evaluations were uniformly positive with mean score of 86.9 of 95 points. Qualitative responses suggest major value from high-fidelity simulation, the hands-on skill stations, and teamwork practice. MCQ scores demonstrated significant improvement: median (interquartile range) pre: 69% (60%-81%) vs post: 81% (72%-89%), p < 0.001. Implementation of a MDAC successfully disseminated principles and protocols to all airway providers. Demonstrable

  10. A Multidisciplinary Approach to a Pediatric Difficult Airway Simulation Course.

    PubMed

    Lind, Meredith Merz; Corridore, Marco; Sheehan, Cameron; Moore-Clingenpeel, Melissa; Maa, Tensing

    2018-02-01

    Objective To design and assess an advanced pediatric airway management course, through simulation-based team training and with multiple disciplines, to emphasize communication and cooperation across subspecialties and to provide a common skill set and knowledge base. Methods Trainees from anesthesiology, emergency medicine, critical care, pediatric surgery, and otolaryngology at a tertiary children's hospital participated in a 1-day workshop emphasizing airway skills and complex airway simulations. Small groups were multidisciplinary to promote teamwork. Participants completed pre- and postworkshop questionnaires. Results Thirty-nine trainees participated over the 3-year study period. Compared with their precourse responses, participants' postcourse responses indicated either agreement or strong agreement that the multidisciplinary format (1) helped in the development of team communication skills and (2) was preferred over single-discipline training. Improvement in confidence in managing critical airway situations and in advanced airway management skills was significant ( P < .05). Eighty-one percent of participants had improved confidence in following the hospital's critical airway protocol, and 64% were better able to locate advanced airway management equipment. Discussion Multiple subspecialists manage pediatric respiratory failure, where successful care requires complex handoffs and teamwork. Multidisciplinary education to teach advanced airway management, teamwork, and communication skills is practical and preferred by learners and is possible to achieve despite differences in experience. Future study is required to better understand the impact of this course on patient care outcomes. Implications for Practice Implementation of a pediatric difficult airway course through simulation-based team training is feasible and preferred by learners among multiple disciplines. A multidisciplinary approach exposes previously unrecognized knowledge gaps and allows for

  11. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  12. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  13. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  14. Tidal stretches do not modulate responsiveness of intact airways in vitro

    PubMed Central

    Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.

    2010-01-01

    Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023

  15. Tree detection in orchards from VHR satellite images using scale-space theory

    NASA Astrophysics Data System (ADS)

    Mahour, Milad; Tolpekin, Valentyn; Stein, Alfred

    2016-10-01

    This study focused on extracting reliable and detailed information from very High Resolution (VHR) satellite images for the detection of individual trees in orchards. The images contain detailed information on spectral and geometrical properties of trees. Their scale level, however, is insufficient for spectral properties of individual trees, because adjacent tree canopies interlock. We modeled trees using a bell shaped spectral profile. Identifying the brightest peak was challenging due to sun illumination effects caused 1 by differences in positions of the sun and the satellite sensor. Crown boundary detection was solved by using the NDVI from the same image. We used Gaussian scale-space methods that search for extrema in the scale-space domain. The procedures were tested on two orchards with different tree types, tree sizes and tree observation patterns in Iran. Validation was done using reference data derived from an UltraCam digital aerial photo. Local extrema of the determinant of the Hessian corresponded well to the geographical coordinates and the size of individual trees. False detections arising from a slight asymmetry of trees were distinguished from multiple detections of the same tree with different extents. Uncertainty assessment was carried out on the presence and spatial extents of individual trees. The study demonstrated how the suggested approach can be used for image segmentation for orchards with different types of trees. We concluded that Gaussian scale-space theory can be applied to extract information from VHR satellite images for individual tree detection. This may lead to improved decision making for irrigation and crop water requirement purposes in future studies.

  16. Detection of Single Tree Stems in Forested Areas from High Density ALS Point Clouds Using 3d Shape Descriptors

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Polewski, P.; Yao, W.; Krzystek, P.; Skidmore, A. K.

    2017-09-01

    Airborne Laser Scanning (ALS) is a widespread method for forest mapping and management purposes. While common ALS techniques provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150-200 m) this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform ℓ1-based orthogonal distance regression to robustly fit lines through each stem point set. The ℓ1-based method is less sensitive to outliers compared to the least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two plots from the Hochficht forest in Oberösterreich region located in Austria.We marked a total of 196 reference stems in the point clouds of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and 0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.

  17. Computed tomography-guided tissue engineering of upper airway cartilage.

    PubMed

    Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J

    2014-06-01

    Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of

  18. Reflex regulation of airway sympathetic nerves in guinea-pigs

    PubMed Central

    Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel

    2006-01-01

    Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway

  19. Airway obstruction due to aspiration of muddy water.

    PubMed

    Schober, Patrick; Christiaans, Herman M T; Loer, Stephan A; Schwarte, Lothar A

    2013-10-01

    We report a case of complete airway obstruction due to aspiration of muddy water. An innovative approach to clear the airway is described, which may be a potentially life saving manoeuver in similar cases of suspected muddy water aspiration.

  20. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Nociceptin effects in the airways.

    PubMed

    Peiser, C; Undem, B J; Fischer, A

    2000-07-01

    The opioid-like heptadecapeptide nociceptin (NC) has the following effects in the airways (investigated in isolated tracheae and bronchi from guinea pig or rat): the electric field stimulation (EFS)-induces release of acetylcholine (ACh), the tachykinin substance P (SP) and calcitonin gene-related peptide (CGRP) is reduced after pretreatment with NC, and EFS-induced tachykinergic nonadrenergic-noncholinergic (NANC) bronchoconstriction is inhibited by NC. Both the NC-mediated inhibition of neurotransmission and of smooth muscle contraction occurred in a concentration-dependent manner. Because these effects were naloxone-insensitive, were blocked by the NC receptor antagonist [F/G]NC(1-13)NH(2), and could be mimicked by the NC analogs, NCNH(2) and NC(1-13)NH(2), it is thought that they are distinct from the classic opioid receptors. That these pharmacological actions of NC are of relevance for airway physiology is highly probable given the presence of NC-immunoreactivity in the nerve fibers of the airways and of opioid-like receptor (ORL-1) transcripts in the jugular ganglia, from where the tachykinin-containing afferents arise.

  2. The cervical spine in maxillofacial trauma. Assessment and airway management.

    PubMed

    Kellman, R

    1991-02-01

    Although the presence of a real or potential cervical spine injury limits the options for emergency airway management, many choices still remain. The otolaryngologist-head and neck surgeon frequently is called on to treat patients with airway emergencies; therefore, familiarity with the risk of spinal cord damage and methods to avoid it when establishing a safe airway constitute important knowledge. Experience with the variety of airway techniques available increases the number of options and decreases the risks of morbidity and mortality for the patient with cervical spine injury.

  3. Comparison of the upper airway dynamics of oronasal and nasal masks with positive airway pressure treatment using cine magnetic resonance imaging.

    PubMed

    Ebben, Matthew R; Milrad, Sara; Dyke, Jonathan P; Phillips, C Douglas; Krieger, Ana C

    2016-03-01

    It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep-disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine magnetic resonance imaging (cMRI). Ten subjects (eight men, two women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10, and 15 cm of H2O, while in the supine position along the sagittal plane. The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p = 0.016. No differences were found in the retroglossal region between mask styles. Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region.

  4. Comparison of the Upper Airway Dynamics of Oronasal and Nasal Masks with Positive Airway Pressure Treatment using cine Magnetic Resonance Imaging

    PubMed Central

    Ebben, Matthew R.; Milrad, Sara; Dyke, Jonathan P.; Phillips, C. Douglas; Krieger, Ana C.

    2016-01-01

    Purpose It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine Magnetic Resonance Imaging (cMRI). Methods 10-Subjects (8-men, 2-women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10 and 15 cm of H2O, while in the supine position along the sagittal plane. Results The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p=0.016. No differences were found in the retroglossal region between mask styles. Conclusions Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region. PMID:25924934

  5. Automated segmentation of the lungs from high resolution CT images for quantitative study of chronic obstructive pulmonary diseases

    NASA Astrophysics Data System (ADS)

    Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.

    2005-04-01

    Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.

  6. Crisis management during anaesthesia: obstruction of the natural airway.

    PubMed

    Visvanathan, T; Kluger, M T; Webb, R K; Westhorpe, R N

    2005-06-01

    Obstruction of the natural airway, while usually easily recognised and managed, may present simply as desaturation, have an unexpected cause, be very difficult to manage, and have serious consequences for the patient. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a specific sub-algorithm for obstruction of the natural airway, in the management of acute airway obstruction occurring in association with anaesthesia. The potential performance for this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. There were 62 relevant incidents among the first 4000 reports to the AIMS. It was considered that the correct use of the structured approach would have led to earlier recognition of the problem and/or better management in 11% of cases. Airway management is a fundamental anaesthetic responsibility and skill. Airway obstruction demands a rapid and organised approach to its diagnosis and management and undue delay usually results in desaturation and a potential threat to life. An uncomplicated pre-learned sequence of airway rescue instructions is an essential part of every anaesthetist's clinical practice requirements.

  7. Smooth muscle myosin isoform expression and LC20 phosphorylation in innate rat airway hyperresponsiveness.

    PubMed

    Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie

    2006-11-01

    Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.

  8. Forcing Epicormic Sprouts on Branch Segments of Adult Hardwoods for Softwood Cuttings

    Treesearch

    J. W. Van Sambeek; John E. Preece; Mark V. Coggeshall

    2003-01-01

    Branch segments cut from basal limbs of transitional or adult hardwood trees were forced in the greenhouse to initiate shoot growth from latent buds for the production of softwood cuttings. Forcing in February, March, and April produced 10 to 15 visible buds or elongating shoots per meter of branch wood, which was more than twice the number during any other month. On...

  9. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  10. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  11. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  12. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  13. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  14. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  15. Silibinin attenuates allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less

  16. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  17. Effect of tachykinins in small human airways.

    PubMed

    Frossard, N; Barnes, J

    1991-07-01

    We have compared the contractile responses of substance P (SP) and neurokinin A (NKA) to that of the non degradable muscarinic agonist, carbachol, in small and large human airways in vitro. We have also investigated the effects of the neutral endopeptidase (NEP) inhibitor, thiorphan (100 microM) on these responses. NKA contracted large and small airways to a different extent (56% vs 92% of carbachol maximal contraction, respectively). NKA was significantly less potent in large vs small bronchi (EC50 = 150 +/- 15 vs 12 +/- 5 nM respectively, p less than 0.05). SP had a lower contractile effect in large (26% carbachol maximum) and small airways (59%) with EC50 values higher than 0.5 microM. The enkephalinase inhibitor thiorphan shifted the concentration-response curve to NKA to the left in large (EC50 = 35.2 +/- 8.2 nM) and small bronchi (EC50 = 2.8 +/- 1.3 nM, p less than 0.02). This shift was associated with an increase in the maximal contraction to NKA (75% in large vs 123% in small bronchi). The amplitude of contraction to SP was also potentiated in large (45%) and in smaller bronchi (101%). In conclusion, we have demonstrated that NKA has a significantly greater constrictor effect than a cholinergic agent in more peripheral human airways in vitro. This suggests that non cholinergic constrictor pathways are more likely to be important in more peripheral airways.

  18. Specific airway resistance in healthy young Vietnamese and Caucasian adults.

    PubMed

    Le Tuan, Thanh; Nguyen, Ngoc Minh; Demoulin, Bruno; Bonabel, Claude; Nguyen-Thi, Phi Linh; Ioan, Iulia; Schweitzer, Cyril; Nguyen, H T T; Varechova, Silvia; Marchal, Francois

    2015-06-01

    In healthy Vietnamese children the respiratory resistance has been suggested to be similar at 110 cm height but larger at 130 cm when compared with data in Caucasians from the literature, suggesting smaller airways in older Vietnamese children (Vu et al., 2008). The hypothesis tested here is whether the difference in airway resistance remains consistent throughout growth, and if it is larger in adult Vietnamese than in Caucasians. Airway resistance and Functional Residual Capacity were measured in healthy young Caucasian and Vietnamese adults in their respective native country using identical equipment and protocols. Ninety five subjects in Vietnam (60 males) and 101 in France (41 males) were recruited. Airway resistance was significantly larger in Vietnamese than in Caucasians and in females than in males, consistent with difference in body dimensions. Specific airway resistance however was not different by ethnicity or gender. The findings do not support the hypothesis that airway size at adult age - once normalized for lung volume - differs between Vietnamese and Caucasians. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. ZMappTM Reinforces the Airway Mucosal Barrier Against Ebola Virus.

    PubMed

    Yang, Bing; Schaefer, Alison; Wang, Ying-Ying; McCallen, Justin; Lee, Phoebe; Newby, Jay M; Arora, Harendra; Kumar, Priya A; Zeitlin, Larry; Whaley, Kevin J; McKinley, Scott A; Fischer, William A; Harit, Dimple; Lai, Samuel K

    2018-04-24

    Filoviruses, including Ebola, have the potential to be transmitted via virus-laden droplets deposited onto mucus membranes. Protecting against such emerging pathogens will require understanding how they may transmit at mucosal surfaces and developing strategies to reinforce the airway mucus barrier.Here, we prepared Ebola pseudovirus (with Zaire strain glycoproteins) and employed high resolution multiple particle tracking to track the motions of hundreds of individual pseudoviruses in fresh and undiluted human airway mucus isolated from extubated endotracheal tubes.We found that Ebola pseudovirus readily penetrate human airway mucus. Addition of ZMappTM, a cocktail of Ebola-binding IgG antibodies, effectively reduced mobility of Ebola pseudovirus in the same mucus secretions. Topical delivery of ZMappTM to the mouse airways also facilitated rapid elimination of Ebola pseudovirus.Our work demonstrates that antibodies can immobilize virions in airway mucus and reduce access to the airway epithelium, highlighting topical delivery of pathogen-specific antibodies to the lungs as a potential prophylactic or therapeutic approach against emerging viruses or biowarfare agents.

  20. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.