Science.gov

Sample records for airway tree segmentation

  1. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  2. Robust system for human airway-tree segmentation

    NASA Astrophysics Data System (ADS)

    Graham, Michael W.; Gibbs, Jason D.; Higgins, William E.

    2008-03-01

    Robust and accurate segmentation of the human airway tree from multi-detector computed-tomography (MDCT) chest scans is vital for many pulmonary-imaging applications. As modern MDCT scanners can detect hundreds of airway tree branches, manual segmentation and semi-automatic segmentation requiring significant user intervention are impractical for producing a full global segmentation. Fully-automated methods, however, may fail to extract small peripheral airways. We propose an automatic algorithm that searches the entire lung volume for airway branches and poses segmentation as a global graph-theoretic optimization problem. The algorithm has shown strong performance on 23 human MDCT chest scans acquired by a variety of scanners and reconstruction kernels. Visual comparisons with adaptive region-growing results and quantitative comparisons with manually-defined trees indicate a high sensitivity to peripheral airways and a low false-positive rate. In addition, we propose a suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result. These interactive tools have potential application for image-based guidance of bronchoscopy to the periphery, where small, terminal branches can be important visual landmarks. Together, the automatic segmentation algorithm and interactive tool suite comprise a robust system for human airway-tree segmentation.

  3. Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David

    2009-02-01

    Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.

  4. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Lee, Zhenghong

    2005-04-01

    Quantitative analysis of intrathoracic airway tree geometry is important for objective evaluation of bronchial tree structure and function. Currently, there is more human data than small animal data on airway morphometry. In this study, we implemented a semi-automatic approach to quantitatively describe airway tree geometry by using high-resolution computed tomography (CT) images to build a tree data structure for small animals such as rats and mice. Silicon lung casts of the excised lungs from a canine and a mouse were used for micro-CT imaging of the airway trees. The programming language IDL was used to implement a 3D region-growing threshold algorithm for segmenting out the airway lung volume from the CT data. Subsequently, a fully-parallel 3D thinning algorithm was implemented in order to complete the skeletonization of the segmented airways. A tree data structure was then created and saved by parsing through the skeletonized volume using the Python programming language. Pertinent information such as the length of all airway segments was stored in the data structure. This approach was shown to be accurate and efficient for up to six generations for the canine lung cast and ten generations for the mouse lung cast.

  5. A differential geometric approach to automated segmentation of human airway tree.

    PubMed

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2011-02-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the 3-D human airway tree depicted on computed tomography (CT) images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A "puzzle game" procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  6. A Differential Geometric Approach to Automated Segmentation of Human Airway Tree

    PubMed Central

    Pu, Jiantao; Fuhrman, Carl; Good, Walter F; Sciurba, Frank C; Gur, David

    2012-01-01

    Airway diseases are frequently associated with morphological changes that may affect the physiology of the lungs. Accurate characterization of airways may be useful for quantitatively assessing prognosis and for monitoring therapeutic efficacy. The information gained may also provide insight into the underlying mechanisms of various lung diseases. We developed a computerized scheme to automatically segment the three-dimensional human airway tree depicted on CT images. The method takes advantage of both principal curvatures and principal directions in differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used to identify false negative regions and reduce false positive regions that do not meet the shape analysis criteria. The negative impact of partial volume effects on small airway detection is partially alleviated by repeating the developed differential geometric analysis on lung anatomical structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this scheme has virtually no leakage issues and can be easily extended to the extraction or the segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different slice thicknesses and using 20 publicly available test cases that were originally designed for evaluating the performance of different airway tree segmentation algorithms. PMID:20851792

  7. Validation of an enhanced knowledge-based method for segmentation and quantitative analysis of intrathoracic airway trees from three-dimensional CT images

    SciTech Connect

    Sonka, M.; Park, W.; Hoffman, E.A.

    1995-12-31

    Accurate assessment of airway physiology, evaluated in terms of geometric changes, is critically dependent upon the accurate imaging and image segmentation of the three-dimensional airway tree structure. The authors have previously reported a knowledge-based method for three-dimensional airway tree segmentation from high resolution CT (HRCT) images. Here, they report a substantially improved version of the method. In the current implementation, the method consists of several stages. First, the lung borders are automatically determined in the three-dimensional set of HRCT data. The primary airway tree is semi-automatically identified. In the next stage, potential airways are determined in individual CT slices using a rule-based system that uses contextual information and a priori knowledge about pulmonary anatomy. Using three-dimensional connectivity properties of the pulmonary airway tree, the three-dimensional tree is constructed from the set of adjacent slices. The method`s performance and accuracy were assessed in five 3D HRCT canine images. Computer-identified airways matched 226/258 observer-defined airways (87.6%); the computer method failed to detect the airways in the remaining 32 locations. By visual assessment of rendered airway trees, the experienced observers judged the computer-detected airway trees as highly realistic.

  8. Optimal Graph Search Based Segmentation of Airway Tree Double Surfaces Across Bifurcations

    PubMed Central

    Chen, Danny Z.; Tawhai, Merryn H.; Wu, Xiaodong; Hoffman, Eric A.; Sonka, Milan

    2014-01-01

    Identification of both the luminal and the wall areas of the bronchial tree structure from volumetric X-ray computed tomography (CT) data sets is of critical importance in distinguishing important phenotypes within numerous major lung diseases including chronic obstructive pulmonary diseases (COPD) and asthma. However, accurate assessment of the inner and outer airway wall surfaces of a complete 3-D tree structure is difficult due to their complex nature, particularly around the branch areas. In this paper, we extend a graph search based technique (LOGISMOS) to simultaneously identify multiple inter-related surfaces of branching airway trees. We first perform a presegmentation of the input 3-D image to obtain basic information about the tree topology. The presegmented image is resampled along judiciously determined paths to produce a set of vectors of voxels (called voxel columns). The resampling process utilizes medial axes to ensure that voxel columns of appropriate lengths and directions are used to capture the object surfaces without interference. A geometric graph is constructed whose edges connect voxels in the resampled voxel columns and enforce validity of the smoothness and separation constraints on the sought surfaces. Cost functions with directional information are employed to distinguish inner and outer walls. The assessment of wall thickness measurement on a CT-scanned double-wall physical phantom (patterned after an in vivo imaged human airway tree) achieved highly accurate results on the entire 3-D tree. The observed mean signed error of wall thickness ranged from −0.09 ± 0.24 mm to 0.07 ± 0.23 mm in bifurcating/nonbifurcating areas. The mean unsigned errors were 0.16 ± 0.12 mm to 0.20 ± 0.11 mm. When the airway wall surface was partitioned into meaningful subregions, the airway wall thickness accuracy was the same in most tested bifurcation/nonbifurcation and carina/noncarina regions (p=NS). Once validated on phantoms, our method was applied

  9. Automatic lung lobe segmentation in x-ray CT images by 3D watershed transform using anatomic information from the segmented airway tree

    NASA Astrophysics Data System (ADS)

    Ukil, Soumik; Hoffman, Eric A.; Reinhardt, Joseph M.

    2005-04-01

    The human lungs are divided into five distinct anatomic compartments called lobes. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the diagnosis of lung disease. We have developed an automatic method for segmentation of all five lung lobes simultaneously using a 3D watershed transform on the distance transform of a previously generated vessel mask, linearly combined with the original data. Due to the anatomically separate airway sub-trees for individual lobes, we can accurately and automatically place seed points for the watershed segmentation based on the airway tree anatomical description, due to the fact that lower generation airway and vascular tree segments are located near each other. This, along with seed point placement using information on the spatial location of the lobes, can give a close approximation to the actual lobar fissures. The accuracy of the lobar borders is assessed by comparing the automatic segmentation to manually traced lobar boundaries. Averaged over all volumes, the RMS distance errors for the left oblique fissure, right oblique fissure and right horizontal fissure are 3.720 mm, 0.713 mm and 1.109 mm respectively.

  10. AIRWAY LABELING USING A HIDDEN MARKOV TREE MODEL

    PubMed Central

    Ross, James C.; Díaz, Alejandro A.; Okajima, Yuka; Wassermann, Demian; Washko, George R.; Dy, Jennifer; San José Estépar, Raúl

    2014-01-01

    We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). We obtain a collection of discrete points along the segmented airway tree using particles sampling [1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our HMTM algorithm probabilistically assigns labels to each point. While alternative methods label airway branches out to the segmental level, we describe a general method and demonstrate its performance out to the subsubsegmental level (two generations further than previously published approaches). We present results on a collection of 25 computed tomography (CT) datasets taken from a Chronic Obstructive Pulmonary Disease (COPD) study. PMID:25436039

  11. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. PMID:26026778

  12. Lung registration using airway tree morphometry

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang; Pu, Jiantao; Wenzel, Sally E.; Leader, Joseph K.

    2011-03-01

    This paper describes a non-linear medical image registration algorithm that aligns lung CT images scanned at different respiratory phases. The method uses landmarks obtained from the airway tree to find the airway branch extension lines and where the lines intersect the lung surface. The branch extension and lung intersection voxels on the surface were the crucial landmarks that initialize the non-rigid registration process. The advantage of these landmarks is that they have high correspondence between the matching patterns in the template images and deformed images. This method was developed and tested on CT examinations from participants in an asthma study. The registration accuracy was evaluated by the average distance between the corresponding airway tree branch points in the pair of images. The mean value of the distance between landmarks in template images and deformed matching images for subjects 1 and 2 were 8.44 mm (+/-4.46 mm) and 4.33 mm (+/- 3.78 mm), respectively. The results show that the lung image registration technique developed in this study may prove useful in quantifying longitudinal changes, performing regional analysis, tracking lung tumors, and compensating for subject motion across CT images.

  13. Computer-aided analysis of airway trees in micro-CT scans of ex vivo porcine lung tissue.

    PubMed

    Bauer, Christian; Adam, Ryan; Stoltz, David A; Beichel, Reinhard R

    2012-12-01

    We present a highly automated approach to obtain detailed structural models of airway trees from ex vivo porcine lung tissue imaged with a high resolution micro-CT scanner. Such information is an important prerequisite to systematically study models of lung disease that affect airway morphology. The method initially identifies all tubular airway-like structures in the lung. In a second processing step, these structures are grouped into a connected airway tree by utilizing prior knowledge about the airway trees branching pattern. The method was evaluated on 12 micro-CT scans from four tracheal lobes of piglets imaged at three different inflation levels. For this study, two control piglets and two cystic fibrosis piglets were used. For systematic validation of our approach, an airway nomenclature was developed for the pig airway tree. Out of more than 3500 airway tree segments assessed during evaluation, 88.45% were correctly identified by the method. No false positive airway branches were found. A detailed performance analysis for different airway tree hierarchy levels, lung inflation levels and piglets with/without cystic fibrosis is presented in the paper. PMID:22959430

  14. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  15. Generic documentation tree for science ground segments

    NASA Astrophysics Data System (ADS)

    Pérez-López, F.; Lock, T.; Texier, D.

    2014-08-01

    The competences of the Science Ground Segment, for an ESA science mission, include: science operations planning, science instrument handling, data reception and processing, and archiving as well as providing science support. This paper presents a generic documentation structure applicable during the analysis, definition, implementation and operational phases of an ESA Science Ground Segment. This is the conclusion of the analysis performed in the scope of the current ESAC Science Ground Segment developments and is derived from the experience of previous ESA science missions and the ESA standardization efforts (ECSS Standards). It provides a guideline to support the Science Ground Segment documentation processes during all mission phases; representing a new approach for the development of future ESA science missions, and providing an initial documentation structure that might be tailored depending on the specific scientific, engineering and managerial characteristics of each mission. This paper also describes the process followed to produce the generic documentation tree and how the development and operations experience feedback in the updated versions of this generic documentation tree.

  16. Automated segmentation of porcine airway wall layers using optical coherence tomography: comparison with manual segmentation and histology

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Lee, Anthony M. D.; Candido, Tara; MacAulay, Calum; Lane, Pierre; Lam, Stephen; Coxson, Harvey O.

    2014-03-01

    The objective was to develop an automated optical coherence tomography (OCT) segmentation method. We evaluated three ex-vivo porcine airway specimens; six non-sequential OCT images were selected from each airway specimen. Histology was also performed for each airway and histology images were co-registered to OCT images for comparison. Manual segmentation of the airway luminal area, mucosa area, submucosa area and the outer airway wall area were performed for histology and OCT images. Automated segmentation of OCT images employed a despecking filter for pre-processing, a hessian-based filter for lumen and outer airway wall area segmentation, and K-means clustering for mucosa and submucosa area segmentation. Bland-Altman analysis indicated that there was very little bias between automated OCT segmentation and histology measurements for the airway lumen area (bias=-6%, 95% CI=-21%-8%), mucosa area, (bias=-4%, 95% CI=-14%-5%), submucosa area (bias=7%, 95% CI=-7%-20%) and outer airway wall area segmentation results (bias=-5%, 95% CI=-14%-5%). We also compared automated and manual OCT segmentation and Bland-Altman analysis indicated that there was negligible bias between luminal area (bias=4%, 95% CI=1%-8%), mucosa area (bias=-3%, 95% CI=-6%-1%), submucosa area (bias=-2%, 95% CI=-10%-6%) and the outer airway wall (bias=-3%, 95% CI=-13%-6%). The automated segmentation method for OCT airway imaging developed here allows for accurate and precise segmentation of the airway wall components, suggesting that translation of this method to in vivo human airway analysis would allow for longitudinal and serial studies.

  17. Vascular active contour for vessel tree segmentation.

    PubMed

    Shang, Yanfeng; Deklerck, Rudi; Nyssen, Edgard; Markova, Aneta; de Mey, Johan; Yang, Xin; Sun, Kun

    2011-04-01

    In this paper, a novel active contour model is proposed for vessel tree segmentation. First, we introduce a region competition-based active contour model exploiting the gaussian mixture model, which mainly segments thick vessels. Second, we define a vascular vector field to evolve the active contour along its center line into the thin and weak vessels. The vector field is derived from the eigenanalysis of the Hessian matrix of the image intensity in a multiscale framework. Finally, a dual curvature strategy, which uses a vesselness measure-dependent function selecting between a minimal principal curvature and a mean curvature criterion, is added to smoothen the surface of the vessel without changing its shape. The developed model is used to extract the liver and lung vessel tree as well as the coronary artery from high-resolution volumetric computed tomography images. Comparisons are made with several classical active contour models and manual extraction. The experiments show that our model is more accurate and robust than these classical models and is, therefore, more suited for automatic vessel tree extraction. PMID:21138795

  18. Street-Scene Tree Segmentation from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Guan, H.; Cao, S.; Yu, Y.; Li, J.; Liu, N.; Chen, P.; Li, Y.

    2016-06-01

    Our work addresses the problem of extracting trees from mobile laser scanning data. The work is a two step-wise strategy, including terrain point removal and tree segmentation. First, a voxel-based upward growing filtering is proposed to remove terrain points from the mobile laser scanning data. Then, a tree segmentation is presented to extract individual trees via a Euclidean distance clustering approach and Voxel-based Normalized Cut (VNCut) segmentation approach. A road section data acquired by a RIEGL VMX-450 system are selected for evaluating the proposed tree segmentation method. Qualitative analysis shows that our algorithm achieves a good performance.

  19. Robust airway extraction based on machine learning and minimum spanning tree

    NASA Astrophysics Data System (ADS)

    Inoue, Tsutomu; Kitamura, Yoshiro; Li, Yuanzhong; Ito, Wataru

    2013-02-01

    Recent advances in MDCT have improved the quality of 3D images. Virtual Bronchoscopy has been used before and during the bronchoscopic examination for the biopsy. However, Virtual Bronchoscopy has become widely used only for the examination of proximal airway diseases. The reason is that conventional airway extraction methods often fail to extract peripheral airways with low image contrast. In this paper, we propose a machine learning based method which can improve the extraction robustness remarkably. The method consists of 4 steps. In the first step, we use Hessian analysis to detect as many airway candidates as possible. In the second, false positives are reduced effectively by introducing a machine learning method. In the third, an airway tree is constructed from the airway candidates by utilizing a minimum spanning tree algorithm. In the fourth, we extract airway regions by using Graph cuts. Experimental results evaluated by a standardized evaluation framework show that our method can extract peripheral airways very well.

  20. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  1. a Minimum Spanning Tree Based Method for Uav Image Segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wei, Zheng; Cui, Weihong; Lin, Zhiyong

    2016-06-01

    This paper proposes a Minimum Span Tree (MST) based image segmentation method for UAV images in coastal area. An edge weight based optimal criterion (merging predicate) is defined, which based on statistical learning theory (SLT). And we used a scale control parameter to control the segmentation scale. Experiments based on the high resolution UAV images in coastal area show that the proposed merging predicate can keep the integrity of the objects and prevent results from over segmentation. The segmentation results proves its efficiency in segmenting the rich texture images with good boundary of objects.

  2. [Influence of nanosize particles of cobalt ferrite on contractile responses of smooth muscle segment of airways].

    PubMed

    Kapilevich, L V; Zaĭtseva, T N; Nosarev, A V; D'iakova, E Iu; Petlina, Z R; Ogorodova, L M; Ageev, B G; Magaeva, A A; Itin, V I; Terekhova, O G; Medvedev, M A

    2012-02-01

    Contractile responses of airways segments of porpoises inhaling nanopowder CoFe2O4 were stidued by means of a mechanographic method. Inhalation of the nanosize particles of CoFe2O4 in vivo and in vitro testing the nanomaterial on isolated smooth muscles led to potentiation histaminergic, cholinergic contractile activity in airways of porpoises and to strengthening of adrenergic relaxing answers. Nanosize particles vary amplitude of hyperpotassium reductions in smooth muscle segments of airways similarly to the effect of depolymerizing drug colchicine. PMID:22650066

  3. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  4. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation

    SciTech Connect

    Liu, TIng; Jurrus, Elizabeth R.; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-11-11

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints in the sense of optimization to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

  5. Spatial Patterns of Trees from Airborne LiDAR Using a Simple Tree Segmentation Algorithm

    NASA Astrophysics Data System (ADS)

    Jeronimo, S.; Kane, V. R.; McGaughey, R. J.; Franklin, J. F.

    2015-12-01

    Objectives for management of forest ecosystems on public land incorporate a focus on maintenance and restoration of ecological functions through silvicultural manipulation of forest structure. The spatial pattern of residual trees - the horizontal element of structure - is a key component of ecological restoration prescriptions. We tested the ability of a simple LiDAR individual tree segmentation method - the watershed transform - to generate spatial pattern metrics similar to those obtained by the traditional method - ground-based stem mapping - on forested plots representing the structural diversity of a large wilderness area (Yosemite NP) and a large managed area (Sierra NF) in the Sierra Nevada, Calif. Most understory and intermediate-canopy trees were not detected by the LiDAR segmentation; however, LiDAR- and field-based assessments of spatial pattern in terms of tree clump size distributions largely agreed. This suggests that (1) even when individual tree segmentation is not effective for tree density estimates, it can provide a good measurement of tree spatial pattern, and (2) a simple segmentation method is adequate to measure spatial pattern of large areas with a diversity of structural characteristics. These results lay the groundwork for a LiDAR tool to assess clumping patterns across forest landscapes in support of restoration silviculture. This tool could describe spatial patterns of functionally intact reference ecosystems, measure departure from reference targets in treatment areas, and, with successive acquisitions, monitor treatment efficacy.

  6. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E.; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2016-03-01

    We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  7. Automated segmentation of lung airway wall area measurements from bronchoscopic optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Choy, Stephen; Wheatley, Andrew; McCormack, David; Coxson, Harvey O.; Lam, Stephen; Parraga, Grace

    2011-03-01

    Chronic Obstructive Pulmonary Disease (COPD) affects almost 600 million people and is currently the fourth leading cause of death worldwide. COPD is an umbrella term for respiratory symptoms that accompany destruction of the lung parenchyma and/or remodeling of the airway wall, the sum of which result in decreased expiratory flow, dyspnea and gas trapping. Currently, x-ray computed tomography (CT) is the main clinical method used for COPD imaging, providing excellent spatial resolution for quantitative tissue measurements although dose limitations and the fundamental spatial resolution of CT limit the measurement of airway dimensions beyond the 5th generation. To address this limitation, we are piloting the use of bronchoscopic Optical Coherence Tomography (OCT), by exploiting its superior spatial resolution of 5-15 micrometers for in vivo airway imaging. Currently, only manual segmentation of OCT airway lumen and wall have been reported but manual methods are time consuming and prone to observer variability. To expand the utility of bronchoscopic OCT, automatic and robust measurement methods are required. Therefore, our objective was to develop a fully automated method for segmenting OCT airway wall dimensions and here we explore several different methods of image-regeneration, voxel clustering and post-processing. Our resultant automated method used K-means or Fuzzy c-means to cluster pixel intensity and then a series of algorithms (i.e. cluster selection, artifact removal, de-noising) was applied to process the clustering results and segment airway wall dimensions. This approach provides a way to automatically and rapidly segment and reproducibly measure airway lumen and wall area.

  8. Effects of airway tree asymmetry on the emergence and spatial persistence of ventilation defects

    PubMed Central

    Leary, D.; Winkler, T.; Braune, A.

    2014-01-01

    Asymmetry and heterogeneity in the branching of the human bronchial tree are well documented, but their effects on bronchoconstriction and ventilation distribution in asthma are unclear. In a series of seminal studies, Venegas et al. have shown that bronchoconstriction may lead to self-organized patterns of patchy ventilation in a computational model that could explain areas of poor ventilation [ventilation defects (VDefs)] observed in positron emission tomography images during induced bronchoconstriction. To investigate effects of anatomic asymmetry on the emergence of VDefs we used the symmetric tree computational model that Venegas and Winkler developed using different trees, including an anatomic human airway tree provided by M. Tawhai (University of Auckland), a symmetric tree, and three trees with intermediate asymmetry (Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, Fischman AJ, Callahan RJ, Bellani G, Harris RS. Nature 434: 777–782, 2005 and Winkler T, Venegas JG. J Appl Physiol 103: 655–663, 2007). Ventilation patterns, lung resistance (RL), lung elastance (EL), and the entropy of the ventilation distribution were compared at different levels of airway smooth muscle activation. We found VDefs emerging in both symmetric and asymmetric trees, but VDef locations were largely persistent in asymmetric trees, and bronchoconstriction reached steady state sooner than in a symmetric tree. Interestingly, bronchoconstriction in the asymmetric tree resulted in lower RL (∼%50) and greater EL (∼%25). We found that VDefs were universally caused by airway instability, but asymmetry in airway branching led to local triggers for the self-organized patchiness in ventilation and resulted in persistent locations of VDefs. These findings help to explain the emergence and the persistence in location of VDefs found in imaging studies. PMID:24947031

  9. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    SciTech Connect

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2013-08-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.

  10. Bilayer segmentation of webcam videos using tree-based classifiers.

    PubMed

    Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan

    2011-01-01

    This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems. PMID:21088317

  11. 13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TREES ALONG LATERAL SEGMENT AT THE NORTHERN END OF LAKE LADORA. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  12. Assessing mucus and airway morphology in response to a segmental allergen challenge using OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Miller, Alyssa J.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Asthma affects hundreds of millions of people worldwide, and the prevalence of the disease appears to be increasing. One of the most important aspects of asthma is the excessive bronchoconstriction that results in many of the symptoms experienced by asthma sufferers, but the relationship between bronchoconstriction and airway morphology is not clearly established. We present the imaging results of a study involving a segmental allergen challenge given to both allergic asthmatic (n = 12) and allergic non-asthmatic (n = 19) human volunteers. Using OCT, we have imaged and assessed baseline morphology in a right upper lobe (RUL) airway, serving as the control, and a right middle lobe (RML) airway, in which the allergen was to be administered. After a period of 24 hours had elapsed following the administration of the allergen, both airways were again imaged and the response morphology assessed. A number of airway parameters were measured and compared, including epithelial thickness, mucosal thickness and buckling, lumen area, and mucus content. We found that at baseline epithelial thickness, mucosal thickness, and mucosal buckling were greater in AAs than ANAs. We also observed statistically significant increases in these values 24 hours after the allergen had been administered for both the ANA and AA sets. In comparison, the control airway which received a diluent showed no statistically significant change.

  13. Numerical simulation of transitional flow in a human upper airway segment in the presence of uncertainty

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf

    2011-11-01

    The flow in human airways may be laminar, transitional, or turbulent in different airway segments. Specifically, laminar-turbulent transition is believed to occur in the larynx or in the trachea. Present approaches to simulate such flows typically employ numerical methods solving the steady Reynolds-averaged Navier-Stokes equations. However, natural airway deformations or pathological obstructions such as tumors may generate recirculation zones and lead to highly unsteady flow features that are not well captured by these numerical methods. We perform direct numerical simulations of transitional flow through a pipe-like canonical geometry representative of an airway segment. The incompressible Navier-Stokes equations in conjunction with an immersed boundary method are solved to simulate the unsteady flow. In order to model perturbations present in the incoming flow, small-amplitude disturbances are forced to explicitly trigger flow instabilities. Time-dependent inflow profiles are applied to model the change in flow velocity during the breathing process. In order to account for natural variability during breathing, the inflow profile is treated as an uncertain function. Resulting uncertainty in the flow field is quantified using stochastic collocation.

  14. SU-C-BRA-07: Virtual Bronchoscopy-Guided IMRT Planning for Mapping and Avoiding Radiation Injury to the Airway Tree in Lung SAbR

    SciTech Connect

    Sawant, A; Modiri, A; Bland, R; Yan, Y; Ahn, C; Timmerman, R

    2015-06-15

    Purpose: Post-treatment radiation injury to central and peripheral airways is a potentially important, yet under-investigated determinant of toxicity in lung stereotactic ablative radiotherapy (SAbR). We integrate virtual bronchoscopy technology into the radiotherapy planning process to spatially map and quantify the radiosensitivity of bronchial segments, and propose novel IMRT planning that limits airway dose through non-isotropic intermediate- and low-dose spillage. Methods: Pre- and ∼8.5 months post-SAbR diagnostic-quality CT scans were retrospectively collected from six NSCLC patients (50–60Gy in 3–5 fractions). From each scan, ∼5 branching levels of the bronchial tree were segmented using LungPoint, a virtual bronchoscopic navigation system. The pre-SAbR CT and the segmented bronchial tree were imported into the Eclipse treatment planning system and deformably registered to the planning CT. The five-fraction equivalent dose from the clinically-delivered plan was calculated for each segment using the Universal Survival Curve model. The pre- and post-SAbR CTs were used to evaluate radiation-induced segmental collapse. Two of six patients exhibited significant segmental collapse with associated atelectasis and fibrosis, and were re-planned using IMRT. Results: Multivariate stepwise logistic regression over six patients (81 segments) showed that D0.01cc (minimum point dose within the 0.01cc receiving highest dose) was a significant independent factor associated with collapse (odds-ratio=1.17, p=0.010). The D0.01cc threshold for collapse was 57Gy, above which, collapse rate was 45%. In the two patients exhibiting segmental collapse, 22 out of 32 segments showed D0.01cc >57Gy. IMRT re-planning reduced D0.01cc below 57Gy in 15 of the 22 segments (68%) while simultaneously achieving the original clinical plan objectives for PTV coverage and OAR-sparing. Conclusion: Our results indicate that the administration of lung SAbR can Result in significant injury to

  15. Three-dimensional visual truth of the normal airway tree for use as a quantitative comparison to micro-CT reconstructions

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline; Reinhardt, Joseph M.; de Ryk, Jessica; Namati, Eman; Leinen, Jessica; Recheis, Wolfgang A.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    Mouse models are important for pulmonary research to gain insight into structure and function in normal and diseased states, thereby extending knowledge of human disease conditions. The flexibility of human disease induction into mice, due to their similar genome, along with their short gestation cycle makes mouse models highly suitable as investigative tools. Advancements in non-invasive imaging technology, with the development of micro-computed tomography (μ-CT), have aided representation of disease states in these small pulmonary system models. The generation ofμCT 3D airway reconstructions has to date provided a means to examine structural changes associated with disease. The degree of accuracy ofμCT is uncertain. Consequently, the reliability of quantitative measurements is questionable. We have developed a method of sectioning and imaging the whole mouse lung using the Large Image Microscope Array (LIMA) as the gold standard for comparison. Fixed normal mouse lungs were embedded in agarose and 250μm sections of tissue were removed while the remaining tissue block was imaged with a stereomicroscope. A complete dataset of the mouse lung was acquired in this fashion. Following planar image registration, the airways were manually segmented using an in-house built software program PASS. Amira was then used render the 3D isosurface from the segmentations. The resulting 3D model of the normal mouse airway tree developed from pathology images was then quantitatively assessed and used as the standard to compare the accuracy of structural measurements obtained from μ-CT.

  16. New Approach for Segmentation and Extraction of Single Tree from Point Clouds Data and Aerial Images

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2016-06-01

    This paper addresses a new approach for reconstructing a 3D model from single trees via Airborne Laser Scanners (ALS) data and aerial images. The approach detects and extracts single tree from ALS data and aerial images. The existing approaches are able to provide bulk segmentation from a group of trees; however, some methods focused on detection and extraction of a particular tree from ALS and images. Segmentation of a single tree within a group of trees is mostly a mission impossible since the detection of boundary lines between the trees is a tedious job and basically it is not feasible. In this approach an experimental formula based on the height of the trees was developed and applied in order to define the boundary lines between the trees. As a result, each single tree was segmented and extracted and later a 3D model was created. Extracted trees from this approach have a unique identification and attribute. The output has application in various fields of science and engineering such as forestry, urban planning, and agriculture. For example in forestry, the result can be used for study in ecologically diverse, biodiversity and ecosystem.

  17. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  18. A novel non-registration based segmentation approach of 4D dynamic upper airway MR images: minimally interactive fuzzy connectedness

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Sin, Sanghun; Wagshul, Mark E.; Arens, Raanan

    2014-03-01

    There are several disease conditions that lead to upper airway restrictive disorders. In the study of these conditions, it is important to take into account the dynamic nature of the upper airway. Currently, dynamic MRI is the modality of choice for studying these diseases. Unfortunately, the contrast resolution obtainable in the images poses many challenges for an effective segmentation of the upper airway structures. No viable methods have been developed to date to solve this problem. In this paper, we demonstrate the adaptation of the iterative relative fuzzy connectedness (IRFC) algorithm for this application as a potential practical tool. After preprocessing to correct for background image non-uniformities and the non-standardness of MRI intensities, seeds are specified for the airway and its crucial background tissue components in only the 3D image corresponding to the first time instance of the 4D volume. Subsequently the process runs without human interaction and completes segmenting the whole 4D volume in 10 sec. Our evaluations indicate that the segmentations are of very good quality achieving true positive and false positive volume fractions and boundary distance with respect to reference manual segmentations of about 93%, 0.1%, and 0.5 mm, respectively.

  19. Liver vessel tree segmentation based on a hybrid graph cut / fuzzy connectedness method

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian

    2012-02-01

    In the monitoring of oncological therapy, the prediction of liver tumor growth from consecutive CT scans is an important aspect in deciding the treatment planning. The accurate segmentation of liver vessel tree is fundamental for successful prediction of the tumor growth. In this paper, we report a 3D liver vessel tree segmentation method based on the hybrid graph cut (GC) / fuzzy connectedness (FC) method. GC is a popular image segmentation technique. However, it is not always efficient when segmenting thin elongated objects due to its "shrinking bias". To overcome this problem, we propose to impose an additional connectivity prior, which comes from the FC segmentation results. The proposed method synergistically combines the GC with FC methods. The proposed method consists of two main steps. First, the FC method is applied to initially segment the liver vessel tree, which provided the connectivity prior to the subsequent GC method. Second, the connectivity prior integrated GC method is employed to refine the segmented liver vessel tree. The proposed method was tested on 10 clinical portal venous phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method. The accuracy of segmentation on this dataset, expressed in sensitivity, was 60%, 92% and 100% for vessel diameters in the range of 0.5 to 1, 1 to 2 and >2 mm, respectively.

  20. Two-dimensional airway analysis using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang Cheol; Pu, Jiantao; Sciurba, Frank C.; Leader, Joseph K.

    2010-03-01

    Although 3-D airway tree segmentation permits analysis of airway tree paths of practical lengths and facilitates visual inspection, our group developed and tested an automated computer scheme that was operated on individual 2-D CT images to detect airway sections and measure their morphometry and/or dimensions. The algorithm computes a set of airway features including airway lumen area (Ai), airway cross-sectional area (Aw), the ratio (Ra) of Ai to Aw, and the airway wall thickness (Tw) for each detected airway section depicted on the CT image slice. Thus, this 2-D based algorithm does not depend on the accuracy of 3-D airway tree segmentation and does not require that CT examination encompasses the entire lung or reconstructs contiguous images. However, one disadvantage of the 2-D image based schemes is the lack of the ability to identify the airway generation (Gb) of the detected airway section. In this study, we developed and tested a new approach that uses 2-D airway features to assign a generation number to an airway. We developed and tested two probabilistic neural networks (PNN) based on different sets of airway features computed by our 2-D based scheme. The PNNs were trained and tested on 12 lung CT examinations (8 training and 4 testing). The accuracy for the PNN that utilized Ai and Ra for identifying the generation of airway sections varies from 55.4% - 100%. The overall accuracy of the PNN for all detected airway sections that are spread over all generations is 76.7%. Interestingly, adding wall thickness feature (Tw) to PNN did not improve identification accuracy. This preliminary study demonstrates that a set of 2-D airway features may be used to identify the generation number of an airway with reasonable accuracy.

  1. Inhaled nedocromil sodium reduces histamine release from isolated large airway segments of asthmatic subjects in vivo.

    PubMed

    Maxwell, D L; Hawksworth, R J; Lee, T H

    1993-09-01

    Placement of an intrabronchial single balloon catheter provides the possibility of measuring histamine release in isolated large airway segments in vivo. We wanted to assess the protective effect of nedocromil sodium on intrabronchial histamine release after hyperosmolar challenge. Six mild asthmatics were bronchoscoped 30 min after inhalation of 4 mg nedocromil sodium or placebo, given via a metered dose inhaler in a randomized, double-blind, cross-over study. Lavage of the left main bronchus was carried out proximal to a balloon catheter inflated at its bifurcation, and specimens were assayed for histamine and prostaglandin D2 (PGD2) by radioimmunoassay. The rise in histamine concentration in bronchial epithelial fluid following hyperosmolar saline challenge was significantly greater following placebo than following nedocromil sodium (mean +/- SEM prechallenge histamine concentration on placebo day 6.9 +/- 2.9 nM; post-challenge: 25.3 +/- 8.0 nM; mean +/- SEM prechallenge histamine concentration on the day nedocromil sodium was given: 3.7 +/- 0.7 nM; post-challenge 5.8 +/- 1.7 nM). Changes in PGD2 levels reflected the changes in histamine, but the variability of response was large, and there were no significant differences between the effects of placebo and nedocromil sodium. The procedure caused significantly greater falls in peak expiratory flow rates following placebo (mean +/- SEM percentage fall 20.2 +/- 4.4%) than following nedocromil sodium (0.9 +/- 5.8%, p < 0.02). We conclude that there is tonic basal histamine release within asthmatic airways, and that nedocromil sodium inhibits histamine release from mediator cells in vivo. PMID:7693506

  2. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Strîmbu, Victor F.; Strîmbu, Bogdan M.

    2015-06-01

    This work proposes a segmentation method that isolates individual tree crowns using airborne LiDAR data. The proposed approach captures the topological structure of the forest in hierarchical data structures, quantifies topological relationships of tree crown components in a weighted graph, and finally partitions the graph to separate individual tree crowns. This novel bottom-up segmentation strategy is based on several quantifiable cohesion criteria that act as a measure of belief on weather two crown components belong to the same tree. An added flexibility is provided by a set of weights that balance the contribution of each criterion, thus effectively allowing the algorithm to adjust to different forest structures. The LiDAR data used for testing was acquired in Louisiana, inside the Clear Creek Wildlife management area with a RIEGL LMS-Q680i airborne laser scanner. Three 1 ha forest areas of different conditions and increasing complexity were segmented and assessed in terms of an accuracy index (AI) accounting for both omission and commission. The three areas were segmented under optimum parameterization with an AI of 98.98%, 92.25% and 74.75% respectively, revealing the excellent potential of the algorithm. When segmentation parameters are optimized locally using plot references the AI drops to 98.23%, 89.24%, and 68.04% on average with plot sizes of 1000 m2 and 97.68%, 87.78% and 61.1% on average with plot sizes of 500 m2. More than introducing a segmentation algorithm, this paper proposes a powerful framework featuring flexibility to support a series of segmentation methods including some of those recurring in the tree segmentation literature. The segmentation method may extend its applications to any data of topological nature or data that has a topological equivalent.

  3. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories

    NASA Astrophysics Data System (ADS)

    Tao, Shengli; Wu, Fangfang; Guo, Qinghua; Wang, Yongcai; Li, Wenkai; Xue, Baolin; Hu, Xueyang; Li, Peng; Tian, Di; Li, Chao; Yao, Hui; Li, Yumei; Xu, Guangcai; Fang, Jingyun

    2015-12-01

    The rapid development of light detection and ranging (LiDAR) techniques is advancing ecological and forest research. During the last decade, numerous single tree segmentation techniques have been developed using airborne LiDAR data. However, accurate crown segmentation using terrestrial or mobile LiDAR data, which is an essential prerequisite for extracting branch level forest characteristics, is still challenging mainly because of the difficulties posed by tree crown intersection and irregular crown shape. In the current work, we developed a comparative shortest-path algorithm (CSP) for segmenting tree crowns scanned using terrestrial (T)-LiDAR and mobile LiDAR. The algorithm consists of two steps, namely trunk detection and subsequent crown segmentation, with the latter inspired by the well-proved metabolic ecology theory and the ecological fact that vascular plants tend to minimize the transferring distance to the root. We tested the algorithm on mobile-LiDAR-scanned roadside trees and T-LiDAR-scanned broadleaved and coniferous forests in China. Point-level quantitative assessments of the segmentation results showed that for mobile-LiDAR-scanned roadside trees, all the points were classified to their corresponding trees correctly, and for T-LiDAR-scanned broadleaved and coniferous forests, kappa coefficients ranging from 0.83 to 0.93 were obtained. We believe that our algorithm will make a contribution to solving the problem of crown segmentation in T-LiDAR scanned-forests, and might be of interest to researchers in LiDAR data processing and to forest ecologists. In addition, our research highlights the advantages of using ecological theories as guidelines for processing LiDAR data.

  4. Graph-Based Airway Tree Reconstruction from Chest CT Scans: Evaluation of Different Features on Five Cohorts

    PubMed Central

    Bauer, Christian; Eberlein, Michael; Beichel, Reinhard R.

    2014-01-01

    We present a graph-based framework for airway tree reconstruction from CT scans and evaluate the performance of different feature categories and their combinations on five lung cohorts. The approach consists of two main processing steps. First, potential airway branch and connection candidates are identified and represented by a graph structure with weighted nodes and edges, respectively. Second, an optimization algorithm is utilized for generating an airway detection result by selecting a subset of airway branches and connections based on graph weights derived from image features. The performance of the algorithm with different feature categories and their combinations was assessed on a set of 50 lung CT scans from five different cohorts, including normal and diseased lungs. Results show tradeoffs between feature categories/combinations in terms of correctly (true positive) and incorrectly (false positive) identified airways. Also, the performance of features in dependence of lung cohort was analyzed. Across all cohorts, a good trade-off with high true positive rate (TPR) and low false positive rate (FPR) was achieved by a combination of gray-value, local shape, and structural features. This combination enabled extracting 91.80% of reference airways (TPR) in combination with a low FPR of 1.00%. In addition, this variant was evaluated on the public EXACT’09 test set, and a comparison with other airway detection approaches is provided. One of the main advantages of the presented method is that it is robust against local disturbances/artifacts or other ambiguities that are frequently occurring in lung CT scans. PMID:25438305

  5. Segmentation and Crown Parameter Extraction of Individual Trees in AN Airborne Tomosar Point Cloud

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Schmitt, M.; Zhu, X. X.

    2015-03-01

    The analysis of individual trees is an important field of research in the forest remote sensing community. While the current state-of-theart mostly focuses on the exploitation of optical imagery and airborne LiDAR data, modern SAR sensors have not yet met the interest of the research community in that regard. This paper describes how several critical parameters of individual deciduous trees can be extraced from airborne multi-aspect TomoSAR point clouds: First, the point cloud is segmented by unsupervised mean shift clustering. Then ellipsoid models are fitted to the points of each cluster. Finally, from these 3D ellipsoids the geometrical tree parameters location, height and crown radius are extracted. Evaluation with respect to a manually derived reference dataset prove that almost 86% of all trees are localized, thus providing a promising perspective for further research towards individual tree recognition from SAR data.

  6. Fully automated segmentation and characterization of the dendritic trees of retinal horizontal neurons

    SciTech Connect

    Kerekes, Ryan A; Gleason, Shaun Scott; Martins, Rodrigo; Dyer, Michael

    2010-01-01

    We introduce a new fully automated method for segmenting and characterizing the dendritic tree of neurons in confocal image stacks. Our method is aimed at wide-field-of-view, low-resolution imagery of retinal neurons in which dendrites can be intertwined and difficult to follow. The approach is based on 3-D skeletonization and includes a method for automatically determining an appropriate global threshold as well as a soma detection algorithm. We provide the details of the algorithm and a qualitative performance comparison against a commercially available neurite tracing software package, showing that a segmentation produced by our method more closely matches the ground-truth segmentation.

  7. Cluster Segmentation of Thermal Image Sequences Using kd-Tree Structure

    NASA Astrophysics Data System (ADS)

    Świta, R.; Suszyński, Z.

    2014-12-01

    This paper presents optimization methods for the K-means segmentation algorithm for a sequence of thermal images. Images of the sample response in the frequency domain to the thermal stimulation with a known spectrum were subjected to cluster segmentation, grouping pixels with similar frequency characteristics. Compared were all pixel characteristics in the function of the frame number and grouped using the minimal sum of deviations of the pixels from their segment mean for all the frames of the processed image sequence. A new initialization method for the K-means algorithm, using density information, was used. A K-means algorithm with a kd-tree structure C# implementation was tested for speed and accuracy. This algorithm divides the set of pixels to the subspaces in the hierarchy of a binary tree. This allows skipping the calculation of distances of pixels to some centroids and pruning a set of centroid clusters through the hierarchy tree. Results of the segmentation were compared with the K-means and FCM algorithm MATLAB implementations.

  8. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  9. Automated lobe-based airway labeling.

    PubMed

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M; Wilson, David; Bigbee, William L; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  10. Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods.

    PubMed

    Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure

    2015-05-01

    In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones. PMID:25667351

  11. Semiautomated segmentation and 3D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion

    NASA Astrophysics Data System (ADS)

    Prause, Guido P. M.; DeJong, Steven C.; McKay, Charles R.; Sonka, Milan

    1996-04-01

    In this paper, we describe an approach to 3D reconstruction of the coronary tree based on combined use of biplane coronary angiography and intravascular ultrasound (IVUS). Shortly before the start of a constant-speed IVUS pullback, radiopaque dye is injected into the examined coronary tree and the heart is imaged with a calibrated biplane X-ray system. The 3D centerline of the coronary tree is reconstructed from the geometrically corrected biplane angiograms using an automated segmentation method and manual matching of corresponding branching points. The borders of vessel wall and plaque are automatically detected in the acquired pullback images and the IVUS cross sections are mapped perpendicular to the previously reconstructed 3D vessel centerline. In addition, the twist of the IVUS probe due to the curvature of the coronary artery is calculated for a torsion-free catheter and the whole vessel reconstruction is rotationally adjusted using available anatomic landmarks. The accuracy of the biplane reconstruction procedure is validated by means of a left coronary tree phantom. The feasibility of the entire approach is demonstrated in a cadaveric pig heart.

  12. Multi-output decision trees for lesion segmentation in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Jog, Amod; Carass, Aaron; Pham, Dzung L.; Prince, Jerry L.

    2015-03-01

    Multiple Sclerosis (MS) is a disease of the central nervous system in which the protective myelin sheath of the neurons is damaged. MS leads to the formation of lesions, predominantly in the white matter of the brain and the spinal cord. The number and volume of lesions visible in magnetic resonance (MR) imaging (MRI) are important criteria for diagnosing and tracking the progression of MS. Locating and delineating lesions manually requires the tedious and expensive efforts of highly trained raters. In this paper, we propose an automated algorithm to segment lesions in MR images using multi-output decision trees. We evaluated our algorithm on the publicly available MICCAI 2008 MS Lesion Segmentation Challenge training dataset of 20 subjects, and showed improved results in comparison to state-of-the-art methods. We also evaluated our algorithm on an in-house dataset of 49 subjects with a true positive rate of 0.41 and a positive predictive value 0.36.

  13. Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method

    PubMed Central

    Jin, Jiaoying; Yang, Linjun; Zhang, Xuming

    2013-01-01

    Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images. PMID:24348738

  14. Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans

    NASA Astrophysics Data System (ADS)

    Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.

    2007-03-01

    We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.

  15. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction.

    PubMed

    Kaczka, David W; Mitzner, Wayne; Brown, Robert H

    2013-09-01

    Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma. PMID:23813528

  16. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species.

    PubMed

    Johnson, Daniel M; Wortemann, Remi; McCulloh, Katherine A; Jordan-Meille, Lionel; Ward, Eric; Warren, Jeffrey M; Palmroth, Sari; Domec, Jean-Christophe

    2016-08-01

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are nonredundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf and xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. This study also highlights the necessity for more research of whole-plant hydraulic physiology to better

  17. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  18. Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods

    PubMed Central

    Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas

    2015-01-01

    Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the

  19. Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-03-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.

  20. Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium

    PubMed Central

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-01-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. PMID:26097256

  1. Anatomical modeling of the bronchial tree

    NASA Astrophysics Data System (ADS)

    Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian

    2010-02-01

    The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.

  2. Patch-based image segmentation of satellite imagery using minimum spanning tree construction

    SciTech Connect

    Skurikhin, Alexei N

    2010-01-01

    We present a method for hierarchical image segmentation and feature extraction. This method builds upon the combination of the detection of image spectral discontinuities using Canny edge detection and the image Laplacian, followed by the construction of a hierarchy of segmented images of successively reduced levels of details. These images are represented as sets of polygonized pixel patches (polygons) attributed with spectral and structural characteristics. This hierarchy forms the basis for object-oriented image analysis. To build fine level-of-detail representation of the original image, seed partitions (polygons) are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on the top of the detected spectral discontinuities that form a network of constraints for the Delaunay triangulation. A polygonized image is represented as a spatial network in the form of a graph with vertices which correspond to the polygonal partitions and graph edges reflecting pairwise partitions relations. Image graph partitioning is based on the iterative graph oontraction using Boruvka's Minimum Spanning Tree algorithm. An important characteristic of the approach is that the agglomeration of partitions is constrained by the detected spectral discontinuities; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects.

  3. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  4. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology. PMID:27273293

  5. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging.

    PubMed

    Cohen, Laurent D; Deschamps, Thomas

    2007-08-01

    We present a new fast approach for segmentation of thin branching structures, like vascular trees, based on Fast-Marching (FM) and Level Set (LS) methods. FM allows segmentation of tubular structures by inflating a "long balloon" from a user given single point. However, when the tubular shape is rather long, the front propagation may blow up through the boundary of the desired shape close to the starting point. Our contribution is focused on a method to propagate only the useful part of the front while freezing the rest of it. We demonstrate its ability to segment quickly and accurately tubular and tree-like structures. We also develop a useful stopping criterion for the causal front propagation. We finally derive an efficient algorithm for extracting an underlying 1D skeleton of the branching objects, with minimal path techniques. Each branch being represented by its centerline, we automatically detect the bifurcations, leading to the "Minimal Tree" representation. This so-called "Minimal Tree" is very useful for visualization and quantification of the pathologies in our anatomical data sets. We illustrate our algorithms by applying it to several arteries datasets. PMID:17671862

  6. Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees

    PubMed Central

    Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio

    2011-01-01

    Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465

  7. Detection of Single Standing Dead Trees from Aerial Color Infrared Imagery by Segmentation with Shape and Intensity Priors

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-03-01

    Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which incorporate statistical information about prior distributions of both the image intensities and the shapes of the target objects. In the first step, we perform a Gaussian Mixture Model clustering in the pixel color space with priors on the cluster means, obtaining up to 3 components corresponding to dead trees, living trees, and shadows. We then refine the dead tree regions using a level set segmentation method enriched with a generative model of the dead trees' shape distribution as well as a discriminative model of their pixel intensity distribution. The iterative application of the statistical shape template yields the set of delineated dead crowns. The prior information enforces the consistency of the template's shape variation with the shape manifold defined by manually labeled training examples, which makes it possible to separate crowns located in close proximity and prevents the formation of large crown clusters. Also, the statistical information built into the segmentation gives rise to an implicit detection scheme, because the shape template evolves towards an empty contour if not enough evidence for the object is present in the image. We test our method on 3 sample plots from the Bavarian Forest National Park with reference data obtained by manually marking individual dead tree polygons in the images. Our results are scenario-dependent and range from a correctness/completeness of 0.71/0.81 up to 0.77/1, with an average center-of-gravity displacement of 3-5 pixels between the detected and reference polygons.

  8. Brain MR image segmentation with spatial constrained K-mean algorithm and dual-tree complex wavelet transform.

    PubMed

    Zhang, Jingdan; Jiang, Wuhan; Wang, Ruichun; Wang, Le

    2014-09-01

    In brain MR images, the noise and low-contrast significantly deteriorate the segmentation results. In this paper, we propose an automatic unsupervised segmentation method integrating dual-tree complex wavelet transform (DT-CWT) with K-mean algorithm for brain MR image. Firstly, a multi-dimensional feature vector is constructed based on the intensity, the low-frequency subband of DT-CWT and spatial position information. Then, a spatial constrained K-mean algorithm is presented as the segmentation system. The proposed method is validated by extensive experiments using both simulated and real T1-weighted MR images, and compared with the state-of-the-art algorithms. PMID:24994513

  9. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  10. An Automated Self-similarity Analysis of the Pulmonary Tree of the Sprague-Dawley Rat

    PubMed Central

    Einstein, Daniel R.; Neradilak, Blazej; Pollisar, Nayak; Minard, Kevin R.; Wallis, Chris; Fanucchi, Michelle; Carson, James P.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Corley, Richard A.

    2009-01-01

    We present the results of an automated analysis of the morphometry of the pulmonary airway trees of the Sprague Dawley rat. Our work is motivated by a need to inform lower-dimensional mathematical models in order to prescribe realistic boundary conditions for multiscale hybrid models of rat lung mechanics. Silicone casts were made from three age-matched, male Sprague Dawley rats, immersed in a gel containing a contrast agent and subsequently imaged with magnetic resonance (MR). From a segmentation of this data, we extracted a connected graph, representing the airway centerline. Segment statistics (lengths and diameters) were derived from this graph. To validate this MR imaging/digital analysis method, airway segment measurements were compared to nearly one thousand measurements collected by hand using an optical microscope from one of the rat lung casts. To evaluate the reproducibility of the MR imaging/digital analysis method, two lung casts were each imaged three times with randomized orientations in the MR bore. Diameters and lengths of randomly selected airways were compared among each of the repeated imaging datasets to estimate the variability. Finally, we analyzed the morphometry of the airway tree by assembling individual airway segments into structures that span multiple generations, which we call branches. We show that branches not segments are the fundamental repeating unit in the rat lung and develop simple mathematical relationships describing these structures for the entire lung. Our analysis shows that airway diameters and lengths have both a deterministic and stochastic character. PMID:18951511

  11. Improving performance of computer-aided detection of pulmonary embolisms by incorporating a new pulmonary vascular-tree segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Song, XiaoFei; Chapman, Brian E.; Zheng, Bin

    2012-03-01

    We developed a new pulmonary vascular tree segmentation/extraction algorithm. The purpose of this study was to assess whether adding this new algorithm to our previously developed computer-aided detection (CAD) scheme of pulmonary embolism (PE) could improve the CAD performance (in particular reducing false positive detection rates). A dataset containing 12 CT examinations with 384 verified pulmonary embolism regions associated with 24 threedimensional (3-D) PE lesions was selected in this study. Our new CAD scheme includes the following image processing and feature classification steps. (1) A 3-D based region growing process followed by a rolling-ball algorithm was utilized to segment lung areas. (2) The complete pulmonary vascular trees were extracted by combining two approaches of using an intensity-based region growing to extract the larger vessels and a vessel enhancement filtering to extract the smaller vessel structures. (3) A toboggan algorithm was implemented to identify suspicious PE candidates in segmented lung or vessel area. (4) A three layer artificial neural network (ANN) with the topology 27-10-1 was developed to reduce false positive detections. (5) A k-nearest neighbor (KNN) classifier optimized by a genetic algorithm was used to compute detection scores for the PE candidates. (6) A grouping scoring method was designed to detect the final PE lesions in three dimensions. The study showed that integrating the pulmonary vascular tree extraction algorithm into the CAD scheme reduced false positive rates by 16.2%. For the case based 3D PE lesion detecting results, the integrated CAD scheme achieved 62.5% detection sensitivity with 17.1 false-positive lesions per examination.

  12. Segments.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Presents a market taxonomy for higher education, including what it reveals about the structure of the market, the model's technical attributes, and its capacity to explain pricing behavior. Details the identification of the principle seams separating one market segment from another and how student aspirations help to organize the market, making…

  13. Analysis of pediatric airway morphology using statistical shape modeling.

    PubMed

    Humphries, Stephen M; Hunter, Kendall S; Shandas, Robin; Deterding, Robin R; DeBoer, Emily M

    2016-06-01

    Traditional studies of airway morphology typically focus on individual measurements or relatively simple lumped summary statistics. The purpose of this work was to use statistical shape modeling (SSM) to synthesize a skeleton model of the large bronchi of the pediatric airway tree and to test for overall airway shape differences between two populations. Airway tree anatomy was segmented from volumetric chest computed tomography of 20 control subjects and 20 subjects with cystic fibrosis (CF). Airway centerlines, particularly bifurcation points, provide landmarks for SSM. Multivariate linear and logistic regression was used to examine the relationships between airway shape variation, subject size, and disease state. Leave-one-out cross-validation was performed to test the ability to detect shape differences between control and CF groups. Simulation experiments, using tree shapes with known size and shape variations, were performed as a technical validation. Models were successfully created using SSM methods. Simulations demonstrated that the analysis process can detect shape differences between groups. In clinical data, CF status was discriminated with good accuracy (precision = 0.7, recall = 0.7) in leave-one-out cross-validation. Logistic regression modeling using all subjects showed a good fit (ROC AUC = 0.85) and revealed significant differences in SSM parameters between control and CF groups. The largest mode of shape variation was highly correlated with subject size (R = 0.95, p < 0.001). SSM methodology can be applied to identify shape differences in the airway between two populations. This method suggests that subtle shape differences exist between the CF airway and disease control. PMID:26718559

  14. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  15. Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree

    NASA Astrophysics Data System (ADS)

    Mauroy, Benjamin; Fausser, Christian; Pelca, Dominique; Merckx, Jacques; Flaud, Patrice

    2011-10-01

    Mucociliary clearance and cough are the two main natural mucus draining methods in the bronchial tree. If they are affected by a pathology, they can become insufficient or even ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the lungs acceptable. The manipulations of physical therapists are known to be very efficient clinically but they are mostly empirical since the biophysical mechanisms involved in these manipulations have never been studied. We develop in this work a model of mucus clearance in idealized rigid human bronchial trees and focus our study on the interaction between (1) tree geometry, (2) mucus physical properties and (3) amplitude of flow rate in the tree. The mucus is considered as a Bingham fluid (gel-like) which is moved upward in the tree thanks to its viscous interaction with air flow. Our studies point out the important roles played both by the geometry and by the physical properties of mucus (yield stress and viscosity). More particularly, the yield stress has to be overcome to make mucus flow. Air flow rate and yield stress determine the maximal possible mucus thickness in each branch of the tree at equilibrium. This forms a specific distribution of mucus in the tree whose characteristics are strongly related to the multi-scaled structure of the tree. The behavior of any mucus distribution is then dependent on this distribution. Finally, our results indicate that increasing air flow rates ought to be more efficient to drain mucus out of the bronchial tree while minimizing patient discomfort.

  16. Investigation of pulmonary acoustic simulation: comparing airway model generation techniques

    NASA Astrophysics Data System (ADS)

    Henry, Brian; Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas

    2014-03-01

    Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable spectral, spatial and/or temporal changes in lung sound production and transmission. These changes, if properly quantified, might provide additional information about the etiology, severity and location of trauma, injury, or pathology. With this in mind, the authors are developing a comprehensive computer simulation model of pulmonary acoustics, known as The Audible Human Project™. Its purpose is to improve our understanding of pulmonary acoustics and to aid in interpreting measurements of sound and vibration in the lungs generated by airway insonification, natural breath sounds, and external stimuli on the chest surface, such as that used in elastography. As a part of this development process, finite element (FE) models were constructed of an excised pig lung that also underwent experimental studies. Within these models, the complex airway structure was created via two methods: x-ray CT image segmentation and through an algorithmic means called Constrained Constructive Optimization (CCO). CCO was implemented to expedite the segmentation process, as airway segments can be grown digitally. These two approaches were used in FE simulations of the surface motion on the lung as a result of sound input into the trachea. Simulation results were compared to experimental measurements. By testing how close these models are to experimental measurements, we are evaluating whether CCO can be used as a means to efficiently construct physiologically relevant airway trees.

  17. Heterogeneity in the Segmental Development of the Aortic Tree: Impact on Management of Genetically Triggered Aortic Aneurysms

    PubMed Central

    Sherif, Hisham M.F.

    2014-01-01

    An extensive search of the medical literature examining the development of the thoracic aortic tree reveals that the thoracic aorta does not develop as one unit or in one stage: the oldest part of the thoracic aorta is the descending aorta with the aortic arch being the second oldest, developing under influence from the neural crest cell. Following in chronological order are the proximal ascending aorta and aortic root, which develop from a conotruncal origin. Different areas of the thoracic aorta develop under the influence of different gene sets. These parts develop from different cell lineages: the aortic root (the conotruncus), developing from the mesoderm; the ascending aorta and aortic arch, developing from the neural crest cells; and the descending aorta from the mesoderm. Findings illustrate that the thoracic aorta is not a single entity, in developmental terms. It develops from three or four distinct areas, at different stages of embryonic life, and under different sets of genes and signaling pathways. Genetically triggered thoracic aortic aneurysms are not a monolithic group but rather share a multi-genetic origin. Identification of therapeutic targets should be based on the predilection of certain genes to cause aneurysmal disease in specific aortic segments. PMID:26798739

  18. Automated detection of mucus plugs within bronchial tree in MSCT images

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Guiliguian, Diran; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2007-03-01

    Pulmonary diseases characterized by chronic airway inflammation, such as Chronic Obstructive Pulmonary (COPD), result in abnormal bronchial wall thickening, lumen dilatation and mucus plugs. Multi-Slice Computed Tomography (MSCT) allows for assessment of these abnormalities, even in airways that are obliquely oriented to the scan plane. Chronic airway inflammation typically results in limitations of airflow, allowing for the accumulation of mucus, especially in the distal airways. In addition to obstructing airways, retained secretions make the airways prone to infection. Patients with chronic airway disease are clinically followed over time to assess disease progression and response to treatment. In this regard, the ability to obtain an automatic standardized method to rapidly and objectively assess the entire airway tree morphologically, including the extent of mucus plugging, would be of particular clinical value. We have developed a method to automatically detect the presence and location of mucus plugs within the peripheral airways. We first start with segmentation of the bronchial tree using a previously developed method. The skeleton-based tree structure is then computed and each terminal branch is individually extended using an adaptive threshold algorithm. We compute a local 2-dimensional model, based on airway luminal diameter and wall thickness. We then select a few points along the principal axis beyond the terminal branches, to extract 2D cross sections for correlation with a model of mucus plugging. Airway shape is validated with a correlation value, and the lumen distribution is analyzed and compared to the model. A high correlation indicates the presence of a mucus plug. We tested our method on 5 datasets containing a total of 40 foci of mucoid impaction. Preliminary results show sensitivity of 77.5% with a specificity of 98.2% and positive predictive value of 66%.

  19. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  20. Patient-Specific Modeling of Regional Antibiotic Concentration Levels in Airways of Patients with Cystic Fibrosis: Are We Dosing High Enough?

    PubMed Central

    Bos, Aukje C.; van Holsbeke, Cedric; de Backer, Jan W.; van Westreenen, Mireille; Janssens, Hettie M.; Vos, Wim G.; Tiddens, Harm A. W. M.

    2015-01-01

    Background Pseudomonas aeruginosa (Pa) infection is an important contributor to the progression of cystic fibrosis (CF) lung disease. The cornerstone treatment for Pa infection is the use of inhaled antibiotics. However, there is substantial lung disease heterogeneity within and between patients that likely impacts deposition patterns of inhaled antibiotics. Therefore, this may result in airways below the minimal inhibitory concentration of the inhaled agent. Very little is known about antibiotic concentrations in small airways, in particular the effect of structural lung abnormalities. We therefore aimed to develop a patient-specific airway model to predict concentrations of inhaled antibiotics and to study the impact of structural lung changes and breathing profile on local concentrations in airways of patients with CF. Methods In- and expiratory CT-scans of children with CF (5–17 years) were scored (CF-CT score), segmented and reconstructed into 3D airway models. Computational fluid dynamic (CFD) simulations were performed on 40 airway models to predict local Aztreonam lysine for inhalation (AZLI) concentrations. Patient-specific lobar flow distribution and nebulization of 75 mg AZLI through a digital Pari eFlow model with mass median aerodynamic diameter range were used at the inlet of the airway model. AZLI concentrations for central and small airways were computed for different breathing patterns and airway surface liquid thicknesses. Results In most simulated conditions, concentrations in both central and small airways were well above the minimal inhibitory concentration. However, small airways in more diseased lobes were likely to receive suboptimal AZLI. Structural lung disease and increased tidal volumes, respiratory rates and larger particle sizes greatly reduced small airway concentrations. Conclusions CFD modeling showed that concentrations of inhaled antibiotic delivered to the small airways are highly patient specific and vary throughout the

  1. Physical principle of airway design in human lungs

    NASA Astrophysics Data System (ADS)

    Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.

  2. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  3. Development and Analysis of Patient-Based Complete Conducting Airways Models

    PubMed Central

    Bordas, Rafel; Lefevre, Christophe; Veeckmans, Bart; Pitt-Francis, Joe; Fetita, Catalin; Brightling, Christopher E.; Kay, David; Siddiqui, Salman; Burrowes, Kelly S.

    2015-01-01

    The analysis of high-resolution computed tomography (CT) images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6–10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11) and asthmatic (n = 24) CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47). The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01) in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3–5) versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1) (Spearman ρ = −0.65, p < 0.001) and, at low flow rates (0.00017 L/s), FEV1 over forced vital capacity (FEV1/FVC

  4. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  5. Optimal graph search based image segmentation for objects with complex topologies

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Chen, Danny Z.; Wu, Xiaodong; Sonka, Milan

    2009-02-01

    Segmenting objects with complicated topologies in 3D images is a challenging problem in medical image processing, especially for objects with multiple interrelated surfaces. In this paper, we extend a graph search based technique to simultaneously identifying multiple interrelated surfaces for objects that have complex topologies (e.g., with tree-like structures) in 3D. We first perform a pre-segmentation on the input image to obtain basic information of the objects' topologies. Based on the initial pre-segmentation, the original image is resampled along judiciously determined directions to produce a set of vectors of voxels (called voxel columns). The resampling process utilizes medial axes to ensure that voxel columns of appropriate lengths are used to capture the sought object surfaces. Then a geometric graph is constructed whose edges connect voxels in the resampled voxel columns and enforce the smoothness constraint and separation constraint on the sought surfaces. Validation of our algorithm was performed on the segmentation of airway trees and lung vascular trees in human in-vivo CT scans. Cost functions with directional information are applied to distinguish the airway inner wall and outer wall. We succeed in extracting the outer airway wall and optimizing the location of the inner wall in all cases, while the vascular trees are optimized as well. Comparing with the pre-segmentation results, our approach captures the wall surfaces more accurately, especially across bifurcations. The statistical evaluation on a double wall phantom derived from in-vivo CT images yields highly accurate results of the wall thickness measurement on the whole tree (with mean unsigned error 0.16 +/- 0.16mm).

  6. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents.

    PubMed

    Counter, W B; Wang, I Q; Farncombe, T H; Labiris, N R

    2013-06-15

    Preclinical imaging allows pulmonary researchers to study lung disease and pulmonary drug delivery noninvasively and longitudinally in small animals. However, anatomically localizing a pathology or drug deposition to a particular lung region is not easily done. Thus, a detailed knowledge of the anatomical structure of small animal lungs is necessary for understanding disease progression and in addition would facilitate the analysis of the imaging data, mapping drug deposition and relating function to structure. In this study, contrast-enhanced micro-computed tomography (CT) of the lung produced high-resolution images that allowed for the characterization of the rodent airway and pulmonary vasculature. Contrast-enhanced micro-CT was used to visualize the airways and pulmonary vasculature in Sprague-Dawley rats (200-225 g) and BALB/c mice (20-25 g) postmortem. Segmented volumes from these images were processed to yield automated measurements of the airways and pulmonary vasculature. The diameters, lengths, and branching angles of the airway, arterial, and venous trees were measured and analyzed as a function of generation number and vessel diameter to establish rules that could be applied at all levels of tree hierarchy. In the rat, airway, arterial, and venous tress were measured down to the 20th, 16th, and 14th generation, respectively. In the mouse, airway, arterial, and venous trees were measured down to the 16th, 8th, and 7th generation, respectively. This structural information, catalogued in a rodent database, will increase our understanding of lung structure and will aid in future studies of the relationship between structure and function in animal models of disease. PMID:23564512

  7. Airway shape assessment with visual feed-back in asthma and obstructive diseases

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Ortner, Margarete; Brillet, Pierre-Yves; Ould Hmeidi, Yahya; Pr"teux, Françoise

    2010-02-01

    Airway remodeling in asthma patients has been studied in vivo by means of endobronchial biopsies allowing to assess structural and inflammatory changes. However, this technique remains relatively invasive and difficult to use in longitudinal trials. The development of alternative non-invasive tests, namely exploiting high-resolution imaging modalities such as MSCT, is gaining interest in the medical community. This paper develops a fullyautomated airway shape assessment approach based on the 3D segmentation of the airway lumen from MSCT data. The objective is to easily notify the radiologist on bronchus shape variations (stenoses, bronchiectasis) along the airway tree during a simple visual investigation. The visual feed-back is provided by means of a volumerendered color coding of the airway calibers which are robustly defined and computed, based on a specific 3D discrete distance function able to deal with small size structures. The color volume rendering (CVR) information is further on reinforced by the definition and computation of a shape variation index along the airway medial axis enabling to detect specific configurations of stenoses. Such cases often occur near bifurcations (bronchial spurs) and they are either missed in the CVR or difficult to spot due to occlusions by other segments. Consequently, all detected shape variations (stenoses, dilations and thickened spurs) can be additionally displayed on the medial axis and investigated together with the CVR information. The proposed approach was evaluated on a MSCT database including twelve patients with severe or moderate persistent asthma, or severe COPD, by analyzing segmental and subsegmental bronchi of the right lung. The only CVR information provided for a limited number of views allowed to detect 78% of stenoses and bronchial spurs in these patients, whereas the inclusion of the shape variation index enabled to complement the missing information.

  8. The Importance of Airway Management in Trauma

    PubMed Central

    Jacobs, Lenworth M.

    1988-01-01

    The airway is the most important priority in the management of the severely injured patient. It is essential to open and clear the airway to allow free access of air to the distal endobronchial tree. Manual methods of opening the airway are described. Numerous methods for establishing definitive control of the airway as well as the associated devices currently available to maintain control are described. Once the airway is maintained, it is important to ensure adequate oxygenation and ventilation through the airway. Modern portable devices that monitor the carbon dioxide in the expired air at the end of each breath are currently available. These devices allow the physician to verify the position of the tube in the airway as well as to continuously monitor the efficacy of ventilation. PMID:3073226

  9. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  10. The Virtual Pediatric Airways Workbench.

    PubMed

    Quammen, Cory W; Taylor Ii, Russell M; Krajcevski, Pavel; Mitran, Sorin; Enquobahrie, Andinet; Superfine, Richard; Davis, Brad; Davis, Stephanie; Zdanski, Carlton

    2016-01-01

    The Virtual Pediatric Airways Workbench (VPAW) is a patient-centered surgical planning software system targeted to pediatric patients with airway obstruction. VPAW provides an intuitive surgical planning interface for clinicians and supports quantitative analysis regarding prospective surgeries to aid clinicians deciding on potential surgical intervention. VPAW enables a full surgical planning pipeline, including importing DICOM images, segmenting the airway, interactive 3D editing of airway geometries to express potential surgical treatment planning options, and creating input files for offline geometric analysis and computational fluid dynamics simulations for evaluation of surgical outcomes. In this paper, we describe the VPAW system and its use in one case study with a clinician to successfully describe an intended surgery outcome. PMID:27046595

  11. A novel method for visualization of entire coronary arterial tree.

    PubMed

    Wischgoll, Thomas; Meyer, Joerg; Kaimovitz, Benjamin; Lanir, Yoram; Kassab, Ghassan S

    2007-05-01

    The complexity of the coronary circulation especially in the deep layers largely evades experimental investigations. Hence, virtual/computational models depicting structure-function relation of the entire coronary vasculature including the deep layer are imperative. In order to interpret such anatomically based models, fast and efficient visualization algorithms are essential. The complexity of such models, which include vessels from the large proximal coronary arteries and veins down to the capillary level (3 orders of magnitude difference in diameter), is a challenging visualization problem since the resulting geometrical representation consists of millions of vessel segments. In this study, a novel method for rendering the entire porcine coronary arterial tree down to the first segments of capillaries interactively is described which employs geometry reduction and occlusion culling techniques. Due to the tree-shaped nature of the vasculature, these techniques exploit the geometrical topology of the object to achieve a faster rendering speed while still handling the full complexity of the data. We found a significant increase in performance combined with a more accurate, gap-less representation of the vessel segments resulting in a more interactive visualization and analysis tool for the entire coronary arterial tree. The proposed techniques can also be applied to similar data structures, such as neuronal trees, airway structures, bile ducts, and other tree-like structures. The utility and future applications of the proposed algorithms are explored. PMID:17334680

  12. Ground truth and CT image model simulation for pathophysiological human airway system

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2010-02-01

    Recurrent problem in medical image segmentation and analysis, establishing a ground truth for assessment purposes is often difficult. Facing this problem, the scientific community orients its efforts towards the development of objective methods for evaluation, namely by building up or simulating the missing ground truth for analysis. This paper focuses on the case of human pulmonary airways and develops a method 1) to simulate the ground truth for different pathophysiological configurations of the bronchial tree as a mesh model, and 2) to generate synthetic 3D CT images of airways associated with the simulated ground truth. The airway model is here built up based on the information provided by a medial axis (describing bronchus shape, subdivision geometry and local radii), which is computed from real CT data to ensure realism and matching with a patient-specific morphology. The model parameters can be further on adjusted to simulate various pathophysiological conditions of the same patient (longitudinal studies). Based on the airway mesh model, a 3D image model is synthesized by simulating the CT acquisition process. The image realism is achieved by including textural features of the surrounding pulmonary tissue which are obtained by segmentation from the same original CT data providing the airway axis. By varying the scanning simulation parameters, several 3D image models can be generated for the same airway mesh ground truth. Simulation results for physiological and pathological configurations are presented and discussed, illustrating the interest of such a modeling process for designing computer-aided diagnosis systems or for assessing their sensitivity, mainly for follow-up studies in asthma and COPD.

  13. Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements

    NASA Astrophysics Data System (ADS)

    Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David

    2006-03-01

    The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.

  14. Evaluation of scoring accuracy for airway wall thickness

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Ko, Jane P.; Godoy, Myrna C. B.

    2009-02-01

    Bronchial wall thickening is commonly observed in airway diseases. One method often used to quantitatively evaluate wall thickening in CT images is to estimate the ratio of the bronchial wall to the accompanying artery, or BWA ratio, and then assign a severity score based on the ratio. Assessment by visual inspection is unfortunately limited to airways perpendicular or parallel to the scanning plane. With high-resolution images from multi-detector CT scanners, it becomes possible to assess airways in any orientation. We selected CT scans from 20 patients with mild to severe COPD. A computer system automatically segmented each bronchial tree and measured the bronchial wall thicknesses. Next, neighboring arteries were detected and measured to determine BWA ratios. A score characterizing the extent and severity of wall thickening within each lobe was computed according to recommendations by Sheehan et al [1]. Two experienced radiologists independently scored wall thickening using visual assessment. Spearman's rank correlation showed a non-significant negative correlation (r=-0.1) between the computer and the reader average (p=0.4), while the correlation between readers was significant at r=0.65 (p=0.001). We subsequently identified 24 lobes with high discrepancies between visual and automated scoring. The readers re-examined those lobes and measured wall thickness using electronic calipers on perpendicular cross sections, rather than visual assessment. Using this more objective standard of wall thickness, the reader estimates of wall thickening increased to reach a significant positive correlation with automated scoring of r=0.65 (p=0.001). These results indicate that subjectivity is an important problem with visual evaluation, and that visual inspection may frequently underestimate disease extent and severity. Given that a manual evaluation of all airways is infeasible in routine clinical practice, we argue that automated methods should be developed and utilized.

  15. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  16. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  17. Convective flow dominates aerosol delivery to the lung segments

    PubMed Central

    van Ertbruggen, C.; Prisk, G. K.

    2011-01-01

    Most previous computational studies on aerosol transport in models of the central airways of the human lung have focused on deposition, rather than transport of particles through these airways to the subtended lung regions. Using a model of the bronchial tree extending from the trachea to the segmental bronchi (J Appl Physiol 98: 970–980, 2005), we predicted aerosol delivery to the lung segments. Transport of 0.5- to 10-μm-diameter particles was computed at various gravity levels (0–1.6 G) during steady inspiration (100–500 ml/s). For each condition, the normalized aerosol distribution among the lung segments was compared with the normalized flow distribution by calculating the ratio (Ri) of the number of particles exiting each segmental bronchus i to the flow. When Ri = 1, particle transport was directly proportional to segmental flow. Flow and particle characteristics were represented by the Stokes number (Stk) in the trachea. For Stk < 0.01, Ri values were close to 1 and were unaffected by gravity. For Stk > 0.01, Ri varied greatly among the different outlets (Ri = 0.30–1.93 in normal gravity for 10-μm particles at 500 ml/s) and was affected by gravity and inertia. These data suggest that, for Stk < 0.01, ventilation defines the delivery of aerosol to lung segments and that the use of aerosol tracers is a valid technique to visualize ventilation in different parts of the lung. At higher Stokes numbers, inertia, but not gravitational sedimentation, is the second major factor affecting the transport of large particles in the lung. PMID:21474695

  18. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  19. Robust method for extracting the pulmonary vascular trees from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2011-03-01

    Segmentation of pulmonary blood vessels from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents a method for extracting the vascular trees of the pulmonary arteries and veins, applicable to both contrast-enhanced and unenhanced 3D MDCT image data. The method finds 2D elliptical cross-sections and evaluates agreement of these cross-sections in consecutive slices to find likely cross-sections. It next employs morphological multiscale analysis to separate vessels from adjoining airway walls. The method then tracks the center of the likely cross-sections to connect them to the pulmonary vessels in the mediastinum and forms connected vascular trees spanning both lungs. A ground-truth study indicates that the method was able to detect on the order of 98% of the vessel branches having diameter >= 3.0 mm. The extracted vascular trees can be utilized for the guidance of safe bronchoscopic biopsy.

  20. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  1. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  2. The Physiologically Difficult Airway.

    PubMed

    Mosier, Jarrod M; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C

    2015-12-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  3. The Physiologically Difficult Airway

    PubMed Central

    Mosier, Jarrod M.; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C.

    2015-01-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  4. Multi-detector computed tomography imaging of large airway pathology: A pictorial review

    PubMed Central

    Jugpal, Tejeshwar Singh; Garg, Anju; Sethi, Gulshan Rai; Daga, Mradul Kumar; Kumar, Jyoti

    2015-01-01

    The tracheobronchial tree is a musculo-cartilagenous framework which acts as a conduit to aerate the lungs and consequently the entire body. A large spectrum of pathological conditions can involve the trachea and bronchial airways. These may be congenital anomalies, infections, post-intubation airway injuries, foreign body aspiration or neoplasms involving the airway. Appropriate management of airway disease requires an early and accurate diagnosis. In this pictorial essay review, we will comprehensively describe the various airway pathologies and their imaging findings by multi-detector computed tomography. PMID:26753061

  5. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  6. Quantitative computed tomography–derived clusters: Redefining airway remodeling in asthmatic patients☆

    PubMed Central

    Gupta, Sumit; Hartley, Ruth; Khan, Umair T.; Singapuri, Amisha; Hargadon, Beverly; Monteiro, William; Pavord, Ian D.; Sousa, Ana R.; Marshall, Richard P.; Subramanian, Deepak; Parr, David; Entwisle, James J.; Siddiqui, Salman; Raj, Vimal; Brightling, Christopher E.

    2014-01-01

    Background Asthma heterogeneity is multidimensional and requires additional tools to unravel its complexity. Computed tomography (CT)–assessed proximal airway remodeling and air trapping in asthmatic patients might provide new insights into underlying disease mechanisms. Objectives The aim of this study was to explore novel, quantitative, CT-determined asthma phenotypes. Methods Sixty-five asthmatic patients and 30 healthy subjects underwent detailed clinical, physiologic characterization and quantitative CT analysis. Factor and cluster analysis techniques were used to determine 3 novel, quantitative, CT-based asthma phenotypes. Results Patients with severe and mild-to-moderate asthma demonstrated smaller mean right upper lobe apical segmental bronchus (RB1) lumen volume (LV) in comparison with healthy control subjects (272.3 mm3 [SD, 112.6 mm3], 259.0 mm3 [SD, 53.3 mm3], 366.4 mm3 [SD, 195.3 mm3], respectively; P = .007) but no difference in RB1 wall volume (WV). Air trapping measured based on mean lung density expiratory/inspiratory ratio was greater in patients with severe and mild-to-moderate asthma compared with that seen in healthy control subjects (0.861 [SD, 0.05)], 0.866 [SD, 0.07], and 0.830 [SD, 0.06], respectively; P = .04). The fractal dimension of the segmented airway tree was less in asthmatic patients compared with that seen in control subjects (P = .007). Three novel, quantitative, CT-based asthma clusters were identified, all of which demonstrated air trapping. Cluster 1 demonstrates increased RB1 WV and RB1 LV but decreased RB1 percentage WV. On the contrary, cluster 3 subjects have the smallest RB1 WV and LV values but the highest RB1 percentage WV values. There is a lack of proximal airway remodeling in cluster 2 subjects. Conclusions Quantitative CT analysis provides a new perspective in asthma phenotyping, which might prove useful in patient selection for novel therapies. PMID:24238646

  7. Noninvasive clearance of airway secretions.

    PubMed

    Hardy, K A; Anderson, B D

    1996-06-01

    or airway malacia. Use of positive pressure to maintain airway patency in these children allows cephalad clearance of secretions. Patients with segmental atelectasis, particularly related to asthma, may benefit from intrapulmonary percussive ventilator, positive expiratory pressure, or PDPV. Prevention of postoperative atelectasis is particularly well suited to positive expiratory pressure, which is not as painful as techniques using oscillations. Neurologically abnormal patients who are unable to cooperate with any active method are also treated using intrapulmonary percussive ventilator, PDPV, and suctioning, if necessary. Musculoskeletal abnormalities, muscular dystrophies, myasthenia gravis, poliomyelitis, or other similar diseases require stabilization of bellows function. Optimizing ventilation in patients with such abnormalities may require positive pressure ventilation either during sleep or continuously. Externally applied pressure, such as with the In-Exsufflator or the cyclically inflated pneumatic belt, can augment the patient's own efforts and is sometimes helpful. Normalizing the vital capacity and functional residual capacity typically helps to improve the ability to cough and clear secretions. Assisted cough devices or maneuvers are described in other papers by Bach and Hill. Not all patients who have weak muscles require nocturnal or continuous support, and may benefit from positive expiratory pressure mask treatments. Further studies are sorely needed for this population. Long-term controlled trials are urgently needed to help establish the best types of treatment for patients with CF and bronchiectasis. Such studies will become more complicated by the introduction of new treatments, such as DNase and other therapies that alter secretions, and may begin to change mucociliary or cough clearance. The selection of appropriate outcome measures is central to studying these questions, and it is unclear which are the most important. (ABSTRACT TRUNCATED

  8. Systems physiology of the airways in health and obstructive pulmonary disease.

    PubMed

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website. PMID:27340818

  9. Effect of nanodisperse ferrite cobalt (CoFe2O4) particles on contractile reactions in guinea pigs airways.

    PubMed

    Kapilevich, L V; D'yakova, E Yu; Nosarev, A V; Zaitseva, T N; Petlina, Z R; Ogorodova, L M; Ageev, B G; Magaeva, A A; Itin, V I; Terekhova, O G

    2010-07-01

    The effect of nanopowder CoFe(2)O(4)on contractile responses of smooth-muscle segments of guinea pigs airways was studied by mechanography. Both in vivo inhalation of nanopowder aerosol or in vitro application of nanopowder to isolated airway segments increased the amplitude of contractile responses to histamine and potentiated the dilatory reaction to adrenergic salbutamol. PMID:21113462

  10. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  11. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  12. Mechanical ventilation causes airway distension with proinflammatory sequelae in mice.

    PubMed

    Nickles, Hannah T; Sumkauskaite, Migle; Wang, Xin; Wegner, Ingmar; Puderbach, Michael; Kuebler, Wolfgang M

    2014-07-01

    The pathogenesis of ventilator-induced lung injury has predominantly been attributed to overdistension or mechanical opening and collapse of alveoli, whereas mechanical strain on the airways is rarely taken into consideration. Here, we hypothesized that mechanical ventilation may cause significant airway distension, which may contribute to the pathological features of ventilator-induced lung injury. C57BL/6J mice were anesthetized and mechanically ventilated at tidal volumes of 6, 10, or 15 ml/kg body wt. Mice were imaged by flat-panel volume computer tomography, and central airways were segmented and rendered in 3D for quantitative assessment of airway distension. Alveolar distension was imaged by intravital microscopy. Functional dead space was analyzed in vivo, and proinflammatory cytokine release was analyzed in isolated, ventilated tracheae. CT scans revealed a reversible, up to 2.5-fold increase in upper airway volume during mechanical ventilation compared with spontaneous breathing. Airway distension was most pronounced in main bronchi, which showed the largest volumes at tidal volumes of 10 ml/kg body wt. Conversely, airway distension in segmental bronchi and functional dead space increased almost linearly, and alveolar distension increased even disproportionately with higher tidal volumes. In isolated tracheae, mechanical ventilation stimulated the release of the early-response cytokines TNF-α and IL-1β. Mechanical ventilation causes a rapid, pronounced, and reversible distension of upper airways in mice that is associated with an increase in functional dead space. Upper airway distension is most pronounced at moderate tidal volumes, whereas higher tidal volumes redistribute preferentially to the alveolar compartment. Airway distension triggers proinflammatory responses and may thus contribute relevantly to ventilator-induced pathologies. PMID:24816486

  13. Three-dimensional reconstruction of upper airways from MDCT

    NASA Astrophysics Data System (ADS)

    Perchet, Diane; Fetita, Catalin; Preteux, Francoise

    2005-03-01

    Under the framework of clinical respiratory investigation, providing accurate modalities for morpho-functional analysis is essential for diagnosis improvement, surgical planning and follow-up. This paper focuses on the upper airways investigation and develops an automated approach for 3D mesh reconstruction from MDCT acquisitions. In order to overcome the difficulties related to the complex morphology of the upper airways and to the image gray level heterogeneity of the airway lumens and thin bony septa, the proposed 3D reconstruction methodology combines 2D segmentation and 3D surface regularization approaches. The segmentation algorithm relies on mathematical morphology theory and provides airway lumen robust discrimination from the surrounding tissues, while preserving the connectivity relationship between the different anatomical structures. The 3D regularization step uses an energy-based modeling in order to achieve a smooth and well-fitted 3D surface of the upper airways. An accurate 3D mesh representation of the reconstructed airways makes it possible to develop specific clinical applications such as virtual endoscopy, surgical planning and computer assisted intervention. In addition, building up patient-specific 3D models of upper airways is highly valuable for the study and design of inhaled medication delivery via computational fluid dynamics (CFD) simulations.

  14. Conquering the difficult airway.

    PubMed

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  15. Brachycephalic airway syndrome: management.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-08-01

    Brachycephalic airway syndrome (BAS) is a group of primary and secondary abnormalities that result in upper airway obstruction. Several of these abnormalities can be addressed medically and/or surgically to improve quality of life. This article reviews potential complications, anesthetic considerations, recovery strategies, and outcomes associated with medical and surgical management of BAS. PMID:22935992

  16. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  17. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  18. 78 FR 21856 - Proposed Amendment of VOR Federal Airway V-537; GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ...This SNPRM amends a notice of proposed rulemaking (NPRM) published on October 15, 2012 which proposed to amend VHF omnidirectional range (VOR) Federal airway V-537 in Georgia. This SNPRM proposes to remove an additional segment of the airway due to navigation aid coverage...

  19. Relating Airway Diameter Distributions to Regular Branching Asymmetry in the Lung

    NASA Astrophysics Data System (ADS)

    Majumdar, Arnab; Alencar, Adriano M.; Buldyrev, Sergey V.; Hantos, Zoltán; Lutchen, Kenneth R.; Stanley, H. Eugene; Suki, Béla

    2005-10-01

    We study the distribution Πn(D) of airway diameters D as a function of generation N in asymmetric airway trees of mammalian lungs. We find that the airway bifurcations are self-similar in four species studied. Specifically, the ratios of diameters of the major and minor daughters to their parent are constants independent of N until a cutoff diameter is reached. We derive closed form expressions for ΠN(D) and examine the flow resistance of the tree based on an asymmetric flow division model. Our findings suggest that the observed diameter heterogeneity is consistent with an underlying regular branching asymmetry.

  20. Airway dysfunction in swimmers.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2012-05-01

    Elite competitive swimmers are particularly affected by airway disorders that are probably related to regular and intense training sessions in a chlorinated environment. Upper and lower airway respiratory symptoms, rhinitis, airway hyper-responsiveness, and exercise-induced bronchoconstriction are highly prevalent in these athletes, but their influence on athletic performance is still unclear. The authors reviewed the main upper and lower respiratory ailments observed in competitive swimmers who train in indoor swimming pools, their pathophysiology, clinical significance and possible effects on performance. Issues regarding the screening of these disorders, their management and preventive measures are addressed. PMID:22247299

  1. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  2. Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers

    PubMed Central

    Guenette, Jordan A.; Yuan, Ren; Holy, Lukas; Mayo, John R.; McWilliams, Annette M.; Lam, Stephen; Coxson, Harvey O.

    2009-01-01

    We sought to determine the relationship between lung size and airway size in men and women of varying stature. We also asked if men and women matched for lung size would still have differences in airway size and if so where along the pulmonary airway tree would these differences exist. We used computed tomography to measure airway luminal areas of the large and central airways. We determined airway luminal areas in men (n = 25) and women (n = 25) who were matched for age, body mass index, smoking history, and pulmonary function and in a separate set of men (n = 10) and women (n = 11) who were matched for lung size. Men had greater values for the larger airways and many of the central airways. When male and female subjects were pooled there were significant associations between lung size and airway size. Within the male and female groups the magnitudes of these associations were decreased or nonsignificant. In males and females matched for lung size women had significantly smaller airway luminal areas. The larger conducting airways in females are significantly smaller than those of males even after controlling for lung size. PMID:19762522

  3. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    PubMed

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  4. Brief mechanical ventilation impacts airway cartilage properties in neonatal lambs

    PubMed Central

    Kim, Minwook; Pugarelli, Joan; Miller, Thomas L.; Wolfson, Marla R.; Dodge, George R.; Shaffer, Thomas H.

    2012-01-01

    Ultrasound imaging allows in vivo assessment of tracheal kinetics and cartilage structure. To date, the impact of mechanical ventilation (MV) on extracellular matrix (ECM) in airway cartilage is unclear, but an indication of its functional and structural change may support the development of protective therapies. The objective of this study was to characterize changes in mechanical properties of the neonatal airway during MV with alterations in cartilage ECM. Trachea segments were isolated in a neonatal lamb model; ultrasound dimensions and pressure-volume relationships were measured on sham (no MV; n = 6) and MV (n = 7) airways for 4 h. Tracheal cross-sections were harvested at 4 h, tissues were fixed and stained, and Fourier transform infrared imaging spectroscopy (FT-IRIS) was performed. Over 4 h of MV, bulk modulus (28%) and elastic modulus (282%) increased. The MV tracheae showed higher collagen, proteoglycan content, and collagen integrity (new tissue formation); whereas no changes were seen in the controls. These data are clinically relevant in that airway properties can be correlated with MV and changes in cartilage extracellular matrix. Mechanical ventilation increases the in vivo dimensions of the trachea, and is associated with evidence of airway tissue remodeling. Injury to the neonatal airway from MV may have relevance for the development of tracheomalacia. We demonstrated active airway tissue remodeling during MV using a FT-IRIS technique which identifies changes in ECM. PMID:22170596

  5. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity. PMID:26314989

  6. CT based computerized identification and analysis of human airways: A review

    PubMed Central

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-01-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work. PMID:22559631

  7. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  8. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  9. Role of upper airway ultrasound in airway management.

    PubMed

    Osman, Adi; Sum, Kok Meng

    2016-01-01

    Upper airway ultrasound is a valuable, non-invasive, simple, and portable point of care ultrasound (POCUS) for evaluation of airway management even in anatomy distorted by pathology or trauma. Ultrasound enables us to identify important sonoanatomy of the upper airway such as thyroid cartilage, epiglottis, cricoid cartilage, cricothyroid membrane, tracheal cartilages, and esophagus. Understanding this applied sonoanatomy facilitates clinician to use ultrasound in assessment of airway anatomy for difficult intubation, ETT and LMA placement and depth, assessment of airway size, ultrasound-guided invasive procedures such as percutaneous needle cricothyroidotomy and tracheostomy, prediction of postextubation stridor and left double-lumen bronchial tube size, and detecting upper airway pathologies. Widespread POCUS awareness, better technological advancements, portability, and availability of ultrasound in most critical areas facilitate upper airway ultrasound to become the potential first-line non-invasive airway assessment tool in the future. PMID:27529028

  10. Tree-space statistics and approximations for large-scale analysis of anatomical trees.

    PubMed

    Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen

    2013-01-01

    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php. PMID:24683959

  11. Compliance Measurements of the Upper Airway in Pediatric Down Syndrome Sleep Apnea Patients.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-04-01

    Compliance of soft tissue and muscle supporting the upper airway are two of several factors contributing to pharyngeal airway collapse. We present a novel, minimally invasive method of estimating regional variations in pharyngeal elasticity. Magnetic resonance images for pediatric sleep apnea patients with Down syndrome [9.5 ± 4.3 years (mean age ± standard deviation)] were analyzed to segment airways corresponding to baseline (no mask pressure) and two positive pressures. A three dimensional map was created to evaluate axial and circumferential variation in radial displacements of the airway, dilated by the positive pressures. The displacements were then normalized with respect to the appropriate transmural pressure and radius of an equivalent circle to obtain a measure of airway compliance. The resulting elasticity maps indicated the least and most compliant regions of the pharynx. Airway stiffness of the most compliant region [403 ± 204 (mean ± standard deviation) Pa] decreased with severity of obstructive sleep apnea. The non-linear response of the airway wall to continuous positive airway pressure was patient specific and varied between anatomical locations. We identified two distinct elasticity phenotypes. Patient phenotyping based on airway elasticity can potentially assist clinical practitioners in decision making on the treatments needed to improve airway patency. PMID:26215306

  12. [Clinical relevance of distal airway involvement in asthma].

    PubMed

    Torrego Fernández, Alfons; Muñoz Cano, Rosa M

    2011-04-01

    Asthma continues to be a global health problem, despite advances in diagnostic techniques and treatment. The inflammatory nature of asthma is currently indisputable, as is the involvement of the entire respiratory tree, both the proximal and most distal airways, which has been demonstrated in multiple studies. The development of the therapeutic arsenal, with more potent drugs and improved inhalation devices, has allowed a certain control to be maintained over the inflammatory process, although the inability to reach the most distal points of the airways has posed a stumbling block that seems difficult to overcome. However, the available information on the real role of distal airway involvement in asthma remains very scarce. Physiopathological evidence shows that, in addition to the large airways, the small or distal airways (those with a diameter of less than 2 mm) substantially contribute to the severity of asthma. Several studies have shown that the inflammatory process seems to be more intense in this area. This finding has been related to nocturnal asthma and an increase in glucocorticoid receptor-beta-expressing cells, associated with corticosteroid-resistant asthma and fatal asthma. Equally, small airway involvement seems to be a highly important factor in asthma in the pediatric age group. PMID:21640280

  13. Supraglottic airway devices.

    PubMed

    Ramachandran, Satya Krishna; Kumar, Anjana M

    2014-06-01

    Supraglottic airway devices (SADs) are used to keep the upper airway open to provide unobstructed ventilation. Early (first-generation) SADs rapidly replaced endotracheal intubation and face masks in > 40% of general anesthesia cases due to their versatility and ease of use. Second-generation devices have further improved efficacy and utility by incorporating design changes. Individual second-generation SADs have allowed more dependable positive-pressure ventilation, are made of disposable materials, have integrated bite blocks, are better able to act as conduits for tracheal tube placement, and have reduced risk of pulmonary aspiration of gastric contents. SADs now provide successful rescue ventilation in > 90% of patients in whom mask ventilation or tracheal intubation is found to be impossible. However, some concerns with these devices remain, including failing to adequately ventilate, causing airway damage, and increasing the likelihood of pulmonary aspiration of gastric contents. Careful patient selection and excellent technical skills are necessary for successful use of these devices. PMID:24891199

  14. Segmental neurofibromatosis.

    PubMed

    Galhotra, Virat; Sheikh, Soheyl; Jindal, Sanjeev; Singla, Anshu

    2014-07-01

    Segmental neurofibromatosis is a rare disorder, characterized by neurofibromas or cafι-au-lait macules limited to one region of the body. Its occurrence on the face is extremely rare and only few cases of segmental neurofibromatosis over the face have been described so far. We present a case of segmental neurofibromatosis involving the buccal mucosa, tongue, cheek, ear, and neck on the right side of the face. PMID:25565748

  15. Tree Scanning

    PubMed Central

    Templeton, Alan R.; Maxwell, Taylor; Posada, David; Stengård, Jari H.; Boerwinkle, Eric; Sing, Charles F.

    2005-01-01

    We use evolutionary trees of haplotypes to study phenotypic associations by exhaustively examining all possible biallelic partitions of the tree, a technique we call tree scanning. If the first scan detects significant associations, additional rounds of tree scanning are used to partition the tree into three or more allelic classes. Two worked examples are presented. The first is a reanalysis of associations between haplotypes at the Alcohol Dehydrogenase locus in Drosophila melanogaster that was previously analyzed using a nested clade analysis, a more complicated technique for using haplotype trees to detect phenotypic associations. Tree scanning and the nested clade analysis yield the same inferences when permutation testing is used with both approaches. The second example is an analysis of associations between variation in various lipid traits and genetic variation at the Apolipoprotein E (APOE) gene in three human populations. Tree scanning successfully identified phenotypic associations expected from previous analyses. Tree scanning for the most part detected more associations and provided a better biological interpretative framework than single SNP analyses. We also show how prior information can be incorporated into the tree scan by starting with the traditional three electrophoretic alleles at APOE. Tree scanning detected genetically determined phenotypic heterogeneity within all three electrophoretic allelic classes. Overall, tree scanning is a simple, powerful, and flexible method for using haplotype trees to detect phenotype/genotype associations at candidate loci. PMID:15371364

  16. Issues of critical airway management (Which anesthesia; which surgical airway?).

    PubMed

    Bonanno, Fabrizio Giuseppe

    2012-10-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient's level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator's training and experience is relevant for indications and performance. PMID:23248494

  17. Estimating the diameter of airways susceptible for collapse using crackle sound

    PubMed Central

    Majumdar, Arnab; Hantos, Zoltán; Tolnai, József; Parameswaran, Harikrishnan; Tepper, Robert

    2009-01-01

    Airways that collapse during deflation generate a crackle sound when they reopen during subsequent reinflation. Since each crackle is associated with the reopening of a collapsed airway, the likelihood of an airway to be a crackle source is identical to its vulnerability to collapse. To investigate this vulnerability of airways to collapse, crackles were recorded during the first inflation of six excised rabbit lungs from the collapsed state, and subsequent reinflations from 5, 2, 1, and 0 cmH2O end-expiratory pressure levels. We derived a relationship between the amplitude of a crackle sound at the trachea and the generation number (n) of the source airway where the crackle was generated. Using an asymmetrical tree model of the rabbit airways with elastic walls, airway vulnerability to collapse was also determined in terms of airway diameter D. During the reinflation from end-expiratory pressure = 0 cmH2O, the most vulnerable airways were estimated to be centered at n = 12 with a peak. Vulnerability in terms of D ranged between 0.1 and 1.3 mm, with a peak at 0.3 mm. During the inflation from the collapsed state, however, vulnerability was much less localized to a particular n or D, with maximum values of n = 8 and D = 0.75 mm. Numerical simulations using a tree model that incorporates airway opening and closing support these conclusions. Thus our results indicate that there are airways of a given range of diameters that can become unstable during deflation and vulnerable to collapse and subsequent injury. PMID:19729587

  18. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  19. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained. PMID:22558834

  20. Total airway reconstruction.

    PubMed

    Connor, Matthew P; Barrera, Jose E; Eller, Robert; McCusker, Scott; O'Connor, Peter

    2013-02-01

    We present a case of obstructive sleep apnea (OSA) that required multilevel surgical correction of the airway and literature review and discuss the role supraglottic laryngeal collapse can have in OSA. A 34-year-old man presented to a tertiary otolaryngology clinic for treatment of OSA. He previously had nasal and palate surgeries and a Repose tongue suspension. His residual apnea hypopnea index (AHI) was 67. He had a dysphonia associated with a true vocal cord paralysis following resection of a benign neck mass in childhood. He also complained of inspiratory stridor with exercise and intolerance to continuous positive airway pressure. Physical examination revealed craniofacial hypoplasia, full base of tongue, and residual nasal airway obstruction. On laryngoscopy, the paretic aryepiglottic fold arytenoid complex prolapsed into the laryngeal inlet with each breath. This was more pronounced with greater respiratory effort. Surgical correction required a series of operations including awake tracheostomy, supraglottoplasty, midline glossectomy, genial tubercle advancement, maxillomandibular advancement, and reconstructive rhinoplasty. His final AHI was 1.9. Our patient's supraglottic laryngeal collapse constituted an area of obstruction not typically evaluated in OSA surgery. In conjunction with treating nasal, palatal, and hypopharyngeal subsites, our patient's supraglottoplasty represented a key component of his success. This case illustrates the need to evaluate the entire upper airway in a complicated case of OSA. PMID:22965285

  1. Epithelial hyperplasia, airways

    Cancer.gov

    Number of respiratory epithelial cells is increased diffusely or focally. Frequently luminal protrusions are observed, sometimes forming papillae. Mucous (goblet) cell metaplastic hyperplasia is a variant, in which the respiratory epithelium of conducting airways is replaced by mucous cells either as a single or a pseudostratified layer.

  2. Prolonged increased responsiveness of canine peripheral airways after exposure to O/sub 3/

    SciTech Connect

    Beckett, W.S.; Freed, A.N.; Turner, C.; Menkes, H.A.

    1988-02-01

    Because it is relatively insoluble, the oxidant gas O3 may penetrate to small peripheral airways when it is inhaled. Increased responsiveness in large airways after O3 breathing has been associated with the presence of inflammatory cells. To determine whether O3 produces prolonged hyperresponsiveness of small airways associated with the presence of inflammatory cells, we exposed the peripheral lungs of anesthetized dogs to 1.0 ppm O3 for 2 h using a wedged bronchoscope technique. A contralateral sublobar segment was simultaneously exposed to air as a control. In the O3-exposed segments, collateral resistance (Rcs) was increased within 15 min and remained elevated approximately 150% throughout the 2-h exposure period. Fifteen hours later, the base-line Rcs of the O3-exposed sublobar segments was significantly elevated, and these segments demonstrated increased responsiveness to aerosolized acetylcholine (100 and 500 micrograms/ml). There were no differences in neutrophils, mononuclear cells, or mast cells (numbers or degree of mast cell degranulation) between O3 and air-exposed airways at 15 h. The small airways of the lung periphery thus are capable of remaining hyperresponsive hours after cessation of localized exposure to O3, but this does not appear to be dependent on the presence of inflammatory cells in the small airway wall.

  3. Tree Lifecycle.

    ERIC Educational Resources Information Center

    Nature Study, 1998

    1998-01-01

    Presents a Project Learning Tree (PLT) activity that has students investigate and compare the lifecycle of a tree to other living things and the tree's role in the ecosystem. Includes background material as well as step-by-step instructions, variation and enrichment ideas, assessment opportunities, and student worksheets. (SJR)

  4. Segmental neurofibromatosis.

    PubMed

    Toy, Brian

    2003-10-01

    Segmental neurofibromatosis is a rare variant of neurofibromatosis in which skin lesions are confined to a circumscribed body segment. A case of a 72-year-old woman with this condition is presented. Clinical features and genetic evidence are reviewed. PMID:14594599

  5. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  6. Advances in prehospital airway management

    PubMed Central

    Jacobs, PE; Grabinsky, A

    2014-01-01

    Prehospital airway management is a key component of emergency responders and remains an important task of Emergency Medical Service (EMS) systems worldwide. The most advanced airway management techniques involving placement of oropharyngeal airways such as the Laryngeal Mask Airway or endotracheal tube. Endotracheal tube placement success is a common measure of out-of-hospital airway management quality. Regional variation in regard to training, education, and procedural exposure may be the major contributor to the findings in success and patient outcome. In studies demonstrating poor outcomes related to prehospital-attempted endotracheal intubation (ETI), both training and skill level of the provider are usually often low. Research supports a relationship between the number of intubation experiences and ETI success. National standards for certification of emergency medicine provider are in general too low to guarantee good success rate in emergency airway management by paramedics and physicians. Some paramedic training programs require more intense airway training above the national standard and some EMS systems in Europe staff their system with anesthesia providers instead. ETI remains the cornerstone of definitive prehospital airway management, However, ETI is not without risk and outcomes data remains controversial. Many systems may benefit from more input and guidance by the anesthesia department, which have higher volumes of airway management procedures and extensive training and experience not just with training of airway management but also with different airway management techniques and adjuncts. PMID:24741499

  7. Methods of airway resistance assessment.

    PubMed

    Urbankowski, Tomasz; Przybyłowski, Tadeusz

    2016-01-01

    Airway resistance is the ratio of driving pressure to the rate of the airflow in the airways. The most frequent methods used to measure airway resistance are whole-body plethysmography, the interrupter technique and the forced oscillation technique. All these methods allow to measure resistance during respiration at the level close to tidal volume, they do not require forced breathing manoeuvres or deep breathing during measurement. The most popular method for measuring airway resistance is whole-body plethysmography. The results of plethysmography include among others the following parameters: airway resistance (Raw), airway conductance (Gaw), specific airway resistance (sRaw) and specific airway conductance (sGaw). The interrupter technique is based on the assumption that at the moment of airway occlusion, air pressure in the mouth is equal to the alveolar pressure . In the forced oscillation technique (FOT), airway resistance is calculated basing on the changes in pressure and flow caused by air vibration. The methods for measurement of airway resistance that are described in the present paper seem to be a useful alternative to the most common lung function test - spirometry. The target group in which these methods may be widely used are particularly the patients who are unable to perform spirometry. PMID:27238174

  8. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  9. Management of the Traumatized Airway.

    PubMed

    Jain, Uday; McCunn, Maureen; Smith, Charles E; Pittet, Jean-Francois

    2016-01-01

    There is a lack of evidence-based approach regarding the best practice for airway management in patients with a traumatized airway. General recommendations for the management of the traumatized airway are summarized in table 5. Airway trauma may not be readily apparent, and its evaluation requires a high level of suspicion for airway disruption and compression. For patients with facial trauma, control of the airway may be significantly impacted by edema, bleeding, inability to clear secretions, loss of bony support, and difficulty with face mask ventilation. With the airway compression from neck swelling or hematoma, intubation attempts can further compromise the airway due to expanding hematoma. For patients with airway disruption, the goal is to pass the tube across the injured area without disrupting it or to insert the airway distal to the injury using a surgical approach. If airway injury is extensive, a surgical airway distal to the site of injury may be the best initial approach. Alternatively, if orotracheal intubation is chosen, spontaneous ventilation may be maintained or RSI may be performed. RSI is a common approach. Thus, some of the patients intubated may subsequently require tracheostomy. A stable patient with limited injuries may not require intubation but should be watched carefully for at least several hours. Because of a paucity of evidence-based data, the choice between these approaches and the techniques utilized is a clinical decision depending on the patient's condition, clinical setting, injuries to airway and other organs, and available personnel, expertise, and equipment. Inability to obtain a definitive airway is always an absolute indication for an emergency cricothyroidotomy or surgical tracheostomy. PMID:26517857

  10. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma.

    PubMed

    Van der Velden, Joanne; Harkness, Louise M; Barker, Donna M; Barcham, Garry J; Ugalde, Cathryn L; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A; Tokanovic, Ana; Burgess, Janette K; Snibson, Kenneth J

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  11. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma

    PubMed Central

    Van der Velden, Joanne; Harkness, Louise M.; Barker, Donna M.; Barcham, Garry J.; Ugalde, Cathryn L.; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A.; Tokanovic, Ana; Burgess, Janette K.; Snibson, Kenneth J.

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10+–20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  12. Using optical coherence tomography (OCT) imaging in the evaluation of airway dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szabari, Margit V.; Kelly, Vanessa J.; Applegate, Matthew B.; Chee, Chunmin; Tan, Khay M.; Hariri, Lida P.; Harris, R. Scott; Winkler, Tilo; Suter, Melissa J.

    2016-03-01

    Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung. Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation. Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.

  13. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  14. Upper Airway Mechanics

    PubMed Central

    Verbraecken, Johan A.; De Backer, Wilfried A.

    2009-01-01

    This review discusses the pathophysiological aspects of sleep-disordered breathing, with focus on upper airway mechanics in obstructive and central sleep apnoea, Cheyne-Stokes respiration and obesity hypoventilation syndrome. These disorders constitute the end points of a spectrum with distinct yet interrelated mechanisms that lead to substantial pathology, i.e. increased upper airway collapsibility, control of breathing instability, increased work of breathing, disturbed ventilatory system mechanics and neurohormonal changes. Concepts are changing. Although sleep apnoea is considered more and more to be an increased loop gain disorder, the central type of apnoea is now considered as an obstructive event, because it causes pharyngeal narrowing, associated with prolonged expiration. Although a unifying concept for the pathogenesis is lacking, it seems that these patients are in a vicious circle. Knowledge of common patterns of sleep-disordered breathing may help to identify these patients and guide therapy. PMID:19478479

  15. Automatic lobar segmentation for diseased lungs using an anatomy-based priority knowledge in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Jung Im; Goo, Jin Mo; Lee, Doohee

    2014-03-01

    Lung lobar segmentation in CT images is a challenging tasks because of the limitations in image quality inherent to CT image acquisition, especially low-dose CT for clinical routine environment. Besides, complex anatomy and abnormal lesions in the lung parenchyma makes segmentation difficult because contrast in CT images are determined by the differential absorption of X-rays by neighboring structures, such as tissue, vessel or several pathological conditions. Thus, we attempted to develop a robust segmentation technique for normal and diseased lung parenchyma. The images were obtained with low-dose chest CT using soft reconstruction kernel (Sensation 16, Siemens, Germany). Our PC-based in-house software segmented bronchial trees and lungs with intensity adaptive region-growing technique. Then the horizontal and oblique fissures were detected by using eigenvalues-ratio of the Hessian matrix in the lung regions which were excluded from airways and vessels. To enhance and recover the faithful 3-D fissure plane, our proposed fissure enhancing scheme were applied to the images. After finishing above steps, for careful smoothening of fissure planes, 3-D rolling-ball algorithm in xyz planes were performed. Results show that success rate of our proposed scheme was achieved up to 89.5% in the diseased lung parenchyma.

  16. Brachycephalic airway syndrome.

    PubMed

    Meola, Stacy D

    2013-08-01

    Brachycephalic airway syndrome is a common finding in brachycephalic breeds. A combination of primary and secondary changes can progress to life-threatening laryngeal collapse. Early recognition of primary anatomic abnormalities that include stenotic nares, elongated soft palate, and hypoplastic trachea would allow the clinician to make early recommendations for medical and surgical management, which can improve the quality of life in affected animals. PMID:24182996

  17. INTEGRATED CT/BRONCHOSCOPY IN THE CENTRAL AIRWAYS: PRELIMINARY RESULTS

    PubMed Central

    Suter, Melissa J.; Reinhardt, Joseph M.; McLennan, Geoffrey

    2009-01-01

    Rationale and Objectives Many imaging modalities and methodologies exist for evaluating the pulmonary airways. Individually, each modality provides insight to the state of the airways however, alone they do not necessary provide a comprehensive description. The goal of this paper is to integrate complementary medical imaging datasets to form a synergistic description of the airways. Materials and Methods Two digital bronchoscopy techniques were used to evaluate the pulmonary mucosa. A digital color bronchoscopy system was used to detect mucosal color alterations, and a fluorescence detection system was used to assess the microvasculature of the bronchial mucosa. Study participants were also imaged with a multi-detector row computed tomography (MDCT) scanner. Virtual bronchoscopy and image registration techniques were exploited to combine 3D surface renderings, extracted from the MDCT data, together with the 2D digital bronchoscopy images. Validation of the fusion process was performed on a rubber phantom of an adult airway with 4 embedded metal beads. Results The fusion of the MDCT extracted airway tree and the digital bronchoscopy datasets were presented for 3 study participants. In addition, the detected accuracy of the registration method to reliably align the MDCT and bronchoscopy image datasets was determined to be 1.98 mm in the phantom airway model. Conclusion We have demonstrated that merging of three distinct digital datasets to provide a single synergistic description of the airways is possible. This is a pilot project in the field of eidomics, the process of combining digital image datasets and image based processes together. We anticipate that in the future eidomics will provide a universal and predictive imaging language that will change health care delivery. PMID:18486014

  18. Upper airway resistance syndrome.

    PubMed

    Hasan, N; Fletcher, E C

    1998-07-01

    Many clinicians are familiar with the clinical symptoms and signs of obstructive sleep apnea (OSA). In its most blatant form, OSA is complete airway obstruction with repetitive, prolonged pauses in breathing, arterial oxyhemoglobin desaturation; followed by arousal with resumption of breathing. Daytime symptoms of this disorder include excessive daytime somnolence, intellectual dysfunction, and cardiovascular effects such as systemic hypertension, angina, myocardial infarction, and stroke. It has been recently recognized that increased pharyngeal resistance with incomplete obstruction can lead to a constellation of symptoms identical to OSA called "upper airway resistance syndrome" (UARS). The typical findings of UARS on sleep study are: (1) repetitive arousals from EEG sleep coinciding with a (2) waxing and waning of the respiratory airflow pattern and (3) increased respiratory effort as measured by esophageal pressure monitoring. There may be few, if any, obvious apneas or hypopneas with desaturation, but snoring may be a very prominent finding. Treatment with nasal positive airway pressure (NCPAP) eliminates the symptoms and confirms the diagnosis. Herein we describe two typical cases of UARS. PMID:9676067

  19. Airway closure in microgravity.

    PubMed

    Dutrieue, Brigitte; Verbanck, Sylvia; Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Recent single breath washout (SBW) studies in microgravity and on the ground have suggested an important effect of airway closure on gas mixing in the human lung, reflected particularly in the phase III slope of vital capacity SBW and bolus tests. In order to explore this effect, we designed a SBW in which subjects inspired 2-l from residual volume (RV) starting with a 150 ml bolus of He and SF6. In an attempt to vary the pattern of airways closure configuration before the test, the experiments were conducted in 1G and in microgravity during parabolic flight allowing the pre-test expiration to RV to be either in microgravity or at 1.8 G, with the actual test gas inhalation performed entirely in microgravity. Contrary to our expectations, the measured phase III slope and phase IV height and volume obtained from seven subjects in microgravity were essentially identical irrespective of the gravity level during the pre-test expiration to RV. The results suggest that airway closure configuration at RV before the test inspiration has no apparent impact on phases III and IV generation. PMID:15979418

  20. Management of the artificial airway.

    PubMed

    Branson, Richard D; Gomaa, Dina; Rodriquez, Dario

    2014-06-01

    Management of the artificial airway includes securing the tube to prevent dislodgement or migration as well as removal of secretions. Preventive measures include adequate humidification and appropriate airway suctioning. Monitoring airway patency and removing obstruction are potentially life-saving components of airway management. Cuff pressure management is important for preventing aspiration and mucosal damage as well as assuring adequate ventilation. A number of new monitoring techniques have been introduced, and automated cuff pressure control is becoming more common. The respiratory therapist should be adept with all these devices and understand the appropriate application and management. PMID:24891202

  1. Liquid Therapy Delivery Models Using Microfluidic Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  2. Talking Trees

    ERIC Educational Resources Information Center

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  3. Tree Amigos.

    ERIC Educational Resources Information Center

    Center for Environmental Study, Grand Rapids, MI.

    Tree Amigos is a special cross-cultural program that uses trees as a common bond to bring the people of the Americas together in unique partnerships to preserve and protect the shared global environment. It is a tangible program that embodies the philosophy that individuals, acting together, can make a difference. This resource book contains…

  4. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  5. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  6. Segmented combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor liner segment includes a panel having four sidewalls forming a rectangular outer perimeter. A plurality of integral supporting lugs are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls. A plurality of integral bosses are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls, with the bosses being shorter than the lugs. In one embodiment, the lugs extend through supporting holes in an annular frame for mounting the liner segments thereto, with the bosses abutting the frame for maintaining a predetermined spacing therefrom.

  7. Nonrigid registration framework for bronchial tree labeling using robust point matching

    NASA Astrophysics Data System (ADS)

    Roy, Arunabha; Patil, Uday; Das, Bipul

    2009-02-01

    Automated labeling of the bronchial tree is essential for localization of airway related diseases (e.g. chronic bronchitis) and is also a useful precursor to lung-lobe labeling. We describe an automated method for registration-based labeling of a bronchial tree. The bronchial tree is segmented from a CT image using a region-growing based algorithm. The medial line of the extracted tree is then computed using a potential field based approach. The expert-labeled target (atlas) and the source bronchial trees in the form of extracted centerline point sets are brought into alignment by calculating a non-rigid thin-plate spline (TPS) mapping from the source to the target. The registration takes into account global as well as local variations in anatomy between the two images through the use of separable linear and non-linear components of the transformation; as a result it is well suited to matching structures that deviate at finer levels: namely higher order branches. The method is validated by registering together pairs of datasets for which the ground truth labels are known in advance: the labels are transferred after matching target to source and then compared with the true values. The method was tested on datasets each containing 18 branch centerpoints and 12 bifurcation locations (30 landmarks in total) annotated manually by a radiologist, where the performance was measured as the number of landmarks having the correct transfer of labels. An overall accuracy of labeling of 91.5 % was obtained in matching 23 pairs of datasets obtained from different patients.

  8. Supra-Epiglottic Upper Airway Volume in Elderly Patients with Obstructive Sleep Apnea Hypopnea Syndrome

    PubMed Central

    Abdirahman Mohamed Moussa, Syad; Celle, Sébastien; Laurent, Bernard; Barthélémy, Jean-Claude; Barral, Fabrice-Guy; Roche, Frédéric

    2016-01-01

    Objective Small upper airway measurements areas and high body mass index are recognized risk factors for obstructive sleep apnea syndrome (OSAS) in non-elderly populations; however, there is limited information regarding elderly patients. We evaluated whether upper airway volume is associated with OSAS and OSAS treated with continuous positive airway pressure (CPAP) treatment and whether BMI is correlated with upper airway volume and measurements in elderly subjects. Methods In 60 volunteers aged 75.58±0.9 years: 20 OSAS, 20 OSAS chronically treated with CPAP, and 20 controls, semi-automatic segmentation, retropalatal distance and transverse diameter of the supra-epiglottic upper airway were evaluated using 3DT1-weighted magnetic resonance imaging. Anteroposterior to transverse diameter ratio was defined as retropalatar diameter/transverse diameter. Results There were no significant differences in supra-epiglottic upper airway volume between OSAS, CPAP treated patients, and controls. There were significant differences in retropalatal distance and anteroposterior to transverse diameter ratio between OSAS, CPAP treated patients, and controls (P = 0.008 and P<0.0001 respectively). There was a significant correlation between body mass index and retropalatal distance (P<0.05) but not with supra-epiglottic upper airway volume. Conclusion In elderly subjects, OSAS and body mass index are not associated with changes in supra-epiglottic upper airway volume but are associated with modification of pharynx shape. PMID:27336305

  9. Brachycephalic airway obstructive syndrome.

    PubMed

    Wykes, P M

    1991-06-01

    This is a complex condition, recognized primarily in brachycephalic breeds, that results in varying degrees of upper airway obstruction. The signs consist of respiratory distress, stridor, reduced exercise tolerance, and in more severe cases, cyanosis and collapse. The inherent anatomy of the brachycephalic skull contributes to the development of these signs. Such anatomic features include: a shortened and distorted nasopharynx, stenotic nares, an elongated soft palate, and everted laryngeal saccules. The increased negative pressure created in the pharyngolaryngeal region, as a result of these obstructing structures, ultimately results in distortion and collapse of the arytenoid cartilages of the larynx. PMID:1802247

  10. Particle Deposition During Airway Closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James B.

    2011-11-01

    Inhaled aerosol particles deposit in the lung and may be from environmental, toxic, or medical therapy sources. While much research focuses on inspiratory deposition, primarily at airway bifurcations due to inertial impaction, there are other mechanisms that allow the particles to reach the airway surface, such as gravitational settling and diffusion depending on particle size. We introduce a new mechanism not previously studied, i.e. aerosol deposition from airway closure. The airways are lined with a liquid layer. Due to the surface tension driven instability, a liquid plug can form from this layer which blocks the airway. This process of airway closure tends to occur toward the end of expiration. In this study, the efficiency of the impaction of the particles during airway closure will be investigated. The particles will be released from the upstream of the airway and convected by the air flow and deposited onto the closing liquid layer. We solve the governing equations using a finite volume approach in conjunction with a sharp interface method for the interfaces. Once the velocity field of the gas flow is obtained, the path of the particles will be calculated and the efficiency of the deposition can be estimated. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  11. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  12. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  13. Small Airways Dysfunction in Asthma: Evaluation and Management to Improve Asthma Control

    PubMed Central

    2014-01-01

    The small airways have been neglected for many years, but interest in the topic has been rekindled with recent advances in measurement techniques to assess this region and also the ability to deliver therapeutics to the distal airways. Current levels of disease control in asthmatic patients remain poor and there are several contributory factors including; poor treatment compliance, heterogeneity of asthma phenotypes and associated comorbidities. However, the proposition that we may not be targeting all the inflammation that is present throughout the whole respiratory tree may also be an important factor. Indeed decades ago, pathologists and physiologists clearly identified the importance of small airways dysfunction in asthmatic patients. With improved inhaler technology to deliver drug to target the whole respiratory tree and more sensitive measures to assess the distal airways, we should certainly give greater consideration to treating the small airway region when seeing our asthmatic patients in clinic. The aim of this review is to address the relevance of small airways dysfunction in the daily clinical management of patients with asthma. In particular the role of small particle aerosols in the management of patients with asthma will be explored. PMID:25228994

  14. Mechanisms of airway responses to esophageal acidification in cats.

    PubMed

    Lang, Ivan M; Haworth, Steven T; Medda, Bidyut K; Forster, Hubert; Shaker, Reza

    2016-04-01

    Acid in the esophagus causes airway constriction, tracheobronchial mucous secretion, and a decrease in tracheal mucociliary transport rate. This study was designed to investigate the neuropharmacological mechanisms controlling these responses. In chloralose-anesthetized cats (n = 72), we investigated the effects of vagotomy or atropine (100 μg·kg(-1)·30 min(-1) iv) on airway responses to esophageal infusion of 0.1 M PBS or 0.1 N HCl at 1 ml/min. We quantified 1) diameter of the bronchi, 2) tracheobronchial mucociliary transport rate, 3) tracheobronchial mucous secretion, and 4) mucous content of the tracheal epithelium and submucosa. We found that vagotomy or atropine blocked the airway constriction response but only atropine blocked the increase in mucous output and decrease in mucociliary transport rate caused by esophageal acidification. The mucous cells of the mucosa produced more Alcian blue- than periodic acid-Schiff (PAS)-stained mucosubstances, and the mucous cells of the submucosa produced more PAS- than Alcian blue-stained mucosubstances. Selective perfusion of the different segments of esophagus with HCl or PBS resulted in significantly greater production of PAS-stained mucus in the submucosa of the trachea adjacent to the HCl-perfused esophagus than in that adjacent to the PBS-perfused esophagus. In conclusion, airway constriction caused by esophageal acidification is mediated by a vagal cholinergic pathway, and the tracheobronchial transport response is mediated by cholinergic receptors. Acid perfusion of the esophagus selectively increases production of neutral mucosubstances of the apocrine glands by a local mechanism. We hypothesize that the airway responses to esophageal acid exposure are part of the innate, rather than acute emergency, airway defense system. PMID:26846551

  15. Putting the Squeeze on Airway Epithelia.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J; Drazen, Jeffrey M

    2015-07-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  16. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  17. [Segmental neurofibromatosis].

    PubMed

    Zulaica, A; Peteiro, C; Pereiro, M; Pereiro Ferreiros, M; Quintas, C; Toribio, J

    1989-01-01

    Four cases of segmental neurofibromatosis (SNF) are reported. It is a rare entity considered to be a localized variant of neurofibromatosis (NF)-Riccardi's type V. Two cases are male and two female. The lesions are located to the head in a patient and the other three cases in the trunk. No family history nor transmission to progeny were manifested. The rest of the organs are undamaged. PMID:2502696

  18. Surgical anatomy of the tracheobronchial tree

    PubMed Central

    Drevet, Gabrielle; Conti, Massimo

    2016-01-01

    Airway surgery is often indicated in the management of benign or malignant pathological processes of the tracheobronchial tree. The surgeon undertaking this type of work has, however, the responsibility of understanding the particular anatomy applicable to these structures and procedures as well as be able to correlate imaging, intraoperative findings and anatomy. These are important considerations if one wants to reduce operative morbidity and improve potential for better long-term results. This paper reviews the most important anatomic features of the tracheobronchial tree putting emphasis on those features that are important to surgeons performing surgical procedures on those organs. PMID:26981262

  19. Airway clearance in neuromuscular weakness.

    PubMed

    Gauld, Leanne Maree

    2009-05-01

    Impaired airway clearance leads to recurrent chest infections and respiratory deterioration in neuromuscular weakness. It is frequently the cause of death. Cough is the major mechanism of airway clearance. Cough has several components, and assessment tools are available to measure the different components of cough. These include measuring peak cough flow, respiratory muscle strength, and inspiratory capacity. Each is useful in assessing the ability to generate an effective cough, and can be used to guide when techniques of assisting airway clearance may be effective for the individual and which are most effective. Techniques to assist airway clearance include augmenting inspiration by air stacking, augmenting expiration by assisting the cough, and augmenting both inspiration and expiration with the mechanical insufflator-exsufflator or by direct suctioning via a tracheostomy. Physiotherapists are invaluable in assisting airway clearance, and in teaching patients and their families how to use these techniques. Use of the mechanical insufflator-exsufflator has gained popularity in recent times, but several simpler, more economical methods are available to assist airway clearance that can be used effectively alone or in combination. This review examines the literature available on the assessment and management of impaired airway clearance in neuromuscular weakness. PMID:19379290

  20. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths. PMID:17827075

  1. Irritant-induced airway disorders.

    PubMed

    Brooks, Stuart M; Bernstein, I Leonard

    2011-11-01

    Thousands of persons experience accidental high-level irritant exposures each year but most recover and few die. Irritants function differently than allergens because their actions proceed nonspecifically and by nonimmunologic mechanisms. For some individuals, the consequence of a single massive exposure to an irritant, gas, vapor or fume is persistent airway hyperresponsiveness and the clinical picture of asthma, referred to as reactive airways dysfunction syndrome (RADS). Repeated irritant exposures may lead to chronic cough and continual airway hyperresponsiveness. Cases of asthma attributed to repeated irritant-exposures may be the result of genetic and/or host factors. PMID:21978855

  2. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  3. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  4. Three pairs of bollards of Pan American Airways/Naval Air Transport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three pairs of bollards of Pan American Airways/Naval Air Transport Service/destroyer base site. (The third pair is visible beyond the trees). View facing south-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  5. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial

  6. Rare Upper Airway Anomalies.

    PubMed

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  7. [Reactive airways dysfunction syndrome].

    PubMed

    Costa, R; Orriols, R

    2005-01-01

    Reactive airways dysfunction syndrome, better known as RADS, was described as a clinical entity consisting in the appearance of bronchial asthma due to massive toxic inhalation. The term was coined and recognised for the first time in 1985. Since then different publications have verified new cases as well as different causal agents. It usually arises from an accident at the work place and in closed or poorly ventilated spaces, where high concentrations of irritant products are inhaled in the form of gas, smoke or vapour. In the following minutes or hours symptoms of bronchial obstruction appear in an acute form, with bronchial hyperresponsiveness persisting for months or years. The affected patients do not show a recurrence of symptoms following exposure to non-toxic doses of the same agent that started the symptoms. This is why diagnosis is based on clinical manifestations as it is not reproducible through a provocation test. PMID:15915173

  8. Quantification and Visualization of Variation in Anatomical Trees

    SciTech Connect

    Amenta, Nina; Datar, Manasi; Dirksen, Asger; de Bruihne, Marleen; Feragen, Aasa; Ge, Xiaoyin; Holst Pedersen, Jesper; Howard, Marylesa; Owen, Megan; Petersen, Jens; Shi, Jie; Xu, Qiuping

    2015-07-01

    This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.

  9. Segmental neurofibromatosis.

    PubMed

    Sobjanek, Michał; Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Pęksa, Rafał; Nowicki, Roman

    2014-12-01

    Segmental neurofibromatosis or type V neurofibromatosis is a rare genodermatosis characterized by neurofibromas, café-au-lait spots and neurofibromas limited to a circumscribed body region. The disease may be associated with systemic involvement and malignancies. The disorder has not been reported yet in the Polish medical literature. A 63-year-old Caucasian woman presented with a 20-year history of multiple, flesh colored, dome-shaped, soft to firm nodules situated in the right lumbar region. A histopathologic evaluation of three excised tumors revealed neurofibromas. No neurological and ophthalmologic symptoms of neurofibromatosis were diagnosed. PMID:25610358

  10. Segmental neurofibromatosis.

    PubMed

    Adigun, Chris G; Stein, Jennifer

    2011-01-01

    A 59-year-old man presented for evaluation and excision of non-tender, fleshy nodules that were arranged in a dermatomal distribution from the left side of the chest to the left axilla. A biopsy specimen of a nodule was consistent with a neurofibroma. Owing to the lack of other cutaneous findings, the lack of a family history of neurofibromatosis, and the dermatomal distribution of the neurofibromas, this patient met the criteria for a diagnosis of segmental neurofibromatosis (SNF) according to Riccardi's definition of SNF and classification of neurofibromatosis. Because the patient has no complications of neurofibromatosis 1 no medical treatment is required. PMID:22031651

  11. Segmental neurofibromatosis

    PubMed Central

    Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Pęksa, Rafał; Nowicki, Roman

    2014-01-01

    Segmental neurofibromatosis or type V neurofibromatosis is a rare genodermatosis characterized by neurofibromas, café-au-lait spots and neurofibromas limited to a circumscribed body region. The disease may be associated with systemic involvement and malignancies. The disorder has not been reported yet in the Polish medical literature. A 63-year-old Caucasian woman presented with a 20-year history of multiple, flesh colored, dome-shaped, soft to firm nodules situated in the right lumbar region. A histopathologic evaluation of three excised tumors revealed neurofibromas. No neurological and ophthalmologic symptoms of neurofibromatosis were diagnosed. PMID:25610358

  12. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  13. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  14. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  15. Tachykinin receptors and airway pathophysiology.

    PubMed

    Maggi, C A

    1993-05-01

    The mammalian tachykinins (TKs), substance P and neurokinin A, are present in sensory nerve fibres in the upper and lower airways of various mammalian species, including humans. TKs are released from these afferent nerves in an "efferent" mode at peripheral level, especially in response to irritant stimuli. TKs exert a variety of biological effects (bronchoconstriction, plasma protein extravasation, stimulation of mucus secretion), collectively known as "neurogenic inflammation", and this process is thought to be of potential pathogenic relevance for various airway diseases. The recent development of potent and selective TK receptor antagonists on the one hand provides important new tools for the understanding of basic airway physiology and pathophysiology and, on the other, opens new possibilities for therapy of airway diseases. PMID:8390944

  16. Eosinophilic phenotypes of airway disease.

    PubMed

    Pavord, Ian D

    2013-12-01

    Our understanding of the clinical implications of eosinophilic airway inflammation has increased significantly over the last 20 years, aided by the development of noninvasive means to assess it. This pattern of airway inflammation can occur in a diverse range of airway diseases. It is associated with a positive response to corticosteroids and a high risk of preventable exacerbations. Our new understanding of the role of eosinophilic airway inflammation has paved the way for the clinical development of a number of more specific inhibitors that may become new treatment options. Different definitions, ideas of disease, and adoption of biomarkers that are not well known are necessary to fully realize the potential of these treatments. PMID:24313765

  17. Imaging of the Distal Airways

    PubMed Central

    Tashkin, Donald P.; de Lange, Eduard E.

    2009-01-01

    Imaging techniques of the lung continues to advance with improving ability to image the more distal airways. Two imaging techniques are reviewed, computerized tomography and magnetic resonance with hyperpolarized helium-3. PMID:19962040

  18. Assessment of major airway obstruction using image analysis of digital CT information

    NASA Astrophysics Data System (ADS)

    McLennan, Geoffrey; Shamsolkottabi, Susanne; Hoffman, Eric A.

    1996-04-01

    Major airway obstruction (trachea, right and left main bronchi) is an important cause of morbidity and mortality. Management requires adequate assessment of the position, extent and severity of the obstructing or stenotic segment. The objective of this study was to evaluate 3D reconstruction of the major airways using volumetric image display and analysis (VIDA), in subjects with major airflow obstruction. We have evaluated five subjects with major airway obstruction using Electron Beam Computed Tomography (EBCT) with a contiguous 3 mm slice thickness at total lung capacity. The digital information was transferred to a Sun Workstation (SPARC 5) for data analysis using VIDA. From this data set, the airway dimensions were calculated using a method for airway centerline determination and slice reformatting so as to section the airway perpendicular to its local long axis. Once appropriately sectioned, a number of different methods were used in edge finding. The airways were also presented as a surface rendered 3D image in either still or movie format. Finally, all subjects underwent flexible bronchoscopy to assess the abnormalities by direct visualization, with results of the bronchoscopic assessment being compared to the VIDA measurements. In all subjects, the volumetric image display and analysis gave anatomically correct and detailed images, which could be accurately measured. This information enabled appropriate pre-planning of operative corrective procedures, that included laser therapy, stent placement and balloon bronchoplasty. We conclude that the volumetric image display and analysis provides useful and reliable information for the management of major airflow obstruction.

  19. A study of airway smooth muscle in asthmatic and non-asthmatic airways using PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.

  20. Airway Surface Mycosis in Chronic Th2-Associated Airway Disease

    PubMed Central

    Porter, Paul; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L.; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-01-01

    Background Environmental fungi have been linked to T helper type 2 (Th2) cell-related airway inflammation and the Th2-associated chronic airway diseases asthma, chronic rhinosinusitis with nasal polyps (CRSwNP) and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. Objective To determine the frequency of fungus isolation and fungus-specific immunity in Th2-associated and non-associated airway disease patients. Methods Sinus lavage fluid and blood were collected from sinus surgery patients (n=118) including CRS patients with and without nasal polyps and AFRS and non-CRS/non-asthmatic control patients. Asthma status was deteremined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. Peripheral blood mononuclear cells were restimulated with fungal antigens in an enzyme linked immunocell spot (ELISpot) assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared to fungus-specific IgE levels measured from plasma by ELISA. Results Filamentous fungi were significantly more commonly cultured from Th2-associated airway disease subjects (asthma, CRSwNP, or AFRS: n=68) compared to non-Th2-associated control patients (n=31); 74% vs 16% respectively, p<0.001. Both fungus-specific IL-4 ELISpot (n=48) and specific IgE (n=70) data correlated with Th2-associated diseases (sensitivity 73% and specificity 100% vs. 50% and 77%, respectively). Conclusions The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with Th2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Clinical Implications Airway fungi may contribute to the expression of sinusitis with nasal polyps and

  1. An alternative construction of internodons: the emergence of a multi-level tree of life.

    PubMed

    Alexander, Samuel A; de Bruin, Arie; Kornet, D J

    2015-01-01

    Internodons are a formalization of Hennig's concept of species. We present an alternative construction of internodons imposing a tree structure on the genealogical network. We prove that the segments (trivial unary trees) from this tree structure are precisely the internodons. We obtain the following spin-offs. First, the generated tree turns out to be an organismal tree of life. Second, this organismal tree is homeomorphic to the phylogenetic Hennigian species tree of life, implying the discovery of a multi-level tree of life: this phylogenetic tree can be obtained by zooming out from the organismal tree, or conversely, the organismal tree of life can be generated by expanding the phylogenetic nodes into unary trees. Finally, the definition of the organismal tree allows an efficient algorithmic transformation of a given genealogical network into its corresponding phylogenetic species tree of life. The latter will be presented in a separate paper. PMID:25515028

  2. Airway obstruction with cricoid pressure.

    PubMed

    Hartsilver, E L; Vanner, R G

    2000-03-01

    Cricoid pressure may cause airway obstruction. We investigated whether this is related to the force applied and to the technique of application. We recorded expired tidal volumes and inflation pressures during ventilation via a face-mask and oral airway in 52 female patients who were anaesthetised and about to undergo elective surgery. An inspired tidal volume of 900 ml was delivered using a ventilator. Ventilation was assessed under five different conditions: no cricoid pressure, backwards cricoid pressure applied with a force of 30 N, cricoid pressure applied in an upward and backward direction with a force of 30 N, backwards cricoid pressure with a force of 44 N and through a tracheal tube. An expired tidal volume of < 200 ml was taken to indicate airway obstruction. Airway obstruction did not occur without cricoid pressure, but did occur in one patient (2%) with cricoid pressure at 30 N, in 29 patients (56%) with 30 N applied in an upward and backward direction and in 18 (35%) patients with cricoid pressure at 44 N. Cricoid pressure applied with a force of 44 N can cause airway obstruction but if cricoid pressure is applied with a force of 30 N, airway obstruction occurs less frequently (p = 0.0001) unless the force is applied in an upward and backward direction. PMID:10671836

  3. Tachykinin antagonists and the airways.

    PubMed

    Joos, G F; Kips, J C; Peleman, R A; Pauwels, R A

    1995-01-01

    There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined. PMID:7543746

  4. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  5. Greenhouse trees

    SciTech Connect

    Hanover, J.W.; Hart, J.W.

    1980-05-09

    Michigan State University has been conducting research on growth control of woody plants with emphasis on commercial plantations. The objective was to develop the optimum levels for the major factors that affect tree seedling growth and development so that high quality plants can be produced for a specific use. This article describes the accelerated-optimal-growth (AOG) concept, describes precautions to take in its application, and shows ways to maximize the potential of AOG for producing ornamental trees. Factors considered were container growing system; protective culture including light, temperature, mineral nutrients, water, carbon dioxide, growth regulators, mycorrhizae, growing media, competition, and pests; size of seedlings; and acclamation. 1 table. (DP)

  6. Audubon Tree Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…

  7. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  8. The segmented urbilateria: a testable scenario.

    PubMed

    Balavoine, Guillaume; Adoutte, André

    2003-02-01

    The idea that the last common ancestor of bilaterian animals (Urbilateria) was segmented has been raised recently on evidence coming from comparative molecular embryology. Leaving aside the complex debate on the value of genetic evidence, the morphological and developmental evidence in favor of a segmented Urbilateria are discussed in the light of the emerging molecular phylogeny of metazoans. Applying a cladistic character optimization procedure to the question of segmentation is vastly complicated by the problem of defining without ambiguity what segmentation is and to what taxa this definition applies. An ancestral segmentation might have undergone many complex derivations in each different phylum, thus rendering the cladistics approaches problematic. Taking the most general definitions of coelom and segmentation however, some remarkably similar patterns are found across the bilaterian tree in the way segments are formed by the posterior addition of mesodermal segments or somites. Postulating that these striking similarities in mesodermal patterns are ancestral, a scenario for the diversification of bilaterians from a metameric ancestor is presented. Several types of evolutionary mechanisms (specialization, tagmosis, progenesis) operating on a segmented ancestral body plan would explain the rapid emergence of body plans during the Cambrian. We finally propose to test this hypothesis by comparing genes involved in mesodermal segmentation. PMID:21680418

  9. Comparing the Laryngeal Mask Airway, Cobra Perilaryngeal Airway and Face Mask in Children Airway Management

    PubMed Central

    Tekin, Beyza; Hatipoğlu, Zehra; Türktan, Mediha; Özcengiz, Dilek

    2016-01-01

    Objective We compared the effects of the laryngeal mask airway (LMA), face mask and Cobra perilaryngeal airway (PLA) in the airway management of spontaneously breathing paediatric patients undergoing elective inguinal surgery. Methods In this study, 90 cases of 1–14-year-old children undergoing elective inguinal surgery were scheduled. The patients were randomly divided into three groups. Anaesthesia was provided with sevoflurane and 50%–50% nitrous oxide and oxygen. After providing an adequate depth of anaesthesia, supraglottic airway devices were inserted in the group I and II patients. The duration and number of insertion, haemodynamic parameters, plateau and peak inspiratory pressure and positive end-expiratory pressure of the patients were recorded preoperatively, after induction and at 5, 10, 15 and 30 min peroperatively. Results There were no statistical differences between the groups in terms of haemodynamic parameters (p>0.05). In group II, instrumentation success was higher and instrumentation time was shorter than group II. The positive end-expiratory pressure and plateau and peak inspiratory pressure values were statistically lower in group II (p<0.05). Conclusion We concluded that for airway safety and to avoid possible complications, LMA and Cobra PLA could be alternatives to face mask and that the Cobra PLA provided lower airway pressure and had a faster and more easy placement than LMA. PMID:27366563

  10. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  11. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  12. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  13. Airway Gland Structure and Function.

    PubMed

    Widdicombe, Jonathan H; Wine, Jeffrey J

    2015-10-01

    Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis. PMID:26336032

  14. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  15. Allergen-induced airway responses.

    PubMed

    Gauvreau, Gail M; El-Gammal, Amani I; O'Byrne, Paul M

    2015-09-01

    Environmental allergens are an important cause of asthma and can contribute to loss of asthma control and exacerbations. Allergen inhalation challenge has been a useful clinical model to examine the mechanisms of allergen-induced airway responses and inflammation. Allergen bronchoconstrictor responses are the early response, which reaches a maximum within 30 min and resolves by 1-3 h, and late responses, when bronchoconstriction recurs after 3-4 h and reaches a maximum over 6-12 h. Late responses are followed by an increase in airway hyperresponsiveness. These responses occur when IgE on mast cells is cross-linked by an allergen, causing degranulation and the release of histamine, neutral proteases and chemotactic factors, and the production of newly formed mediators, such as cysteinyl leukotrienes and prostaglandin D2. Allergen-induced airway inflammation consists of an increase in airway eosinophils, basophils and, less consistently, neutrophils. These responses are mediated by the trafficking and activation of myeloid dendritic cells into the airways, probably as a result of the release of epithelial cell-derived thymic stromal lymphopoietin, and the release of pro-inflammatory cytokines from type 2 helper T-cells. Allergen inhalation challenge has also been a widely used model to study potential new therapies for asthma and has an excellent negative predictive value for this purpose. PMID:26206871

  16. The Airway Microbiome at Birth.

    PubMed

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  17. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    PubMed

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P < 0.0001) and Rrs>9(r = 0.88,P < 0.0001) were significantly stronger (P = 0.005;P = 0.03, respectively) than withFEV1(r = -0.68,P = 0.0001). The slopes for the relationship ofVDPwith simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for theVDP-Xrs0.2relationship was largest, suggesting thatVDPwas dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics. PMID:27053294

  18. Smooth muscle in human bronchi is disposed to resist airway distension.

    PubMed

    Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk

    2016-07-15

    Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. PMID:27095271

  19. Technical Tree Climbing.

    ERIC Educational Resources Information Center

    Jenkins, Peter

    Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…

  20. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways. PMID:15301356

  1. Airway wall thickness is increased in COPD patients with bronchodilator responsiveness

    PubMed Central

    2014-01-01

    Rationale Bronchodilator responsiveness (BDR) is a common but variable phenomenon in COPD. The CT characteristics of airway dimensions that differentiate COPD subjects with BDR from those without BDR have not been well described. We aimed to assess airway dimensions in COPD subjects with and without BDR. Methods We analyzed subjects with GOLD 1–4 disease in the COPDGene® study who had CT airway analysis. We divided patients into two groups: BDR + (post bronchodilator ΔFEV1 ≥ 10%) and BDR-(post bronchodilator ΔFEV1 < 10%). The mean wall area percent (WA%) of six segmental bronchi in each subject was quantified using VIDA. Using 3D SLICER, airway wall thickness was also expressed as the square root wall area of an airway of 10 mm (Pi10) and 15 mm (Pi15) diameter. %Emphysema and %gas trapping were also calculated. Results 2355 subjects in the BDR-group and 1306 in the BDR + group formed our analysis. The BDR + group had a greater Pi10, Pi15, and mean segmental WA% compared to the BDR-group. In multivariate logistic regression using gender, race, current smoking, history of asthma, %emphysema, %gas trapping, %predicted FEV1, and %predicted FVC, airway wall measures remained independent predictors of BDR. Using a threshold change in FEV1 ≥ 15% and FEV1 ≥ 12% and 200 mL to divide patients into groups, the results were similar. Conclusion BDR in COPD is independently associated with CT evidence of airway pathology. This study provides us with greater evidence of changes in lung structure that correlate with physiologic manifestations of airflow obstruction in COPD. PMID:25248436

  2. Tc-99m HIDA scintigraphy in segmental biliary obstruction

    SciTech Connect

    Zeman, R.K.; Gold, J.A.; Gluck, L.; Caride, V.J.; Burrell, M.; Hoffer, P.B.

    1981-05-01

    Segmental biliary obstruction as a result of primary or secondary hepatic malignancy has been reported with increasing frequency. For two representative patients, the clinical and Tc-99m HIDA scintigraphic findings in segmental biliary obstruction are described. The presence of photon-deficient dilated bile ducts in one segment of the biliary tree is highly suggestive of localized biliary obstruction and should be considered in the patient with suspected or proven hepatic malignancy despite the absence of jaundice.

  3. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway connector. 868.5810 Section 868.5810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5810 Airway connector. (a) Identification. An airway connector is a device intended to...

  4. Chronic effects of mechanical force on airways.

    PubMed

    Tschumperlin, Daniel J; Drazen, Jeffrey M

    2006-01-01

    Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment. PMID:16460284

  5. Site of Fluid Secretion in Small Airways.

    PubMed

    Flores-Delgado, Guillermo; Lytle, Christian; Quinton, Paul M

    2016-03-01

    The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways. PMID:26562629

  6. Cervical spine movement during laryngoscopy using the Airway Scope compared with the Macintosh laryngoscope.

    PubMed

    Hirabayashi, Y; Fujita, A; Seo, N; Sugimoto, H

    2007-10-01

    The Airway Scope is a new rigid laryngoscope. This intubation device provides a non-line-of sight view of the glottis. A non-line-of sight view is expected to cause less movement of the cervical spine during laryngeal visualisation. We compared the degree of cervical spine movement during laryngoscopy with the Airway Scope and conventional direct laryngoscope. Twenty patients requiring general anaesthesia and tracheal intubation were studied. Movements of the cervical spine were measured using radiography in the same patient during laryngoscopy with the Airway Scope and a Macintosh laryngoscope. Cervical spine movement during laryngoscopy with the Airway Scope was 37%, 37% and 68% less than that with the Macintosh laryngoscope at the C0/C1, C1/C2 and C3/C4 motion segments, respectively (p < 0.05). The movement of the atlanto-occipital distance using the Airway Scope was 42% less than that during laryngoscopy using the Macintosh laryngoscope (p < 0.05). Laryngoscopy using the Airway Scope involves less movement of the cervical spine compared to conventional laryngoscopy using the Macintosh laryngoscope. PMID:17845658

  7. Laryngeal mask airway: an alternative for the difficult airway.

    PubMed

    Jones, J R

    1995-10-01

    The laryngeal mask airway (LMA) was invented by Dr. Archie Brain at the London Hospital, Whitechapel, in 1981. Dr. Brain's main objective for the LMA was that it would provide a better method of maintaining a patient's airway than by face mask. Also, the LMA would be less hemodynamically stressful than with insertion of an endotracheal tube. The LMA consists of a silicone rubber tube connected to a miniature silicone mask. The perimeter of the mask consists of an inflatable elliptical cuff, which forms a tip at the distal aspect of the LMA. The aperture bars in the dome of the mask lift the epiglottis away, so the lumen remains unobstructive. The LMA forms a low pressure seal around the larynx. The LMA is contraindicated in any situation where the patient is at risk for pulmonary aspiration. The LMA is not a substitute for a properly placed endotracheal tube in this situation. The American Society of Anesthesiologists' difficult airway algorithm recommends the insertion of an LMA when ventilation and/or intubation are difficult. The distal aperture of the LMA is in close approximation to the vocal cords, so a 6.0-mm internal diameter endotracheal tube can be passed over an intubating stylet or a pediatric fiberoptic bronchoscope to secure a patient's airway. PMID:7502644

  8. [Airway equipment and its maintenance for a non difficult adult airway management (endotracheal intubation and its alternative: face mask, laryngeal mask airway, laryngeal tube)].

    PubMed

    Francon, D; Estèbe, J P; Ecoffey, C

    2003-08-01

    The airway equipment for a non difficult adult airway management are described: endotracheal tubes with a specific discussion on how to inflate the balloon, laryngoscopes and blades, stylets and intubation guides, oral airways, face masks, laryngeal mask airways and laryngeal tubes. Cleaning and disinfections with the maintenance are also discussed for each type of airway management. PMID:12943860

  9. Jaw thrust can deteriorate upper airway patency.

    PubMed

    von Ungern-Sternberg, B S; Erb, T O; Frei, F J

    2005-04-01

    Upper airway obstruction is a frequent problem in spontaneously breathing children undergoing anesthesia or sedation procedures. Failure to maintain a patent airway can rapidly result in severe hypoxemia, bradycardia, or asystole, as the oxygen demand of children is high and oxygen reserve is low. We present two children with cervical masses in whom upper airway obstruction exaggerated while the jaw thrust maneuver was applied during induction of anesthesia. This deterioration in airway patency was probably caused by medial displacement of the lateral tumorous tissues which narrowed the pharyngeal airway. PMID:15777312

  10. Sensory neuropeptides and airway function.

    PubMed

    Solway, J; Leff, A R

    1991-12-01

    Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well. PMID:1663932

  11. Systems-level airway models of bronchoconstriction.

    PubMed

    Donovan, Graham M

    2016-09-01

    Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website. PMID:27348217

  12. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed. PMID:22082167

  13. Impedance of intrathoracic airway models during low-frequency periodic flow.

    PubMed

    Fredberg, J J; Mead, J

    1979-08-01

    The total pulmonary and lower airway impedances of the normal adult lung were simulated from 0.5 to 10 Hz using a distributed parameter model of the complete tracheobronchial tree. The model includes branching asymmetry; distributed representation of gas compliance, inertance, viscous effects, and inertial distortion of velocity profiles; and nonrigid airway walls. The model predicts closely similar resistance and frequency dependence of resistance but substantially greater reactances than observed by Finucane et al. (J. Appl. Physiol. 38: 517--530, 1975). Increases in resistance with frequency could be explained by changes in the distribution of flow among parallel inhomogeneities (47%), inertial distortion of velocity profiles (35%), changes in the serial distribution of flow due to gas compliance (11%), and airway wall compliance (7%). The disparity between measured and simulated reactance is attirbutable to artifact in the previously reported reactance measurement. PMID:468692

  14. Three-dimensional inspiratory flow in the upper and central human airways

    NASA Astrophysics Data System (ADS)

    Banko, A. J.; Coletti, F.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.

    2015-06-01

    The steady inspiratory flow through an anatomically accurate model of the human airways was studied experimentally at a regime relevant to deep inspiration for aerosol drug delivery. Magnetic resonance velocimetry was used to obtain the three-component, mean velocity field. A strong, single-sided streamwise swirl was found in the trachea and persists up to the first bifurcation. There, the swirl and the asymmetric anatomy impact both the streamwise momentum distribution and the secondary flows in the main bronchi, with large differences compared to what is found in idealized branching tubes. In further generations, the streamwise velocity never recovers a symmetric profile and the relative intensity of the secondary flows remains strong. Overall, the results suggest that, in real human airways, both streamwise dispersion (due to streamwise gradients) and lateral dispersion (due to secondary flows) are very effective transport mechanisms. Neglecting the extrathoracic airways and idealizing the bronchial tree may lead to qualitatively different conclusions.

  15. Exploring tree species signature using waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2015-12-01

    Successful classification of tree species with waveform LiDAR data would be of considerable value to estimate the biomass stocks and changes in forests. Current approaches emphasize converting the full waveform data into discrete points to get larger amount of parameters and identify tree species using several discrete-points variables. However, ignores intensity values and waveform shapes which convey important structural characteristics. The overall goal of this study was to employ the intensity and waveform shape of individual tree as the waveform signature to detect tree species. The data was acquired by the National Ecological Observatory Network (NEON) within 250*250 m study area located in San Joaquin Experimental Range. Specific objectives were to: (1) segment individual trees using the smoothed canopy height model (CHM) derived from discrete LiDAR points; (2) link waveform LiDAR with above individual tree boundaries to derive sample signatures of three tree species and use these signatures to discriminate tree species in a large area; and (3) compare tree species detection results from discrete LiDAR data and waveform LiDAR data. An overall accuracy of the segmented individual tree of more than 80% was obtained. The preliminary results show that compared with the discrete LiDAR data, the waveform LiDAR signature has a higher potential for accurate tree species classification.

  16. INTRAOPERATIVE LONG RANGE OPTICAL COHERENCE TOMOGRAPHY AS A NOVEL METHOD OF IMAGING THE PEDIATRIC UPPER AIRWAY BEFORE AND AFTER ADENOTONSILLECTOMY

    PubMed Central

    Lazarow, Frances B.; Ahuja, Gurpreet S.; Loy, Anthony Chin; Su, Erica; Nguyen, Tony D.; Sharma, Giriraj K.; Wang, Alex; Jing, Joe; Chen, Zhongping; Wong, Brian J.F.

    2015-01-01

    BACKGROUND/OBJECTIVES While upper airway obstruction is a common problem in the pediatric population, the first-line treatment, adenotonsillectomy, fails in up to 20% of patients. The decision to proceed to surgery is often made without quantitative anatomic guidance. We evaluated the use of a novel technique, long-range optical coherence tomography (LR-OCT), to image the upper airway of children under general anesthesia immediately before and after tonsillectomy and/or adenoidectomy. We investigated the feasibility of LR-OCT to identify both normal anatomy and sites of airway narrowing and to quantitatively compare airway lumen size in the oropharyngeal and nasopharyngeal regions pre- and post-operatively. METHODS 46 children were imaged intraoperatively with a custom-designed LR-OCT system, both before and after adenotonsillectomy. These axial LR-OCT images were both rendered into 3D airway models for qualitative analysis and manually segmented for quantitative comparison of cross-sectional area. RESULTS LR-OCT images demonstrated normal anatomic structures (base of tongue, epiglottis) as well as regions of airway narrowing. Volumetric rendering of pre- and post-operative images clearly showed regions of airway collapse and post-surgical improvement in airway patency. Quantitative analysis of cross-sectional images showed an average change of 70.52mm2 (standard deviation 47.87mm2) in the oropharynx after tonsillectomy and 105.58mm2 (standard deviation 60.62mm2) in the nasopharynx after adenoidectomy. CONCLUSIONS LR-OCT is an emerging technology that rapidly generates 3D images of the pediatric upper airway in a feasible manner. This is the first step toward development of an office-based system to image awake pediatric subjects and thus better identify loci of airway obstruction prior to surgery. PMID:25479699

  17. The Tree Worker's Manual.

    ERIC Educational Resources Information Center

    Smithyman, S. J.

    This manual is designed to prepare students for entry-level positions as tree care professionals. Addressed in the individual chapters of the guide are the following topics: the tree service industry; clothing, eqiupment, and tools; tree workers; basic tree anatomy; techniques of pruning; procedures for climbing and working in the tree; aerial…

  18. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  19. PTrees: A point-based approach to forest tree extraction from lidar data

    NASA Astrophysics Data System (ADS)

    Vega, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.-P.; Bouvier, M.; Durrieu, S.

    2014-12-01

    This paper introduces PTrees, a multi-scale dynamic point cloud segmentation dedicated to forest tree extraction from lidar point clouds. The method process the point data using the raw elevation values (Z) and compute height (H = Z - ground elevation) during post-processing using an innovative procedure allowing to preserve the geometry of crown points. Multiple segmentations are done at different scales. Segmentation criteria are then applied to dynamically select the best set of apices from the tree segments extracted at the various scales. The selected set of apices is then used to generate a final segmentation. PTrees has been tested in 3 different forest types, allowing to detect 82% of the trees with under 10% of false detection rate. Future development will integrate crown profile estimation during the segmentation process in order to both maximize the detection of suppressed trees and minimize false detections.

  20. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers). PMID:24925919

  1. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  2. Paediatric airway management: What is new?

    PubMed Central

    Ramesh, S; Jayanthi, R; Archana, SR

    2012-01-01

    Airway management plays a pivotal role in Paediatric Anaesthesia. Over the last two decades many improvements in this area have helped us to overcome this final frontier. From an era where intubation with a conventional laryngoscope or blind nasal intubation was the only tool for airway management, we have come a long way. Today supraglottic airway devices have pride of place in the Operating Room and are becoming important airway devices used in routine procedures. Direct and indirect fibreoptic laryngoscopes and transtracheal devices help us overcome difficult and previously impossible airway situations. These developments mean that we need to update our knowledge on these devices. Also much of our basic understanding of the physiology and anatomy of the paediatric airway has changed. This article attempts to shed light on some of the most important advances/opinions in paediatric airway management like, cuffed endotracheal tubes, supraglottic airway devices, video laryngoscopes, rapid sequence intubation, the newly proposed algorithm for difficult airway management and the role of Ex Utero Intrapartum Treatment (EXIT) procedure in the management of the neonatal airway. PMID:23293383

  3. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  4. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans

    PubMed Central

    2014-01-01

    Background Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Methods Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Results Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available “ground truth” images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Conclusions Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity

  5. Airway anastomosis for lung transplantation

    PubMed Central

    Diso, Daniele; Rendina, Erino Angelo; Venuta, Federico

    2016-01-01

    Lung transplantation (LT) is the only viable option for a selected group of patients with end stage pulmonary diseases. During the recent years satisfactory results in terms of long-term survival and quality of life have been achieved with improvements in surgical technique, immunosuppression and perioperative management. Since the beginning, the airway anastomosis has been considered crucial and significant efforts have been made to understand the healing process. A number of experimental studies allowed improving the surgical technique by modifying the technique of suturing, the anastomotic protection and type and dose of immunosuppression, reducing the risk of airway complications. Furthermore, a huge progress has been made in the management of such complications. Early diagnosis of bronchial complications and their prompt and correct management are crucial to achieve long-term survival. PMID:26981271

  6. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion. PMID:25422617

  7. Airway management in cervical spine injury

    PubMed Central

    Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman

    2014-01-01

    To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498

  8. Airway injury during high-level exercise.

    PubMed

    Kippelen, Pascale; Anderson, Sandra D

    2012-05-01

    Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes. PMID:22247295

  9. Optree: a learning-based adaptive watershed algorithm for neuron segmentation.

    PubMed

    Uzunbaş, Mustafa Gökhan; Chen, Chao; Metaxas, Dimitris

    2014-01-01

    We present a new algorithm for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. Our method selects a collection of nodes from the watershed mergng tree as the proposed segmentation. This is achieved by building a onditional random field (CRF) whose underlying graph is the merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our algorithm outperforms state-of-the-art methods. Both the inference and the training are very efficient as the graph is tree-structured. Furthermore, we develop an interactive segmentation framework which selects uncertain regions for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:25333106

  10. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques. PMID:26061578

  11. In vivo exposure to hyperoxia increases airway responsiveness in rats. Demonstration in vivo and in vitro.

    PubMed

    Szarek, J L

    1989-10-01

    Studies regarding O2-induced lung injury have concentrated on damage to alveolar structures and pulmonary vasculature without consideration of alterations that may be occurring in airways. This study was undertaken to determine the effects of in vivo hyperoxic exposure on airway responses to excitatory stimuli in intact, anesthetized rats and in intrapulmonary bronchi isolated from hyperoxia-exposed rats. Using lung conductance (G1) as an index of bronchoconstriction, intravenously administered 5-hydroxytryptamine (5HT) elicited greater bronchoconstrictor responses in anesthetized, mechanically ventilated rats that had been exposed to 85% O2 for 7 days rather than to air. Further, airways of hyperoxia-exposed rats were more sensitive to the effects of intravenously administered 5HT as evidenced by the lower log dose of 5HT required to decrease G1 30%. Cylindrical segments of intrapulmonary bronchi isolated from hyperoxia-exposed rats were more responsive to the contractile effects of 5HT and electrical field stimulation. However, no differences in responsiveness to bethanechol or KCl were observed between the two groups. The log concentration of 5HT and the log frequency of electrical field stimulation that elicited half-maximal responses were smaller in bronchi isolated from hyperoxia-exposed animals, indicating an increase in sensitivity of the airways to these stimuli. These results suggest that prolonged exposure to greater than ambient levels of O2 can alter airway function; however, the mechanism responsible for these changes remains to be determined. PMID:2802379

  12. A bug's view of allergic airways disease.

    PubMed

    Hsu, Peter S; Campbell, Dianne E

    2016-06-01

    The increase in allergic airways disease has been linked to modern urbanization and lifestyle. Recent evidence suggests that the associated reduction in microbial exposure, reduction in dietary fibre intake and increased antibiotic use may cause early dysbiosis in infancy, which predisposes to immune dysregulation and allergic airways disease later in life. This implies that there may be a window of opportunity for primary prevention strategies aimed to protect or restore the microbiome early in life and thereby decrease the risk of developing allergic airways disease. Alternatively, strategies that correct dysbiosis may aid in the treatment of established allergic airways disease. PMID:27012478

  13. Airway vascular damage in elite swimmers.

    PubMed

    Moreira, André; Palmares, Carmo; Lopes, Cristina; Delgado, Luís

    2011-11-01

    We postulated that high level swimming can promote airway inflammation and thus asthma by enhancing local vascular permeability. We aimed to test this hypothesis by a cross-sectional study comparing swimmers (n = 13, 17 ± 3 years, competing 7 ± 4 years, training 18 ± 3 h per week), asthmatic-swimmers (n = 6, 17 ± 2 years, competing 8 ± 3 years, training 16 ± 4 h per week), and asthmatics (n = 19, 14 ± 3 years). Subjects performed induced sputum and had exhaled nitric oxide, lung volumes, and airway responsiveness determined. Airway vascular permeability index was defined as the ratio of albumin in sputum and serum. Results from the multiple linear regression showed each unit change in airway vascular permeability index was associated with an increase of 0.97% (95%CI: 0.02 to 1.92; p = 0.047) in sputum eosinophilis, and of 2.64% (95%CI:0.96 to 4.31; p = 0.006) in sputum neutrophils after adjustment for confounders. In a general linear model no significant differences between airway vascular permeability between index study groups existed, after controlling for sputum eosinophilis and neutrophils. In conclusion, competitive swimmers training in chlorine-rich pools have similar levels of airway vascular permeability than asthmatics. Although competitive swimming has been associated with asthma, airway inflammation and airway hyperesponsiveness do not seem to be dependent on increased airway vascular permeability. PMID:21669516

  14. Airway sonography in live models and cadavers.

    PubMed

    Tsui, Ban; Ip, Vivian; Walji, Anil

    2013-06-01

    Sonography using cadavers is beneficial in teaching and learning sonoanatomy, which is particularly important because imaging of the airway can be challenging due to the cartilaginous landmarks and air artifacts. In this exploratory study, we have attempted to compare the airway sonoanatomy of cadavers and live models. Our observations support the use of cadavers as teaching tools for learning airway sonoanatomy and practicing procedures involving airway structures, such as superior laryngeal nerve blocks, transtracheal injections, and needle cricothyroidotomy, before performance on patients in clinical situations. We believe this process will improve patient safety and enhance the competency of trainees and practitioners in rare procedures such as needle cricothyroidotomy. PMID:23716527

  15. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  16. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  17. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation.

    PubMed

    Noble, P B; Sharma, A; McFawn, P K; Mitchell, H W

    2005-12-01

    The bronchial mucosa contributes to elastic properties of the airway wall and may influence the degree of airway expansion during lung inflation. In the deflated lung, folds in the epithelium and associated basement membrane progressively unfold on inflation. Whether the epithelium and basement membrane also distend on lung inflation at physiological pressures is uncertain. We assessed mucosal distensibility from strain-stress curves in mucosal strips and related this to epithelial length and folding. Mucosal strips were prepared from pig bronchi and cycled stepwise from a strain of 0 (their in situ length at 0 transmural pressure) to a strain of 0.5 (50% increase in length). Mucosal stress and epithelial length in situ were calculated from morphometric data in bronchial segments fixed at 5 and 25 cmH(2)O luminal pressure. Mucosal strips showed nonlinear strain-stress properties, but regions at high and low stress were close to linear. Stresses calculated in bronchial segments at 5 and 25 cmH(2)O fell in the low-stress region of the strain-stress curve. The epithelium of mucosal strips was deeply folded at low strains (0-0.15), which in bronchial segments equated to < or =10 cmH(2)O transmural pressure. Morphometric measurements in mucosal strips at greater strains (0.3-0.4) indicated that epithelial length increased by approximately 10%. Measurements in bronchial segments indicated that epithelial length increased approximately 25% between 5 and 25 cmH(2)O. Our findings suggest that, at airway pressures <10 cmH(2)O, airway expansion is due primarily to epithelial unfolding but at higher pressures the epithelium also distends. PMID:16024520

  18. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  19. Blood Tracer Kinetics in the Arterial Tree

    PubMed Central

    Kellner, Elias; Gall, Peter; Günther, Matthias; Reisert, Marco; Mader, Irina; Fleysher, Roman; Kiselev, Valerij G.

    2014-01-01

    Evaluation of blood supply of different organs relies on labeling blood with a suitable tracer. The tracer kinetics is linear: Tracer concentration at an observation site is a linear response to an input somewhere upstream the arterial flow. The corresponding impulse response functions are currently treated empirically without incorporating the relation to the vascular morphology of an organ. In this work we address this relation for the first time. We demonstrate that the form of the response function in the entire arterial tree is reduced to that of individual vessel segments under approximation of good blood mixing at vessel bifurcations. The resulting expression simplifies significantly when the geometric scaling of the vascular tree is taken into account. This suggests a new way to access the vascular morphology in vivo using experimentally determined response functions. However, it is an ill-posed inverse problem as demonstrated by an example using measured arterial spin labeling in large brain arteries. We further analyze transport in individual vessel segments and demonstrate that experimentally accessible tracer concentration in vessel segments depends on the measurement principle. Explicit expressions for the response functions are obtained for the major middle part of the arterial tree in which the blood flow in individual vessel segments can be treated as laminar. When applied to the analysis of regional cerebral blood flow measurements for which the necessary arterial input is evaluated in the carotid arteries, present theory predicts about 20% underestimation, which is in agreement with recent experimental data. PMID:25299048

  20. Airway reopening through catastrophic events in a hierarchical network

    PubMed Central

    Baudoin, Michael; Song, Yu; Manneville, Paul; Baroud, Charles N.

    2013-01-01

    When you reach with your straw for the final drops of a milkshake, the liquid forms a train of plugs that flow slowly initially because of the high viscosity. They then suddenly rupture and are replaced with a rapid airflow with the characteristic slurping sound. Trains of liquid plugs also are observed in complex geometries, such as porous media during petroleum extraction, in microfluidic two-phase flows, or in flows in the pulmonary airway tree under pathological conditions. The dynamics of rupture events in these geometries play the dominant role in the spatial distribution of the flow and in determining how much of the medium remains occluded. Here we show that the flow of a train of plugs in a straight channel is always unstable to breaking through a cascade of ruptures. Collective effects considerably modify the rupture dynamics of plug trains: Interactions among nearest neighbors take place through the wetting films and slow down the cascade, whereas global interactions, through the total resistance to flow of the train, accelerate the dynamics after each plug rupture. In a branching tree of microchannels, similar cascades occur along paths that connect the input to a particular output. This divides the initial tree into several independent subnetworks, which then evolve independently of one another. The spatiotemporal distribution of the cascades is random, owing to strong sensitivity to the plug divisions at the bifurcations. PMID:23277557

  1. The Needs of Trees

    ERIC Educational Resources Information Center

    Boyd, Amy E.; Cooper, Jim

    2004-01-01

    Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…

  2. Sipunculans and segmentation

    PubMed Central

    Kristof, Alen; Brinkmann, Nora

    2009-01-01

    Comparative molecular, developmental and morphogenetic analyses show that the three major segmented animal groups—Lophotrochozoa, Ecdysozoa and Vertebrata—use a wide range of ontogenetic pathways to establish metameric body organization. Even in the life history of a single specimen, different mechanisms may act on the level of gene expression, cell proliferation, tissue differentiation and organ system formation in individual segments. Accordingly, in some polychaete annelids the first three pairs of segmental peripheral neurons arise synchronously, while the metameric commissures of the ventral nervous system form in anterior-posterior progression. Contrary to traditional belief, loss of segmentation may have occurred more often than commonly assumed, as exemplified in the sipunculans, which show remnants of segmentation in larval stages but are unsegmented as adults. The developmental plasticity and potential evolutionary lability of segmentation nourishes the controversy of a segmented bilaterian ancestor versus multiple independent evolution of segmentation in respective metazoan lineages. PMID:19513266

  3. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  4. [Bilateral segmental neurofibromatosis].

    PubMed

    Rose, I; Vakilzadeh, F

    1991-12-01

    Segmental neurofibromatosis is a rare type of neurofibromatosis. We report a case of bilateral manifestation, review the literature on this extremely uncommon variant, and discuss the possible causative mechanisms and the genetic risk of segmental neurofibromatosis. PMID:1765491

  5. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  6. A Pulmonary Sequestered Segment with an Aberrant Pulmonary Arterial Supply: A Case of Unique Anomaly

    PubMed Central

    Kim, Minchul; An, Jin Kyung; Jung, Yoon Young; Choi, Yun Sun

    2016-01-01

    We presented a rare case of a 64-year-old man with a combined anomaly of the bronchus and pulmonary artery that was detected incidentally. Computed tomography showed a hyperlucent, aerated sequestered segment of the right lower lung with an independent ectopic bronchus, which had no connection to the other airway. The affected segment was supplied by its own aberrant pulmonary artery branch from the right pulmonary trunk. This anomaly cannot be classified with any of the previously reported anomalies. PMID:26957918

  7. Possible and Impossible Segments.

    ERIC Educational Resources Information Center

    Walker, Rachel; Pullum, Geoffrey K.

    1999-01-01

    Examines the relationship between phonetic possibility and phonological permissibility of segment types. Specific focus is on whether there are any phonetically impossible segments phonologically permissible, and whether there are any phonetically possible segments phonologically impermissable. Examines the case of nasality spreading in Sudanese…

  8. Automated construction of arterial and venous trees in retinal images.

    PubMed

    Hu, Qiao; Abràmoff, Michael D; Garvin, Mona K

    2015-10-01

    While many approaches exist to segment retinal vessels in fundus photographs, only a limited number focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network, named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connectivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V) trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using an automatic vessel segmentation as input. PMID:26636114

  9. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  10. Effects of tracheal airway occlusion on hyoid muscle length and upper airway volume.

    PubMed

    van Lunteren, E; Haxhiu, M A; Cherniack, N S

    1989-12-01

    Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles. PMID:2606835

  11. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  12. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  13. Athletic Trainers' Knowledge Regarding Airway Adjuncts

    ERIC Educational Resources Information Center

    Edler, Jessica R.; Eberman, Lindsey E.; Kahanov, Leamor; Roman, Christopher; Mata, Heather Lynne

    2015-01-01

    Context: Research suggests that knowledge gaps regarding the appropriate use of airway adjuncts exist among various health care practitioners, and that knowledge is especially limited within athletic training. Objective: To determine the relationship between perceived knowledge (PK) and actual knowledge (AK) of airway adjunct use and the…

  14. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  15. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  16. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  17. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  18. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  19. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  20. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  1. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  2. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  3. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  4. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  5. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  6. Airway tissue engineering for congenital laryngotracheal disease.

    PubMed

    Maughan, Elizabeth; Lesage, Flore; Butler, Colin R; Hynds, Robert E; Hewitt, Richard; Janes, Sam M; Deprest, Jan A; Coppi, Paolo De

    2016-06-01

    Regenerative medicine offers hope of a sustainable solution for severe airway disease by the creation of functional, immunocompatible organ replacements. When considering fetuses and newborns, there is a specific spectrum of airway pathologies that could benefit from cell therapy and tissue engineering applications. While hypoplastic lungs associated with congenital diaphragmatic hernia (CDH) could benefit from cellular based treatments aimed at ameliorating lung function, patients with upper airway obstruction could take advantage from a de novo tissue engineering approach. Moreover, the international acceptance of the EXIT procedure as a means of securing the precarious neonatal airway, together with the advent of fetal surgery as a method of heading off postnatal co-morbidities, offers the revolutionary possibility of extending the clinical indication for tissue-engineered airway transplantation to infants affected by diverse severe congenital laryngotracheal malformations. This article outlines the necessary basic components for regenerative medicine solutions in this potential clinical niche. PMID:27301606

  7. Regulation of human airway surface liquid.

    PubMed

    Widdicombe, J H; Widdicombe, J G

    1995-01-01

    Human airways are lined with a film of liquid from 5-100 microns in depth, consisting of a periciliary sol around and a mucous gel above the cilia. Microscopical studies have shown the sol to be invariably the same depth as the length of the cilia, and we discuss possible reasons for this. The composition and sources of the airway surface liquid are also described. In addition the forces regulating its volume are analyzed. Several airway diseases are characterised by dramatic changes in the volume and composition of airway liquid. We review recent research suggesting that the accumulation of airway mucous secretions in cystic fibrosis is caused by alterations in active transport of ions and water across both the surface and gland epithelia. PMID:7740210

  8. Awake Craniotomy: A New Airway Approach.

    PubMed

    Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew

    2016-02-01

    Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique. PMID:26579845

  9. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  10. Anaesthetic management of acute airway obstruction

    PubMed Central

    Wong, Patrick; Wong, Jolin; Mok, May Un Sam

    2016-01-01

    The acutely obstructed airway is a medical emergency that can potentially result in serious morbidity and mortality. Apart from the latest advancements in anaesthetic techniques, equipment and drugs, publications relevant to our topic, including the United Kingdom’s 4th National Audit Project on major airway complications in 2011 and the updated American Society of Anesthesiologists’ difficult airway algorithm of 2013, have recently been published. The former contained many reports of adverse events associated with the management of acute airway obstruction. By analysing the data and concepts from these two publications, this review article provides an update on management techniques for the acutely obstructed airway. We discuss the principles and factors relevant to the decision-making process in formulating a logical management plan. PMID:26996162

  11. Anaesthetic management of acute airway obstruction.

    PubMed

    Wong, Patrick; Wong, Jolin; Mok, May Un Sam

    2016-03-01

    The acutely obstructed airway is a medical emergency that can potentially result in serious morbidity and mortality. Apart from the latest advancements in anaesthetic techniques, equipment and drugs, publications relevant to our topic, including the United Kingdom's 4th National Audit Project on major airway complications in 2011 and the updated American Society of Anesthesiologists' difficult airway algorithm of 2013, have recently been published. The former contained many reports of adverse events associated with the management of acute airway obstruction. By analysing the data and concepts from these two publications, this review article provides an update on management techniques for the acutely obstructed airway. We discuss the principles and factors relevant to the decision-making process in formulating a logical management plan. PMID:26996162

  12. Multi-segment detector

    NASA Technical Reports Server (NTRS)

    George, Peter K. (Inventor)

    1978-01-01

    A plurality of stretcher detector segments are connected in series whereby detector signals generated when a bubble passes thereby are added together. Each of the stretcher detector segments is disposed an identical propagation distance away from passive replicators wherein bubbles are replicated from a propagation path and applied, simultaneously, to the stretcher detector segments. The stretcher detector segments are arranged to include both dummy and active portions thereof which are arranged to permit the geometry of both the dummy and active portions of the segment to be substantially matched.

  13. Tc-99m HIDA scintigraphy in segmental biliary obstruction

    SciTech Connect

    Zeman, R.K.; Gold, J.A.; Gluck, L.; Caride, V.J.; Burrell, M.; Hoffer, P.B.

    1981-05-01

    Segmental biliary obstruction as a result of primary or secondary hepatic malignancy has been reported with increasing frequency. For two representative patients, the clinical and Tc-99m HIDA scintigraphic findings in segmetal biliary obstruction are described. The presence of photon-deficient dilated bile ducts in one segment of the biliary tree is highly suggestive of localized biliary obstruction and should be considered in the patient with suspected or proven hepatic malignancy despite the absence of jaundice.

  14. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  15. Puberty and Upper Airway Dynamics During Sleep

    PubMed Central

    Bandla, Preetam; Huang, Jingtao; Karamessinis, Laurie; Kelly, Andrea; Pepe, Michelle; Samuel, John; Brooks, Lee; Mason, Thornton. A.; Gallagher, Paul R.; Marcus, Carole L.

    2008-01-01

    Study Objectives: The upper airway compensatory response to subatmospheric pressure loading declines with age. The epidemiology of obstructive sleep apnea suggests that sex hormones play a role in modulating upper airway function. Sex hormones increase gradually during puberty, from minimally detectable to adult levels. We hypothesized that the upper airway response to subatmospheric pressure loading decreased with increasing pubertal Tanner stage in males but remained stable during puberty in females. Design: Upper airway dynamic function during sleep was measured over the course of puberty. Participants: Normal subjects of Tanner stages 1 to 5. Measurements: During sleep, maximal inspiratory airflow was measured while varying the level of nasal pressure. The slope of the upstream pressure-flow relationship (SPF) was measured. Results: The SPF correlated with age and Tanner stage. However, the relationship with Tanner stage became nonsignificant when the correlation due to the mutual association with age was removed. Females had a lower SPF than males. Conclusions: In both sexes, the upper airway compensatory response to subatmospheric pressure loading decreased with age rather than degree of pubertal development. Thus, changes in sex hormones are unlikely to be a primary modulator of upper airway function during the transition from childhood to adulthood. Although further studies of upper airway structural changes during puberty are needed, we speculate that the changes in upper airway function with age are due to the depressant effect of age on ventilatory drive, leading to a decrease in upper airway neuromotor tone. Citation: Bandla P; Huang J; Karamessinis L; Kelly A; Pepe M; Samuel J; Brooks L; Mason TA; Gallagher PR; Marcus CL. Puberty and Upper Airway Dynamics During Sleep. SLEEP 2008;31(4):534-541. PMID:18457241

  16. Color image segmentation

    NASA Astrophysics Data System (ADS)

    McCrae, Kimberley A.; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.

    1994-03-01

    The most difficult stage of automated target recognition is segmentation. Current segmentation problems include faces and tactical targets; previous efforts to segment these objects have used intensity and motion cues. This paper develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images; and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The paper will demonstrate that color and motion cues can enhance a computer segmentation system. Results from segmenting faces both from the AFIT data base and from video taped television are presented; results from tactical targets such as tanks and airplanes are also given. Color preprocessing is shown to greatly improve the segmentation in most cases.

  17. Fault tree handbook

    SciTech Connect

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation.

  18. Characteristics of the upper airway pressure-flow relationship during sleep.

    PubMed

    Hudgel, D W; Hendricks, C; Hamilton, H B

    1988-05-01

    In examining the mechanical properties of the respiratory system during sleep in healthy humans, we observed that the inspiratory pressure-flow relationship of the upper airway was often flow limited and too curvilinear to be predicted by the Rohrer equation. The purposes of this study were 1) to describe a mathematical model that would better define the inspiratory pressure-flow relationship of the upper airway during sleep and 2) to identify the segment of airway responsible for the sleep-related flow limitation. We measured nasal and total supralaryngeal pressure and flow during wakefulness and stage 2 sleep in five healthy male subjects lying supine. A right rectangular hyperbolic equation, V = (alpha P)/(beta + P), where V is flow, P is pressure, alpha is an asymptote for peak flow, and beta is pressure at a flow of alpha/2, was used in its linear form, P/V = (beta/alpha) + (P/alpha). The goodness of fit of the new equation was compared with that for the linearized Rohrer equation P/V = K1 + K2V. During wakefulness the fit of the hyperbolic equation to the actual pressure-flow data was equivalent to or significantly better than that for the Rohrer equation. During sleep the fit of the hyperbolic equation was superior to that for the Rohrer equation. For the whole supralaryngeal airway during sleep, the correlation coefficient for the hyperbolic equation was 0.90 +/- 0.50, and for the Rohrer equation it was 0.49 +/- 0.25. The flow-limiting segment was located within the pharyngeal airway, not in the nose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3391893

  19. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  20. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure. PMID:26120265

  1. Categorizing Ideas about Trees: A Tree of Trees

    PubMed Central

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a “tree of trees.” Then, we categorize schools of tree-representations. Classical schools like “cladists” and “pheneticists” are recovered but others are not: “gradists” are separated into two blocks, one of them being called here “grade theoreticians.” We propose new interesting categories like the “buffonian school,” the “metaphoricians,” and those using “strictly genealogical classifications.” We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization. PMID:23950877

  2. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  3. Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa.

    PubMed

    von Garnier, Christophe; Wikstrom, Matthew E; Zosky, Graeme; Turner, Debra J; Sly, Peter D; Smith, Miranda; Thomas, Jennifer A; Judd, Samantha R; Strickland, Deborah H; Holt, Patrick G; Stumbles, Philip A

    2007-11-01

    Airway mucosal dendritic cells (AMDC) and other airway APCs continuously sample inhaled Ags and regulate the nature of any resulting T cell-mediated immune response. Although immunity develops to harmful pathogens, tolerance arises to nonpathogenic Ags in healthy individuals. This homeostasis is thought to be disrupted in allergic respiratory disorders such as allergic asthma, such that a potentially damaging Th2-biased, CD4(+) T cell-mediated inflammatory response develops against intrinsically nonpathogenic allergens. Using a mouse model of experimental allergic airways disease (EAAD), we have investigated the functional changes occurring in AMDC and other airway APC populations during disease onset. Onset of EAAD was characterized by early and transient activation of airway CD4(+) T cells coinciding with up-regulation of CD40 expression exclusively on CD11b(-) AMDC. Concurrent enhanced allergen uptake and processing occurred within all airway APC populations, including B cells, macrophages, and both CD11b(+) and CD11b(-) AMDC subsets. Immune serum transfer into naive animals recapitulated the enhanced allergen uptake observed in airway APC populations and mediated activation of naive allergen-specific, airway CD4(+) T cells following inhaled allergen challenge. These data suggest that the onset of EAAD is initiated by enhanced allergen capture and processing by a number of airway APC populations and that allergen-specific Igs play a role in the conversion of normally quiescent AMDC subsets into those capable of inducing airway CD4(+) T cell activation. PMID:17947647

  4. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma. PMID:16648239

  5. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  6. Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree

    ERIC Educational Resources Information Center

    Chen, Wei-Bang

    2012-01-01

    The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…

  7. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  8. Lung Transplantation: The State of the Airways.

    PubMed

    Husain, Aliya N; Garrity, Edward R

    2016-03-01

    Context .- Lung transplantation has become a viable option for definitive treatment of several end-stage lung diseases for which there are no other options available. However, long-term survival continues to be limited by chronic lung allograft dysfunction, which primarily affects the airways. Objective . -To highlight the complications occurring mainly in the airways of the lung transplant recipient from the early to late posttransplant periods. Data Sources .- Review literature focusing on the airways in patients with lung transplants and clinical experience of the authors. Conclusions .- Postsurgical complications and infections of the airways have decreased because of better techniques and management. Acute cellular rejection of the airways can be distinguished from infection pathologically and on cultures. Separating small from large airways need not be an issue because both are risk factors for bronchiolitis obliterans. Grading of airway rejection needs to be standardized. Chronic lung allograft dysfunction consists of both bronchiolitis obliterans and restrictive allograft syndrome, neither of which can be treated very effectively at present. PMID:26927718

  9. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  10. Breath tests and airway gas exchange.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2007-01-01

    Measuring soluble gas in the exhaled breath is a non-invasive technique used to estimate levels of respiratory, solvent, and metabolic gases. The interpretation of these measurements is based on the assumption that the measured gases exchange in the alveoli. While the respiratory gases have a low blood-solubility and exchange in the alveoli, high blood-soluble gases exchange in the airways. The effect of airway gas exchange on the interpretation of these exhaled breath measurements can be significant. We describe airway gas exchange in relation to exhaled measurements of soluble gases that exchange in the alveoli. The mechanisms of airway gas exchange are reviewed and criteria for determining if a gas exchanges in the airways are provided. The effects of diffusion, perfusion, temperature and breathing maneuver on airway gas exchange and on measurement of exhaled soluble gas are discussed. A method for estimating the impact of airway gas exchange on exhaled breath measurements is presented. We recommend that investigators should carefully control the inspired air conditions and type of exhalation maneuver used in a breath test. Additionally, care should be taken when interpreting breath tests from subjects with pulmonary disease. PMID:16413216

  11. Evolution of tree nutrition.

    PubMed

    Raven, John A; Andrews, Mitchell

    2010-09-01

    Using a broad definition of trees, the evolutionary origins of trees in a nutritional context is considered using data from the fossil record and molecular phylogeny. Trees are first known from the Late Devonian about 380 million years ago, originated polyphyletically at the pteridophyte grade of organization; the earliest gymnosperms were trees, and trees are polyphyletic in the angiosperms. Nutrient transporters, assimilatory pathways, homoiohydry (cuticle, intercellular gas spaces, stomata, endohydric water transport systems including xylem and phloem-like tissue) and arbuscular mycorrhizas preceded the origin of trees. Nutritional innovations that began uniquely in trees were the seed habit and, certainly (but not necessarily uniquely) in trees, ectomycorrhizas, cyanobacterial, actinorhizal and rhizobial (Parasponia, some legumes) diazotrophic symbioses and cluster roots. PMID:20581011

  12. Tree Classification Software

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1993-01-01

    This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.

  13. Chem-Is-Tree.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    1997-01-01

    Provides details on the chemical composition of trees including a definition of wood. Also includes an activity on anthocyanins as well as a discussion of the resistance of wood to solvents and chemicals. Lists interesting products from trees. (DDR)

  14. Refining image segmentation by integration of edge and region data

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Tilton, James C.

    1992-01-01

    An iterative parallel region growing (IPRG) algorithm previously developed by Tilton (1989) produces hierarchical segmentations of images from finer to coarser resolution. An ideal segmentation does not always correspond to one single iteration but to several different ones, each one producing the 'best' result for a separate part of the image. With the goal of finding this ideal segmentation, the results of the IPRG algorithm are refined by utilizing some additional information, such as edge features, and by interpreting the tree of hierarchical regions.

  15. Endoscopic anatomy and map of the equine bronchial tree.

    PubMed

    Smith, B L; Aguilera-Tejero, E; Tyler, W S; Jones, J H; Hornof, W J; Pascoe, J R

    1994-07-01

    To develop a bronchoscopic map of the equine respiratory tree, the major airways of the lungs of 6 healthy Thoroughbred horses were systematically explored with a flexible fibreoptic endoscope through a tracheostomy while the horses were sedated in stocks. With the carina as the reference point, measurements were made of distances to the branches of the major airways using markers on the shaft of the endoscope. All branches were explored until the narrowing of their diameters prevented further advancement of the endoscope. Positions of origins of branches from the parent bronchus were recorded in relation to a 12 h clock. Branching patterns of the right and left lungs were similar. Seventeen branches of the principal and caudal lobar bronchi of the left lung, and 18 branches of the principal and caudal lobar bronchi of the right lung were identified. Mean explorable distances from the carina to the ends of the right and left caudal lobar bronchi were 34.0 +/- 3.5 (sd) and 34.5 +/- 3.0 cm, respectively. Generally, smaller horses had shorter explorable bronchial lengths. Branching patterns of the parent bronchi were fairly consistent among horses, particularly the branches closest to the carina. After endoscopy and euthanasia, the lungs were removed, and dried with pressurised air flowing through them for 7-10 days. Attempts to explore the airways of the dried lungs endoscopically were relatively unsuccessful, because airways were much smaller in the dried lungs, and many of the branches were distorted when compared with their antemortem appearances. However, having a dried lung specimen as a reference during the bronchoscopic procedure was useful for maintaining orientation in the lungs. Radiographs were used to estimate the location of the origin and destination of each airway branch in relation to the nearest intercostal space. This makes the airway map useful when lesions identified radiographically are to be lavaged. PMID:8575395

  16. Secondary Reverse Slide Tracheoplasty for Airway Rescue.

    PubMed

    Kopelovich, Jonathan C; Wine, Todd M; Rutter, Michael J; Mitchell, Max B; Prager, Jeremy D

    2016-03-01

    Slide tracheoplasty is used in cases of tracheal stenosis or injury. With expanding indications for its use at tertiary centers, salvage techniques for dehiscence or restenosis after slide tracheoplasty are increasingly relevant. We present a case in which slide tracheoplasty was augmented with an anterior costochondral graft that stenosed again and ultimately failed. We salvaged this airway emergency by performing a secondary reverse slide tracheoplasty. Using this technique, we were able to establish a safe and durable airway using only native airway tissue. PMID:26897214

  17. Airways disorders and the swimming pool.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. PMID:23830132

  18. Brachycephalic airway syndrome: pathophysiology and diagnosis.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-07-01

    Brachycephalic airway syndrome (BAS) is a group of abnormalities that result in upper airway obstruction. Primary malformations include stenotic nares, elongated soft palate, and hypoplastic trachea, which cause an increase in negative pressure within the upper airways that can eventually lead to secondary abnormalities such as everted laryngeal saccules, everted tonsils, and laryngeal and tracheal collapse. Abnormal nasopharyngeal turbinates are also encountered, but have not been classified as primary or secondary. BAS is readily diagnosed, and quality of life is improved with appropriate medical and/or surgical management. PMID:22847322

  19. Decision-Tree Program

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  20. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  1. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  2. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  3. Airway nitric oxide in microgravity

    NASA Astrophysics Data System (ADS)

    Linnarsson, D.; Gustafsson, L.; Hemmingsson, Tryggve; Frostell, C.; Paiva, M.

    2005-10-01

    Nitric Oxide (NO), a molecule with a wide range of biological effects, is found in exhaled gas. Elevation of expired NO is an early sign of airway inflammation in asthma and dust inhalation. Animal experiments have demonstrated a marked increase of expired NO after venous gas emboli (bubbles, VGE), which may occur after decompression in conjunction with extravehicular activity (EVA). For this MAP project, astronauts will perform a simple inhalation-exhalation procedure weekly during their flights, and before and after EVA. Furthermore, the microgravity environment offers a possibility to gain new insights into how and where NO is formed in the lungs and what local effects NO may have there. The planned experiments have been made possible by recent developments of new techniques by the team's industrial partners; Aerocrine has developed a highly compact and accurate NO analyser, and Linde Gas Theapeutics has developed a highly compact device for NO administration in the inhaled air.

  4. Individual Tree of Urban Forest Extraction from Very High Density LIDAR Data

    NASA Astrophysics Data System (ADS)

    Moradi, A.; Satari, M.; Momeni, M.

    2016-06-01

    Airborne LiDAR (Light Detection and Ranging) data have a high potential to provide 3D information from trees. Most proposed methods to extract individual trees detect points of tree top or bottom firstly and then using them as starting points in a segmentation algorithm. Hence, in these methods, the number and the locations of detected peak points heavily effect on the process of detecting individual trees. In this study, a new method is presented to extract individual tree segments using LiDAR points with 10cm point density. In this method, a two-step strategy is performed for the extraction of individual tree LiDAR points: finding deterministic segments of individual trees points and allocation of other LiDAR points based on these segments. This research is performed on two study areas in Zeebrugge, Bruges, Belgium (51.33° N, 3.20° E). The accuracy assessment of this method showed that it could correctly classified 74.51% of trees with 21.57% and 3.92% under- and over-segmentation errors respectively.

  5. Winter Birch Trees

    ERIC Educational Resources Information Center

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  6. Illumination Under Trees

    SciTech Connect

    Max, N

    2002-08-19

    This paper is a survey of the author's work on illumination and shadows under trees, including the effects of sky illumination, sun penumbras, scattering in a misty atmosphere below the trees, and multiple scattering and transmission between leaves. It also describes a hierarchical image-based rendering method for trees.

  7. Minnesota's Forest Trees. Revised.

    ERIC Educational Resources Information Center

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  8. The Wish Tree Project

    ERIC Educational Resources Information Center

    Brooks, Sarah DeWitt

    2010-01-01

    This article describes the author's experience in implementing a Wish Tree project in her school in an effort to bring the school community together with a positive art-making experience during a potentially stressful time. The concept of a wish tree is simple: plant a tree; provide tags and pencils for writing wishes; and encourage everyone to…

  9. Diary of a Tree.

    ERIC Educational Resources Information Center

    Srulowitz, Frances

    1992-01-01

    Describes an activity to develop students' skills of observation and recordkeeping by studying the growth of a tree's leaves during the spring. Children monitor the growth of 11 tress over a 2-month period, draw pictures of the tree at different stages of growth, and write diaries of the tree's growth. (MDH)

  10. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  11. Comprehensive Airway Management of Patients with Maxillofacial Trauma

    PubMed Central

    Kellman, Robert M.; Losquadro, William D.

    2008-01-01

    Airway management in patients with maxillofacial trauma is complicated by injuries to routes of intubation, and the surgeon is frequently asked to secure the airway. Airway obstruction from hemorrhage, tissue prolapse, or edema may require emergent intervention for which multiple intubation techniques exist. Competing needs for both airway and surgical access create intraoperative conflicts during repair of maxillofacial fractures. Postoperatively, edema and maxillomandibular fixation place the patient at risk for further airway compromise. PMID:22110788

  12. Mechanisms Linking Advanced Airway Management and Cardiac Arrest Outcomes

    PubMed Central

    Benoit, Justin L.; Prince, David K.; Wang, Henry E.

    2015-01-01

    Advanced airway management – such as endotracheal intubation (ETI) or supraglottic airway (SGA) insertion – is one of the most prominent interventions in out-of-hospital cardiac arrest (OHCA) resuscitation. While randomized controlled trials are currently in progress to identify the best advanced airway technique in OHCA, the mechanisms by which airway management may influence OHCA outcomes remain unknown. We provide a conceptual model describing potential mechanisms linking advanced airway management with OHCA outcomes. PMID:26073275

  13. Probabilistic atlas based labeling of the cerebral vessel tree

    NASA Astrophysics Data System (ADS)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  14. Sensor-oriented feature usability evaluation in fingerprint segmentation

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yin, Yilong; Yang, Gongping

    2013-06-01

    Existing fingerprint segmentation methods usually process fingerprint images captured by different sensors with the same feature or feature set. We propose to improve the fingerprint segmentation result in view of an important fact that images from different sensors have different characteristics for segmentation. Feature usability evaluation, which means to evaluate the usability of features to find the personalized feature or feature set for different sensors to improve the performance of segmentation. The need for feature usability evaluation for fingerprint segmentation is raised and analyzed as a new issue. To address this issue, we present a decision-tree-based feature-usability evaluation method, which utilizes a C4.5 decision tree algorithm to evaluate and pick the best suitable feature or feature set for fingerprint segmentation from a typical candidate feature set. We apply the novel method on the FVC2002 database of fingerprint images, which are acquired by four different respective sensors and technologies. Experimental results show that the accuracy of segmentation is improved, and time consumption for feature extraction is dramatically reduced with selected feature(s).

  15. Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography

    PubMed Central

    Wijesundara, Kushal; Zdanski, Carlton; Kimbell, Julia; Price, Hillel; Iftimia, Nicusor; Oldenburg, Amy L.

    2014-01-01

    Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light source, the system exhibited an SNR roll-off of < 10 dB over a 10 mm range. Operating at 10 rotations/s, the average accuracy of segmented cross-sectional areas was found to be −1.4 ± 1.0%. To demonstrate the capability of this system, aOCT was performed on a pediatric airway phantom and on ex vivo swine trachea. The ability for quantitative endoscopy afforded by this system can aid in diagnosis, medical and surgical decision making, and predictive modeling of upper airway obstructive disorders. PMID:24688814

  16. Nasal airway responses to nasal continuous positive airway pressure breathing: An in-vivo pilot study.

    PubMed

    White, David E; Bartley, Jim; Shakeel, Muhammad; Nates, Roy J; Hankin, Robin K S

    2016-06-14

    The nasal cycle, through variation in nasal airflow partitioning, allows the upper airway to accommodate the contrasting demands of air conditioning and removal of entrapped air contaminants. The purpose of this study was to investigate the influence of nasal continuous positive airway pressure (nCPAP) breathing has on both nasal airflow partitioning and nasal geometry. Using a custom-made nasal mask, twenty healthy participants had the airflow in each naris measured during normal nasal breathing followed by nCPAP breathing. Eight participants also underwent magnetic resonance imaging (MRI) of the nasal region during spontaneous nasal breathing, and then nCPAP breathing over a range of air pressures. During nCPAP breathing, a simultaneous reduction in airflow through the patent airway together with a corresponding increase in airway flow within the congested nasal airway were observed in sixteen of the twenty participants. Nasal airflow resistance is inversely proportional to airway cross-sectional area. MRI data analysis during nCPAP breathing confirmed airway cross-sectional area reduced along the patent airway while the congested airway experienced an increase in this parameter. During awake breathing, nCPAP disturbs the normal inter-nasal airflow partitioning. This could partially explain the adverse nasal drying symptoms frequently reported by many users of this therapy. PMID:27173595

  17. Airway registry: a performance improvement surveillance project of emergency department airway management.

    PubMed

    Phelan, Michael P; Glauser, Jonathan; Yuen, Ho-Wang A; Sturges-Smith, Elizabeth; Schrump, Stefanie E

    2010-01-01

    The aim of this study was to determine if use of a standardized airway data collection sheet can survey airway management practices in an emergency department. Success rates and trends from the authors' facility have been benchmarked against the National Emergency Airway Registry (NEAR). This study included all patients requiring invasive airway management during a 21-month period (July 1, 2005, through March 31, 2007). An audit form was developed and implemented to collect data on intubations. During the study period, 224 patients required invasive airway control. Of all airways managed by emergency medicine residents, the intubation success rate was 99% (200/203; 95% confidence interval [CI] = 96%-100%), with 3% of those (6/203; 95% CI = 1%-6%) requiring more than 3 attempts; 3 patients (1%; 95% CI = 0%-4%) could not be intubated and required a surgical airway. Use of an airway registry based on the NEAR registry as a benchmark of rates and types of successful intubation allows comparison of airway practices. PMID:20505111

  18. An efficient conditional random field approach for automatic and interactive neuron segmentation.

    PubMed

    Uzunbas, Mustafa Gokhan; Chen, Chao; Metaxas, Dimitris

    2016-01-01

    We present a new graphical-model-based method for automatic and interactive segmentation of neuron structures from electron microscopy (EM) images. For automated reconstruction, our learning based model selects a collection of nodes from a hierarchical merging tree as the proposed segmentation. More specifically, this is achieved by training a conditional random field (CRF) whose underlying graph is the watershed merging tree. The maximum a posteriori (MAP) prediction of the CRF is the output segmentation. Our results are comparable to the results of state-of-the-art methods. Furthermore, both the inference and the training are very efficient as the graph is tree-structured. The problem of neuron segmentation requires extremely high segmentation quality. Therefore, proofreading, namely, interactively correcting mistakes of the automatic method, is a necessary module in the pipeline. Based on our efficient tree-structured inference algorithm, we develop an interactive segmentation framework which only selects locations where the model is uncertain for a user to proofread. The uncertainty is measured by the marginals of the graphical model. Only giving a limited number of choices makes the user interaction very efficient. Based on user corrections, our framework modifies the merging tree and thus improves the segmentation globally. PMID:26210001

  19. Multiscale Segmentation of Polarimetric SAR Image Based on Srm Superpixels

    NASA Astrophysics Data System (ADS)

    Lang, F.; Yang, J.; Wu, L.; Li, D.

    2016-06-01

    Multi-scale segmentation of remote sensing image is more systematic and more convenient for the object-oriented image analysis compared to single-scale segmentation. However, the existing pixel-based polarimetric SAR (PolSAR) image multi-scale segmentation algorithms are usually inefficient and impractical. In this paper, we proposed a superpixel-based binary partition tree (BPT) segmentation algorithm by combining the generalized statistical region merging (GSRM) algorithm and the BPT algorithm. First, superpixels are obtained by setting a maximum region number threshold to GSRM. Then, the region merging process of the BPT algorithm is implemented based on superpixels but not pixels. The proposed algorithm inherits the advantages of both GSRM and BPT. The operation efficiency is obviously improved compared to the pixel-based BPT segmentation. Experiments using the Lband ESAR image over the Oberpfaffenhofen test site proved the effectiveness of the proposed method.

  20. Electromigration resistance in a short three-contact interconnect tree

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Choi, Z.-S.; Thompson, C. V.; Gan, C. L.; Pey, K. L.; Choi, W. K.; Hwang, N.

    2006-05-01

    Electromigration has been characterized in via-terminated interconnect lines with additional vias in the middle, creating two adjacent segments that can be stressed independently. The mortality of a segment was found to depend on the direction and magnitude of the current in the adjacent segment, confirming that there is not a fixed value of the product of the current density and segment length, jL, that defines immortality in individual segments that are part of a multisegment interconnect tree. Instead, it is found that the probability of failure of a multisegment tree increases with the increasing value of an effective jL product defined in earlier work. However, contrary to expectations, the failures were still observed when (jL)eff was less than the critical jL product for which lines were found to be immortal in single-segment test structures. It is argued that this is due to reservoir effects associated with unstressed segments or due to liner failure at the central via. Multisegment test structures are therefore shown to reveal more types of failure mechanisms and mortality conditions that are not found in tests with single-segment structures.

  1. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  2. Therapeutic bronchoscopic interventions for malignant airway obstruction

    PubMed Central

    Dalar, Levent; Özdemir, Cengiz; Abul, Yasin; Karasulu, Levent; Sökücü, Sinem Nedime; Akbaş, Ayşegül; Altın, Sedat

    2016-01-01

    Abstract There is no definitive consensus about the factors affecting the choice of interventional bronchoscopy in the management of malignant airway obstruction. The present study defines the choice of the interventional bronchoscopic modality and analyzes the factors influencing survival in patients with malignant central airway obstruction. Totally, over 7 years, 802 interventional rigid bronchoscopic procedures were applied in 547 patients having malignant airway obstruction. There was a significant association between the type of stent and the site of the lesion in the present study. Patients with tracheal involvement and/or involvement of the main bronchi had the worst prognosis. The sites of the lesion and endobronchial treatment modality were independent predictors of survival in the present study. The selection of different types of airway stents can be considered on the base of site of the lesion. Survival can be estimated based on the site of the lesion and endobronchial brochoscopic modality used. PMID:27281104

  3. BEHAVIOR OF CIGARETTE SMOKE IN HUMAN AIRWAYS

    EPA Science Inventory

    Experimental deposition patterns of cigarette smoke in surrogate human airway systems are very heterogeneous. article deposits are enhanced at predictable, well-defined morphological regions; most specifically, carinal ridges within bifurcation zones, and along posterior sections...

  4. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  5. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  6. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  7. 21 CFR 868.5810 - Airway connector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... airway connector is a device intended to connect a breathing gas source to a tracheal tube, tracheostomy tube, or mask. (b) Classification. Class I (general controls). The device is exempt from the...

  8. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  9. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  10. Virtual Airway Skills Trainer (VAST) Simulator.

    PubMed

    Demirel, Doga; Yu, Alexander; Halic, Tansel; Sankaranarayanan, Ganesh; Ryason, Adam; Spindler, David; Butler, Kathryn L; Cao, Caroline; Petrusa, Emil; Molina, Marcos; Jones, Dan; De, Suvranu; Demoya, Marc; Jones, Stephanie

    2016-01-01

    This paper presents a simulation of Virtual Airway Skill Trainer (VAST) tasks. The simulated tasks are a part of two main airway management techniques; Endotracheal Intubation (ETI) and Cricothyroidotomy (CCT). ETI is a simple nonsurgical airway management technique, while CCT is the extreme surgical alternative to secure the airway of a patient. We developed identification of Mallampati class, finding the optimal angle for positioning pharyngeal/mouth axes tasks for ETI and identification of anatomical landmarks and incision tasks for CCT. Both ETI and CCT simulators were used to get physicians' feedback at Society for Education in Anesthesiology and Association for Surgical Education spring meetings. In this preliminary validation study, total 38 participants for ETI and 48 for CCT performed each simulation task and completed pre and post questionnaires. In this work, we present the details of the simulation for the tasks and also the analysis of the collected data from the validation study. PMID:27046559

  11. Airway management for cervical spine surgery.

    PubMed

    Farag, Ehab

    2016-03-01

    Cervical spine surgery is one of the most commonly performed spine surgeries in the United States, and 90% of the cases are related to degenerative cervical spine disease (the rest to cervical spine trauma and/or instability). The airway management for cervical spine surgery represents a crucial step in the anesthetic management to avoid injury to the cervical cord. The crux for upper airway management for cervical spine surgery is maintaining the neck in a neutral position with minimal neck movement during endotracheal intubation. Therefore, the conventional direct laryngoscopy (DL) can be unsuitable for securing the upper airway in cervical spine surgery, especially in cases of cervical spine instability and myelopathy. This review discusses the most recent evidence-based facts of the main advantages and limitations of different techniques available for upper airway management for cervical spine surgery. PMID:27036600

  12. Endotracheal Tube Management and Obstructed Airway.

    PubMed

    Sancheti, Manu; Force, Seth

    2015-08-01

    Thoracic surgery encompasses a wide array of surgical techniques, most of which require lung isolation for surgical exposure in the pleural cavity; this, in turn, demands an extensive knowledge of respiratory mechanics and modalities of airway control. Likewise, effective treatment of an acute central airway obstruction calls for a systematic approach using clear communication between teams and a comprehensive knowledge of available therapeutic modalities by the surgeon. PMID:26210924

  13. Medical management considerations for upper airway disease.

    PubMed

    Spaulding, G L

    1992-06-01

    The conducting airways, also commonly referred to as the upper airways, provide for the passage of air to and from the atmosphere and lungs. Anatomical components include the nasal passages, pharynx, larynx, trachea, and mainstem bronchi. Clinical problems involving the conducting airways can be manifested by relatively mild clinical signs of stertorous breathing, by life-threatening dyspnea, or by chronic bouts of inspiratory stridor and cough. Concurrent disease of the lower respiratory system (ie, chronic bronchitis) as well as other organ systems (ie, cardiovascular, nervous, endocrine) may significantly contribute to the etiology and pathophysiology of upper airway disease. Diagnosis of the diseases of the conducting airways is primarily based on history and physical examination. The dynamic nature of some conditions, related to the phases of respiration, can make diagnosis more difficult. In addition to direct visualization, radiographic and endoscopic evaluation are often useful. Many upper airway problems, especially congenital conditions, lend themselves to surgical palliation that should be performed as early in life as possible. Medical management is often directed at treating underlying diseases and the relief of clinical signs. Historically, the use of variety of drugs have been advocated and frequently include decongestants, cough suppressants, bronchodilators, glucocorticoids, and antibiotics. However, their use may be detrimental and contraindicated. In addition, therapy for some conditions (ie, laryngeal paralysis and intrathoracic tracheal collapse) may be better directed at increasing airway muscle tone in order to stabilized airway patency. Therapeutic agents that may be useful include aspirin and digitalis. The overall objective to medical management must be to balance potential therapeutic benefit against untoward effects in order to minimize clinical signs and to improve the animal's quality of life. PMID:1643322

  14. Tracheal and airway collapse in dogs.

    PubMed

    Maggiore, Ann Della

    2014-01-01

    Tracheal and airway collapse (bronchomalacia) are common causes of chronic cough in middle-aged to older dogs where weakening of cartilage within the respiratory system leads to narrowing of airways, coughing, wheezing, and other secondary effects. Successful treatment involves correct identification of the problem, recognition of concurrent problems, and appropriate medical therapy. Surgical and noninvasive treatment options are becoming readily available, and it is important to understand indications for such procedures. PMID:24268337

  15. Basolateral chloride current in human airway epithelia.

    PubMed

    Itani, Omar A; Lamb, Fred S; Melvin, James E; Welsh, Michael J

    2007-10-01

    Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement. PMID:17660331

  16. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  17. Trichobezoar Causing Airway Compromise during Esophagogastroduodenoscopy.

    PubMed

    Kao, Erica Y; Scalzitti, Nicholas J; Dion, Gregory R; Bowe, Sarah N

    2015-01-01

    Objectives. (1) Report the case of a 5-year-old female with trichotillomania and trichophagia that suffered airway compromise during esophagogastroduodenoscopy for removal of a trichobezoar. (2) Provide management recommendations for an unusual foreign body causing extubation and partial airway obstruction. Methods. Case report of a rare situation of airway compromise caused by a trichobezoar. Results. A 5-year-old patient underwent endoscopic retrieval of a gastric trichobezoar (hairball) by the gastroenterology service under general endotracheal anesthesia in a sedation unit. During removal, the hairball, due to its large size, dislodged the endotracheal tube, effectively extubating the patient. The bezoar became lodged at the cricopharyngeus muscle. Attempts to remove the bezoar or reintubation were unsuccessful. The child was able to be mask ventilated while the otolaryngology service was called. Direct laryngoscopy revealed a hairball partially obstructing the view of the glottis from its position in the postcricoid area. The hairball, still entrapped in the snare from the esophagoscope, was grasped with Magill forceps and slowly extracted. The patient was then reintubated and the airway and esophagus were reevaluated. Conclusions. Trichobezoar is an uncommon cause of airway foreign body. Careful attention to airway management during these and similar foreign body extractions can prevent inadvertent extubations. PMID:26457086

  18. Acid-sensing by airway afferent nerves

    PubMed Central

    Lee, Lu-Yuan; Gu, Qihai; Xu, Fadi; Hong, Ju-Lun

    2013-01-01

    Inhalation of acid aerosol or aspiration of acid solution evokes a stimulatory effect on airway C-fiber and Aδ afferents, which in turn causes airway irritation and triggers an array of defense reflex responses (e.g., cough, reflex bronchoconstriction, etc.). Tissue acidosis can also occur locally in the respiratory tract as a result of ischemia or inflammation, such as in the airways of asthmatic patients during exacerbation. The action of proton on the airway sensory neurons is generated by activation of two different current species: a transient (rapidly activating and inactivating) current mediated through the acid-sensing ion channels, and a slowly activating and sustained current mediated through the transient receptor potential vanilloid type 1 (TRPV1) receptor. In view of the recent findings that the expression and/or sensitivity of TRPV1 are up-regulated in the airway sensory nerves during chronic inflammatory reaction, the proton-evoked irritant effects on these nerves may play an important part in the manifestation of various symptoms associated with airway inflammatory diseases. PMID:23524016

  19. Interleukin-20 promotes airway remodeling in asthma.

    PubMed

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  20. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  1. Trichobezoar Causing Airway Compromise during Esophagogastroduodenoscopy

    PubMed Central

    Kao, Erica Y.; Scalzitti, Nicholas J.; Dion, Gregory R.; Bowe, Sarah N.

    2015-01-01

    Objectives. (1) Report the case of a 5-year-old female with trichotillomania and trichophagia that suffered airway compromise during esophagogastroduodenoscopy for removal of a trichobezoar. (2) Provide management recommendations for an unusual foreign body causing extubation and partial airway obstruction. Methods. Case report of a rare situation of airway compromise caused by a trichobezoar. Results. A 5-year-old patient underwent endoscopic retrieval of a gastric trichobezoar (hairball) by the gastroenterology service under general endotracheal anesthesia in a sedation unit. During removal, the hairball, due to its large size, dislodged the endotracheal tube, effectively extubating the patient. The bezoar became lodged at the cricopharyngeus muscle. Attempts to remove the bezoar or reintubation were unsuccessful. The child was able to be mask ventilated while the otolaryngology service was called. Direct laryngoscopy revealed a hairball partially obstructing the view of the glottis from its position in the postcricoid area. The hairball, still entrapped in the snare from the esophagoscope, was grasped with Magill forceps and slowly extracted. The patient was then reintubated and the airway and esophagus were reevaluated. Conclusions. Trichobezoar is an uncommon cause of airway foreign body. Careful attention to airway management during these and similar foreign body extractions can prevent inadvertent extubations. PMID:26457086

  2. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  3. Exercise-induced airways constriction 1

    PubMed Central

    Simonsson, Bo G.; Skoogh, B-E.; Ekström-Jodal, B.

    1972-01-01

    Airway conductance was measured in a body plethysmograph at different lung volumes before and after graded exercise. In 14 out of 19 patients, mostly asthmatics, airway conductance fell significantly after exercise. These subjects also showed other signs of an increased bronchial reactivity to different stimuli, including forced breathing, hyperventilation, and cold air, but they had no exogenous allergy. The exercise-induced bronchoconstriction could be blocked by atropine in six of the nine patients tested. Exercise-induced bronchoconstriction in patients with clinical and physiological evidence of increased airway reactivity thus seems to be primarily mediated via a vagal reflex, probably from hyperresponsive airway mechanoreceptors reacting to increased ventilatory flow or lung distension. No relation was found between PaCO2 or pH and the severity of airways constriction. Cromoglycic acid failed to block the exercise reaction in five of the six hyperreactive patients tested. In addition to or following the vagal reflex a disturbed relation between beta and alpha receptors in bronchial muscles or a release of humoral spasmogens may contribute to the progression of post-exercise airways constriction. PMID:4624586

  4. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  5. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics

    PubMed Central

    Persak, Steven C.; Sin, Sanghun; McDonough, Joseph M.; Arens, Raanan

    2011-01-01

    Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm2/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm2/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm2/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse. PMID:21852407

  6. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.

    PubMed

    Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M

    2011-12-01

    Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse. PMID:21852407

  7. Increased Mast Cell Density and Airway Responses to Allergic and Non-Allergic Stimuli in a Sheep Model of Chronic Asthma

    PubMed Central

    Van der Velden, Joanne; Barker, Donna; Barcham, Garry; Koumoundouros, Emmanuel; Snibson, Kenneth

    2012-01-01

    Background Increased mast cell (MC) density and changes in their distribution in airway tissues is thought to contribute significantly to the pathophysiology of asthma. However, the time sequence for these changes and how they impact small airway function in asthma is not fully understood. The aim of the current study was to characterise temporal changes in airway MC density and correlate these changes with functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen. Methodology/Principal Findings MC density was examined on lung tissue from four spatially separate lung segments of allergic sheep which received weekly challenges with HDM allergen for 0, 8, 16 or 24 weeks. Lung tissue was collected from each segment 7 days following the final challenge. The density of tryptase-positive and chymase-positive MCs (MCT and MCTC respectively) was assessed by morphometric analysis of airway sections immunohistochemically stained with antibodies against MC tryptase and chymase. MCT and MCTC density was increased in small bronchi following 24 weeks of HDM challenges compared with controls (P<0.05). The MCTC/MCT ratio was significantly increased in HDM challenged sheep compared to controls (P<0.05). MCT and MCTC density was inversely correlated with allergen-induced increases in peripheral airway resistance after 24 weeks of allergen exposure (P<0.05). MCT density was also negatively correlated with airway responsiveness after 24 challenges (P<0.01). Conclusions MCT and MCTC density in the small airways correlates with better lung function in this sheep model of chronic asthma. Whether this finding indicates that under some conditions mast cells have protective activities in asthma, or that other explanations are to be considered requires further investigation. PMID:22606346

  8. An Expert System For Labeling Segments In Forward Looking Infrared (FLIR) Imagery

    NASA Astrophysics Data System (ADS)

    Roberts, G. A.

    1986-03-01

    An expert system for labeling high priority potential targets, low priority potential targets, roads, trees, forests, and potential clearings in FLIR imagery is presented. This expert system consists of three stages: the initial labeling experts, initial label conflict resolution, and a final relaxation labeling stage. The techniques used in these stages are presented. Examples of segmentation and segment labeling are shown.

  9. Origins of increased airway smooth muscle mass in asthma.

    PubMed

    Berair, Rachid; Saunders, Ruth; Brightling, Christopher E

    2013-01-01

    Asthma is characterized by both chronic inflammation and airway remodeling. Remodeling--the structural changes seen in asthmatic airways--is pivotal in the pathogenesis of the disease. Although significant advances have been made recently in understanding the different aspects of airway remodeling, the exact biology governing these changes remains poorly understood. There is broad agreement that, in asthma, increased airway smooth muscle mass, in part due to smooth muscle hyperplasia, is a very significant component of airway remodeling. However, significant debate persists on the origins of these airway smooth muscle cells. In this review article we will explore the natural history of airway remodeling in asthma and we will discuss the possible contribution of progenitors, stem cells and epithelial cells in mesenchymal cell changes, namely airway smooth muscle hyperplasia seen in the asthmatic airways. PMID:23742314

  10. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  11. Identifying Standing Dead Trees in Forest Areas Based on 3d Single Tree Detection from Full Waveform LIDAR Data

    NASA Astrophysics Data System (ADS)

    Yao, W.; Krzystek, P.; Heurich, M.

    2012-07-01

    In forest ecology, a snag refers to a standing, partly or completely dead tree, often missing a top or most of the smaller branches. The accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, and forest management. Therefore, an understanding of its availability and spatial distribution is required. So far, LiDAR remote sensing has been successfully used to assess live trees and their biomass, but studies focusing on dead trees are rare. The paper develops a methodology for retrieving individual dead trees in a mixed mountain forest using features that are derived from small-footprint airborne full waveform LIDAR data. First, 3D coordinates of the laser beam reflections, the pulse intensity and width are extracted by waveform decomposition. Secondly, 3D single trees are detected by an integrated approach, which delineates both dominate tree crowns and understory small trees in the canopy height model (CHM) using the watershed algorithm followed by applying normalized cuts segmentation to merged watershed areas. Thus, single trees can be obtained as 3D point segments associated with waveform-specific features per point. Furthermore, the tree segments are delivered to feature definition process to derive geometric and reflectional features at single tree level, e.g. volume and maximal diameter of crown, mean intensity, gap fraction, etc. Finally, the spanned feature space for the tree segments is forwarded to a binary classifier using support vector machine (SVM) in order to discriminate dead trees from the living ones. The methodology is applied to datasets that have been captured with the Riegl LMSQ560 laser scanner at a point density of 25 points/m2 in the Bavarian Forest National Park, Germany, respectively under leaf-on and leaf-off conditions for Norway spruces, European beeches and Sycamore maples. The classification experiments lead in the best case to an overall accuracy of 73% in a leaf

  12. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  13. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  14. The use of laryngeal mask airway Supreme™ in rescue airway situation in the critical care unit.

    PubMed

    Siddiqui, Shahla; Seet, Edwin; Chan, Wing Yan

    2014-12-01

    We herein report a witnessed cardiopulmonary collapse of a patient with difficult mask ventilation and near-impossible laryngoscopy-cum-intubation in the critical care unit. The airway was successfully rescued with a laryngeal mask airway Supreme™, followed by an open, crash tracheostomy by the otolaryngologist. PMID:25630328

  15. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.

    PubMed

    Tavana, Hossein; Zamankhan, Parsa; Christensen, Paul J; Grotberg, James B; Takayama, Shuichi

    2011-08-01

    Airways of the peripheral lung are prone to closure at low lung volumes. Deficiency or dysfunction of pulmonary surfactant during various lung diseases compounds this event by destabilizing the liquid lining of small airways and giving rise to occluding liquid plugs in airways. Propagation of liquid plugs in airways during inflation of the lung exerts large mechanical forces on airway cells. We describe a microfluidic model of small airways of the lung that mimics airway architecture, recreates physiologic levels of pulmonary pressures, and allows studying cellular response to repeated liquid plug propagation events. Substantial cellular injury happens due to the propagation of liquid plugs devoid of surfactant. We show that addition of a physiologic concentration of a clinical surfactant, Survanta, to propagating liquid plugs protects the epithelium and significantly reduces cell death. Although the protective role of surfactants has been demonstrated in models of a propagating air finger in liquid-filled airways, this is the first time to study the protective role of surfactants in liquid plugs where fluid mechanical stresses are expected to be higher than in air fingers. Our parallel computational simulations revealed a significant decrease in mechanical forces in the presence of surfactant, confirming the experimental observations. The results support the practice of providing exogenous surfactant to patients in certain clinical settings as a protective mechanism against pathologic flows. More importantly, this platform provides a useful model to investigate various surface tension-mediated lung diseases at the cellular level. PMID:21487664

  16. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  17. Furosemide-induced airway relaxation in guinea pigs: relation to Na-K-2Cl cotransporter function.

    PubMed

    Lavallee, S L; Iwamoto, L M; Claybaugh, J R; Dressel, M V; Sato, A K; Nakamura, K T

    1997-07-01

    This study tested the hypothesis that airway relaxation to furosemide is mediated via the Na-K-2Cl cotransporter. If this mechanism exists in airway smooth muscle like in vascular smooth muscle, changes in airway relaxation should be associated with changes in Na-K-2Cl cotransporter function, and both should be substrate dependent. Tracheal rings from newborn guinea pigs were bathed in standard (STD) or varying low Cl- concentration ([Cl-]) N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Isometric relaxation to 300 microM furosemide or 10(-8) to 10(-5) M salbutamol was measured. Airway segments were incubated with rubidium-86 (86Rb) in STD or varying low [Cl-] HEPES, with and without 300 microM furosemide or 25 microM salbutamol. Furosemide was unable to reduce 86Rb uptake at 10 mM [Cl-], although relaxation was still observed in 10 mM [Cl-]. Salbutamol did not affect 86Rb uptake. This study demonstrated that there is a furosemide-sensitive Na-K-2Cl cotransporter in newborn guinea pig trachea. However, the effect of furosemide on cotransporter function did not always directly correspond to differences in relaxation, suggesting that the Na-K-2Cl cotransporter may play a major, but not exclusive, role in furosemide-induced airway relaxation. PMID:9252558

  18. Nucleotide-mediated airway clearance.

    PubMed

    Schmid, Andreas; Clunes, Lucy A; Salathe, Mathias; Verdugo, Pedro; Dietl, Paul; Davis, C William; Tarran, Robert

    2011-01-01

    A thin layer of airway surface liquid (ASL) lines the entire surface of the lung and is the first point of contact between the lung and the environment. Surfactants contained within this layer are secreted in the alveolar region and are required to maintain a low surface tension and to prevent alveolar collapse. Mucins are secreted into the ASL throughout the respiratory tract and serve to intercept inhaled pathogens, allergens and toxins. Their removal by mucociliary clearance (MCC) is facilitated by cilia beating and hydration of the ASL by active ion transport. Throughout the lung, secretion, ion transport and cilia beating are under purinergic control. Pulmonary epithelia release ATP into the ASL which acts in an autocrine fashion on P2Y(2) (ATP) receptors. The enzymatic network describes in Chap. 2 then mounts a secondary wave of signaling by surface conversion of ATP into adenosine (ADO), which induces A(2B) (ADO) receptor-mediated responses. This chapter offers a comprehensive description of MCC and the extensive ramifications of the purinergic signaling network on pulmonary surfaces. PMID:21560046

  19. Vectors for airway gene delivery.

    PubMed

    Davis, Pamela B; Cooper, Mark J

    2007-01-01

    Delivery of genes to the airway epithelium for therapeutic purposes seemed easy at first, because the epithelial cells interface with the environment and are therefore accessible. However, problems encountered were more substantial than were originally expected. Nonviral systems may be preferred for long-term gene expression, for they can be dosed repeatedly. Two nonviral gene transfer systems have been in clinical trials, lipid-mediated gene transfer and DNA nanoparticles. Both have sufficient efficiency to be candidates for correction of the cystic fibrosis defect, and both can be dosed repeatedly. However, lipid-mediated gene transfer in the first generation provokes significant inflammatory toxicity, which may be engineered out by adjustments of the lipids, the plasmid CpG content, or both. Both lipid-mediated gene transfer and DNA nanoparticles in the first generation have short duration of expression, but reengineering of the plasmid DNA to contain mostly eukaryotic sequences may address this problem. Considerable advances in the understanding of the cellular uptake and expression of these agents and in their practical utility have occurred in the last few years; these advances are reviewed here. PMID:17408235

  20. Delineation of individual tree crowns for mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Wu, Rosen; Chen, Yiping; Wen, Chenglu; Wang, Cheng; Li, Jonathan

    2016-03-01

    The information of individual trees plays an important role in urban surveying and mapping. With the development of Light Detection and Ranging (LiDAR) technology, 3-Dimenisonal (3D) structure of trees can be generated in point clouds with high spatial resolution and accuracy. Individual tree segmentations are used to derive tree structural attributes such as tree height, crown diameter, stem position etc. In this study, a framework is proposed to take advantage of the detailed structures of tree crowns which are represented in the mobile laser scanning (MLS) data. This framework consists of five steps: (1) Automatically detect and remove ground points using RANSAC; (2) Compress all the above ground points to image grid with 3D knowledge reserved; (3) Simplify and remove unqualified grids; (4) Find tree peaks using a heuristic searching method; (5) Delineate the individual tree crowns by applying a modified watershed method. In an experiment on the point clouds on Xiamen Island, China, individual tree crowns from MLS point cloud data are successfully extracted.

  1. Resolution of proteinuria in a patient with focal segmental glomerulosclerosis following BiPAP initiation for obesity hypoventilation syndrome.

    PubMed

    Hall, Isaac E; Kashgarian, Michael; Moeckel, Gilbert W; Dahl, Neera K

    2012-01-01

    Associations between secondary focal segmental glomerulosclerosis and both obesity and obstructive sleep apnea have been previously described. Current theory suggests obesity induces glomerular hyperfiltration, leading to glomerulosclerosis. We describe a case of focal segmental glomerulosclerosis in the setting of severe obesity and obstructive sleep apnea with complete resolution of heavy proteinuria following treatment with bi-level positive airway pressure. The patient's proteinuria resolved completely with treatment of obstructive sleep apnea although the patient remained morbidly obese. PMID:22185970

  2. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  3. Segment formation in Annelids: patterns, processes and evolution.

    PubMed

    Balavoine, Guillaume

    2014-01-01

    The debate on the origin of segmentation is a central question in the study of body plan evolution in metazoans. Annelids are the most conspicuously metameric animals as most of the trunk is formed of identical anatomical units. In this paper, I summarize the various patterns of evolution of the metameric body plan in annelids, showing the remarkable evolvability of this trait, similar to what is also found in arthropods. I then review the different modes of segment formation in the annelid tree, taking into account the various processes taking place in the life histories of these animals, including embryogenesis, post-embryonic development, regeneration and asexual reproduction. As an example of the variations that occur at the cellular and genetic level in annelid segment formation, I discuss the processes of teloblastic growth or posterior addition in key groups in the annelid tree. I propose a comprehensive definition for the teloblasts, stem cells that are responsible for sequential segment addition. There are a diversity of different mechanisms used in annelids to produce segments depending on the species, the developmental time and also the life history processes of the worm. A major goal for the future will be to reconstitute an ancestral process (or several ancestral processes) in the ancestor of the whole clade. This in turn will provide key insights in the current debate on ancestral bilaterian segmentation. PMID:25690963

  4. Preexposure to ozone blocks the antigen-induced late asthmatic response of the canine peripheral airways

    SciTech Connect

    Turner, C.R.; Kleeberger, S.R.; Spannhake, E.W. )

    1989-01-01

    The influence of exposure of the airways to ozone on acute allergic responsiveness has been investigated in several species. Little is known, however, about the effect of this environmental pollutant on the late asthmatic response (LAR) in animals in which it is exhibited. The purpose of this study was to evaluate this effect in the canine peripheral airways and to assess the potential role of mast cells in modulating the effect. A series of experiments on seven mongrel dogs demonstrated that the numbers of mast cells at the base of the epithelial region of small subsegmental airways exposed to 1 ppm ozone for 5 min were significantly (p less than .01) increased 3 h following exposure compared to air exposed or nonexposed control airways. In a second series of experiments performed on eight additional mongrel dogs with inherent sensitivity to Ascaris suum antigen, antigen aerosol was administered to the sublobar segment 3 h following ozone preexposure when mast cell numbers were presumed to be increased. These experiments were performed to determine whether ozone preexposure could enhance the late-phase response to antigen by virtue of acutely increasing the number of mast cells available to bind the antigen. Four of the eight dogs tested displayed a late-phase response to antigen following air-sham preexposure. In these four dogs, simultaneous ozone preexposure of a contralateral lobe completely blocked the late-phase response to antigen. These results indicate that the consequences of a single exposure to ozone persist beyond its effects on acute antigen-induced bronchoconstriction and extend to the complex processes involved with the late response. This attenuating effect of ozone is seen under conditions where mast-cell numbers in the airways are increased above baseline levels.

  5. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  6. Modeling individual trees in an urban environment using dense discrete return LIDAR

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Madhurima; van Aardt, Jan A. N.; van Leeuwen, Martin

    2015-05-01

    The urban forest is becoming increasingly important in the contexts of urban green space, carbon sequestration and offsets, and socio-economic impacts. This has led to a recent increase in attention being paid to urban environmental management. Tree biomass, specifically, is a vital indicator of carbon storage and has a direct impact on urban forest health and carbon sequestration. As an alternative to expensive and time-consuming field surveys, remote sensing has been used extensively in measuring dynamics of vegetation and estimating biomass. Light detection and ranging (LiDAR) has proven especially useful to characterize the three dimensional (3D) structure of forests. In urban contexts however, information is frequently required at the individual tree level, necessitating the proper delineation of tree crowns. Yet, crown delineation is challenging for urban trees where a wide range of stress factors and cultural influences affect growth. In this paper high resolution LiDAR data were used to infer biomass based on individual tree attributes. A multi-tiered delineation algorithm was designed to extract individual tree-crowns. At first, dominant tree segments were obtained by applying watershed segmentation on the crown height model (CHM). Next, prominent tree top positions within each segment were identified via a regional maximum transformation and the crown boundary was estimated for each of the tree tops. Finally, undetected trees were identified using a best-fitting circle approach. After tree delineation, individual tree attributes were used to estimate tree biomass and the results were validated with associated field mensuration data. Results indicate that the overall tree detection accuracy is nearly 80%, and the estimated biomass model has an adjusted-R2 of 0.5.

  7. Study of airflow in the trachea of idealized model of human tracheobronchial airways during breathing cycle

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2015-05-01

    The article deals with a numerical simulation and its verification by experiments in the trachea of idealized geometry of tracheobronchial airways by using unsteady RANS method. The breathing cycle was simulated by sinusoidal function with period of 4 seconds and tidal volume of 0.5 litres of air, which corresponds to breathing during resting condition. Results were compared with experiments measured by laser-Doppler velocimeter in eight points of four cross sections in the trachea. Model consists of the mouth cavity, larynx and tracheobronchial tree down to fourth generation of branching.

  8. Segmentation and separation of venous vasculatures in liver CT images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Hansen, Christian; Zidowitz, Stephan; Hahn, Horst K.

    2014-03-01

    Computer-aided analysis of venous vasculatures including hepatic veins and portal veins is important in liver surgery planning. The analysis normally consists of two important pre-processing tasks: segmenting both vasculatures and separating them from each other by assigning different labels. During the acquisition of multi-phase CT images, both of the venous vessels are enhanced by injected contrast agent and acquired either in a common phase or in two individual phases. The enhanced signals established by contrast agent are often not stably acquired due to non-optimal acquisition time. Inadequate contrast and the presence of large lesions in oncological patients, make the segmentation task quite challenging. To overcome these diffculties, we propose a framework with minimal user interactions to analyze venous vasculatures in multi-phase CT images. Firstly, presented vasculatures are automatically segmented adopting an efficient multi-scale Hessian-based vesselness filter. The initially segmented vessel trees are then converted to a graph representation, on which a series of graph filters are applied in post-processing steps to rule out irrelevant structures. Eventually, we develop a semi-automatic workow to refine the segmentation in the areas of inferior vena cava and entrance of portal veins, and to simultaneously separate hepatic veins from portal veins. Segmentation quality was evaluated with intensive tests enclosing 60 CT images from both healthy liver donors and oncological patients. To quantitatively measure the similarities between segmented and reference vessel trees, we propose three additional metrics: skeleton distance, branch coverage, and boundary surface distance, which are dedicated to quantifying the misalignment induced by both branching patterns and radii of two vessel trees.

  9. Interactive segmentation and visualization of DTI data using a hierarchical watershed representation.

    PubMed

    Jalba, Andrei C; Westenberg, Michel A; Roerdink, Jos B T M

    2015-03-01

    Magnetic resonance diffusion tensor imaging (DTI) measures diffusion of water molecules and is used to characterize orientation of white matter fibers and connectivity of neurological structures. Segmentation and visualization of DT images is challenging, because of low data quality and complexity of anatomical structures. In this paper, we propose an interactive segmentation approach, based on a hierarchical representation of the input DT image through a tree structure. The tree is obtained by successively merging watershed regions, based on the morphological waterfall approach, hence the name watershed tree. Region merging is done according to a combined similarity and homogeneity criterion. We introduce filters that work on the proposed tree representation, and that enable region-based attribute filtering of DTI data. Linked views between the visualizations of the simplified DT image and the tree enable a user to visually explore both data and tree at interactive rates. The coupling of filtering, semiautomatic segmentation by labeling nodes in the tree, and various interaction mechanisms support the segmentation task. Our method is robust against noise, which we demonstrate on synthetic and real DTI data. PMID:25585424

  10. Species integrity in trees.

    PubMed

    Ortiz-Barrientos, Daniel; Baack, Eric J

    2014-09-01

    From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715

  11. Image segmentation survey

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The methodologies and capabilities of image segmentation techniques are reviewed. Single linkage schemes, hybrid linkage schemes, centroid linkage schemes, histogram mode seeking, spatial clustering, and split and merge schemes are addressed.

  12. Segmentation of SAR images

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1989-01-01

    The statistical characteristics of image speckle are reviewed. Existing segmentation techniques that have been used for speckle filtering, edge detection, and texture extraction are sumamrized. The relative effectiveness of each technique is briefly discussed.

  13. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  14. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  15. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  16. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1992-11-01

    Laboratory experimental studies were carried out to investigate the factors influencing the deposition of aerosols ranging in size from 1 nm to 10 [mu]m in the human nasal, oral, pharyngeal and laryngeal airways. These experimental studies were performed in replicate upper airway physical models and in human volunteer subjects. New replicate models of the oral passage of an infant, the oral passage of an adult at two openings and the combined nasal and oral airways of an adult were constructed during the period, adding to the existing models of adult, child and infant nasal and oral airways models. Deposition studies in the adult oral and adult nasal models were performed under simulated cyclic flow conditions with 1 nm particles to compare with previously measured constant flow studies. Similar studies with inertial particles (1--10 [mu]m diameter) were performed with the adult nasal model; in both instances, results with cyclic flow were similar to constant flow results using a simple average flow rate based on inspiratory volume and time of inspiration. Human subject studies were performed with particle sizes 5--20 nm for nasal inspiration; preliminary analysis shows good agreement with model studies at several representative flow rates. Nasal inspiratory inertial deposition of 1--4 [mu]m diameter particles was measured in several adults as a function of airway dimensions; dimensional changes of the valve area by decongestion did not produce concomitant deposition changes.

  17. Acoustic simulation of a patient's obstructed airway.

    PubMed

    van der Velden, W C P; van Zuijlen, A H; de Jong, A T; Lynch, C T; Hoeve, L J; Bijl, H

    2016-01-01

    This research focuses on the numerical simulation of stridor; a high pitched, abnormal noise, resulting from turbulent airflow and vibrating tissue through a partially obstructed airway. Characteristics of stridor noise are used by medical doctors as indication for location and size of the obstruction. The relation between type of stridor and the various diseases associated with airway obstruction is unclear; therefore, simply listening to stridor is an unreliable diagnostic tool. The overall aim of the study is to better understand the relationship between characteristics of stridor noise and localization and size of the obstruction. Acoustic analysis of stridor may then in future simplify the diagnostic process, and reduce the need for more invasive procedures such as laryngoscopy under general anesthesia. In this paper, the feasibility of a coupled flow, acoustic and structural model is investigated to predict the noise generated by the obstruction as well as the propagation of the noise through the airways, taking into account a one-way coupled fluid, structure, and acoustic interaction components. The flow and acoustic solver are validated on a diaphragm and a simplified airway model. A realistic airway model of a patient suffering from a subglottic stenosis, derived from a real computed tomography scan, is further analyzed. Near the mouth, the broadband noise levels at higher frequencies increased with approximately 15-20 dB comparing the stridorous model with the healthy model, indicating stridorous sound. PMID:25567545

  18. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  19. Macrophage adaptation in airway inflammatory resolution.

    PubMed

    Kaur, Manminder; Bell, Thomas; Salek-Ardakani, Samira; Hussell, Tracy

    2015-09-01

    Bacterial and viral infections (exacerbations) are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte-macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition. PMID:26324813

  20. Simulators and difficult airway management skills.

    PubMed

    Schaefer, John J

    2004-01-01

    Although difficult airway management remains one of the leading factors in anaesthetic deaths, there have been tremendous advances in the field in the last few decades. The question is, are advanced airway management skills being taught and used? Of the numerous training tools available, simulators have the advantages of providing whole-task learning with the potential to change behaviour and, when applied to large groups of trainees, the possibility of achieving standardized application of the safest practices for a range of scenarios limited only by the creativity of the program designers. Partial-task trainers include computer-based software programs and simulators. Full-scale simulators include a variety of products from several manufacturers. To take full advantage of simulators as educational tools, curricula should be designed around a set of educational objectives that address the objectives of learning in all three skill domains (cognitive, psychomotor, and affective). Simulation experiences using partial-task or whole-task trainers should be coupled whenever feasible with a structured clinical experience in airway management. This can best be achieved through a dedicated airway management rotation. Monitored procedure logs may also be used. Whether using a simulator or in a clinical rotation, experiences should be graded, for example, gaining experience in an adult population before gaining experience in paediatrics and in each population mastering airway management skills for common scenarios before advancing to more complicated techniques such as fibreoptic bronchoscopy. PMID:14717871

  1. Segmental neurofibromatosis and malignancy.

    PubMed

    Dang, Julie D; Cohen, Philip R

    2010-01-01

    Segmental neurofibromatosis is an uncommon variant of neurofibromatosis type I characterized by neurofibromas and/or café-au-lait macules localized to one sector of the body. Although patients with neurofibromatosis type I have an associated increased risk of certain malignancies, malignancy has only occasionally been reported in patients with segmental neurofibromatosis. The published reports of patients with segmental neurofibromatosis who developed malignancy were reviewed and the characteristics of these patients and their cancers were summarized. Ten individuals (6 women and 4 men) with segmental neurofibromatosis and malignancy have been reported. The malignancies include malignant peripheral nerve sheath tumor (3), malignant melanoma (2), breast cancer (1), colon cancer (1), gastric cancer (1), lung cancer (1), and Hodgkin lymphoma (1). The most common malignancies in patients with segmental neurofibromatosis are derived from neural crest cells: malignant peripheral nerve sheath tumor and malignant melanoma. The incidence of malignancy in patients with segmental neurofibromatosis may approach that of patients with neurofibromatosis type I. PMID:21137621

  2. Airway wall thickness assessment: a new functionality in virtual bronchoscopy investigation

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Brillet, P. Y.; Prêteux, F.; Grenier, P. A.

    2007-03-01

    While classic virtual bronchoscopy offers visualization facilities for investigating the shape of the inner airway wall surface, it provides no information regarding the local thickness of the wall. Such information may be crucial for evaluating the severity of remodeling of the bronchial wall in asthma and to guide bronchial biopsies for staging of lung cancers. This paper develops a new functionality with the virtual bronchoscopy, allowing to estimate and map the information of the bronchus wall thickness on the lumen wall surface, and to display it as coded colors during endoluminal navigation. The local bronchus wall thickness estimation relies on a new automated 3D segmentation approach using strong 3D morphological filtering and model-fitting. Such an approach reconstructs the inner/outer airway wall surfaces from multi-detector CT data as follows. First, the airway lumen is segmented and its surface geometry reconstructed using either a restricted Delaunay or a Marching Cubes based triangulation approach. The lumen mesh is then locally deformed in the surface normal direction under specific force constraints which stabilize the model evolution at the level of the outer bronchus wall surface. The developed segmentation approach was validated with respect to both 3D mathematicallysimulated image phantoms of bronchus-vessel subdivisions and to state-of-the-art cross-section area estimation techniques when applied to clinical data. The investigation in virtual bronchoscopy mode is further enhanced by encoding the local wall thickness at each vertex of the lumen surface mesh and displaying it during navigation, according to a specific color map.

  3. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. PMID:26376002

  4. Prenatal detection of congenital high airway obstruction syndrome with encephalocele

    PubMed Central

    Padmanabhan, Laxmi Devi; Nampoothiri, Sheela

    2016-01-01

    Congenital high airway obstruction syndrome (CHAOS) causes secondary morphological changes which can be detected on ultrasound. Here we report a case of congenital high airway obstruction with an occipital encephalocele detected at 23 weeks of gestation. PMID:27081227

  5. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  6. Markers of airway inflammation and airway hyperresponsiveness in patients with well-controlled asthma.

    PubMed

    Leuppi, J D; Salome, C M; Jenkins, C R; Koskela, H; Brannan, J D; Anderson, S D; Andersson, M; Chan, H K; Woolcock, A J

    2001-09-01

    In steroid-naive asthmatics, airway hyperresponsiveness correlates with noninvasive markers of airway inflammation. Whether this is also true in steroid-treated asthmatics, is unknown. In 31 stable asthmatics (mean age 45.4 yrs, range 22-69; 17 females) taking a median dose of 1,000 microg inhaled corticosteroids (ICS) per day (range 100-3,600 microg x day(-1)), airway responsiveness to the "direct" agent histamine and to the "indirect" agent mannitol, lung function (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF)), exhaled nitric oxide (eNO), and number of inflammatory cells in induced sputum as a percentage of total cell count were measured. Of the 31 subjects, 16 were hyperresponsive to mannitol and 11 to histamine. The dose-response ratio (DRR: % fall in FEV1/cumulative dose) to both challenge tests was correlated (r=0.59, p=0.0004). However, DRR for histamine and DRR for mannitol were not related to basic lung function, eNO, per cent sputum eosinophils and ICS dose. In addition, NO was not related to basic lung function and per cent sputum eosinophils. In clinically well-controlled asthmatics taking inhaled corticosteroids, there is no relationship between markers of airway inflammation (such as exhaled nitric oxide and sputum eosinophils) and airway responsiveness to either direct (histamine) or indirect (mannitol) challenge. Airway hyperresponsiveness in clinically well-controlled asthmatics appears to be independent of eosinophilic airway inflammation. PMID:11589340

  7. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    PubMed

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  8. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  9. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype.

    PubMed

    Shaykhiev, Renat; Zuo, Wu-Lin; Chao, Ionwa; Fukui, Tomoya; Witover, Bradley; Brekman, Angelika; Crystal, Ronald G

    2013-07-16

    The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function. PMID:23818594

  10. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  11. BrdU Pulse Labelling In Vivo to Characterise Cell Proliferation during Regeneration and Repair following Injury to the Airway Wall in Sheep

    PubMed Central

    Yahaya, B.; McLachlan, G.; Collie, D. D. S.

    2013-01-01

    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models. PMID:23533365

  12. BrdU pulse labelling in vivo to characterise cell proliferation during regeneration and repair following injury to the airway wall in sheep.

    PubMed

    Yahaya, B; McLachlan, G; Collie, D D S

    2013-01-01

    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models. PMID:23533365

  13. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry

    PubMed Central

    Lambert, Andrew R.; O’Shaughnessy, Patrick; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Regional deposition and ventilation of particles by generation, lobe and lung during steady inhalation in a computed tomography (CT) based human airway model are investigated numerically. The airway model consists of a seven-generation human airway tree, with oral cavity, pharynx and larynx. The turbulent flow in the upper respiratory tract is simulated by large-eddy simulation. The flow boundary conditions at the peripheral airways are derived from CT images at two lung volumes to produce physiologically-realistic regional ventilation. Particles with diameter equal to or greater than 2.5 microns are selected for study because smaller particles tend to penetrate to the more distal parts of the lung. The current generational particle deposition efficiencies agree well with existing measurement data. Generational deposition efficiencies exhibit similar dependence on particle Stokes number regardless of generation, whereas deposition and ventilation efficiencies vary by lobe and lung, depending on airway morphology and airflow ventilation. In particular, regardless of particle size, the left lung receives a greater proportion of the particle bolus as compared to the right lung in spite of greater flow ventilation to the right lung. This observation is supported by the left-right lung asymmetry of particle ventilation observed in medical imaging. It is found that the particle-laden turbulent laryngeal jet flow, coupled with the unique geometrical features of the airway, causes a disproportionate amount of particles to enter the left lung. PMID:21307962

  14. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    PubMed

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features. PMID:25391359

  15. Laser applications in pediatric airway surgery

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Ahuja, Gurpreet S.; Nguyen, John D.; Crumley, Roger

    2003-06-01

    The smaller anatomy and limited access to instrumentation pose a challenge to the pediatric airway surgeon. The enhanced precision and ability to photocoagulate tissue while operating with the laser enhances the surgeon"s ability to successfully treat unique pediatric conditions such subglottic hemangiomas, congenital cysts, respiratory papillomatosis, and laryngeal or tracheal stenosis. Due to its shallow tissue penetration and thermal effect, the carbon dioxide (CO2) laser is generally considered the laser of choice for pediatric airway applications. The potential for increased scarring and damage to underlying tissue caused by the greater penetration depth and thermal effect of the Nd:YAG and KTP lasers preclude their use in this population. In this review, we will describe the specific advantages of using lasers in airway surgery, the current technology and where the current technology is deficient.

  16. MicroRNA in United Airway Diseases

    PubMed Central

    Liu, Zheng; Zhang, Xin-Hao; Callejas-Díaz, Borja; Mullol, Joaquim

    2016-01-01

    The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD. PMID:27187364

  17. MicroRNA in United Airway Diseases.

    PubMed

    Liu, Zheng; Zhang, Xin-Hao; Callejas-Díaz, Borja; Mullol, Joaquim

    2016-01-01

    The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD. PMID:27187364

  18. Innate lymphoid cells in the airways.

    PubMed

    Walker, Jennifer A; McKenzie, Andrew

    2012-06-01

    The airways, similar to other mucosal surfaces, are continuously exposed to the outside environment and a barrage of antigens, allergens, and microorganisms. Of critical importance therefore is the ability to mount rapid and effective immune responses to control commensal and pathogenic microbes, while simultaneously limiting the extent of these responses to prevent immune pathology and chronic inflammation. The function of the adaptive immune response in controlling these processes at mucosal surfaces has been well documented but the important role of the innate immune system, particularly the recently identified family of innate lymphoid cells, has only lately become apparent. In this review, we give an overview of the innate lymphoid cells that exist in the airways and examine the evidence pertaining to their emerging roles in airways immunity, inflammation, and homeostasis. PMID:22678892

  19. Use of continuous positive airway pressure reduces airway reactivity in adults with asthma

    PubMed Central

    Busk, Michael; Busk, Nancy; Puntenney, Paula; Hutchins, Janet; Yu, Zhangsheng; Gunst, Susan J.; Tepper, Robert S.

    2015-01-01

    Asthma is characterised by airway hyperreactivity, which is primarily treated with β-adrenergic bronchodilators and anti-inflammatory agents. However, mechanical strain during breathing is an important modulator of airway responsiveness and we have previously demonstrated in animal models that continuous positive airway pressure (CPAP) resulted in lower in vivo airway reactivity. We now evaluated whether using nocturnal CPAP decreased airway reactivity in clinically-stable adults with asthma. Adults with stable asthma and normal spirometry used nocturnal CPAP (8–10 cmH2O) or sham treatment (0–2 cmH2O) for 7 days. Spirometry and bronchial challenges were obtained before and after treatment. The primary outcome was the provocative concentration of methacholine causing a 20% fall in forced expiratory volume in 1 s (PC20). The CPAP group (n=16) had a significant decrease in airway reactivity (change in (Δ)logPC20 0.406, p<0.0017) while the sham group (n=9) had no significant change in airway reactivity (ΔlogPC20 0.003, p=0.9850). There was a significant difference in the change in airway reactivity for the CPAP versus the sham group (ΔlogPC20 0.41, p<0.043). Our findings indicate that chronic mechanical strain of the lungs produced using nocturnal CPAP for 7 days reduced airway reactivity in clinically stable asthmatics. Future studies of longer duration are required to determine whether CPAP can also decrease asthma symptoms and/or medication usage. PMID:22835615

  20. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including information…

  1. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  2. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  3. Tree Topology Estimation.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina

    2015-08-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004

  4. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  5. CSI for Trees

    ERIC Educational Resources Information Center

    Rubino, Darrin L.; Hanson, Deborah

    2009-01-01

    The circles and patterns in a tree's stem tell a story, but that story can be a mystery. Interpreting the story of tree rings provides a way to heighten the natural curiosity of students and help them gain insight into the interaction of elements in the environment. It also represents a wonderful opportunity to incorporate the nature of science.…

  6. Tree nut oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major tree nuts include almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, pecans, pine nuts, pistachio nuts, and walnuts. Tree nut oils are appreciated in food applications because of their flavors and are generally more expensive than other gourmet oils. Research during the last de...

  7. An image fusion method based region segmentation and complex wavelets

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Yuan, Yihui; Chang, Benkang; Han, Yiyong; Liu, Lei; Qiu, Yafeng

    2009-07-01

    A fusion algorithm for infrared and visible light images based on region segmentation and the dual-tree complex wavelet transform. Before image segmentation, morphological top-hat filtering is firstly performed on the IR image and visual images respectively and the details of the luminous area are eliminated. Morphological bottom-hat filtering is then performed on the two kinds of images respectively and the details of the dark area are eliminated. Make the top-hat filtered image subtract the bottom-hat filtered image and obtain the enhanced images. Then the threshold method is used to segment the enhanced images. After image segmentation, the DTCWT coefficients from different regions are merged separately. Finally the fused image is obtained by performing inverse DTCWT. The evaluation results show the validity of the presented algorithm.

  8. Rediscovering market segmentation.

    PubMed

    Yankelovich, Daniel; Meer, David

    2006-02-01

    In 1964, Daniel Yankelovich introduced in the pages of HBR the concept of nondemographic segmentation, by which he meant the classification of consumers according to criteria other than age, residence, income, and such. The predictive power of marketing studies based on demographics was no longer strong enough to serve as a basis for marketing strategy, he argued. Buying patterns had become far better guides to consumers' future purchases. In addition, properly constructed nondemographic segmentations could help companies determine which products to develop, which distribution channels to sell them in, how much to charge for them, and how to advertise them. But more than 40 years later, nondemographic segmentation has become just as unenlightening as demographic segmentation had been. Today, the technique is used almost exclusively to fulfill the needs of advertising, which it serves mainly by populating commercials with characters that viewers can identify with. It is true that psychographic types like "High-Tech Harry" and "Joe Six-Pack" may capture some truth about real people's lifestyles, attitudes, self-image, and aspirations. But they are no better than demographics at predicting purchase behavior. Thus they give corporate decision makers very little idea of how to keep customers or capture new ones. Now, Daniel Yankelovich returns to these pages, with consultant David Meer, to argue the case for a broad view of nondemographic segmentation. They describe the elements of a smart segmentation strategy, explaining how segmentations meant to strengthen brand identity differ from those capable of telling a company which markets it should enter and what goods to make. And they introduce their "gravity of decision spectrum", a tool that focuses on the form of consumer behavior that should be of the greatest interest to marketers--the importance that consumers place on a product or product category. PMID:16485810

  9. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  10. Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard

    2016-04-01

    Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of

  11. Tension chylothorax complicating acute malignant airway obstruction.

    PubMed

    Piastra, Marco; Pietrini, Domenico; Ruggiero, Antonio; Rizzo, Daniela; Marzano, Laura; Attinà, Giorgio; De Luca, Daniele; De Rosa, Gabriella; Conti, Giorgio

    2011-05-01

    Acute upper airway obstruction represents one of the most challenging emergencies in pediatric practice. In particular, a tension chylothorax complicating a malignant airway obstruction is a rare and life-threatening complication. We report a rapidly progressing tension chylothorax associated with a cervical mass in a 10-month-old male infant. To our knowledge, the extension of a cervical mass to the supraclavear region resulting in a compressive chylothorax represents an exceptional event in pediatrics. Early recognition and prompt treatment resulted to be essential to relieve the compression and to avoid end-stage hemodynamic and respiratory function derangement. PMID:21546802

  12. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  13. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  14. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  15. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  16. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  17. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  18. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  19. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  20. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  1. Recent insights into the relationship between airway inflammation and asthma.

    PubMed

    Siva, R; Berry, M; Pavord, I D

    2003-01-01

    There have been important recent advances in our understanding of the relationship between eosinophilic airway inflammation and airway dysfunction. Observational studies have shown that eosinophilic airway inflammation is not always present in asthma nor is it an exclusive feature of asthma. Its presence seems to be more closely linked to the presence of corticosteroid responsive airways disease and the occurrence of severe exacerbations than the presence of symptoms or the extent of airway dysfunction--indeed recent evidence suggests that in asthma these features may be more closely linked to the site of localisation of mast cells in the airway wall. One implication of this new understanding of the significance of eosinophilic airway inflammation is that it predicts that measuring airway inflammation might provide information that it is not readily available from a more traditional clinical assessment, and that patients might do better if this information is available. Recent studies support this view, showing a marked reduction in asthma exacerbation in patients with moderate to severe disease who are managed with reference to markers of airway inflammation as well as symptoms and simple tests of airway function. The development of new agents that have the potential to modulate specific aspects of airway inflammation, together with refinements in non-invasive techniques to assess the efficacy of these agents offers the prospect of further refining our understanding of the role of this aspect of the inflammatory response in asthma and other airway diseases. PMID:15148839

  2. From Family Trees to Decision Trees.

    ERIC Educational Resources Information Center

    Trobian, Helen R.

    This paper is a preliminary inquiry by a non-mathematician into graphic methods of sequential planning and ways in which hierarchical analysis and tree structures can be helpful in developing interest in the use of mathematical modeling in the search for creative solutions to real-life problems. Highlights include a discussion of hierarchical…

  3. Bootstrapping structured page segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Huanfeng; Doermann, David S.

    2003-01-01

    In this paper, we present an approach to the bootstrap learning of a page segmentation model. The idea evolves from attempts to segment dictionaries that often have a consistent page structure, and is extended to the segmentation of more general structured documents. In cases of highly regular structure, the layout can be learned from examples of only a few pages. The system is first trained using a small number of samples, and a larger test set is processed based on the training result. After making corrections to a selected subset of the test set, these corrected samples are combined with the original training samples to generate bootstrap samples. The newly created samples are used to retrain the system, refine the learned features and resegment the test samples. This procedure is applied iteratively until the learned parameters are stable. Using this approach, we do not need to initially provide a large set of training samples. We have applied this segmentation to many structured documents such as dictionaries, phone books, spoken language transcripts, and obtained satisfying segmentation performance.

  4. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  5. Cooperative processes in image segmentation

    NASA Technical Reports Server (NTRS)

    Davis, L. S.

    1982-01-01

    Research into the role of cooperative, or relaxation, processes in image segmentation is surveyed. Cooperative processes can be employed at several levels of the segmentation process as a preprocessing enhancement step, during supervised or unsupervised pixel classification and, finally, for the interpretation of image segments based on segment properties and relations.

  6. Cell migration leads to spatially distinct but clonally related airway cancer precursors

    PubMed Central

    Pipinikas, Christodoulos P; Kiropoulos, Theodoros S; Teixeira, Vitor H; Brown, James M; Varanou, Aikaterini; Falzon, Mary; Capitanio, Arrigo; Bottoms, Steven E; Carroll, Bernadette; Navani, Neal; McCaughan, Frank; George, Jeremy P; Giangreco, Adam; Wright, Nicholas A; McDonald, Stuart A C; Graham, Trevor A; Janes, Sam M

    2014-01-01

    Background Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. Methods Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. Results We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. Conclusions Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree. PMID:24550057

  7. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  8. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data

    NASA Astrophysics Data System (ADS)

    Hu, Baoxin; Li, Jili; Jing, Linhai; Judah, Aaron

    2014-02-01

    Canopy height model (CHM) derived from LiDAR (Light Detection And Ranging) data has been commonly used to generate segments of individual tree crowns for forest inventory and sustainable management. However, branches, tree crowns, and tree clusters usually have similar shapes and overlapping sizes, which cause current individual tree crown delineation methods to work less effectively on closed canopy, deciduous or mixedwood forests. In addition, the potential of 3-dimentional (3-D) LiDAR data is not fully realized by CHM-oriented methods. In this study, a framework was proposed to take advantage of the simplicity of a CHM-oriented method, detailed vertical structures of tree crowns represented in high-density LiDAR data, and any prior knowledge of tree crowns. The efficiency and accuracy of ITC delineation can be improved. This framework consists of five steps: (1) determination of dominant crown sizes; (2) generation of initial tree segments using a multi-scale segmentation method; (3) identification of “problematic” segments; (4) determination of the number of trees based on the 3-D LiDAR points in each of the identified segments; and (5) refinement of the “problematic” segments by splitting and merging operations. The proposed framework was efficient, since the detailed examination of 3-D LiDAR points was not applied to all initial segments, but only to those needed further evaluations based on prior knowledge. It was also demonstrated to be effective based on an experiment on natural forests in Ontario, Canada. The proposed framework and specific methods yielded crown maps having a good consistency with manual and visual interpretation. The automated method correctly delineated about 74% and 72% of the tree crowns in two plots with mixedwood and deciduous trees, respectively.

  9. Selective visualisation of sensory receptors in the smooth muscle layer of ex-vivo airway whole-mounts by styryl pyridinium dyes.

    PubMed

    De Proost, Ian; Pintelon, Isabel; Brouns, Inge; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2007-09-01

    Recently, we established the location, morphology and neurochemical coding of vagal smooth-muscle-associated airway receptors (SMARs) in rat lungs. These receptors were characterised as branching laminar terminals that originated from myelinated nerve fibres and were intercalated between airway smooth-muscle bundles. To allow the direct physiological examination of these receptors, the present investigation aimed at visualising SMARs in airway whole-mounts of rat and mouse lungs ex vivo. Short incubation with various styryl pyridinium dyes (AM1-43, FM2-10, FM4-64 or 4-Di-2-ASP) gave a highly selective fluorescent visualisation of both laminar nerve terminals and myelinated fibres from which they originated throughout the intrapulmonary airway tree in mouse and in rat. The reliable and specific labelling of SMARs ex vivo with these lipophilic membrane dyes was confirmed via immunostaining for protein gene-product 9.5 and vesicular glutamate transporters. Similar to the intrapulmonary location of NEBs, these SMARs appeared to be even more explicitly located near airway bifurcations. Both the trachealis muscle and the smooth-muscle bundles of extrapulmonary bronchi were also shown to contain laminar nerve terminals that were morphologically similar to the SMARs reported in the intrapulmonary airways. Thus, this study provides an in-vitro model enabling, for the first time, the fast and reliable visualisation of SMARs and the myelinated nerve fibres from which they originate in airway whole-mount preparations ex vivo. As such, this model opens up further perspectives and creates a valid basis for direct physiological measurement and manipulation of the individually identified airway receptors. PMID:17522895

  10. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    PubMed Central

    2010-01-01

    Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline

  11. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction–open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  12. Phasing a segmented telescope

    NASA Astrophysics Data System (ADS)

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N.

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors.

  13. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  14. Phasing a segmented telescope.

    PubMed

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors. PMID:25768631

  15. Head segmentation in vertebrates

    PubMed Central

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze. PMID:20607135

  16. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  17. Lazy decision trees

    SciTech Connect

    Friedman, J.H.; Yun, Yeogirl; Kohavi, R.

    1996-12-31

    Lazy learning algorithms, exemplified by nearest-neighbor algorithms, do not induce a concise hypothesis from a given training set; the inductive process is delayed until a test instance is given. Algorithms for constructing decision trees, such as C4.5, ID3, and CART create a single {open_quotes}best{close_quotes} decision tree during the training phase, and this tree is then used to classify test instances. The tests at the nodes of the constructed tree are good on average, but there may be better tests for classifying a specific instance. We propose a lazy decision tree algorithm-LazyDT-that conceptually constructs the {open_quotes}best{close_quote} decision tree for each test instance. In practice, only a path needs to be constructed, and a caching scheme makes the algorithm fast. The algorithm is robust with respect to missing values without resorting to the complicated methods usually seen in induction of decision trees. Experiments on real and artificial problems are presented.

  18. Optimal quad-tree-based motion estimator

    NASA Astrophysics Data System (ADS)

    Schuster, Guido M.; Katsaggelos, Aggelos K.

    1996-09-01

    In this paper we propose an optimal quad-tree (QT)-based motion estimator for video compression. It is optimal in the sense that for a given bit budget for encoding the displacement vector field (DVF) and the QT segmentation, the scheme finds a DVF and a QT segmentation which minimizes the energy of the resulting displaced frame difference (DFD). We find the optimal QT decomposition and the optimal DVF jointly using the Lagrangian multiplier method and a multilevel dynamic program. The resulting DVF is spatially inhomogeneous since large blocks are used in areas with simple motion and small blocks in areas with complex motion. We present results with the proposed QT-based motion estimator which show that for the same DFD energy the proposed estimator uses about 30% fewer bits than the commonly used block matching algorithm.

  19. Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling.

    PubMed

    Rajchl, Martin; Baxter, John S H; McLeod, A Jonathan; Yuan, Jing; Qiu, Wu; Peters, Terry M; Khan, Ali R

    2016-01-01

    The incorporation of intensity, spatial, and topological information into large-scale multi-region segmentation has been a topic of ongoing research in medical image analysis. Multi-region segmentation problems, such as segmentation of brain structures, pose unique challenges in image segmentation in which regions may not have a defined intensity, spatial, or topological distinction, but rely on a combination of the three. We propose a novel framework within the Advanced segmentation tools (ASETS)(2), which combines large-scale Gaussian mixture models trained via Kohonen self-organizing maps, with deformable registration, and a convex max-flow optimization algorithm incorporating region topology as a hierarchy or tree. Our framework is validated on two publicly available neuroimaging datasets, the OASIS and MRBrainS13 databases, against the more conventional Potts model, achieving more accurate segmentations. Each component is accelerated using general-purpose programming on graphics processing Units to ensure computational feasibility. PMID:26072170

  20. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  1. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma.

    PubMed

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL-10, IFN-Y, and IL-13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1-Th2 profiles and up-regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. PMID:23334934

  2. Fungal glycan interactions with epithelial cells in allergic airway disease

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2014-01-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

  3. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  4. Oxygenation via a Biventricular Assist Device for Emergency Airway Management.

    PubMed

    Howitt, Samuel Henry; Stirling, Sarah; Krysiak, Piotr; Pate, Bryce; Maybauer, Marc Oliver

    2016-05-01

    A 56-year-old man receiving mechanical circulatory support via a biventricular assist device suffered an airway emergency secondary to bleeding into the airway. An improvised solution to gain control of the airway in the short term was devised, and an oxygenator was inserted into the circuit, providing an alternative means of gas exchange while definitive control of the airway was achieved. This case changed practice in our institution, where we now make contingency plans for emergency oxygenator insertion into the circuits of all patients with a biventricular assist device who show any sign of airway hemorrhage. PMID:27136082

  5. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. PMID:25729015

  6. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  7. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  8. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  9. Cell Jamming in the Airway Epithelium.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J

    2016-03-01

    Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma. PMID:27027955

  10. Nasal Airway Resistance: Its Measurement and Regulation.

    ERIC Educational Resources Information Center

    Hamilton, Lyle H.

    1979-01-01

    Reviews studies of regulation of nasal airway resistance (Rn). Describes methods of calculating Rn by measuring pressure-flow relationship. Data are presented on improved methods for measuring Rn and effects for expiratory and inspiratory Rn after topical application of phenylephrine nasal decongestant spray. (Author/SA)

  11. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  12. Link between vitamin D and airway remodeling

    PubMed Central

    Berraies, Anissa; Hamzaoui, Kamel; Hamzaoui, Agnes

    2014-01-01

    In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma. PMID:24729717

  13. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  14. Canine brachycephalic airway syndrome: surgical management.

    PubMed

    Trappler, Michelle; Moore, Kenneth

    2011-05-01

    Many surgical options have been described to treat various aspects of canine brachycephalic airway syndrome (BAS). This article describes the surgical management, postoperative care, and prognosis of this condition. The pathophysiology and medical therapy of BAS are described in a companion article. PMID:21870354

  15. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  16. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    EPA Science Inventory

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  17. REGIONAL DIFFERENCES IN AIRWAY SURFACE LIQUID COMPOSITION

    EPA Science Inventory

    Liquid from canine airway surfaces was absorbed onto filter paper strips and analyzed. In resting conditions, tracheal surface liquid was hyperosmolal (330 mosmol/kg H2O) compared to plasma with raised Na(+1) (158 meq/l), Cl(-1) (134 meq/l), K(-1) (28 meq/l), and HCO3(-1) (32 meq...

  18. Steroids for intubated croup masking airway haemangioma.

    PubMed Central

    Kiff, K M; Mok, Q; Dunne, J; Tasker, R C

    1996-01-01

    Recently, the beneficial role of steroids for acute laryngotracheobronchitis has been more clearly defined for both intubated and unintubated patients. However, corticosteroids also improve the clinical signs of airway haemangiomata. Two patients are described who illustrate how this can be a source of diagnostic confusion. PMID:8660054

  19. Direct recordings of the temperatures in the tracheobronchial tree in normal man.

    PubMed Central

    McFadden, E R; Denison, D M; Waller, J F; Assoufi, B; Peacock, A; Sopwith, T

    1982-01-01

    In an effect to determine how far inspired air could penetrate into the respiratory tract before being brought to body conditions, we measured the temperature in the airways of the anterior basilar segment of the right lower lobe in five normal subjects while they breathed air at subfreezing and ambient conditions. During quiet breathing, most of the heating of the incoming gas took place in the upper airways as expected. However, as the thermal burden was increased by rapid inspirations, frigid air, and hyperventilation, the temperature of the distal airways progressively fell and the point at which the incoming air reached body conditions moved deep into the periphery of the lung. These findings demonstrate that heat and water transfer is not localized to one region, but rather is a continuous process that begins the moment the air enters the body and involves as much of the respiratory tract as necessary to complete the task. PMID:7061708

  20. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    SciTech Connect

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.; Serio, R.; Jury, J.; Lane, C.G.; Daniel, E.E.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.

  1. Vascular Tree Reconstruction by Minimizing A Physiological Functional Cost

    PubMed Central

    Jiang, Yifeng; Zhuang, Zhenwu; Sinusas, Albert J.; Papademetris, Xenophon

    2011-01-01

    The reconstruction of complete vascular trees from medical images has many important applications. Although vessel detection has been extensively investigated, little work has been done on how connect the results to reconstruct the full trees. In this paper, we propose a novel theoretical framework for automatic vessel connection, where the automation is achieved by leveraging constraints from the physiological properties of the vascular trees. In particular, a physiological functional cost for the whole vascular tree is derived and an efficient algorithm is developed to minimize it. The method is generic and can be applied to different vessel detection/segmentation results, e.g. the classic rigid detection method as adopted in this paper. We demonstrate the effectiveness of this method on both 2D and 3D data. PMID:21755061

  2. Development of a mathematical method for classifying and comparing tree architecture using parameters from a topological model of a trifurcating botanical tree.

    PubMed

    Sismilich, M; Menzies, M I; Gandar, P W; Jameson, P E; Clemens, J

    2003-02-01

    This paper describes a model for the topological mapping of trifurcating botanical trees. The model was based on a system of modular units that represented the interconnectivity of shoot meristems (terminal segments) and internodes (internal segments) within whole plant canopies, organized with increasing centrifugal ordering. The model was capable of describing the dynamics of plant growth as expressed by changes in topological parameters over time. Preliminary calculations for experimental trees indicated that the model represents growth in a biologically sound manner. Methods are described for the calculation of the architecture parameters size, size-complexity, structural complexity, and tree asymmetry index (TAI). Parameter calculations were based on the mathematical principles developed for the classification of bifurcating dendrite trees, and were designed to both extract structural information, and to enable statistical comparison between trees of different size. Parameters were mathematically adjusted for trifurcation, and appeared to be able to represent quantitatively the architectural properties of tree structures. In addition to the calculation of the TAI for trifurcating trees, new methods were developed to enable comparisons to be made of the architectural complexity of trifurcating trees of differing size. These were based on the principle of the pair-wise comparison of the mean centrifugal order number (MCON) with respect to segments against highest order number. We argue and illustrate that this principle can be more informative than that of pair-wise comparison of the MCON against tree degree (topological size). Further improvements to this method were made by examining branching points (vertices) rather than segments (links) to calculate the MCON. PMID:12468286

  3. Importance of airway inflammation for hyperresponsiveness induced by ozone. [Dogs

    SciTech Connect

    Holtzman, M.J.; Fabbri, L.M.; O'Byrne, P.M.; Gold, B.D.; Aizawa, H.; Walters, E.H.; Alpert, S.E.; Nadel, J.A.

    1983-06-01

    We studied whether ozone-induced airway hyperresponsiveness correlates with the development of airway inflammation in dogs. To assess airway responsiveness, we determined increases in pulmonary resistance produced by delivering acetylcholine aerosol to the airways. To assess airway inflammation, we biopsied the airway mucosa and counted the number of neutrophils present in the epithelium. Airway responsiveness and inflammation were assessed in anesthetized dogs before ozone exposure and then 1 h and 1 wk after ozone (2.1 ppm, 2 h). Airway responsiveness increased markedly at 1 h after ozone and returned to control levels 1 wk later in each of 6 dogs, but it did not change after ozone in another 4 dogs. Furthermore, dogs that became hyperresponsive also developed a marked and reversible increase in the number of neutrophils in the epithelium, whereas dogs that did not become hyperresponsive had no change in the number of neutrophils. For the group of dogs, the level of airway responsiveness before and after ozone exposure correlated closely with the number of epithelial neutrophils. The results suggest that ozone-induced airway hyperresponsiveness may depend on the development of an acute inflammatory response in the airways.

  4. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  5. [Airway Management in a Patient with Forestier's Disease].

    PubMed

    Kondo, Yuriko; Echigo, Noriyuki; Akata, Mariko; Yokoyama, Kaori; Takasugi, Naoya; Goto, Takahisa

    2016-04-01

    Airway management in a patient with Forestier's disease can be challenging clinically because this disease may cause not only dysphagia but also airway obstruction due to the compression of the pharynx and esophagus caused by the ossification of anterior longitudinal ligament. We report our anesthetic management in a patient with Forestier's disease. Meanwhile, we studied the causes of difficult airway and the most suitable airway device for a patient with this disease from a standpoint of anatomy of upper airway. Our study indicated the possibility that the most suitable airway device differed depending on the actual location of the ossification of anterior longitudinal ligament in the cervical spine and that more prudent airway management would be required if its lesion location extended to upper cervical spine. PMID:27188118

  6. Simulation-based airway management training: application and looking forward.

    PubMed

    Yang, Dong; Wei, Yu-Kui; Xue, Fu-Shan; Deng, Xiao-Ming; Zhi, Juan

    2016-04-01

    Within the airway management field, simulation has been used as a tool of training for over 40 years. Simulation training offers a chance of active involvement for the trainees. It can effectively enhance and upgrade the knowledge and skills of the trainees in airway management, and subsequently decrease medical errors and improve patients' outcomes and safety through a variety of airway management training modalities, such as common airway skills, difficult airway management strategies, and crisis management skills. To perform simulation-based airway management training effectively, not only are task trainers and high-fidelity simulators required but also instructors with rich experience in airway management simulation training and optimal curriculum design are essential. PMID:26671260

  7. Multum non multa: airway distensibility by forced oscillations.

    PubMed

    Mermigkis, Charalampos; Schiza, Sophia E; Panagou, Panagiotis

    2016-01-01

    Airway distensibility although appears to be unaffected by airway smooth muscle tone probably related to airway remodelling, after bronchodilator treatment is significantly increased in subjects with asthma. We assessed airway distensibity and its first moment derivative in two patients with mild intermittent asthma and normal spirometry. The increase in airway distensibility after bronchodilation measured at the tidal volume range during quiet breathing by forced oscillations was not accompanied by a change in its first moment, while the latter showed a significant increase in a second patient after anti-inflammatory treatment. It appears that airway distensibility is sensitive to reduction of bronchial smooth muscle tone after bronchodilation, but in addition its first moment might provide information on a change of both bronchial smooth muscle tone and small airways inflammation. PMID:27374218

  8. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities.

    PubMed

    Gosens, Reinoud; Grainge, Chris

    2015-03-01

    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma. PMID:25732446

  9. Automatic brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Clark, Matthew C.; Hall, Lawrence O.; Goldgof, Dmitry B.; Velthuizen, Robert P.; Murtaugh, F. R.; Silbiger, Martin L.

    1998-06-01

    A system that automatically segments and labels complete glioblastoma-multiform tumor volumes in magnetic resonance images of the human brain is presented. The magnetic resonance images consist of three feature images (T1- weighted, proton density, T2-weighted) and are processed by a system which integrates knowledge-based techniques with multispectral analysis and is independent of a particular magnetic resonance scanning protocol. Initial segmentation is performed by an unsupervised clustering algorithm. The segmented image, along with cluster centers for each class are provided to a rule-based expert system which extracts the intra-cranial region. Multispectral histogram analysis separates suspected tumor from the rest of the intra-cranial region, with region analysis used in performing the final tumor labeling. This system has been trained on eleven volume data sets and tested on twenty-two unseen volume data sets acquired from a single magnetic resonance imaging system. The knowledge-based tumor segmentation was compared with radiologist-verified `ground truth' tumor volumes and results generated by a supervised fuzzy clustering algorithm. The results of this system generally correspond well to ground truth, both on a per slice basis and more importantly in tracking total tumor volume during treatment over time.

  10. [Toxic anterior segment syndrome].

    PubMed

    Cornut, P-L; Chiquet, C

    2011-01-01

    Toxic anterior segment syndrome (TASS) is a general term used to describe acute, sterile postoperative inflammation due to a non-infectious substance that accidentally enters the anterior segment at the time of surgery and mimics infectious endophthalmitis. TASS most commonly occurs acutely following anterior segment surgery, typically 12-72h after cataract extraction. Anterior segment inflammation is usually quite severe with hypopyon. Endothelial cell damage is common, resulting in diffuse corneal edema. No bacterium is isolated from ocular samples. The causes of TASS are numerous and difficult to isolate. Any device or substance used during the surgery or in the immediate postoperative period may be implicated. The major known causes include: preservatives in ophthalmic solutions, denatured ophthalmic viscosurgical devices, bacterial endotoxin, and intraocular lens-induced inflammation. Clinical features of infectious and non-infectious inflammation are initially indistinguishable and TASS is usually diagnosed and treated as acute endophthalmitis. It usually improves with local steroid treatment but may result in chronic elevation of intraocular pressure or irreversible corneal edema due to permanent damage of trabecular meshwork or endothelial cells. PMID:21176994

  11. Airway oxidative stress in chronic cough

    PubMed Central

    2013-01-01

    Background The mechanisms of chronic cough are unclear. Many reactive oxygen species affect airway sensory C-fibres which are capable to induce cough. Several chronic lung diseases are characterised by cough and oxidative stress. In asthma, an association between the cough severity and airway oxidative stress has been demonstrated. The present study was conducted to investigate whether airway oxidative stress is associated with chronic cough in subjects without chronic lung diseases. Methods Exhaled breath condensate samples were obtained in 43 non-smoking patients with chronic cough and 15 healthy subjects. Exclusion criteria included a doctor’s diagnosis of any lung disorders and any abnormality in lung x-ray. The concentration of 8-isoprostane was measured. In addition, the patients filled in Leicester Cough Questionnaire and underwent hypertonic saline cough provocation test, spirometry, ambulatory peak flow monitoring, nitric oxide measurement, and histamine airway challenge. In a subgroup of patients the measurements were repeated during 12 weeks’ treatment with inhaled budesonide, 800 ug/day. Results The 8-isoprostane concentrations were higher in the cough patients than in the healthy subjects (24.6 ± 1.2 pg/ml vs. 10.1 ± 1.7 pg/ml, p = 0.045). The 8-isoprostane concentration was associated with the Leicester Cough Questionnaire total score (p = 0.044) but not with the cough sensitivity to saline or other tests. Budesonide treatment did not affect the 8-isoprostane concentrations. Conclusions Chronic cough seems to be associated with airway oxidative stress in subjects with chronic cough but without chronic lung diseases. This finding may help to develop novel antitussive drugs. Trial registration The study was registered in ClinicalTrials.gov database (KUH5801112), identifier NCT00859274. PMID:24294924

  12. Loops and trees

    NASA Astrophysics Data System (ADS)

    Caron-Huot, S.

    2011-05-01

    We investigate relations between loop and tree amplitudes in quantum field theory that involve putting on-shell some loop propagators. This generalizes the so-called Feynman tree theorem which is satisfied at 1-loop. Exploiting retarded boundary conditions, we give a generalization to ℓ-loop expressing the loops as integrals over the on-shell phase space of exactly ℓ particles. We argue that the corresponding integrand for ℓ > 2 does not involve the forward limit of any physical tree amplitude, except in planar gauge theories. In that case we explicitly construct the relevant physical amplitude. Beyond the planar limit, abandoning direct integral representations, we propose that loops continue to be determined implicitly by the forward limit of physical connected trees, and we formulate a precise conjecture along this line. Finally, we set up technology to compute forward amplitudes in supersymmetric theories, in which specific simplifications occur.

  13. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  14. Tree Nut Allergies

    MedlinePlus

    ... tree nut used on the label. Read all product labels carefully before purchasing and consuming any item. Ingredients ... Getting Started Newly Diagnosed Emergency Care Plan Food Labels Mislabeled Products Tips for Managing Food Allergies Resources For... Most ...

  15. The tree BVOC index.

    PubMed

    Simpson, J R; McPherson, E G

    2011-01-01

    Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area. PMID:21435760

  16. Generalized constructive tree weights

    SciTech Connect

    Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org

    2014-04-15

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

  17. Tea tree oil.

    PubMed

    Larson, David; Jacob, Sharon E

    2012-01-01

    Tea tree oil is an increasingly popular ingredient in a variety of household and cosmetic products, including shampoos, massage oils, skin and nail creams, and laundry detergents. Known for its potential antiseptic properties, it has been shown to be active against a variety of bacteria, fungi, viruses, and mites. The oil is extracted from the leaves of the tea tree via steam distillation. This essential oil possesses a sharp camphoraceous odor followed by a menthol-like cooling sensation. Most commonly an ingredient in topical products, it is used at a concentration of 5% to 10%. Even at this concentration, it has been reported to induce contact sensitization and allergic contact dermatitis reactions. In 1999, tea tree oil was added to the North American Contact Dermatitis Group screening panel. The latest prevalence rates suggest that 1.4% of patients referred for patch testing had a positive reaction to tea tree oil. PMID:22653070

  18. Tree-bank grammars

    SciTech Connect

    Charniak, E.

    1996-12-31

    By a {open_quotes}tree-bank grammar{close_quotes} we mean a context-free grammar created by reading the production rules directly from hand-parsed sentences in a tree bank. Common wisdom has it that such grammars do not perform well, though we know of no published data on the issue. The primary purpose of this paper is to show that the common wisdom is wrong. In particular, we present results on a tree-bank grammar based on the Penn Wall Street Journal tree bank. To the best of our knowledge, this grammar outperforms all other non-word-based statistical parsers/grammars on this corpus. That is, it outperforms parsers that consider the input as a string of tags and ignore the actual words of the corpus.

  19. Leonardo's Tree Theory.

    ERIC Educational Resources Information Center

    Werner, Suzanne K.

    2003-01-01

    Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)

  20. Trees for reclamation

    SciTech Connect

    Not Available

    1980-01-01

    Land reclamation programs sponsored by several state forestry organizations are summarized in these presentations. The use of trees as a preferred specie for revegetation of surface mined lands is addressed. Modern methods of forestry can be used to make land economically and aesthetically acceptable. Tree planting techniques are presented and the role of Mycorrhizae is discussed. There are 30 papers included in this proceedings. States represented include: Alabama, Arkansas, Georgia, Illinois, Kansas, Kentucky, Maryland, Virginia, Iowa, Ohio, Pennsylvania, and West Virginia.