Science.gov

Sample records for airway wall remodelling

  1. Elevated expression of placental growth factor is associated with airway-wall vascular remodelling and thickening in smokers with asthma

    PubMed Central

    Wu, Dong; Lai, Tianwen; Yuan, Yalian; Chen, Min; Xia, Jun; Li, Wen; Pan, Guihai; Yuan, Binfan; Lv, Quanchao; Li, Yanyu; Li, Dongmin; Wu, Bin

    2017-01-01

    The increased expression of placental growth factor (PlGF) in chronic obstructive pulmonary disease and allergy-related asthma suggests its role in the pathogenesis of these diseases. In asthmatic smokers, airway remodelling is accompanied by an accelerated decline in lung function. However, whether PlGF contributes to the persistent airflow obstruction and vascular remodelling typically seen in asthmatic smokers is unknown. In this study we measured lung function, airway-wall thickening, and PlGF levels in serum and induced sputum in 74 asthmatic and 42 healthy smokers and never-smokers. Using human lung microvascular endothelial cells (HLMECs), we evaluated the in vitro effects of PlGF on each step of vascular remodelling, including proliferation, migration, stress-fibre expression, and tubule formation. Our data showed significantly higher serum and sputum PlGF levels in asthma patients, especially asthmatic smokers, than in healthy controls. Serum and sputum PlGF levels correlated negatively with post-bronchodilator forced expiratory volume in 1 s (FEV1) and the FEV1/forced vital capacity, but positively with airway-wall thickening. Stimulation of HLMECs with rhPlGF promoted all of the steps of airway-microvascular remodelling. These findings provide insights into the influence of cigarette smoking on the structural changes in the airways of asthmatics and the important pathogenic role played by PlGF. PMID:28220848

  2. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  3. Grading remodeling severity in asthma based on airway wall thickening index and bronchoarterial ratio measured with MSCT

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Brightling, Christopher; Grenier, Philippe A.

    2015-03-01

    Defining therapeutic protocols in asthma and monitoring patient response require a more in-depth knowledge on the disease severity and treatment outcome based on quantitative indicators. This paper aims at grading severity in asthma based on objective morphological measurements obtained in automated fashion from 3-D multi-slice computed tomography (MSCT) image datasets. These measures attempt to capture and quantify the airway remodeling process involved in asthma, both at the level of the airway wall thickness and airway lumen. Two morphological changes are thus targeted here, (1) the airway wall thickening measured as a global index characterizing the increase of wall thickness above a normal value of wall-to-lumen-radius ratio, and (2) the bronchoarterial ratio index assessed globally from numerous locations in the lungs. The combination of these indices provides a grading of the severity of the remodeling process in asthma which correlates with the known phenotype of the patients investigated. Preliminary application to assess the patient response in thermoplasty trials is also considered from the point of view of the defined indices.

  4. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  5. Quantitative computed tomography imaging of airway remodeling in severe asthma

    PubMed Central

    Fetita, Catalin I.; Brillet, Pierre-Yves

    2016-01-01

    Asthma is a heterogeneous condition and approximately 5–10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  6. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  7. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma.

    PubMed

    Halayko, Andrew J; Amrani, Yassine

    2003-09-16

    Recent evidence points to progressive structural change in the airway wall, driven by chronic local inflammation, as a fundamental component for development of irreversible airway hyperresponsiveness. Acute and chronic inflammation is orchestrated by cytokines from recruited inflammatory cells, airway myofibroblasts and myocytes. Airway myocytes exhibit functional plasticity in their capacity for contraction, proliferation, and synthesis of matrix protein and cytokines. This confers a principal role in driving different components of the airway remodeling process, and mediating constrictor hyperresponsiveness. Functional plasticity of airway smooth muscle (ASM) is regulated by an array of environmental cues, including cytokines, which mediate their effects through receptors and a number of intracellular signaling pathways. Despite numerous studies of the cellular effects of cytokines on cultured airway myocytes, few have identified how intracellular signaling pathways modulate or induce these cellular responses. This review summarizes current understanding of these concepts and presents a model for the effects of inflammatory mediators on functional plasticity of ASM in asthma.

  8. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    PubMed

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  9. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  10. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma.

    PubMed

    Ronzani, Carole; Casset, Anne; Pons, Françoise

    2014-02-01

    With the development of nanotechnologies, the potential adverse effects of nanomaterials such as multi-walled carbon nanotubes (MWCNT) on the respiratory tract of asthmatics are questioned. Furthermore, investigations are necessary to understand how these effects might arise. In the present study, we hypothesized that epithelium-derived innate cytokines that are considered as important promoting factors in allergy may contribute to an aggravating effect of MWCNT on asthma. We investigated in the mouse the effect of MWCNT on systemic immune response and airway inflammation and remodeling induced by the most frequent allergen so far associated with asthma, house dust mite (HDM), and we examined the production of the innate cytokines thymic stromal lymphopoietin (TSLP), IL-25, IL-33, and GM-CSF. Mice exposed to HDM exhibited specific IgG1 in serum and inflammatory cell infiltration, and increased Th2 cytokine production, mucus hyperproduction, and collagen deposition in the airways when compared to naïve animals. Levels of total IgG1 and HDM-specific IgG1, influx of macrophages, eosinophils and neutrophils, production of collagen, TGF-β1, and mucus, as well as levels of IL-13, eotaxin, and TARC, were dose-dependently increased in mice exposed to HDM and MWCNT compared to HDM alone. These effects were associated with an increased production of TSLP, IL-25, IL-33, and GM-CSF in the airways. Our data demonstrate that MWCNT increase in a dose-dependent manner systemic immune response, as well as airway allergic inflammation and remodeling induced by HDM in the mouse. Our data suggest also a role for airway epithelium and innate cytokines in these effects.

  11. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  12. KyoT2 downregulates airway remodeling in asthma.

    PubMed

    Hu, Mei; Ou-Yang, Hai-Feng; Han, Xing-Peng; Ti, Xin-Yu; Wu, Chang-Gui

    2015-01-01

    The typical pathological features of asthma are airway remodeling and airway hyperresponsiveness (AHR). KyoT2, a negative modulator of Notch signaling, has been linked to asthma in several previous studies. However, whether KyoT2 is involved in the regulation of airway remodeling or the modulation of airway resistance in asthma is unclear. In this study, we aimed to evaluate the therapeutic potential of KyoT2 in preventing asthma-associated airway remodeling and AHR. BALB/c mice were used to generate a mouse model of asthma. Additionally, the expression of Hes1 and Notch1 in airway was analyzed using Immunofluorescence examination. The asthmatic mice were intranasally administered adenovirus expressing KyoT2 and were compared to control groups. Furthermore, subepithelial fibrosis and other airway remodeling features were analyzed using hematoxylin and eosin staining, Van Gieson's staining and Masson's trichrome staining. AHR was also evaluated. This study revealed that KyoT2 downregulated the expression of Hes1, repressed airway remodeling, and alleviated AHR in asthmatic mice. It is reasonable to assume that KyoT2 downregulates airway remodeling and resistance in asthmatic mice through a Hes1-dependent mechanism. Therefore, KyoT2 is a potential clinical treatment strategy for asthma.

  13. FSTL1 PROMOTES ASTHMATIC AIRWAY REMODELING BY INDUCING ONCOSTATIN M

    PubMed Central

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H.

    2016-01-01

    Chronic asthma is associated with airway remodeling and decline in lung function. Here we show that follistatin like 1 (Fstl1), a mediator not previously associated with asthma is highly expressed by macrophages in the lungs of severe human asthmatics. Chronic allergen challenged Lys-Cretg/Fstl1Δ/Δ mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM) a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, while administration of an anti-OSM antibody blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/oncostatin M pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  14. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  15. Rapid remodeling of airway vascular architecture at birth.

    PubMed

    Ni, Amy; Lashnits, Erin; Yao, Li-Chin; Baluk, Peter; McDonald, Donald M

    2010-09-01

    Recent advances have documented the development of lung vasculature before and after birth, but less is known of the growth and maturation of airway vasculature. We sought to determine whether airway vasculature changes during the perinatal period and when the typical adult pattern develops. On embryonic day 16.5 mouse tracheas had a primitive vascular plexus unlike the adult airway vasculature, but instead resembling the yolk sac vasculature. Soon after birth (P0), the primitive vascular plexus underwent abrupt and extensive remodeling. Blood vessels overlying tracheal cartilage rings regressed from P1 to P3 but regrew from P4 to P7 to form the hierarchical, segmented, ladder-like adult pattern. Hypoxia and HIF-1α were present in tracheal epithelium over vessels that survived but not where they regressed. These findings reveal the plasticity of airway vasculature after birth and show that these vessels can be used to elucidate factors that promote postnatal vascular remodeling and maturation.

  16. Similar matrix alterations in alveolar and small airway walls of COPD patients

    PubMed Central

    2014-01-01

    Background Remodelling in COPD has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recent studies indicate that there is some similarity between alveolar and small airway wall matrix remodelling. The aim of this study was to characterise and assess similarities in alveolar and small airway wall matrix remodelling, and TGF-β signalling in COPD patients of different GOLD stages. Methods Lung tissue sections of 14 smoking controls, 16 GOLD II and 19 GOLD IV patients were included and stained for elastin and collagens as well as hyaluronan, a glycosaminoglycan matrix component and pSMAD2. Results Elastin was significantly decreased in COPD patients not only in alveolar, but also in small airway walls. Interestingly, both collagen and hyaluronan were increased in alveolar as well as small airway walls. The matrix changes were highly comparable between GOLD stages, with collagen content in the alveolar wall increasing further in GOLD IV. A calculated remodelling index, defined as elastin divided over collagen and hyaluronan, was decreased significantly in GOLD II and further lowered in GOLD IV patients, suggesting that matrix component alterations are involved in progressive airflow limitation. Interestingly, there was a positive correlation present between the alveolar and small airway wall stainings of the matrix components, as well as for pSMAD2. No differences in pSMAD2 staining between controls and COPD patients were found. Conclusions In conclusion, remodelling in the alveolar and small airway wall in COPD is markedly similar and already present in moderate COPD. Notably, alveolar collagen and a remodelling index relate to lung function. PMID:24886452

  17. Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling.

    PubMed

    Salmon, M; Walsh, D A; Koto, H; Barnes, P J; Chung, K F

    1999-09-01

    Chronic inflammation in asthmatic airways can lead to characteristic airway smooth muscle (ASM) thickening and pathological changes within the airway wall. This study assessed the effect of repeated allergen exposure on ASM and epithelial cell deoxyribonucleic acid (DNA) synthesis, cell recruitment and airway wall pathology. Brown-Norway rats were sensitized and then exposed to ovalbumin or saline aerosol every 3 days on six occasions. After the final exposure, rats were administered twice daily for 7 days with the DNA S-phase marker bromodeoxyuridine (BrdU). Using a triple immunohistochemical staining technique, BrdU incorporation into ASM and epithelium was quantified employing computer-assisted image analysis. There were >3-fold mean increases in BrdU incorporation into ASM from 1.3% of cells (95% confidence interval (CI) 1.0-1.6) in saline controls to 4.7% (95% CI 2.6-6.7) after allergen exposure (p<0.001), and in airway epithelium, from 1.3 (95% CI 0.6-2.0) BrdU-positive cells x mm basement membrane(-1) in saline controls to 4.9 (95% CI 3.0-6.7) after allergen exposure (p<0.001). There was increased subepithelial collagen deposition and mucus secretion along with a significant eosinophil and lymphocyte recruitment to the airways. Increased rates of deoxyribonucleic acid synthesis in both airway smooth muscle and epithelial cells along with changes to the airway wall pathology may precede the establishment of smooth muscle thickening and airway remodelling after repeated allergen exposure in rats. This model seems to be appropriate for studying structural changes within the airways as observed in asthma.

  18. Effects of cigarette smoke and chronic hypoxia on airways remodeling and resistance. Clinical significance.

    PubMed

    Olea, Elena; Ferrer, Elisabet; Prieto-Lloret, Jesus; Gonzalez-Martin, Carmen; Vega-Agapito, Victoria; Gonzalez-Obeso, Elvira; Agapito, Teresa; Peinado, Victor; Obeso, Ana; Barbera, Joan Albert; Gonzalez, Constancio

    2011-12-15

    Previously we have reported that association of cigarette smoke (CS) and chronic hypoxia (CH) interact positively to physiopathologically remodel pulmonary circulation. In present study we have exposed guinea pigs to CS smoke (four cigarettes/day; 3 months; CS) and to chronic hypoxia (12% O(2), 15 days; CH) alone or in combination (CSCH animals) and evaluated airways remodeling and resistance assessed as Penh (enhance pause). We measured Penh while animals breathe air, 10% O(2) and 5% CO(2) and found that CS and CH animals have higher Penh than controls; Penh was even larger in CSCH animals. A rough parallelism between Penh and thickness of bronchiolar wall and muscular layer and Goblet cell number was noticed. We conclude that CS and CH association accelerates CS-induced respiratory system damage, evidenced by augmented airway resistance, bronchial wall thickness and muscularization and Goblet cell number. Our findings would suggest that appearance of hypoxia would aggravate any preexisting pulmonary pathology by increasing airways resistance and reactivity.

  19. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  20. Role of Arginase in Vessel Wall Remodeling

    PubMed Central

    Durante, William

    2013-01-01

    Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease. PMID:23717309

  1. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  2. Protein tyrosine phosphatase SHP2 regulates TGF-β1 production in airway epithelia and asthmatic airway remodeling in mice

    PubMed Central

    Qin, X.-J.; Zhang, G.-S.; Zhang, X.; Qiu, Z.-W.; Wang, P.-L.; Li, Y.-W.; Li, W.; Xie, Q.-M.; Ke, Y.-H.; Lee, J. J.; Shen, H.-H.

    2014-01-01

    Background Transforming growth factor (TGF)-β1 produced in airway epithelia has been suggested as a contributor to the airway remodeling observed in asthma patients. The protein tyrosine phosphatase SHP2 is a demonstrable modulator of TGF-β1 production and thus a potential regulator of airway remodeling. Objectives To define the signal event by which SHP2 regulates asthmatic responses in airway epithelial cells by using a mouse model of experimental OVA-induced airway remodeling. Methods The airways of Shp2flox/flox mice were infected with recombinant adenovirus vectors expressing a Cre recombinase–green fluorescence protein (GFP) fusion protein as part of allergen provocation studies using mice sensitized with ovalbumin (OVA) and repeatedly challenged with OVA. Several endpoint pathologies were assessed, including airway hyper-responsiveness (AHR), lung inflammatory score, peribronchial collagen deposition, and α-smooth muscle actin (SMA) hyperplasia. In vitro studies using airway epithelial cells (BEAS-2B) were used to investigate the role of SHP2 in the regulation of pulmonary remodeling events, including the expression of collagen, α-SMA, and TGF-β1. Results Chronic OVA challenges in wild-type mice resulted in airway remodeling and lung dysfunction (e.g., increased inflammatory scores, collagen deposition (fibrosis), smooth muscle hyperplasia, and a significant increase in AHR). These endpoint pathology metrics were each significantly attenuated by conditional shp2 gene knockdown in airway epithelia. In vitro studies using BEAS-2B cells also demonstrated that the level of TGF-β1 production by these cells correlated with the extent of shp2 gene expression. Conclusions SHP2 activities in airway epithelial cells appear to modulate TGF-β1 production and, in turn, regulate allergic airway remodeling following allergen provocation. Clinical Implications Our findings identify SHP2 as a previously underappreciated contributor to the airway remodeling and lung

  3. Prevention of allergic airway hyperresponsiveness and remodeling in mice by Astragaliradix Antiasthmatic decoction

    PubMed Central

    2013-01-01

    Background Astragali radix Antiasthmatic Decoction (AAD), a traditional Chinese medication, is found effective in treating allergic diseases and chronic cough. The purpose of this study is to determine whether this medication could suppress allergen-induced airway hyperresponsiveness (AHR) and remodeling in mice, and its possible mechanisms. Methods A mouse model of chronic asthma was used to investigate the effects of AAD on the airway lesions. Mice were sensitized and challenged with ovalbumin (OVA), and the extent of AHR and airway remodeling were characterized. Cells and cytokines in the bronchoalveolar lavage fluid (BALF) were examined. Results AAD treatment effectively decreased OVA-induced AHR, eosinophilic airway inflammation, and collagen deposition around the airway. It significantly reduced the levels of IL-13 and TGF-β1, but exerted inconsiderable effect on INF-γ and IL-10. Conclusions AAD greatly improves the symptoms of allergic airway remodeling probably through inhibition of Th2 cytokines and TGF-β1. PMID:24367979

  4. HSP70/CD80 DNA vaccine inhibits airway remodeling by regulating the transcription factors T-bet and GATA-3 in a murine model of chronic asthma

    PubMed Central

    Yan, Li; Xiao-Ling, Shi; Zheng-Yan, Cheng; Guo-Ping, Li; Sen, Zhong

    2013-01-01

    Introduction Airway remodeling is an important pathologic feature of chronic asthma. T-bet and GATA-3, the key transcription factors for differentiation toward Th1 and Th2 cells, play an important role in the pathogenesis of airway inflammation, airway hyperresponsiveness and airway remodeling. Previous studies showed that HSP70/CD80 DNA vaccine can reduce airway hyperresponsiveness and airway inflammation in acute asthmatic mice. The present study was designed to determine the effect of HSP70/CD80 DNA vaccine on airway remodeling through regulating the development of Th1/Th2. Material and methods Before being sensitized and challenged by ovalbumin, the BALB/c mice were immunized with DNA vaccine. Lung tissues were assessed by histological examinations. Interferon-γ (IFN-γ)/interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid were determined by ELISA and expressions of IFN-γ, IL-4, T-bet and GATA-3 in spleen were evaluated by real-time polymerase chain reaction. Results Chronic asthmatic mice had higher airway hyperresponsiveness, a thicker airway wall, more PAS-positive goblet cells, more subepithelial extracellular matrix deposition and more proliferating airway smooth muscle (ASM)-like cells than control mice (p < 0.05). Compared with the chronic asthmatic mice, the treatment with HSP70/CD80 DNA vaccine could reduce airway hyperreactivity, mucus secretion, subepithelial collagen deposition, and smooth muscle cell proliferation (p < 0.05). DNA vaccination also increased levels of IFN-γ/IL-4 in BAL fluid (p < 0.05), and expression of T-bet/GATA-3 in the spleen (p < 0.05). Conclusions HSP70/CD80 DNA vaccine can inhibit airway remodeling through regulating the development of Th1/Th2 subsets in asthmatic mice. PMID:24273578

  5. Pathway Reconstruction of Airway Remodeling in Chronic Lung Diseases: A Systems Biology Approach

    PubMed Central

    Najafi, Ali; Masoudi-Nejad, Ali; Ghanei, Mostafa; Nourani, Mohamad-Reza; Moeini, Ali

    2014-01-01

    Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients. PMID:24978043

  6. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  7. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction.

    PubMed Central

    Tang, W; Geba, G P; Zheng, T; Ray, P; Homer, R J; Kuhn, C; Flavell, R A; Elias, J A

    1996-01-01

    Interleukin-11 is a pleotropic cytokine produced by lung stromal cells in response to respiratory viruses, cytokines, and histamine. To further define its potential effector functions, the Clara cell 10-kD protein promoter was used to express IL-11 and the airways of the resulting transgene mice were characterized. In contrast to transgene (-) littermates, the airways of IL-11 transgene (+) animals manifest nodular peribronchiolar mononuclear cell infiltrates and impressive airways remodeling with subepithelial fibrosis. The inflammatory foci contained large numbers of B220(+) and MHC Class II(+) cells and lesser numbers of CD3(+), CD4(+), and CD8(+) cells. The fibrotic response contained increased amounts of types III and I collagen, increased numbers of alpha smooth muscle actin and desmin-containing cells and a spectrum of stromal elements including fibroblasts, myofibroblasts, and smooth muscle cells. Physiologic evaluation also demonstrated that 2-mo-old transgene (+) mice had increased airways resistance and non-specific airways hyperresponsiveness to methacholine when compared with their transgene (-) littermates. These studies demonstrate that the targeted expression of IL-11 in the mouse airway causes a B and T cell-predominant inflammatory response, airway remodeling with increased types III and I collagen, the local accumulation of fibroblasts, myofibroblasts, and myocytes, and obstructive physiologic dysregulation. IL-11 may play an important role in the inflammatory and fibrotic responses in viral and/or nonviral human airway disorders. PMID:8981933

  8. Inhibition airway remodeling and transforming growth factor-β1/Smad signaling pathway by astragalus extract in asthmatic mice

    PubMed Central

    QU, ZHENG-HAI; YANG, ZHAO-CHUAN; CHEN, LEI; LV, ZHI-DONG; YI, MING-JI; RAN, NI

    2012-01-01

    Airway remodeling is characterized by airway wall thickening, subepithelial fibrosis, increased smooth muscle mass, angiogenesis and increased mucous glands, which can lead to a chronic and obstinate asthma with pulmonary function depression. In the present study, we investigated whether the astragalus extract inhibits airway remodeling in a mouse asthma model and observed the effects of astragalus extract on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in ovalbumin-sensitized mice. Mice were sensitized and challenged by ovalbumin to establish a model of asthma. Treatments included the astragalus extract and budesonide. Lung tissues were obtained for hematoxylin and eosin staining and Periodic acid-Schiff staining after the final ovalbumin challenge. Levels of TGF-β1 were assessed by immunohistology and ELISA, levels of TGF-β1 mRNA were measured by RT-PCR, and levels of P-Smad2/3 and T-Smad2/3 were assessed by western blotting. Astragalus extract and budesonide reduced allergen-induced increases in the thickness of bronchial airway and mucous gland hypertrophy, goblet cell hyperplasia and collagen deposition. Levels of lung TGF-β1, TGF-β1 mRNA and P-Smad2/3 were significantly reduced in mice treated with astragalus extract and budesonide. Astragalus extract improved asthma airway remodeling by inhibiting the expression of the TGF-β1/Smad signaling pathway, and may be a potential drug for the treatment of patients with a severe asthma airway. PMID:22200784

  9. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  10. Automated segmentation of lung airway wall area measurements from bronchoscopic optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Choy, Stephen; Wheatley, Andrew; McCormack, David; Coxson, Harvey O.; Lam, Stephen; Parraga, Grace

    2011-03-01

    Chronic Obstructive Pulmonary Disease (COPD) affects almost 600 million people and is currently the fourth leading cause of death worldwide. COPD is an umbrella term for respiratory symptoms that accompany destruction of the lung parenchyma and/or remodeling of the airway wall, the sum of which result in decreased expiratory flow, dyspnea and gas trapping. Currently, x-ray computed tomography (CT) is the main clinical method used for COPD imaging, providing excellent spatial resolution for quantitative tissue measurements although dose limitations and the fundamental spatial resolution of CT limit the measurement of airway dimensions beyond the 5th generation. To address this limitation, we are piloting the use of bronchoscopic Optical Coherence Tomography (OCT), by exploiting its superior spatial resolution of 5-15 micrometers for in vivo airway imaging. Currently, only manual segmentation of OCT airway lumen and wall have been reported but manual methods are time consuming and prone to observer variability. To expand the utility of bronchoscopic OCT, automatic and robust measurement methods are required. Therefore, our objective was to develop a fully automated method for segmenting OCT airway wall dimensions and here we explore several different methods of image-regeneration, voxel clustering and post-processing. Our resultant automated method used K-means or Fuzzy c-means to cluster pixel intensity and then a series of algorithms (i.e. cluster selection, artifact removal, de-noising) was applied to process the clustering results and segment airway wall dimensions. This approach provides a way to automatically and rapidly segment and reproducibly measure airway lumen and wall area.

  11. Regulation of airway inflammation and remodeling in asthmatic mice by TLR3/TRIF signal pathway.

    PubMed

    Yang, Mei; Wang, Hao-Ying; Chen, Jian-Chang; Zhao, Jing

    2017-03-23

    This paper aims to investigate the effect of Toll-like receptors 3 (TLR3)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway on the airway inflammation and remodeling in asthmatic mice. C57BL/6 and TLR3(-/-) mice were randomly divided into three groups (10 mice per group), including Control group (mice inhaled phosphate buffer saline (PBS)), Asthma group (mice inhaled ovalbumin (OVA)) and polyriboinosinic-ribocytidylic acid (poly (I: C)) group (asthmatic mice were injected intraperitoneally with TLR3 agonist poly (I: C)). Hematoxylin-eosin (HE) staining, Wright-Giemsa staining, Enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry, Hydroxyproline assay, quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to assess for the indices of airway inflammation and remodeling. In terms of WT mice, all asthma groups with or without the addition of poly (I: C) showed exaggerated inflammation and remodeling in the airways as compared to Control group, which were more seriously in poly (I: C) group than Asthma group. Furthermore, we observed the significant inhibition of airway inflammation and remodeling in the TLR3(-/-) mice in both Asthma no matter with or without addition of poly (I: C) than the WT mice. TLR3 knockout could obviously relieve the airway inflammation and remodeling in asthma through inhibiting TLR3/TRIF signaling pathway.

  12. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.

  13. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  14. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life

    PubMed Central

    Davies, Elizabeth R.; Kelly, Joanne F.C.; Howarth, Peter H.; Wilson, David I.; Holgate, Stephen T.; Davies, Donna E.; Whitsett, Jeffrey A.

    2016-01-01

    Asthma is a chronic inflammatory airways disease that usually begins in early life and involves gene-environment interactions. Although most asthma exhibits allergic inflammation, many allergic individuals do not have asthma. Here, we report how the asthma gene a disintegrin and metalloprotease 33 (ADAM33) acts as local tissue susceptibility gene that promotes allergic asthma. We show that enzymatically active soluble ADAM33 (sADAM33) is increased in asthmatic airways and plays a role in airway remodeling, independent of inflammation. Furthermore, remodeling and inflammation are both suppressed in Adam33-null mice after allergen challenge. When induced in utero or added ex vivo, sADAM33 causes structural remodeling of the airways, which enhances postnatal airway eosinophilia and bronchial hyperresponsiveness following subthreshold challenge with an aeroallergen. This substantial gene-environment interaction helps to explain the end-organ expression of allergic asthma in genetically susceptible individuals. Finally, we show that sADAM33-induced airway remodeling is reversible, highlighting the therapeutic potential of targeting ADAM33 in asthma. PMID:27489884

  15. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model

    PubMed Central

    Spaziano, Giuseppe; Piegari, Elena; Matteis, Maria; Cappetta, Donato; Esposito, Grazia; Russo, Rosa; Tartaglione, Gioia; De Palma, Raffaele; Rossi, Francesco; D’Agostino, Bruno

    2016-01-01

    Background The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. Objectives To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. Methods GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. Results Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. Conclusion Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide

  16. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease.

    PubMed

    Puchelle, Edith; Zahm, Jean-Marie; Tournier, Jean-Marie; Coraux, Christelle

    2006-11-01

    In chronic obstructive pulmonary disease (COPD), exacerbations are generally associated with several causes, including pollutants, viruses, bacteria that are responsible for an excess of inflammatory mediators, and proinflammatory cytokines released by activated epithelial and inflammatory cells. The normal response of the airway surface epithelium to injury includes a succession of cellular events, varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even complete denudation of the basement membrane. The epithelium then has to repair and regenerate to restore its functions, through several mechanisms, including basal cell spreading and migration, followed by proliferation and differentiation of epithelial cells. In COPD, the remodeling of the airway epithelium, such as squamous metaplasia and mucous hyperplasia that occur during injury, may considerably disturb the innate immune functions of the airway epithelium. In vitro and in vivo models of airway epithelial wound repair and regeneration allow the study of the spatiotemporal modulation of cellular and molecular interaction factors-namely, the proinflammatory cytokines, the matrix metalloproteinases and their inhibitors, and the intercellular adhesion molecules. These factors may be markedly altered during exacerbation periods of COPD and their dysregulation may induce remodeling of the airway mucosa and a leakiness of the airway surface epithelium. More knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to cytoprotective and regenerative therapeutics, allowing the reconstitution of a functional, well-differentiated airway epithelium in COPD.

  17. Investigating in vivo airway wall mechanics during tidal breathing with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Robertson, Claire; Lee, Sang-Won; Ahn, Yeh-Chan; Mahon, Sari; Chen, Zhongping; Brenner, Matthew; George, Steven C.

    2011-10-01

    Optical coherence tomography (OCT) is a nondestructive imaging technique offering high temporal and spatial resolution, which makes it a natural choice for assessing tissue mechanical properties. We have developed methods to mechanically analyze the compliance of the rabbit trachea in vivo using tissue deformations induced by tidal breathing, offering a unique tool to assess the behavior of the airways during their normal function. Four-hundred images were acquired during tidal breathing with a custom-built endoscopic OCT system. The surface of the tissue was extracted from a set of these images via image processing algorithms, filtered with a bandpass filter set at respiration frequency to remove cardiac and probe motion, and compared to ventilatory pressure to calculate wall compliance. These algorithms were tested on elastic phantoms to establish reliability and reproducibility. The mean tracheal wall compliance (in five animals) was 1.3+/-0.3×10-5 (mm Pa)-1. Unlike previous work evaluating airway mechanics, this new method is applicable in vivo, noncontact, and loads the trachea in a physiological manner. The technique may have applications in assessing airway mechanics in diseases such as asthma that are characterized by significant airway remodeling.

  18. Aerosolized polymerized type I collagen reduces airway inflammation and remodelling in a guinea pig model of allergic asthma.

    PubMed

    Moreno-Alvarez, Paola; Sánchez-Guerrero, Edgar; Martínez-Cordero, Erasmo; Hernández-Pando, Rogelio; Campos, María G; Cetina, Lucely; Bazán-Perkins, Blanca

    2010-04-01

    Collagen-polyvinylpyrrolidone (Collagen-PVP) has been demonstrated to elicit immunomodulatory properties in different chronic inflammatory diseases. Nevertheless, its effects on asthma are still unknown. We have evaluated whether collagen-PVP could modulate airway inflammation and remodelling in a guinea pig model of allergic asthma. Sensitized guinea pigs were challenged with the allergen (ovalbumin) six times (at 10-day intervals). From the third challenge on, animals were treated every 5 days with saline aerosols containing 0.16, 0.33, or 0.66 mg/ml of collagen-PVP (n = 5, respectively). Some guinea pigs, sensitized and challenged with saline as well as treated with 0 or 0.66 mg/ml collagen-PVP, were included in the study as control (n = 7) and sham groups (n = 5), respectively. From the first challenge on, ovalbumin induced a transient airway obstruction, measured by barometric plethysmography, which was not modified by collagen-PVP treatments. After the last allergen challenge, guinea pigs were anesthetized to obtain bronchoalveolar lavage (BAL) and the left lung caudal lobe. As expected, BAL cell count from allergen-challenged guinea pigs showed abundant neutrophils and eosinophils, as well as numerous tumor necrosis factor (TNF)-alpha-expressing granulocytes and macrophages in airway wall (determined by immunohistochemical assay). Neutrophilia and TNF-alpha-expressing leukocytes, from collagen-PVP treated animals, diminished from 0.16 mg/ml, and eosinophilia from 0.66 mg/ml of collagen-PVP doses. Histological changes induced by allergen challenges include thickening of connective tissue below airway epithelium and vascular wall widening of airway adjacent vessels; these changes were reduced by collagen-PVP treatment. Collagen-PVP seems to have anti-inflammatory and antifibrotic properties in this guinea pig asthma model.

  19. Hypoxia Potentiates Allergen Induction of HIF-1α, Chemokines, Airway Inflammation, TGF-β1, and Airway Remodeling in a mouse model

    PubMed Central

    Baek, Kwang Je; Cho, Jae Youn; Rosenthal, Peter; Alexander, Laura E. Crotty; Nizet, Victor; Broide, David H.

    2013-01-01

    Whether hypoxia contributes to airway inflammation and remodeling in asthma is unknown. In this study we used mice exposed to a hypoxic environment during allergen challenge (simulating hypoxia during an asthma exacerbation) to investigate the contribution of hypoxia to airway inflammation and remodeling. Although neither hypoxia alone, nor OVA allergen alone, induced significant neutrophil influx into the lung, the combination of OVA and hypoxia induced a synergistic 27 fold increase in peribronchial neutrophils, enhanced expression of HIF-1α and one of its target genes, the CXC-family neutrophil chemokine KC. The combination of hypoxia and OVA allergen increased eotaxin-1, peribronchial eosinophils, lung TGB-β1 expression, and indices of airway remodeling (fibrosis and smooth muscle) compared to either stimulus alone. As hypoxia is present in >90% of severe asthma exacerbations, these findings underscore the potential of hypoxia to potentiate the airway inflammatory response, remodeling, and accelerate the decline of lung function in asthma exacerbations. PMID:23499929

  20. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  1. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  2. Evaluation of scoring accuracy for airway wall thickness

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Ko, Jane P.; Godoy, Myrna C. B.

    2009-02-01

    Bronchial wall thickening is commonly observed in airway diseases. One method often used to quantitatively evaluate wall thickening in CT images is to estimate the ratio of the bronchial wall to the accompanying artery, or BWA ratio, and then assign a severity score based on the ratio. Assessment by visual inspection is unfortunately limited to airways perpendicular or parallel to the scanning plane. With high-resolution images from multi-detector CT scanners, it becomes possible to assess airways in any orientation. We selected CT scans from 20 patients with mild to severe COPD. A computer system automatically segmented each bronchial tree and measured the bronchial wall thicknesses. Next, neighboring arteries were detected and measured to determine BWA ratios. A score characterizing the extent and severity of wall thickening within each lobe was computed according to recommendations by Sheehan et al [1]. Two experienced radiologists independently scored wall thickening using visual assessment. Spearman's rank correlation showed a non-significant negative correlation (r=-0.1) between the computer and the reader average (p=0.4), while the correlation between readers was significant at r=0.65 (p=0.001). We subsequently identified 24 lobes with high discrepancies between visual and automated scoring. The readers re-examined those lobes and measured wall thickness using electronic calipers on perpendicular cross sections, rather than visual assessment. Using this more objective standard of wall thickness, the reader estimates of wall thickening increased to reach a significant positive correlation with automated scoring of r=0.65 (p=0.001). These results indicate that subjectivity is an important problem with visual evaluation, and that visual inspection may frequently underestimate disease extent and severity. Given that a manual evaluation of all airways is infeasible in routine clinical practice, we argue that automated methods should be developed and utilized.

  3. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  4. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    PubMed

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  5. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  6. Wall tissue remodeling regulates longitudinal tension in arteries.

    PubMed

    Jackson, Zane S; Gotlieb, Avrum I; Langille, B Lowell

    2002-05-03

    Changes in blood pressure or flow induce arterial remodeling that normalizes mechanical loads that are imposed on arterial tissue. Arteries are also under substantial longitudinal stretch (axial strain) that may be altered by growth or atrophy of tissues to which they are attached. We therefore tested whether axial strain is also regulated in a negative feedback manner through arterial remodeling. Axial strain in rabbit carotid arteries was increased from 62+/-2% to 97+/-2% without altering other mechanical loads on wall tissues. Strain was reduced within 3 days and completely normalized by 7 days. Remodeling involved tissue elaboration, endothelial cell replication rates were increased by >50-fold and smooth muscle cell replication rates were increased by >15-fold, and substantially elevated DNA, elastin, and collagen contents were recorded. Also, increased rates of apoptosis were indicated by degradation of DNA into oligonucleosomes, and matrix remodeling was reflected in enlarged fenestrae in the internal elastic lamina and increased expression and activation of gelatinases, especially matrix metalloproteinase-2. Intriguingly, reduced axial strain was not normalized, presumably because remodeling processes, apart from cell contraction, are ineffective in decreasing strain, and arterial smooth muscle orientation precludes large effects of contraction on axial strain.

  7. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma

    PubMed Central

    Kasahara, K; Shiba, K; Ozawa, T; Okuda, K; Adachi, M

    2002-01-01

    Background: The epithelial reticular basement membrane (Rbm) of the airway wall thickens in patients with asthma. However, whether the thickening parallels whole airway wall thickening, which limits airflow, is unknown. The aim of this study was to examine the correlation between the bronchial Rbm thickening and whole airway wall thickening in asthma. In addition, the association of Rbm and whole wall thickening with airflow obstruction was examined. Methods: Forty nine patients with asthma and 18 healthy control subjects took part in the study. The Rbm thickness was measured in bronchial biopsy specimens and whole airway wall thickness was assessed with high resolution computed tomographic (HRCT) scanning after pretreatment with oral steroids for 2 weeks and inhaled ß2 agonist to minimise reversible changes of the airway walls. The percentage airway wall area (WA%; defined as (wall area/total airway area) x 100) and percentage airway wall thickness (WT%; defined as [(ideal outer diameter – ideal luminal diameter)/ideal outer diameter] x 100) were determined from HRCT scans to assess whole airway wall thickness. Spirometric tests were also performed. Results: WA% and WT% were higher in patients with asthma than in healthy subjects. Both WA% and WT% were strongly correlated with Rbm thickness. Moreover, these three indices of airway wall thickness were inversely correlated with the percentage of predicted forced expiratory volume in 1 second in patients with asthma. Conclusions: These findings indicate that Rbm thickening parallels whole airway wall thickening which can cause irreversible airflow obstruction in patients with asthma. PMID:11867829

  8. Inhibitory Effects of Resveratrol on Airway Remodeling by Transforming Growth Factor-β/Smad Signaling Pathway in Chronic Asthma Model

    PubMed Central

    Lee, Hwa Young; Kim, In Kyoung; Yoon, Hyoung Kyu; Kwon, Soon Suk

    2017-01-01

    Purpose Asthma is a chronic airway disease characterized by airway remodeling, leading to a progressive decline in lung function. Therapeutic agents that attenuate airway remodeling can complement the limited effects of traditional glucocorticoids. In this study, we investigated the effect of resveratrol on allergic airway inflammation and remodeling in a murine model of chronic bronchial asthma. Methods Peribronchial smooth muscle thickening that developed in mice challenged with a 3-month repeated exposure to ovalbumin (OVA) was used to study airway remodeling. Oral resveratrol was administered daily during the OVA challenge. The expression of TGF-β1/Smad signaling proteins and downstream mesenchymal markers in the presence or absence of resveratrol was examined in bronchial epithelial cells. Results OVA sensitization and chronic challenge increased airway hyperresponsiveness, inflammation, goblet cell hyperplasia, α-smooth muscle actin (SMA), and collagen deposition. Resveratrol effectively suppressed OVA-induced airway inflammation and remodeling. The expression of TGF-β1/phosphorylated Smad2/3 was increased in the lung tissues of OVA-challenged mice but effectively inhibited by resveratrol. In bronchial epithelial cells, the TGF-β1-induced expression of the mesenchymal markers snail, slug, vimentin, and α-SMA was suppressed by resveratrol treatment. Conclusions Resveratrol effectively ameliorated both airway inflammation and airway structural changes in a mouse model of bronchial asthma. These effects were mediated by decreased TGF-β1 expression, in turn suppressing TGF-β1/Smad signaling and the epithelial-mesenchymal transition process. Our results demonstrate the potential benefits of resveratrol for the treatment of airway remodeling associated with bronchial asthma. PMID:27826959

  9. Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells.

    PubMed

    Britt, Rodney D; Faksh, Arij; Vogel, Elizabeth R; Thompson, Michael A; Chu, Vivian; Pandya, Hitesh C; Amrani, Yassine; Martin, Richard J; Pabelick, Christina M; Prakash, Y S

    2015-06-01

    Asthma in the pediatric population remains a significant contributor to morbidity and increasing healthcare costs. Vitamin D3 insufficiency and deficiency have been associated with development of asthma. Recent studies in models of adult airway diseases suggest that the bioactive Vitamin D3 metabolite, calcitriol (1,25-dihydroxyvitamin D3 ; 1,25(OH)2 D3 ), modulates responses to inflammation; however, this concept has not been explored in developing airways in the context of pediatric asthma. We used human fetal airway smooth muscle (ASM) cells as a model of the early postnatal airway to explore how calcitriol modulates remodeling induced by pro-inflammatory cytokines. Cells were pre-treated with calcitriol and then exposed to TNFα or TGFβ for up to 72 h. Matrix metalloproteinase (MMP) activity, production of extracellular matrix (ECM), and cell proliferation were assessed. Calcitriol attenuated TNFα enhancement of MMP-9 expression and activity. Additionally, calcitriol attenuated TNFα and TGFβ-induced collagen III expression and deposition, and separately, inhibited proliferation of fetal ASM cells induced by either inflammatory mediator. Analysis of signaling pathways suggested that calcitriol effects in fetal ASM involve ERK signaling, but not other major inflammatory pathways. Overall, our data demonstrate that calcitriol can blunt multiple effects of TNFα and TGFβ in developing airway, and point to a potentially novel approach to alleviating structural changes in inflammatory airway diseases of childhood.

  10. Allergen-induced airway remodeling in brown norway rats: structural and metabolic changes in glycosaminoglycans.

    PubMed

    Venkatesan, Narayanan; Siddiqui, Sana; Jo, Taisuke; Martin, James G; Ludwig, Mara S

    2012-01-01

    Increased proteoglycan (PG) deposition is a feature of airway remodeling in asthma. Glycosaminoglycans (GAGs) mediate many of the biological and mechanical properties of PGs by providing docking sites through their carbohydrate chains to bioactive ligands; therefore, it is imperative to define structural and metabolic changes of GAGs in asthma. Using a Brown Norway (BN) ovalbumin (OVA)-sensitized and -challenged rat model to induce airway remodeling, we found excessive deposition of chondroitin/dermatan (CS/DS)-, heparan (HS), and keratan (KS) sulfate GAGs in the airways and bronchoalveolar lavage cells of OVA-challenged rats. Disaccharide composition of CS/DS of OVA-challenged rats was significantly different compared with saline-treated (SAL) control rats, with increased levels of 0-, 6-, and 4-sulfated disaccharides. Increases in the amount and a change in the proportion of CS/DS versus HS GAGs were noted in OVA-challenged rats. The higher content and sulfation of CS/DS disaccharides was reflected by the increased expression of xylosyltransferase-I, β1,3-glucuronosyltransferase-I, chondroitin-4, and chondroitin-6 sulfotransferase genes and protein expression of xylosyltransferase-I and β1,3-glucuronosyltransferase-I in OVA-challenged rats. Genes encoding the core proteins of the CS/DS and KS-containing PGs, such as versican, biglycan, decorin, and lumican, were overexpressed in OVA-challenged rats. Our results suggest that GAG biosynthetic enzymes may be involved in the altered expression of GAGs in the airways and are potential targets for inhibiting excess PG-GAG deposition and the airway remodeling process in asthma.

  11. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling.

    PubMed

    Vargas, Amandine; Roux-Dalvai, Florence; Droit, Arnaud; Lavoie, Jean-Pierre

    2016-09-01

    Neutrophils infiltrate the airways of patients with asthma of all severities, yet their role in the pathogenesis of asthma and their contribution to airway remodeling is largely unknown. We hypothesized that neutrophils modulate airway smooth muscle (ASM) proliferation in asthma by releasing bioactive exosomes. These newly discovered nano-sized vesicles have the capacity to modulate immune responses, cell migration, cell differentiation, and other aspects of cell-to-cell communication. The aim of the study is to determine whether bioactive exosomes are released by neutrophils, and, if so, characterize their proteomic profile and evaluate their capacity to modulate ASM cell proliferation. Exosomes were isolated from equine neutrophil supernatants by differential centrifugation and filtration methods, followed by size-exclusion chromatography. Nanovesicles were characterized using electron microscopy, particle size determination, and proteomic analyses. Exosomes were cocultured with ASM cells and analyzed for exosome internalization by confocal microscopy. ASM proliferation was measured using an impedance-based system. Neutrophils release exosomes that have characteristic size, morphology, and exosomal markers. We identified 271 proteins in exosomes from both LPS and unstimulated neutrophils, and 16 proteins that were differentially expressed, which carried proteins associated with immune response and positive regulation of cell communication. Furthermore, neutrophil-derived exosomes were rapidly internalized by ASM cells and altered their proliferative properties. Upon stimulation of LPS, neutrophil-derived exosomes can enhance the proliferation of ASM cells and could therefore play an important role in the progression of asthma and promoting airway remodeling in severe and corticosteroid-insensitive patients with asthma.

  12. Upregulation of Gelatinases and Epithelial–Mesenchymal Transition in Small Airway Remodeling Associated with Chronic Exposure to Wood Smoke

    PubMed Central

    Zou, Yimin; Li, Shaoxing; Zou, Weifeng; Hu, Guoping; Zhou, Yumin; Peng, Gongyong; He, Fang; Li, Bing; Ran, Pixin

    2014-01-01

    Background Peribronchiolar fibrosis is an important feature of small airway remodeling (SAR) in cigarette smoke-induced COPD. The aim of this study was to investigate the role of gelatinases (MMP9, MMP2) and epithelial-mesenchymal transition (EMT) in SAR related to wood smoke (WS) exposure in a rat model. Methods Forty-eight female Sprague-Dawley rats were randomly divided into the WS group, the cigarette smoke (CS) group and the clean air control group. After 4 to 7 months of smoke exposure, lung tissues were examined with morphometric measurements, immunohistochemistry and Western blotting. Serum MMP9 and TIMP1 concentrations were detected by ELISA. In vitro, primary rat tracheal epithelial cells were stimulated with wood smoke condensate for 7 days. Results The COPD-like pathological alterations in rats exposed chronically to WS were similar to those exposed to CS; the area of collagen deposition was significantly increased in the small airway walls of those exposed to WS or CS for 7 months. The expression of gelatinases in rats induced by WS or CS exposure was markedly increased in whole lung tissue, and immunohistochemistry showed that MMP9, MMP2 and TIMP1 were primarily expressed in the airway epithelium. The serum levels of MMP9 and TIMP1 were significantly higher in rats secondary to WS or CS exposure. Few cells that double immunostained for E-cadherin and vimentin were observed in the airway subepithelium of rats exposed to WS for 7 months (only 3 of these 8 rats). In vitro, the expression of MMP9 and MMP2 proteins was upregulated in primary rat tracheal epithelial cells following exposure to wood smoke condensate for 7 days by Western blotting; positive immunofluorescent staining for vimentin and type I collagen was also observed. Conclusions These findings suggest that the upregulation of gelatinases and EMT might play a role in SAR in COPD associated with chronic exposure to wood smoke. PMID:24802298

  13. Lyn mitigates mouse airway remodeling by downregulating the TGF-β3 isoform in house dust mite models.

    PubMed

    Li, Guoping; Fox, John; Liu, Zhigang; Liu, Jun; Gao, George F; Jin, Yang; Gao, Hongwei; Wu, Min

    2013-12-01

    Chronic airway remodeling is a serious consequence of asthma, which is caused by complex but largely unknown mechanisms. Despite versatile functions, the role of Lyn in chronic airway remodeling remains undefined. Using Lyn(-/-) mice, we show that continual exposure (for 8 wk) of house dust mite extracts induced a severe phenotype of chronic airway remodeling, including exacerbated mucus production, collagen deposition, dysregulated cytokine secretion, and elevated inflammation. Strikingly, a significant increase in TGF-β3 rather than TGF-β1 was observed in Lyn(-/-) mouse lungs compared with lungs in wild-type mice. Furthermore, TGF-β3 neutralizing Abs not only inhibited the expression of STAT6 and Smad2/3 but also decreased phosphorylation of Smad2 and NF-κB in Lyn(-/-) mouse lungs. In addition, both recombinant and adenoviral TGF-β3 significantly promoted epithelial-to-mesenchymal transition and intensified collagen I production and MUC5AC expression. Further examination of chronic asthma patients showed that a decreased Lyn correlated with the severity of airway inflammation and mucus hypersecretion. Finally, Lyn may critically regulate airway remodeling by directly interacting with TGF-β3. Collectively, these findings revealed that Lyn regulates TGF-β3 isoform and modulates the development of airway remodeling, which may have therapeutic implications for severe chronic asthma.

  14. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.

    PubMed

    Francin-Allami, Mathilde; Merah, Kahina; Albenne, Cécile; Rogniaux, Hélène; Pavlovic, Marija; Lollier, Virginie; Sibout, Richard; Guillon, Fabienne; Jamet, Elisabeth; Larré, Colette

    2015-07-01

    Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.

  15. Sinomenine attenuates airway inflammation and remodeling in a mouse model of asthma

    PubMed Central

    BAO, HAI-RONG; LIU, XIAO-JU; LI, YUN-LIN; MEN, XIANG; ZENG, XIAO-LI

    2016-01-01

    Asthma is an inflammatory disease that involves airway inflammation and remodeling. Sinomenine (SIN) has been demonstrated to have immunosuppressive and anti-inflammatory properties. The aim of the present study was to investigate the inhibitory effects of SIN on airway inflammation and remodeling in an asthma mouse model and observe the effects of SIN on the transforming growth factor-β1 (TGF-β1)/connective tissue growth factor (CTGF) pathway and oxidative stress. Female BALB/c mice were sensitized by repetitive ovalbumin (OVA) challenge for 6 weeks in order to develop a mouse model of asthma. OVA-sensitized animals received SIN (25, 50 and 75 mg/kg) or dexamethasone (2 mg/kg). A blank control group received saline only. The area of smooth muscle and collagen, levels of mucus secretion and inflammatory cell infiltration were evaluated 24 h subsequent to the final OVA challenge. mRNA and protein levels of TGF-β1 and CTGF were determined by reverse transcription-quantitative polymerase chain reaction and immunohistology, respectively. The indicators of oxidative stress were detected by spectrophotometry. SIN significantly reduced allergen-induced increases in smooth muscle thickness, mucous gland hypertrophy, goblet cell hyperplasia, collagen deposition and eosinophilic inflammation. The levels of TGF-β1 and CTGF mRNA and protein were significantly reduced in the lungs of mice treated with SIN. Additionally, the total antioxidant capacity was increased in lungs following treatment with SIN. The malondialdehyde content and myeloperoxidase activities in the lungs from OVA-sensitized mice were significantly inhibited by SIN. In conclusion, SIN may inhibit airway inflammation and remodeling in asthma mouse models, and may have therapeutic efficacy in the treatment of asthma. PMID:26820806

  16. Obstructive Sleep Apnoea Modulates Airway Inflammation and Remodelling in Severe Asthma

    PubMed Central

    Taillé, Camille; Rouvel-Tallec, Anny; Stoica, Maria; Danel, Claire; Dehoux, Monique; Marin-Esteban, Viviana; Pretolani, Marina; Aubier, Michel; d’Ortho, Marie-Pia

    2016-01-01

    Background Obstructive sleep apnoea (OSA) is frequently observed in severe asthma but the causal link between the 2 diseases remains hypothetical. The role of OSA-related systemic and airway neutrophilic inflammation in asthma bronchial inflammation or remodelling has been rarely investigated. The aim of this study was to compare hallmarks of inflammation in induced sputum and features of airway remodelling in bronchial biopsies from adult patients with severe asthma with and without OSA. Materials and Methods An overnight polygraphy was performed in 55 patients referred for difficult-to-treat asthma, who complained of nocturnal respiratory symptoms, poor sleep quality or fatigue. We compared sputum analysis, reticular basement membrane (RBM) thickness, smooth muscle area, vascular density and inflammatory cell infiltration in bronchial biopsies. Results In total, 27/55 patients (49%) had OSA diagnosed by overnight polygraphy. Despite a moderate increase in apnoea-hypopnoea index (AHI; 14.2±1.6 event/h [5–35]), the proportion of sputum neutrophils was higher and that of macrophages lower in OSA than non-OSA patients, with higher levels of interleukin 8 and matrix metalloproteinase 9. The RBM was significantly thinner in OSA than non-OSA patients (5.8±0.4 vs. 7.8±0.4 μm, p<0.05). RBM thickness and OSA severity assessed by the AHI were negatively correlated (rho = -0.65, p<0.05). OSA and non-OSA patients did not differ in age, sex, BMI, lung function, asthma control findings or treatment. Conclusion Mild OSA in patients with severe asthma is associated with increased proportion of neutrophils in sputum and changes in airway remodelling. PMID:26934051

  17. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma.

    PubMed

    Habibovic, Aida; Hristova, Milena; Heppner, David E; Danyal, Karamatullah; Ather, Jennifer L; Janssen-Heininger, Yvonne M W; Irvin, Charles G; Poynter, Matthew E; Lundblad, Lennart K; Dixon, Anne E; Geiszt, Miklos; van der Vliet, Albert

    2016-11-03

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  18. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    PubMed Central

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management. PMID:27812543

  19. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    PubMed Central

    Kang, Ji Young; Lee, Sook Young; Rhee, Chin Kook; Kim, Seung Joon; Kwon, Soon Seog; Kim, Young Kyoon

    2013-01-01

    Background and objectives The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA) for 1 month (n = 8–12 per group). We analyzed inflammatory cells and T-helper (Th)2 cytokines in bronchoalveolar lavage (BAL) fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old) mice than in the young (6-week-old) mice. Interleukin (IL) 4 (IL-4) concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. Periodic acid-Schiff (PAS) staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice. PMID:24204129

  20. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation

    PubMed Central

    Ojkic, Nikola; López-Garrido, Javier; Pogliano, Kit; Endres, Robert G

    2016-01-01

    When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI: http://dx.doi.org/10.7554/eLife.18657.001 PMID:27852437

  1. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Sun, Zhan; Yu, Wenyan; Wang, Jing; Li, Fengsen; Ding, Jianbing

    2014-01-01

    It has been proved that Uygur herb Hyssopus offcinalis L. could affect the levels of some cytokines (such as IL-4, IL-6, IL-17, and IFN-γ) in asthmatic mice. By detection of the expressions of MMP-9 and TIMP-1 and the morphological changes, the aim of this research is to reveal the mechanism of Uygur herb Hyssopus offcinalis L. in the process of airway remodeling. It was observed that the expressions of MMP-9 and TIMP-1 increased, but the ratio of MMP-9/TIMP-1 decreased in airway remodeling group. However, the expression of both MMP-9 and TIMP-1 decreased after being treated with dexamethasone and Hyssopus offcinalis L., accompanied by the relieved pathological changes, including collagen deposition, mucus secretion, and smooth muscle proliferation. It is suggested that Uygur herb Hyssopus offcinalis L. could inhibit airway remodeling by correcting imbalance of MMP-9/TIMP-1 ratio.

  2. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice

    PubMed Central

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Sun, Zhan; Yu, Wenyan; Wang, Jing; Li, Fengsen; Ding, Jianbing

    2014-01-01

    It has been proved that Uygur herb Hyssopus offcinalis L. could affect the levels of some cytokines (such as IL-4, IL-6, IL-17, and IFN-γ) in asthmatic mice. By detection of the expressions of MMP-9 and TIMP-1 and the morphological changes, the aim of this research is to reveal the mechanism of Uygur herb Hyssopus offcinalis L. in the process of airway remodeling. It was observed that the expressions of MMP-9 and TIMP-1 increased, but the ratio of MMP-9/TIMP-1 decreased in airway remodeling group. However, the expression of both MMP-9 and TIMP-1 decreased after being treated with dexamethasone and Hyssopus offcinalis L., accompanied by the relieved pathological changes, including collagen deposition, mucus secretion, and smooth muscle proliferation. It is suggested that Uygur herb Hyssopus offcinalis L. could inhibit airway remodeling by correcting imbalance of MMP-9/TIMP-1 ratio. PMID:25383084

  3. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma.

    PubMed

    Nader, Manar A

    2015-12-01

    In this study the role of sitagliptin, dipeptidyl peptidase inhibitor, DPP-4, and dexamethasone in ameliorating inflammation and remodeling of chronic asthma in a mouse model were investigated. Mice sensitized to ovalbumin were chronically challenged with aerosolized antigen for 3days a week continued for 8weeks. During this period animals were treated with sitagliptin or dexamethasone daily. Assessment of inflammatory cell, oxidative markers, total nitrate/nitrite (NOx), interleukin (IL)-13, transforming growth factor-beta1 (TGF-β1) in bronchoalveolar lavage (BAL) and/or lung tissue were done. Also histopathological and immuno-histochemical analysis for lung was carried out. Compared with vehicle alone, treatment with sitagliptin or dexamethasone significantly reduced accumulation of eosinophils and chronic inflammatory cells, subepithelial collagenization, and thickening of the airway epithelium. Also both drug reduced goblet cell hyperplasia, oxidative stress, TGF-β1, IL-13 and epithelial cytoplasmic immunoreactivity for nuclear factor κ-B (NFκ-B). These data indicate that sitagliptin like dexamethasone may play a beneficial role reducing airway inflammation and remodeling in chronic murine model of asthma.

  4. Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma.

    PubMed

    Liu, Ya-Nan; Zha, Wang-Jian; Ma, Yuan; Chen, Fei-Fei; Zhu, Wen; Ge, Ai; Zeng, Xiao-Ning; Huang, Mao

    2015-07-09

    Galangin, a natural flavonol, has attracted much attention for its potential anti-inflammatory properties. However, its role in the regulation of airway remodelling in asthma has not been explored. The present study aimed to elucidate the effects of galangin on chronic inflammation and airway remodelling and to investigate the underlying mechanisms both in vivo and in vitro. Ovalbumin (OVA)-sensitised mice were administered with galangin 30 min before challenge. Our results showed that severe inflammatory responses and airway remodelling occurred in OVA-induced mice. Treatment with galangin markedly attenuated the leakage of inflammatory cells into bronchoalveolar lavage fluid (BALF) and decreased the level of OVA-specific IgE in serum. Galangin significantly inhibited goblet cell hyperplasia, collagen deposition and α-SMA expression. Lowered level of TGF-β1 and suppressed expression of VEGF and MMP-9 were observed in BALF or lung tissue, implying that galangin has an optimal anti-remodelling effect in vivo. Consistently, the TGF-β1-induced proliferation of airway smooth muscle cells was reduced by galangin in vitro, which might be due to the alleviation of ROS levels and inhibition of MAPK pathway. Taken together, the present findings highlight a novel role for galangin as a promising anti-remodelling agent in asthma, which likely involves the TGF-β1-ROS-MAPK pathway.

  5. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  6. Sputum pentraxin 3 as a candidate to assess airway inflammation and remodeling in childhood asthma

    PubMed Central

    Kim, Min Jung; Lee, Hee Seon; Sol, In Suk; Kim, Mi Na; Hong, Jung Yeon; Lee, Kyung Eun; Kim, Yoon Hee; Kim, Kyung Won; Sohn, Myung Hyun; Kim, Kyu-Earn

    2016-01-01

    Abstract Pentraxin 3 (PTX3) is a soluble pattern recognition receptor and an acute-phase protein. It has gained attention as a new biomarker reflecting tissue inflammation and damage in a variety of diseases. Aim of this study is to investigate the role of PTX3 in childhood asthma. In total, 260 children (140 patients with asthma and 120 controls) were enrolled. PTX3 levels were measured in sputum supernatants using enzyme-linked immunosorbent assay test. We performed spirometry and methacholine challenge tests and measured the total eosinophil count and the serum levels of total IgE and eosinophil cationic protein (ECP) in all subjects. Sputum PTX3 concentration was significantly higher in children with asthma than in control subjects (P < 0.001). Furthermore, sputum PTX3 levels correlated with atopic status and disease severity among patients with asthma. A positive significant correlation was found between sputum PTX3 and the bronchodilator response (r = 0.25, P = 0.013). Sputum PTX3 levels were negatively correlated with forced expiratory volume in 1 second (FEV1) (r = -0.30, P = 0.001), FEV1/forced vital capacity (FVC) (r = -0.27, P = 0.002), and FEF25–75 (r = -0.392, P < 0.001), which are indicators of airway obstruction and inflammation. In addition, the PTX3 concentration in sputum showed negative correlations with post-bronchodilator (BD) FEV1 (r = -0.25, P < 0.001) and post-BD FEV1/FVC (r = -0.25, P < 0.001), which are parameters of persistent airflow limitation reflecting airway remodeling. Sputum PTX3 levels increased in children with asthma, suggesting that PTX3 in sputum could be a candidate molecule to evaluate airway inflammation and remodeling in childhood asthma. PMID:28002338

  7. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    PubMed Central

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion

  8. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  9. Cigarette smoke increases the penetration of asbestos fibers into airway walls.

    PubMed Central

    McFadden, D.; Wright, J.; Wiggs, B.; Churg, A.

    1986-01-01

    For study of the penetration of asbestos fibers into airway walls, guinea pigs were given amosite asbestos by intratracheal instillation. Half of the animals were also exposed to cigarette smoke. Animals were sacrificed at 1 week and 1 month, and numbers of fibers in airway walls were counted in histologic sections. In both smoke-exposed and nonexposed groups, numbers of fibers per square millimeter of airway wall increased from 1 week to 1 month in the respiratory bronchioles. At each time period, smoke-exposed animals had significantly higher numbers of fibers in the airway walls, compared with nonexposed animals. It is concluded that 1) continued transport of fibers into interstitial tissues may be the reason that asbestosis can progress after cessation of exposure; 2) cigarette smoke increases the penetration of fibers into airway walls. This effect may play a role in the increased incidence of disease seen in smoking, compared with nonsmoking, asbestos workers. PMID:3963152

  10. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung.

    PubMed

    Lappalainen, Urpo; Whitsett, Jeffrey A; Wert, Susan E; Tichelaar, Jay W; Bry, Kristina

    2005-04-01

    The production of the inflammatory cytokine interleukin (IL)-1 is increased in lungs of patients with chronic obstructive pulmonary disease (COPD) or asthma. To characterize the in vivo actions of IL-1 in the lung, transgenic mice were generated in which human IL-1beta was expressed in the lung epithelium with a doxycycline-inducible system controlled by the rat Clara cell secretory protein (CCSP) promoter. Induction of IL-1beta expression in the lungs of adult mice caused pulmonary inflammation characterized by neutrophil and macrophage infiltrates. IL-1beta caused distal airspace enlargement, consistent with emphysema. IL-1beta caused disruption of elastin fibers in alveolar septa and fibrosis in airway walls and in the pleura. IL-1beta increased the thickness of conducting airways, enhanced mucin production, and caused lymphocytic aggregates in the airways. Decreased immunostaining for the winged helix transcription factor FOXA2 was associated with goblet cell hyperplasia in IL-1beta-expressing mice. The production of the neutrophil attractant CXC chemokines KC (CXCL1) and MIP-2 (CXCL2), and of matrix metalloproteases MMP-9 and MMP-12, was increased by IL-1beta. Chronic production of IL-1beta in respiratory epithelial cells of adult mice causes lung inflammation, enlargement of distal airspaces, mucus metaplasia, and airway fibrosis in the adult mouse.

  11. Circulating microparticles enhanced rat vascular wall remodeling following endothelial denudation

    PubMed Central

    Lee, Fan-Yen; Lu, Hung-I; Chai, Han-Tan; Sheu, Jiunn-Jye; Chen, Yi-Ling; Huang, Tein-Hung; Kao, Gour-Shenq; Chen, Sheng-Yi; Chung, Sheng-Ying; Sung, Pei-Hsun; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that circulating microparticles (MPs) exacerbated vascular wall (VW) remodeling after endothelial denudation by 0.014 wire in a rat model. Adult male Sprague Dawley rats (n = 40) were equally categorized into group 1 [sham-control (SC); 3.0 mL saline intravenous injection], group 2 [SC + intravenous MPs (1.0 × 107) derived from patients with carotid artery stenosis (CAS)], group 3 [femoral arterial endothelial denudation (FAED)], group 4 (FAED + MPs derived from healthy subjects), and group 5 (FAED + CAS-derived MPs). Animals were euthanized by day 28 after FAED procedure. The results demonstrated that neointimal area (NIA) (mm2), medial area, and number of infiltrated cells in medial layer were highest in group 5 and lowest in groups 1 and 2, and significantly higher in group 4 than those in group 3 (all P<0.0001), but no differences were noted between groups 1 and 2. However, the ratio of luminal area to VW area showed an opposite pattern compared to that of NIA among five groups (P<0.0001). Immunofluorescent study showed an identical pattern of changes in the numbers of inflammatory (F4/80, CD14, CD40, IL-β) and proliferative (Ki-67, Cx43) cells in VW compared to that of NIA among the five groups (all P<0.00). The mNRA expressions of inflammatory (MMP-9, NF-κB, TNF-α, IL-1β, iNOS, PDGF) and cell activation (c-Fos, c-Myc, osteopontin, PCNA) biomarkers showed an identical pattern compared to that of NIA among all groups (all P<0.001). Take altogether, CAS-derived MPs further aggravated MP-mediated VW remodeling after endothelial damage compared to that observed after administration of MPS derived from healthy subjects. PMID:27904658

  12. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency.

  13. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  14. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  15. Interstitial collagen turnover during airway remodeling in acute and chronic experimental asthma

    PubMed Central

    González-Avila, Georgina; Bazan-Perkins, Blanca; Sandoval, Cuauhtémoc; Sommer, Bettina; Vadillo-Gonzalez, Sebastian; Ramos, Carlos; Aquino-Galvez, Arnoldo

    2016-01-01

    Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase

  16. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma

    PubMed Central

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  17. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD

    PubMed Central

    Soltani, Amir; Walters, Eugene Haydn; Reid, David W; Shukla, Shakti Dhar; Nowrin, Kaosia; Ward, Chris; Muller, H Konrad; Sohal, Sukhwinder Singh

    2016-01-01

    Background This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). Methods Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. Results There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. Conclusion Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression. PMID:27703346

  18. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer.

    PubMed

    Nowrin, Kaosia; Sohal, Sukhwinder Singh; Peterson, Gregory; Patel, Rahul; Walters, Eugene Haydn

    2014-10-01

    Chronic obstructive pulmonary disease (COPD) is a complex condition, frequently with a mix of airway and lung parenchymal damage. However, the earliest changes are in the small airways, where most of the airflow limitation occurs. The pathology of small airway damage seems to be wall fibrosis and obliteration, but the whole airway is involved in a 'field effect'. Our novel observations on active epithelial-mesenchymal transition (EMT) in the airways of smokers, particularly in those with COPD, are changing the understanding of this airway pathology and the aetiology of COPD. EMT involves a cascade of regulatory changes that destabilise the epithelium with a motile and mesenchymal epithelial cell phenotype emerging. One important manifestation of EMT activity involves up-regulation of specific key transcription factors (TFs), such as Smads, Twist, and β-catenin. Such TFs can be used as EMT biomarkers, in recognisable patterns reflecting the potential major drivers of the process; for example, TGFβ, Wnt, and integrin-linked kinase systems. Thus, understanding the relative changes in TF activity during EMT may provide rich information on the mechanisms driving this whole process, and how they may change over time and with therapy. We have sought to review the current literature on EMT and the relative expression of specific TF activity, to define the networks likely to be involved in a similar process in the airways of patients with smoking-related COPD.

  19. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  20. Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    2015-01-01

    Several lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response. Using a murine model of ovalbumin (OVA)-induced asthma, we revealed that GO, given at the sensitization stage, augmented airway hyperresponsiveness and airway remodeling in the form of goblet cell hyperplasia and smooth muscle hypertrophy. At the same time, the levels of the cytokines IL-4, IL-5, and IL-13 were reduced in broncho-alveolar lavage (BAL) fluid in GO-exposed mice. Exposure to GO during sensitization with OVA decreased eosinophil accumulation and increased recruitment of macrophages in BAL fluid. In line with the cytokine profiles, sensitization with OVA in the presence of GO stimulated the production of OVA-specific IgG2a and down-regulated the levels of IgE and IgG1. Moreover, exposure to GO increased the macrophage production of the mammalian chitinases, CHI3L1 and AMCase, whose expression is associated with asthma. Finally, molecular modeling has suggested that GO may directly interact with chitinase, affecting AMCase activity, which has been directly proven in our studies. Thus, these data show that GO exposure attenuates Th2 immune response in a model of OVA-induced asthma, but leads to potentiation of airway remodeling and hyperresponsiveness, with the induction of mammalian chitinases. PMID:24847914

  1. Airway wall thickness is increased in COPD patients with bronchodilator responsiveness

    PubMed Central

    2014-01-01

    Rationale Bronchodilator responsiveness (BDR) is a common but variable phenomenon in COPD. The CT characteristics of airway dimensions that differentiate COPD subjects with BDR from those without BDR have not been well described. We aimed to assess airway dimensions in COPD subjects with and without BDR. Methods We analyzed subjects with GOLD 1–4 disease in the COPDGene® study who had CT airway analysis. We divided patients into two groups: BDR + (post bronchodilator ΔFEV1 ≥ 10%) and BDR-(post bronchodilator ΔFEV1 < 10%). The mean wall area percent (WA%) of six segmental bronchi in each subject was quantified using VIDA. Using 3D SLICER, airway wall thickness was also expressed as the square root wall area of an airway of 10 mm (Pi10) and 15 mm (Pi15) diameter. %Emphysema and %gas trapping were also calculated. Results 2355 subjects in the BDR-group and 1306 in the BDR + group formed our analysis. The BDR + group had a greater Pi10, Pi15, and mean segmental WA% compared to the BDR-group. In multivariate logistic regression using gender, race, current smoking, history of asthma, %emphysema, %gas trapping, %predicted FEV1, and %predicted FVC, airway wall measures remained independent predictors of BDR. Using a threshold change in FEV1 ≥ 15% and FEV1 ≥ 12% and 200 mL to divide patients into groups, the results were similar. Conclusion BDR in COPD is independently associated with CT evidence of airway pathology. This study provides us with greater evidence of changes in lung structure that correlate with physiologic manifestations of airflow obstruction in COPD. PMID:25248436

  2. Automated segmentation of porcine airway wall layers using optical coherence tomography: comparison with manual segmentation and histology

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Lee, Anthony M. D.; Candido, Tara; MacAulay, Calum; Lane, Pierre; Lam, Stephen; Coxson, Harvey O.

    2014-03-01

    The objective was to develop an automated optical coherence tomography (OCT) segmentation method. We evaluated three ex-vivo porcine airway specimens; six non-sequential OCT images were selected from each airway specimen. Histology was also performed for each airway and histology images were co-registered to OCT images for comparison. Manual segmentation of the airway luminal area, mucosa area, submucosa area and the outer airway wall area were performed for histology and OCT images. Automated segmentation of OCT images employed a despecking filter for pre-processing, a hessian-based filter for lumen and outer airway wall area segmentation, and K-means clustering for mucosa and submucosa area segmentation. Bland-Altman analysis indicated that there was very little bias between automated OCT segmentation and histology measurements for the airway lumen area (bias=-6%, 95% CI=-21%-8%), mucosa area, (bias=-4%, 95% CI=-14%-5%), submucosa area (bias=7%, 95% CI=-7%-20%) and outer airway wall area segmentation results (bias=-5%, 95% CI=-14%-5%). We also compared automated and manual OCT segmentation and Bland-Altman analysis indicated that there was negligible bias between luminal area (bias=4%, 95% CI=1%-8%), mucosa area (bias=-3%, 95% CI=-6%-1%), submucosa area (bias=-2%, 95% CI=-10%-6%) and the outer airway wall (bias=-3%, 95% CI=-13%-6%). The automated segmentation method for OCT airway imaging developed here allows for accurate and precise segmentation of the airway wall components, suggesting that translation of this method to in vivo human airway analysis would allow for longitudinal and serial studies.

  3. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  4. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.

    PubMed

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2005-10-01

    Vascular functions, including tissue perfusion and peripheral resistance, reflect continuous structural adaptation (remodeling) of blood vessels in response to several stimuli. Here, a theoretical model is presented that relates the structural and functional properties of microvascular networks to the adaptive responses of individual segments to hemodynamic and metabolic stimuli. All vessels are assumed to respond, according to a common set of adaptation rules, to changes in wall shear stress, circumferential wall stress, and tissue metabolic status (indicated by partial pressure of oxygen). An increase in vessel diameter with increasing wall shear stress and an increase in wall mass with increased circumferential stress are needed to ensure stable vascular adaptation. The model allows quantitative predictions of the effects of changes in systemic hemodynamic conditions or local adaptation characteristics on vessel structure and on peripheral resistance. Predicted effects of driving pressure on the ratio of wall thickness to vessel diameter are consistent with experimental observations. In addition, peripheral resistance increases by approximately 65% for an increase in driving pressure from 50 to 150 mm Hg. Peripheral resistance is predicted to be markedly increased in response to a decrease in vascular sensitivity to wall shear stress, and to be decreased in response to increased tissue metabolic demand. This theoretical approach provides a framework for integrating available information on structural remodeling in the vascular system and predicting responses to changing conditions or altered vascular reactivity, as may occur in hypertension.

  5. Loss of the Hyaluronan Receptor RHAMM Prevents Constrictive Artery Wall Remodeling

    PubMed Central

    Ma, Xue; Pearce, Jeffrey D.; Wilson, David B.; English, William P.; Edwards, Matthew S.; Geary, Randolph L.

    2013-01-01

    Objective Constrictive extracellular matrix (ECM) remodeling contributes significantly to restenosis after arterial reconstruction but its molecular regulation is poorly defined. Hyaluronan (HA) accumulates within ECM at sites of injury where it is thought to facilitate smooth muscle cell (SMC) trafficking and collagen remodeling analogous to its role in cutaneous wound healing. SMC receptors for HA include receptor for hyaluronan-mediated motility (RHAMM), which mediates HA-induced migration. We hypothesized RHAMM would also mediate SMC-matrix interactions to alter extent of constrictive remodeling. Methods We studied the role of RHAMM in SMC attachment to collagen, migration, and contraction of collagen gels using blocking antibodies and SMC from RHAMM−/− knockout mice (rKO). We then determined the role of RHAMM in constrictive artery wall remodeling by comparing changes in wall geometry in rKO versus wild-type +/+ (WT) controls 1 month after carotid ligation. Results HA increased SMC attachment to collagen-coated plates but blocking RHAMM reduced adhesion (p=0.025). rKO SMC also demonstrated reduced adhesion (% adherent: 36.1±2.2 vs. 76.3±1.9, p< 0.05). SMC contraction of collagen gels was enhanced by HA and further increased by RHAMM blockade (p< 0.01) or knockout (gel diameter, mm: rKO, 6.7±0.1 vs. WT, 9.8±0.1, p=0.015). RHAMM promoted constrictive remodeling in vivo as carotid artery size was significantly larger in rKO mice 1 month after ligation. Neointimal thickening however was not affected in rKO (p=NS vs WT) but lumen size was significantly larger (lumen area, μm2: 52.4±1.4 × 103 vs. 10.4±1.8 × 103, p=0.01) because artery size constricted less (EEL area, μm2: rKO, 92.4±4.7×103 vs. WT, 51.3±5.9 × 103, p=0.015). Adventitial thickening and collagen deposition were also more extensive in ligated rKO carotids (adventitial thickness, μm: 218±12.2 vs. 109±7.9, p=0.01). Conclusion HA activation of RHAMM significantly impacts SMC

  6. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  7. Genetic polymorphisms of vein wall remodeling in chronic venous disease: a narrative and systematic review.

    PubMed

    Bharath, Vighnesh; Kahn, Susan R; Lazo-Langner, Alejandro

    2014-08-21

    Chronic venous disease encompasses a spectrum of disorders caused by an abnormal venous system. They include chronic venous insufficiency, varicose veins, lipodermatosclerosis, postthrombotic syndrome, and venous ulceration. Some evidence suggests a genetic predisposition to chronic venous disease from gene polymorphisms associated mainly with vein wall remodeling. The literature exploring these polymorphisms has not been reviewed and compiled thus far. In this narrative and systematic review, we present the current evidence available on the role of polymorphisms in genes involved in vein wall remodeling and other pathways as contributors to chronic venous disease. We searched the EMBASE, Medline, and PubMed databases from inception to 2013 for basic science or clinical studies relating to genetic associations in chronic venous disease and obtained 38 relevant studies for this review. Important candidate genes/proteins include the matrix metalloproteinases (extracellular matrix degradation), vascular endothelial growth factors (angiogenesis and vessel wall integrity), FOXC2 (vascular development), hemochromatosis (involved in venous ulceration and iron absorption), and various types of collagen (contributors to vein wall strength). The data on associations between these genes/proteins and the postthrombotic syndrome are limited and additional studies are required. These associations might have future prognostic and therapeutic implications.

  8. The nervous system of airways and its remodeling in inflammatory lung diseases.

    PubMed

    Audrit, Katrin Julia; Delventhal, Lucas; Aydin, Öznur; Nassenstein, Christina

    2017-03-01

    Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.

  9. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice.

    PubMed

    Laucho-Contreras, Maria E; Taylor, Katherine L; Mahadeva, Ravi; Boukedes, Steve S; Owen, Caroline A

    2015-01-16

    COPD is projected to be the third most common cause of mortality world-wide by 2020((1)). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs((2)). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD((3-5)). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients((6)), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill's stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson's trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD.

  10. Ca(2+)-activated K(+) channel-3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model.

    PubMed

    Girodet, Pierre-Olivier; Ozier, Annaig; Carvalho, Gabrielle; Ilina, Olga; Ousova, Olga; Gadeau, Alain-Pierre; Begueret, Hugues; Wulff, Heike; Marthan, Roger; Bradding, Peter; Berger, Patrick

    2013-02-01

    Key features of asthma include bronchial hyperresponsiveness (BHR), eosinophilic airway inflammation, and bronchial remodeling, characterized by subepithelial collagen deposition, airway fibrosis, and increased bronchial smooth muscle (BSM) mass. The calcium-activated K(+) channel K(Ca)3.1 is expressed by many cells implicated in the pathogenesis of asthma, and is involved in both inflammatory and remodeling responses in a number of tissues. The specific K(Ca)3.1 blocker 5-[(2-chlorophenyl)(diphenyl)methyl]-1H-pyrazole (TRAM-34) attenuates BSM cell proliferation, and both mast cell and fibrocyte recruitment in vitro. We aimed to examine the effects of K(Ca)3.1 blockade on BSM remodeling, airway inflammation, and BHR in a murine model of chronic asthma. BALB/c mice were sensitized with intraperitoneal ovalbumin (OVA) on Days 0 and 14, and then challenged with intranasal OVA during Days 14-75. OVA-sensitized/challenged mice received TRAM-34 (120 mg/kg/day, subcutaneous) from Days -7 to 75 (combined treatment), Days -7 to 20 (preventive treatment), or Days 21 to 75 (curative treatment). Untreated mice received daily injections of vehicle (n = 8 per group). Bronchial remodeling was assessed by histological and immunohistochemical analyses. Inflammation was evaluated using bronchoalveolar lavage and flow cytometry. We also determined BHR in both conscious and anesthetized mice via plethysmography. We demonstrated that curative treatment with TRAM-34 abolishes BSM remodeling and subbasement collagen deposition, and attenuates airway eosinophilia. Although curative treatment alone did not significantly reduce BHR, the combined treatment attenuated nonspecific BHR to methacholine. This study indicates that K(Ca)3.1 blockade could provide a new therapeutic strategy in asthma.

  11. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition

    PubMed Central

    Hopke, Alex; Nicke, Nadine; Hidu, Erica E.; Degani, Genny; Popolo, Laura

    2016-01-01

    Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. PMID:27223610

  12. Circumferential wall tension due to hypertension plays a pivotal role in aorta remodelling.

    PubMed

    Prado, Cibele M; Rossi, Marcos A

    2006-12-01

    The present study was carried out to investigate the role of hypertension in the genesis and localization of intimal lesions and medial remodelling found in the prestenotic segment in relation to a severe stenosis of the abdominal aorta just below the diaphragm. Male young rats were divided randomly into operated group, animals submitted to surgical abdominal aorta stenosis, and sham-operated group, a control group of animals submitted to sham operation to simulate abdominal aorta stenosis. Aortas in the hypertensive prestenotic segment with increased circumferential wall tension associated with normal tensile stress, laminar flow/normal wall shear stress were characterized by enlarged heterogeneous endothelial cells elongated in the direction of the blood flow, diffusely distributed conspicuous neointimal plaques and medial thickening. The immunohistochemical analysis revealed an increased expression of eNOS, iNOS, nitrotyrosine and transforming growth factor-beta (TGF-beta) in endothelial cells and/or smooth muscle cells in this segment. Our findings suggest that increased circumferential wall tension due to hypertension plays a pivotal role in the remodelling of the prestenotic segment through biomechanical effects on oxidative stress and increased TGF-beta expression. Further studies are needed to clarify the intrinsic pathogenetic mechanism of focal distribution of the neointimal plaques in the hypertensive segment.

  13. An in vivo rat model of artery buckling for studying wall remodeling.

    PubMed

    Zhang, Jinzhou; Liu, Qin; Han, Hai-Chao

    2014-08-01

    Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes.

  14. An in vivo Rat Model of Artery Buckling for Studying Wall Remodeling

    PubMed Central

    Zhang, Jinzhou; Liu, Qin; Han, Hai-Chao

    2014-01-01

    Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes. PMID:24793586

  15. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  16. The Role of Vascular Endothelial Growth Factor in Small-airway Remodelling in a Rat Model of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wang, Lu; Xu, Zhibo; Chen, Bin; He, Wei; Hu, Jingxian; Zhang, Liting; Liu, Xianzhong; Chen, Fang

    2017-01-01

    Small-airway remodelling is one of the most remarkable pathological features of chronic obstructive pulmonary disease (COPD), in which angiogenesis plays a critical role that contributes to disease progression. The endothelial cell-specific mitogen vascular endothelial growth factor (VEGF), as well as its receptors, VEGFR1, VEGFR2, are thought to be the major mediators of pathological angiogenesis, and sunitinib exhibits anti-angiogenesis property through VEGF blockage and has been widely used to treat various cancers. In our study, Sprague-Dawley rats were subjected to lipopolysaccharide (LPS) injection and cigarette smoke (CS) inhalation to induce COPD, following sunitinib administration was conducted. Haematoxylin-eosin, Masson staining and immunostaining analysis were used to evaluate the pathological changes; quantitative real-time PCR and enzyme-linked immunosorbent assay were performed to provide more compelling data on the function of VEGF, VEGFR1, VEGFR2 in angiogenesis. Sunitinib treatment was associated with less angiogenesis in small-airway remodelling with a slightly disordered lung architecture, and lower expression level of VEGF, VEGFR1, VEGFR2. Overall, our results indicate that VEGF is a vital important factor that contributes to the small-airway remodelling in a rat model of COPD through promoting angiogenesis, which mainly depend on the specific binding between VEGF and VEGFR1 and can be effectively attenuated by sunitinib. PMID:28117425

  17. Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man

    PubMed Central

    Sharma, S.; Kierstein, S.; Wu, H. F.; Eid, G.; Haczku, A.; Corrigan, C. J.; Ying, S.

    2016-01-01

    Summary Background RELM-β has been implicated in airways inflammation and remodelling in murine models. Its possible functions in human airways are largely unknown. The aim was to address the hypothesis that RELM-β plays a role in extracellular matrix deposition in asthmatic airways. Methods The effects of RELM-β gene deficiency were studied in a model of allergen exposure in mice sensitised and challenged with Aspergillus fumigatus (Af). RELM-β expression was investigated in bronchial biopsies from asthmatic patients. Direct regulatory effects of RELM-β on human lung fibroblasts were examined using primary cultures and the MRC5 cell line in vitro. Results Sensitisation and challenge of wild-type mice with Af-induced release of RELM-β with a time course coincident with that of procollagen in the airways. Af-induced expression of mRNA encoding some, but not all ECM in the lung parenchyma was attenuated in RELM-β−/− mice. RELM-β expression was significantly increased in the bronchial submucosa of human asthmatics compared with controls, and its expression correlated positively with that of fibronectin and α-smooth muscle actin. In addition to epithelial cells, macrophages, fibroblasts and vascular endothelial cells formed the majority of cells expressing RELM-β in the submucosa. Exposure to RELM-β increased TGF-β1, TGF-β2, collagen I, fibronectin, smooth muscle α-actin, laminin α1, and hyaluronan and proteoglycan link protein 1 (Hapl1) production as well as proliferation by human lung fibroblasts in vitro. These changes were associated with activation of ERK1/2 in MRC5 cells. Conclusion The data are consistent with the hypothesis that elevated RELM-β expression in asthmatic airways contributes to airways remodelling at least partly by increasing fibroblast proliferation and differentiation with resulting deposition of extracellular matrix proteins. PMID:25545115

  18. Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents

    PubMed Central

    Alford, Patrick W.; Humphrey, Jay D.; Taber, Larry A.

    2008-01-01

    A mathematical model is presented for growth and remodeling of arteries. The model is a thick-walled tube composed of a constrained mixture of smooth muscle cells, elastin and collagen. Material properties and radial and axial distributions of each constituent are prescribed according to previously published data. The analysis includes stress-dependent growth and contractility of the muscle and turnover of collagen fibers. Simulations were conducted for homeostatic conditions and for the temporal response following sudden hypertension. Numerical pressure-radius relations and opening angles (residual stress) show reasonable agreement with published experimental results. In particular, for realistic material and structural properties, the model predicts measured variations in opening angles along the length of the aorta with reasonable accuracy. These results provide a better understanding of the determinants of residual stress in arteries and could lend insight into the importance of constituent distributions in both natural and tissue-engineered blood vessels. PMID:17786493

  19. Longitudinal changes in structural abnormalities using MDCT in COPD: do the CT measurements of airway wall thickness and small pulmonary vessels change in parallel with emphysematous progression?

    PubMed Central

    Takayanagi, Shin; Kawata, Naoko; Tada, Yuji; Ikari, Jun; Matsuura, Yukiko; Matsuoka, Shin; Matsushita, Shoichiro; Yanagawa, Noriyuki; Kasahara, Yasunori; Tatsumi, Koichiro

    2017-01-01

    Background Recent advances in multidetector computed tomography (MDCT) facilitate acquiring important clinical information for managing patients with COPD. MDCT can detect the loss of lung tissue associated with emphysema as a low-attenuation area (LAA) and the thickness of airways as the wall area percentage (WA%). The percentage of small pulmonary vessels <5 mm2 (% cross-sectional area [CSA] <5) has been recently recognized as a parameter for expressing pulmonary perfusion. We aimed to analyze the longitudinal changes in structural abnormalities using these CT parameters and analyze the effect of exacerbation and smoking cessation on structural changes in COPD patients. Methods We performed pulmonary function tests (PFTs), an MDCT, and a COPD assessment test (CAT) in 58 patients with COPD at the time of their enrollment at the hospital and 2 years later. We analyzed the change in clinical parameters including CT indices and examined the effect of exacerbations and smoking cessation on the structural changes. Results The CAT score and forced expiratory volume in 1 second (FEV1) did not significantly change during the follow-up period. The parameters of emphysematous changes significantly increased. On the other hand, the WA% at the distal airways significantly decreased or tended to decrease, and the %CSA <5 slightly but significantly increased over the same period, especially in ex-smokers. The parameters of emphysematous change were greater in patients with exacerbations and continued to progress even after smoking cessation. In contrast, the WA% and %CSA <5 did not change in proportion to emphysema progression. Conclusion The WA% at the distal bronchi and the %CSA <5 did not change in parallel with parameters of LAA over the same period. We propose that airway disease and vascular remodeling may be reversible to some extent by smoking cessation and appropriate treatment. Optimal management may have a greater effect on pulmonary vascularity and airway disease

  20. Contribution of SRF, Elk-1, and myocardin to airway smooth muscle remodeling in heaves, an asthma-like disease of horses.

    PubMed

    Chevigny, Mylène; Guérin-Montpetit, Karine; Vargas, Amandine; Lefebvre-Lavoie, Josiane; Lavoie, Jean-Pierre

    2015-07-01

    Myocyte hyperplasia and hypertrophy contribute to the increased mass of airway smooth muscle (ASM) in asthma. Serum-response factor (SRF) is a transcription factor that regulates myocyte differentiation in vitro in vascular and intestinal smooth muscles. When SRF is associated with phosphorylated (p)Elk-1, it promotes ASM proliferation while binding to myocardin (MYOCD) leading to the expression of contractile elements in these tissues. The objective of this study was therefore to characterize the expression of SRF, pElk-1, and MYOCD in ASM cells from central and peripheral airways in heaves, a spontaneously occurring asthma-like disease of horses, and in controls. Six horses with heaves and five aged-matched controls kept in the same environment were studied. Nuclear protein expression of SRF, pElk-1, and MYOCD was evaluated in peripheral airways and endobronchial biopsies obtained during disease remission and after 1 and 30 days of naturally occurring antigenic exposure using immunohistochemistry and immunofluorescence techniques. Nuclear expression of SRF (P = 0.03, remission vs. 30 days) and MYOCD (P = 0.05, controls vs. heaves at 30 days) increased in the peripheral airways of horses with heaves during disease exacerbation, while MYOCD (P = 0.04, remission vs. 30 days) decreased in the central airways of control horses. No changes were observed in the expression of pElk-1 protein in either tissue. In conclusion, SRF and its cofactor MYOCD likely contribute to the hypertrophy of peripheral ASM observed in equine asthmatic airways, while the remodeling of the central airways is more static or involves different transcription factors.

  1. Pbx Proteins in Cryptococcus neoformans Cell Wall Remodeling and Capsule Assembly

    PubMed Central

    Kumar, Pardeep; Heiss, Christian; Santiago-Tirado, Felipe H.; Black, Ian; Azadi, Parastoo

    2014-01-01

    The cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lacking PBX1 and PBX2 were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers of pbxΔ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence of pbx mutants in animal models. PMID:24585882

  2. Understanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach

    PubMed Central

    Francin-Allami, Mathilde; Lollier, Virginie; Pavlovic, Marija; San Clemente, Hélène; Rogniaux, Hélène; Jamet, Elisabeth; Guillon, Fabienne; Larré, Colette

    2016-01-01

    Brachypodium distachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contain few pectins and xyloglucans. Cell walls play an important role in grain physiology. The modifications of cell wall polysaccharides that occur during grain development and filling are key in the determination of the size and weight of the cereal grains. The mechanisms required for cell wall assembly and remodelling are poorly understood, especially in cereals. To provide a better understanding of these processes, we purified the cell wall at three developmental stages of the B. distachyon grain. The proteins were then extracted, and a quantitative and comparative LC-MS/MS analysis was performed to investigate the protein profile changes during grain development. Over 466 cell wall proteins (CWPs) were identified and classified according to their predicted functions. This work highlights the different proteome profiles that we could relate to the main phases of grain development and to the reorganization of cell wall polysaccharides that occurs during these different developmental stages. These results provide a good springboard to pursue functional validation to better understand the role of CWPs in the assembly and remodelling of the grain cell wall of cereals. PMID:28248231

  3. Bicuspid aortic valve hemodynamics does not promote remodeling in porcine aortic wall concavity

    PubMed Central

    Atkins, Samantha K; Moore, Alison N; Sucosky, Philippe

    2016-01-01

    AIM: To investigate the role of type-I left-right bicuspid aortic valve (LR-BAV) hemodynamic stresses in the remodeling of the thoracic ascending aorta (AA) concavity, in the absence of underlying genetic or structural defects. METHODS: Transient wall shear stress (WSS) profiles in the concavity of tricuspid aortic valve (TAV) and LR-BAV AAs were obtained computationally. Tissue specimens excised from the concavity of normal (non-dilated) porcine AAs were subjected for 48 h to those stress environments using a shear stress bioreactor. Tissue remodeling was characterized in terms of matrix metalloproteinase (MMP) expression and activity via immunostaining and gelatin zymography. RESULTS: Immunostaining semi-quantification results indicated no significant difference in MMP-2 and MMP-9 expression between the tissue groups exposed to TAV and LR-BAV AA WSS (P = 0.80 and P = 0.19, respectively). Zymography densitometry revealed no difference in MMP-2 activity (total activity, active form and latent form) between the groups subjected to TAV AA and LR-BAV AA WSS (P = 0.08, P = 0.15 and P = 0.59, respectively). CONCLUSION: The hemodynamic stress environment present in the concavity of type-I LR-BAV AA does not cause any significant change in proteolytic enzyme expression and activity as compared to that present in the TAV AA. PMID:26839660

  4. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency.

    PubMed

    Fernandes, João C; Goulao, Luis F; Amâncio, Sara

    2016-01-15

    Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.

  5. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    PubMed

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  6. Airway Wall Area Derived from 3-Dimensional Computed Tomography Analysis Differs among Lung Lobes in Male Smokers

    PubMed Central

    Tho, Nguyen Van; Trang, Le Thi Huyen; Murakami, Yoshitaka; Ogawa, Emiko; Ryujin, Yasushi; Kanda, Rie; Nakagawa, Hiroaki; Goto, Kenichi; Fukunaga, Kentaro; Higami, Yuichi; Seto, Ruriko; Nagao, Taishi; Oguma, Tetsuya; Yamaguchi, Masafumi; Lan, Le Thi Tuyet; Nakano, Yasutaka

    2014-01-01

    Background It is time-consuming to obtain the square root of airway wall area of the hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10), a comparable index of airway dimensions in chronic obstructive pulmonary disease (COPD), from all airways of the whole lungs using 3-dimensional computed tomography (CT) analysis. We hypothesized that √Aaw at Pi10 differs among the five lung lobes and √Aaw at Pi10 derived from one certain lung lobe has a high level of agreement with that derived from the whole lungs in smokers. Methods Pulmonary function tests and chest volumetric CTs were performed in 157 male smokers (102 COPD, 55 non-COPD). All visible bronchial segments from the 3rd to 5th generations were segmented and measured using commercially available 3-dimensional CT analysis software. √Aaw at Pi10 of each lung lobe was estimated from all measurable bronchial segments of that lobe. Results Using a mixed-effects model, √Aaw at Pi10 differed significantly among the five lung lobes (R2 = 0.78, P<0.0001). The Bland-Altman plots show that √Aaw at Pi10 derived from the right or left upper lobe had a high level of agreement with that derived from the whole lungs, while √Aaw at Pi10 derived from the right or left lower lobe did not. Conclusion In male smokers, CT-derived airway wall area differs among the five lung lobes, and airway wall area derived from the right or left upper lobe is representative of the whole lungs. PMID:24865661

  7. Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?

    PubMed

    Lee-Gosselin, Audrey; Pascoe, Chris D; Couture, Christian; Paré, Peter D; Bossé, Ynuk

    2013-11-01

    Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the "length dependency of ASM force" in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K(+). Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6-10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8-117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4-4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness.

  8. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    SciTech Connect

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  9. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation.

    PubMed

    Álvarez-Santos, Mayra; Carbajal, Verónica; Tellez-Jiménez, Olivia; Martínez-Cordero, Erasmo; Ruiz, Victor; Hernández-Pando, Rogelio; Lascurain, Ricardo; Santibañez-Salgado, Alfredo; Bazan-Perkins, Blanca

    2016-10-01

    The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.

  10. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.

    PubMed

    Habib, Robert H; Pyon, Kee H; Courtney, Sherry E; Aghai, Zubair H

    2003-05-01

    We compared the harmonic content of tidal flows measured simultaneously at the mouth and chest wall in spontaneously breathing very low birth weight infants (n = 16, 1,114 +/- 230 g, gestation age: 28 +/- 2 wk). Airway opening flows were measured via face mask-pneumotachograph (P-tach), whereas chest wall flows were derived from respiratory inductance plethysmography (RIP) excursions. Next, for each, we computed two spectral shape indexes: 1) harmonic distortion (k(d); k(d,P-tach) and k(d,RIP), respectively) defines the extent to which flows deviated from a single sine wave, and 2) the exponent of the power law (s; s(P-tach) and s(RIP), respectively), describing the spectral energy vs. frequency. P-tach and RIP flow spectra exhibited similar power law functional forms consistently in all infants. Also, mouth [s(P-tach) = 3.73 +/- 0.23% (95% confidence interval), k(d,P-tach) = 38.8 +/- 4.6%] and chest wall (s(RIP) = 3.51 +/- 0.30%, k(d,RIP) = 42.8 +/- 4.8%) indexes were similar and highly correlated (s(RIP) = 1.17 x s(P-tach) + 0.85; r(2) = 0.81; k(d,RIP) = 0.90 x k(d,P-tach) + 8.0; r(2) = 0.76). The corresponding time to peak tidal expiratory flow-to-expiratory time ratio (0.62 +/- 0.08) was higher than reported in older infants. The obtained s and k(d) values are similar to those reported in older and/or larger chronic lung disease infants, yet appreciably lower than for 1-mo-old healthy infants of closer age and/or size; this indicated increased complexity of tidal flows in very low birth weight babies. Importantly, we found equivalent flow spectral data from mouth and chest wall tidal flows. The latter are desirable because they avoid face mask artificial effects, including leaks around it, they do not interfere with ventilatory support delivery, and they may facilitate longer measurements that are useful in control of breathing assessment.

  11. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload.

    PubMed

    Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2016-08-01

    Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III

  12. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat

    PubMed Central

    Lanza, Gregory M.; Jenkins, John; Schmieder, Anne H.; Moldobaeva, Aigul; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Zhong, Qiong; Keupp, Jochen; Sergin, Ismail; Paranandi, Krishna S.; Eldridge, Lindsey; Allen, John S.; Williams, Todd; Scott, Michael J.; Razani, Babak; Wagner, Elizabeth M.

    2017-01-01

    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a

  13. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat.

    PubMed

    Lanza, Gregory M; Jenkins, John; Schmieder, Anne H; Moldobaeva, Aigul; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Zhong, Qiong; Keupp, Jochen; Sergin, Ismail; Paranandi, Krishna S; Eldridge, Lindsey; Allen, John S; Williams, Todd; Scott, Michael J; Razani, Babak; Wagner, Elizabeth M

    2017-01-01

    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous (19)F/(1)H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3(+) macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3(+) CD45(+) leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in

  14. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis.

    PubMed

    Shen, Xiaoyan; Wang, Zenglan; Song, Xiaofeng; Xu, Jiajia; Jiang, Chunyun; Zhao, Yanxiu; Ma, Changle; Zhang, Hui

    2014-10-01

    Plants can successfully improve their resistance to previously lethal salinity stress by a short exposure to low levels of salt stress, a process known as salt acclimation (SA). In spite of its fundamental significance in theoretical study and agricultural practice, the molecular mechanisms underlying plant SA remain elusive. In this study, we found that salt acclimated Arabidopsis young seedlings can survive subsequent 200 mM NaCl stress. RNA-seq was performed to analyze the genome-wide transcriptional response under SA conditions. Among 518 differentially expressed genes (DEGs) under SA, 366 up-regulated genes were enriched for cell wall biosynthesis, osmoregulation, oxidative stress, or transcription factors. Seven DEGs participate in the synthesis of lignin and 24 DEGs encode plant cell wall proteins, suggesting the importance of cell wall remodeling under SA. Furthermore, in comparison to non-acclimated salt stress, 228 of 245 DEGs were repressed by acclimated salt stress, including many genes related to ethylene biosynthesis and signaling pathway. In addition, MAPK6, a major component of the ethylene signaling pathway, was found to play a crucial role in SA. Our transcriptomic analysis has provided important insight on the roles of transcription factors, cell wall remodeling, and the ethylene biosynthesis and signaling pathways during SA in Arabidopsis.

  15. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  16. Human Airway Epithelial Cell Responses to Single Walled Carbon Nanotube Exposure: Nanorope-Residual Body Formation

    SciTech Connect

    Panessa-Warren, Barbara J.; Warren, John B.; Kisslinger, Kim; Crosson, Kenya; Maye, Mathew M.

    2012-11-01

    This investigation examines the 'first contact responses' of in vitro human epithelial airway cells exposed to unrefined single walled carbon nanotubes (SWCNTs) [containing metal catalyst, carbon black, amorphous carbon, graphitic shells, and SWCNTs], and refined acid/peroxide cleaned and cut SWCNTs at low and high dose exposures (0.16 ug/L and 1.60 ug/L) for 2, 3 and 3.5 hours. FTIR, X-ray compositional analysis, morphological TEM analysis and UV-Vis were used to physicochemically characterize the SWCNTs in this study. Following SWCNT exposure to human lung NCI-H292 epithelial monolayers, the airway cells were prepared for light microscopy vital staining, or fixed in glutaraldehyde for SEM/TEM imaging to determine SWCNT binding, uptake, intracellular processing and organellar/SWCNT fate within the exposure period. At 2 hr exposures to both unrefined Carbolex, and refined SWCNTs (at both high and low doses), there were no increases in lung cell necrosis compared to controls. However high dose, 3 hr exposures to unrefined Carbolex material produced severe cell damage (apical and basal plasma membrane holes, decreased mitochondria, numerous intracellular vesicles containing nanomaterial and membrane fragments) and increased cell necrosis. The refined SWCNTs exposed for 3 hr at low dose produced no increase in cell death, although high dose exposure produced significant cell death. By TEM, Acid/peroxide cleaned SWCNT 3 hr exposures at high and low doses, revealed SWCNTs attachment to cell surface mucin, and SWCNT uptake into the cells during membrane recycling. Membranes and SWCNTs were seen within cytoplasmic lamellar body-type vesicles, where vesicular contents were bio-degraded, eventually forming long SWCNT-nanoropes, which were subsequently released into the cytoplasm as clusters of attached nanoropes, as the vesicle membranes fragmented. These Nanorope-Residual Bodies did not cause damage to the surrounding organelles or cytoplasm, and seemed very stabile in the

  17. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  18. Diffusion capacity and CT measures of emphysema and airway wall thickness – relation to arterial oxygen tension in COPD patients

    PubMed Central

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Eagan, Tomas Mikal Lind; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Background Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. Objective To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. Methods The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007–2008. Emphysema was assessed as percent of low-attenuation areas<−950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Results Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was –0.32 (−0.04–(−0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. Conclusion CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia. PMID:27178139

  19. Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells.

    PubMed

    Yu, Qian; Li, Minchao

    2017-01-25

    Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1Hz frequency, with stretching for 0.5h, 1h, 1.5h and 2h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca(2+) levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca(2+) fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca(2+) fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca(2+) and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1.

  20. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    PubMed Central

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  1. A clinical pilot study: high frequency chest wall oscillation airway clearance in patients with amyotrophic lateral sclerosis.

    PubMed

    Chaisson, Kathleen Marya; Walsh, Susan; Simmons, Zachary; Vender, Robert L

    2006-06-01

    Respiratory complications are common in patients with amyotrophic lateral sclerosis (ALS) with respiratory failure representing the most common cause of death. Ineffective airway clearance resultant from deficient cough frequently contributes to these abnormalities. We sought to evaluate the effectiveness of high frequency chest wall oscillation (HFCWO) administered through the Vest Airway Clearance System when added to standard care in preventing pulmonary complications and prolonging the time to death in patients with ALS. This is a single center study performed at the Penn State Milton S. Hershey Medical Center (HMC). Nine patients with a diagnosis of ALS and concurrently receiving non-invasive ventilatory support with bi-level positive airway pressure (BiPAP) were recruited from the outpatient clinic at HMC. Four patients were randomized to receive standard care and five patients to receive standard care plus the addition of HFCWO administered twice-daily for 15 min duration. Longitudinal assessments of oxyhemoglobin saturation, forced vital capacity (FVC), and adverse events were obtained until time of death. Pulmonary complications of atelectasis, pneumonia, hospitalization for a respiratory-related abnormality, and tracheostomy with mechanical ventilation were monitored throughout the study duration. No differences were observed between treatment groups in relation to the rate of decline in FVC. The addition of HFCWO airway clearance failed to improve time to death compared to standard treatment alone (340 days +/- 247 vs. 470 days +/- 241; p = 0.26). The random allocation of HFCWO airway clearance to patients with ALS concomitantly receiving BiPAP failed to attain any significant clinical benefits in relation to either loss of lung function or mortality. This study does not exclude the potential benefit of HFCWO in select patients with ALS who have coexistent pulmonary diseases, pre-existent mucus-related pulmonary complications, or less severe levels of

  2. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study

    PubMed Central

    Hartley, Ruth A.; Barker, Bethan L.; Newby, Chris; Pakkal, Mini; Baldi, Simonetta; Kajekar, Radhika; Kay, Richard; Laurencin, Marie; Marshall, Richard P.; Sousa, Ana R.; Parmar, Harsukh; Siddiqui, Salman; Gupta, Sumit; Brightling, Chris E.

    2016-01-01

    Background There is a paucity of studies comparing asthma and chronic obstructive pulmonary disease (COPD) based on thoracic quantitative computed tomographic (QCT) parameters. Objectives We sought to compare QCT parameters of airway remodeling, air trapping, and emphysema between asthmatic patients and patients with COPD and explore their relationship with airflow limitation. Methods Asthmatic patients (n = 171), patients with COPD (n = 81), and healthy subjects (n = 49) recruited from a single center underwent QCT and clinical characterization. Results Proximal airway percentage wall area (%WA) was significantly increased in asthmatic patients (62.5% [SD, 2.2]) and patients with COPD (62.7% [SD, 2.3]) compared with that in healthy control subjects (60.3% [SD, 2.2], P < .001). Air trapping measured based on mean lung density expiratory/inspiratory ratio was significantly increased in patients with COPD (mean, 0.922 [SD, 0.037]) and asthmatic patients (mean, 0.852 [SD, 0.061]) compared with that in healthy subjects (mean, 0.816 [SD, 0.066], P < .001). Emphysema assessed based on lung density measured by using Hounsfield units below which 15% of the voxels lie (Perc15) was a feature of COPD only (patients with COPD: mean, −964 [SD, 19.62] vs asthmatic patients: mean, −937 [SD, 22.7] and healthy subjects: mean, −937 [SD, 17.1], P < .001). Multiple regression analyses showed that the strongest predictor of lung function impairment in asthmatic patients was %WA, whereas in the COPD and asthma subgrouped with postbronchodilator FEV1 percent predicted value of less than 80%, it was air trapping. Factor analysis of QCT parameters in asthmatic patients and patients with COPD combined determined 3 components, with %WA, air trapping, and Perc15 values being the highest loading factors. Cluster analysis identified 3 clusters with mild, moderate, or severe lung function impairment with corresponding decreased lung density (Perc15 values) and increased air

  3. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images.

    PubMed

    Qi, Li; Huang, Shenghai; Heidari, Andrew E; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2015-12-28

    We present an automatic segmentation method for the delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers are accurately extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with sheep airway OCT images. Quantitative thicknesses of the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  4. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  5. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non

  6. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    PubMed Central

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  7. So-Cheong-Ryong-Tang, a herbal medicine, modulates inflammatory cell infiltration and prevents airway remodeling via regulation of interleukin-17 and GM-CSF in allergic asthma in mice

    PubMed Central

    Kim, Hyung-Woo; Lim, Chi-Yeon; Kim, Bu-Yeo; Cho, Su-In

    2014-01-01

    Background: So-Cheong-Ryong-Tang (SCRT), herbal medicine, has been used for the control of respiratory disease in East Asian countries. However, its therapeutic mechanisms, especially an inhibitory effect on inflammatory cell infiltration and airway remodeling in allergic asthma are unclear. Objective: The present study investigated the mechanism of antiasthmatic effects of SCRT in allergic asthma in mice. Materials and Methods: We investigated the influence of SCRT on levels of interleukin-17 (IL-17), granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-4, and interferon gamma (IFN-γ) in bronchoalveolar lavage fluid (BALF), ovalbumin (OVA)-specific IgE in serum, and histopathological changes in allergen-induced asthma. Results: So-Cheong-Ryong-Tang decreased levels of IL-17 and GM-CSF in BALF. IL-4, a Th2-driven cytokine, was also decreased by SCRT, but IFN-γ, a Th1-driven cytokine, was not changed. Levels of OVA-specific IgE in serum were also decreased by SCRT. With SCRT treatment, histopathological findings showed reduced tendency of inflammatory cell infiltration, and prevention from airway remodeling such as epithelial hyperplasia. Conclusion: In this study, we firstly demonstrated that regulation of IL-17 and GM-CSF production may be one of the mechanism contributed to a reduction of inflammatory cell infiltration and prevention from airway remodeling. PMID:25298667

  8. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division.

    PubMed

    Yang, Desirée C; Tan, Kemin; Joachimiak, Andrzej; Bernhardt, Thomas G

    2012-08-01

    Remodelling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyse PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB orthologue was also solved, revealing that the active site of AmiB is occluded by a conserved alpha helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase autoinhibition governed by conserved subcomplexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multienzyme PG-remodelling machines.

  9. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  10. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.

  11. Benchmarks for time-domain simulation of sound propagation in soft-walled airways: Steady configurations

    PubMed Central

    Titze, Ingo R.; Palaparthi, Anil; Smith, Simeon L.

    2014-01-01

    Time-domain computer simulation of sound production in airways is a widely used tool, both for research and synthetic speech production technology. Speed of computation is generally the rationale for one-dimensional approaches to sound propagation and radiation. Transmission line and wave-reflection (scattering) algorithms are used to produce formant frequencies and bandwidths for arbitrarily shaped airways. Some benchmark graphs and tables are provided for formant frequencies and bandwidth calculations based on specific mathematical terms in the one-dimensional Navier–Stokes equation. Some rules are provided here for temporal and spatial discretization in terms of desired accuracy and stability of the solution. Kinetic losses, which have been difficult to quantify in frequency-domain simulations, are quantified here on the basis of the measurements of Scherer, Torkaman, Kucinschi, and Afjeh [(2010). J. Acoust. Soc. Am. 128(2), 828–838]. PMID:25480071

  12. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    PubMed

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  13. Right ventricular relative wall thickness as a predictor of outcomes and of right ventricular reverse remodeling for patients with pulmonary hypertension.

    PubMed

    Sano, Hiroyuki; Tanaka, Hidekazu; Motoji, Yoshiki; Fukuda, Yuko; Mochizuki, Yasuhide; Hatani, Yutaka; Matsuzoe, Hiroki; Hatazawa, Keiko; Shimoura, Hiroyuki; Ooka, Junichi; Ryo-Koriyama, Keiko; Nakayama, Kazuhiko; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi

    2017-03-01

    Mid-term right ventricular (RV) reverse remodeling after treatment in patients with pulmonary hypertension (PH) is associated with long-term outcome as well as baseline RV remodeling. However, baseline factors influencing mid-term RV reverse remodeling after treatment and its prognostic capability remain unclear. We studied 54 PH patients. Mid-term RV remodeling was assessed in terms of the RV area, which was traced planimetrically at the end-systole (RVESA). RV reverse remodeling was defined as a relative decrease in the RVESA of at least 15% at 10.2 ± 9.4 months after treatment. Long-term follow-up was 5 years. Adverse events occurred in ten patients (19%) and mid-term RV reverse remodeling after treatment was observed in 37 (69%). Patients with mid-term RV reverse remodeling had more favorable long-term outcomes than those without (log-rank: p = 0.01). Multivariate logistic regression analysis showed that RV relative wall thickness (RV-RWT), as calculated as RV free-wall thickness/RV basal linear dimension at end-diastole, was an independent predictor of mid-term RV reverse remodeling (OR 1.334; 95% CI, 1.039-1.713; p = 0.03). Moreover, patients with RV-RWT ≥0.21 showed better long-term outcomes than did those without (log-rank p = 0.03), while those with RV-RWT ≥0.21 and mid-term RV reverse remodeling had the best long-term outcomes. Patients with RV-RWT <0.21 and without mid-term RV reverse remodeling, on the other hand, had worse long-term outcomes than other sub-groups. In conclusions, RV-RWT could predict mid-term RV reverse remodeling after treatment in PH patients, and was associated with long-term outcomes. Our finding may have clinical implications for better management of PH patients.

  14. Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model

    PubMed Central

    Kim, Byeong-Gon; Lee, Pureun-Haneul; Lee, Shin-Hwa; Kim, Young-En; Shin, Mee-Yong; Kang, Yena; Bae, Seong-Hwan; Kim, Min-Jung; Rhim, TaiYoun; Park, Choon-Sik

    2016-01-01

    Purpose Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. Methods BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 µg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. Results AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-γ were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-β was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. Conclusions These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. PMID:26922935

  15. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation

    PubMed Central

    Coogan, Jessica S.; Humphrey, Jay D.; Figueroa, C. Alberto

    2012-01-01

    Mounting evidence suggests that the pulsatile character of blood pressure and flow within large arteries plays a particularly important role as a mechano-biological stimulus for wall growth and remodeling. Nevertheless, understanding better the highly coupled interactions between evolving wall geometry, structure, and properties and the hemodynamics will require significantly more experimental data. Computational fluid–solid-growth models promise to aid in the design and interpretation of such experiments and to identify candidate mechanobiological mechanisms for the observed arterial adaptations. Motivated by recent aortic coarctation models in animals, we used a computational fluid–solid interaction model to study possible local and systemic effects on the hemodynamics within the thoracic aorta and coronary, carotid, and cerebral arteries due to a distal aortic coarctation and subsequent spatial variations in wall adaptation. In particular, we studied an initial stage of acute cardiac compensation (i.e., maintenance of cardiac output) followed by early arterial wall remodeling (i.e., spatially varying wall thickening and stiffening). Results suggested, for example, that while coarctation increased both the mean and pulse pressure in the proximal vessels, the locations nearest to the coarctation experienced the greatest changes in pulse pressure. In addition, after introducing a spatially varying wall adaptation, pressure, left ventricular work, and wave speed all increased. Finally, vessel wall strain similarly experienced spatial variations consistent with the degree of vascular wall adaptation. PMID:22415052

  16. The impact of non- and genetically modified soybean diets in aorta wall remodeling.

    PubMed

    Daleprane, Julio B; Chagas, Mauricío A; Vellarde, Guillermo C; Ramos, Cristiane F; Boaventura, Gilson T

    2010-09-01

    The aim of this study was to evaluate the influence of nongenetically modified soybean (non-GMS) and genetically modified soybean (GMS) meal on growth and cardiometabolic parameters in rats. Thirty male Wistar rats were divided into 3 groups (n= 10): non-GMS, GMS, and control group (CG). All animals received water and an isocaloric diet ad libitum for 455 d. Blood was drawn by cardiac puncture, and serum was separated for subsequent biochemical analyses (total cholesterol, triacylglycerols, insulin, glucose, and testosterone). The aorta was quickly harvested and fixed; the body fat mass was removed and weighed. Non-GMS and GMS had a growth index (GI) similar to CG but with a lower body weight (P < 0.05) and a lower amount of body fat mass (P < 0.05). Total cholesterol, triacylglycerol, glucose concentrations, and aortic tunics were reduced (P < 0.05) in non-GMS and GMS compared to CG. Non-GMS and GMS are able to reduced serum cholesterol, triacylglycerols, glucose, and aortic remodeling in aged rats. No differences were observed between non-GMS and GMS in all parameters.

  17. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency

    PubMed Central

    Richmond, Bradley W.; Brucker, Robert M.; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E.; Bordenstein, Seth R.; Blackwell, Timothy S.; Polosukhin, Vasiliy V.

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  18. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    PubMed

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-04-05

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema.

  19. Biomechanics drive histological wall remodeling of neoaortic root: A mathematical model to study the expression levels of ki 67, metalloprotease, and apoptosis transition.

    PubMed

    Nappi, Francesco; Fraldi, Massimiliano; Spadaccio, Cristiano; Carotenuto, Angelo Rosario; Montagnani, Stefania; Castaldo, Clotilde; Chachques, Juan Carlos; Acar, Christophe

    2016-11-01

    The pulmonary artery autograft (PA) is the ideal substitute for aortic valve disease in children and young adult. However, it is harnessed by the issue of long-term dilation and regurgitation, often requiring surgery. PA implanted in aortic position during the growth phase in children undergoes a process of mechanical remodeling. We previously developed a semiresorbable armored prosthesis able to mechanically sustain the neoaorta preventing dilation and to gradually integrate with the PA wall inducing a progressive arterial-like tissue positive remodeling. We also described the mechanisms of growth, remodeling and stress shielding of the reinforced PA through a mathematical model. We sought to demonstrate the biological counterpart and the potential molecular mechanisms underlying this histological and mechanical remodeling. A specific mathematical model was developed to describe mechanical behavior of the PA. Mallory trichrome red staining and immunohistochemistry for MMP-9 were performed to elucidate extracellular matrix remodeling phenomena. Apoptosis and cell proliferation were determined by TUNEL assay and immunohistochemistry for Ki67, respectively. An histological remodeling phenomenon sustained by increased level of MMP-9, augmented cell proliferation and reduced apoptosis in the reinforced PA was demonstrated. The mathematical model predicted the biomechanical behavior subtended by the histological changes of the PA in these settings. Changes in metalloproteinases (MMP-9), cell proliferation and apoptosis are the main actors in the remodeling process occurring after transposition of the PA into systemic regimens. Use of semiresorbable reinforcements might induce a positive remodeling of the PA in the context of Ross operation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2785-2793, 2016.

  20. VEIN WALL REMODELING AFTER DEEP VEIN THROMBOSIS: DIFFERENTIAL EFFECTS OF LOW MOLECULAR WEIGHT HEPARIN AND DOXYCYCLINE

    PubMed Central

    Sood, Vikram; Luke, Cathy; Miller, Erin; Mitsuya, Mayo; Upchurch, Gilbert R.; Wakefield, Thomas W.; Myers, Dan D.; Henke, Peter K.

    2010-01-01

    OBJECTIVE Venous thrombus resolution sets up an early intense inflammatory reaction, from which vein wall damage results. Tissue response to injury includes matrix metalloproteinase (MMP) activation and extracellular matrix protein turnover. This study sought to determine the effect of exogenous MMP inhibition and its potential attenuation of early vein wall injury. METHODS Rats received treatment beginning 24 hours after a stasis venous thrombosis by near occlusive ligation, and until harvest at day 7. Three groups were evaluated: 1). Vehicle saline controls (NaCl); 2). LMWH (Lovenox, 3 mg/Kg per day SQ); 3). Doxycycline (DOXY; 30 mg/Kg per day PO). Thrombus size (mg/mm), levels of TNFα and d-Dimer by colorimetric assay, and ED-1 counts by immunohistochemistry were assessed. Vein wall assessment included stiffness by tensiometry, ILβ protein levels by ELISA, MMP2 and -9 by zymography, and histological analysis of intimal thickness (IT). Comparisons were by t-Test to control. A P < .05 was considered significant. RESULTS Thrombi sizes were similar at both days 2 and 7 for all three groups, while thrombus TNFα was increased in 2d LMWH and DOXY treated groups (NaCl = 1.0±.8, LWMH = 9 ±3*, DOXY = 27±5*, pg/mg protein, N = 6 - 8, P < .05); and at 7d in the DOXY group (NaCl = 3.0±2.5, DOXY = 23±4.2*, pg/mg protein, N = 5, P < .05). Vein wall stiffness was less with LMWH treatment at 7d, but not with DOXY, as compared with controls (NaCl = .33±.05, LMWH =.17±.03*, DOXY = .43±.09 N/mm, N = 5-7, P < .05). Vessel-wall IL-1β was reduced only in the DOXY group at 7d (NaCl = 26±3, LMWH = 38±17, DOXY = 6±3* pg/mg protein, N = 4 - 6, P < .05) as was the IT score versus controls (NaCl = 2.2±.6, LMWH =1.7±.3, DOXY = 0.8 ± .20*, IT score, N = 4 -6, P < .05). Zymographic MMP9 activity was significantly reduced at 2 days in the LMWH and DOXY groups (NaCl = 85±24, LMWH = 23±7*, DOXY = 13±5* U/mg protein, N = 6 - 8, P < .05). MMP2 zymographic activity, thrombi

  1. Estrogen alters remodeling of the vaginal wall after surgical injury in guinea pigs.

    PubMed

    Balgobin, Sunil; Montoya, T Ignacio; Shi, Haolin; Acevedo, Jesus F; Keller, Patrick W; Riegel, Matthew; Wai, Clifford Y; Word, Ruth Ann

    2013-12-01

    Loss of pelvic organ support (i.e., pelvic organ prolapse) is common in menopausal women. Surgical reconstruction of pelvic organ prolapse is plagued with high failure rates. The objective of this study was to determine the effects of estrogen on biomechanical properties, lysyl oxidase (LOX), collagen content, and histomorphology of the vagina with or without surgical injury. Nulliparous ovariectomized guinea pigs were treated systemically with either 50 μg/kg/day estradiol (E2,) or vehicle. After 2 wk, vaginal surgery was performed, and animals were treated with either beta-aminopropionitrile (BAPN, an irreversible LOX inhibitor), or vehicle to determine the role of LOX in recovery of the vaginal wall from injury with or without E2. Estradiol resulted in (i) significant growth, increased smooth muscle, and increased thickness of the vagina, (ii) increased distensibility without compromise of maximal force at failure, and (iii) increased total and cross-linked collagen. In the absence of E2, BAPN resulted in decreased collagen and vaginal wall strength in the area of the injury. In contrast, in E2-treated animals, increased distensibility, maximal forces, and total collagen were maintained despite BAPN. Interestingly, LOX mRNA was induced dramatically (9.5-fold) in the injured vagina with or without E2 at 4 days. By 21 days, however, LOX levels declined to near baseline in E2-deprived animals. LOX mRNA levels remained strikingly elevated (12-fold) at 21 days in the estrogenized vagina. The results suggest that prolonged E2 induced increases in LOX, and collagen cross-links may act to sustain a matrix environment that optimizes long-term surgical wound healing in the vagina.

  2. Mixed-linkage beta-glucan : xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae.

    PubMed

    Fry, Stephen C; Mohler, Kyle E; Nesselrode, Bertram H W A; Franková, Lenka

    2008-07-01

    Mixed-linkage (1-->3,1-->4)-beta-d-glucan (MLG), a hemicellulose long thought to be confined to certain Poales, was recently also found in Equisetum; xyloglucan occurs in all land plants. We now report that Equisetum possesses MLG:xyloglucan endotransglucosylase (MXE), which is a unique enzyme that grafts MLG to xyloglucan oligosaccharides (e.g. the heptasaccharide XXXGol). MXE occurs in all Equisetum species tested (Equisetum arvense, Equisetum fluviatile, Equisetum hyemale, Equisetum scirpoides, Equisetum telmateia and Equisetum variegatum), sometimes exceeding xyloglucan endotransglucosylase (XET) activity. Charophytic algae, especially Coleochaete, also possess MXE, which may therefore have been a primordial feature of plant cell walls. However, MXE was negligible in XET-rich extracts from grasses, dicotyledons, ferns, Selaginella and bryophytes. This and the following four additional observations indicate that MXE activity is not the result of a conventional xyloglucan endotransglucosylase/hydrolase (XTH): (i) XET, but not MXE, activity correlates with the reaction rate on water-soluble cellulose acetate, hydroxyethylcellulose and carboxymethylcellulose, (ii) MXE and XET activities peak in old and young Equisetum stems, respectively, (iii) MXE has a higher affinity for XXXGol (K(m) approximately 4 microM) than any known XTH, (iv) MXE and XET activities differ in their oligosaccharide acceptor-substrate preferences. High-molecular-weight (M(r)) xyloglucan strongly competes with [(3)H]XXXGol as the acceptor-substrate of MXE, whereas MLG oligosaccharides are poor acceptor-substrates. Thus, MLG-to-xyloglucan grafting appears to be the favoured activity of MXE. In conclusion, Equisetum has evolved MLG plus MXE, potentially a unique cell wall remodelling mechanism. The prominence of MXE in mature stems suggests a strengthening/repairing role. We propose that cereals, which possess MLG but lack MXE, might be engineered to express this Equisetum enzyme, thereby

  3. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus.

    PubMed

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L; Estornell, Leandro H; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D; Pérez-Amador, Miguel A; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.

  4. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus

    PubMed Central

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766

  5. Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress.

    PubMed

    Li, Lingli; Feng, Di; Luo, Zaiming; Welch, William J; Wilcox, Christopher S; Lai, En Yin

    2015-09-01

    Because superoxide dismutase (SOD) knockout enhances arteriolar remodeling and contractility, we hypothesized that remodeling enhances contractility. In the isolated and perfused renal afferent arterioles from SOD wild type (+/+) and gene-deleted mice, contractility was assessed from reductions in luminal diameter with perfusion pressure from 40 to 80 mm Hg (myogenic responses) or angiotensin II (10(-6) mol/L), remodeling from media:lumen area ratio, superoxide (O2 (·-)) and hydrogen peroxide (H2O2) from fluorescence microscopy, and wall stress from wall tension/wall thickness. Compared with +/+ strains, arterioles from SOD1-/-, SOD2+/-, and SOD3-/- mice developed significantly (P<0.05) more O2 (·-) with perfusion pressure and angiotensin II and significantly increased myogenic responses (SOD1-/-: -20.7±2.2% versus -12.7±1.6%; SOD2+/-: -7.4±1.3% versus -12.6±1.4%; and SOD3-/-: -9.1±1.9% versus -15.8±2.2%) and angiotensin II contractions and ≈2-fold increased media:lumen ratios. Media:lumen ratios correlated with myogenic responses (r(2) =0.23; P<0.01), angiotensin II contractions (r(2)=0.57; P<0.0001), and active wall tension (r(2) =0.19; P<0.01), but not with active wall stress (r(2)=0.08; NS). Differences in myogenic responses among SOD3 mice were abolished by bath addition of SOD and were increased 3 days after inducing SOD3 knockout (-26.9±1.7% versus -20.1±0.7%; P<0.05), despite unchanged media:lumen ratios (2.01±0.09 versus 2.02±0.03; NS). We conclude that cytosolic, mitochondrial, or extracellular O2 (·-) enhance afferent arteriolar contractility and remodeling. Although remodeling does not enhance contractility, it does prevent the potentially damaging effects of increased wall stress.

  6. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    PubMed

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects.

  7. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  8. Human fascia lata ECM scaffold augmented with immobilized hyaluronan: inflammatory response and remodeling in the canine body wall and shoulder implantation sites.

    PubMed

    Leigh, Diane R; Kim, Myung-Sun; Kovacevic, David; Baker, Andrew R; Tan, Carmela D; Calabro, Anthony; Derwin, Kathleen A

    2015-01-01

    We postulate that immobilization of tyramine-substituted hyaluronan (THA) into an extracellular matrix (ECM) scaffold may be a strategy to promote an anti-inflammatory response to the ECM. Further, we posit that the implantation site could influence the inflammatory response and remodeling of an ECM scaffold. Eight beagles underwent implantation of fascia ECM grafts, treated with either immobilized low molecular weight (57 kDa) THA or water only, in both the shoulder injury and body wall sites. Dogs were euthanized at 12 weeks and fascia grafts harvested en bloc for histology. Grafts implanted at the body wall had significantly higher inflammatory cell infiltrate and vascularity, and significantly lower retardance (collagen density), than grafts at the shoulder, suggestive of a more intense, persistent, and perhaps degradative inflammatory and remodeling response at the body wall than shoulder injury site in the canine model. However, the presence of immobilized low MW THA had no effect on the inflammation response or remodeling of fascia ECM compared to water-treated controls. Importantly, these results suggest that the inflammatory response and remodeling of biomaterial implants depends on the location of implantation and therefore our animal models need to be carefully chosen. Further, the potential anti-inflammatory advantages of hyaluronan (HA) in wound healing do not appear to be realized when presenting it to the host as non-degradable hydrogel even if its capacity for binding HA binding protein is maintained. Further study treating ECM with uncross-linked (free) HA or immobilized low MW THA as a means to deliver free HA or other biomolecules to a surgical repair site is warranted.

  9. Increased Infarct Wall Thickness by a Bio-Inert Material Is Insufficient to Prevent Negative Left Ventricular Remodeling after Myocardial Infarction

    PubMed Central

    Rane, Aboli A.; Chuang, Joyce S.; Shah, Amul; Hu, Diane P.; Dalton, Nancy D.; Gu, Yusu; Peterson, Kirk L.; Omens, Jeffrey H.; Christman, Karen L.

    2011-01-01

    Background Several injectable materials have been shown to preserve or improve cardiac function as well as prevent or slow left ventricular (LV) remodeling post-myocardial infarction (MI). However, it is unclear as to whether it is the structural support or the bioactivity of these polymers that lead to beneficial effects. Herein, we examine how passive structural enhancement of the LV wall by an increase in wall thickness affects cardiac function post-MI using a bio-inert, non-degradable synthetic polymer in an effort to better understand the mechanisms by which injectable materials affect LV remodeling. Methods and Results Poly(ethylene glycol) (PEG) gels of storage modulus G′ = 0.5±0.1 kPa were injected and polymerized in situ one week after total occlusion of the left coronary artery in female Sprague Dawley rats. The animals were imaged using magnetic resonance imaging (MRI) at 7±1 day(s) post-MI as a baseline and again post-injection 49±4 days after MI. Infarct wall thickness was statistically increased in PEG gel injected vs. control animals (p<0.01). However, animals in the polymer and control groups showed decreases in cardiac function in terms of end diastolic volume, end systolic volume and ejection fraction compared to baseline (p<0.01). The cellular response to injection was also similar in both groups. Conclusion The results of this study demonstrate that passive structural reinforcement alone was insufficient to prevent post-MI remodeling, suggesting that bioactivity and/or cell infiltration due to degradation of injectable materials are likely playing a key role in the preservation of cardiac function, thus providing a deeper understanding of the influencing properties of biomaterials necessary to prevent post-MI negative remodeling. PMID:21731777

  10. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models.

    PubMed

    Guedes, Alonso G P; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-02-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.

  11. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

    PubMed Central

    Bridge, Jack C.; Aylott, Jonathan W.; Brightling, Christopher E.; Ghaemmaghami, Amir M.; Knox, Alan J.; Lewis, Mark P.; Rose, Felicity R.A.J.; Morris, Gavin E.

    2015-01-01

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments. PMID:26275100

  12. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall.

    PubMed

    Bridge, Jack C; Aylott, Jonathan W; Brightling, Christopher E; Ghaemmaghami, Amir M; Knox, Alan J; Lewis, Mark P; Rose, Felicity R A J; Morris, Gavin E

    2015-07-31

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments.

  13. Analysis of airway epithelial regeneration and repair following endobronchial brush biopsy in sheep.

    PubMed

    Yahaya, B; Baker, A; Tennant, P; Smith, S H; Shaw, D J; McLachlan, G; Collie, D D S

    2011-11-01

    Understanding the fundamental processes involved in repairing the airway wall following injury is fundamental to understanding the way in which these processes are perturbed during disease pathology. Indeed complex diseases such as asthma and chronic obstructive pulmonary disease (COPD) have at their core evidence of airway wall remodeling processes that play a crucial functional role in these diseases. The authors sought to understand the dynamic cellular events that occur during bronchial airway epithelial repair in sheep. The injury was induced by endobronchial brush biopsy (BBr), a process that causes epithelial débridement and induces a consequential repair process. In addition, the current experimental protocol allowed for the time-dependent changes in airway wall morphology to be studied both within and between animals. The initial débridement was followed by evidence of dedifferentiation in the intact epithelium at the wound margins, followed by proliferation of cells both within the epithelium and in the deeper wall structures, notably in association with the submucosal glands and smooth muscle bundles. Seven days after injury, although the airway wall was thickened at the site of damage, the epithelial layer was intact, with evidence of redifferentiation. These studies, in demonstrating broad agreement with previous studies in small animals, indicate the wider relevance of this system as a comparative model and should provide a solid basis upon which to further characterize the critical cellular and molecular interactions that underlie both effective restitution and pathological repair.

  14. Numerical Simulation for Mechanism of Airway Narrowing in Asthma

    NASA Astrophysics Data System (ADS)

    Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi

    A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.

  15. The effect of asthma on the perimeter of the airway basement membrane.

    PubMed

    Elliot, John G; Budgeon, Charley A; Harji, Salima; Jones, Robyn L; James, Alan L; Green, Francis H

    2015-11-15

    When comparing the pathology of airways in individuals with and without asthma, the perimeter of the basement membrane (Pbm) is used as a marker of airway size, as it is independent of airway smooth muscle shortening or airway collapse. The extent to which the Pbm is itself altered in asthma has not been quantified. The aim of this study was to compare the Pbm from the same anatomical sites in postmortem lungs from subjects with (n = 55) and without (n = 30) asthma (nonfatal or fatal). Large and small airways were systematically sampled at equidistant "levels" from the apical segment of the left upper lobes and anterior and basal segments of the left lower lobes of lungs fixed in inflation. The length of the Pbm was estimated from cross sections of airway at each relative level. Linear mixed models were used to investigate the relationships between Pbm and sex, age, height, smoking status, airway level, and asthma group. The final model showed significant interactions between Pbm and airway level in small (<3 mm) airways, in subjects having asthma (P < 0.0001), and by sex (P < 0.0001). No significant interactions for Pbm between asthma groups were observed for larger airways (equivalent to a diameter of ∼3 mm and greater) or smoking status. Asthma is not associated with remodeling of the Pbm in large airways. In medium and small airways, the decrease in Pbm in asthma (≤20%) would not account for the published differences in wall area or area of smooth muscle observed in cases of severe asthma.

  16. Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Ro, Jai Youl

    2014-04-01

    Allergic asthma is characterized by chronic airway remodeling, which is associated with the expression of extracellular matrix proteins (ECM) by TGF-β. However, to date there are no reports demonstrating that structural proteins are directly expressed in mast cells. This study aimed to investigate whether ECM proteins are expressed in mast cells activated with antigen/antibody reaction, and whether the resolution effects of irradiation or 8-oxo-dG may contribute to allergic asthma prevention. Bone marrow-derived mast cells (BMMCs) were activated with DNP-HSA/anti-DNP IgE antibody (act-BMMCs). C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. Mice were treated orally with 8-oxo-dG or exposed to whole body irradiation (using (137)Cs gamma ray at a dose of 0.5 Gy) for three consecutive days 24 h after OVA challenge. Expression of extracellular matrix (ECM) proteins, TGF-β signaling molecules and NF-κB/AP-1 was determined in the BMMCs, bronchoalveolar lavage (BAL) cells or lung tissues using Western blot, polymerase chain reaction (PCR) and electrophoretic mobility shift assay (EMSA), respectively. Act-BMMCs increased expression of ECM proteins, TGF-β/TGF-β receptor I, TGF-β signaling molecules and cytokines; and increased both NF-κB and AP-1 activity. In addition, the population of mast cells; expression of mast cell markers, TGF-β signaling molecules, ECM proteins/amounts; OVA-specific serum IgE level; numbers of goblet cells; airway hyperresponsiveness; cytokines/chemokines were increased in BAL cells and lung tissues of OVA-challenged mice. All of the above end points were reduced by irradiation or 8-oxo-dG in vitro and in vivo, respectively. The data suggest that mast cells induce expression of ECM proteins through TGF-β produced in inflammatory cells of OVA mice and that post treatment of irradiation or 8-oxo-dG after OVA-challenge may reduce airway remodeling through down-regulating mast cell re-activation by

  17. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation

    PubMed Central

    Ketela, Troy; Cowen, Leah E.

    2016-01-01

    Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans. PMID:27870871

  18. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  19. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties.

    PubMed

    Fernandes, J C; Cobb, F; Tracana, S; Costa, G J; Valente, I; Goulao, L F; Amâncio, S

    2015-04-22

    The cell wall (CW) is a dynamic structure that responds to stress. Water shortage (WS) impacts grapevine berry composition and its sensorial quality. In the present work, berry texture, skin CW composition, and expression of remodeling genes were investigated in two V. vinifera varieties, Touriga Nacional (TN) and Trincadeira (TR), under two water regimes, Full Irrigation (FI) and No Irrigation (NI). The global results allowed an evident separation between both varieties and the water treatments. WS resulted in increased anthocyanin contents in both varieties, reduced amounts in cellulose and lignin at maturation, but an increase in arabinose-containing polysaccharides more tightly bound to the CW in TR. In response to WS, the majority of the CW related genes were down-regulated in a variety dependent pattern. The results support the assumption that WS affects grape berries by stiffening the CW through alteration in pectin structure, supporting its involvement in responses to environmental conditions.

  20. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana

    PubMed Central

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-01-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. PMID:27605715

  1. Involvement of c-Jun N-Terminal Kinase in TNF-α-Driven Remodeling.

    PubMed

    Eurlings, Irene M J; Reynaert, Niki L; van de Wetering, Cheryl; Aesif, Scott W; Mercken, Evi M; de Cabo, Rafael; van der Velden, Jos L; Janssen-Heininger, Yvonne M; Wouters, Emiel F M; Dentener, Mieke A

    2017-03-01

    Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) is characterized by airway wall thickening and/or emphysema. Although the bronchial and alveolar compartments are functionally independent entities, we recently showed comparable alterations in matrix composition comprised of decreased elastin content and increased collagen and hyaluronan contents of alveolar and small airway walls. Out of several animal models tested, surfactant protein C (SPC)-TNF-α mice showed remodeling in alveolar and airway walls similar to what we observed in patients with COPD. Epithelial cells are able to undergo a phenotypic shift, gaining mesenchymal properties, a process in which c-Jun N-terminal kinase (JNK) signaling is involved. Therefore, we hypothesized that TNF-α induces JNK-dependent epithelial plasticity, which contributes to lung matrix remodeling. To this end, the ability of TNF-α to induce a phenotypic shift was assessed in A549, BEAS2B, and primary bronchial epithelial cells, and phenotypic markers were studied in SPC-TNF-α mice. Phenotypic markers of mesenchymal cells were elevated both in vitro and in vivo, as shown by the expression of vimentin, plasminogen activator inhibitor-1, collagen, and matrix metalloproteinases. Concurrently, the expression of the epithelial markers, E-cadherin and keratin 7 and 18, was attenuated. A pharmacological inhibitor of JNK attenuated this phenotypic shift in vitro, demonstrating involvement of JNK signaling in this process. Interestingly, activation of JNK signaling was also clearly present in lungs of SPC-TNF-α mice and patients with COPD. Together, these data show a role for TNF-α in the induction of a phenotypic shift in vitro, resulting in increased collagen production and the expression of elastin-degrading matrix metalloproteinases, and provide evidence for involvement of the TNF-α-JNK axis in extracellular matrix remodeling.

  2. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis

    PubMed Central

    Mittal, Amandeep; Balasubramanian, Rajagopal; Cao, Jin; Singh, Prabhjeet; Subramanian, Senthil; Hicks, Glenn; Nothnagel, Eugene A.; Abidi, Noureddine; Janda, Jaroslav; Galbraith, David W.; Rock, Christopher D.

    2014-01-01

    Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals. PMID:24821950

  3. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  4. Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.

    PubMed

    Bentley, J Kelley; Hershenson, Marc B

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.

  5. The Role of Urokinase Plasminogen Activator and Plasmin Activator Inhibitor-1 on Vein Wall Remodeling in Experimental Deep Vein Thrombosis

    PubMed Central

    Baldwin, Joe F.; Sood, Vikram; Elfline, Megan A.; Luke, Cathy E.; Dewyer, Nicholas A.; Diaz, Jose A.; Myers, Dan D.; Wakefield, Thomas; Henke, Peter K.

    2012-01-01

    OBJECTIVE Deep vein thrombosis (DVT) resolution instigates an inflammatory response, resulting in vessel wall damage and scarring. Urokinase-plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor-1 (PAI-1), are integral components of the fibrinolytic system, essential for VT resolution. This study determined the vein wall response when exposed to increased and decreased plasmin activity. Methods A mouse inferior vena cava (IVC) ligation model in uPA −/− or PAI-1 −/− and their genetic wild types (B6/SvEv and C57/BL6, respectively) was used to create stasis thrombi, with tissue harvest at either 8 or 21d. Tissue analysis included gene expression of vascular smooth muscle cells (alpha SMA [αSMA], SM22) and endothelial marker (CD31), by real time PCR, ELISA, matrix metalloproteinase (MMP) -2 and 9 activity by zymography and vein wall collagen by picrosirius red histological analysis. A P < .05 was considered significant. RESULTS Thrombi were significantly larger in both 8d and 21d uPA −/− as compared to WT, and were significantly smaller in both 8 and 21d PAI-1 −/− as compared to WT. Correspondingly, 8d plasmin levels were reduced in half in uPA −/− and increased 3 fold in PAI-1 −/− when compared to respective WT thrombi (P < .05, N = 5 – 6). The endothelial marker CD31 was elevated 2 fold in PAI-1 −/− mice at 8d, but reduced 2.5 fold at 21d in uPA −/− as compared with WT (P = .02, N = 5 – 6), suggesting less endothelial preservation. Vein wall VSMC gene expression showed that 8d and 21d PAI-1 −/− mice had 2.3 and 3.8 fold more SM22 and 1.8 and 2.3 fold more αSMA expression than respective WT (P < .05, N = 5 – 7), as well as 1.8 fold increased αSMA (+) cells (N = 3 – 5, P ≤ .05). No significant difference in MMP2 or 9 activity was found in the PAI-1 −/− mice compared with WT, while 5.4 fold more MMP9 was present in 21d WT than 21d uPA −/− (P = .03, N = 5). Lastly, collagen was ~2 fold

  6. Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats.

    PubMed Central

    Olivetti, G.; Quaini, F.; Lagrasta, C.; Ricci, R.; Tiberti, G.; Capasso, J. M.; Anversa, P.

    1992-01-01

    To determine the effects of chronic anemia on the functional and structural characteristics of the heart, 1-month-old male rats were fed a diet deficient in iron and copper, which led to a hemoglobin concentration of 4.63 g/dl, for 8 weeks. At sacrifice, under fentanyl citrate and droperidol anesthesia, systolic, diastolic, and mean arterial blood pressures were decreased, whereas differential pressure was increased. Left ventricular systolic pressure and the ventricular rate of pressure rise (mmHg/s) were reduced by 9% and 14%, respectively. Moreover, developed peak systolic ventricular pressure and maximal dP/dt diminished 14% and 12%. After perfusion fixation of the coronary vasculature and the myocardium, at a left ventricular intracavitary pressure equal to the in vivo measured end diastolic pressure, a 10% thickening of the left ventricular wall was measured in association with a 13% increase in the equatorial cavitary diameter and a 44% augmentation in ventricular mass. The 52% hypertrophy of the right ventricle was characterized by an 11% thicker wall and a 37% larger ventricular area. The 33% expansion in the aggregate myocyte volume of the left ventricle was found to be due to a 14% myocyte cellular hypertrophy and a 17% myocyte cellular hyperplasia. These cellular parameters were calculated from the estimation of the number of myocyte nuclei per unit volume of myocardium in situ and the evaluation of the distribution of nuclei per cell in enzymatically dissociated myocytes. Myocyte cellular hyperplasia provoked a 9% increase in the absolute number of cells across the left ventricular wall. In contrast, myocyte cellular hypertrophy (42%) was responsible for the increase in myocyte volume of the right ventricle. The proliferative response of left ventricular myocytes was not capable of restoring diastolic cell stress, which was enhanced by the changes in ventricular anatomy with anemia. In conclusion, chronic anemia induced an unbalanced load on the left

  7. Pulmonary Remodeling in Equine Asthma: What Do We Know about Mediators of Inflammation in the Horse?

    PubMed Central

    Gehlen, Heidrun

    2016-01-01

    Equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) represent a spectrum of chronic inflammatory disease of the airways in horses resembling human asthma in many aspects. Therefore, both are now described as severity grades of equine asthma. Increasing evidence in horses and humans suggests that local pulmonary inflammation is influenced by systemic inflammatory processes and the other way around. Inflammation, coagulation, and fibrinolysis as well as extracellular remodeling show close interactions. Cytology of bronchoalveolar lavage fluid and tracheal wash is commonly used to evaluate the severity of local inflammation in the lung. Other mediators of inflammation, like interleukins involved in the chemotaxis of neutrophils, have been studied. Chronic obstructive pneumopathies lead to remodeling of bronchial walls and lung parenchyma, ultimately causing fibrosis. Matrix metalloproteinases (MMPs) are discussed as the most important proteolytic enzymes during remodeling in human medicine and increasing evidence exists for the horse as well. A systemic involvement has been shown for severe equine asthma by increased acute phase proteins like serum amyloid A and haptoglobin in peripheral blood during exacerbation. Studies focusing on these and further possible inflammatory markers for chronic respiratory disease in the horse are discussed in this review of the literature. PMID:28053371

  8. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    PubMed Central

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  9. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence

    PubMed Central

    Singh, Parul; Rao, Rameshwaram Nagender; Reddy, Jala Ram Chandra; Prasad, RBN; Kotturu, Sandeep Kumar; Ghosh, Sudip; Mukhopadhyay, Sangita

    2016-01-01

    The role of the unique proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. One of the PE family proteins, PE11 (LipX or Rv1169c), specific to pathogenic mycobacteria is found to be over-expressed during infection of macrophages and in active TB patients. In this study, we report that M. smegmatis expressing PE11 (Msmeg-PE11) exhibited altered colony morphology and cell wall lipid composition leading to a marked increase in resistance against various environmental stressors and antibiotics. The cell envelope of Msmeg-PE11 also had greater amount of glycolipids and polar lipids. Msmeg-PE11 was found to have better survival rate in infected macrophages. Mice infected with Msmeg-PE11 had higher bacterial load, showed exacerbated organ pathology and mortality. The liver and lung of Msmeg-PE11-infected mice also had higher levels of IL-10, IL-4 and TNF-α cytokines, indicating a potential role of this protein in mycobacterial virulence. PMID:26902658

  10. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  11. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

    PubMed Central

    Gilley, Sandra K.; Stenbit, Antine E.; Pasek, Raymond C.; Sas, Kelli M.; Steele, Stacy L.; Amria, May; Bunni, Marlene A.; Estell, Kimberly P.; Schwiebert, Lisa M.; Flume, Patrick; Gooz, Monika; Haycraft, Courtney J.; Yoder, Bradley K.; Miller, Caroline; Pavlik, Jacqueline A.; Turner, Grant A.; Sisson, Joseph H.

    2013-01-01

    The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function. PMID:24213915

  12. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    PubMed

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana.

  13. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    PubMed

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  14. Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model

    PubMed Central

    Kang, Hye Seon; Rhee, Chin Kook; Lee, Hea Yon; Yoon, Hyoung Kyu; Kwon, Soon Seok; Lee, Sook Young

    2016-01-01

    Background/Aims Inhaled corticosteroids are the most effective treatment currently available for asthma, but their beneficial effect against airway remodeling is limited. The tyrosine kinase inhibitor nilotinib has inhibitory activity against c-kit and the platelet-derived growth factor receptor. We compared the effects of fluticasone and nilotinib on airway remodeling in a chronic asthma model. We also examined whether co-treatment with nilotinib and fluticasone had any synergistic effect in preventing airway remodeling. Methods We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized female BALB/c-mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated with fluticasone and/or nilotinib intranasally during the OVA challenge. Results Mice chronically exposed to OVA developed eosinophilic airway inflammation and showed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Both fluticasone and nilotinib attenuated airway smooth muscle thickening. However, only nilotinib suppressed fibrotic changes, demonstrating inhibition of collagen deposition. Fluticasone reduced pro-inflammatory cells, such as eosinophils, and several cytokines, such as interleukin 4 (IL-4), IL-5, and IL-13, induced by repeated OVA challenges. On the other hand, nilotinib reduced transforming growth factor β1 levels in bronchoalveolar lavage fluid and inhibited fibroblast proliferation significantly. Conclusions These results suggest that fluticasone and nilotinib suppressed airway remodeling in this chronic asthma model through anti-inflammatory and anti-fibrotic pathways, respectively. PMID:27764539

  15. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  16. An Exploratory Pathways Analysis of Temporal Changes Induced by Spinal Cord Injury in the Rat Bladder Wall: Insights on Remodeling and Inflammation

    PubMed Central

    Wognum, Silvia; Lagoa, Claudio E.; Nagatomi, Jiro; Sacks, Michael S.; Vodovotz, Yoram

    2009-01-01

    Background Spinal cord injuries (SCI) can lead to severe bladder pathologies associated with inflammation, fibrosis, and increased susceptibility to urinary tract infections. We sought to characterize the complex pathways of remodeling, inflammation, and infection in the urinary bladder at the level of the transcriptome in a rat model of SCI, using pathways analysis bioinformatics. Methodology/Principal Findings Experimental data were obtained from the study of Nagatomi et al. (Biochem Biophys Res Commun 334: 1159). In this study, bladders from rats subjected to surgical SCI were obtained at 3, 7 or 25 days post-surgery, and Affymetrix GeneChip® Rat Genome U34A arrays were used for cRNA hybridizations. In the present study, Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) of differentially expressed genes was performed. Analysis of focus genes in networks, functional analysis, and canonical pathway analysis reinforced our previous findings related to the presence of up-regulated genes involved in tissue remodeling, such as lysyl oxidase, tropoelastin, TGF-β1, and IGF-1. This analysis also highlighted a central role for inflammation and infection, evidenced by networks containing genes such as CD74, S100A9, and THY1. Conclusions/Significance Our findings suggest that tissue remodeling, infection, inflammation, and tissue damage/dysfunction all play a role in the urinary bladder, in the complex response to SCI. PMID:19513121

  17. MiR-133 modulates TGF-β1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction.

    PubMed

    Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian

    2015-02-01

    Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway

  18. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  19. Two-dimensional airway analysis using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang Cheol; Pu, Jiantao; Sciurba, Frank C.; Leader, Joseph K.

    2010-03-01

    Although 3-D airway tree segmentation permits analysis of airway tree paths of practical lengths and facilitates visual inspection, our group developed and tested an automated computer scheme that was operated on individual 2-D CT images to detect airway sections and measure their morphometry and/or dimensions. The algorithm computes a set of airway features including airway lumen area (Ai), airway cross-sectional area (Aw), the ratio (Ra) of Ai to Aw, and the airway wall thickness (Tw) for each detected airway section depicted on the CT image slice. Thus, this 2-D based algorithm does not depend on the accuracy of 3-D airway tree segmentation and does not require that CT examination encompasses the entire lung or reconstructs contiguous images. However, one disadvantage of the 2-D image based schemes is the lack of the ability to identify the airway generation (Gb) of the detected airway section. In this study, we developed and tested a new approach that uses 2-D airway features to assign a generation number to an airway. We developed and tested two probabilistic neural networks (PNN) based on different sets of airway features computed by our 2-D based scheme. The PNNs were trained and tested on 12 lung CT examinations (8 training and 4 testing). The accuracy for the PNN that utilized Ai and Ra for identifying the generation of airway sections varies from 55.4% - 100%. The overall accuracy of the PNN for all detected airway sections that are spread over all generations is 76.7%. Interestingly, adding wall thickness feature (Tw) to PNN did not improve identification accuracy. This preliminary study demonstrates that a set of 2-D airway features may be used to identify the generation number of an airway with reasonable accuracy.

  20. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  1. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Naidu, Nikhil A.; Mesaros, Clementina; Blair, Ian A.; Weiser, Jeffrey N.

    2015-01-01

    Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae–mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa. PMID:26426079

  2. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection.

    PubMed

    Hergott, Christopher B; Roche, Aoife M; Naidu, Nikhil A; Mesaros, Clementina; Blair, Ian A; Weiser, Jeffrey N

    2015-10-01

    Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae-mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa.

  3. Remodeling of the Vessel Wall after Copper-Induced Injury Is Highly Attenuated in Mice with a Total Deficiency of Plasminogen Activator Inhibitor-1

    PubMed Central

    Ploplis, Victoria A.; Cornelissen, Ivo; Sandoval-Cooper, Mayra J.; Weeks, Lisa; Noria, Francisco A.; Castellino, Francis J.

    2001-01-01

    Clinical studies have indicated that high plasma levels of fibrinogen, or decreased fibrinolytic potential, are conducive to an increased risk of cardiovascular disease. Other investigations have shown that insoluble fibrin promotes atherosclerotic lesion formation by affecting smooth muscle cell proliferation, collagen deposition, and cholesterol accumulation. To directly assess the physiological impact of an imbalanced fibrinolytic system on both early and late stages of this disease, mice deficient for plasminogen activator inhibitor-1 (PAI-1−/−) were used in a model of vascular injury/repair, and the resulting phenotype compared to that of wild-type (WT) mice. A copper-induced arterial injury was found to generate a lesion with characteristics similar to many of the clinical features of atherosclerosis. Fibrin deposition in the injured arterial wall at early (7 days) and late (21 days) times after copper cuff placement was prevalent in WT mice, but was greatly diminished in PAI-1−/− mice. A multilayered neointima with enhanced collagen deposition was evident at day 21 in WT mice. In contrast, only diffuse fibrin was identified in the adventitial compartments of arteries from PAI-1−/− mice, with no evidence of a neointima. Neovascularization was observed in the adventitia and was more extensive in WT arteries, relative to PAI-1−/− arteries. Additionally, enhanced PAI-1 expression and fat deposition were seen only in the arterial walls of WT mice. The results of this study emphasize the involvement of the fibrinolytic system in vascular repair processes after injury and indicate that alterations in the fibrinolytic balance in the vessel wall have a profound effect on the development and progression of vascular lesion formation. PMID:11141484

  4. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  5. Tolerance to caspofungin in Candida albicans is associated with at least three distinctive mechanisms that govern expression of FKS genes and cell wall remodeling.

    PubMed

    Yang, Feng; Zhang, Lulu; Wakabayashi, Hironao; Myers, Jason; Jiang, Yuanying; Cao, Yongbing; Jimenez-Ortigosa, Cristina; Perlin, David S; Rustchenko, Elena

    2017-02-21

    Expanding echinocandin use to prevent or treat invasive fungal infections has led to an increase in the number of breakthrough infections due to resistant Candida species. Although uncommon, echinocandin resistance is well documented for Candida albicans, which is among the most prevalent bloodstream organisms. A better understanding is needed to assess the cellular factors that promote tolerance and predispose infecting cells for clinical breakthrough. We have previously showed that some mutants adapted to growth in the presence of toxic sorbose due to loss of one chromosome 5 (Ch5) also became more tolerant to caspofungin. We find now that, following direct selection on caspofungin, tolerance can be conferred by at least three mechanisms: 1) monosomy of Ch5; 2) combined monosomy of left arm and trisomy of right arm of Ch5, and 3) an aneuploidy-independent mechanism. Tolerant mutants possessed cell walls with elevated chitin and showed downregulation of genes involved in cell wall biosynthesis, FKS outside Ch5 and CHT2 on Ch5, irrespective of Ch5 ploidy. Also, irrespective of Ch5 ploidy, CNB1 and MID1 genes on Ch5 that are involved in calcineurin signaling pathway were expressed at the diploid level. Thus, multiple mechanisms can impact the relative expression of the aforementioned genes controlling them in a similar manner. Although breakthrough mutations in two specific regions of FKS1 have previously been associated with caspofungin resistance, we find mechanisms of caspofungin tolerance that are independent of FKS1, thus, representing an earlier event in resistance development.

  6. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  7. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  8. Catalytic properties of Phr family members of cell wall glucan remodeling enzymes: implications for the adaptation of Candida albicans to ambient pH.

    PubMed

    Kováčová, Kristína; Degani, Genny; Stratilová, Eva; Farkaš, Vladimír; Popolo, Laura

    2015-03-01

    Fungal wall formation is a dynamic process involving several categories of enzymes. The GH72 family of β(1,3)-glucanosyltransferases is essential for the determination of cell shape, for cell integrity and for virulence in pathogenic fungi. Candida albicans has five GH72 genes: PHR1 and PHR2 are pH dependent, the first being expressed at pH ≥ 6 and repressed at lower pH and the second regulated in the opposite manner, PGA4 is transcribed independently of pH whereas PHR3 and PGA5 have low expression levels. To characterize the catalytic properties of Phr1p-2p and probe the activity of Pga4p, we heterologously expressed these proteins and used a fluorescent assay based on the transfer of oligosaccharyl units from a donor to a sulforhodamine-labeled acceptor. Phr1p-2p used exclusively β-1,3-glucan or cell wall glucan as donor and laminarin-derived oligosaccharides as acceptor. The acceptor efficiency increased with the length of the oligosaccharide. The temperature optimum was 30°C. The pH optimum was 5.8 for Phr1p and 3 for Phr2p. Overall, adaptation to pH of C. albicans appears to involve a fine interplay among the pH-dependent activity of Phr1p and Phr2p, the pH-regulated expression of their genes and protein stability. Unexpectedly, Pga4p was inactive suggesting that it turned into a structural mannoprotein.

  9. The Impact of Vitamin D on Asthmatic Human Airway Smooth Muscle

    PubMed Central

    Hall, Sannette C.; Fischer, Kimberly D.; Agrawal, Devendra K.

    2016-01-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  10. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways1[OPEN

    PubMed Central

    Bequette, Carlton J.; Fu, Zheng Qing; Loraine, Ann E.

    2016-01-01

    AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae. These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense. PMID:27208279

  11. A Thin Left Atrial Antral Wall Around the Pulmonary Vein Reflects Structural Remodeling by Atrial Fibrillation and is Associated with Stroke

    PubMed Central

    Park, Junbeom; Park, Chul Hwan; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung

    2017-01-01

    Purpose Circumferential pulmonary (PV) vein isolation (CPVI) is the most important treatment strategy for atrial fibrillation (AF). While understanding left atrial wall thickness around PVs (PVWT) prior to catheter ablation is important, its clinical implications are not known. This study aimed to evaluate PVWT characteristics according to underlying disease and to identify associations between PVWT and reconnections of PV potentials (PVPs) in redo ablation. Materials and Methods In 28 patients who underwent redo-AF ablation, PVWT and reconnected PVPs were evaluated at 12 sites (1–12 o'clock) around each PV. Clinical characteristics including stroke and CHA2DS2-VASc scores were analyzed according to the PVWT. Results The PVWT was thicker in males than females (p<0.001) and in those with diabetes (p=0.045) or heart failure (p=0.002) than in those without. Patients with strokes or high CHA2DS2-VASc scores (≥3) had significantly thinner PVWTs than those without strokes or low CHA2DS2-VASc scores (p<0.001). In redo-ablation, reconnected PVPs were detected in 60 (53.6%) of 112 PVs, and the PVs were thicker (p<0.001) and had more reconnected PVs (p=0.009) than right PVs. A PVWT of >0.6 mm predicted PV reconnections with a sensitivity of 76.7% and specificity of 52.2% with an area under the curve of 0.695. Conclusion Thick PVWs were associated with diabetes and heart failure, and also showed significant inverse correlations with stroke and the CHA2DS2-VASc score. Thick PVWs were associated with reconnected PVPs after the CPVI, which were related to AF recurrence. PMID:28120557

  12. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  13. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  14. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  15. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  16. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  17. Modeling Upper Airway Collapse by a Finite Element Model with Regional Tissue Properties

    PubMed Central

    Xu, Chun; Brennick, Michael J.; Dougherty, Lawrence; Wootton, David M.

    2009-01-01

    This study presents a new computational system for modeling the upper airway in rats that combines tagged magnetic resonance imaging (MRI) with tissue material properties to predict three-dimensional (3D) airway motion. The model is capable of predicting airway wall and tissue deformation under airway pressure loading up to airway collapse. The model demonstrates that oropharynx collapse pressure depends primarily on ventral wall (tongue muscle) elastic modulus and airway architecture. An iterative approach that involves substituting alternative possible tissue elastic moduli was used to improve model precision. The proposed 3D model accounts for stress-strain relationships in the complex upper airway that should present new opportunities for understanding pathogenesis of airway collapse, improving diagnosis and developing treatments. PMID:19747871

  18. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  19. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  20. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  1. A critical role for dendritic cells in the evolution of IL-1β-mediated murine airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Goodsell, Amanda; Ma, Royce; Moermans, Catherine; McKnelly, Kate J.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease (COPD) and are refractory to current treatments. How and if chronic inflammation contributes to airway fibrosis remains controversial. Here, we use a model of COPD airway disease utilizing adenoviral (Ad) delivery of IL-1β to determine that adaptive T-cell immunity is required for airway remodeling since mice deficient in α/β T-cells (tcra −/−) are protected. Dendritic cells (DCs) accumulate around COPD airways and are critical to prime adaptive immunity, but have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor, ccr6, both protect from Ad-IL-1β-induced airway adaptive T-cell immune responses, and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/β T-cells and driven by DCs, is critical to airway fibrosis. PMID:25786688

  2. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  3. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  4. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  5. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  6. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  7. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  8. The Diacetyl-exposed Human Airway Epithelial Secretome: New Insights Into Flavoring Induced Airways Disease.

    PubMed

    Brass, David M; Gwinn, William M; Valente, Ashlee M; Kelly, Francine L; Brinkley, Christie D; Nagler, Andrew E; Moseley, M Arthur; Morgan, Daniel L; Palmer, Scott M; Foster, Matthew W

    2017-03-01

    Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant ~1100 ppm of diacetyl vapor or PBS as a control on alternating days. Basolateral and apical supernatants collected 48 hours after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t-tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and PBS exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome and there were an additional 11 present in both. Pathway enrichment analysis using publicly available databases reveals that proteins associated with matrix remodeling including degradation, assembly and new matrix organization were over-represented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.

  9. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  10. Flow characteristics in the airways of a COPD patient with a saber-sheath trachea

    NASA Astrophysics Data System (ADS)

    Jin, Dohyun; Choi, Haecheon; Lee, Changhyun; Choi, Jiwoong; Kim, Kwanggi

    2016-11-01

    The chronic obstructive pulmonary disease (COPD) is a lung disease characterized by the irreversible airflow limitation caused by the damaged small airways and air sacs. Although COPD is not a disease of the trachea, many patients with COPD have saber-sheath tracheas. The effects of this morphological change in the trachea geometry on airflow are investigated in the present study. An unstructured finite volume method is used for the simulations during tidal breathing in normal and COPD airways, respectively. During inspiration, local large pressure drop is observed in the saber-sheath region of the COPD patient. During expiration, vortical structures are observed at the right main bronchus of the COPD airway, while the flow in the normal airway remains nearly laminar. High wall shear stress exists at convex regions of both airways during inspiration and expiration. However, due to the morphological changes in the COPD airway, relatively higher wall shear stress is observed in the patient airways.

  11. Ventricular remodeling in global ischemia.

    PubMed

    Anversa, P; Zhang, X; Li, P; Olivetti, G; Cheng, W; Reiss, K; Sonnenblick, E H; Kajstura, J

    1995-06-01

    To determine the effects of chronic constriction of the left coronary artery on the function and structure of the heart, coronary artery narrowing was surgically induced in rats and ventricular pump performance, extent and distribution of myocardial damage, and the hypertrophic and hyperplastic response of myocytes were examined. Alterations in cardiac hemodynamics were found in all rats, but the characteristics of the physiological properties of the heart allowed a separation of the animals into two groups which exhibited left ventricular dysfunction and failure, respectively. Left ventricular hypertrophy occurred in both groups and was characterized by ventricular dilatation and wall thinning which were more severe in the failing animals. Multiple foci of myocardial damage across the wall were seen in all animals but tissue injury was more prominent in the endomyocardium and in failing rats. The anatomical and hemodynamic changes resulted in a significant increase in diastolic wall stress which paralleled the depression in ventricular performance. Myocyte cell loss and myocyte cellular hypertrophy were more severe with ventricular failure than with dysfunction. Finally, diastolic overload appeared to be coupled with activation of the DNA synthetic machinery of myocytes and nuclear mitotic division. In conclusion, a fixed lesion of the left coronary artery leads to abnormalities in cardiac dynamics with marked increases in diastolic wall stress and extensive ventricular remodeling in spite of compensatory myocyte cellular hypertrophy and hyperplasia in the remaining viable tissue.

  12. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation

    PubMed Central

    Juvet, Stephen; Scott, Jeremy A.; Chow, Chung-Wai

    2017-01-01

    Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma. PMID:28107345

  13. Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats

    PubMed Central

    Salmon, Michael; Walsh, David A; Huang, Tung-Jung; Barnes, Peter J; Leonard, Thomas B; Hay, Douglas W P; Chung, K Fan

    1999-01-01

    Airway smooth muscle thickening is a characteristic feature of airway wall remodelling in chronic asthma. We have investigated the role of the leukotrienes in airway smooth muscle (ASM) and epithelial cell DNA synthesis and ASM thickening following repeated allergen exposure in Brown Norway rats sensitized to ovalbumin. There was a 3 fold increase in ASM cell DNA synthesis, as measured by percentage bromodeoxyuridine (BrdU) incorporation, in repeatedly ovalbumin-exposed (4.1%, 3.6–4.6; mean, 95% c.i.) compared to chronically saline-exposed rats (1.3%, 0.6–2.1; P<0.001). Treatment with a 5-lipoxygenase enzyme inhibitor (SB 210661, 10 mg kg−1, p.o.) and a specific cysteinyl leukotriene (CysLT1) receptor antagonist, pranlukast (SB 205312, 30 mg kg−1, p.o.), both attenuated ASM cell DNA synthesis. Treatment with a specific leukotriene B4 (BLT) receptor antagonist (SB 201146, 15 mg kg−1, p.o.) had no effect. There was also a significant, 2 fold increase in the number of epithelial cells incorporating BrdU per unit length of basement membrane after repeated allergen exposure. This response was not inhibited by treatment with SB 210661, pranlukast or SB 201146. A significant increase in ASM thickness was identified following repeated allergen exposure and this response was attenuated significantly by SB 210661, pranlukast and SB 201146. Rats exposed to chronic allergen exhibited bronchial hyperresponsiveness to acetylcholine and had significant eosinophil recruitment into the lungs. Treatment with SB 210661, pranlukast or SB 201146 significantly attenuated eosinophil recruitment into the lungs, whilst having no significant effect on airway hyperresponsiveness. These data indicate that the cysteinyl leukotrienes are important mediators in allergen-induced ASM cell DNA synthesis in rats, while both LTB4 and cysteinyl leukotrienes contribute to ASM thickening and eosinophil recruitment following repeated allergen exposure. PMID:10455261

  14. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  15. Angiogenesis and airway reactivity in asthmatic Brown Norway rats.

    PubMed

    Wagner, Elizabeth M; Jenkins, John; Schmieder, Anne; Eldridge, Lindsey; Zhang, Qiong; Moldobaeva, Aigul; Zhang, Huiying; Allen, John S; Yang, Xiaoxia; Mitzner, Wayne; Keupp, Jochen; Caruthers, Shelton D; Wickline, Samuel A; Lanza, Gregory M

    2015-01-01

    Expanded and aberrant bronchial vascularity, a prominent feature of the chronic asthmatic airway, might explain persistent airway wall edema and sustained leukocyte recruitment. Since it is well established that there are causal relationships between exposure to house dust mite (HDM) and the development of asthma, determining the effects of HDM in rats, mammals with a bronchial vasculature similar to humans, provides an opportunity to study the effects of bronchial angiogenesis on airway function directly. We studied rats exposed bi-weekly to HDM (Der p 1; 50 μg/challenge by intranasal aspiration, 1, 2, 3 weeks) and measured the time course of appearance of increased blood vessels within the airway wall. Results demonstrated that within 3 weeks of HDM exposure, the number of vessels counted within airway walls of bronchial airways (0.5-3 mm perimeter) increased significantly. These vascular changes were accompanied by increased airway responsiveness to methacholine. A shorter exposure regimen (2 weeks of bi-weekly exposure) was insufficient to cause a significant increase in functional vessels or reactivity. Yet, 19F/1H MR imaging at 3T following αvβ3-targeted perfluorocarbon nanoparticle infusion revealed a significant increase in 19F signal in rat airways after 2 weeks of bi-weekly HDM, suggesting earlier activation of the process of neovascularization. Although many antigen-induced mouse models exist, mice lack a bronchial vasculature and consequently lack the requisite human parallels to study bronchial edema. Overall, our results provide an important new model to study the impact of bronchial angiogenesis on chronic inflammation and airways hyperreactivity.

  16. Small artery remodelling in diabetes

    PubMed Central

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-01-01

    Abstract The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure. PMID:20646125

  17. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  18. Cystic fibrosis lung disease starts in the small airways: can we treat it more effectively?

    PubMed

    Tiddens, Harm A W M; Donaldson, Scott H; Rosenfeld, Margaret; Paré, Peter D

    2010-02-01

    The aims of this article are to summarize existing knowledge regarding the pathophysiology of small airways disease in cystic fibrosis (CF), to speculate about additional mechanisms that might play a role, and to consider the available or potential options to treat it. In the first section, we review the evidence provided by pathologic, physiologic, and imaging studies suggesting that obstruction of small airways begins early in life and is progressive. In the second section we discuss how the relationships between CF transmembrane conductance regulator (CFTR), ion transport, the volume of the periciliary liquid layer and airway mucus might lead to defective mucociliary clearance in small airways. In addition, we discuss how chronic endobronchial bacterial infection and a chronic neutrophilic inflammatory response increase the viscosity of CF secretions and exacerbate the clearance problem. Next, we discuss how the mechanical properties of small airways could be altered early in the disease process and how remodeling can contribute to small airways disease. In the final section, we discuss how established therapies impact small airways disease and new directions that may lead to improvement in the treatment of small airways disease. We conclude that there are many reasons to believe that small airways play an important role in the pathophysiology of (early) CF lung disease. Therapy should be aimed to target the small airways more efficiently, especially with drugs that can correct the basic defect at an early stage of disease.

  19. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  20. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  1. NF-κB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns.

    PubMed

    Tian, Bing; Patrikeev, Igor; Ochoa, Lorenzo; Vargas, Gracie; Belanger, KarryAnne K; Litvinov, Julia; Boldogh, Istvan; Ameredes, Bill T; Motamedi, Massoud; Brasier, Allan R

    2017-04-01

    Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by

  2. Patterns of recruitment and injury in a heterogeneous airway network model

    PubMed Central

    Stewart, Peter S.; Jensen, Oliver E.

    2015-01-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  3. Modeling the dynamics of airway constriction: effects of agonist transport and binding.

    PubMed

    Amin, Samir D; Majumdar, Arnab; Frey, Urs; Suki, Béla

    2010-08-01

    Recent advances have revealed that during exogenous airway challenge, airway diameters cannot be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. To better understand these phenomena, we developed a multiscale model that allowed us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle contraction on individual airway segments, which, together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition are coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing the agonist to less constricted regions. This results in a negative feedback that may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insights into several phenomena including the intra- and interbreath dynamics of airway constriction throughout the tree structure.

  4. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    PubMed

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma.

  5. Airway hyperresponsiveness in asthma: mechanisms, clinical significance, and treatment.

    PubMed

    Brannan, John D; Lougheed, M Diane

    2012-01-01

    Airway hyperresponsiveness (AHR) and airway inflammation are key pathophysiological features of asthma. Bronchial provocation tests (BPTs) are objective tests for AHR that are clinically useful to aid in the diagnosis of asthma in both adults and children. BPTs can be either "direct" or "indirect," referring to the mechanism by which a stimulus mediates bronchoconstriction. Direct BPTs refer to the administration of pharmacological agonist (e.g., methacholine or histamine) that act on specific receptors on the airway smooth muscle. Airway inflammation and/or airway remodeling may be key determinants of the response to direct stimuli. Indirect BPTs are those in which the stimulus causes the release of mediators of bronchoconstriction from inflammatory cells (e.g., exercise, allergen, mannitol). Airway sensitivity to indirect stimuli is dependent upon the presence of inflammation (e.g., mast cells, eosinophils), which responds to treatment with inhaled corticosteroids (ICS). Thus, there is a stronger relationship between indices of steroid-sensitive inflammation (e.g., sputum eosinophils, fraction of exhaled nitric oxide) and airway sensitivity to indirect compared to direct stimuli. Regular treatment with ICS does not result in the complete inhibition of responsiveness to direct stimuli. AHR to indirect stimuli identifies individuals that are highly likely to have a clinical improvement with ICS therapy in association with an inhibition of airway sensitivity following weeks to months of treatment with ICS. To comprehend the clinical utility of direct or indirect stimuli in either diagnosis of asthma or monitoring of therapeutic intervention requires an understanding of the underlying pathophysiology of AHR and mechanisms of action of both stimuli.

  6. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  7. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    PubMed

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  8. Systems physiology of the airways in health and obstructive pulmonary disease.

    PubMed

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.

  9. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  10. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation

    NASA Astrophysics Data System (ADS)

    Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-05-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep.

  11. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation

    PubMed Central

    Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  12. Dynamic Visco-elastic Buckling Analysis for Airway Model

    NASA Astrophysics Data System (ADS)

    Bando, Kiyoshi; Ohba, Kenkichi; Yamanoi, Yuta

    In order to clarify the mechanism by which the lung airway narrows during an asthma attack, dynamic buckling analysis of the wall was conducted. The wall was modeled using a visco-elastic thin-walled circular cylinder of the Voigt model for the planestress state. A governing equation for dynamic buckling was derived, and in the equation, the contraction of smooth muscle was replaced by uniform inward transmural pressure. The non-dimensional parameters for the buckling wave number n were nondimensional retardation time τ, non-dimensional increasing velocity of inward transmural pressure β, thickness radius ratio α2, radius length ratio η, density ratio ζ, and Poisson's ratio ν. The validity of the theoretical model was confirmed by comparing the calculated wave number with that obtained from the experiment, in which a silicone rubber tube blended with silicone potting gel was used as the in vitro airway model. In addition, the wave number n increased with β. It was necessary to consider the damping effect of the tube model or the airway wall, and n increased by 1.5 to 2 due to the additional mass effect of surrounding tissues of the basement membrane in the airway wall.

  13. Airway-parenchyma uncoupling in nocturnal asthma.

    PubMed

    Irvin, C G; Pak, J; Martin, R J

    2000-01-01

    Airway flow resistance is well known to be dependent upon lung volume. The rise in lung volume that occurs in asthma is therefore thought to be an important mechanism that defends airway patency. The purpose of the current study was to investigate the interdependence or mechanical coupling between airways and lung parenchyma during the inflammatory processes that occur in the patient with nocturnal asthma. Five patients with documented nocturnal asthma were studied in both a vertical and a horizontal body plethysmograph. Lung volume was altered with continuous negative pressure as applied to the chest wall with a poncho cuirass in different postures and during sleep. We found during the awake phase that an increase in lung volume decreased lower pulmonary resistance (Rlp); however, within 30 min of sleep onset, functional residual capacity (FRC) fell and Rlp rose more than would be expected for the fall in FRC. Restoring FRC to presleep values either at an early (half-hour) or a late (3-h) time point did not cause Rlp to significantly fall. A second phase of the study showed that the loss of Rlp dependence on lung volume was not due to the assumption of the supine posture. Indirect measurements of lung compliance were consistent with a stiffening of the lung. We conclude that with sleep there is an immediate uncoupling of the parenchyma to the airway, resulting in a loss of interdependence that persists throughout sleep and may contribute to the morbidity and mortality associated with nocturnal asthma.

  14. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  15. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  16. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  17. Geometric tree kernels: classification of COPD from airway tree geometry.

    PubMed

    Feragen, Aasa; Petersen, Jens; Grimm, Dominik; Dirksen, Asger; Pedersen, Jesper Holst; Borgwardt, Karsten; de Bruijne, Marleen

    2013-01-01

    Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree. While state-of-the-art graph and tree kernels use combinatorial tree/graph structure with discrete node and edge labels, the kernels presented in this paper can include geometric information such as branch shape, branch radius or other vector valued properties. In addition to being flexible in their ability to model different types of attributes, the presented kernels are computationally efficient and some of them can easily be computed for large datasets (N - 10.000) of trees with 30 - 600 branches. Combining the kernels with standard machine learning tools enables us to analyze the relation between disease and anatomical tree structure and geometry. Experimental results: The kernels are used to compare airway trees segmented from low-dose CT, endowed with branch shape descriptors and airway wall area percentage measurements made along the tree. Using kernelized hypothesis testing we show that the geometric airway trees are significantly differently distributed in patients with Chronic Obstructive Pulmonary Disease (COPD) than in healthy individuals. The geometric tree kernels also give a significant increase in the classification accuracy of COPD from geometric tree structure endowed with airway wall thickness measurements in comparison with state-of-the-art methods, giving further insight into the relationship between airway wall thickness and COPD. Software: Software for computing kernels and statistical tests is available at http://image.diku.dk/aasa/software.php.

  18. NF-kappaB Signaling in Chronic Inflammatory Airway Disease

    PubMed Central

    Schuliga, Michael

    2015-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD. PMID:26131974

  19. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  20. New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness

    PubMed Central

    Cappetta, Donato; Urbanek, Konrad; Esposito, Grazia; Matteis, Maria; Sgambato, Manuela; Tartaglione, Gioia; Rossi, Francesco

    2016-01-01

    Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness. PMID:28090152

  1. Increased airway responsiveness and decreased alveolar attachment points following in utero smoke exposure in the guinea pig.

    PubMed

    Elliot, J; Carroll, N; Bosco, M; McCrohan, M; Robinson, P

    2001-01-01

    Maternal smoking during pregnancy has been shown to result in abnormalities in lung function in newborn infants, including reduced expiratory flow and increased airway responsiveness to inhaled agonists. The mechanisms by which this occurs remain unclear. Using a guinea pig model of in utero smoke exposure, we measured airway responsiveness and lung morphology in a group of neonatal guinea pigs 21 d after delivery. Pregnant guinea pigs were exposed to cigarette smoke from Day 28 to term (Day 68 of gestation). After delivery newborn animals did not receive any smoke exposure. Airway wall thickness, smooth muscle area, and the number of points where the alveoli attached to the airway adventitia were measured. Airway responsiveness was increased (p < 0.05) and the mean distance between alveolar attachment points was increased (mean 0.052 +/- SE 0.001 mm versus 0.046 +/- 0.001, p = 0.001) in animals exposed to cigarette smoke in utero compared with nonexposed animals. Although not statistically significant, both the inner and outer airway wall and the smooth muscle area were greater in exposed animals compared with nonexposed animals. The increased mean distance between alveolar attachments in the smoke-exposed group was the result of a reduction in the number of attachments and an increase in the outer airway wall perimeter. These findings suggest that the increased airway responsiveness observed in postnatal animals, subsequent to in utero cigarette smoke exposure, may be the result of decreased alveolar attachment points to the airways and changes in airway dimensions.

  2. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  3. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  4. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  5. EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium

    PubMed Central

    Zuo, Wu-Lin; Yang, Jing; Gomi, Kazunori; Chao, IonWa; Crystal, Ronald G.; Shaykhiev, Renat

    2017-01-01

    The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. PMID:27709733

  6. The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma

    PubMed Central

    da Silva, AL; Magalhães, RF; Branco, VC; Silva, JD; Cruz, FF; Marques, PS; Ferreira, TPT; Morales, MM; Martins, MA; Olsen, PC

    2016-01-01

    Background and Purpose Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in understanding of its pathophysiology, asthma remains a major public health problem, and new therapeutic strategies are urgently needed. In this context, we sought to ascertain whether treatment with the TK inhibitor dasatinib might repair inflammatory and remodelling processes, thus improving lung function, in a murine model of asthma. Experimental Approach Animals were sensitized and subsequently challenged, with ovalbumin (OVA) or saline. Twenty‐four hours after the last challenge, animals were treated with dasatinib, dexamethasone, or saline, every 12 h for 7 consecutive days. Twenty‐four hours after the last treatment, the animals were killed, and data were collected. Lung structure and remodelling were evaluated by morphometric analysis, immunohistochemistry, and transmission electron microscopy of lung sections. Inflammation was assessed by cytometric analysis and ELISA, and lung function was evaluated by invasive whole‐body plethysmography. Key Results In OVA mice, dasatinib, and dexamethasone led to significant reductions in airway hyperresponsiveness. Dasatinib was also able to attenuate alveolar collapse, contraction index, and collagen fibre deposition, as well as increasing elastic fibre content, in OVA mice. Concerning the inflammatory process, dasatinib reduced inflammatory cell influx to the airway and lung‐draining mediastinal lymph nodes, without inducing the thymic atrophy promoted by dexamethasone. Conclusions and Implications In this model of allergic asthma, dasatinib effectively blunted the inflammatory and remodelling processes in asthmatic lungs, enhancing airway repair and thus improving lung mechanics. PMID:26989986

  7. Linking optics and mechanics in an in vivo model of airway fibrosis and epithelial injury

    NASA Astrophysics Data System (ADS)

    Raub, Christopher B.; Mahon, Sari; Narula, Navneet; Tromberg, Bruce J.; Brenner, Matthew; George, Steven C.

    2010-01-01

    Chronic mucosal and submucosal injury can lead to persistent inflammation and tissue remodeling. We hypothesized that microstructural and mechanical properties of the airway wall could be derived from multiphoton images. New Zealand White rabbits were intubated, and the tracheal epithelium gently denuded every other day for five days (three injuries). Three days following the last injury, the tracheas were excised for multiphoton imaging, mechanical compression testing, and histological analysis. Multiphoton imaging and histology confirm epithelial denudation, mucosal ulceration, subepithelial thickening, collagen deposition, immune cell infiltration, and a disrupted elastin network. Elastase removes the elastin network and relaxes the collagen network. Purified collagenase removes epithelium with subtle subepithelial changes. Young's modulus [(E) measured in kiloPascal] was significantly elevated for the scrape injured (9.0+/-3.2) trachea, and both collagenase (2.6+/-0.4) and elastase (0.8+/-0.3) treatment significantly reduced E relative to control (4.1+/-0.7). E correlates strongly with second harmonic generation (SHG) signal depth decay for enzyme-treated and control tracheas (R2=0.77), but not with scrape-injured tracheas. We conclude that E of subepithelial connective tissue increases on repeated epithelial wounding, due in part to changes in elastin and collagen microstructure and concentration. SHG depth decay is sensitive to changes in extracellular matrix content and correlates with bulk Young's modulus.

  8. Spatial and Temporal Variation of Turbulence during Oscillatory Flow in Realistic Model Human Airways

    NASA Astrophysics Data System (ADS)

    Tanaka, Gaku; Hatori, Akihiro; Takano, Ryosuke

    Turbulence in the oscillatory flow in realistic model human central airways was measured by particle image velocimetry (PIV) to reveal the nature of turbulence in a lung. The transparent silicone model of multi-branching airways was fabricated from X-ray CT images by rapid prototyping. The multi-branching airways comprise trachea, and right and left bronchi, with airway diameters ranging from 14 to 2 mm, respectively. Experiments were performed for a Reynolds number from 1200 to 2200 and a Womersley number from 1.9 to 2.3 in the trachea. Results showed that spatial and temporal variations of turbulent intensity strongly depends on the airway geometry and on the phase of oscillatory flow, and that expiratory flow generates strong turbulence which explosively occurs in the entire cross-section especially in the right bronchi, whereas inspiratory flow generates relatively weak turbulence near the airway wall.

  9. Upper airway radiographs in infants with upper airway insufficiency.

    PubMed Central

    Tonkin, S L; Davis, S L; Gunn, T R

    1994-01-01

    Upper airway measurements in nine infants considered to be at risk of upper airway insufficiency, six of whom presented after an apnoeic episode, were compared with measurements taken in two age groups of healthy infants. Paired, inspiratory and expiratory, lateral upper airway radiographs were obtained while the infants were awake and breathing quietly. The radiographs of all nine infants demonstrated narrowing in the oropharyngeal portion of the airway during inspiration and in six infants there was ballooning of the upper airway during expiration. Seven of the nine infants subsequently experienced recurrent apnoeic episodes which required vigorous stimulation to restore breathing. Experience suggests that respiratory phase timed radiographs are a useful adjunct to the evaluation of infants who are suspected of having upper airway dysfunction. They provide information regarding both the dimensions and compliance of the upper airway as well as the site of any restriction. Images PMID:8048825

  10. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  11. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  12. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  13. The pathophysiologic process of ventricular remodeling: from infarct to failure.

    PubMed

    Paul, S

    1995-05-01

    In the past, hypertensive heart disease was the principal cause of congestive heart failure, but currently ischemic heart disease is the major etiologic factor. In the last 20 years, the role of myocardial infarction (MI) and the subsequent alteration in ventricular architecture of the infarcted and noninfarcted myocardium have become increasingly associated with a phenomenon known as ventricular remodelling. This process consists of left ventricular wall thinning in the infarction area, ventricular chamber dilatation, and compensatory hypertrophy of the noninfarcted portion of the myocardium. This article describes the pathophysiologic transformation that begins with MI and ventricular remodeling and ends in congestive heart failure.

  14. α7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation

    PubMed Central

    Maouche, Kamel; Polette, Myriam; Jolly, Thomas; Medjber, Kahina; Cloëz-Tayarani, Isabelle; Changeux, Jean-Pierre; Burlet, Henriette; Terryn, Christine; Coraux, Christelle; Zahm, Jean-Marie; Birembaut, Philippe; Tournier, Jean-Marie

    2009-01-01

    Airway epithelial basal cells are known to be critical for regenerating injured epithelium and maintaining tissue homeostasis. Recent evidence suggests that the α7 nicotinic acetylcholine receptor (nAChR), which is highly permeable to Ca2+, is involved in lung morphogenesis. Here, we have investigated the potential role of the α7 nAChR in the regulation of airway epithelial basal cell proliferation and the differentiation of the human airway epithelium. In vivo during fetal development and in vitro during the regeneration of the human airway epithelium, α7 nAChR expression coincides with epithelium differentiation. Inactivating α7 nAChR function in vitro increases cell proliferation during the initial steps of the epithelium regeneration, leading to epithelial alterations such as basal cell hyperplasia and squamous metaplasia, remodeling observed in many bronchopulmonary diseases. The regeneration of the airway epithelium after injury in α7−/− mice is delayed and characterized by a transient hyperplasia of basal cells. Moreover, 1-year-old α7−/− mice more frequently present basal cells hyperplasia. Modulating nAChR function or expression shows that only α7 nAChR, as opposed to heteropentameric αxβy nAChRs, controls the proliferation of human airway epithelial basal cells. These findings suggest that α7 nAChR is a key regulator of the plasticity of the human airway epithelium by controlling basal cell proliferation and differentiation pathway and is involved in airway remodeling during bronchopulmonary diseases. PMID:19808646

  15. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  16. Surgery of the airway: historic notes

    PubMed Central

    2016-01-01

    Prior to the 20th century, the need for surgical procedures on the airway was infrequent and consisted mainly of tracheostomy to relieve airway obstruction or repair of tracheal injuries such as lacerations. Even the ability of tracheal suture lines to heal primarily was viewed with concern due to the rigidity of the tracheal wall, its precarious blood supply and uncertainty as to whether the cartilage components could heal without complications. In the 20th century the evolution of tracheal procedures on major airways evolved to meet the challenges provided by the expanding fields of thoracic surgery and advent of mechanical respiratory support with its associated complications. In the first half of the century lobar and lung resections done for tuberculosis and lung cancer required methods for safe closure of the resulting bronchial stumps and end-to-end bronchial anastomosis in the case of sleeve resections of the lung. Beginning in mid-century the advent of respiratory care units for the treatment of polio and for the expanding fields of thoracic and cardiac surgery resulted in a significant number of post-intubation tracheal stenosis requiring resection and primary repair. In the last 20 years of the century the development of lung transplantation with its requirement for successful bronchial anastomoses between the donor and recipient bronchi, created unique challenges including ischemia of the donor bronchus the adverse effects of immunosuppression, donor lung preservation and diagnosis and management of post-transplant infection and rejection. PMID:26981261

  17. Intrapulmonary vascular remodeling: MSCT-based evaluation in COPD and alpha-1 antitrypsin deficient subjects

    NASA Astrophysics Data System (ADS)

    Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves

    2016-03-01

    Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.

  18. AVE 0991, a non-peptide mimic of angiotensin-(1–7) effects, attenuates pulmonary remodelling in a model of chronic asthma

    PubMed Central

    Rodrigues-Machado, M G; Magalhães, G S; Cardoso, J A; Kangussu, L M; Murari, A; Caliari, M V; Oliveira, M L; Cara, D C; Noviello, M L M; Marques, F D; Pereira, J M; Lautner, R Q; Santos, R A S; Campagnole-Santos, M J

    2013-01-01

    BACKGROUND AND PURPOSE AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1–7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation. EXPERIMENTAL APPROACH We used BALB/c mice (6–8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse−1, i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg−1·per day, s.c.) or saline (100 μL·kg−1·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates. KEY RESULTS Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs. CONCLUSIONS AND IMPLICATIONS AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1–7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma. PMID:23889691

  19. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  20. Treatment with Pyranopyran-1, 8-Dione Attenuates Airway Responses in Cockroach Allergen Sensitized Asthma in Mice

    PubMed Central

    Jung, Kyung-Hwa; Song, Joohyun; Kim, You Ah; Cho, Hi Jae; Min, Byung-Il; Bae, Hyunsu

    2014-01-01

    Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling. PMID:24489937

  1. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    PubMed

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  2. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  3. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  4. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma.

  5. A morphologic study of the airway structure abnormalities in patients with asthma by high-resolution computed tomography

    PubMed Central

    Wang, Dan; Luo, Jian; Du, Wen; Zhang, Lan-Lan; He, Li-Xiu

    2016-01-01

    Background Airway structure changes, termed as airway remodeling, are common in asthma patients due to chronic inflammation, which can be assessed by high-resolution computed tomography (HRCT). Considering the controversial conclusions in the correlation of morphologic abnormalities with clinical feature and outcome, we aimed to further specify and evaluate the structural abnormalities of Chinese asthmatics by HRCT. Methods From August 2012 to February 2015, outpatients with asthma were recruited consecutively in the Asthma Center of West China Hospital, Sichuan University. Standard HRCT and pulmonary function test (PFT) were performed to collect information of bronchial wall thickening, bronchial dilatation, mucus impaction, emphysema, mosaic perfusion, atelectasis, and spirometric parameters. We reported the incidence of each structural abnormality in HRCT and compared it among different asthmatic severities. Results A total of 123 asthmatics were enrolled, among which 84 (68.3%) were female and 39 (31.7%) were male. At least one structural abnormality was detected by HRCT in 85.4% asthmatics, and the incidence of bronchial wall thickening, bronchial dilatation, mucus impaction, emphysema, mosaic perfusion, and atelectasis was 57.7%, 51.2%, 22%, 24.4%, 5.7% and 1.6%, respectively. The incidences of bronchial wall thickening, bronchial dilation and emphysema were significantly increased by asthma severity (P<0.05), while incidences of mucus impaction (26/27, 96.30%), mosaic perfusion (6/7, 85.71%) and atelectasis (2/2, 100%) were mainly found in severe asthma. We found a longer asthma history (28.13±18.55 years, P<0.001, P=0.003), older age (51.30±10.70 years, P=0.022, P=0.006) and lower predicted percentage of forced expiratory volume in one second (FEV1%) (41.97±15.19, P<0.001, P<0.001) and ratio of forced expiratory volume to forced vital capacity (FEV1/FVC) (48.01±9.55, P<0.001, P<0.001) in patients with severe bronchial dilation compared with those in

  6. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  7. Modelling resistance and reactance with heterogeneous airway narrowing in mild to severe asthma.

    PubMed

    Bhatawadekar, Swati A; Leary, Del; Maksym, Geoffrey N

    2015-03-01

    Ventilation heterogeneity is an important marker of small airway dysfunction in asthma. The frequency dependence of respiratory system resistance (Rrs) from oscillometry is used as a measure of this heterogeneity. However, this has not been quantitatively assessed or compared with other outcomes from oscillometry, including respiratory system reactance (Xrs) and the associated elastance (Ers). Here, we used a multibranch model of the human lung, including an upper airway shunt, to match previously reported respiratory mechanics in mild to severe asthma. We imposed heterogeneity by narrowing a proportion of the peripheral airways to account for patient Ers at 5 Hz, and then narrowed central airways to account for the remaining Rrs at 18 Hz. The model required >75% of the small airways to be occluded to reproduce severe asthma. While the model produced frequency dependence in Rrs, it was upward-shifted below 5 Hz compared with in-vivo results, indicating that other factors, including more distributed airway narrowing or central airway wall compliance, are required. However, Ers quantitatively reflected the imposed heterogeneity better than the frequency dependence of Rrs, independent of the frequency range for the estimation, and thus was a more robust measure of small-airway function. Thus, Ers appears to have greater potential as a clinical measure of early small-airway disease in asthma.

  8. COMPLIANCE MEASUREMENTS OF THE UPPER AIRWAY IN PEDIATRIC DOWN SYNDROME SLEEP APNEA PATIENTS

    PubMed Central

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J.; Shott, Sally R.; Amin, Raouf S.; Gutmark, Ephraim J.

    2015-01-01

    Compliance of soft tissue and muscle supporting the upper airway are two of several factors contributing to pharyngeal airway collapse. We present a novel, minimally invasive method of estimating regional variations in pharyngeal elasticity. Magnetic resonance images for pediatric sleep apnea patients with Down syndrome (9.5 ± 4.3 years (mean age ± standard deviation)) were analyzed to segment airways corresponding to baseline (no mask pressure) and two positive pressures. A three dimensional map was created to evaluate axial and circumferential variation in radial displacements of the airway, dilated by the positive pressures. The displacements were then normalized with respect to the appropriate transmural pressure and radius of an equivalent circle to obtain a measure of airway compliance. The resulting elasticity maps indicated the least and most compliant regions of the pharynx. Airway stiffness of the most compliant region (403 ± 204 (mean ± standard deviation) Pa) decreased with severity of OSA. The non-linear response of the airway wall to CPAP was patient specific and varied between anatomical locations. We identified two distinct elasticity phenotypes. Patient phenotyping based on airway elasticity can potentially assist clinical practitioners in decision making on the treatments needed to improve airway patency. PMID:26215306

  9. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  10. Automatic measurement of oblique-oriented airway dimension at volumetric CT: effect of imaging parameters and obliquity of airway with FWHM method using a physical phantom

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Song, Koun Sik; Kang, Suk-Ho

    2007-03-01

    This study is conducted to assess the influence of various CT imaging parameters and airway obliquity, such as reconstruction kernel, field of view, slice thickness, and obliquity of airway on automatic measurement of airway wall thickness with FWHM method and physical phantom. The phantom, consists of 11 poly-acryl tubes with various inner lumen diameters and thickness, was used in this study. The measured density of the wall was 150HU. The airspace outside of tube was filled with poly-urethane foam, whose density was -900HU, which is similar density of emphysema region. CT images, obtained with MDCT (Sensation 16, Siemens), was reconstructed with various reconstruction kernel (B10f, B30f, B50f, B70f and B80f), different field of views (180mm, 270mm, 360mm), and different thicknesses (0.75, 1, and 2 mm). The phantom was scanned at various oblique angles (0, 30, 45, 60 degree). Using in-house airway measurement software, central axis of oblique airway was determined by 3D thinning algorithm and CT image perpendicular to the axis was reconstructed. The luminal area, outer boundary, and wall thickness was measured by FWHM method at each image. Actual dimension of each tube and measured CT values on each CT data set was compared. Sharper reconstruction kernel, thicker image thickness, and larger oblique angle of airway axis results in decrease of measured wall thickness. There was internal interaction between imaging parameters and obliquity of airway on the accuracy of measurement. There was a threshold point of 1-mm wall thickness, below which the measurement failed to represent the change of real thickness. Even using the smaller FOV, the accuracy was not improved. Usage of standard kernel (B50f) and 0.75mm thickness results in the most accurate measurement results, which is independent of obliquity of airway. (Mean error: 0 Degree 0.067+/-0.05mm, 30 Degree 0.076+/-0.09, 45 Degree 0.074+/-0.09, 60 Degree 0.091+/-0.09). In this imaging parameters, there was no

  11. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

  12. Patterns and Implications of Intracranial Arterial Remodeling in Stroke Patients

    PubMed Central

    Qiao, Ye; Anwar, Zeeshan; Intrapiromkul, Jarunee; liu, Li; Zeiler, Steven R.; Leigh, Richard; Zhang, Yiyi; Guallar, Eliseo; Wasserman, Bruce A.

    2015-01-01

    Background and Purpose Preliminary studies suggest ntracranial arteries are capable of accommodating plaque formation by remodeling. We sought to study the ability and extent of intracranial arteries to remodel using 3D high-resolution black blood MRI (BBMRI) and investigate its relation to ischemic events. Methods 42 patients with cerebrovascular ischemic events underwent 3D time-of-flight MRA and contrast-enhanced BBMRI examinations at 3T for intracranial atherosclerotic disease. Each plaque was classified by location (e.g., posterior vs. anterior circulation) and its likelihood to have caused a stroke identified on MRI (culprit, indeterminate, or non-culprit). Lumen area (LA), outer wall area (OWA), and wall area (WA) were measured at the lesion and reference sites. Plaque burden was calculated as WA divided by OWA. The arterial remodeling ratio (RR) was calculated as OWA at the lesion site divided by OWA at the reference site, after adjusting for vessel tapering. Arterial remodeling was categorized as positive if RR >1.05, intermediate if 0.95≤RR ≤ 1.05, and negative if RR <0.95. Results 137 plaques were identified in 42 patients (37% [50] posterior, 63% [87] anterior). Compared with anterior circulation plaques, posterior circulation plaques had a larger plaque burden (77.7±15.7 vs. 69.0±14.0, p=0.008), higher RR (1.14±0.38 vs. 0.95±0.32, p=0.002), and more often exhibited positive remodeling (54.0% vs.29.9%, p=0.011). Positive remodeling was marginally associated with downstream stroke presence when adjusted for plaque burden (OR 1.34, 95% CI: 0.99–1.81). Conclusions Intracranial arteries remodel in response to plaque formation, and posterior circulation arteries have a greater capacity for positive remodeling and, consequently, may more likely elude angiographic detection. Arterial remodeling may provide insight into stroke risk. PMID:26742795

  13. Flow-induced oscillation of collapsed tubes and airway structures.

    PubMed

    Bertram, Christopher D

    2008-11-30

    The self-excited oscillation of airway structures and flexible tubes in response to flow is reviewed. The structures range from tiny airways deep in the lung causing wheezing at the end of a forced expiration, to the pursed lips of a brass musical instrument player. Other airway structures that vibrate include the vocal cords (and their avian equivalent, the syrinx) and the soft palate of a snorer. These biological cases are compared with experiments on and theories for the self-excited oscillation of flexible tubes conveying a flow on the laboratory bench, with particular reference to those observations dealing with the situation where the inertia of the tube wall is dominant. In each case an attempt is made to summarise the current state of understanding. Finally, some outstanding challenges are identified.

  14. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice.

    PubMed

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-02-14

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.

  15. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    PubMed Central

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  16. Angiogenesis is induced by airway smooth muscle strain.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  17. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  18. Physiological Mechanisms of Airway Hyperresponsiveness in Obese Asthma.

    PubMed

    Bates, Jason H T

    2016-05-01

    Obesity affects the incidence and severity of asthma in at least two major phenotypes: an early-onset allergic (EOA) form that is complicated by obesity and a late-onset nonallergic (LONA) form that occurs only in the setting of obesity. Both groups exhibit airway hyperresponsiveness to methacholine challenge but exhibit differential effects of weight loss. Measurements of lung function in patients with LONA obese asthma suggest that this group of individuals may simply be those unlucky enough to have airways that are more compliant than average, and that this leads to airway hyperresponsiveness at the reduced lung volumes caused by excess adipose tissue around the chest wall. In contrast, the frequent exacerbations in those with EOA obese asthma can potentially be explained by episodic inflammatory thickening of the airway wall synergizing with obesity-induced reductions in lung volume. These testable hypotheses are based on the strong likelihood that LONA and EOA obese asthma are distinct diseases. Both, however, may benefit from targeted therapeutics that impose elevations in lung volume.

  19. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID

  20. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  1. Global airway disease beyond allergy.

    PubMed

    Hellings, Peter W; Prokopakis, Emmanuel P

    2010-03-01

    Besides the anatomic continuity of the upper and lower airways, inflammation in one part of the airway influences the homeostasis of the other. The mechanisms underlying this interaction have been studied primarily in allergic disease, showing systemic immune activation, induction of inflammation at a distance, and a negative impact of nasal inflammation on bronchial homeostasis. In addition to allergy, other inflammatory conditions of the upper airways are associated with lower airway disease. Rhinosinusitis is frequently associated with asthma and chronic obstructive pulmonary disease. The impairment of purification, humidification, and warming up of the inspired air by the nose in rhinosinusitis may be responsible in part for bronchial pathology. The resolution of sinonasal inflammation via medical and/or surgical treatment is responsible for the beneficial effect of the treatment on bronchial disease. This article provides a comprehensive overview of the current knowledge of upper and lower airway communication beyond allergic disease.

  2. Recurrent airway obstruction: a review.

    PubMed

    Pirie, R S

    2014-05-01

    Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.

  3. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  4. Tissue remodeling investigation in varicose veins

    PubMed Central

    Ghaderian, Sayyed Mohammad Hossein; Khodaii, Zohreh

    2012-01-01

    Although the etiology of varicose veins remains unknown, recent studies have focused on endothelial cell integrity and function because the endothelium regulates vessel tone and synthesizes many pro- and anti-inflammatory factors. The aim of this study was to investigate the evidence involving the endothelium in the development of varicose vein disease. In addition, tissue remodeling was investigated in varicose veins to determine the expression of different types of collagen. Tissue specimens of superficial varicose veins and control saphenous vein were used for immunohistochemical and transmission electron microscope (TEM). α-smooth muscle actin, and collagen I, III, IV antibodies were applied for immunohistochemical investigation. Findings of this study showed alterations of the intima, such as focal intimal discontinuity and denudation of endothelium; and the media, such as irregular arrangements of smooth muscle cells and collagen fibres in varicose veins. Our findings showed some changes in terms of distribution of types I, III and IV collagen in the intima and media of varicose vein walls compared with controls. These alterations to the media suggest that the pathological abnormality in varicose veins may be due to the loss of muscle tone as a result of the breakup of its regular structure by the collagen fibres. These findings only described some changes in terms of distribution of these types of collagen in the intima and media of varicose vein walls which may result in venous wall dysfunction in varicosis. PMID:24551759

  5. [Physiopathology of left ventricular remodeling after myocardial infarction].

    PubMed

    Bassand, J P; Anguenot, T

    1991-12-01

    The geometry of both the infarcted and non-infarcted zone of the left ventricle changes after myocardial infarction. Two mechanisms are involved: expansion of the infarcted zone and secondary dilatation of the non-infarcted zone. The necrosed area undergoes an inflammatory reaction followed by fibrosis which end up as a sca within a period of a few days to a few weeks. During this period if fibrous scarring the infarcted, thinned myocardium undergoes progressive expansion which starts in the first hours of the myocardial infarction. The loss of left ventricular systolic function related to the infarct and volumic overload created by expansion of the infarct influence the secondary development of dilatation of the non-infarcted zones. This dilatation results in restoration of left ventricular stroke volume but at the price of increased wall stress, which itself induces compensatory wall hypertrophy. These phenomena are more pronounced when the initial infarction is extensive and if they are sustained, they result in definitive myocardial failure. Several factors influence remodeling: the size of the infarct, arterial patency, wall stress and the quality of the scarring process itself. Therapeutic interventions of each of these factors can influence the remodeling. Limitation of infarct size by thrombolytic therapy, arterial revascularisation, even when performed late, seem capable of limiting expansion of the necrosed zone. Pharmacodynamic intervention of left ventricular afterload also affects ventricular remodeling. Nitrate derivatives, vasodilator therapy in general and converting enzyme inhibitors have been shown to be effective.

  6. Building and Remodeling Synapses

    PubMed Central

    Benson, Deanna L.; Huntley, George W.

    2011-01-01

    Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity. PMID:20882551

  7. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  8. The Role of the T lymphocytes and Remodeling in Asthma.

    PubMed

    Amin, Kawa

    2016-08-01

    In allergic asthma (AA), inflammatory changes in the airway epithelium may contribute to the characteristic pathophysiology and symptoms. The presence of T lymphocytes, eosinophils, mast cells and macrophages, the presence of cytokines, and also structural changes in the airway mucous membrane are characteristic for asthma. Bronchial biopsy specimens were obtained from 33 AA, 25 nonallergic asthma (NAA), and 20 healthy controls (HC). This study used immunohistochemical techniques for identified monoclonal antibodies (CD3, CD4, CD8, CD25, ECP, MBP, tenascin, and laminin) in the bronchi. The highest number of eosinophils and T lymphocyte cells in bronchial biopsies was found in AA, and NAA. The number of T lymphocytes in AA was significantly higher than in NAA and HC. The degree of epithelial damage was higher in the AA group compared to the other groups. The tenascin- and laminin-positive layers in AA were thicker than other groups. In AA, a significant negative correlation was found between epithelial integrity and the count for eosinophils or T lymphocytes. T lymphocytes and eosinophils in AA were found in the area of epithelial and lamina propria damage. This article suggests that T lymphocytes may not only contribute to the chronic airway inflammatory response, airway remodeling, and symptomatology but may also have a central role at the initiation of the allergic immune response. Th-targeted therapy would be of considerable interest in controlling AA. Having more knowledge on the roles of T lymphocytes in the pathogenesis of allergic inflammation highlights the contributions of these cells in regulating and may lead to a new therapeutic target-AA.

  9. Estimating the diameter of airways susceptible for collapse using crackle sound.

    PubMed

    Majumdar, Arnab; Hantos, Zoltán; Tolnai, József; Parameswaran, Harikrishnan; Tepper, Robert; Suki, Béla

    2009-11-01

    Airways that collapse during deflation generate a crackle sound when they reopen during subsequent reinflation. Since each crackle is associated with the reopening of a collapsed airway, the likelihood of an airway to be a crackle source is identical to its vulnerability to collapse. To investigate this vulnerability of airways to collapse, crackles were recorded during the first inflation of six excised rabbit lungs from the collapsed state, and subsequent reinflations from 5, 2, 1, and 0 cmH(2)O end-expiratory pressure levels. We derived a relationship between the amplitude of a crackle sound at the trachea and the generation number (n) of the source airway where the crackle was generated. Using an asymmetrical tree model of the rabbit airways with elastic walls, airway vulnerability to collapse was also determined in terms of airway diameter D. During the reinflation from end-expiratory pressure = 0 cmH(2)O, the most vulnerable airways were estimated to be centered at n = 12 with a peak. Vulnerability in terms of D ranged between 0.1 and 1.3 mm, with a peak at 0.3 mm. During the inflation from the collapsed state, however, vulnerability was much less localized to a particular n or D, with maximum values of n = 8 and D = 0.75 mm. Numerical simulations using a tree model that incorporates airway opening and closing support these conclusions. Thus our results indicate that there are airways of a given range of diameters that can become unstable during deflation and vulnerable to collapse and subsequent injury.

  10. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    PubMed

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  11. Emphysema- and airway-dominant COPD phenotypes defined by standardised quantitative computed tomography.

    PubMed

    Subramanian, Deepak R; Gupta, Sumit; Burggraf, Dorothe; Vom Silberberg, Suzan J; Heimbeck, Irene; Heiss-Neumann, Marion S; Haeussinger, Karl; Newby, Chris; Hargadon, Beverley; Raj, Vimal; Singh, Dave; Kolsum, Umme; Hofer, Thomas P; Al-Shair, Khaled; Luetzen, Niklas; Prasse, Antje; Müller-Quernheim, Joachim; Benea, Giorgio; Leprotti, Stefano; Boschetto, Piera; Gorecka, Dorota; Nowinski, Adam; Oniszh, Karina; Castell, Wolfgang Zu; Hagen, Michael; Barta, Imre; Döme, Balázs; Strausz, Janos; Greulich, Timm; Vogelmeier, Claus; Koczulla, Andreas R; Gut, Ivo; Hohlfeld, Jens; Welte, Tobias; Lavae-Mokhtari, Mahyar; Ziegler-Heitbrock, Loems; Brightling, Christopher; Parr, David G

    2016-07-01

    EvA (Emphysema versus Airway disease) is a multicentre project to study mechanisms and identify biomarkers of emphysema and airway disease in chronic obstructive pulmonary disease (COPD). The objective of this study was to delineate objectively imaging-based emphysema-dominant and airway disease-dominant phenotypes using quantitative computed tomography (QCT) indices, standardised with a novel phantom-based approach.441 subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1-3) were assessed in terms of clinical and physiological measurements, laboratory testing and standardised QCT indices of emphysema and airway wall geometry.QCT indices were influenced by scanner non-conformity, but standardisation significantly reduced variability (p<0.001) and led to more robust phenotypes. Four imaging-derived phenotypes were identified, reflecting "emphysema-dominant", "airway disease-dominant", "mixed" disease and "mild" disease. The emphysema-dominant group had significantly higher lung volumes, lower gas transfer coefficient, lower oxygen (PO2 ) and carbon dioxide (PCO2 ) tensions, higher haemoglobin and higher blood leukocyte numbers than the airway disease-dominant group.The utility of QCT for phenotyping in the setting of an international multicentre study is improved by standardisation. QCT indices of emphysema and airway disease can delineate within a population of patients with COPD, phenotypic groups that have typical clinical features known to be associated with emphysema-dominant and airway-dominant disease.

  12. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD.

  13. Airway complications after lung transplantation.

    PubMed

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  14. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  15. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  16. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  17. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  18. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  19. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  20. The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD

    PubMed Central

    2016-01-01

    Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation. PMID:27656649

  1. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  2. Two layer fluid stress analysis during airway closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James

    2009-11-01

    The airways are lined with a film consisting of two immiscible liquids, a serous layer and a more viscous mucus layer. Due to a surface tension driven instability, a liquid plug can form that obstructs the passage of air along the airways provided the ratio of the film thickness to the tube radius is greater than a critical value ˜0.12. In this study, we assume that the liquid layers are Newtonian, the surface tension is constant at the interfaces and the air-core phase is passive. We solve the Navier-Stokes and continuity equations subject to interfacial stress conditions and kinematic boundary conditions numerically using a finite volume approach in conjunction with a sharp interface method for the interfaces. Surface tension, viscosity and film thickness ratios can be altered by disease, and their influence on the closure instability is investigated. Results show that the shear and normal stresses along the airway walls can be strong enough to injure airway epithelial cells. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  3. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    PubMed

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected.

  4. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy.

  5. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  6. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  7. Modeling water vapor and heat transfer in the normal and the intubated airways.

    PubMed

    Tawhai, Merryn H; Hunter, Peter J

    2004-04-01

    Intubation of the artificially ventilated patient with an endotracheal tube bypasses the usual conditioning regions of the nose and mouth. In this situation any deficit in heat or moisture in the air is compensated for by evaporation and thermal transfer from the pulmonary airway walls. To study the dynamics of heat and water transport in the intubated airway, a coupled system of nonlinear equations is solved in airway models with symmetric geometry and anatomically based geometry. Radial distribution of heat, water vapor, and velocity in the airway are described by power-law equations. Solution of the time-dependent system of equations yields dynamic airstream and mucosal temperatures and air humidity. Comparison of model results with two independent experimental studies in the normal and intubated airway shows a close correlation over a wide range of minute ventilation. Using the anatomically based model a range of spatially distributed temperature paths is demonstrated, which highlights the model's ability to predict thermal behavior in airway regions currently inaccessible to measurement. Accurate representation of conducting airway geometry is shown to be necessary for simulating mouth-breathing at rates between 15 and 100 l x min(-1), but symmetric geometry is adequate for the low minute ventilation and warm inspired air conditions that are generally supplied to the intubated patient.

  8. Relationship of flow and cross-sectional area to frictional stress in airway models of asthma.

    PubMed

    Chowdhary, R; Singh, V; Tattersfield, A E; Sharma, S D; Kar, S; Gupta, A B

    1999-08-01

    Frictional stress from air flowing through narrowed airways may damage the airway mucosa and thereby increase airway inflammation and airway obstruction. To investigate the levels of frictional stress that might occur in the airway, we measured the frictional stress in three physical airway models (model 1: normal state; models 2 and 3: narrowed states with cross-sectional area half and one-fourth of model 1, respectively) at tracheal expiratory flow rates of 1, 2, 3, 4, 5, 6, 7, and 8 L/sec. Frictional stress measured at stations in the trachea (A), two each in the left (B and C) and right (D and E) major bronchi, and one in the right secondary bronchus (F) indicated that at higher flow rates, high values of the frictional stress seen in model 3 (highest value being 139.2 N/m2 at 8 L/sec at station) could well damage the airway wall, especially during episodes of cough, and particularly when the mucosa is inflamed and friable as it is in asthmatic patients. Conversely, control of cough may have anti-inflammatory benefits in asthmatic patients.

  9. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  10. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    PubMed

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit

    2016-03-01

    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.

  11. The non-neuronal cholinergic system as novel drug target in the airways.

    PubMed

    Pieper, Michael Paul

    2012-11-27

    The parasympathetic nervous system is a key regulator of the human organism involved in the pathophysiology of various disorders through cholinergic mechanisms. In the lungs, acetylcholine (ACh) released by vagal nerve endings stimulates muscarinic receptors thereby increasing airway smooth muscle tone. Contraction of airway smooth muscle cells leads to increased respiratory resistance and dyspnea. An additional branch of the cholinergic system is the non-neuronal cholinergic system expressed in nearly all cell types present in the airways. Activation of this system may contribute to an increased cholinergic tone in the lungs, inducing pathophysiological processes like inflammation, remodeling, mucus hypersecretion and chronic cough. Selective muscarinic receptor antagonists specifically inhibit acetylcholine at the receptor inducing bronchodilation in patients with obstructive airway diseases. This paper reviews preclinical pharmacological research activities on anticholinergics including experimental models of asthma and chronic obstructive pulmonary disease, COPD. It discloses various options to follow up the non-neuronal cholinergic system as a novel drug target for the treatment of key aspects of obstructive airway diseases, in particular those of a chronic nature.

  12. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  13. Airway management in emergency situations.

    PubMed

    Dörges, Volker

    2005-12-01

    Securing and monitoring the airway are among the key requirements of appropriate therapy in emergency patients. Failures to secure the airways can drastically increase morbidity and mortality of patients within a very short time. Therefore, the entire range of measures needed to secure the airway in an emergency, without intermediate ventilation and oxygenation, is limited to 30-40 seconds. Endotracheal intubation is often called the 'gold standard' for airway management in an emergency, but multiple failed intubation attempts do not result in maintaining oxygenation; instead, they endanger the patient by prolonging hypoxia and causing additional trauma to the upper airways. Thus, knowledge and availability of alternative procedures are also essential in every emergency setting. Given the great variety of techniques available, it is important to establish a well-planned, methodical protocol within the framework of an algorithm. This not only facilitates the preparation of equipment and the training of personnel, it also ensures efficient decision-making under time pressure. Most anaesthesia-related deaths are due to hypoxaemia when difficulty in securing the airway is encountered, especially in obstetrics during induction of anaesthesia for caesarean delivery. The most commonly occurring adverse respiratory events are failure to intubate, failure to recognize oesophageal intubation, and failure to ventilate. Thus, it is essential that every anaesthesiologist working on the labour and delivery ward is comfortable with the algorithm for the management of failed intubation. The algorithm for emergency airway management describing the sequence of various procedures has to be adapted to internal standards and to techniques that are available.

  14. Ventricular remodeling in heart failure: the role of myocardial collagen.

    PubMed

    Janicki, J S; Brower, G L; Henegar, J R; Wang, L

    1995-01-01

    Collagen which is present in the myocardium in relatively small amounts is the most abundant structural protein of the connective tissue network. Its structural organization consists of a complex weave of collagen fibers that surrounds and interconnects myocytes, groups of myocytes, muscle fibers and muscle bundles. The conformation of interstitial fibrillar collagen makes it highly resistant to degradation by all proteinases other than specific collagenases. In hearts with myocardial damage secondary to myocardial infarction, chronic ischemia, inflammation, or cardiomyopathy, a complex sequence of compensatory events occur that eventually result in an adverse left ventricular remodeling. This continual state of remodeling is characterized by persistent collagenase activity, fibrillar collagen degradation, and progressive myocyte loss. The net effect is a shift in the balance between collagen synthesis and degradation which leads to an inadequate fibrillar collagen matrix, progressive ventricular dilatation and sphericalization with wall thinning and eventual congestive heart failure.

  15. Notch signal integration in the vasculature during remodeling

    PubMed Central

    Rostama, Bahman; Peterson, Sarah M.; Vary, Calvin P. H.; Liaw, Lucy

    2014-01-01

    Notch signaling plays many important roles in homeostasis and remodeling in the vessel wall, and serves a critical role in the communication between endothelial cells and smooth muscle cells. Within blood vessels, Notch signaling integrates with multiple pathways by mechanisms including direct protein-protein interaction, cooperative or synergistic regulation of signal cascades, and co-regulation of transcriptional targets. After establishment of the mature blood vessel, the spectrum and intensity of Notch signaling changes during phases of active remodeling or disease progression. These changes can be mediated by regulation via microRNAs and protein stability or signaling, and corresponding changes in complementary signaling pathways. Notch also affects endothelial cells on a systems level by regulating key metabolic components. This review will outline the most recent findings of Notch activity in blood vessels, with a focus on how Notch signals integrate with other molecular signaling pathways controlling vascular phenotype. PMID:25464152

  16. Extracellular Matrix Remodeling During the Progression of Volume Overload-Induced Heart Failure

    PubMed Central

    Hutchinson, Kirk R.; Stewart, James A.; Lucchesi, Pamela A.

    2009-01-01

    Volume overload-induced heart failure results in progressive left ventricular remodeling characterized by chamber dilation, eccentric cardiac myocyte hypertrophy and changes in extracellular matrix (ECM) remodeling changes. The ECM matrix scaffold is an important determinant of the structural integrity of the myocardium and actively participates in force transmission across the LV wall. In response to this hemodynamic overload, the ECM undergoes a distinct pattern of remodeling that differs from pressure overload. Once thought to be a static entity, the ECM is now regarded to be a highly adaptive structure that is dynamically regulated by mechanical stress, neurohormonal activation, inflammation and oxidative stress, that result in alterations in collagen and other matrix components and a net change in matrix metalloproteinase (MMP) expression and activation. These changes dictate overall ECM turnover during volume overload hear failure progression. This review will discuss the cellular and molecular mechanisms that dictate the temporal patterns of ECM remodeling during heart disease progression. PMID:19524591

  17. Identification of genes differentially regulated by vitamin D deficiency that alter lung pathophysiology and inflammation in allergic airways disease.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Troy, Niamh M; Gorman, Shelley; Hart, Prue H; Kicic, Anthony; Zosky, Graeme R

    2016-09-01

    Vitamin D deficiency is associated with asthma risk. Vitamin D deficiency may enhance the inflammatory response, and we have previously shown that airway remodeling and airway hyperresponsiveness is increased in vitamin D-deficient mice. In this study, we hypothesize that vitamin D deficiency would exacerbate house dust mite (HDM)-induced inflammation and alterations in lung structure and function. A BALB/c mouse model of vitamin D deficiency was established by dietary manipulation. Responsiveness to methacholine, airway smooth muscle (ASM) mass, mucus cell metaplasia, lung and airway inflammation, and cytokines in bronchoalveolar lavage (BAL) fluid were assessed. Gene expression patterns in mouse lung samples were profiled by RNA-Seq. HDM exposure increased inflammation and inflammatory cytokines in BAL, baseline airway resistance, tissue elastance, and ASM mass. Vitamin D deficiency enhanced the HDM-induced influx of lymphocytes into BAL, ameliorated the HDM-induced increase in ASM mass, and protected against the HDM-induced increase in baseline airway resistance. RNA-Seq identified nine genes that were differentially regulated by vitamin D deficiency in the lungs of HDM-treated mice. Immunohistochemical staining confirmed that protein expression of midline 1 (MID1) and adrenomedullin was differentially regulated such that they promoted inflammation, while hypoxia-inducible lipid droplet-associated, which is associated with ASM remodeling, was downregulated. Protein expression studies in human bronchial epithelial cells also showed that addition of vitamin D decreased MID1 expression. Differential regulation of these genes by vitamin D deficiency could determine lung inflammation and pathophysiology and suggest that the effect of vitamin D deficiency on HDM-induced allergic airways disease is complex.

  18. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  19. Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke

    PubMed Central

    Oldenburger, Anouk; Timens, Wim; Bos, Sophie; Smit, Marieke; Smrcka, Alan V.; Laurent, Anne-Coline; Cao, Junjun; Hylkema, Machteld; Meurs, Herman; Maarsingh, Harm; Lezoualc'h, Frank; Schmidt, Martina

    2014-01-01

    Cigarette smoke (CS) induces inflammatory responses characterized by increase of immune cells and cytokine release. Remodeling processes, such as mucus hypersecretion and extracellular matrix protein production, are also directly or indirectly induced by CS. Recently, we showed that activation of the exchange protein directly activated by cAMP (Epac) attenuates CS extract-induced interleukin (IL)-8 release from cultured airway smooth muscle cells. Using an acute, short-term model of CS exposure, we now studied the role of Epac1, Epac2, and the Epac effector phospholipase-Cε (PLCε) in airway inflammation and remodeling in vivo. Compared to wild-type mice exposed to CS, the number of total inflammatory cells, macrophages, and neutrophils and total IL-6 release was lower in Epac2−/− mice, which was also the case for neutrophils and IL-6 in PLCε−/− mice. Taken together, Epac2, acting partly via PLCε, but not Epac1, enhances CS-induced airway inflammation in vivo. In total lung homogenates of Epac1−/− mice, MUC5AC and matrix remodeling parameters (transforming growth factor-β1, collagen I, and fibronectin) were increased at baseline. Our findings suggest that Epac1 primarily is capable of inhibiting remodeling processes, whereas Epac2 primarily increases inflammatory processes in vivo.—Oldenburger, A., Timens, W., Bos, S., Smit, M., Smrcka, A. V., Laurent, A.-C., Cao, J., Hylkema, M., Meurs, H., Maarsingh, H., Lezoualc'h, F., and Schmidt, M. Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke. PMID:25103224

  20. Peripheral Airway Smooth Muscle, but Not the Trachealis, Is Hypercontractile in an Equine Model of Asthma.

    PubMed

    Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie

    2016-05-01

    Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.

  1. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  2. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  3. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways.

  4. The role of stem cells in vein graft remodelling.

    PubMed

    Xu, Q

    2007-11-01

    The vessel wall is a dynamic tissue that undergoes positive remodelling in response to altered mechanical stress. A typical example is vein graft remodelling, because veins do not develop arteriosclerosis until a vein segment is grafted on to arteries. In this process, it was observed that vascular endothelial and smooth muscle cells of vein grafts die due to suddenly elevated blood pressure. This cell death is followed by endothelial regeneration. Central to this theme is the essential role played by EPCs (endothelial progenitor cells) in regenerating the lost endothelium. The mechanisms by which EPCs attach to the vessel wall and differentiate into mature endothelial cells involve increased chemokine production and laminar shear flow stimulation on the vessel wall. It seems that neo-endothelial cells derived from EPCs lack mature cell functions and express high levels of adhesion molecules resulting in LDL (low-density lipoprotein) penetration and mononuclear cell infiltration into the sub-endothelial space. Among infiltrated mononuclear cells, there are smooth muscle progenitors that proliferate and differentiate into smooth muscle cells. Meanwhile, stem cells present in the media and adventitia may also migrate into arteriosclerotic lesions via the vasa vasorum that are abundant in the diseased vessels. However, the molecular events leading to the homing, differentiation and maturation of stem/progenitor cells still needs elucidation. The present review attempts to update the progress in stem cell research related to the pathogenesis of vein graft arteriosclerosis or remodelling, focusing on the mechanisms by which stem/progenitor cells participate in the development of lesions, and to discuss the controversial issues and the future perspectives surrounding this research area.

  5. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  6. Airway management using a supraglottic airway device without endotracheal intubation for positive ventilation of anaesthetized rats.

    PubMed

    Cheong, S H; Lee, J H; Kim, M H; Cho, K R; Lim, S H; Lee, K M; Park, M Y; Yang, Y I; Kim, D K; Choi, C S

    2013-04-01

    Endotracheal intubation is often necessary for positive pressure ventilation of rats during open thoracic surgery. Since endotracheal intubation in rats is technically difficult and is associated with numerous complications, many techniques using various devices have been described in the scientific literature. In this study, we compared the effectiveness of airway management of a home-made supraglottic airway device (SAD), which is cheap to fabricate and easy to place with that of an endotracheal intubation tube in enflurane-anaesthetized rats. Twenty male Sprague-Dawley rats (200-300 g) were randomly assigned to two equal groups for positive pressure mechanical ventilation using either the SAD or an endotracheal intubation tube. The carotid artery of each rat was cannulated for continuous blood pressure measurements and obtaining blood samples for determination of oxygen tension, carbon dioxide tension, and blood acidity before, during and after SAD placement or endotracheal intubation. Proper placement of the SAD was confirmed by observing chest wall movements that coincided with the operation of the mechanical ventilator. No complications and adverse events were encountered in the rats in which the SAD was placed, during SAD placement and immediate removal, during their mechanical ventilation through the SAD, and one week after SAD removal. From the results of blood gas analyses, we conclude that anaesthetized rats can be successfully ventilated using an SAD for open thoracic surgery.

  7. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques.

  8. Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness?

    PubMed Central

    Kumar, Rakesh K.; Foster, Paul S.

    2012-01-01

    Whether mouse models of chronic asthma can be used to investigate the relationship between airway inflammation/remodeling and airway hyper-responsiveness (AHR) is a vexed question. It raises issues about the extent to which such models replicate key features of the human disease. Here, we review some of the characteristic pathological features of human asthma and their relationship to AHR and examine some limitations of mouse models that are commonly used to investigate these relationships. We compare these conventional models with our mouse model of chronic asthma involving long-term low-level inhalational challenge and review studies of the relationship between inflammation/remodeling and AHR in this model and its derivatives, including models of an acute exacerbation of chronic asthma and of the induction phase of childhood asthma. We conclude that while extrapolating from studies in mouse models to AHR in humans requires cautious interpretation, such experimental work can provide significant insights into the pathogenesis of airway responsiveness and its molecular and cellular regulation. PMID:23060800

  9. Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines.

    PubMed

    Esnault, Stephane; Kelly, Elizabeth A; Johansson, Mats W; Liu, Lin Ying; Han, Shih-Tsung; Akhtar, Moneeb; Sandbo, Nathan; Mosher, Deane F; Denlinger, Loren C; Mathur, Sameer K; Malter, James S; Jarjour, Nizar N

    2014-01-01

    Semaphorin 7A (sema7a) plays a major role in TGF-β1-induced lung fibrosis. Based on the accumulating evidence that eosinophils contribute to fibrosis/remodeling in the airway, we hypothesized that airway eosinophils may be a significant source of sema7a. In vivo, sema7a was expressed on the surface of circulating eosinophils and upregulated on bronchoalveolar lavage eosinophils obtained after segmental bronchoprovocation with allergen. Based on mRNA levels in unfractionated and isolated bronchoalveolar cells, eosinophils are the predominant source of sema7a. In vitro, among the members of the IL-5-family cytokines, sema7a protein on the surface of blood eosinophils was increased more by IL-3 than by GM-CSF or IL-5. Cytokine-induced expression of cell surface sema7a required translation of newly synthesized protein. Finally, a recombinant sema7a induced alpha-smooth muscle actin production in human bronchial fibroblasts. semaphorin 7A is a potentially important modulator of eosinophil profibrotic functions in the airway remodeling of patients with chronic asthma.

  10. Comments to Role of upper airway ultrasound in airway management.

    PubMed

    Lien, Wan-Ching

    2017-01-01

    Tracheal ultrasound can be an alternative diagnostic tool in airway management, besides traditional confirmatory methods such as capnography and auscultation. The standard image is a hyperechoic air-mucosa (A-M) interface with a reverberation artifact posteriorly (comet-tail artifact). If the second A-M interface appears, which we call a "double-tract sign," esophageal intubation is considered.

  11. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  12. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  13. Sound transmission in porcine thorax through airway insonification

    PubMed Central

    Dai, Zoujun; Mansy, Hansen A.; Henry, Brian M.; Sandler, Richard H.; Balk, Robert A.; Royston, Thomas J.

    2015-01-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration. PMID:26280512

  14. Sound transmission in porcine thorax through airway insonification.

    PubMed

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J

    2016-04-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.

  15. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  16. The Lung Microbiome and Airway Disease.

    PubMed

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  17. Airway nerves: in vitro electrophysiology.

    PubMed

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  18. Defining an olfactory receptor function in airway smooth muscle cells

    PubMed Central

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  19. Defining an olfactory receptor function in airway smooth muscle cells.

    PubMed

    Aisenberg, William H; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A; Homann, Oliver; Sullivan, John K; Liggett, Stephen B; Pluznick, Jennifer L; An, Steven S

    2016-12-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.

  20. Bortezomib protects from varicose-like venous remodeling.

    PubMed

    Pfisterer, Larissa; Meyer, Ralph; Feldner, Anja; Drews, Oliver; Hecker, Markus; Korff, Thomas

    2014-08-01

    Despite the high prevalence of venous diseases that are associated with and based on the structural reorganization of the venous vessel wall, not much is known about their mechanistic causes. In this context, we demonstrated that the quantity of myocardin, a transcriptional regulator of the contractile and quiescent smooth muscle cell phenotype, was diminished in proliferating synthetic venous smooth muscle cells (VSMCs) of human and mouse varicose veins by 51 and 60%, respectively. On the basis of the relevance of proteasomal activity for such phenotypic changes, we hypothesized that the observed VSMC activation is attenuated by the proteasome inhibitor bortezomib. This drug fully abolished VSMC proliferation and loss of myocardin in perfused mouse veins and blocked VSMC invasion in collagen gels by almost 80%. In line with this, topical transdermal treatment with bortezomib diminished VSMC proliferation by 80%, rescued 90% of VSMC myocardin abundance, and inhibited varicose-like venous remodeling by 67 to 72% in a mouse model. Collectively, our data indicate that the proteasome plays a pivotal role in VSMC phenotype changes during venous remodeling processes. Its inhibition protects from varicose-like vein remodeling in mice and may thus serve as a putative therapeutic strategy to treat human varicose veins.

  1. Serial distribution of airway mechanical properties in dogs: effects of histamine.

    PubMed

    Habib, R H; Suki, B; Bates, J H; Jackson, A C

    1994-08-01

    We measured respiratory input impedance (Zin; 8-2,048 Hz) in five dogs (anesthetized, tracheostomized, vagotomized, and mechanically ventilated) during 80 s of apnea after a bolus intravenous injection of saline or histamine (5.0 mg). In the control case, three antiresonances in Zin were found in four of the dogs, whereas in the remaining dog only two were found. The magnitude and frequency of these antiresonances were significantly altered after bronchoconstriction. To interpret Zin, a model incorporating detailed airway geometry, asymmetrical branching, and nonrigid airway walls was developed. The model fit both the saline and histamine Zin data well and predicted a serial distribution of bronchoconstriction consistent with known effects of histamine; i.e., the diameters of the most peripheral airways were reduced (26% of their control values), whereas tracheal diameters were not significantly affected. The model provided estimates of tracheal diameters that were well correlated (r = 0.92) with direct measurements. Control estimates of soft tissue viscosity (1.63 +/- 0.42 cmH2O.s) and Young's modulus (406 +/- 125 cmH2O) compared closely with values in the literature. These results indicate that bronchoconstriction induced by histamine results in significant changes in Zin over this frequency range and that by using this data analysis approach definitive physiological parameters relative to airway geometry and wall mechanical properties can be obtained from measurements made at the airway opening.

  2. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments.

  3. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  4. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  5. The influence of reconstruction algorithm on the measurement of airway dimensions using computed tomography

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan C.; Nakano, Yasutaka; Coxson, Harvey O.; Müller, Nestor L.; Paré, Peter D.; Hogg, James C.

    2008-03-01

    The assessment of airway dimensions is important in understanding the pathophysiology of various lung diseases. A number of methods have been developed to measure airways on computed tomography, but no study has been done to validate the different CT scanning techniques, CT scanners, and reconstruction algorithms. In our study, we constructed an artificial "airway" and "lung" phantom using hollow plastic tubes and foam blocks. The phantom was CT scanned using axial or helical techniques, and the images were reconstructed using a very high spatial frequency algorithm, a high spatial frequency algorithm, or a low spatial frequency algorithm. Custom software was then used to analyze the "airways" and measure lumen area (Ai) and "airway" wall area (Aaw). WA% (WA% = 100 x Aaw / (Ai + Aaw)) was also calculated. The cross-sectional area of the lumen and wall of the plastic tubes were measured using an optical micrometer. CT measurements of airway dimensions were virtually identical, comparing axial and helical techniques, and comparing a single-slice CT scanner to a multi-slice CT scanner. Using the plastic tube measurements as a "gold standard", Ai was estimated better with the very high or high spatial frequency algorithm (4.1 and 7.4 % error) vs. low spatial frequency algorithm (10.4% error). Aaw was better estimated with the low or high special frequency algorithm (3.8% and 6.1%) vs. very high spatial frequency algorithm (12.9%), and WA% was better estimated with the high or low spatial frequency algorithm (3.5% and 5.1%) vs. very high spatial frequency algorithm (7.3%). Based on these results, we recommend the high spatial frequency algorithm for the CT measurement of airway dimensions.

  6. Mesenteric Resistance Arteries in Type 2 Diabetic db/db Mice Undergo Outward Remodeling

    PubMed Central

    Souza-Smith, Flavia M.; Katz, Paige S.; Trask, Aaron J.; Stewart, James A.; Lord, Kevin C.; Varner, Kurt J.; Vassallo, Dalton V.; Lucchesi, Pamela A.

    2011-01-01

    Objective Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice. Methods Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively. Results Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling. Conclusions These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries. PMID:21829729

  7. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  8. Airway shape assessment with visual feed-back in asthma and obstructive diseases

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Ortner, Margarete; Brillet, Pierre-Yves; Ould Hmeidi, Yahya; Pr"teux, Françoise

    2010-02-01

    Airway remodeling in asthma patients has been studied in vivo by means of endobronchial biopsies allowing to assess structural and inflammatory changes. However, this technique remains relatively invasive and difficult to use in longitudinal trials. The development of alternative non-invasive tests, namely exploiting high-resolution imaging modalities such as MSCT, is gaining interest in the medical community. This paper develops a fullyautomated airway shape assessment approach based on the 3D segmentation of the airway lumen from MSCT data. The objective is to easily notify the radiologist on bronchus shape variations (stenoses, bronchiectasis) along the airway tree during a simple visual investigation. The visual feed-back is provided by means of a volumerendered color coding of the airway calibers which are robustly defined and computed, based on a specific 3D discrete distance function able to deal with small size structures. The color volume rendering (CVR) information is further on reinforced by the definition and computation of a shape variation index along the airway medial axis enabling to detect specific configurations of stenoses. Such cases often occur near bifurcations (bronchial spurs) and they are either missed in the CVR or difficult to spot due to occlusions by other segments. Consequently, all detected shape variations (stenoses, dilations and thickened spurs) can be additionally displayed on the medial axis and investigated together with the CVR information. The proposed approach was evaluated on a MSCT database including twelve patients with severe or moderate persistent asthma, or severe COPD, by analyzing segmental and subsegmental bronchi of the right lung. The only CVR information provided for a limited number of views allowed to detect 78% of stenoses and bronchial spurs in these patients, whereas the inclusion of the shape variation index enabled to complement the missing information.

  9. Impact of family hypertension history on exercise-induced cardiac remodeling.

    PubMed

    Baggish, Aaron L; Weiner, Rory B; Yared, Kibar; Wang, Francis; Kupperman, Eli; Hutter, Adolph M; Picard, Michael H; Wood, Malissa J

    2009-07-01

    Left ventricular (LV) hypertrophy is a well-established, but highly variable, finding among exercise-trained persons. The causes for the variability in LV remodeling in response to exercise training remain incompletely understood. The present study sought to determine whether a family history of hypertension is a determinant of the cardiac response to exercise training. The cardiac parameters in 60 collegiate rowers (30 men/30 women; age 19.8 +/- 1.1 years) with (family history positive [FH+], n = 22) and without (family history negative [FH-], n = 38) a FH of hypertension were studied with echocardiography before and after 90 days of rowing training. The LV mass increased significantly in both groups. However, the LV mass increased significantly more in FH- persons (Delta 17 +/- 5 g/m(2)) than in FH+ persons (Delta 9 +/- 6 g/m(2), p <0.001) with distinctly differently patterns of LV hypertrophy between the 2 groups. FH- athletes experienced eccentric LV hypertrophy (relative wall thickness index 0.39 +/- 0.4) characterized by LV dilation. In contrast, FH+ athletes developed concentric LV hypertrophy (relative wall thickness index 0.44 +/- 0.3; p <0.001) characterized by LV wall thickening. Furthermore, the eccentric LV remodeling in FH- athletes was associated with a more robust enhancement of LV diastolic function than the concentric LV remodeling that occurred in FH+ athletes. In conclusion, these findings suggest that patterns of exercise-induced LV remodeling are strongly associated with FH history status.

  10. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  11. Microarray gene expression analysis of the human airway in patients exposed to sulfur mustard.

    PubMed

    Najafi, Ali; Masoudi-Nejad, Ali; Imani Fooladi, Abbas Ali; Ghanei, Mostafa; Nourani, Mohamad Reza

    2014-08-01

    There is much data about the acute effects of sulfur mustard gas on humans, animals and cells. But less is known regarding the molecular basics of chronic complications in humans. Basically, mustard gas, as an alkylating agent, causes several chronic problems in the eyes, skin and more importantly in the pulmonary system which is the main cause of death. Although recent proteomic research has been carried out on bronchoalveolar lavage (BAL) and serum, but high-throughput transcriptomics have not yet been applied to chronic airway remodeling. This is the first cDNA-microarray report on the chronic human mustard lung disease, 25 years after exposure during the Iran-Iraq war. Microarray transcriptional profiling indicated that a total of 122 genes were significantly dysregulated in tissues located in the airway of patients. These genes are associated with the extracellular matrix components, apoptosis, stress response, inflammation and mucus secretion.

  12. Reverse Cardiac Remodeling: A Marker of Better Prognosis in Heart Failure

    PubMed Central

    Reis, José Rosino de Araújo Rocha; Cardoso, Juliano Novaes; Cardoso, Cristina Martins dos Reis; Pereira-Barretto, Antonio Carlos

    2015-01-01

    In heart failure syndrome, myocardial dysfunction causes an increase in neurohormonal activity, which is an adaptive and compensatory mechanism in response to the reduction in cardiac output. Neurohormonal activity is initially stimulated in an attempt to maintain compensation; however, when it remains increased, it contributes to the intensification of clinical manifestations and myocardial damage. Cardiac remodeling comprises changes in ventricular volume as well as the thickness and shape of the myocardial wall. With optimized treatment, such remodeling can be reversed, causing gradual improvement in cardiac function and consequently improved prognosis. PMID:26131706

  13. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF-β expression in the lungs of female BALB/c mice.

    PubMed

    Foong, Rachel E; Shaw, Nicole C; Berry, Luke J; Hart, Prue H; Gorman, Shelley; Zosky, Graeme R

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D-deficient or -replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five-micron sections from formalin-fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)-β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D-deficient and -replete fetal mice for quantification of ASM density and relative gene expression of TGF-β signaling pathway molecules. Eight-week-old adult vitamin D-deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D-deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D-deficient male and female mice had reduced TGF-β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF-β1 and TGF-β receptor I was downregulated in vitamin D-deficient female fetal mice. Decreased expression of TGF-β1 and TGF-β receptor I during early lung development in vitamin D-deficient mice may contribute to airway remodeling and AHR in vitamin D-deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease.

  14. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  15. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  16. Secretion of IL-13 by airway epithelial cells enhances epithelial repair via HB-EGF.

    PubMed

    Allahverdian, Sima; Harada, Norihiro; Singhera, Gurpreet K; Knight, Darryl A; Dorscheid, Delbert R

    2008-02-01

    Inappropriate repair after injury to the epithelium generates persistent activation, which may contribute to airway remodeling. In the present study we hypothesized that IL-13 is a normal mediator of airway epithelial repair. Mechanical injury of confluent airway epithelial cell (AEC) monolayers induced expression and release of IL-13 in a time-dependent manner coordinate with repair. Neutralizing of IL-13 secreted from injured epithelial cells by shIL-13Ralpha2.FC significantly reduced epithelial repair. Moreover, exogenous IL-13 enhanced epithelial repair and induced epidermal growth factor receptor (EGFR) phosphorylation. We examined secretion of two EGFR ligands, epidermal growth factor (EGF) and heparin-binding EGF (HB-EGF), after mechanical injury. Our data showed a sequential release of the EGF and HB-EGF by AEC after injury. Interestingly, we found that IL-13 induces HB-EGF, but not EGF, synthesis and release from AEC. IL-13-induced EGFR phosphorylation and the IL-13-reparative effect on AEC are mediated via HB-EGF. Finally, we demonstrated that inhibition of EGFR tyrosine kinase activity by tyrphostin AG1478 increases IL-13 release after injury, suggesting negative feedback between EGFR and IL-13 during repair. Our data, for the first time, showed that IL-13 plays an important role in epithelial repair, and that its effect is mediated through the autocrine release of HB-EGF and activation of EGFR. Dysregulation of EGFR phosphorylation may contribute to a persistent repair phenotype and chronically increased IL-13 release, and in turn result in airway remodeling.

  17. Generation of Pig Airways using Rules Developed from the Measurements of Physical Airways

    PubMed Central

    Azad, Md Khurshidul; Mansy, Hansen A.

    2017-01-01

    Background A method for generating bronchial tree would be helpful when constructing models of the tree for benchtop experiments as well as for numerical modeling of flow or sound propagation in the airways. Early studies documented the geometric details of the human airways that were used to develop methods for generating human airway tree. However, methods for generating animal airway tree are scarcer. Earlier studies suggested that the morphology of animal airways can be significantly different from that of humans. Hence, using algorithms for the human airways may not be accurate in generating models of animal airway geometry. Objective The objective of this study is to develop an algorithm for generating pig airway tree based on the geometric details extracted from the physical measurements. Methods In the current study, measured values of branch diameters, lengths and bifurcation angles and rotation of bifurcating planes were used to develop an algorithm that is capable of generating a realistic pig airway tree. Results The generation relations between parent and daughter branches were found to follow certain trends. The diameters and the length of different branches were dependent on airway generations while the bifurcation angles were primarily dependent on bifurcation plane rotations. These relations were sufficient to develop rules for generating a model of the pig large airways. Conclusion The results suggested that the airway tree generated from the algorithm can provide an approximate geometric model of pig airways for computational and benchtop studies. PMID:28255517

  18. Recent trends in airway management

    PubMed Central

    Karlik, Joelle; Aziz, Michael

    2017-01-01

    Tracheal intubation remains a life-saving procedure that is typically not difficult for experienced providers in routine conditions. Unfortunately, difficult intubation remains challenging to predict and intubation conditions may make the event life threatening. Recent technological advances aim to further improve the ease, speed, safety, and success of intubation but have not been fully investigated. Video laryngoscopy, though proven effective in the difficult airway, may result in different intubation success rates in various settings and in different providers’ hands. The rescue surgical airway remains a rarely used but critical skill, and research continues to investigate optimal techniques. This review highlights some of the new thoughts and research on these important topics. PMID:28299194

  19. Bone remodeling after renal transplantation.

    PubMed

    Bellorin-Font, Ezequiel; Rojas, Eudocia; Carlini, Raul G; Suniaga, Orlando; Weisinger, José R

    2003-06-01

    Several studies have indicated that bone alterations after transplantation are heterogeneous. Short-term studies after transplantation have shown that many patients exhibit a pattern consistent with adynamic bone disease. In contrast, patients with long-term renal transplantation show a more heterogeneous picture. Thus, while adynamic bone disease has also been described in these patients, most studies show decreased bone formation and prolonged mineralization lag-time faced with persisting bone resorption, and even clear evidence of generalized or focal osteomalacia in many patients. Thus, the main alterations in bone remodeling are a decrease in bone formation and mineralization up against persistent bone resorption, suggesting defective osteoblast function, decreased osteoblastogenesis, or increased osteoblast death rates. Indeed, recent studies from our laboratory have demonstrated that there is an early decrease in osteoblast number and surfaces, as well as in reduced bone formation rate and delayed mineralization after transplantation. These alterations are associated with an early increase in osteoblast apoptosis that correlates with low levels of serum phosphorus. These changes were more frequently observed in patients with low turnover bone disease. In contrast, PTH seemed to preserve osteoblast survival. The mechanisms of hypophosphatemia in these patients appear to be independent of PTH, suggesting that other phosphaturic factors may play a role. However, further studies are needed to determine the nature of a phosphaturic factor and its relationship to the alterations of bone remodeling after transplantation.

  20. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion.

  1. Impact of Bacillus Calmette-Guérin Moreau vaccine on lung remodeling in experimental asthma.

    PubMed

    Samary, Cynthia dos Santos; Antunes, Mariana Alves; Silva, Johnatas Dutra; Silva, Adriana Lopes da; Araújo, Carla Cristina de; Bakker-Abreu, Ilka; Diaz, Bruno Lourenço; Fernezlian, Sandra; Parra, Edwin Roger; Capelozzi, Vera Luiza; Silva, Pedro Leme; Lapa e Silva, José Roberto; Rocco, Patricia Rieken Macedo

    2013-12-01

    We analyzed the effects of different administration routes and application times of the BCG-Moreau strain on airway and lung inflammation and remodeling in a murine model of allergic asthma. BALB/c mice (n=168) were divided into two groups. The first group received BCG-Moreau strain while the second group received saline using the same protocol. BCG or saline were intradermally or intranasally injected one or two months before the induction of asthma. Mice were further sensitized and challenged with ovalbumin or received saline. Twenty-four hours after the last challenge, BCG prevented the triggering of pro-inflammatory cytokines, probably by increasing Foxp3 and interleukin (IL)-10, modulating eosinophil infiltration and collagen fiber deposition, thus reducing airway hyperresponsiveness. In conclusion, BCG-Moreau prevented lung remodeling in the present model of allergic asthma, regardless of administration route and time of vaccination. These beneficial effects may be related to the increase in regulatory T cells and to IL-10 production in tandem with decreased Th2 cytokines (IL-4, IL-5, and IL-13).

  2. Remodeling, Renovation, & Conversion of Educational Facilities.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    Based on a series of workshops, this collection of papers provides a framework for thought--emphasizing planning within time, flexibility, and maintenance constraints--as well as a practical guide for actual engineering of remodeling/renovation/conversion projects. Is remodeling always less expensive than new construction? Should high initial…

  3. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  4. From Newborn to Senescence Morphological and Functional Remodeling Leads to Increased Contractile Capacity of Arteries.

    PubMed

    Ivic, Ivan; Vamos, Zoltan; Cseplo, Peter; Koller, Akos

    2017-04-01

    Aging induces substantial morphological and functional changes in vessels. We hypothesized that due to morphological remodeling the total contractile forces of arteries increase, especially in older age as a function of age. Mean arterial blood pressure of rats and morphological and functional characteristics of isolated carotid arteries rats, from newborn to senescent, were assessed. The arterial blood pressure of rats increased significantly from 0.25 to the age of 6 months, and then it reached a level, which was maintained until age of 30 months. Wall lumen and wall thickness increased with age, mostly due to media (smooth muscle) thickening, whereas wall tension gradually reduced with age. Contractions of arteries to nonreceptor-mediated vasomotor agent (KCl, 60mM) increased in three consecutive age groups, whereas contractility first increased (until 2 months), then it did not change further with aging. Norepinephrine-induced contractions initially increased in young age and then did not change further in older age. These findings suggest that during normal aging due to remodeling of arterial wall (smooth muscle) the contractile capacity of arteries increases, which seems to be independent from systemic blood pressure. Thus, arterial remodeling can favor the development of increased circulatory resistance in older age.

  5. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  6. Method for 3D Airway Topology Extraction

    PubMed Central

    Grothausmann, Roman; Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Ripken, Tammo; Meyer, Heiko; Kuehnel, Mark P.; Ochs, Matthias; Rosenhahn, Bodo

    2015-01-01

    In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT) tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D) deficient knock-out mice. PMID:25767561

  7. Automated Lobe-Based Airway Labeling

    PubMed Central

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M.; Wilson, David; Bigbee, William L.; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  8. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  9. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  10. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  11. Morphologic aspects of airways of patients with pulmonary emphysema followed by bronchial asthma-like attack.

    PubMed

    Haraguchi, M; Shimura, S; Shirato, K

    1996-02-01

    Morphometric analysis of airways was performed in autopsied lungs from four patients with pulmonary emphysema (PE) followed by bronchial-asthma (BA)-like attacks (Group PE+BA) (four males, 72 +/- 9 yr). The results were compared with those from five pulmonary emphysema patients (Group PE) (five males, age 71 +/- 4 hr), three patients with bronchial asthma (Group BA) (one female and two males, age 65 +/- 7 yr), and four control subjects with no pulmonary diseases (Group Cont) (one female, three males, age 64 +/- 4 yr). The proportion of gland area to bronchial wall (gland%), ratio of goblet-cell occupancy to the total epithelial layer (goblet%), thickness of the basement membrane, amount of intraluminal mucus (mucus occupying ratio; MOR%), and number of various cell types per square millimeter in airway walls in a section 4 microns thick were measured in central (3 to 8 mm diameter) and peripheral airways (2 mm or less diameter). Gland% for the PE+BA group was significantly greater than that for the Cont group, whereas it did not differ significantly from that of the PE or BA groups. Goblet% and thickness of the basement membrane in central and/or peripheral airways in Group PE+BA were significantly greater than those in Group Cont, whereas those in Group PE were similar to those in Group Cont. Although not statistically significant, MOR% in central and peripheral airways from Group PE+BA showed a similar value to that in Group BA, whereas MOR% in Group PE was the same as that in Group Cont. The eosinophil number in peripheral airways walls in Group PE+BA showed a similar value to that in Group BA, which was significantly greater than in Group Cont. Other cells (macrophages, lymphocytes, and neutrophils) showed similar values among Groups PE+BA, PE, and BA. The number of eosinophils in central and/or peripheral airways correlated significantly with both goblet% and BMT, whereas other cells did not. These findings indicate that the airways of Group PE+BA are

  12. Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model.

    PubMed

    Zhang, Pei; Li, Tielou; Griffith, Bartley P; Wu, Zhongjun J

    2015-01-01

    The surviving myocardium initially compensates the loss of injured myocardium after myocardial infarction (MI) and gradually becomes progressively dysfunctional. There have been limited studies on the effect of infarct size on temporal and spatial alterations in the myocardium during progressive myocardial remodeling. MI with three infarct sizes, i.e. 15, 25 and 35% of the left ventricular (LV) wall, was created in an ovine infarction model. The progressive LV remodeling over a 12-week period was studied. Echocardiography, sonomicrometry, and histological and molecular analyses were carried out to evaluate cardiac function, regional tissue contractile function, structural remodeling and cardiomyocyte hypertrophy, and calcium handling proteins. Twelve weeks after MI, the 15, 25 and 35% MI groups had normalized LV end diastole volumes of 1.4 ± 0.2, 1.7 ± 0.3 and 2.0 ± 0.4 ml/kg, normalized end systole volumes of 1.0 ± 0.1, 1.0 ± 0.2 and 1.3 ± 0.3 ml/kg and LV ejection fractions of 43 ± 3, 42 ± 6 and 34 ± 4%, respectively. They all differed from the sham group (p < 0.05). All the three MI groups exhibited larger wall areal expansion (remodeling strain), larger cardiomyocyte size and altered expression of calcium handing proteins in the adjacent myocardium compared to the remote counterpart from the infarct. A significant correlation was found between cardiomyocyte size and remodeling strain in the adjacent zone. A comparative analysis among the three MI groups showed that a larger infarct size (35 vs. 15% MI) was associated with larger remodeling strain, more serious impairment in the cellular structure and composition, and regional contractile function at regional tissue level and LV function at organ level.

  13. Evaluation of airway measurements in phantom parenchyma and soft tissue regions

    NASA Astrophysics Data System (ADS)

    Ochs, Robert A.; Kim, Hyun J.; Goldin, Jonathan G.; McNitt-Gray, Michael F.; Brown, Matthew S.

    2008-03-01

    The purpose of this work was to develop a 3D airway measurement technique that can be initialized at a single point (either automatically or user defined) and to evaluate the measurement accuracy with varying imaging parameters as well as in synthetic parenchyma and soft tissue regions. This approach may have advantages over existing methods that require segmentation of the entire airway branch. METHODS: Rays are cast spherically from the initial measurement point and a range image is created of the distance to the edge of the airway lumen. The trajectory of the airway is estimated from the range image, and can be used to re-construct a 2D slice perpendicular to the airway for cross-sectional measurements. The evaluation phantom consisted of 5 tubes (3.18 to 19.05 mm in diameter and 1.59 to 3.18 mm in wall thickness) embedded in synthetic lung parenchyma and soft tissue. Images were acquired at 10 and 100 mAs at three tube orientations (0°, 45°, 90°) and were reconstructed at 0.6 and 1.5 mm slice thicknesses with both smooth and standard reconstruction kernels. RESULTS: The overall diameter and wall thickness accuracy was 0.43 +/- 0.19 mm and 0.28 +/- 0.15 mm respectively in parenchyma regions and 0.46 +/- 0.16 mm and 0.49 +/- 0.40 mm respectively in the soft tissue regions. The overall accuracy of the trajectory estimate was 0.64 +/- 0.51°. The proposed technique may allow a potentially larger number of airways to be measured for research and clinical analysis than with current methods.

  14. Coronary-bronchial blood flow and airway dimensions in exercise-induced syndromes.

    PubMed

    White, S W; Pitsillides, K F; Parsons, G H; Hayes, S G; Gunther, R A; Cottee, D B

    2001-01-01

    1. We have an incomplete understanding of integrative cardiopulmonary control during exercise and particularly during the postexercise period, when symptoms and signs of myocardial ischaemia and exercise-induced asthma not present during exercise may appear. 2. The hypothesis is advanced that baroreflex de-resetting during exercise recovery is normally associated with (i) a dominant sympathetic vasoconstrictor effect in the coronary circulation, which, when associated with obstructive coronary disease, may initiate a potentially positive-feedback cardiocardiac sympathetic reflex (variable myocardial ischaemia with symptoms and signs); and (ii) a dominant parasympathetic bronchoconstrictor effect in the presence of bronchovascular dilatation, which, when associated with raised mediator release in the bronchial wall, reinforces the tendency for airway obstruction (variable dyspnoea results). 3. There is a need for new techniques to examine hypotheses concerning autonomic control, during and after exercise, of the coronary and bronchial circulations and the dimensions of airways. Accordingly, a new ultrasonic instrument has been designed named an 'Airways Internal Diameter Assessment (AIDA) Sonomicrometer'. It combines pulsed Doppler flowmetry with transit-time sonomicrometry of airway circumference and single-crystal sonomicrometry of airway wall thickness. Initial evaluation suggests it is relatively easy to apply during thoracotomy in recovery animals. The component devices are linear and will measure target variables with excellent accuracy. 4. In anaesthetized sheep, intubated with controlled ventilation, intravenous isoproterenol causes large increases in bronchial blood flow, a fall in arterial pressure and a reduction in airway circumference. This may reflect the dominant action of reflex vagal activity over direct beta-adrenoceptor inhibition of bronchial smooth muscle, the reflex source being baroreflex secondary to the fall in arterial pressure. These

  15. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

    PubMed

    Mylavarapu, Goutham; Murugappan, Shanmugam; Mihaescu, Mihai; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2009-07-22

    An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k-epsilon, standard k-omega, and k-omega Shear Stress Transport (SST)) and with one-equation Spalart-Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k-omega turbulence model resulted in the best agreement with the static pressure measurements, with an average error of approximately 20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.

  16. Influence of intrauterine growth restriction on airway development in fetal and postnatal sheep.

    PubMed

    Wignarajah, Dharshini; Cock, Megan L; Pinkerton, Kent E; Harding, Richard

    2002-06-01

    Epidemiologic studies suggest that intrauterine growth restriction (IUGR) can lead to impaired lung function, yet little information exists on the effects of IUGR on airway development. Our objectives were to characterize morphometrically effects of IUGR on airway structure in the fetus and to determine whether alterations persist into postnatal life. We used two groups of sheep, each with appropriate controls; a fetal group was subjected to IUGR by restriction of placental function from 120 to 140 d (term approximately 147 d), and a postnatal group, killed 8 wk after birth, was subjected to IUGR from 120 d to birth at term. In both fetuses and postnatal lambs, IUGR did not alter lung weight relative to body weight. In IUGR fetuses, the luminal areas and basement membrane perimeters of the trachea and larger bronchi (generations 0-8, trachea = 0) were smaller than in controls. Airway wall areas, relative to basement membrane perimeters, were reduced in IUGR fetuses compared with controls, largely due to reduced areas of cartilage and epithelium. At 8 wk after birth, there were no significant differences in airway dimensions between IUGR and control lambs. However, the number of profiles of bronchial submucosal glands, relative to basement membrane perimeters, was lower in IUGR lambs than in controls and the area of epithelial mucin was increased. We conclude that restriction of fetal growth during late gestation impairs the growth of bronchial walls that could affect airway compliance in the immediate postnatal period. Although airway growth deficits are reversed by 8 wk, alterations in mucus elements persist.

  17. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  18. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  19. Exercise-induced cardiac remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  20. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  1. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  2. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  3. Classification and Prognostic Evaluation of Left Ventricular Remodeling in Patients With Asymptomatic Heart Failure.

    PubMed

    Pugliese, Nicola Riccardo; Fabiani, Iacopo; La Carrubba, Salvatore; Conte, Lorenzo; Antonini-Canterin, Francesco; Colonna, Paolo; Caso, Pio; Benedetto, Frank; Santini, Veronica; Carerj, Scipione; Romano, Maria Francesca; Citro, Rodolfo; Di Bello, Vitantonio

    2017-01-01

    Patients with asymptomatic heart failure (HF; stage A and B) are characterized by maladaptive left ventricular (LV) remodeling. Classic 4-group classification of remodeling considers only LV mass index and relative wall thickness as variables. Complex remodeling classification (CRC) includes also LV end-diastolic volume index. Main aim was to assess the prognostic impact of CRC in stage A and B HF. A total of 1,750 asymptomatic subjects underwent echocardiographic examination as a screening evaluation in the presence of cardiovascular risk factors. LV dysfunction, both systolic (ejection fraction) and diastolic (transmitral flow velocity pattern), was evaluated, together with LV remodeling. We considered a composite end point: all-cause death, myocardial infarction, coronary revascularizations, cerebrovascular events, and acute pulmonary edema. CRC was suitable for 1,729 patients (men 53.6%; age 58.3 ± 13 years). Two hundred thirty-eight patients presented systolic dysfunction (ejection fraction <50%) and 483 diastolic dysfunction. According to the CRC, 891 patients were normals or presented with physiologic hypertrophy, 273 concentric remodeling, 47 eccentric remodeling, 350 concentric hypertrophy, 29 mixed hypertrophy, 86 dilated hypertrophy, and 53 eccentric hypertrophy. Age and gender distribution was noticed (p <0.001). After a median follow-up of 21 months, Kaplan-Meier analysis showed different survival distribution (p <0.001) of the CRC patterns. In multivariate Cox regression (adjusted for age, gender, history of stable ischemic heart disease, classic remodeling classification, systolic, and diastolic dysfunction), CRC was independent predictor of primary end point (p = 0.044, hazard ratio 1.101, 95% CI 1.003 to 1.21), confirmed in a logistic regression (p <0.03). In conclusion, CRC could help physicians in prognostic stratification of patients in stage A and B HF.

  4. Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling.

    PubMed

    Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian

    2016-12-01

    Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.

  5. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    PubMed Central

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  6. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice.

    PubMed

    Knudsen, Lars; Atochina-Vasserman, Elena N; Massa, Christopher B; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F; Ochs, Matthias; Gow, Andrew J

    2015-11-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

  7. [Imaging techniques in the examination of the distal airways: asthma and COPD].

    PubMed

    Franquet, Tomás

    2011-04-01

    Imaging techniques are highly useful diagnostic tools to study small airway diseases. Despite their differences, from a clinical pathological perspective, these diseases show similar radiological manifestations. High-resolution computed tomography (CT) is the technique of choice to study diffuse diseases and those of the small airways; the slices obtained in expiratory high-resolution CT scan should form part of the study protocol of small airway diseases. Based on the findings of high-resolution CT, small airway diseases can be divided into two large groups: (a) those presenting direct morphological signs of bronchiolar involvement, and (b) those showing indirect signs of bronchiolar involvement (air trapping/mosaic pattern). High-resolution CT is highly useful to study the complications of asthma (allergic bronchopulmonary aspergillosis) and to evaluate clinically similar processes, such as hypersensitivity pneumonitis. In asthmatic patients, multi-detector CT (MDTC) allows clinical symptoms, thickening of the airway wall and the degree of airflow obstruction to be directly correlated. MDTC is also useful for quantitative evaluation of the degree of air trapping in patients with emphysema. Magnetic resonance imaging after inhalation of distinct gases, such as (3)He and xenon-129 and dual-energy CT are also useful imaging techniques in the direct or indirect evaluation of the degree of airflow obstruction (air trapping).

  8. Measurement of the Airway Surface Liquid Volume with Simple Light Refraction Microscopy

    PubMed Central

    Harvey, Peter R.; Tarran, Robert; Garoff, Stephen

    2011-01-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air–liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays. PMID:21239602

  9. Airway management: induced tension pneumoperitoneum

    PubMed Central

    Ahmed, Khedher; Amine, El Ghali Mohamed; Abdelbaki, Azouzi; Jihene, Ayachi; Khaoula, Meddeb; Yamina, Hamdaoui; Mohamed, Boussarsar

    2016-01-01

    Pneumoperitoneum is not always associated with hollow viscus perforation. Such condition is called non-surgical or spontaneous pneumoperitoneum. Intrathoracic causes remain the most frequently reported mechanism inducing this potentially life threatening complication. This clinical condition is associated with therapeutic dilemma. We report a case of a massive isolated pneumoperitoneum causing acute abdominal hypertension syndrome, in a 75 year female, which occurred after difficult airway management and mechanical ventilation. Emergent laparotomy yielded to full recovery. The recognition of such cases for whom surgical management can be avoided is primordial to avoid unnecessary laparotomy and its associated morbidity particularly in the critically ill.

  10. In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué

    2012-11-01

    Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.

  11. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  12. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  13. Upper airway resistance: species-related differences.

    PubMed

    Kirschvink, N; Reinhold, P

    2010-07-01

    In veterinary medicine, upper airway resistance deserves a particular attention in equines athletes and brachycephalic dogs. Due to the anatomical peculiarities of the upper airway and/or pathological conditions, significant alterations of performance and/or well being might occur in horses and dogs. Physiological specificities and pathological changes of the lower respiratory tract deserve a major attention in other species.

  14. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  15. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  16. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma.

    PubMed

    Berlin, Aaron A; Hogaboam, Cory M; Lukacs, Nicholas W

    2006-06-01

    The progression and severity of chronic asthma likely depends upon the intensity of the damage and remodeling of the tissue. We have developed a chronic model of allergic asthma using multiple cockroach allergen challenges. Using this clinically relevant allergen we have established significant peribronchial fibrosis and mucus overproduction. These remodeling events are accompanied by intense peribronchial inflammation, including lymphocytes and eosinophils. A cytokine that has been identified as having a prominent role in short-term allergic events, stem cell factor (SCF), appears to have a significant role in this late-stage process. Using our polyclonal antibody specific for SCF administered into the airways of mice during the final allergen challenges, we find a significant effect on the chronic peribronchial allergen-induced fibrotic remodeling. This was characterized by reduced inflammation, especially eosinophils, as well as reduced hydroxyproline levels in anti-SCF compared to control antibody-treated animals. In addition, when we examined chemokines associated with the chronic disease and neutralized SCF in vivo we observed a corresponding decrease in CCL6 and CCL17. Using an inhibitor, imatinib mesylate, that blocks SCF/c-kit-associated RTK, we find similar results as with anti-SCF for attenuating AHR and fibrotic changes, suggesting that a potential clinical treatment for chronic asthma already exists related to this pathway. These results further support the potential use of SCF/c-kit inhibition for targeting chronic severe asthmatic responses.

  17. Maternal Uterine Vascular Remodeling During Pregnancy

    PubMed Central

    Osol, George; Mandala, Maurizio

    2009-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms. PMID:19196652

  18. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  19. The critical airway in adults: The facts

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2012-01-01

    An algorithm on the indications and timing for a surgical airway in emergency as such cannot be drawn due to the multiplicity of variables and the inapplicability in the context of life-threatening critical emergency, where human brain elaborates decisions better in cluster rather than in binary fashion. In particular, in emergency or urgent scenarios, there is no clear or established consensus as to specifically who should receive a tracheostomy as a life-saving procedure; and more importantly, when. The two classical indications for emergency tracheostomy (laryngeal injury and failure to secure airway with endotracheal intubation or cricothyroidotomy) are too generic and encompass a broad spectrum of possibilities. In literature, specific indications for emergency tracheostomy are scattered and are biased, partially comprehensive, not clearly described or not homogeneously gathered. The review highlights the indications and timing for an emergency surgical airway and gives recommendations on which surgical airway method to use in critical airway. PMID:22787346

  20. Human Mesenchymal Stem Cells Resolve Airway Inflammation, Hyperreactivity, and Histopathology in a Mouse Model of Occupational Asthma

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Morell, Ferran; Muñoz, Xavier

    2014-01-01

    Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1×106 cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA. PMID:24798370

  1. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  2. Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful?

    PubMed

    van Oers, René F M; van Rietbergen, Bert; Ito, Keita; Huiskes, Rik; Hilbers, Peter A J

    2011-05-01

    Microdamage-targeted resorption is paradoxal, because it entails the removal of bone from a region that was already overloaded. Under continued intense loading, resorption spaces could potentially cause more damage than they remove. To investigate this problem, we incorporated damage algorithms in a computer-simulation model for trabecular remodeling. We simulated damage accumulation and bone remodeling in a trabecular architecture, for two fatigue regimens, a 'moderate' regimen, and an 'intense' regimen with a higher number of loading cycles per day. Both simulations were also performed without bone remodeling to investigate if remodeling removed or exacerbated the damage. We found that remodeling tends to remove damage under the 'moderate' fatigue regimen, but it exacerbates damage under the 'intense' regimen. This harmful effect of remodeling may play a role in the development of stress fractures.

  3. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components

    PubMed Central

    Reeves, Stephen R.; Kolstad, Tessa; Lien, Tin-Yu; Elliott, Molly; Ziegler, Steven F.; Wight, Thomas N.; Debley, Jason S.

    2014-01-01

    Background Airway remodeling may explain lung function decline among asthmatic children. Extracellular matrix (ECM) deposition by human lung fibroblasts (HLFs) is implicated in airway remodeling. Airway epithelial cell (AEC) signaling may regulate HLF ECM expression. Objectives Determine whether AECs from asthmatic children differentially regulate HLF expression of ECM constituents. Methods Primary AECs were obtained from well-characterized atopic-asthmatic (N=10) and healthy children (N=10) intubated under anesthesia for an elective surgical procedure. AECs were differentiated at an air-liquid interface (ALI) for 3 weeks, then co-cultured with HLFs from a healthy child for 96 hours. Collagen I (COL1A1), collagen III (COL3A1), hyaluronan synthase 2 (HAS2), and fibronectin (FNDC) expression by HLFs and prostaglandin E2 synthase (PGE2S) expression by AECs was assessed by RT-PCR. TGFb1&2 concentrations in media were measured by ELISA. Results COL1A1 and COL3A1 expression by HLFs co-cultured with asthmatic AECs was greater than HLFs co-cultured with healthy AECs (2.2 fold, p<0.02; 10.8 fold, p<0.02). HAS2 expression by HLFs co-cultured with asthmatic AECs was 2.5-fold higher than by HLFs co-cultured with healthy AECs (p<0.002). FNDC expression by HLFs co-cultured with asthmatic AECs was significantly greater than by HLFs alone. TGFb2 activity was elevated in asthmatic AEC-HLF co-cultures (p<0.05) while PGES2 was down regulated in AEC-HLF co-cultures (2.2 fold, p<0.006). Conclusions HLFs co-cultured with asthmatic AECs showed differential expression of ECM constituents COL1A1 & COL3A1, and HAS2 compared to HLFs co-cultured with healthy AECs. These findings support a role for altered ECM production in asthmatic airway remodeling, possibly regulated by unbalanced AEC signaling. PMID:24875618

  4. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  5. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  6. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.

  7. Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension

    PubMed Central

    Zhao, Zhi-Min; Liu, Su-Xuan; Zhang, Guan-Xin; Yang, Fan; Wang, Yang; Wu, Feng; Zhao, Xian-Xian; Xu, Zhi-Yun

    2016-01-01

    While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH. PMID:27472464

  8. Structural remodeling and mechanical function in heart failure.

    PubMed

    Leonard, Bridget Louise; Smaill, Bruce Henry; LeGrice, Ian John

    2012-02-01

    The cardiac extracellular matrix (ECM) is the three-dimensional scaffold that defines the geometry and muscular architecture of the cardiac chambers and transmits forces produced during the cardiac cycle throughout the heart wall. The cardiac ECM is an active system that responds to the stresses to which it is exposed and in the normal heart is adapted to facilitate efficient mechanical function. There are marked differences in the short- and medium-term changes in ventricular geometry and cardiac ECM that occur as a result of volume overload, hypertension, and ischemic cardiomyopathy. Despite this, there is a widespread view that a common remodeling "phenotype" governs the final progression to end-stage heart failure in different forms of heart disease. In this review article, we make the case that this interpretation is not consistent with the clinical and experimental data on the topic. We argue that there is a need for new theoretical and experimental models that will enable stresses acting on the ECM and resultant deformations to be estimated more accurately and provide better spatial resolution of local signaling mechanisms that are activated as a result. These developments are necessary to link the effects of structural remodeling with altered cardiac mechanical function.

  9. Steroid control of muscle remodeling during metamorphosis in Manduca sexta.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-04-01

    During metamorphosis in the tobacco hornworm, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. The degeneration of muscle DEO1 involves the dismantling of its contractile apparatus followed by the degeneration of muscle nuclei. As some nuclei are degenerating, others begin to incorporate 5-bromodeoxyuridine (BrdU), indicating the onset of nuclear proliferation. This proliferation is initially most evident at the site where the motoneuron contacts the muscle remnant. The developmental events involved in muscle remodeling are under the control of the steroid hormones, the ecdysteroids. The loss of the contractile elements of the larval muscle requires the rise and fall of the prepupal peak of ecdysteroids, whereas the subsequent loss of muscle nuclei is influenced by the slight rise in ecdysteroids seen after pupal ecdysis. Incorporation of BrdU by muscle nuclei depends on both the adult peak of the ecdysteroids and contact with the motoneuron. Unilateral axotomy blocks proliferation within the rudiment, but it does not block its subsequent differentiation into a very thin muscle in the adult.

  10. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  11. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  12. B.B. Contracting & Remodeling Information Sheet

    EPA Pesticide Factsheets

    B.B. Contracting & Remodeling (the Company) is located in St. Louis, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in St. Louis, Missouri.

  13. Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure.

    PubMed

    Ashikaga, Hiroshi; Omens, Jeffrey H; Covell, James W

    2004-11-01

    To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 +/- 2 wk (means +/- SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 +/- 0.030; P <0.05), whereas the apical site did not [P=not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 +/- 0.003 at 2 wk and 0.054 +/- 0.021 at final; both P <0.05), which contributed to a significant increase in wall thickness at the final study (0.181 +/- 0.047; P < 0.05), whereas the apical site did not (P=NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture.

  14. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  15. Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3

    PubMed Central

    Fausther, Michel; Pelletier, Julie; Ribeiro, Carla M.; Sévigny, Jean

    2010-01-01

    Airway defenses are regulated by a complex purinergic signaling network located on the epithelial surfaces, where ATP stimulates the clearance of mucin and pathogens. The present study shows that the obstructive disease cystic fibrosis (CF) affects the activity, expression, and tissue distribution of two ectonucleotidases found critical for the regulation of ATP on airway surfaces: NTPDase1 and NTPDase3. Functional polarities and mRNA expression levels were determined on primary cultures of human bronchial epithelial (HBE) cells from healthy donors and CF patients. The in vitro model of the disease was completed by exposing CF HBE cultures for 4 days to supernatant of the mucopurulent material (SMM) collected from the airways of CF patients. We report that NTPDase1 and NTPDase3 are coexpressed on HBE cultures, where they regulate physiological and excess nucleotide concentrations, respectively. In aseptic conditions, CF epithelia exhibit >50% lower NTPDase1 activity, protein, and mRNA levels than normal epithelia, whereas these parameters are threefold higher for NTPDase3. Exposure to SMM induced opposite polarity shifts of the two NTPDases on both normal and CF epithelia, apical NTPDase1 being mobilized to basolateral surfaces and bilateral NTPDase3 to the apical surface. Their immunolocalization in human tissue revealed that NTPDase1 is expressed in epithelial, inflammatory, and endothelial cells, whereas NTPDase3 is restricted to epithelial cells. Furthermore, the SMM-exposed CF HBE cultures reproduced the impact of the disease on their in vivo distribution. This study provides evidence that an extensive remodeling of the enzymatic network regulating clearance occurs in the airways of CF patients. PMID:20190036

  16. RSK3 – A Regulator of Pathological Cardiac Remodeling

    PubMed Central

    Martinez, Eliana C.; Passariello, Catherine L.; Li, Jinliang; Matheson, Christopher J.; Dodge-Kafka, Kimberly; Reigan, Philip; Kapiloff, Michael S.

    2015-01-01

    Summary The family of p90 ribosomal S6 kinases (RSK) are pleiotropic effectors for extracellular signal-regulated kinase (ERK) signaling pathways. Recently, RSK3 was shown to be important for pathological remodeling of the heart. While cardiac myocyte hypertrophy can be compensatory for increased wall stress, in chronic heart diseases this non-mitotic cell growth is usually associated with interstitial fibrosis, increased cell death, and decreased cardiac function. Although RSK3 is less abundant in the cardiac myocyte than other RSK family members, RSK3 appears to serve a unique role in cardiac myocyte stress responses. A potential mechanism conferring RSK3’s unique function in the heart is anchoring by the scaffold protein muscle A-kinase Anchoring Protein β (mAKAPβ). Recent findings suggest that RSK3 should be considered as a therapeutic target for the prevention of heart failure, a clinical syndrome of major public health significance. PMID:25988524

  17. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    SciTech Connect

    Svensson Holm, Ann-Charlotte B.; Bengtsson, Torbjoern; Grenegard, Magnus; Lindstroem, Eva G.

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  18. Vitronectin Expression in the Airways of Subjects with Asthma and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Salazar-Peláez, Lina M.; Abraham, Thomas; Herrera, Ana M.; Correa, Mario A.; Ortega, Jorge E.; Paré, Peter D.; Seow, Chun Y.

    2015-01-01

    Vitronectin, a multifunctional glycoprotein, is involved in coagulation, inhibition of the formation of the membrane attack complex (MAC), cell adhesion and migration, wound healing, and tissue remodeling. The primary cellular source of vitronectin is hepatocytes; it is not known whether resident cells of airways produce vitronectin, even though the glycoprotein has been found in exhaled breath condensate and bronchoalveolar lavage from healthy subjects and patients with interstitial lung disease. It is also not known whether vitronectin expression is altered in subjects with asthma and COPD. In this study, bronchial tissue from 7 asthmatic, 10 COPD and 14 control subjects was obtained at autopsy and analyzed by immunohistochemistry to determine the percent area of submucosal glands occupied by vitronectin. In a separate set of experiments, quantitative colocalization analysis was performed on tracheobronchial tissue sections obtained from donor lungs (6 asthmatics, 4 COPD and 7 controls). Vitronectin RNA and protein expressions in bronchial surface epithelium were examined in 12 subjects who undertook diagnostic bronchoscopy. Vitronectin was found in the tracheobronchial epithelium from asthmatic, COPD, and control subjects, although its expression was significantly lower in the asthmatic group. Colocalization analysis of 3D confocal images indicates that vitronectin is expressed in the glandular serous epithelial cells and in respiratory surface epithelial cells other than goblet cells. Expression of the 65-kDa vitronectin isoform was lower in bronchial surface epithelium from the diseased subjects. The cause for the decreased vitronectin expression in asthma is not clear, however, the reduced concentration of vitronectin in the epithelial/submucosal layer of airways may be linked to airway remodeling. PMID:25768308

  19. Effects of Woodsmoke Exposure on Airway Inflammation in Rural Guatemalan Women

    PubMed Central

    Basu, Chandreyi; Diaz, Anaite; Pope, Daniel; Smith, Kirk R.; Smith-Sivertsen, Tone; Bruce, Nigel; Solomon, Colin; McCracken, John; Balmes, John R.

    2014-01-01

    Background More than two-fifths of the world’s population uses solid fuels, mostly biomass, for cooking. The resulting biomass smoke exposure is a major cause of chronic obstructive pulmonary disease (COPD) among women in developing countries. Objective To assess whether lower woodsmoke exposure from use of a stove with a chimney, compared to open fires, is associated with lower markers of airway inflammation in young women. Design We carried out a cross-sectional analysis on a sub-cohort of participants enrolled in a randomized controlled trial in rural Guatemala, RESPIRE. Participants We recruited 45 indigenous women at the end of the 18-month trial; 19 women who had been using the chimney stove for 18–24 months and 26 women still using open fires. Measurements We obtained spirometry and induced sputum for cell counts, gene expression of IL-8, TNF-α, MMP-9 and 12, and protein concentrations of IL-8, myeloperoxidase and fibronectin. Exhaled carbon monoxide (CO) and 48-hr personal CO tubes were measured to assess smoke exposure. Results MMP-9 gene expression was significantly lower in women using chimney stoves. Higher exhaled CO concentrations were significantly associated with higher gene expression of IL-8, TNF-α, and MMP-9. Higher 48-hr personal CO concentrations were associated with higher gene expression of IL-8, TNF- α, MMP-9 and MMP-12; reaching statistical significance for MMP-9 and MMP-12. Conclusions Compared to using an open wood fire for cooking, use of a chimney stove was associated with lower gene expression of MMP-9, a potential mediator of airway remodeling. Among all participants, indoor biomass smoke exposure was associated with higher gene expression of multiple mediators of airway inflammation and remodeling; these mechanisms may explain some of the observed association between prolonged biomass smoke exposure and COPD. PMID:24625755

  20. Bone remodeling as a spatial evolutionary game.

    PubMed

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  1. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    PubMed Central

    Ma, Yuan; Ge, Ai; Zhu, Wen; Liu, Ya-Nan; Ji, Ning-Fei; Zha, Wang-Jian; Zhang, Jia-Xiang; Zeng, Xiao-Ning

    2016-01-01

    Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by

  2. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  3. Hesperidin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model.

    PubMed

    Wei, Dajun; Ci, Xinxin; Chu, Xiao; Wei, Miaomiao; Hua, Shucheng; Deng, Xuming

    2012-02-01

    Hesperidin, a flavanone glycoside comprised of the flavanone hesperetin and the disaccharide rutinose, is a plentiful and inexpensive by-product of citrus cultivation. It has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, and anticarcinogenic properties. In this study, we attempt to determine whether hesperidin inhibits inflammatory mediators in the mouse allergic asthma model. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway inflammation and airway remodeling. The administration of hesperidin significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage (BAL) fluid compared with the OVA-induced group of mice. In addition, hesperidin reduced OVA-specific IgE levels in serum. Hesperidin markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and eosin and alcian blue-periodic acid-Schiff staining, hesperidin inhibited inflammatory cell infiltration and mucus hypersecretion compared with the OVA-induced group of mice. These findings provide new insight into the immunopharmacological role of hesperidin in terms of its effects in a murine model of asthma.

  4. Physical characterization and profiling of airway epithelial derived exosomes using light scattering.

    PubMed

    Kesimer, Mehmet; Gupta, Richa

    2015-10-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis.

  5. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed.

  6. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.

    PubMed

    Lin, Ching-Long; Tawhai, Merryn H; McLennan, Geoffrey; Hoffman, Eric A

    2007-08-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.

  7. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  8. Airway adequacy, head posture, and craniofacial morphology.

    PubMed

    Solow, B; Siersbaek-Nielsen, S; Greve, E

    1984-09-01

    Previous studies of different samples have demonstrated associations between craniocervical angulation and craniofacial morphology, between airway obstruction by adenoids and craniofacial morphology, and between airway obstruction and craniocervical angulation. A hypothesis to account for the different sets of associations was suggested by Solow and Kreiborg in 1977. In the present study, the three sets of associations were examined in a single group of nonpathologic subjects with no history of airway obstruction. Cephalometric radiographs taken in the natural head position and rhinomanometric recordings were obtained from twenty-four children 7 to 9 years of age. Correlations were calculated between twenty-seven morphologic, eight postural, and two airway variables. A large craniocervical angle was, on the average, seen in connection with small mandibular dimensions, mandibular retrognathism, and a large mandibular inclination. Obstructed nasopharyngeal airways (defined as a small pm-ad 2 radiographic distance and a large nasal respiratory resistance, NRR, determined rhinomanometrically) were, on the average, seen in connection with a large craniocervical angle and with small mandibular dimensions, mandibular retrognathism, a large mandibular inclination, and retroclination of the upper incisors. The observed correlations were in agreement with the predicted pattern of associations between craniofacial morphology, craniocervical angulation, and airway resistance, thus suggesting the simultaneous presence of such associations in the sample of nonpathologic subjects with no history of airway obstruction.

  9. An asymptotic model of particle deposition at an airway bifurcation

    PubMed Central

    Zierenberg, Jennifer R.; Halpern, David; Filoche, Marcel; Sapoval, Bernard; Grotberg, James B.

    2013-01-01

    Particle transport and deposition associated with flow over a wedge is investigated as a model for particle transport and flow at the carina of an airway bifurcation during inspiration. Using matched asymptotics, a uniformly valid solution is obtained to represent the high Reynolds number flow over a wedge that considers the viscous boundary layer near the wedge and the outer inviscid region and is then used to solve the particle transport equations. Sometimes particle impaction on the wedge is prevented due to the boundary layer. We call this boundary layer shielding (BLS). This effect can be broken down into different types: rejection, trapping and deflection that are described by what happens to the particle’s initial negative velocity normal to the wall either changing sign, reaching zero, or remaining negative in the boundary layer region. The deposition efficiency depends on the critical Stokes number but exhibits a weak dependence on Reynolds number. Deposition efficiency for Sc in the range 0 < Sc < 0.4 yields the following relationship De ≈ (1.867 Sc1.78− 0.016) sin(βπ/2) at large Reynolds numbers, where βπ is the wedge angle. For a specific deposition efficiency, Sc decreases as βπ increases. The distribution of impacted particles was also computed and revealed that particles primarily impact within one airway diameter of the carina, consistent with computational fluid dynamics approaches. This work provides a new insight that the BLS inherent to the wedge component of the structure is the dominant reason for the particle distribution. This finding is important in linking aerosol deposition to the location of airway disease as well as target sites for therapeutic deposition. PMID:22378463

  10. Applying the laser beam for reconstruction of the upper airway

    NASA Astrophysics Data System (ADS)

    Kukwa, Andrzej; Tulibacki, Marek P.; Wojtowicz, Piotr; Dudziec, Katarzyna; Oledzka, Iwona

    2000-11-01

    The authors present their own experience in restoration of the upper airway using a different source of high power laser. There are many patients with a stricture of the upper airway. One of the most common cause insufficiency of this is nosal polyps. Surgical treatment of polyps till now is not sufficiently effective. For this reason we work out a Nd:YAG laser applying technique that let us to reduce a hospitalization time with elongation of an asymptotic period of our patients. Nd:YAG energy we apply for conchoplasty benefiting of its profound coagulation as a distinctive role. This type of laser is very useful in removing of granulation tissue from different areas of the upper airway. Other applications of Nd:YAG laser in our hands is very useful for: coagulation of vessels in Kisselbach area, especially in Rendou-Osler's diseases, resection of the nosal Septo-turbinate adhesions, treatment of hemangiomas and small papillomas in nasal cavity, diminishing of the hypertrophied mucosa in the nasopharyngeal space as well as, reduction of the uvula and soft palate in OSAS patients. In our department we use a Nd:YAG for treatment of precancerous and early stages of cancer and for a palliation procedures in an advanced cancer infiltration in mouth, pharynx and laryngeal region. For treatment removing of cicatrix tissue in a larynx and trachea we use to use a Holm: YAG laser their very superficial penetration of tissues is used for a coagulation of small vessels too let us to resect it without bleeding from a bony and mucosa tissue, as a fragments maxillary sinus wall, nosal septum crest or spine with resection of the posterior pole of a turbinate. Both laser are conveyed by fiberoptic, to reach a pathological changes in many plans, places for this reason we are able to continuously work on a new its applications.