Science.gov

Sample records for airway wall remodelling

  1. Elastosis during airway wall remodeling explains multiple co-existing instability patterns.

    PubMed

    Eskandari, Mona; Javili, Ali; Kuhl, Ellen

    2016-08-21

    Living structures can undergo morphological changes in response to growth and alterations in microstructural properties in response to remodeling. From a biological perspective, airway wall inflammation and airway elastosis are classical hallmarks of growth and remodeling during chronic lung disease. From a mechanical point of view, growth and remodeling trigger mechanical instabilities that result in inward folding and airway obstruction. While previous analytical and computational studies have focused on identifying the critical parameters at the onset of folding, few have considered the post-buckling behavior. All prior studies assume constant microstructural properties during the folding process; yet, clinical studies now reveal progressive airway elastosis, the degeneration of elastic fibers associated with a gradual stiffening of the inner layer. Here, we explore the influence of temporally evolving material properties on the post-bifurcation behavior of the airway wall. We show that a growing and stiffening inner layer triggers an additional subsequent bifurcation after the first instability occurs. Evolving material stiffnesses provoke failure modes with multiple co-existing wavelengths, associated with the superposition of larger folds evolving on top of the initial smaller folds. This phenomenon is exclusive to material stiffening and conceptually different from the phenomenon of period doubling observed in constant-stiffness growth. Our study suggests that the clinically observed multiple wavelengths in diseased airways are a result of gradual airway wall stiffening. While our evolving material properties are inspired by the clinical phenomenon of airway elastosis, the underlying concept is broadly applicable to other types of remodeling including aneurysm formation or brain folding. PMID:27211101

  2. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    PubMed

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  3. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model.

    PubMed

    Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A

    2006-09-01

    Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241

  4. Grading remodeling severity in asthma based on airway wall thickening index and bronchoarterial ratio measured with MSCT

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Brightling, Christopher; Grenier, Philippe A.

    2015-03-01

    Defining therapeutic protocols in asthma and monitoring patient response require a more in-depth knowledge on the disease severity and treatment outcome based on quantitative indicators. This paper aims at grading severity in asthma based on objective morphological measurements obtained in automated fashion from 3-D multi-slice computed tomography (MSCT) image datasets. These measures attempt to capture and quantify the airway remodeling process involved in asthma, both at the level of the airway wall thickness and airway lumen. Two morphological changes are thus targeted here, (1) the airway wall thickening measured as a global index characterizing the increase of wall thickness above a normal value of wall-to-lumen-radius ratio, and (2) the bronchoarterial ratio index assessed globally from numerous locations in the lungs. The combination of these indices provides a grading of the severity of the remodeling process in asthma which correlates with the known phenotype of the patients investigated. Preliminary application to assess the patient response in thermoplasty trials is also considered from the point of view of the defined indices.

  5. Levofloxacin decreased chest wall mechanical inhomogeneities and airway and vascular remodeling in rats with induced hepatopulmonary syndrome.

    PubMed

    Gaio, Eduardo; Amado, Veronica; Rangel, Leonardo; Huang, Wilson; Storck, Rodrigo; Melo-Silva, César Augusto

    2013-12-01

    The administration of antibiotics decreases bacterial translocation, reduces the activity of nitric oxide synthase and improves the gas exchange of hepatopulmonary syndrome (HPS) in rats. We hypothesized that levofloxacin could reduce HPS-induced respiratory mechanical inhomogeneities and airway and pulmonary vascular remodeling. We assessed the respiratory mechanical properties and lung tissue structure in 24 rats assigned to the control, HPS (eHPS) and HPS+levofloxacin (eHPS+L) groups. The administration of levofloxacin reduced the HPS-induced chest wall but not the lung mechanical inhomogeneities. The eHPS airway proportion of elastic fibers increased 20% but was similar between the control and eHPS+L groups. The eHPS vascular collagen increased 25% in eHPS but was similar between the control and eHPS+L groups. Compared to the control group, the vascular proportion of elastic fibers of the eHPS and eHPS+L groups increased by 60% and 16%, respectively. The administration of levofloxacin decreased the HPS-induced chest wall mechanical inhomogeneities and airway and vascular remodeling. PMID:23994178

  6. Intratracheal Bleomycin Causes Airway Remodeling and Airflow Obstruction in Mice

    PubMed Central

    Polosukhin, Vasiliy V.; Degryse, Amber L.; Newcomb, Dawn C.; Jones, Brittany R.; Ware, Lorraine B.; Lee, Jae Woo; Loyd, James E.; Blackwell, Timothy S.; Lawson, William E.

    2014-01-01

    Introduction In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. Methods We quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, we evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post-bleomycin. Results IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high dose bleomycin. Increased TUNEL+ bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4+ fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. Conclusions IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, pro-fibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling. PMID:22394287

  7. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis.

    PubMed

    Keglowich, L F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  8. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  9. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  10. Interleukin-20 promotes airway remodeling in asthma.

    PubMed

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  11. Link between vitamin D and airway remodeling

    PubMed Central

    Berraies, Anissa; Hamzaoui, Kamel; Hamzaoui, Agnes

    2014-01-01

    In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma. PMID:24729717

  12. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  13. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  14. Persistent severe hypereosinophilic asthma is not associated with airway remodeling.

    PubMed

    Alagha, Khuder; Jarjour, Baihas; Bommart, Sebastien; Aviles, Berta; Varrin, Muriel; Gamez, Anne Sophie; Molinari, Nicolas; Vachier, Isabelle; Paganin, Fabrice; Chanez, Pascal; Bourdin, Arnaud

    2015-02-01

    Hypereosinophilic asthma (HEA) is considered as a specific severe asthma phenotype. Whether eosinophils have a link with airway remodeling characterized by pathological (thickening of the basement membrane), functional (persistent airflow impairment and decline in lung function) and imaging features (increase airway wall thickness at CT scan) is still debated. In a one year prospective cohort of 142 severe asthma patients (according to IMI), 14 persistent HEA patients (defined by a persistent blood eosinophilia >500/mm(3) at two consecutive visits) were identified and compared with ten patients without any blood eosinophilia during the follow-up period (NEA, blood eosinophilia always <500/mm(3)). Airflow and lung volumes were recorded. Bronchial biopsies obtained at enrollment were stained for eosinophils (EG2) and basement membrane thickness (BM) was quantified. Imaging by CT scan acquisition was standardized and bronchial abnormalities quantified. ACQ score and exacerbations were prospectively recorded. HEA was not associated with preeminent features of airway remodeling assessed by airflow impairment (Best ever FEV1 values 97% ± 20 in HEA vs. 80 ± 24% in NEA, p = 0.020), decline of FEV1 (FEV1 Decline 40 ± 235 ml/y in HEA vs. 19 ± 40 ml/y in NEA, P = 0.319), submucosal abnormalities (BM thickness 7.80 ± 2.66 μm in HEA vs. 6.84 ± 2.59 in NEA, p = 0.37) and airway wall thickening at CT-scan (0.250 ± 0.036 mm vs. 0.261 ± 0.043, p = 0.92). Eosinophils blood count was inversely correlated with semiquantitative imaging score (rho -0.373, p = 0.039). Smoking history and positive skin prick tests were independent risk factors for increased BM thickening. Outcomes were similar in both populations (Control and exacerbations). Persistent HEA is not associated with evidences of airway remodeling. PMID:25592243

  15. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M.

    PubMed

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H

    2015-10-15

    Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  16. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  17. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma.

    PubMed

    Johnson, Jill R; Folestad, Erika; Rowley, Jessica E; Noll, Elisa M; Walker, Simone A; Lloyd, Clare M; Rankin, Sara M; Pietras, Kristian; Eriksson, Ulf; Fuxe, Jonas

    2015-04-01

    Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRβ, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRβ inhibitor (CP-673451) to investigate the role of PDGFRβ signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRβ signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRβ signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma. PMID:25637607

  18. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma

    PubMed Central

    Folestad, Erika; Rowley, Jessica E.; Noll, Elisa M.; Walker, Simone A.; Lloyd, Clare M.; Rankin, Sara M.; Pietras, Kristian; Eriksson, Ulf; Fuxe, Jonas

    2015-01-01

    Myofibroblast accumulation, subepithelial fibrosis, and vascular remodeling are complicating features of chronic asthma, but the mechanisms are not clear. Platelet-derived growth factors (PDGFs) regulate the fate and function of various mesenchymal cells and have been implicated as mediators of lung fibrosis. However, it is not known whether PDGF-BB signaling via PDGFRβ, which is critical for the recruitment of pericytes to blood vessels, plays a role in airway remodeling in chronic asthma. In the present study, we used a selective PDGFRβ inhibitor (CP-673451) to investigate the role of PDGFRβ signaling in the development of airway remodeling and lung dysfunction in an established mouse model of house dust mite-induced chronic allergic asthma. Unexpectedly, we found that pharmacological inhibition of PDGFRβ signaling in the context of chronic aeroallergen exposure led to exacerbated lung dysfunction and airway smooth muscle thickening. Further studies revealed that the inflammatory response to aeroallergen challenge in mice was associated with decreased PDGF-BB expression and the loss of pericytes from the airway microvasculature. In parallel, cells positive for pericyte markers accumulated in the subepithelial region of chronically inflamed airways. This process was exacerbated in animals treated with CP-673451. The results indicate that perturbed PDGF-BB/PDGFRβ signaling and pericyte accumulation in the airway wall may contribute to airway remodeling in chronic allergic asthma. PMID:25637607

  19. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  20. LIGHT is a crucial mediator of airway remodeling.

    PubMed

    Hung, Jen-Yu; Chiang, Shyh-Ren; Tsai, Ming-Ju; Tsai, Ying-Ming; Chong, Inn-Wen; Shieh, Jiunn-Min; Hsu, Ya-Ling

    2015-05-01

    Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling. PMID:25251281

  1. Obliterative airway remodelling in transplanted and non-transplanted lungs.

    PubMed

    Jonigk, Danny; Theophile, Katharina; Hussein, Kais; Bock, Oliver; Lehmann, Ulrich; Bockmeyer, Clemens L; Gottlieb, Jens; Fischer, Stefan; Simon, Andre; Welte, Tobias; Maegel, Lavinia; Kreipe, Hans; Laenger, Florian

    2010-09-01

    Obliterative airway remodelling is a morphological sequence in a variety of pulmonary diseases. Notably, bronchiolitis obliterans represents one of the key complications of lung transplantation, induced by (immigrating) myofibroblasts. A comparative expression analysis of obliterative airway remodelling in transplanted and non-transplanted patients has not been reported so far. Obliterated and unremodelled airways from explanted lungs (n = 19) from patients suffering from chronic allograft dysfunction, infection, graft-versus-host disease and toxic exposure were isolated by laser-assisted microdissection. Airways from lung allografts harvested shortly before and after transplantation (n = 4) as well as fibroblastic foci from lungs with interstitial pulmonary fibrosis (n = 4) served as references. Pre-amplified cDNA was analysed by quantitative real-time RT-PCR for expression of fibrosis, inflammation and apoptosis-associated genes. Composition of infiltrating cells and protein expression were assessed by conventional histology and immunohistochemistry. Bronchiolitis obliterans in transplanted patients showed a significant increase of BMP-7 expression (p = 0.0141 compared with controls), while TGF-beta1 and FGF-2 as well as BMP-4 and BMP-7 were up-regulated in fibroblastic foci in interstitial pulmonary fibrosis (p < 0.0424 compared with controls). Regarding other fibrosis-associated genes (BMP-6, SMAD-3, CASP-3 and CASP-9, FASLG, NF-KB1, IL-1 and IL-2) as well as cellularity and cellular composition, no significant differences between obliterative airway remodelling in transplanted and non-transplanted patients could be shown. Obliterative airway remodelling in lung allografts and in non-transplanted patients share many morphological and genetic traits. BMPs, especially BMP-7, warrant further investigation as possible markers for the aggravation of airway remodelling. PMID:20632031

  2. Microvascular remodelling in chronic airway inflammation in mice.

    PubMed

    Thurston, G; Maas, K; Labarbara, A; Mclean, J W; McDonald, D M

    2000-10-01

    1. Chronic inflammation is associated with blood vessel remodelling, including vessel proliferation and enlargement, and changes in vessel phenotype. We sought to characterize these changes in chronic airway inflammation and to determine whether corticosteroids that inhibit inflammation, such as dexamethasone, can also reduce microvascular remodelling. 2. Chronic airway inflammation was induced in C3H mice by infection with Mycoplasmapulmonis and the tracheal vessels treatment also decreased the immunoreactivity for P-selectin and the number of adherent leucocytes (595 +/- 203 vs 2,024 +/- 393 cells/ mm2 in treated and non-treated infected mice, respectively). 6. We conclude that microvascular enlargement and changes in vessel phenotype are features of some types of chronic inflammation and, furthermore, that dexamethasone reverses the microvascular enlargement, changes in vessel phenotype and leucocyte influx associated with chronic inflammatory airway disease. PMID:11022979

  3. The role of the epithelium in airway remodeling in asthma.

    PubMed

    Davies, Donna E

    2009-12-01

    The bronchial epithelium is the barrier to the external environment and plays a vital role in protection of the internal milieu of the lung. It functions within the epithelial-mesenchymal trophic unit to control the local microenvironment and help maintain tissue homeostasis. However, in asthma, chronic perturbation of these homeostatic mechanisms leads to alterations in the structure of the airways, termed remodeling. Damage to the epithelium is now recognized to play a key role in driving airway remodeling. We have postulated that epithelial susceptibility to environmental stress and injury together with impaired repair responses results in generation of signals that act on the underlying mesenchyme to propagate and amplify inflammatory and remodeling responses in the submucosa. Many types of challenges to the epithelium, including pathogens, allergens, environmental pollutants, cigarette smoke, and even mechanical forces, can elicit production of mediators by the epithelium, which can be translated into remodeling responses by the mesenchyme. Several important mediators of remodeling have been identified, most notably transforming growth factor-beta, which is released from damaged/repairing epithelium or in response to inflammatory mediators, such as IL-13. The cross talk between the epithelium and the underlying mesenchyme to drive remodeling responses is considered in the context of subepithelial fibrosis and potential pathogenetic mechanisms linked to the asthma susceptibility gene, a disintegrin and metalloprotease (ADAM)33. PMID:20008875

  4. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  5. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma.

    PubMed

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Previous studies proved that bone marrow-derived mesenchymal stem cells (BMSCs) could improve a variety of immune-mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty-eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. The number of CD4(+) CD25(+) regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin-eosin, immunofluorescence staining, periodic-acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL-12 and high levels of IL-13, IL-4, OVA-specific IgG1, IgE, and IgG2a and the fewer number of CD4(+) CD25(+) regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL-4, OVA-specific IgE, and OVA-specific IgG1, but elevated level of IL-12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL-10, IFN-Y, and IL-13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1-Th2 profiles and up-regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. PMID:23334934

  6. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma

    PubMed Central

    Cohen, Lance; E, Xueping; Tarsi, Jaime; Ramkumar, Thiruvamoor; Horiuchi, Todd K.; Cochran, Rebecca; DeMartino, Steve; Schechtman, Kenneth B.; Hussain, Iftikhar; Holtzman, Michael J.; Castro, Mario

    2007-01-01

    Rationale: Despite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction. Objectives: To evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling. Methods: In bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis. Measurements and Main Results: Airway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p = 0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p = 0.002) and Ki67 was increased (p < 0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p < 0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p = 0.002), suggesting increased cell death. Conclusions: In subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe

  7. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-01-01

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma. PMID:26517982

  8. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  9. Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction

    PubMed Central

    Khan, Mohammad Afzal; Ellis, Russ; Inman, Mark D.; Bates, Jason H. T.; Sanderson, Michael J.

    2010-01-01

    Understanding how tissue remodeling affects airway responsiveness is of key importance, but experimental data bearing on this issue remain scant. We used lung explants to investigate the effects of enzymatic digestion on the rate and magnitude of airway narrowing induced by acetylcholine. To link the observed changes in narrowing dynamics to the degree of alteration in tissue mechanics, we compared our experimental results with predictions made by a computational model of a dynamically contracting elastic airway embedded in elastic parenchyma. We found that treatment of explanted airways with two different proteases (elastase and collagenase) resulted in differential effects on the dynamics of airway narrowing following application of ACh. Histological corroboration of these different effects is manifest in different patterns of elimination of collagen and elastin from within the airway wall and the surrounding parenchyma. Simulations with a computational model of a dynamically contracting airway embedded in elastic parenchyma suggest that elastase exerts its functional effects predominately through a reduction in parenchymal tethering, while the effects of collagenase are more related to a reduction in airway wall stiffness. We conclude that airway and parenchymal remodeling as a result of protease activity can have varied effects on the loads opposing ASM shortening, with corresponding consequences for airway responsiveness. PMID:20435686

  10. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  11. Overexpression of Smad2 Drives House Dust Mite–mediated Airway Remodeling and Airway Hyperresponsiveness via Activin and IL-25

    PubMed Central

    Gregory, Lisa G.; Mathie, Sara A.; Walker, Simone A.; Pegorier, Sophie; Jones, Carla P.; Lloyd, Clare M.

    2010-01-01

    Rationale: Airway hyperreactivity and remodeling are characteristic features of asthma. Interactions between the airway epithelium and environmental allergens are believed to be important in driving development of pathology, particularly because altered epithelial gene expression is common in individuals with asthma. Objectives: To investigate the interactions between a modified airway epithelium and a common aeroallergen in vivo. Methods: We used an adenoviral vector to generate mice overexpressing the transforming growth factor-β signaling molecule, Smad2, in the airway epithelium and exposed them to house dust mite (HDM) extract intranasally. Measurements and Main Results: Smad2 overexpression resulted in enhanced airway hyperreactivity after allergen challenge concomitant with changes in airway remodeling. Subepithelial collagen deposition was increased and smooth muscle hyperplasia was evident resulting in thickening of the airway smooth muscle layer. However, there was no increase in airway inflammation in mice given the Smad2 vector compared with the control vector. Enhanced airway hyperreactivity and remodeling did not correlate with elevated levels of Th2 cytokines, such as IL-13 or IL-4. However, mice overexpressing Smad2 in the airway epithelium showed significantly enhanced levels of IL-25 and activin A after HDM exposure. Blocking activin A with a neutralizing antibody prevented the increase in lung IL-25 and inhibited subsequent collagen deposition and also the enhanced airway hyperreactivity observed in the Smad2 overexpressing HDM-exposed mice. Conclusions: Epithelial overexpression of Smad2 can specifically alter airway hyperreactivity and remodeling in response to an aeroallergen. Moreover, we have identified novel roles for IL-25 and activin A in driving airway hyperreactivity and remodeling. PMID:20339149

  12. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    showed a positive correlation with PaO2/FiO2 (r2 = 0.34; P = 0.02) and a negative correlation with plateau pressure (r2 = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO2/FiO2 (r2 = 0.27; P = 0.04). Conclusions Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS. PMID:21211006

  13. Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling

    PubMed Central

    Veraldi, Kristen L.; Gibson, Bethany T.; Yasuoka, Hidekata; Myerburg, Michael M.; Kelly, Elizabeth A.; Balzar, Silvana; Jarjour, Nizar N.; Pilewski, Joseph M.; Wenzel, Sally E.; Feghali-Bostwick, Carol A.

    2009-01-01

    Rationale: The hallmarks of allergic asthma are airway inflammation, obstruction, and remodeling. Airway remodeling may lead to irreversible airflow obstruction with increased morbidity and mortality. Despite advances in the treatment of asthma, the mechanisms underlying airway remodeling are still poorly understood. We reported that insulin-like growth factor (IGF) binding proteins (IGFBPs) contribute to extracellular matrix deposition in idiopathic pulmonary fibrosis; however, their contribution to airway remodeling in asthma has not been established. Objectives: We hypothesized that IGFBP-3 is overexpressed in asthma and contributes to airway remodeling. Methods: We evaluated levels of IGFBP-3 in tissues and bronchoalveolar lavage fluid from patients with asthma at baseline and 48 hours after allergen challenge, in reparative epithelium in an in vitro wounding assay, and in conditioned media from cytokine- and growth factor–stimulated primary epithelial cells. Measurements and Main Results: IGFBP-3 levels and distribution were evaluated by Western blot, ELISA, and immunofluorescence. IGFBP-3 is increased in vivo in the airway epithelium of patients with asthma compared with normal control subjects. The concentration of IGFBP-3 is increased in the bronchoalveolar lavage fluid of patients with asthma after allergen challenge, its levels are increased in reparative epithelium in an in vitro wounding assay and in the conditioned medium of primary airway epithelial cell cultures stimulated with IGF-I. Conclusions: Our results suggest that one mechanism of allergic airway remodeling is through the secretion of the profibrotic IGFBP-3 from IGF-I–stimulated airway epithelial cells during allergic inflammation. PMID:19608721

  14. The footprint of TGF-β in airway remodeling of the mustard lung.

    PubMed

    Shahriary, Alireza; Seyedzadeh, Mir Hadi; Ahmadi, Ali; Salimian, Jafar

    2015-01-01

    Mustard lung is a major pulmonary complication in individuals exposed to sulfur mustard (SM) gas during the Iran-Iraq war. It shares common pathological and clinical features with some chronic inflammatory lung disorders, particularly chronic obstructive pulmonary disease (COPD). Airway remodeling, which is one of the main causes of lung dysfunction and the dominant phenomenon of chronic pulmonary diseases, is seen in the mustard lung. Among all mediators involved in the remodeling process, the transforming growth factor (TGF)-β plays a pivotal role in lung fibrosis and consequently in the airway remodeling. Regarding the high levels of this mediator detected in mustard lung patients, in the present study, we have discussed the possible roles of TGF-β in airway remodeling (including epithelial layer damage, subepithelial fibrosis and angiogenesis). Finally, based on TGF-β targeting, we have reviewed new airway remodeling therapeutic approaches. PMID:26606948

  15. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  16. ISO-1, a macrophage migration inhibitory factor antagonist, inhibits airway remodeling in a murine model of chronic asthma.

    PubMed

    Chen, Pei-Fen; Luo, Ya-ling; Wang, Wei; Wang, Jiang-xin; Lai, Wen-yan; Hu, Si-ming; Cheng, Kai Fan; Al-Abed, Yousef

    2010-01-01

    Airway remodeling is the process of airway structural change that occurs in patients with asthma in response to persistent inflammation and leads to increasing disease severity. Drugs that decrease this persistent inflammation play a crucial role in managing asthma episodes. Mice sensitized (by intraperitoneal administration) and then challenged (by inhalation) with ovalbumin (OVA) develop an extensive eosinophilic inflammatory response, goblet cell hyperplasia, collagen deposition, airway smooth muscle thickening, and airway wall area increase, similar to pathologies observed in human asthma. We used OVA-sensitized/challenged mice as a murine model of chronic allergic airway inflammation with subepithelial fibrosis (i.e., asthma). In this OVA mouse model, mRNA and protein of macrophage migration inhibitory factor (MIF) are upregulated, a response similar to what has been observed in the pathogenesis of acute inflammation in human asthma. We hypothesized that MIF induces transforming growth factor-β1 (TGF-β1) synthesis, which has been shown to play an important role in asthma and airway remodeling. To explore the role of MIF in the development of airway remodeling, we evaluated the effects of an MIF small-molecule antagonist, (S,R)3-(4-hy-droxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), on pathologies associated with the airway-remodeling process in the OVA mouse model. We found that administration of ISO-1 significantly mitigated all symptoms caused by OVA treatment. In addition, the treatment of OVA-sensitized mice with the MIF antagonist ISO-1 significantly reduced TGF-β1 mRNA levels in pulmonary tissue and its protein level in bronchial alveolar lavage fluid supernatants. We believe the repression of MIF in the ISO-1 treatment group led to the significant suppression observed in the inflammatory responses associated with the allergen-induced lung inflammation and fibrosis in our murine asthma (OVA) model. Our results implicate a

  17. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats.

    PubMed

    Wu, Li-Qin; Wang, Rui-Li; Dai, Yuan-Rong; Li, Feng-Qin; Wu, Hai-Ya; Yan, Sun-Shun; Wang, Liang-Rong; Jin, Li-da; Xia, Xiao-Dong

    2015-02-01

    Roxithromycin (RXM) expresses anti-asthmatic effects that are separate from its antibiotic activity, but its effects on airway remodeling are still unknown. Here, we evaluated the effects of RXM on airway remodeling and the expression of caveolin-1 and phospho-p42/p44mitogen-activated protein kinase (phospho-p42/p44MAPK) in chronic asthmatic rats. The chronic asthma was induced by ovalbumin/Al(OH)3 sensitization and ovalbumin challenge, RXM (30mg/kg) or dexamethasone (0.5mg/kg) was given before airway challenge initiation. We measured the thickness of bronchial wall and bronchial smooth muscle cell layer to indicate airway remodeling, and caveolin-1 and phospho-p42/p44MAPK expression in lung tissue and airway smooth muscle were detected by immunohistochemistry and western blot analysis, respectively. The results demonstrated that RXM treatment decreased the thickness of bronchial wall and bronchial smooth muscle cell layer, and also downregulated the phospho-p42/p44MAPK expression and upregulated the caveolin-1 expression. The above effects of RXM were similar to dexamethasone. Our results suggested that pretreatment with RXM could suppress airway remodeling and regulate the expression of caveolin-1 and phospho-p42/p44MAPK in chronic asthmatic rats. PMID:25479721

  18. Pathway Reconstruction of Airway Remodeling in Chronic Lung Diseases: A Systems Biology Approach

    PubMed Central

    Najafi, Ali; Masoudi-Nejad, Ali; Ghanei, Mostafa; Nourani, Mohamad-Reza; Moeini, Ali

    2014-01-01

    Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients. PMID:24978043

  19. Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs.

    PubMed

    Jonigk, Danny; Merk, Marlene; Hussein, Kais; Maegel, Lavinia; Theophile, Katharina; Muth, Michaela; Lehmann, Ulrich; Bockmeyer, Clemens L; Mengel, Michael; Gottlieb, Jens; Welte, Tobias; Haverich, Axel; Golpon, Heiko; Kreipe, Hans; Laenger, Florian

    2011-02-01

    Obliteration of the small airways is a largely unresolved challenge in pulmonary medicine. It represents either the irreversible cause of functional impairment or a morphologic disorder of limited importance in a multitude of diseases. Bronchiolitis obliterans is a key complication of lung transplantation. No predictive markers for the onset of obliterative remodeling are currently available. To further elucidate the molecular mechanisms of airway remodeling, compartment-specific expression patterns were analyzed in patients. For this purpose, remodeled and nonremodeled bronchioli were isolated from transplanted and nontransplanted lung explants using laser-assisted microdissection (n = 24). mRNA expression of 45 fibrosis-associated genes was measured using quantitative real-time RT-PCR. For 20 genes, protein expression was also analyzed by immunohistochemistry. Infiltrating cells were characterized at conventional histology and immunohistochemistry. Obliterative remodeling of the small airways in transplanted and nontransplanted lungs shared similar grades of chronic inflammation and pivotal fibrotic pathways such as transforming growth factor β signaling and increased collagen expression. Bone morphogenetic protein and thrombospondin signaling, and also matrix metalloproteinases and tissue inhibitor of metalloproteinases, were primarily up-regulated in obliterative airway remodeling in nontransplanted lungs. In transplanted lungs, clinical remodeled bone morphogenetic protein but nonremodeled bronchioli were characterized by a concordant up-regulation of matrix metalloproteinase-9, RANTES, and tissue inhibitor of metalloproteinase-1. These distinct expression patterns warrant further investigation as potential markers of impending airway remodeling, especially for prospective longitudinal molecular profiling. PMID:21281792

  20. Quantitative computed tomography–derived clusters: Redefining airway remodeling in asthmatic patients☆

    PubMed Central

    Gupta, Sumit; Hartley, Ruth; Khan, Umair T.; Singapuri, Amisha; Hargadon, Beverly; Monteiro, William; Pavord, Ian D.; Sousa, Ana R.; Marshall, Richard P.; Subramanian, Deepak; Parr, David; Entwisle, James J.; Siddiqui, Salman; Raj, Vimal; Brightling, Christopher E.

    2014-01-01

    Background Asthma heterogeneity is multidimensional and requires additional tools to unravel its complexity. Computed tomography (CT)–assessed proximal airway remodeling and air trapping in asthmatic patients might provide new insights into underlying disease mechanisms. Objectives The aim of this study was to explore novel, quantitative, CT-determined asthma phenotypes. Methods Sixty-five asthmatic patients and 30 healthy subjects underwent detailed clinical, physiologic characterization and quantitative CT analysis. Factor and cluster analysis techniques were used to determine 3 novel, quantitative, CT-based asthma phenotypes. Results Patients with severe and mild-to-moderate asthma demonstrated smaller mean right upper lobe apical segmental bronchus (RB1) lumen volume (LV) in comparison with healthy control subjects (272.3 mm3 [SD, 112.6 mm3], 259.0 mm3 [SD, 53.3 mm3], 366.4 mm3 [SD, 195.3 mm3], respectively; P = .007) but no difference in RB1 wall volume (WV). Air trapping measured based on mean lung density expiratory/inspiratory ratio was greater in patients with severe and mild-to-moderate asthma compared with that seen in healthy control subjects (0.861 [SD, 0.05)], 0.866 [SD, 0.07], and 0.830 [SD, 0.06], respectively; P = .04). The fractal dimension of the segmented airway tree was less in asthmatic patients compared with that seen in control subjects (P = .007). Three novel, quantitative, CT-based asthma clusters were identified, all of which demonstrated air trapping. Cluster 1 demonstrates increased RB1 WV and RB1 LV but decreased RB1 percentage WV. On the contrary, cluster 3 subjects have the smallest RB1 WV and LV values but the highest RB1 percentage WV values. There is a lack of proximal airway remodeling in cluster 2 subjects. Conclusions Quantitative CT analysis provides a new perspective in asthma phenotyping, which might prove useful in patient selection for novel therapies. PMID:24238646

  1. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  2. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma

    PubMed Central

    Lee, Hwa Young; Rhee, Chin Kook; Kang, Ji Young; Park, Chan Kwon; Lee, Sook Young; Kwon, Soon Suk; Kim, Young Kyoon; Yoon, Hyoung Kyu

    2016-01-01

    Background/Aims: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. Methods: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. Results: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-κB. Conclusions: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-κB pathways. PMID:26767862

  3. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  4. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice.

    PubMed

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  5. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling. PMID:26780233

  6. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  7. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life

    PubMed Central

    Davies, Elizabeth R.; Kelly, Joanne F.C.; Howarth, Peter H.; Wilson, David I.; Holgate, Stephen T.; Davies, Donna E.; Whitsett, Jeffrey A.; Haitchi, Hans Michael

    2016-01-01

    Asthma is a chronic inflammatory airways disease that usually begins in early life and involves gene-environment interactions. Although most asthma exhibits allergic inflammation, many allergic individuals do not have asthma. Here, we report how the asthma gene a disintegrin and metalloprotease 33 (ADAM33) acts as local tissue susceptibility gene that promotes allergic asthma. We show that enzymatically active soluble ADAM33 (sADAM33) is increased in asthmatic airways and plays a role in airway remodeling, independent of inflammation. Furthermore, remodeling and inflammation are both suppressed in Adam33-null mice after allergen challenge. When induced in utero or added ex vivo, sADAM33 causes structural remodeling of the airways, which enhances postnatal airway eosinophilia and bronchial hyperresponsiveness following subthreshold challenge with an aeroallergen. This substantial gene-environment interaction helps to explain the end-organ expression of allergic asthma in genetically susceptible individuals. Finally, we show that sADAM33-induced airway remodeling is reversible, highlighting the therapeutic potential of targeting ADAM33 in asthma. PMID:27489884

  8. Automated segmentation of lung airway wall area measurements from bronchoscopic optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Choy, Stephen; Wheatley, Andrew; McCormack, David; Coxson, Harvey O.; Lam, Stephen; Parraga, Grace

    2011-03-01

    Chronic Obstructive Pulmonary Disease (COPD) affects almost 600 million people and is currently the fourth leading cause of death worldwide. COPD is an umbrella term for respiratory symptoms that accompany destruction of the lung parenchyma and/or remodeling of the airway wall, the sum of which result in decreased expiratory flow, dyspnea and gas trapping. Currently, x-ray computed tomography (CT) is the main clinical method used for COPD imaging, providing excellent spatial resolution for quantitative tissue measurements although dose limitations and the fundamental spatial resolution of CT limit the measurement of airway dimensions beyond the 5th generation. To address this limitation, we are piloting the use of bronchoscopic Optical Coherence Tomography (OCT), by exploiting its superior spatial resolution of 5-15 micrometers for in vivo airway imaging. Currently, only manual segmentation of OCT airway lumen and wall have been reported but manual methods are time consuming and prone to observer variability. To expand the utility of bronchoscopic OCT, automatic and robust measurement methods are required. Therefore, our objective was to develop a fully automated method for segmenting OCT airway wall dimensions and here we explore several different methods of image-regeneration, voxel clustering and post-processing. Our resultant automated method used K-means or Fuzzy c-means to cluster pixel intensity and then a series of algorithms (i.e. cluster selection, artifact removal, de-noising) was applied to process the clustering results and segment airway wall dimensions. This approach provides a way to automatically and rapidly segment and reproducibly measure airway lumen and wall area.

  9. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

    PubMed

    Rock, Jason R; Randell, Scott H; Hogan, Brigid L M

    2010-01-01

    The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease. PMID:20699479

  10. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model

    PubMed Central

    Spaziano, Giuseppe; Piegari, Elena; Matteis, Maria; Cappetta, Donato; Esposito, Grazia; Russo, Rosa; Tartaglione, Gioia; De Palma, Raffaele; Rossi, Francesco; D’Agostino, Bruno

    2016-01-01

    Background The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. Objectives To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. Methods GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. Results Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. Conclusion Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide

  11. Airway wall eosinophilia is not a feature of equine heaves.

    PubMed

    Dubuc, J; Lavoie, J-P

    2014-11-01

    The objective of this study was to determine whether eosinophils infiltrate the airway wall of horses with heaves. Eosinophils were evaluated using paraffin embedded lung tissues from six heaves-affected horses in crisis and six aged-matched controls. Slides were stained using Luna's method and eosinophils enumerated using histomorphometric techniques. Total eosinophil counts (expressed per mm(2) of basement membrane) were significantly higher in the airways of controls horses than in horses with heaves. Intraluminal, intraepithelial, and airway smooth muscle eosinophils counts were also increased in control horses. The results suggest that eosinophils do not contribute to the persistent airway obstruction in heaves. PMID:25239297

  12. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model.

    PubMed

    Bullone, Michela; Beauchamp, Guy; Godbout, Mireille; Martin, James G; Lavoie, Jean-Pierre

    2015-01-01

    Endobronchial ultrasonography (EBUS) revealed differences in the thickness of the layer representing subepithelial tissues (L2) between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM) remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2) and histological cuts (ASM area/Pi2), and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves) that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001), in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05). Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05). In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way. PMID:26348727

  13. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model

    PubMed Central

    Bullone, Michela; Beauchamp, Guy; Godbout, Mireille; Martin, James G.; Lavoie, Jean-Pierre

    2015-01-01

    Endobronchial ultrasonography (EBUS) revealed differences in the thickness of the layer representing subepithelial tissues (L2) between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM) remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2) and histological cuts (ASM area/Pi2), and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves) that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001), in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05). Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05). In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way. PMID:26348727

  14. Effect of diosmetin on airway remodeling in a murine model of chronic asthma.

    PubMed

    Ge, Ai; Liu, Yanan; Zeng, Xiaoning; Kong, Hui; Ma, Yuan; Zhang, Jiaxiang; Bai, Fangfang; Huang, Mao

    2015-08-01

    Bronchial asthma, one of the most common allergic diseases, is characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. The anti-oxidant flavone aglycone diosmetin ameliorates the inflammation in pancreatitis, but little is known about its impact on asthma. In this study, the effects of diosmetin on chronic asthma were investigated with an emphasis on the modulation of airway remodeling in BALB/c mice challenged with ovalbumin (OVA). It was found that diosmetin significantly relieved inflammatory cell infiltration, goblet cell hyperplasia, and collagen deposition in the lungs of asthmatic mice and notably reduced AHR in these animals. The OVA-induced increases in total cell and eosinophil counts in bronchoalveolar lavage fluid were reversed, and the level of OVA-specific immunoglobulin E in serum was attenuated by diosmetin administration, implying an anti-Th2 activity of diosmetin. Furthermore, diosmetin remarkably suppressed the expression of smooth muscle actin alpha chain, indicating a potent anti-proliferative effect of diosmetin on airway smooth muscle cells (ASMCs). Matrix metallopeptidase-9, transforming growth factor-β1, and vascular endothelial growth factor levels were also alleviated by diosmetin, suggesting that the remission of airway remodeling might be attributed to the decline of these proteins. Taken together, our findings provided a novel profile of diosmetin with anti-remodeling therapeutic benefits, highlighting a new potential of diosmetin in remitting the ASMC proliferation in chronic asthma. PMID:26033789

  15. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis.

    PubMed

    Royce, Simon G; Moodley, Yuben; Samuel, Chrishan S

    2014-03-01

    Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments. PMID:24513131

  16. A Plasminogen Activator Inhibitor-1 Inhibitor Reduces Airway Remodeling in a Murine Model of Chronic Asthma

    PubMed Central

    Lee, Sun H.; Eren, Mesut; Vaughan, Douglas E.; Schleimer, Robert P.

    2012-01-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  17. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma.

    PubMed

    Lee, Sun H; Eren, Mesut; Vaughan, Douglas E; Schleimer, Robert P; Cho, Seong H

    2012-06-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  18. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  19. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  20. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling.

    PubMed

    Johnson, Jill R; Wiley, Ryan E; Fattouh, Ramzi; Swirski, Filip K; Gajewska, Beata U; Coyle, Anthony J; Gutierrez-Ramos, José-Carlos; Ellis, Russ; Inman, Mark D; Jordana, Manel

    2004-02-01

    It is now fully appreciated that asthma is a disease of a chronic nature resulting from intermittent or continued aeroallergen exposure leading to airway inflammation. To investigate responses to continuous antigen exposure, mice were exposed to either house dust mite extract (HDM) or ovalbumin intranasally for five consecutive days, followed by 2 days of rest, for up to seven consecutive weeks. Continuous exposure to HDM, unlike ovalbumin, elicited severe and persistent eosinophilic airway inflammation. Flow cytometric analysis demonstrated an accumulation of CD4+ lymphocytes in the lung with elevated expression of inducible costimulator a marker of T cell activation, and of T1/ST2, a marker of helper T Type 2 effector cells. We also detected increased and sustained production of helper T cell Type 2-associated cytokines by splenocytes of HDM-exposed mice on in vitro HDM recall. Histologic analysis of the lung showed evidence of airway remodeling in mice exposed to HDM, with goblet cell hyperplasia, collagen deposition, and peribronchial accumulation of contractile tissue. In addition, HDM-exposed mice demonstrated severe airway hyperreactivity to methacholine. Finally, these responses were studied for up to 9 weeks after cessation of HDM exposure. We observed that whereas airway inflammation resolved fully, the remodeling changes did not resolve and airway hyperreactivity resolved only partly. PMID:14597485

  1. The Wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma

    PubMed Central

    Kwak, Hyun Jung; Park, Dong Won; Seo, Ji-Young; Moon, Ji-Yong; Kim, Tae Hyung; Sohn, Jang Won; Shin, Dong Ho; Yoon, Ho Joo; Park, Sung Soo; Kim, Sang-Heon

    2015-01-01

    Airway remodeling is a key characteristic of chronic asthma, particularly in patients with a fixed airflow limitation. The mechanisms underlying airway remodeling are poorly understood, and no therapeutic option is available. The Wnt/β-catenin signaling pathway is involved in various physiological and pathological processes, including fibrosis and smooth muscle hypertrophy. In this study, we investigated the roles of Wnt/β-catenin signaling in airway remodeling in patients with asthma. Wnt7a mRNA expression was prominent in induced sputum from patients with asthma compared with that from healthy controls. Next, we induced a chronic asthma mouse model with airway remodeling features, including subepithelial fibrosis and airway smooth muscle hyperplasia. Higher expression of Wnt family proteins and β-catenin was detected in the lung tissue of mice with chronic asthma compared to control mice. Blocking β-catenin expression with a specific siRNA attenuated airway inflammation and airway remodeling. Decreased subepithelial fibrosis and collagen accumulation in the β-catenin siRNA-treated mice was accompanied by reduced expression of transforming growth factor-β. We further showed that suppressing β-catenin in the chronic asthma model inhibited smooth muscle hyperplasia by downregulating the tenascin C/platelet-derived growth factor receptor pathway. Taken together, these findings demonstrate that the Wnt/β-catenin signaling pathway is highly expressed and regulates the development of airway remodeling in chronic asthma. PMID:26655831

  2. Neutrophil Dependence of Vascular Remodeling after Mycoplasma Infection of Mouse Airways

    PubMed Central

    Baluk, Peter; Phillips, Keeley; Yao, Li-Chin; Adams, Alicia; Nitschké, Maximilian; McDonald, Donald M.

    2015-01-01

    Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma pulmonis infection as a model of sustained inflammation in mice. The time course of vascular remodeling coincided with the influx of neutrophils during the first few days after infection and peaked at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed in Cxcr2−/− mice, in which neutrophils adhered to the endothelium of venules but did not extravasate into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2. Tumor necrosis factor α (TNFα) expression increased more than sixfold in the trachea of wild-type and Cxcr2−/− mice, but intratracheal administration of TNFα did not induce vascular remodeling similar to that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries into venules in the airways of mice with Mycoplasma infection and that TNFα signaling is necessary but not sufficient for vascular remodeling. PMID:24726646

  3. Airway wall thickness assessment: a new functionality in virtual bronchoscopy investigation

    NASA Astrophysics Data System (ADS)

    Saragaglia, A.; Fetita, C.; Brillet, P. Y.; Prêteux, F.; Grenier, P. A.

    2007-03-01

    While classic virtual bronchoscopy offers visualization facilities for investigating the shape of the inner airway wall surface, it provides no information regarding the local thickness of the wall. Such information may be crucial for evaluating the severity of remodeling of the bronchial wall in asthma and to guide bronchial biopsies for staging of lung cancers. This paper develops a new functionality with the virtual bronchoscopy, allowing to estimate and map the information of the bronchus wall thickness on the lumen wall surface, and to display it as coded colors during endoluminal navigation. The local bronchus wall thickness estimation relies on a new automated 3D segmentation approach using strong 3D morphological filtering and model-fitting. Such an approach reconstructs the inner/outer airway wall surfaces from multi-detector CT data as follows. First, the airway lumen is segmented and its surface geometry reconstructed using either a restricted Delaunay or a Marching Cubes based triangulation approach. The lumen mesh is then locally deformed in the surface normal direction under specific force constraints which stabilize the model evolution at the level of the outer bronchus wall surface. The developed segmentation approach was validated with respect to both 3D mathematicallysimulated image phantoms of bronchus-vessel subdivisions and to state-of-the-art cross-section area estimation techniques when applied to clinical data. The investigation in virtual bronchoscopy mode is further enhanced by encoding the local wall thickness at each vertex of the lumen surface mesh and displaying it during navigation, according to a specific color map.

  4. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  5. Investigating in vivo airway wall mechanics during tidal breathing with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Robertson, Claire; Lee, Sang-Won; Ahn, Yeh-Chan; Mahon, Sari; Chen, Zhongping; Brenner, Matthew; George, Steven C.

    2011-10-01

    Optical coherence tomography (OCT) is a nondestructive imaging technique offering high temporal and spatial resolution, which makes it a natural choice for assessing tissue mechanical properties. We have developed methods to mechanically analyze the compliance of the rabbit trachea in vivo using tissue deformations induced by tidal breathing, offering a unique tool to assess the behavior of the airways during their normal function. Four-hundred images were acquired during tidal breathing with a custom-built endoscopic OCT system. The surface of the tissue was extracted from a set of these images via image processing algorithms, filtered with a bandpass filter set at respiration frequency to remove cardiac and probe motion, and compared to ventilatory pressure to calculate wall compliance. These algorithms were tested on elastic phantoms to establish reliability and reproducibility. The mean tracheal wall compliance (in five animals) was 1.3+/-0.3×10-5 (mm Pa)-1. Unlike previous work evaluating airway mechanics, this new method is applicable in vivo, noncontact, and loads the trachea in a physiological manner. The technique may have applications in assessing airway mechanics in diseases such as asthma that are characterized by significant airway remodeling.

  6. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  7. Evaluation of scoring accuracy for airway wall thickness

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Ko, Jane P.; Godoy, Myrna C. B.

    2009-02-01

    Bronchial wall thickening is commonly observed in airway diseases. One method often used to quantitatively evaluate wall thickening in CT images is to estimate the ratio of the bronchial wall to the accompanying artery, or BWA ratio, and then assign a severity score based on the ratio. Assessment by visual inspection is unfortunately limited to airways perpendicular or parallel to the scanning plane. With high-resolution images from multi-detector CT scanners, it becomes possible to assess airways in any orientation. We selected CT scans from 20 patients with mild to severe COPD. A computer system automatically segmented each bronchial tree and measured the bronchial wall thicknesses. Next, neighboring arteries were detected and measured to determine BWA ratios. A score characterizing the extent and severity of wall thickening within each lobe was computed according to recommendations by Sheehan et al [1]. Two experienced radiologists independently scored wall thickening using visual assessment. Spearman's rank correlation showed a non-significant negative correlation (r=-0.1) between the computer and the reader average (p=0.4), while the correlation between readers was significant at r=0.65 (p=0.001). We subsequently identified 24 lobes with high discrepancies between visual and automated scoring. The readers re-examined those lobes and measured wall thickness using electronic calipers on perpendicular cross sections, rather than visual assessment. Using this more objective standard of wall thickness, the reader estimates of wall thickening increased to reach a significant positive correlation with automated scoring of r=0.65 (p=0.001). These results indicate that subjectivity is an important problem with visual evaluation, and that visual inspection may frequently underestimate disease extent and severity. Given that a manual evaluation of all airways is infeasible in routine clinical practice, we argue that automated methods should be developed and utilized.

  8. High-frequency oscillation of the airway and chest wall.

    PubMed

    Fink, James B; Mahlmeister, Michael J

    2002-07-01

    High-frequency oscillation (HFO), applied to either the airway or chest wall, has been associated with changes in sputum attributes and clearance. The evolution of evidence, both in vitro and in vivo, supporting the use of HFO is reviewed. Devices that apply HFO to the airway range from the relatively simple mechanical Flutter and Acapella devices to the more complex Percussionaire Intrapercussive Ventilators. and the Hayek Oscillator are designed to provide high-frequency chest wall compression. Operation and use of these devices are described with examples of differentiation of device types by characterization of flows, and airway and esophageal pressures. Although HFO devices span a broad range of costs, they provide a reasonable therapeutic option to support secretion clearance for patients with cystic fibrosis. PMID:12088550

  9. Alteration of Pulse Pressure Stimulates Arterial Wall Matrix Remodeling

    PubMed Central

    Yao, Qingping; Hayman, Danika M.; Dai, Qiuxia; Lindsey, Merry L.; Han, Hai-Chao

    2010-01-01

    The effect of pulse pressure on arterial wall remodeling remains unclear, although remodeling of the arterial wall under hypertensive pressure and elevated flow has been well documented. The objective of this study was to evaluate matrix remodeling in arteries under nonpulsatile and hyperpulsatile pressure as compared to arteries under normal pulsatile pressure. Using a novel ex vivo organ culture model that allowed us to change pressure pulsatility without changing mean pressure or flow, arteries were cultured for 7 days under normal, nonpulsatile, and hyperpulsatile pressures with the same mean pressure and flow rate. Fenestrae in internal elastic lamina (IEL), collagen content, connexin 43, and fibronectin proteins were examined in these arteries using confocal microscopy, immunoblotting, and immunohistochemistry. Our results showed that the mean fenestrae size and area fraction of fenestrae to total area of IEL decreased 51 % and 45 % in arteries cultured under nonpulsatile pressure and decreased 45 % and 54 % under hyperpulsatile pressure, respectively, compared to arteries under normal pulsatile pressure. There was no difference in fibronectin (FN) and collagen III levels among the three pulse groups, while collagen I and connexin 43 expression increased 80.8% and 35.3% in the hyperpulsatile arteries, respectively, but not in nonpulsatile arteries. In conclusion, our results demonstrated, for the first time, that an increase or elimination in pulse pressure from its normal physiologic level stimulates arterial wall matrix structural changes. Hyperpulsatile pressure has a more pronounced effect than the diminished pulse pressure, which may provide a mechanism for increased wall stiffness in arteries under hyperpulsatile pressure. PMID:19831481

  10. Mechanical consequences of allergic induced remodeling on mice airway resistance and compressibility.

    PubMed

    Novali, Mauro; Shalaby, Karim H; Robichaud, Annette; Benedetti, Andrea; Fereydoonzad, Liah; McGovern, Toby K; Schuessler, Thomas F; Martin, James G

    2015-11-01

    The effect of remodeling on airway function is uncertain. It may affect airway compressibility during forced expirations differently than airflow resistance, providing a tool for its assessment. The aim of the current study was to compare the effects of acute and chronic antigen challenge on methacholine-induced bronchoconstriction assessed from resistance and maximal tidal expiratory flow. Balb/C mice were sensitized with ovalbumin (OVA) and challenged either daily for three days with intra-nasal OVA or daily for 5 days and three times a week for 5 subsequent weeks. Acute and chronic allergen challenge induced airway hyperresponsiveness (AHR) to methacholine. However the relationship between maximal tidal expiratory flow and resistance during methacholine challenge was different between the two conditions, suggesting that the determinants of AHR are not identical following acute and chronic allergen exposure. We conclude that the contrast of changes in maximal tidal expiratory flow and respiratory resistance during methacholine-induced bronchoconstriction may allow the detection of the mechanical consequences of airway remodeling. PMID:26213118

  11. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  12. Neurturin influences inflammatory responses and airway remodeling in different mouse asthma models.

    PubMed

    Mauffray, Marion; Domingues, Olivia; Hentges, François; Zimmer, Jacques; Hanau, Daniel; Michel, Tatiana

    2015-02-15

    Neurturin (NTN) was previously described for its neuronal activities, but recently, we have shown that this factor is also involved in asthma physiopathology. However, the underlying mechanisms of NTN are unclear. The aim of this study was to investigate NTN involvement in acute bronchial Th2 responses, to analyze its interaction with airway structural cells, and to study its implication in remodeling during acute and chronic bronchial inflammation in C57BL/6 mice. We analyzed the features of allergic airway inflammation in wild-type and NTN(-/-) mice after sensitization with two different allergens, OVA and house dust mite. We showed that NTN(-/-) dendritic cells and T cells had a stronger tendency to activate the Th2 pathway in vitro than similar wild-type cells. Furthermore, NTN(-/-) mice had significantly increased markers of airway remodeling like collagen deposition. NTN(-/-) lung tissues showed higher levels of neutrophils, cytokine-induced neutrophil chemoattractant, matrix metalloproteinase 9, TNF-α, and IL-6. Finally, NTN had the capacity to decrease IL-6 and TNF-α production by immune and epithelial cells, showing a direct anti-inflammatory activity on these cells. Our findings support the hypothesis that NTN could modulate the allergic inflammation in different mouse asthma models. PMID:25595789

  13. TGF-beta, eosinophils and IL-13 in allergic airway remodeling: a critical appraisal with therapeutic considerations.

    PubMed

    Fattouh, Ramzi; Jordana, Manel

    2008-12-01

    Airway remodeling is a characteristic feature of allergic asthma that is now thought to contribute to airway dysfunction and, ultimately, to clinical symptoms. A prevalent hypothesis holds that eosinophil-derived transforming growth factor-beta (TGF-beta) is a predominant underlying mechanism driving the development of remodeling and thus, represent promising targets for therapeutic intervention. This notion is supported by in vivo evidence from loss of function experiments conducted in animal models employing the surrogate allergen ovalbumin (OVA), and by indirect evidence from studies in human asthmatics. However, it is important to note that various studies in OVA systems have reported disconnects between eosinophils, TGF-beta and allergic remodeling. Moreover, recent investigations in a mouse model induced by respiratory exposure to a house dust mite extract have shown that remodeling can develop independently of TGF-beta. These findings challenge the above hypothesis and suggest that the mechanisms governing remodeling may be context specific. In addition to TGF-beta and eosinophils, several other factors have been implicated in the development of airway remodeling. Among these, interleukin (IL)-13 may be of particular importance given its role in type-2 immunity and in the tissue repair/fibrotic response. This review will appraise the evidence pertaining to the roles of TGF-beta, eosinophils and IL-13 in allergic remodeling, and will suggest that identifying robust targets for therapeutic intervention might benefit from a reconsideration of our approach to understanding remodeling. PMID:19075788

  14. Obstructive Sleep Apnoea Modulates Airway Inflammation and Remodelling in Severe Asthma

    PubMed Central

    Taillé, Camille; Rouvel-Tallec, Anny; Stoica, Maria; Danel, Claire; Dehoux, Monique; Marin-Esteban, Viviana; Pretolani, Marina; Aubier, Michel; d’Ortho, Marie-Pia

    2016-01-01

    Background Obstructive sleep apnoea (OSA) is frequently observed in severe asthma but the causal link between the 2 diseases remains hypothetical. The role of OSA-related systemic and airway neutrophilic inflammation in asthma bronchial inflammation or remodelling has been rarely investigated. The aim of this study was to compare hallmarks of inflammation in induced sputum and features of airway remodelling in bronchial biopsies from adult patients with severe asthma with and without OSA. Materials and Methods An overnight polygraphy was performed in 55 patients referred for difficult-to-treat asthma, who complained of nocturnal respiratory symptoms, poor sleep quality or fatigue. We compared sputum analysis, reticular basement membrane (RBM) thickness, smooth muscle area, vascular density and inflammatory cell infiltration in bronchial biopsies. Results In total, 27/55 patients (49%) had OSA diagnosed by overnight polygraphy. Despite a moderate increase in apnoea-hypopnoea index (AHI; 14.2±1.6 event/h [5–35]), the proportion of sputum neutrophils was higher and that of macrophages lower in OSA than non-OSA patients, with higher levels of interleukin 8 and matrix metalloproteinase 9. The RBM was significantly thinner in OSA than non-OSA patients (5.8±0.4 vs. 7.8±0.4 μm, p<0.05). RBM thickness and OSA severity assessed by the AHI were negatively correlated (rho = -0.65, p<0.05). OSA and non-OSA patients did not differ in age, sex, BMI, lung function, asthma control findings or treatment. Conclusion Mild OSA in patients with severe asthma is associated with increased proportion of neutrophils in sputum and changes in airway remodelling. PMID:26934051

  15. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model

    PubMed Central

    Toledo, AC; Sakoda, CPP; Perini, A; Pinheiro, NM; Magalhães, RM; Grecco, S; Tibério, IFLC; Câmara, NO; Martins, MA; Lago, JHG; Prado, CM

    2013-01-01

    Background and Purpose Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice. Experimental Approach Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg–1 per mice) or dexamethasone (5 mg kg–1 per mice) daily beginning from 24th to 29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-α, IFN-γ and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry. Key Results We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation. Conclusions and Implications These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma. PMID:23170811

  16. Aerobic training reverses airway inflammation and remodelling in an asthma murine model.

    PubMed

    Silva, R A; Vieira, R P; Duarte, A C S; Lopes, F D T Q S; Perini, A; Mauad, T; Martins, M A; Carvalho, C R F

    2010-05-01

    Aerobic training (AT) decreases dyspnoea and exercise-induced bronchospasm, and improves aerobic capacity and quality of life; however, the mechanisms for such benefits remain poorly understood. The aim of the present study was to evaluate the AT effects in a chronic model of allergic lung inflammation in mice after the establishment of airway inflammation and remodelling. Mice were divided into the control group, AT group, ovalbumin (OVA) group or OVA+AT group and exposed to saline or OVA. AT was started on day 28 for 60 min five times per week for 4 weeks. Respiratory mechanics, specific immunoglobulin (Ig)E and IgG(1), collagen and elastic fibres deposition, smooth muscle thickness, epithelial mucus, and peribronchial density of eosinophils, CD3+ and CD4+, IL-4, IL-5, IL-13, interferon-gamma, IL-2, IL-1ra, IL-10, nuclear factor (NF)-kappaB and Foxp3 were evaluated. The OVA group showed an increase in IgE and IgG(1), eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, collagen and elastic, mucus synthesis, smooth muscle thickness and lung tissue resistance and elastance. The OVA+AT group demonstrated an increase of IgE and IgG(1), and reduction of eosinophils, CD3+, CD4+, IL-4, IL-5, IL-13, NF-kappaB, airway remodelling, mucus synthesis, smooth muscle thickness and tissue resistance and elastance compared with the OVA group (p<0.05). The OVA+AT group also showed an increase in IL-10 and IL-1ra (p<0.05), independently of Foxp3. AT reversed airway inflammation and remodelling and T-helper cell 2 response, and improved respiratory mechanics. These results seem to occur due to an increase in the expression of IL-10 and IL-1ra and a decrease of NF-kappaB. PMID:19897558

  17. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Sun, Zhan; Yu, Wenyan; Wang, Jing; Li, Fengsen; Ding, Jianbing

    2014-01-01

    It has been proved that Uygur herb Hyssopus offcinalis L. could affect the levels of some cytokines (such as IL-4, IL-6, IL-17, and IFN-γ) in asthmatic mice. By detection of the expressions of MMP-9 and TIMP-1 and the morphological changes, the aim of this research is to reveal the mechanism of Uygur herb Hyssopus offcinalis L. in the process of airway remodeling. It was observed that the expressions of MMP-9 and TIMP-1 increased, but the ratio of MMP-9/TIMP-1 decreased in airway remodeling group. However, the expression of both MMP-9 and TIMP-1 decreased after being treated with dexamethasone and Hyssopus offcinalis L., accompanied by the relieved pathological changes, including collagen deposition, mucus secretion, and smooth muscle proliferation. It is suggested that Uygur herb Hyssopus offcinalis L. could inhibit airway remodeling by correcting imbalance of MMP-9/TIMP-1 ratio. PMID:25383084

  18. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice

    PubMed Central

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Sun, Zhan; Yu, Wenyan; Wang, Jing; Li, Fengsen; Ding, Jianbing

    2014-01-01

    It has been proved that Uygur herb Hyssopus offcinalis L. could affect the levels of some cytokines (such as IL-4, IL-6, IL-17, and IFN-γ) in asthmatic mice. By detection of the expressions of MMP-9 and TIMP-1 and the morphological changes, the aim of this research is to reveal the mechanism of Uygur herb Hyssopus offcinalis L. in the process of airway remodeling. It was observed that the expressions of MMP-9 and TIMP-1 increased, but the ratio of MMP-9/TIMP-1 decreased in airway remodeling group. However, the expression of both MMP-9 and TIMP-1 decreased after being treated with dexamethasone and Hyssopus offcinalis L., accompanied by the relieved pathological changes, including collagen deposition, mucus secretion, and smooth muscle proliferation. It is suggested that Uygur herb Hyssopus offcinalis L. could inhibit airway remodeling by correcting imbalance of MMP-9/TIMP-1 ratio. PMID:25383084

  19. Temporal and Spatial Expression of Transforming Growth Factor-β after Airway Remodeling to Tobacco Smoke in Rats.

    PubMed

    Hoang, Laura L; Nguyen, Yen P; Aspeé, Rayza; Bolton, Sarah J; Shen, Yi-Hsin; Wang, Lei; Kenyon, Nicholas J; Smiley-Jewell, Suzette; Pinkerton, Kent E

    2016-06-01

    Airway remodeling is strongly correlated with the progression of chronic obstructive pulmonary disease (COPD). In this study, our goal was to characterize progressive structural changes in site-specific airways, along with the temporal and spatial expression of transforming growth factor (TGF)-β in the lungs of male spontaneously hypertensive rats exposed to tobacco smoke (TS). Our studies demonstrated that TS-induced changes of the airways is dependent on airway generation and exposure duration for proximal, midlevel, and distal airways. Stratified squamous epithelial cell metaplasia was evident in the most proximal airways after 4 and 12 weeks but with minimal levels of TGF-β-positive epithelial cells after only 4 weeks of exposure. In contrast, epithelial cells in midlevel and distal airways were strongly TGF-β positive at both 4 and 12 weeks of TS exposure. Airway smooth muscle volume increased significantly at 4 and 12 weeks in midlevel airways. Immunohistochemistry of TGF-β was also found to be significantly increased at 4 and 12 weeks in lymphoid tissues and alveolar macrophages. ELISA of whole-lung homogenate demonstrated that TGF-β2 was increased after 4 and 12 weeks of TS exposure, whereas TGF-β1 was decreased at 12 weeks of TS exposure. Airway levels of messenger RNA for TGF-β2, as well as platelet-derived growth factor-A, granulocyte-macrophage colony-stimulating factor, and vascular endothelial growth factor-α, growth factors regulated by TGF-β, were significantly decreased in animals after 12 weeks of TS exposure. Our data indicate that TS increases TGF-β in epithelial and inflammatory cells in connection with airway remodeling, although the specific role of each TGF-β isoform remains to be defined in TS-induced airway injury and disease. PMID:26637070

  20. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives.

    PubMed

    Samitas, Konstantinos; Delimpoura, Vasiliki; Zervas, Eleftherios; Gaga, Mina

    2015-12-01

    Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes. PMID:26621973

  1. Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma

    PubMed Central

    Liu, Ya-Nan; Zha, Wang-Jian; Ma, Yuan; Chen, Fei-Fei; Zhu, Wen; Ge, Ai; Zeng, Xiao-Ning; Huang, Mao

    2015-01-01

    Galangin, a natural flavonol, has attracted much attention for its potential anti-inflammatory properties. However, its role in the regulation of airway remodelling in asthma has not been explored. The present study aimed to elucidate the effects of galangin on chronic inflammation and airway remodelling and to investigate the underlying mechanisms both in vivo and in vitro. Ovalbumin (OVA)-sensitised mice were administered with galangin 30 min before challenge. Our results showed that severe inflammatory responses and airway remodelling occurred in OVA-induced mice. Treatment with galangin markedly attenuated the leakage of inflammatory cells into bronchoalveolar lavage fluid (BALF) and decreased the level of OVA-specific IgE in serum. Galangin significantly inhibited goblet cell hyperplasia, collagen deposition and α-SMA expression. Lowered level of TGF-β1 and suppressed expression of VEGF and MMP-9 were observed in BALF or lung tissue, implying that galangin has an optimal anti-remodelling effect in vivo. Consistently, the TGF-β1-induced proliferation of airway smooth muscle cells was reduced by galangin in vitro, which might be due to the alleviation of ROS levels and inhibition of MAPK pathway. Taken together, the present findings highlight a novel role for galangin as a promising anti-remodelling agent in asthma, which likely involves the TGF-β1-ROS-MAPK pathway. PMID:26156213

  2. FIZZ1 Promotes Airway Remodeling in Asthma Through the PTEN Signaling Pathway.

    PubMed

    Zhao, Jiping; Jiao, Xingai; Wu, Jinxiang; Wang, Junfei; Gong, Wenbin; Liu, Fen; Liu, Wen; Bi, Wenxiang; Dong, Liang

    2015-08-01

    The aim of our study was to elucidate the function and signaling pathway of found in inflammatory zone 1 (FIZZ1) in airway remodeling in asthma. We used a mice model sensitized and challenged by ovalbumin (OVA) to evaluate the expression of FIZZ1, type I collagen, and fibronectin-1 in the airway in asthma. To investigate the signaling pathway regulated by FIZZ1, we treated a cultured murine lung epithelium cell-12 (MLE-12) with FIZZ1 recombination protein, silenced the expression of FIZZ1 with FIZZ1-shRNA in vitro, and then detected phosphorylated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and expression of type I collagen and fibronectin-1 (FN-1) by Western blotting. In addition, we increased the expression of PTEN by PTEN plasmid transfection then detected the expression of type I collagen and fibronectin-1 in MLE-12 by Western blot analysis and immunofluorescence cytochemistry technology, respectively. First, the expression of FIZZ1, type I collagen, and fibronectin-1 was significantly elevated in the lungs of OVA-challenged mice compared with saline-treated control animals. Secondly, the phosphorylation of PTEN was decreased in MLE-12 treated with FIZZ1 recombination protein in vitro. On the contrary, the phosphorylation of PTEN was increased in MLE-12 cells transfected with FIZZ1-shRNA. Thirdly, results of the Western blot analysis and immunofluorescence cytochemistry showed that expression of type I collagen and fibronectin-1 was increased in cells treated with FIZZ1 recombination protein, while the levels of type I collagen and fibronectin-1 were significantly decreased in cells transfected with PTEN plasmid. FIZZ1 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting FIZZ1 and/or PTEN may be a new therapeutic strategy for asthma. PMID:25655389

  3. Anti-Siglec-F Antibody Reduces Allergen-Induced Eosinophilic Inflammation and Airway Remodeling1

    PubMed Central

    Song, Dae Jin; Cho, Jae Youn; Lee, Sang Yeub; Miller, Marina; Rosenthal, Peter; Soroosh, Pejman; Croft, Michael; Zhang, Mai; Varki, Ajit; Broide, David H.

    2009-01-01

    Siglec-F is a sialic acid-binding Ig superfamily receptor that is highly expressed on eosinophils. We have investigated whether administration of an anti-Siglec-F Ab to OVA-challenged wild-type mice would reduce levels of eosinophilic inflammation and levels of airway remodeling. Mice sensitized to OVA and challenged repetitively with OVA for 1 mo who were administered an anti-Siglec-F Ab had significantly reduced levels of peribronchial eosinophilic inflammation and significantly reduced levels of subepithelial fibrosis as assessed by either trichrome staining or lung collagen levels. The anti-Siglec-F Ab reduced the number of bone marrow, blood, and tissue eosinophils, suggesting that the anti-Siglec-F Ab was reducing the production of eosinophils. Administration of a F(ab′)2 fragment of an anti-Siglec-F Ab also significantly reduced levels of eosinophilic inflammation in the lung and blood. FACS analysis demonstrated increased numbers of apoptotic cells (annexin V+/CCR3+ bronchoalveolar lavage and bone marrow cells) in anti-Siglec-F Ab-treated mice challenged with OVA. The anti-Siglec-F Ab significantly reduced the number of peribronchial major basic protein+/TGF-β+ cells, suggesting that reduced levels of eosinophil-derived TGF-β in anti-Siglec-F Ab-treated mice contributed to reduced levels of peribronchial fibrosis. Administration of the anti-Siglec-F Ab modestly reduced levels of periodic acid-Schiff-positive mucus cells and the thickness of the smooth muscle layer. Overall, these studies suggest that administration of an anti-Siglec-F Ab can significantly reduce levels of allergen-induced eosinophilic airway inflammation and features of airway remodeling, in particular subepithelial fibrosis, by reducing the production of eosinophils and increasing the number of apoptotic eosinophils in lung and bone marrow. PMID:19783675

  4. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  5. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  6. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  7. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  8. [IL-33 promotes airway remodeling in a mouse model of asthma via ERK1/2 signaling pathway].

    PubMed

    Zhang, Yuanyuan; Bian, Cuixia; Wu, Jinxiang; Zhao, Jiping; Wang, Junfei; Liu, Tian; Liu, Lin; Dong, Liang

    2016-05-01

    Objective To explore the role of IL-33 in asthmatic airway remodeling. Methods Male BALB/c mice were randomly divided into 3 groups: a control group, an ovalbumin (OVA) group, and an anti-IL-33 antibody combined with OVA group. The airway remodeling features in mice were observed by HE staining. In addition, the expressions of IL-33, alpha smooth muscle actin (α-SMA), and type 1 collagen (Col1) in the airway of mice were detected by immunohistochemistry and Western blotting. Finally, Western blotting was used to determine the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen- and stress-activated protein kinase 1 (MSK1) in the lungs of mice. In vitro, human lung fibroblasts (HLF-1) were pretreated with the ERK1/2 inhibitor U0126 or the MSK1 inhibitor H89 respectively, and then treated with the human recombinant IL-33 (rIL-33). Then real-time quantitative PCR and Western blotting were used to test the expressions of α-SMA and Col1. Immunofluorescence cytochemistry and Western blotting were also used to observe the phosphorylation of ERK1/2 and MSK1 in HLF-1 cells. Results The pre-treatment with the ERK1/2 inhibitor U0126 or anti-IL-33 antibody significantly abolished the OVA-induced airway remodeling, increased expressions of IL-33, α-SMA, Col1, and phosphorylation of ERK1/2 and MSK1 in the airway of mice. In vitro, the increased expressions of α-SMA and Col1 and the phosphorylation of ERK1/2 and MSK1 induced by rIL-33 in HLF-1 cells were markedly inhibited by the pre-treatment with U0126 or H89. Conclusion IL-33 promotes airway remodeling in asthmatic mice via the ERK1/2-MSK1 signaling pathway. PMID:27126934

  9. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma

    PubMed Central

    Xu, Jing; Zhu, Yan-ting; Wang, Gui-zuo; Han, Dong; Wu, Yuan-yuan; Zhang, De-xin; Liu, Yun; Zhang, Yong-hong; Xie, Xin-ming; Li, Shao-jun; Lu, Jia-mei; Liu, Lu; Feng, Wei; Sun, Xiu-zhen; Li, Man-xiang

    2015-01-01

    Aim: Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. Methods: Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, po). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. Results: Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. Conclusion: Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA- induced asthma of mice by activating PPARγ/HO-1 signaling pathway. PMID:25619395

  10. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  11. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  12. Cigarette smoke increases the penetration of asbestos fibers into airway walls

    SciTech Connect

    McFadden, D.; Wright, J.; Wiggs, B.; Churg, A.

    1986-04-01

    For study of the penetration of asbestos fibers into airway walls, guinea pigs were given amosite asbestos by intratracheal instillation. Half of the animals were also exposed to cigarette smoke. Animals were sacrificed at 1 week and 1 month, and numbers of fibers in airway walls were counted in histologic sections. In both smoke-exposed and nonexposed groups, numbers of fibers per square millimeter of airway wall increased from 1 week to 1 month in the respiratory bronchioles. At each time period, smoke-exposed animals had significantly higher numbers of fibers in the airway walls, compared with nonexposed animals. It is concluded that 1) continued transport of fibers into interstitial tissues may be the reason that asbestosis can progress after cessation of exposure; 2) cigarette smoke increases the penetration of fibers into airway walls. This effect may play a role in the increased incidence of disease seen in smoking, compared with nonsmoking, asbestos workers.

  13. Cigarette smoke increases the penetration of asbestos fibers into airway walls.

    PubMed Central

    McFadden, D.; Wright, J.; Wiggs, B.; Churg, A.

    1986-01-01

    For study of the penetration of asbestos fibers into airway walls, guinea pigs were given amosite asbestos by intratracheal instillation. Half of the animals were also exposed to cigarette smoke. Animals were sacrificed at 1 week and 1 month, and numbers of fibers in airway walls were counted in histologic sections. In both smoke-exposed and nonexposed groups, numbers of fibers per square millimeter of airway wall increased from 1 week to 1 month in the respiratory bronchioles. At each time period, smoke-exposed animals had significantly higher numbers of fibers in the airway walls, compared with nonexposed animals. It is concluded that 1) continued transport of fibers into interstitial tissues may be the reason that asbestosis can progress after cessation of exposure; 2) cigarette smoke increases the penetration of fibers into airway walls. This effect may play a role in the increased incidence of disease seen in smoking, compared with nonsmoking, asbestos workers. PMID:3963152

  14. Matrix metalloproteinase-2 and -9 expression increases in Mycoplasma-infected airways but is not required for microvascular remodeling.

    PubMed

    Baluk, Peter; Raymond, Wilfred W; Ator, Erin; Coussens, Lisa M; McDonald, Donald M; Caughey, George H

    2004-08-01

    Murine Mycoplasma pulmonis infection induces chronic lung and airway inflammation accompanied by profound and persistent microvascular remodeling in tracheobronchial mucosa. Because matrix metalloproteinase (MMP)-2 and -9 are important for angiogenesis associated with placental and long bone development and skin cancer, we hypothesized that they contribute to microvascular remodeling in airways infected with M. pulmonis. To test this hypothesis, we compared microvascular changes in airways after M. pulmonis infection of wild-type FVB/N mice with those of MMP-9(-/-) and MMP-2(-/-)/MMP-9(-/-) double-null mice and mice treated with the broad-spectrum MMP inhibitor AG3340 (Prinomastat). Using zymography and immunohistochemistry, we find that MMP-2 and MMP-9 rise strikingly in lungs and airways of infected wild-type FVB/N and C57BL/6 mice, with no zymographic activity or immunoreactivity in MMP-2(-/-)/MMP-9(-/-) animals. However, microvascular remodeling as assessed by Lycopersicon esculentum lectin staining of whole-mounted tracheae is as severe in infected MMP-9(-/-), MMP-2(-/-)/MMP-9(-/-) and AG3340-treated mice as in wild-type mice. Furthermore, all groups of infected mice develop similar inflammatory infiltrates and exhibit similar overall disease severity as indicated by decrease in body weight and increase in lung weight. Uninfected wild-type tracheae show negligible MMP-2 immunoreactivity, with scant MMP-9 immunoreactivity in and around growing cartilage. By contrast, MMP-2 appears in epithelial cells of infected, wild-type tracheae, and MMP-9 localizes to a large population of infiltrating leukocytes. We conclude that despite major increases in expression, MMP-2 and MMP-9 are not essential for microvascular remodeling in M. pulmonis-induced chronic airway inflammation. PMID:15075248

  15. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. PMID:26026778

  16. Interstitial collagen turnover during airway remodeling in acute and chronic experimental asthma

    PubMed Central

    González-Avila, Georgina; Bazan-Perkins, Blanca; Sandoval, Cuauhtémoc; Sommer, Bettina; Vadillo-Gonzalez, Sebastian; Ramos, Carlos; Aquino-Galvez, Arnoldo

    2016-01-01

    Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase

  17. Effect of Low-Dose, Long-Term Roxithromycin on Airway Inflammation and Remodeling of Stable Noncystic Fibrosis Bronchiectasis

    PubMed Central

    Zhong, Xiaoning; He, Zhiyi; Wei, Lianghong; Zheng, Xiaozhen; Zhang, Jianquan; Bai, Jing; Zhong, Wei; Zhong, Dengjun

    2014-01-01

    Background. Noncystic fibrosis bronchiectasis (NCFB) is characterized by airway expansion and recurrent acute exacerbations. Macrolide has been shown to exhibit anti-inflammatory effects in some chronic airway diseases. Objective. To assess the efficacy of roxithromycin on airway inflammation and remodeling in patients with NCFB under steady state. Methods. The study involved an open-label design in 52 eligible Chinese patients with NCFB, who were assigned to control (receiving no treatment) and roxithromycin (receiving 150 mg/day for 6 months) groups. At baseline and 6 months, the inflammatory markers such as interleukin- (IL-)8, neutrophil elastase (NE), matrix metalloproteinase- (MMP)9, hyaluronidase (HA), and type IV collagen in sputum were measured, along with the detection of dilated bronchus by throat computed tomography scan, and assessed the exacerbation. Results. Forty-three patients completed the study. The neutrophil in the sputum was decreased in roxithromycin group compared with control (P < 0.05). IL-8, NE, MMP-9, HA, and type IV collagen in sputum were also decreased in roxithromycin group compared with the control group (all P < 0.01). Airway thickness of dilated bronchus and exacerbation were reduced in roxithromycin group compared with the control (all P < 0.05). Conclusions. Roxithromycin can reduce airway inflammation and airway thickness of dilated bronchus in patients with NCFB. PMID:25580060

  18. BrdU Pulse Labelling In Vivo to Characterise Cell Proliferation during Regeneration and Repair following Injury to the Airway Wall in Sheep

    PubMed Central

    Yahaya, B.; McLachlan, G.; Collie, D. D. S.

    2013-01-01

    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models. PMID:23533365

  19. BrdU pulse labelling in vivo to characterise cell proliferation during regeneration and repair following injury to the airway wall in sheep.

    PubMed

    Yahaya, B; McLachlan, G; Collie, D D S

    2013-01-01

    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models. PMID:23533365

  20. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma

    PubMed Central

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  1. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma.

    PubMed

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  2. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  3. FIBER DEPOSITION ALONG AIRWAY WALLS: EFFECTS OF FIBER CROSS-SECTION ON ROTATIONAL INTERCEPTION

    EPA Science Inventory

    Airborne fibers present a threat to human health. athematical model of fiber motion is presented which suggests that significant rotational deposition occurs along airway walls downstream of human lung bifurcations. he predictions are validated by cited experimental data. oth pro...

  4. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse.

    PubMed

    Wang, Qing; Li, Hequan; Yao, Yinan; Lu, Guohua; Wang, Yuehong; Xia, Dajing; Zhou, Jianying

    2016-03-01

    The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling. PMID:26826248

  5. Analysis of arterial wall remodeling in hypertension based on lamellar modeling.

    PubMed

    Taghizadeh, Hadi; Tafazzoli-Shadpour, Mohammad; Shadmehr, Mohammad B

    2015-09-01

    Arterial wall remodels its geometry and mechanical properties in response to hypertension to maintain functionality. The elevated pressure is sensed through cellular mechanotransduction pathways, and extra extracellular matrix is synthesized, leading to thickening and stiffening. The present study enquires the response of aortic lamellar structure to hypertensive blood pressure regarding unchanged circumferential stress "profile" across the media as remodeling criterion. We tested the hypothesis that alterations in the thickness of structural layers contributes to maintain stress profile with least deviation from normotensive conditions. To test this notion, finite element analysis was recruited to evaluate stress profile, considering wall residual stress, and lamellar structure was adjusted through an optimization algorithm. Our results indicated 47% increased thickness of the aortic media that originates from nonhomogenous thickening of the microstructural units. The thickening and stiffening responses of the wall tissue were coupled, and the optimized pattern of hypertension-induced remodeling was established. PMID:26369443

  6. Biological characteristics of tracheal smooth muscle cells regulated by NK-1R in asthmatic rat with airway remodeling

    PubMed Central

    Wei, Bing; Liu, Yali; Yue, Xiaozhe; Li, Yinping; Shang, Yunxiao

    2015-01-01

    This study aims to investigate the biological characteristic changes of infant rat tracheal smooth muscle cells in asthma airway remodeling and the impact of NK-1R on the mechanism. Ovalbumin (OVA) was used to excited juvenile SD rats by 8 w. Immunofluorescence, MTT assay, transwell chambers, real time quantitative PCR, Western blot and other methods were used to observe the proliferation, migration, synthesis and secretion changes of infant airway remodeling in rat tracheal smooth muscle cell and the Neurokinin 1 receptor (NK-1R) expression. 1. NK-1R mRNA, protein expression of airway smooth muscle cell (ASMC) of each asthma group were higher than that of the control group, especially the asthma 8 w group had highest expression (P<0.01). 2. The average A value of 8 w asthma group measured by MTT method were significantly higher than that of the control group (P<0.05), WIN62577 10-8 mol/L group had the strongest inhibition of ASMC proliferation (P<0.01). 3. The number of cell migration in the asthma group significantly increased than that in the control group. The number of migrating cells in the NK-1R antagonist group significantly reduced compared with the asthma 8 w group (P<0.05). 4. The average gray value of type III collagen in each asthma group were higher than that of the control group, and the asthma 8 w group had the highest (P<0.01). After NK-1R blocking, the average gray value of type III collagen was significantly lower (P<0.05). ASMC proliferation, migration, synthesis and secretion function increased in the airway remodeling group, and NK-1R played an important role. PMID:26628953

  7. Regulator of G-protein signaling 2 repression exacerbates airway hyper-responsiveness and remodeling in asthma.

    PubMed

    Jiang, Haihong; Xie, Yan; Abel, Peter W; Wolff, Dennis W; Toews, Myron L; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping

    2015-07-01

    G protein-coupled receptors (GPCRs) are important regulators of cell functions in asthma. We recently reported that regulator of G-protein signaling (RGS) 2, a selective modulator of Gq-coupled GPCRs, is a key regulator of airway hyper-responsiveness (AHR), the pathophysiologic hallmark of asthma. Because RGS2 protein levels in airway cells were significantly lower in patients with asthma compared with patients without asthma, we further investigated the potential pathological importance of RGS2 repression in asthma. The human RGS2 gene maps to chromosome 1q31. We first screened patients with asthma for RGS2 gene promoter single-nucleotide polymorphisms (SNPs) and found significant differences in the distribution of two RGS2 SNPs (A638G, rs2746071 and C395G, rs2746072) between patients with asthma and nonasthmatic subjects. These two SNPs are always associated with each other and have the same higher prevalence in patients with asthma (65%) as compared with nonasthmatic subjects (35%). Point mutations corresponding to these SNPs decrease RGS2 promoter activity by 44%. The importance of RGS2 down-regulation was then determined in an acute IL-13 mouse model of asthma. Intranasal administration of IL-13 in mice also decreased RGS2 expression in lungs by ∼50% and caused AHR. Although naive RGS2 knockout (KO) mice exhibit spontaneous AHR, acute IL-13 exposure further increased AHR in RGS2 KO mice. Loss of RGS2 also significantly enhanced IL-13-induced mouse airway remodeling, including peribronchial smooth muscle thickening and fibrosis, without effects on goblet cell hyperplasia or airway inflammation in mice. Thus, genetic variations and increased inflammatory cytokines can lead to RGS2 repression, which exacerbates AHR and airway remodeling in asthma. PMID:25368964

  8. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  9. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism

    PubMed Central

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

  10. CHANGES IN CARBOHYDRATE COORDINATED PARTITIONING AND CELL WALL REMODELING WITH STRESS-INDUCED PATHOGENESIS IN WHEAT SHEATHS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls are dynamic structures that undergo specific remodeling events during plant defense responses. Changes in the coordinated partitioning of carbohydrates between the cytosol and the extracellular milieu may direct sheath cell wall remodeling that occurs in a wheat-endophytic interacti...

  11. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation

    PubMed Central

    Magalhães, G S; Rodrigues-Machado, M G; Motta-Santos, D; Silva, A R; Caliari, M V; Prata, L O; Abreu, S C; Rocco, P R M; Barcelos, L S; Santos, R A S; Campagnole-Santos, M J

    2015-01-01

    Background and Purpose A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation. Experimental Approach Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21–46). These mice received Ang-(1-7) (1 μg·h−1, s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed. Key Results Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7). Conclusions and Implications Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation. PMID:25559763

  12. Natural killer T cells are dispensable in the development of allergen-induced airway hyperresponsiveness, inflammation and remodelling in a mouse model of chronic asthma.

    PubMed

    Koh, Y-I; Shim, J-U; Lee, J-H; Chung, I-J; Min, J-J; Rhee, J H; Lee, H C; Chung, D H; Wi, J-O

    2010-07-01

    Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d-/- mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d-/- mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d-/- mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model. PMID:20456411

  13. Simvastatin Inhibits Goblet Cell Hyperplasia and Lung Arginase in a Mouse Model of Allergic Asthma: A Novel Treatment for Airway Remodeling?

    PubMed Central

    Zeki, Amir A.; Bratt, Jennifer M.; Rabowsky, Michelle; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Airway remodeling in asthma contributes to airway hyperreactivity, loss of lung function, and persistent symptoms. Current therapies do not adequately treat the structural airway changes associated with asthma. The statins are cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting step of cholesterol biosynthesis in the mevalonate pathway. These drugs have been associated with improved respiratory health and ongoing clinical trials are testing their therapeutic potential in asthma. We hypothesized that simvastatin treatment of ovalbumin-exposed mice would attenuate early features of airway remodeling, by a mevalonate-dependent mechanism. BALB/c mice were initially sensitized to ovalbumin, and then exposed to 1% ovalbumin aerosol for 2 weeks after sensitization for a total of six exposures. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) were injected intraperitoneally before each ovalbumin exposure. Treatment with simvastatin attenuated goblet cell hyperplasia, arginase-1 protein expression, and total arginase enzyme activity, but did not alter airway hydroxyproline content or transforming growth factor-β1. Inhibition of goblet cell hyperplasia by simvastatin was mevalonate-dependent. No appreciable changes to airway smooth muscle cells were observed in any of the control or treatment groups. In conclusion, in an acute mouse model of allergic asthma, simvastatin inhibited early hallmarks of airway remodeling, indicators that can lead to airway thickening and fibrosis. Statins are potentially novel treatments for airway remodeling in asthma. Further studies utilizing sub-chronic or chronic allergen exposure models are needed to extend these initial findings. PMID:21078495

  14. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    PubMed Central

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.

    2014-01-01

    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  15. Wall shear stress distributions in a model of normal and constricted small airways.

    PubMed

    Evans, David J; Green, Anthony S; Thomas, Nicholas K

    2014-04-01

    Previous studies have highlighted flow shear stress as a possible damage mechanism for small airways, in particular those liable to constriction through disease or injury due to mechanical ventilation. Flow experiments in vitro have implicated shear stress as a relevant factor for mechanotransduction pathways with respect to airway epithelial cell function. Using computational fluid dynamics analysis, this study reports velocity profiles and calculations for wall shear stress distributions in a three-generation, asymmetric section of the small airways subjected to a steady, inspiratory flow. The results show distal variation of wall shear stress distributions due to velocity gradients on the carina side of each daughter airway branch. The maximum wall shear stresses in both normal and constricted small airways are shown to exceed those calculated using data from previous simpler one-dimensional experimental analyses. These findings have implications for lung cell flow experiments involving shear stress in the consideration of both normal airway function and pathology due to mechanotransduction mechanisms. PMID:24618983

  16. Airway wall thickness is increased in COPD patients with bronchodilator responsiveness

    PubMed Central

    2014-01-01

    Rationale Bronchodilator responsiveness (BDR) is a common but variable phenomenon in COPD. The CT characteristics of airway dimensions that differentiate COPD subjects with BDR from those without BDR have not been well described. We aimed to assess airway dimensions in COPD subjects with and without BDR. Methods We analyzed subjects with GOLD 1–4 disease in the COPDGene® study who had CT airway analysis. We divided patients into two groups: BDR + (post bronchodilator ΔFEV1 ≥ 10%) and BDR-(post bronchodilator ΔFEV1 < 10%). The mean wall area percent (WA%) of six segmental bronchi in each subject was quantified using VIDA. Using 3D SLICER, airway wall thickness was also expressed as the square root wall area of an airway of 10 mm (Pi10) and 15 mm (Pi15) diameter. %Emphysema and %gas trapping were also calculated. Results 2355 subjects in the BDR-group and 1306 in the BDR + group formed our analysis. The BDR + group had a greater Pi10, Pi15, and mean segmental WA% compared to the BDR-group. In multivariate logistic regression using gender, race, current smoking, history of asthma, %emphysema, %gas trapping, %predicted FEV1, and %predicted FVC, airway wall measures remained independent predictors of BDR. Using a threshold change in FEV1 ≥ 15% and FEV1 ≥ 12% and 200 mL to divide patients into groups, the results were similar. Conclusion BDR in COPD is independently associated with CT evidence of airway pathology. This study provides us with greater evidence of changes in lung structure that correlate with physiologic manifestations of airflow obstruction in COPD. PMID:25248436

  17. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    PubMed

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling. PMID:25785861

  18. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    PubMed

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  19. Chronic effects of mechanical force on airways.

    PubMed

    Tschumperlin, Daniel J; Drazen, Jeffrey M

    2006-01-01

    Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment. PMID:16460284

  20. Gene Expression Changes Associated with the Airway Wall Response to Injury

    PubMed Central

    Yahaya, Badrul; McLachlan, Gerry; McCorquodale, Caroline; Collie, David

    2013-01-01

    Background Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall. Methodology/Principal Findings We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7. Conclusions/Significance It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance. PMID:23593124

  1. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma.

    PubMed

    Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc

    2014-05-01

    New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (P<0.001). Intravenous administration of mCB-MSC significantly reduced these histopathological changes in both distal and proximal airways (P<0.001). We showed that GFP-labeled MSCs were located in the lungs of OVA group 2weeks after intravenous induction. mCB-MSCs also significantly promoted Treg response in ovalbumin-treated mice (OVA+MSC group) (P<0.037). Our studies revealed that mCB-MSCs migrated to lung tissue and suppressed histopathological changes in murine model of asthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. PMID:24613203

  2. Lateral Oropharyngeal Wall and Supraglottic Airway Collapse Associated With Failure in Sleep Apnea Surgery

    PubMed Central

    Soares, Danny; Sinawe, Hadeer; Folbe, Adam J.; Yoo, George; Badr, Safwan; Rowley, James A.; Lin, Ho-Sheng

    2013-01-01

    Objectives/Hypothesis To identify patterns of airway collapse during preoperative drug-induced sleep endoscopy (DISE) as predictors of surgical failure following multilevel airway surgery for patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). Study Design Retrospective clinical chart review. Methods Medical records of patients who underwent site-specific surgical modification of the upper airway for treatment of OSHAS were reviewed. Patients were included in this study if they had a preoperative airway evaluation with DISE as well as preoperative and postoperative polysomnography. Airway obstruction on DISE was described according to airway level, severity, and axis of collapse. Severe airway obstruction was defined as >75% collapse on endoscopy. Surgical success was described as a postoperative apnea-hypopnea index (AHI) of <20 and a >50% decrease in preoperative AHI. Results A total of 34 patients were included in this study. The overall surgical success rate was 56%. Surgical success (n = 19) and surgical failure (n = 15) patients were similar with regard to age, gender, body mass index, preoperative AHI, Friedman stage, adenotonsillar grades, and surgical management. DISE findings in the surgical failure group demonstrated greater incidence of severe lateral oropharyngeal wall collapse (73.3% vs. 36.8%, P = .037) and severe supraglottic collapse (93.3% vs. 63.2%, P = .046) as compared to the surgical success group. Conclusions The presence of severe lateral pharyngeal wall and/or supraglottic collapse on preoperative DISE is associated with OSAHS surgical failure. The identification of this failure-prone collapse pattern may be useful in preoperative patient counseling as well as in directing an individualized and customized approach to the treatment of OSHAS. PMID:22253047

  3. Relationship between the thickness of bronchial wall layers, emphysema score, and markers of remodeling in bronchoalveolar lavage fluid in patients with chronic obstructive pulmonary disease.

    PubMed

    Górka, Karolina; Soja, Jerzy; Jakieła, Bogdan; Plutecka, Hanna; Gross-Sondej, Iwona; Ćmiel, Adam; Mikrut, Sławomir; Łoboda, Piotr; Andrychiewicz, Anna; Jurek, Paulina; Sładek, Krzysztof

    2016-06-30

    INTRODUCTION    Airway remodeling plays an important role in the development of chronic obstructive pulmonary disease (COPD). Imaging methods, such as computed tomography (CT) and endobronchial ultrasound (EBUS), may be useful in the assessment of structural alterations in the lungs. OBJECTIVES    The aim of this study was to evaluate a relationship between the severity of emphysema assessed by chest CT, the thickness of bronchial wall layers measured by EBUS, and the markers of remodeling in bronchoalveolar lavage fluid (BALF) in patients with COPD. PATIENTS AND METHODS    The study included 33 patients with COPD who underwent pulmonary function tests, emphysema score assessment by chest CT, as well as bronchofiberoscopy with EBUS in order to measure the total bronchial wall thickness and, separately, layers L1, L2, and L3-5. Selected remodeling (matrix metalloproteinase 9 [MMP-9], tissue inhibitor of metalloproteinase 1, transforming growth factor β1 [TGF-β1]) and inflammatory markers (neutrophil elastase, eosinophil cationic protein) were measured in BALF samples using an enzyme-linked immunosorbent assay. RESULTS    MMP-9 levels in BALF were significantly higher in patients with very severe bronchial obstruction than in those with moderate and mild bronchial obstruction (P = 0.02), and showed a negative correlation with forced expiratory volume in 1 second (r = -0.538, P = 0.002). The thickness of L1 and L2, which histologically correspond to the mucosa, submucosa, and smooth muscle, demonstrated a positive correlation with TGF-β1 levels in BALF (r = 0.366, P = 0.046 and r = 0.425, P = 0.02) and the thickness of L1 showed a negative association with neutrophil elastase levels (r = -0.508, P = 0.004). There was no significant correlation between the analyzed markers in BALF and the emphysema score. CONCLUSIONS    Significant correlations of TGF-β1 and elastase with the thickness of bronchial wall layers, and of MMP-9 with the severity of

  4. Automated segmentation of porcine airway wall layers using optical coherence tomography: comparison with manual segmentation and histology

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Lee, Anthony M. D.; Candido, Tara; MacAulay, Calum; Lane, Pierre; Lam, Stephen; Coxson, Harvey O.

    2014-03-01

    The objective was to develop an automated optical coherence tomography (OCT) segmentation method. We evaluated three ex-vivo porcine airway specimens; six non-sequential OCT images were selected from each airway specimen. Histology was also performed for each airway and histology images were co-registered to OCT images for comparison. Manual segmentation of the airway luminal area, mucosa area, submucosa area and the outer airway wall area were performed for histology and OCT images. Automated segmentation of OCT images employed a despecking filter for pre-processing, a hessian-based filter for lumen and outer airway wall area segmentation, and K-means clustering for mucosa and submucosa area segmentation. Bland-Altman analysis indicated that there was very little bias between automated OCT segmentation and histology measurements for the airway lumen area (bias=-6%, 95% CI=-21%-8%), mucosa area, (bias=-4%, 95% CI=-14%-5%), submucosa area (bias=7%, 95% CI=-7%-20%) and outer airway wall area segmentation results (bias=-5%, 95% CI=-14%-5%). We also compared automated and manual OCT segmentation and Bland-Altman analysis indicated that there was negligible bias between luminal area (bias=4%, 95% CI=1%-8%), mucosa area (bias=-3%, 95% CI=-6%-1%), submucosa area (bias=-2%, 95% CI=-10%-6%) and the outer airway wall (bias=-3%, 95% CI=-13%-6%). The automated segmentation method for OCT airway imaging developed here allows for accurate and precise segmentation of the airway wall components, suggesting that translation of this method to in vivo human airway analysis would allow for longitudinal and serial studies.

  5. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  6. Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression

    PubMed Central

    Zha, Wangjian; Su, Mei; Huang, Mao; Cai, Jiankang

    2016-01-01

    Purpose Pigment epithelium-derived factor (PEDF) is a recently discovered antiangiogenesis protein. PEDF possesses powerful anti-inflammatory, antioxidative, antiangiogenic, and antifibrosis properties. It has been reported that PEDF can regulate vascular endothelial growth factor (VEGF) expression. This study aimed to evaluate whether recombinant PEDF protein could attenuate allergic airway inflammation and airway remodeling via the negative regulation of VEGF using a murine model of chronic ovalbumin (OVA)-induced asthma and BEAS-2B human bronchial epithelial cells. Methods In an in vivo experiment, mice sensitized with OVA were chronically airway challenged with aerosolized 1% OVA solution for 8 weeks. Treated mice were given injections of recombinant PEDF protein (50 or 100 µg/kg body weight) via the tail vein. In an in vitro experiment, we investigated the effects of recombinant PEDF protein on VEGF release levels in BEAS-2B cells stimulated with IL-1β. Results Recombinant PEDF protein significantly inhibited eosinophilic airway inflammation, airway hyperresponsiveness, and airway remodeling, including goblet cell hyperplasia, subepithelial collagen deposition, and airway smooth muscle hypertrophy. In addition, recombinant PEDF protein suppressed the enhanced expression of VEGF protein in lung tissue and bronchoalveolar lavage fluid (BALF) in OVA-challenged chronically allergic mice. In the in vitro experiment, VEGF expression was increased after IL-1β stimulation. Pretreatment with 50 and 100 ng/mL of recombinant PEDF protein significantly attenuated the increase in VEGF release levels in a concentration-dependent manner in BEAS-2B cells stimulated by IL-1β. Conclusions These results suggest that recombinant PEDF protein may abolish the development of characteristic features of chronic allergic asthma via VEGF suppression, providing a potential treatment option for chronic airway inflammation diseases such as asthma. PMID:26739410

  7. Automated Measurement of Pulmonary Emphysema and Small Airway Remodeling in Cigarette Smoke-exposed Mice

    PubMed Central

    Laucho-Contreras, Maria E.; Taylor, Katherine L.; Mahadeva, Ravi; Boukedes, Steve S.; Owen, Caroline A.

    2015-01-01

    COPD is projected to be the third most common cause of mortality world-wide by 2020(1). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs(2). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD(3-5). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients(6), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill’s stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson’s trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD. PMID:25651034

  8. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition

    PubMed Central

    Hopke, Alex; Nicke, Nadine; Hidu, Erica E.; Degani, Genny; Popolo, Laura

    2016-01-01

    Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. PMID:27223610

  9. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition.

    PubMed

    Hopke, Alex; Nicke, Nadine; Hidu, Erica E; Degani, Genny; Popolo, Laura; Wheeler, Robert T

    2016-05-01

    Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. PMID:27223610

  10. Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation

    PubMed Central

    van der Velden, Jos L. J.; Hoffman, Sidra M.; Alcorn, John F.; Tully, Jane E.; Chapman, David G.; Lahue, Karolyn G.; Guala, Amy S.; Lundblad, Lennart K. A.; Aliyeva, Minara; Daphtary, Nirav; Irvin, Charles G.

    2014-01-01

    Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1−/− mice by intranasal administration of HDM extract. WT and JNK1−/− mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1−/− mice. In addition, the profibrotic cytokine TGF-β1 and phosphorylation of Smad3 were equally increased in WT and JNK1−/− mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1−/− mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1−/− mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1−/− mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling. PMID:24610935

  11. Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements

    NASA Astrophysics Data System (ADS)

    Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David

    2006-03-01

    The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.

  12. The Homeobox Transcription Factor Cut Coordinates Patterning and Growth During Drosophila Airway Remodeling

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2014-01-01

    A fundamental question in developmental biology is how tissue growth and patterning are coordinately regulated to generate complex organs with characteristic shapes and sizes. We showed that in the developing primordium that produces the Drosophila adult trachea, the homeobox transcription factor Cut regulates both growth and patterning, and its effects depend on its abundance. Quantification of the abundance of Cut in the developing airway progenitors during late larval stage 3 revealed that the cells of the developing trachea had different amounts of Cut, with the most proliferative region having an intermediate amount of Cut and the region lacking Cut exhibiting differentiation. By manipulating Cut abundance, we showed that Cut functioned in different regions to regulate proliferation or patterning. Transcriptional profiling of progenitor populations with different amounts of Cut revealed the Wingless (known as Wnt in vertebrates) and Notch signaling pathways as positive and negative regulators of cut expression, respectively. Furthermore, we identified the gene encoding the receptor Breathless (Btl, known as fibroblast growth factor receptor in vertebrates) as a transcriptional target of Cut. Cut inhibited btl expression and tracheal differentiation to maintain the developing airway cells in a progenitor state. Thus, Cut functions in the integration of patterning and growth in a developing epithelial tissue. PMID:23423438

  13. Targeting complement component 5a promotes vascular integrity and limits airway remodeling.

    PubMed

    Khan, Mohammad A; Maasch, Christian; Vater, Axel; Klussmann, Sven; Morser, John; Leung, Lawrence L; Atkinson, Carl; Tomlinson, Stephen; Heeger, Peter S; Nicolls, Mark R

    2013-04-01

    Increased microvascular dilatation and permeability is observed during allograft rejection. Because vascular integrity is an important indicator of transplant health, we have sought to limit injury to blood vessels by blocking complement activation. Although complement component 3 (C3) inhibition is known to be vasculoprotective in transplantation studies, we recently demonstrated the paradoxical finding that, early in rejection, C3(-/-) transplant recipients actually exhibit worse microvascular injury than controls. In the genetic absence of C3, thrombin-mediated complement component 5 (C5) convertase activity leads to the generation of C5a (anaphylatoxin), a promoter of vasodilatation and permeability. In the current study, we demonstrated that microvessel thrombin deposition is significantly increased in C3(-/-) recipients during acute rejection. Thrombin colocalization with microvessels is closely associated with remarkably elevated plasma levels of C5a, vasodilatation, and increased vascular permeability. Administration of NOX-D19, a specific C5a inhibitor, to C3(-/-) recipients of airway transplants significantly improved tissue oxygenation, limited microvascular leakiness, and prevented airway ischemia, even in the absence of conventional T-cell-directed immunosuppression. As C3 inhibitors enter the clinics, the simultaneous targeting of this thrombin-mediated complement activation pathway and/or C5a itself may confer significant clinical benefit. PMID:23530212

  14. From modeling to remodeling of upper airways: Centrality of hyaluronan (hyaluronic acid).

    PubMed

    Castelnuovo, P; Tajana, G; Terranova, P; Digilio, E; Bignami, M; Macchi, Alberto

    2016-06-01

    After traumatic events (accidental or surgical), the respiratory tract activates specific and prolix repairing mechanisms which tend to claw back the primitive differentiated state. The attempt of reactivation of the normal tissue functions is called 'remodeling' and its aim is to reinstate the modeling mechanisms that existed before the damaging event or the pathology's establishment. Endoscopic sinus surgery represents the gold standard treatment for inflammatory, malformative, benign, and, in selected cases, malignant diseases. The surgical technique is commonly described as minimally invasive as the nostrils are used as an access route and therefore does not leave any external scars. Currently, the surgical procedures, even though minimally invasive regarding the way in, are in fact widely destructive towards the surgical target. The healing process and re-epithelialization will depend on the amount of bony tissue that has been exposed and it will be important to stratify the different surgical typologies in order to foresee the increasing difficulty of mucosal healing process. As far as upper inflammatory diseases are concerned, recent studies demonstrated how intranasal hyaluronic acid can positively regulate mucosal glands secretion and modulate inflammatory response, being a useful tool for the improvement of remodeling after endoscopic sinus surgery. Acid has shown to be able to regulate mucosal glands secretion and modulate the inflammatory response. PMID:25899549

  15. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  16. Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents

    PubMed Central

    Alford, Patrick W.; Humphrey, Jay D.; Taber, Larry A.

    2008-01-01

    A mathematical model is presented for growth and remodeling of arteries. The model is a thick-walled tube composed of a constrained mixture of smooth muscle cells, elastin and collagen. Material properties and radial and axial distributions of each constituent are prescribed according to previously published data. The analysis includes stress-dependent growth and contractility of the muscle and turnover of collagen fibers. Simulations were conducted for homeostatic conditions and for the temporal response following sudden hypertension. Numerical pressure-radius relations and opening angles (residual stress) show reasonable agreement with published experimental results. In particular, for realistic material and structural properties, the model predicts measured variations in opening angles along the length of the aorta with reasonable accuracy. These results provide a better understanding of the determinants of residual stress in arteries and could lend insight into the importance of constituent distributions in both natural and tissue-engineered blood vessels. PMID:17786493

  17. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9.

    PubMed

    Grzela, Katarzyna; Litwiniuk, Malgorzata; Zagorska, Wioletta; Grzela, Tomasz

    2016-02-01

    Chronic obstructive pulmonary disease (COPD) and asthma are both associated with airflow restriction and progressive remodeling, which affect the respiratory tract. Among various biological factors involved in the pathomechanisms of both diseases, proteolytic enzymes--matrix metalloproteinases (MMPs)--play an important role, especially MMP-9. In this review, the authors discuss the current topics of research concerning the possible role of MMP-9 in both mentioned diseases. They include the analysis of protein levels, nucleotide polymorphisms of MMP-9 gene and their possible correlation with asthma and COPD. Finally, the authors refer to the studies on MMP-9 inhibition as a new perspective for increasing the effectiveness of treatment in asthma and COPD. PMID:26123447

  18. Effects of dynamic compression on lentiviral transduction in an in vitro airway wall model.

    PubMed

    Tomei, Alice A; Choe, Melanie M; Swartz, Melody A

    2008-01-01

    Asthmatic patients are more susceptible to viral infection, and we asked whether dynamic strain on the airway wall (such as that associated with bronchoconstriction) would influence the rate of viral infection of the epithelial and subepithelial cells. To address this, we characterized the barrier function of a three-dimensional culture model of the bronchial airway wall mucosa, modified the culture conditions for optimization of ciliogenesis, and compared epithelial and subepithelial green fluorescent protein (GFP) transduction by a pWpts-GFP lentivirus, pseudotyped with VSV-G, under static vs. dynamic conditions. The model consisted of human lung fibroblasts, bronchial epithelial cells, and a type I collagen matrix, and after 21 days of culture at air liquid interface, it exhibited a pseudostratified epithelium comprised of basal cells, mucus-secreting cells, and ciliated columnar cells with beating cilia. Microparticle tracking revealed partial coordination of mucociliary transport among groups of cells. Slow dynamic compression of the airway wall model (15% strain at 0.1 Hz over 3 days) substantially enhanced GFP transduction of epithelial cells and underlying fibroblasts. Fibroblast-only controls showed a similar degree of transduction enhancement when undergoing dynamic strain, suggesting enhanced transport through the matrix. Tight junction loss in the epithelium after mechanical stress was observed by immunostaining. We conclude that dynamic compressive strain such as that associated with bronchoconstriction may promote transepithelial transport and enhance viral transgene delivery to epithelial and subepithelial cells. This finding has significance for asthma pathophysiology as well as for designing delivery strategies of viral gene therapies to the airways. PMID:18024723

  19. Effects of the flavanone combination hesperetin-naringenin, and orange and grapefruit juices, on airway inflammation and remodeling in a murine asthma model.

    PubMed

    Seyedrezazadeh, Ensiyeh; Kolahian, Saeed; Shahbazfar, Amir-Ali; Ansarin, Khalil; Pour Moghaddam, Masoud; Sakhinia, Masoud; Sakhinia, Ebrahim; Vafa, Mohammadreza

    2015-04-01

    We investigated whether flavanones, hesperetin-naringenin, orange, and grapefruit juices reduce airway inflammation and remodeling in murine chronic asthma model. To establish chronic asthma, mice received house dust mite (HDM) for 3 days in 2 weeks, followed by twice per week for 4 weeks. Concurrently, during the last 4 weeks, mice received hesperetin plus naringenin (HN), orange plus grapefruit juice (OGJ), orange juice (OJ), or grapefruit juice (GJ); whereas the asthmatic control (AC) group and non-asthmatic control (NC) group consumed water ad libitum. In histopathological examination, no goblet cells metaplasia was observed in the HN, OJ, and GJ groups; also, intra-alveolar macrophages decreased compared with those of the AC group. Hesperetin plus naringenin significantly decreased subepithelial fibrosis, smooth muscle hypertrophy in airways, and lung atelectasis compared with the AC group. Also, there was a reduction of subepithelial fibrosis in airways in OJ and GJ groups compared with AC group, but it was not noticed in OGJ group. In bronchoalveolar lavage fluid, macrophages numbers decreased in OJ and OGJ groups, whereas eosinophil numbers were increased in OJ group compared with NC group. Our finding revealed that hesperetin plus naringenin ameliorate airway structural remodeling more than orange juice and grapefruit juice in murine model of HDM-induced asthma. PMID:25640915

  20. Social stress in mice induces voiding dysfunction and bladder wall remodeling

    PubMed Central

    Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas

    2009-01-01

    Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139

  1. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  2. Bicuspid aortic valve hemodynamics does not promote remodeling in porcine aortic wall concavity

    PubMed Central

    Atkins, Samantha K; Moore, Alison N; Sucosky, Philippe

    2016-01-01

    AIM: To investigate the role of type-I left-right bicuspid aortic valve (LR-BAV) hemodynamic stresses in the remodeling of the thoracic ascending aorta (AA) concavity, in the absence of underlying genetic or structural defects. METHODS: Transient wall shear stress (WSS) profiles in the concavity of tricuspid aortic valve (TAV) and LR-BAV AAs were obtained computationally. Tissue specimens excised from the concavity of normal (non-dilated) porcine AAs were subjected for 48 h to those stress environments using a shear stress bioreactor. Tissue remodeling was characterized in terms of matrix metalloproteinase (MMP) expression and activity via immunostaining and gelatin zymography. RESULTS: Immunostaining semi-quantification results indicated no significant difference in MMP-2 and MMP-9 expression between the tissue groups exposed to TAV and LR-BAV AA WSS (P = 0.80 and P = 0.19, respectively). Zymography densitometry revealed no difference in MMP-2 activity (total activity, active form and latent form) between the groups subjected to TAV AA and LR-BAV AA WSS (P = 0.08, P = 0.15 and P = 0.59, respectively). CONCLUSION: The hemodynamic stress environment present in the concavity of type-I LR-BAV AA does not cause any significant change in proteolytic enzyme expression and activity as compared to that present in the TAV AA. PMID:26839660

  3. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency.

    PubMed

    Fernandes, João C; Goulao, Luis F; Amâncio, Sara

    2016-01-15

    Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling. PMID:26735749

  4. Pbx Proteins in Cryptococcus neoformans Cell Wall Remodeling and Capsule Assembly

    PubMed Central

    Kumar, Pardeep; Heiss, Christian; Santiago-Tirado, Felipe H.; Black, Ian; Azadi, Parastoo

    2014-01-01

    The cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lacking PBX1 and PBX2 were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers of pbxΔ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence of pbx mutants in animal models. PMID:24585882

  5. IL-33 Modulates Chronic Airway Resistance Changes Induced by Multi-Walled Carbon Nanotubes

    PubMed Central

    Wang, Xiaojia; Shannahan, Jonathan H.; Brown, Jared M.

    2015-01-01

    Objective Instillation of multi-walled carbon nanotubes (MWCNTs) in C57BL/6 mice results in decrements of pulmonary function specifically characterized by increases in airway resistance. In this study, we examined possible mechanisms responsible for these alterations following MWCNT exposure, including the roles of IL-33 and chronic inflammation. Materials and Methods To elucidate the role of IL-33, we assessed lung histology and pulmonary function in C57BL/6 and IL-33−/− mice 30 days following MWCNT instillation. In addition, the impact of MWCNT instillation on airway hyperresponsiveness (AHR) was assessed by methacholine challenges of C57BL/6 and IL-33−/− mice. To further understand the mechanisms by which MWCNTs may increase airway constriction, C57BL/6 mice were treated with aerosolized albuterol or injected with multiple doses of methylprednisolone via intra-peritoneal injections prior to the assessment of MWCNT-induced changes in pulmonary function. Results Total cell count, macrophages, and neutrophils were increased in the lavage fluid of C57BL/6 mice, but not in IL-33−/− mice, following MWCNT exposure. C57BL/6 mice displayed increased inflammation and fibrosis located proximal to the airways which was absent in IL-33−/− mice. Aerosolized methacholine increased parameters of airway resistance (R and Rn) in a dose-dependent manner in all groups, with MWCNT-instilled C57BL/6 mice responding more robustly compared to controls, while no differences were found in IL-33−/− mice due to MWCNT exposure. Treatment with methylprednisolone reduced both the MWCNT-induced histopathological changes and increases in R and Rn in C57BL/6 mice. Conclusion These findings suggest that IL-33 and chronic inflammation in general are critical in the pulmonary toxicity induced by MWCNT resulting in modified pulmonary function. PMID:24502429

  6. Modelling of peak-flow wall shear stress in major airways of the lung.

    PubMed

    Green, A S

    2004-05-01

    Some respiratory diseases result in the inflammation of the lung airway epithelium. An associated chronic cough, as found in many cases of asthma and in long-term smokers, can exacerbate damage to the epithelial layer. It has been proposed that wall shear stresses, created by peak expiratory flow-rates during a coughing episode, are responsible. The work here uses a computational fluid dynamics technique to model peak expiratory flow in the trachea and major lung bronchi. Calculated wall shear stress values are compared to a limited set of published measurements taken from a physical model. The measurements are discussed in the context of a flow study of a complex bronchial network. A more complete picture is achieved by the calculation method, indicating, in some cases, higher maximum wall shear stresses than measured, confirming the original findings of the experimental work. Recommendations are made as to where further work would be beneficial to medical applications. PMID:15046995

  7. Substrate stiffness influences TGF-β1-induced differentiation of bronchial fibroblasts into myofibroblasts in airway remodeling.

    PubMed

    Shi, Yanling; Dong, Yuhui; Duan, Yiyuan; Jiang, Xuemei; Chen, Cheng; Deng, Linhong

    2013-02-01

    Chronic inflammation and remodeling of the bronchial wall are basic hallmarks of asthma. During the process of bronchial wall remodeling, inflammatory factors, such as transforming growth factor-β1 (TGF-β1), are known to induce the differentiation of fibroblasts into myofibroblasts, which leads to excessive synthesis and secretion of extracellular matrix (ECM) proteins, thus thickening and stiffening the basement membrane. However, it has not been thoroughly studied whether or not substrate stiffening affects the TGF-β1‑induced myofibroblast differentiation. In the present study, the influence of substrate stiffness on the process of bronchial fibroblast differentiation into myofibroblasts in the presence of TGF-β1 was investigated. To address this question, we synthesized polydimethylsiloxane (PDMS) substrates with varying degrees of stiffness (Young's modulus of 1, 10 and 50 kPa, respectively). We cultured bronchial fibroblasts on the substrates of varying stiffness in media containing TGF-β1 (10 ng/ml) to stimulate the differentiation of fibroblasts into myofibroblasts. Myofibroblast differentiation was examined using semi-quantitative RT-PCR for the expression of α-smooth muscle actin (α-SMA) mRNA and collagen I mRNA, the enzyme-linked immunosorbent assay method was used to assess the expression of collagen I protein and western blotting to assess the expression of α-SMA protein. The optical magnetic twisting cytometry (OMTC) method was used for the changing of cell mechanical properties. Our findings suggest that when fibroblasts were incubated with TGF-β1 (10 ng/ml) on substrate of varying stiffness, the differentiation of fibroblasts into myofibroblasts was enhanced by increasing substrate stiffness. Compared with those cultured on substrate with Young's modulus of 1 kPa, the mRNA and protein expression of collagen I and α-SMA of fibroblasts cultured on substrates with Young's modulus of 10 and 50 kPa were increased. Furthermore, with the

  8. Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling.

    PubMed

    Yang, Mingjin; Du, Yuejun; Xu, Zhibo; Jiang, Youfan

    2016-02-01

    Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling. PMID:26242865

  9. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  10. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall

    PubMed Central

    Row, Sindhu; Peng, Haofan; Schlaich, Evan M.; Koenigsknecht, Carmon; Andreadis, Stelios T.; Swartz, Daniel D.

    2015-01-01

    Objective To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Approach and results Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. Conclusions These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. PMID:25736502

  11. Induction of vascular remodeling in the lung by chronic house dust mite exposure.

    PubMed

    Rydell-Törmänen, Kristina; Johnson, Jill R; Fattouh, Ramzi; Jordana, Manel; Erjefält, Jonas S

    2008-07-01

    Structural changes to the lung are associated with chronic asthma. In addition to alterations to the airway wall, asthma is associated with vascular modifications, although this aspect of remodeling is poorly understood. We sought to evaluate the character and kinetics of vascular remodeling in response to chronic aeroallergen exposure. Because many ovalbumin-driven models used to investigate allergic airway disease do so in the absence of persistent airway inflammation, we used a protocol of chronic respiratory exposure to house dust mite extract (HDME), which has been shown to induce persistent airway inflammation consistent with that seen in humans with asthma. Mice were exposed to HDME intranasally for 7 or 20 consecutive weeks, and resolution of the inflammatory and remodeling response to allergen was investigated 4 weeks after the end of a 7-week exposure protocol. Measures of vascular remodeling, including total collagen deposition, procollagen I production, endothelial and smooth muscle cell proliferation, smooth muscle area, and presence of myofibroblasts, were investigated histologically in lung vessels of different sizes and locations. We observed an increase in total collagen content, which did not resolve upon cessation of allergen exposure. Other parameters were significantly increased after 7 and/or 20 weeks of allergen exposure but returned to baseline after allergen withdrawal. We conclude that respiratory HDME exposure induces airway remodeling and pulmonary vascular remodeling, and, in accordance with airway remodeling, some components of these structural changes may be irreversible. PMID:18314535

  12. Heterogeneous fate of perfusion and contraction after anterior wall acute myocardial infarction and effects on left ventricular remodeling.

    PubMed

    Marcassa, C; Galli, M; Bolli, R; Temporelli, P L; Campini, R; Giannuzzi, P

    1998-12-15

    After acute myocardial infarction, patency of infarct vessel and extent of left venticular (LV) dysfunction are major determinants of ventricular remodeling. Spontaneous, delayed reperfusion in the infarct zone occurs in a sizeable number of patients well after the subacute phase. The aim of this study was to determine the relation between the occurrence of this spontaneous, delayed reperfusion and LV remodeling. In 84 patients, resting LV volumes, topography, regional function, and perfusion were quantitatively evaluated by 2-dimensional echocardiography and sestamibi tomography 5 weeks (study 1) and 7 months (study 2) after anterior Q-wave infarction. At study 2, LV end-diastolic volume increased by > 15% in 17 patients (20%, LV remodeling); they had already had at study 1 significantly larger LV volumes, more severe hypoperfusion and wall motion abnormalities, and greater regional dilation than patients with stable LV volumes. Delayed reperfusion occurred in 8 of 17 patients with and in 42 of 67 patients without LV remodeling (47% vs 63%; p=NS). At study 2, LV regional dilation and end-diastolic volumes were stable in patients with, but increased in patients without, spontaneous reperfusion (from 25+/-24% to 29+/-26% at study 2 [p<0.05] and from 65+/-14 to 68+/-18 ml/m2 [p <0.05]). At multivariate analysis, however, regional ventricular dilation at study 1 was the sole predictor of further LV remodeling. Thus, after acute myocardial infarction, spontaneous reperfusion occurring after 5 weeks plays only a minor role in influencing LV remodeling. Benefits from delayed reperfusion seem limited to patients with preserved LV volumes; patients with an enlarged left ventricle 5 weeks after acute infarction are prone to further LV remodeling, irrespective of delayed reperfusion. PMID:9874047

  13. Compliance mismatch and compressive wall stresses drive anomalous remodelling of pulmonary trunks reinforced with Dacron grafts.

    PubMed

    Nappi, Francesco; Carotenuto, Angelo Rosario; Cutolo, Arsenio; Fouret, Pierre; Acar, Christophe; Chachques, Juan Carlos; Fraldi, Massimiliano

    2016-10-01

    Synthetic grafts are often satisfactory employed in cardiac and vascular surgery, including expanded poly(ethylene terephthalate) or expanded poly(tetrafluoroethylene). However, accumulating evidences suggest the emergence of worrisome issues concerning the long-term fate of prosthetic grafts as large vessel replacement. Disadvantages related to the use of synthetic grafts can be traced in their inability of mimicking the elasto-mechanical characteristics of the native vascular tissue, local suture overstress leading to several prosthesis-related complications and retrograde deleterious effects on valve competence, cardiac function and perfusion. Motivated by this, in the present work it is analyzed - by means of both elemental biomechanical paradigms and more accurate in silico Finite Element simulations - the physical interaction among aorta, autograft and widely adopted synthetic (Dacron) prostheses utilized in transposition of pulmonary artery, highlighting the crucial role played by somehow unexpected stress fields kindled in the vessel walls and around suture regions, which could be traced as prodromal to the triggering of anomalous remodelling processes and alterations of needed surgical outcomes. Theoretical results are finally compared with histological and surgical data related to a significant experimental animal campaign conducted by performing pulmonary artery transpositions in 30 two-month old growing lambs, followed up during growth for six months. The in vivo observations demonstrate the effectiveness of the proposed biomechanical hypothesis and open the way for possible engineering-guided strategies to support and optimize surgical procedures. PMID:27442920

  14. Type VIII Collagen Mediates Vessel Wall Remodeling after Arterial Injury and Fibrous Cap Formation in Atherosclerosis

    PubMed Central

    Lopes, Joshua; Adiguzel, Eser; Gu, Steven; Liu, Shu-Lin; Hou, Guangpei; Heximer, Scott; Assoian, Richard K.; Bendeck, Michelle P.

    2014-01-01

    Collagens in the atherosclerotic plaque signal regulation of cell behavior and provide tensile strength to the fibrous cap. Type VIII collagen, a short-chain collagen, is up-regulated in atherosclerosis; however, little is known about its functions in vivo. We studied the response to arterial injury and the development of atherosclerosis in type VIII collagen knockout mice (Col8−/− mice). After wire injury of the femoral artery, Col8−/− mice had decreased vessel wall thickening and outward remodeling when compared with Col8+/+ mice. We discovered that apolipoprotein E (ApoE) is an endogenous repressor of the Col8a1 chain, and, therefore, in ApoE knockout mice, type VIII collagen was up-regulated. Deficiency of type VIII collagen in ApoE−/− mice (Col8−/−;ApoE−/−) resulted in development of plaques with thin fibrous caps because of decreased smooth muscle cell migration and proliferation and reduced accumulation of fibrillar type I collagen. In contrast, macrophage accumulation was not affected, and the plaques had large lipid-rich necrotic cores. We conclude that in atherosclerosis, type VIII collagen is up-regulated in the absence of ApoE and functions to increase smooth muscle cell proliferation and migration. This is an important mechanism for formation of a thick fibrous cap to protect the atherosclerotic plaque from rupture. PMID:23567639

  15. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  16. Quantification of airway morphometry: the effect of CT acquisition and reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Coxson, Harvey O.; Fuhrman, Carl R.; McMurray, Jessica M.; Park, Sang C.; Maitz, Glenn S.; Gur, David

    2007-03-01

    This study measured the accuracy of our airway quantification scheme using phantoms airway under different CT protocols. Airway remodeling is associated with several thoracic diseases (e.g., chronic bronchitis, asthma, and bronchiectasis), and, therefore, quantification of airway remodeling may have wide clinical application. Our scheme assigns pixels partial membership in the airway wall and lumen based on the pixel's HU value, which is intended to account for partial volume averaging inherent in CT image reconstruction. Twenty-four phantom airways with an outer diameter from 2.6 to 14.0 mm and wall thicknesses from 0.5 to 2.0 mm were analyzed. The absolute differences between measurements supplied by the manufacture and computed from CT images acquired at 40 mAs and reconstructed at 1.25 mm thickness using GE's "soft" and "lung" reconstruction kernels for lumen area ranged from 1.4% to 49.3% and 0.4% to 33.0%, respectively, and for wall area ranged from 0.3% to 118.0% and 2.1 to 92.9%, respectively. Accuracy typically improved as the kernel's spatial frequency increased. Airways whose wall thickness was close to the pixels dimensions were challenging to quantify. The partial membership assignment of our airway quantification accurately computed airway morphometry across a range of phantom airway sizes.

  17. Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?

    PubMed

    Lee-Gosselin, Audrey; Pascoe, Chris D; Couture, Christian; Paré, Peter D; Bossé, Ynuk

    2013-11-01

    Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the "length dependency of ASM force" in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K(+). Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6-10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8-117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4-4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness. PMID:23970527

  18. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  19. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  20. A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α.

    PubMed

    Eurlings, Irene M J; Dentener, Mieke A; Mercken, Evi M; de Cabo, Rafael; Bracke, Ken R; Vernooy, Juanita H J; Wouters, Emiel F M; Reynaert, Niki L

    2014-10-01

    Remodeling in chronic obstructive pulmonary disease (COPD) has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recently we showed comparable alterations of the extracellular matrix (ECM) compounds collagen, hyaluoran, and elastin in alveolar and small airway walls of COPD patients. The aim of this study was to characterize and assess similarities in alveolar and small airway wall matrix remodeling in chronic COPD models. From this comparative characterization of matrix remodeling we derived and elaborated underlying mechanisms to the matrix changes reported in COPD. Lung tissue sections of chronic models for COPD, either induced by exposure to cigarette smoke, chronic intratracheal lipopolysaccharide instillation, or local tumor necrosis factor (TNF) expression [surfactant protein C (SPC)-TNFα mice], were stained for elastin, collagen, and hyaluronan. Furthermore TNF-α matrix metalloproteinase (MMP)-2, -9, and -12 mRNA expression was analyzed using qPCR and localized using immunohistochemistry. Both collagen and hyaluronan were increased in alveolar and small airway walls of all three models. Interestingly, elastin contents were differentially affected, with a decrease in both alveolar and airway walls in SPC-TNFα mice. Furthermore TNF-α and MMP-2 and -9 mRNA and protein levels were found to be increased in alveolar walls and around airway walls only in SPC-TNFα mice. We show that only SPC-TNFα mice show changes in elastin remodeling that are comparable to what has been observed in COPD patients. This reveals that the SPC-TNFα model is a suitable model to study processes underlying matrix remodeling and in particular elastin breakdown as seen in COPD. Furthermore we indicate a possible role for MMP-2 and MMP-9 in the breakdown of elastin in airways and alveoli of SPC-TNFα mice. PMID:25106431

  1. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    SciTech Connect

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  2. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation.

    PubMed

    Álvarez-Santos, Mayra; Carbajal, Verónica; Tellez-Jiménez, Olivia; Martínez-Cordero, Erasmo; Ruiz, Victor; Hernández-Pando, Rogelio; Lascurain, Ricardo; Santibañez-Salgado, Alfredo; Bazan-Perkins, Blanca

    2016-10-01

    The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc. PMID:26969873

  3. Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients.

    PubMed

    Mauri, Pierluigi; Riccio, Anna Maria; Rossi, Rossana; Di Silvestre, Dario; Benazzi, Louise; De Ferrari, Laura; Dal Negro, Roberto Walter; Holgate, Stephen T; Canonica, Giorgio Walter

    2014-11-01

    Asthma is a chronic inflammatory disease. Reticular basement membrane (RBM) thickening is considered feature of airway remodelling (AR) particularly in severe asthma (SA). Omalizumab, mAb to IgE is effective in SA and can modulate AR. Herein we describe protein profiles of bronchial biopsies to detect biomarkers of anti-IgE effects on AR and to explain potential mechanisms/pathways. We defined the bronchial biopsy protein profiles, before and after treatment. Unsupervised clustering of baseline proteomes resulted in very good agreement with the morphometric analysis of AR. Protein profiles of omalizumab responders (ORs) were significantly different from those of non-omalizumab responders (NORs). The major differences between ORs and NORs lied to smooth muscle and extra cellular matrix proteins. Notably, an IgE-binding protein (galectin-3) was reliable, stable and predictive biomarker of AR modulation. Omalizumab down-regulated bronchial smooth muscle proteins in SA. These findings suggest that omalizumab may exert disease-modifying effects on remodelling components. PMID:25194755

  4. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes.

    PubMed

    Thompson, Elizabeth A; Sayers, Brian C; Glista-Baker, Ellen E; Shipkowski, Kelly A; Ihrie, Mark D; Duke, Katherine S; Taylor, Alexia J; Bonner, James C

    2015-11-01

    Asthma is characterized by a T helper type 2 phenotype and by chronic allergen-induced airway inflammation (AAI). Environmental exposure to air pollution ultrafine particles (i.e., nanoparticles) exacerbates AAI, and a concern is possible exacerbation posed by engineered nanoparticles generated by emerging nanotechnologies. Signal transducer and activator of transcription (STAT) 1 is a transcription factor that maintains T helper type 1 cell development. However, the role of STAT1 in regulating AAI or exacerbation by nanoparticles has not been explored. In this study, mice with whole-body knockout of the Stat1 gene (Stat1(-/-)) or wild-type (WT) mice were sensitized to ovalbumin (OVA) allergen and then exposed to multiwalled carbon nanotubes (MWCNTs) by oropharygneal aspiration. In Stat1(-/-) and WT mice, OVA increased eosinophils in bronchoalveolar lavage fluid, whereas MWCNTs increased neutrophils. Interestingly, OVA sensitization prevented MWCNT-induced neutrophilia and caused only eosinophilic inflammation. Stat1(-/-) mice displayed increased IL-13 in bronchoalveolar lavage fluid at 1 day compared with WT mice after treatment with OVA or OVA and MWCNTs. At 21 days, the lungs of OVA-sensitized Stat1(-/-) mice displayed increased eosinophilia, goblet cell hyperplasia, airway fibrosis, and subepithelial apoptosis. MWCNTs further increased OVA-induced goblet cell hyperplasia, airway fibrosis, and apoptosis in Stat1(-/-) mice at 21 days. These changes corresponded to increased levels of profibrogenic mediators (transforming growth factor-β1, TNF-α, osteopontin) but decreased IL-10 in Stat1(-/-) mice. Finally, fibroblasts isolated from the lungs of Stat1(-/-) mice produced significantly more collagen mRNA and protein in response to transforming growth factor-β1 compared with WT lung fibroblasts. Our results support a protective role for STAT1 in chronic AAI and exacerbation of remodeling caused by MWCNTs. PMID:25807359

  5. Putting the Squeeze on Airway Epithelia.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J; Drazen, Jeffrey M

    2015-07-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  6. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  7. The dissection of reinforced endotracheal tube internal wall causing intraoperative airway obstruction under general anesthesia. Case report.

    PubMed

    Mercanoglu, Esra; Topuz, Derya; Kaya, Nur

    2013-01-01

    Endotracheal intubation is performed to establish a secure airway. However, this carries its risks and obstruction of an endotracheal tube (ETT) is a potentially life-threatening event. We report two cases with an obstruction of the resterilized, single use, spiral, reinforced endotracheal tubes by dissection of the internal wall. As a conclusion, we suggest not reusing and resterilizing single tubes in these cases to avoid a complication like dissection of the internal wall of the tube, as this has been the main cause. PMID:24565248

  8. The dissection of reinforced endotracheal tube internal wall causing intraoperative airway obstruction under general anesthesia: case report.

    PubMed

    Mercanoglu, Esra; Topuz, Derya; Kaya, Nur

    2013-01-01

    Endotracheal intubation is performed to establish a secure airway. However, this carries its risks and obstruction of an endotracheal tube (ETT) is a potentially life-threatening event. We report two cases with an obstruction of the resterilized, single use, spiral, reinforced endotracheal tubes by dissection of the internal wall. As a conclusion, we suggest not reusing and resterilizing single tubes in these cases to avoid a complication like dissection of the internal wall of the tube, as this has been the main cause. PMID:23931255

  9. Smad molecules expression pattern in human bronchial airway induced by sulfur mustard.

    PubMed

    Adelipour, Maryam; Imani Fooladi, Abbas Ali; Yazdani, Samaneh; Vahedi, Ensieh; Ghanei, Mostafa; Nourani, Mohammad Reza

    2011-09-01

    Airway remodelling is characterized by the thickening and reorganization of the airways seen in mustard lung patients. Mustard lung is the general description for the chronic obstructive pulmonary disease induced by sulfur mustard(SM). Pulmonary disease was diagnosed as the most important disorder in individuals that had been exposed to sulfur mustard. Sulfur mustard is a chemical warfare agent developed during Wars. Iraqi forces frequently used it against Iranian during Iran -Iraq in the 1980-1988. Peribronchial fibrosis result from airway remodeling that include excess of collagen of extracellular matrix deposition in the airway wall. Some of Smads families in association with TGF-β are involved in airway remodeling due to lung fibrosis. In the present study we compared the mRNA expression of Smad2, Smad3, and Smad4 and Smad7 genes in airway wall biopsies of chemical-injured patients with non-injured patients as control. We used airway wall biopsies of ten unexposed patients and fifteen SM-induced patients. Smads expression was evaluated by RT-PCR followed by bands densitometry. Expression levels of Smad3 and Smad4 in SM exposed patients were upregulated but Smad2 and Smad7 was not significantly altered. Our results revealed that Smad3, and 4 may be involved in airway remodeling process in SM induced patients by activation of TGF-β. Smad pathway is the most represented signaling mechanism for airway remodeling and peribronchial fibrosis. The complex of Smads in the nucleus affects a series of genes that results in peribronchial fibrosis in SM-induced patients. PMID:21891820

  10. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD.

    PubMed

    Pera, T; Zuidhof, A; Valadas, J; Smit, M; Schoemaker, R G; Gosens, R; Maarsingh, H; Zaagsma, J; Meurs, H

    2011-10-01

    Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling. This study aimed to investigate the role of acetylcholine in pulmonary inflammation and remodelling using an animal model of COPD. To this aim, guinea pigs were instilled intranasally with lipopolysaccharide (LPS) twice weekly for 12 weeks and were treated, by inhalation, with the long-acting muscarinic receptor antagonist tiotropium. Repeated LPS exposure induced airway and parenchymal neutrophilia, and increased goblet cell numbers, lung hydroxyproline content, airway wall collagen and airspace size. Furthermore, LPS increased the number of muscularised microvessels in the adventitia of cartilaginous airways. Tiotropium abrogated the LPS-induced increase in neutrophils, goblet cells, collagen deposition and muscularised microvessels, but had no effect on emphysema. In conclusion, tiotropium inhibits remodelling of the airways as well as pulmonary inflammation in a guinea pig model of COPD, suggesting that endogenous acetylcholine plays a major role in the pathogenesis of this disease. PMID:21349917

  11. Human Airway Epithelial Cell Responses to Single Walled Carbon Nanotube Exposure: Nanorope-Residual Body Formation

    SciTech Connect

    Panessa-Warren, Barbara J.; Warren, John B.; Kisslinger, Kim; Crosson, Kenya; Maye, Mathew M.

    2012-11-01

    This investigation examines the 'first contact responses' of in vitro human epithelial airway cells exposed to unrefined single walled carbon nanotubes (SWCNTs) [containing metal catalyst, carbon black, amorphous carbon, graphitic shells, and SWCNTs], and refined acid/peroxide cleaned and cut SWCNTs at low and high dose exposures (0.16 ug/L and 1.60 ug/L) for 2, 3 and 3.5 hours. FTIR, X-ray compositional analysis, morphological TEM analysis and UV-Vis were used to physicochemically characterize the SWCNTs in this study. Following SWCNT exposure to human lung NCI-H292 epithelial monolayers, the airway cells were prepared for light microscopy vital staining, or fixed in glutaraldehyde for SEM/TEM imaging to determine SWCNT binding, uptake, intracellular processing and organellar/SWCNT fate within the exposure period. At 2 hr exposures to both unrefined Carbolex, and refined SWCNTs (at both high and low doses), there were no increases in lung cell necrosis compared to controls. However high dose, 3 hr exposures to unrefined Carbolex material produced severe cell damage (apical and basal plasma membrane holes, decreased mitochondria, numerous intracellular vesicles containing nanomaterial and membrane fragments) and increased cell necrosis. The refined SWCNTs exposed for 3 hr at low dose produced no increase in cell death, although high dose exposure produced significant cell death. By TEM, Acid/peroxide cleaned SWCNT 3 hr exposures at high and low doses, revealed SWCNTs attachment to cell surface mucin, and SWCNT uptake into the cells during membrane recycling. Membranes and SWCNTs were seen within cytoplasmic lamellar body-type vesicles, where vesicular contents were bio-degraded, eventually forming long SWCNT-nanoropes, which were subsequently released into the cytoplasm as clusters of attached nanoropes, as the vesicle membranes fragmented. These Nanorope-Residual Bodies did not cause damage to the surrounding organelles or cytoplasm, and seemed very stabile in the

  12. Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys

    PubMed Central

    Ballinger, Carol A.; Plopper, Charles G.; McDonald, Ruth J.; Bartolucci, Alfred A.; Postlethwait, Edward M.; Harkema, Jack R.

    2011-01-01

    Children chronically exposed to high levels of ozone (O3), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O3 [0.5 parts per million (ppm), 8 h/day; “1-cycle”] or filtered air (FA) or 11 biweekly cycles of O3 (FA days 1–9; 0.5 ppm, 8 h/day on days 10–14; “11-cycle”). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH2), and uric acid (UA) concentration. Eleven-cycle O3 induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O3 also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments. PMID:21131400

  13. Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys.

    PubMed

    Carey, Stephan A; Ballinger, Carol A; Plopper, Charles G; McDonald, Ruth J; Bartolucci, Alfred A; Postlethwait, Edward M; Harkema, Jack R

    2011-02-01

    Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments. PMID:21131400

  14. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non

  15. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study

    PubMed Central

    Hartley, Ruth A.; Barker, Bethan L.; Newby, Chris; Pakkal, Mini; Baldi, Simonetta; Kajekar, Radhika; Kay, Richard; Laurencin, Marie; Marshall, Richard P.; Sousa, Ana R.; Parmar, Harsukh; Siddiqui, Salman; Gupta, Sumit; Brightling, Chris E.

    2016-01-01

    Background There is a paucity of studies comparing asthma and chronic obstructive pulmonary disease (COPD) based on thoracic quantitative computed tomographic (QCT) parameters. Objectives We sought to compare QCT parameters of airway remodeling, air trapping, and emphysema between asthmatic patients and patients with COPD and explore their relationship with airflow limitation. Methods Asthmatic patients (n = 171), patients with COPD (n = 81), and healthy subjects (n = 49) recruited from a single center underwent QCT and clinical characterization. Results Proximal airway percentage wall area (%WA) was significantly increased in asthmatic patients (62.5% [SD, 2.2]) and patients with COPD (62.7% [SD, 2.3]) compared with that in healthy control subjects (60.3% [SD, 2.2], P < .001). Air trapping measured based on mean lung density expiratory/inspiratory ratio was significantly increased in patients with COPD (mean, 0.922 [SD, 0.037]) and asthmatic patients (mean, 0.852 [SD, 0.061]) compared with that in healthy subjects (mean, 0.816 [SD, 0.066], P < .001). Emphysema assessed based on lung density measured by using Hounsfield units below which 15% of the voxels lie (Perc15) was a feature of COPD only (patients with COPD: mean, −964 [SD, 19.62] vs asthmatic patients: mean, −937 [SD, 22.7] and healthy subjects: mean, −937 [SD, 17.1], P < .001). Multiple regression analyses showed that the strongest predictor of lung function impairment in asthmatic patients was %WA, whereas in the COPD and asthma subgrouped with postbronchodilator FEV1 percent predicted value of less than 80%, it was air trapping. Factor analysis of QCT parameters in asthmatic patients and patients with COPD combined determined 3 components, with %WA, air trapping, and Perc15 values being the highest loading factors. Cluster analysis identified 3 clusters with mild, moderate, or severe lung function impairment with corresponding decreased lung density (Perc15 values) and increased air

  16. Diffusion capacity and CT measures of emphysema and airway wall thickness – relation to arterial oxygen tension in COPD patients

    PubMed Central

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Eagan, Tomas Mikal Lind; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Background Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. Objective To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. Methods The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007–2008. Emphysema was assessed as percent of low-attenuation areas<−950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Results Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was –0.32 (−0.04–(−0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. Conclusion CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia. PMID:27178139

  17. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  18. A conformational switch controls cell wall remodeling enzymes required for bacterial cell division

    PubMed Central

    Yang, Desirée C.; Tan, Kemin; Joachimiak, Andrzej; Bernhardt, Thomas G.

    2012-01-01

    Summary Remodeling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyze PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB, and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB ortholog was also solved, revealing that the active site of AmiB is occluded by a conserved alpha-helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase auto-inhibition governed by conserved sub-complexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multi-enzyme PG remodeling machines. PMID:22715947

  19. So-Cheong-Ryong-Tang, a herbal medicine, modulates inflammatory cell infiltration and prevents airway remodeling via regulation of interleukin-17 and GM-CSF in allergic asthma in mice

    PubMed Central

    Kim, Hyung-Woo; Lim, Chi-Yeon; Kim, Bu-Yeo; Cho, Su-In

    2014-01-01

    Background: So-Cheong-Ryong-Tang (SCRT), herbal medicine, has been used for the control of respiratory disease in East Asian countries. However, its therapeutic mechanisms, especially an inhibitory effect on inflammatory cell infiltration and airway remodeling in allergic asthma are unclear. Objective: The present study investigated the mechanism of antiasthmatic effects of SCRT in allergic asthma in mice. Materials and Methods: We investigated the influence of SCRT on levels of interleukin-17 (IL-17), granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-4, and interferon gamma (IFN-γ) in bronchoalveolar lavage fluid (BALF), ovalbumin (OVA)-specific IgE in serum, and histopathological changes in allergen-induced asthma. Results: So-Cheong-Ryong-Tang decreased levels of IL-17 and GM-CSF in BALF. IL-4, a Th2-driven cytokine, was also decreased by SCRT, but IFN-γ, a Th1-driven cytokine, was not changed. Levels of OVA-specific IgE in serum were also decreased by SCRT. With SCRT treatment, histopathological findings showed reduced tendency of inflammatory cell infiltration, and prevention from airway remodeling such as epithelial hyperplasia. Conclusion: In this study, we firstly demonstrated that regulation of IL-17 and GM-CSF production may be one of the mechanism contributed to a reduction of inflammatory cell infiltration and prevention from airway remodeling. PMID:25298667

  20. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  1. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance. PMID:26909555

  2. Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Huang, Shenghai; Heidari, Andrew E.; Dai, Cuixia; Zhu, Jiang; Zhang, Xuping; Chen, Zhongping

    2016-03-01

    We present an automatic segmentation method for delineation and quantitative thickness measurement of multiple layers in endoscopic airway optical coherence tomography (OCT) images. The boundaries of the mucosa and the sub-mucosa layers were extracted using a graph-theory-based dynamic programming algorithm. The algorithm was tested with pig airway OCT images acquired with a custom built long range endoscopic OCT system. The performance of the algorithm was demonstrated by cross-validation between auto and manual segmentation experiments. Quantitative thicknesses changes in the mucosal layers are obtained automatically for smoke inhalation injury experiments.

  3. [Cytomorphological analysis of remodeling of the bronchial wall in different types of bronchial asthma].

    PubMed

    Gereng, E A; Sukhodolo, I V; Pleshko, R I; Ogorodova, L M; Selivanova, P A; Dziuman, A N

    2012-01-01

    The objective of the present work was to search for the tissue and cellular markers of remodeling of bronchial mucosa in the patients with different clinical forms of bronchial asthma (BA). The use of up-to-date morphometric techniques has demonstrated that mild and moderately severe forms of bronchial asthma are accompanied by the development of Th2-immune response associated with increased production of interleukin-4 and marked degranulation of eosinophilic granulocytes resulting in desquamation of epithelium and goblet cell hyperplasia. The severe BA phenotype of "chronic asthma with fixed obstruction" is associated with the development of non-atopic inflammation in the bronchial mucous membrane that manifests itself as the increased concentration of interleukin-8 in bronchial mucosa and its neutrophilic infiltration leading to the development of pronounced subepithelial fibrosis, thickening of the basal membrane, and atrophy of epithelium. Specific structural changes in bronchial mucosa of the patients presenting with BA underlie functional disturbances that cause severe bronchial obstructive syndrome. PMID:22645957

  4. Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model

    PubMed Central

    Kim, Byeong-Gon; Lee, Pureun-Haneul; Lee, Shin-Hwa; Kim, Young-En; Shin, Mee-Yong; Kang, Yena; Bae, Seong-Hwan; Kim, Min-Jung; Rhim, TaiYoun; Park, Choon-Sik

    2016-01-01

    Purpose Diesel exhaust particles (DEPs) can induce and trigger airway hyperresponsiveness (AHR) and inflammation. The aim of this study was to investigate the effect of long-term DEP exposure on AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. Methods BALB/c mice were exposed to DEPs 1 hour a day for 5 days a week for 3 months in a closed-system chamber attached to a ultrasonic nebulizer (low dose: 100 µg/m3 DEPs, high dose: 3 mg/m3 DEPs). The control group was exposed to saline. Enhanced pause was measured as an indicator of AHR. Animals were subjected to whole-body plethysmography and then sacrificed to determine the performance of bronchoalveolar lavage and histology. Results AHR was higher in the DEP group than in the control group, and higher in the high-dose DEP than in the low-dose DEP groups at 4, 8, and 12 weeks. The numbers of neutrophils and lymphocytes were higher in the high-dose DEP group than in the low-dose DEP group and control group at 4, 8, and 12 weeks. The levels of interleukin (IL)-5, IL-13, and interferon-γ were higher in the low-dose DEP group than in the control group at 12 weeks. The level of IL-10 was higher in the high-dose DEP group than in the control group at 12 weeks. The level of vascular endothelial growth factor was higher in the low-dose and high-dose DEP groups than in the control group at 12 weeks. The level of IL-6 was higher in the low-dose DEP group than in the control group at 12 weeks. The level of transforming growth factor-β was higher in the high-dose DEP group than in the control group at 4, 8, and 12 weeks. The collagen content and lung fibrosis in lung tissue was higher in the high-dose DEP group at 8 and 12 weeks. Conclusions These results suggest that long-term DEP exposure may increase AHR, inflammation, lung fibrosis, and goblet cell hyperplasia in a mouse model. PMID:26922935

  5. Carotid thin fluttering bands: A new element of arterial wall remodelling? An ultrasound study.

    PubMed

    Costanzo, Luca; Sole, Andrea; Tamburino, Corrado; Di Pino, Luigi

    2015-10-01

    Carotid artery ultrasound is a non-invasive and reproducible technique used for early atherosclerotic assessment. Intimal flap has been described in the presence of dissection or mobile plaque rupture, however presence of carotid thin fluttering bands (TFBs) have not been described yet. To investigate frequency, characteristics and impact of TFBs in carotid lumen of patients who underwent carotid ultrasound scan (CUS). 3341 patients were admitted from January 2009 to January 2014. Patients with history of cerebral ischemia (CI) were excluded. In the cases in which TFBs were observed, a 3-months clinical and CUS follow-up (FU) was performed. TFBs were found in 71 patients (2.1%). The mean age was 63.41 ± 11.20 years (range 42-89). All patients showed a mean increase in intima-media thickness. We identified two subgroups: in 22 patients the TFB was related to a carotid plaque while in 49 no carotid plaque was found. TFB mostly originated in the carotid bulb (88.7%) and was similarly located in carotid arteries (49.3% left-side and 50.7% right-side). CUS and clinical FU were available for all patients (mean duration 25.34 months, median 19). CI occurred in none of the patients. TFB disappeared in 13 patients (18.3%) with no sign or symptoms of CI. In 3 of 49 patients without carotid plaque (6.1%), progressive thickening beneath TFB was observed. TFB is a rare finding. Longer FU is needed to evaluate its prognosis. To date, the pathophysiology is unknown, however it could be related to vascular remodeling. PMID:26179862

  6. Benchmarks for time-domain simulation of sound propagation in soft-walled airways: Steady configurations

    PubMed Central

    Titze, Ingo R.; Palaparthi, Anil; Smith, Simeon L.

    2014-01-01

    Time-domain computer simulation of sound production in airways is a widely used tool, both for research and synthetic speech production technology. Speed of computation is generally the rationale for one-dimensional approaches to sound propagation and radiation. Transmission line and wave-reflection (scattering) algorithms are used to produce formant frequencies and bandwidths for arbitrarily shaped airways. Some benchmark graphs and tables are provided for formant frequencies and bandwidth calculations based on specific mathematical terms in the one-dimensional Navier–Stokes equation. Some rules are provided here for temporal and spatial discretization in terms of desired accuracy and stability of the solution. Kinetic losses, which have been difficult to quantify in frequency-domain simulations, are quantified here on the basis of the measurements of Scherer, Torkaman, Kucinschi, and Afjeh [(2010). J. Acoust. Soc. Am. 128(2), 828–838]. PMID:25480071

  7. Arterialization and anomalous vein wall remodeling in varicose veins is associated with upregulated FoxC2-Dll4 pathway.

    PubMed

    Surendran, Sumi; S Ramegowda, Kalpana; Suresh, Aarcha; Binil Raj, S S; Lakkappa, Ravi Kumar B; Kamalapurkar, Giridhar; Radhakrishnan, N; C Kartha, Chandrasekharan

    2016-04-01

    Varicose veins of lower extremities are a heritable common disorder. Mechanisms underlying its pathogenesis are still vague. Structural failures such as valve weakness and wall dilatation in saphenous vein result in venous retrograde flow in lower extremities of body. Reflux of blood leads to distal high venous pressure resulting in distended veins. In an earlier study, we observed a positive association between c.-512C>T FoxC2 gene polymorphism and upregulated FoxC2 expression in varicose vein specimens. FoxC2 overexpression in vitro in venous endothelial cells resulted in the elevated mRNA expression of arterial endothelial markers such as Delta-like ligand 4 (Dll4) and Hairy/enhancer-of-split related with YRPW motif protein 2 (Hey2). We hypothesized that an altered FoxC2-Dll4 signaling underlies saphenous vein wall remodeling in patients with varicose veins. Saphenous veins specimens were collected from 22 patients with varicose veins and 20 control subjects who underwent coronary artery bypass grafting. Tissues were processed for paraffin embedding and sections were immunostained for Dll4, Hey2, EphrinB2, α-SMA, Vimentin, and CD31 antigens and examined under microscope. These observations were confirmed by quantitative real-time PCR and western blot analysis. An examination of varicose vein tissue specimens by immunohistochemistry indicated an elevated expression of Notch pathway components, such as Dll4, Hey2, and EphrinB2, and smooth muscle markers, which was further confirmed by gene and protein expression analyses. We conclude that the molecular alterations in Dll4-Hey2 signaling are associated with smooth muscle cell hypertrophy and hyperplasia in varicose veins. Our observations substantiate a significant role for altered FoxC2-Dll4 signaling in structural alterations of saphenous veins in patients with varicose veins. PMID:26808710

  8. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  9. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency.

    PubMed

    Richmond, Bradley W; Brucker, Robert M; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E; Bordenstein, Seth R; Blackwell, Timothy S; Polosukhin, Vasiliy V

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR(-/-)) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR(-/-) mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR(-/-) mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  10. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency

    PubMed Central

    Richmond, Bradley W.; Brucker, Robert M.; Han, Wei; Du, Rui-Hong; Zhang, Yongqin; Cheng, Dong-Sheng; Gleaves, Linda; Abdolrasulnia, Rasul; Polosukhina, Dina; Clark, Peter E.; Bordenstein, Seth R.; Blackwell, Timothy S.; Polosukhin, Vasiliy V.

    2016-01-01

    Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. PMID:27046438

  11. Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis*

    PubMed Central

    Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590

  12. Distribution of particulate matter and tissue remodeling in the human lung.

    PubMed Central

    Pinkerton, K E; Green, F H; Saiki, C; Vallyathan, V; Plopper, C G; Gopal, V; Hung, D; Bahne, E B; Lin, S S; Ménache, M G; Schenker, M B

    2000-01-01

    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter. PMID:11102298

  13. Human fascia lata ECM scaffold augmented with immobilized hyaluronan: inflammatory response and remodeling in the canine body wall and shoulder implantation sites.

    PubMed

    Leigh, Diane R; Kim, Myung-Sun; Kovacevic, David; Baker, Andrew R; Tan, Carmela D; Calabro, Anthony; Derwin, Kathleen A

    2015-01-01

    We postulate that immobilization of tyramine-substituted hyaluronan (THA) into an extracellular matrix (ECM) scaffold may be a strategy to promote an anti-inflammatory response to the ECM. Further, we posit that the implantation site could influence the inflammatory response and remodeling of an ECM scaffold. Eight beagles underwent implantation of fascia ECM grafts, treated with either immobilized low molecular weight (57 kDa) THA or water only, in both the shoulder injury and body wall sites. Dogs were euthanized at 12 weeks and fascia grafts harvested en bloc for histology. Grafts implanted at the body wall had significantly higher inflammatory cell infiltrate and vascularity, and significantly lower retardance (collagen density), than grafts at the shoulder, suggestive of a more intense, persistent, and perhaps degradative inflammatory and remodeling response at the body wall than shoulder injury site in the canine model. However, the presence of immobilized low MW THA had no effect on the inflammation response or remodeling of fascia ECM compared to water-treated controls. Importantly, these results suggest that the inflammatory response and remodeling of biomaterial implants depends on the location of implantation and therefore our animal models need to be carefully chosen. Further, the potential anti-inflammatory advantages of hyaluronan (HA) in wound healing do not appear to be realized when presenting it to the host as non-degradable hydrogel even if its capacity for binding HA binding protein is maintained. Further study treating ECM with uncross-linked (free) HA or immobilized low MW THA as a means to deliver free HA or other biomolecules to a surgical repair site is warranted. PMID:25400204

  14. Origins of increased airway smooth muscle mass in asthma.

    PubMed

    Berair, Rachid; Saunders, Ruth; Brightling, Christopher E

    2013-01-01

    Asthma is characterized by both chronic inflammation and airway remodeling. Remodeling--the structural changes seen in asthmatic airways--is pivotal in the pathogenesis of the disease. Although significant advances have been made recently in understanding the different aspects of airway remodeling, the exact biology governing these changes remains poorly understood. There is broad agreement that, in asthma, increased airway smooth muscle mass, in part due to smooth muscle hyperplasia, is a very significant component of airway remodeling. However, significant debate persists on the origins of these airway smooth muscle cells. In this review article we will explore the natural history of airway remodeling in asthma and we will discuss the possible contribution of progenitors, stem cells and epithelial cells in mesenchymal cell changes, namely airway smooth muscle hyperplasia seen in the asthmatic airways. PMID:23742314

  15. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling

    PubMed Central

    Broide, David H.

    2008-01-01

    Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be due to persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodeling are likely mediated by different inflammatory pathways. Several important candidate mediators of remodeling have been identified including TGF-β and Th2 cytokines (including IL-5 and IL-13), as well as VEGF, ADAM-33, and MMP-9. Mouse models of airway remodeling have provided important insight into potential mechanisms by which TGF-β activation of the Smad 2/3 signaling pathway may contribute to airway remodeling. Human studies have demonstrated that anti-IL-5 reduces levels of airway eosinophils expressing TGF-β, as well as levels of airway remodeling as assessed by bronchial biopsies. Further such studies confirming these observations, as well as alternate studies targeting additional individual cell types, cytokines, and mediators are needed in human subjects with asthma to determine the role of candidate mediators of inflammation on the development and progression of airway remodeling. PMID:18328887

  16. Hyperpulsatile pressure, systemic inflammation and cardiac stress are associated with cardiac wall remodeling in an African male cohort: the SABPA study.

    PubMed

    van Vuren, Esmé Jansen; Malan, Leoné; von Känel, Roland; Cockeran, Marike; Malan, Nicolaas T

    2016-09-01

    Inflammation may contribute to an increase in cardiac wall stress through pathways related to cardiac remodeling. Cardiac remodeling is characterized by myocyte hypertrophy, myocyte death and modifications of the extracellular matrix. We sought to explore associations among cardiac remodeling, inflammation and myocardial cell injury in a bi-ethnic cohort of South African men and women. We included 165 men (76 African and 89 Caucasian) and 174 women (80 African and 94 Caucasian) between 20 and 65 years of age. Inflammatory markers used were C-reactive protein (CRP), interleukin-6 and tumor necrosis factor-alpha (TNF-α), whereas troponin T (Trop T) and the N-terminal of pro B-type natriuretic peptide (NT-proBNP) were used as cardiac markers. The frequency of ischemic events (ST segment depression) and left ventricular strain (left ventricular hypertrophy: LVH) were monitored by a 24-h recording of ambulatory blood pressure (BP), ECG and 12-lead standard ECG. Hypertension diagnosed with ambulatory monitoring was more frequent in Africans (53.85 vs. 24.59%; P<0.001), as was the number of ischemic events (6±15 (1; 5) vs. 3±6 (0; 3)). Inflammatory markers (CRP, IL-6 and TNF-α) and the degree of LVH were all significantly higher in Africans (P<0.05). BP was associated (P<0.05) with Trop T in men across ethnic groups. In African men, cardiac stress (NT-proBNP) was associated with TNF-alpha (P<0.001), Trop T (P<0.001) and pulse pressure (P=0.048; adjusted R(2)=0.45). The susceptibility for cardiac wall remodeling appears to increase with hyperpulsatile pressure, low-grade systemic inflammation and ventricular stress, and may lead to the development of future cardiovascular events in African men. PMID:27169396

  17. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  18. A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in Arabidopsis[W][OPEN

    PubMed Central

    Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.

    2013-01-01

    To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021

  19. Spatial and phenotypic characterization of vascular remodeling in a mouse model of asthma.

    PubMed

    Su, Xinming; Taniuchi, Namiko; Jin, Enjing; Fujiwara, Masakazu; Zhang, Lei; Ghazizadeh, Mohammad; Tashimo, Hiroyuki; Yamashita, Naomi; Ohta, Ken; Kawanami, Oichi

    2008-01-01

    Asthma is a chronic inflammatory disease characterized by airway wall remodeling in which vascular remodeling is thought to be a main contributor. Vascular endothelial growth factor (VEGF) is known as a major regulator of angiogenesis and enhancer of vascular permeability. Here, we define the spatial nature of vascular remodeling and the role of VEGF and its receptors (Flt-1 and Flk-1) in the allergic response in mice (A/J) susceptible to the development of allergen-induced airway hyperresponsiveness using morphometric and quantitative approaches. Increased vascularity, vasodilatation, and endothelial cell proliferation were found in the tracheal and bronchial walls in the early and late phases of asthma. Vascular changes were observed not only in small vessels but also in larger vessels. In contrast to normal control, lung tissue from the asthma model showed dual expression for CD31 and von Willebrand factor in the endothelial cells and alpha-smooth muscle actin and desmin in the mural cells of the vessels, suggesting a phenotypic and functional transformation. The mRNA levels of VEGF isoforms, VEGF(164) and VEGF(188), were significantly increased in the tracheal and lung tissue, respectively. In addition, the mRNA level of VEGF receptor Flk-1 was significantly increased in the trachea. These results establish the existence of vascular remodeling in the airways in a mouse model of allergic asthma and support a key role for the expression of unique VEGF isoform genes as mediators of structural changes. PMID:18334839

  20. Age, Gender and Load-Related Influences on Left Ventricular Geometric Remodeling, Systolic Mid-Wall Function, and NT-ProBNP in Asymptomatic Asian Population

    PubMed Central

    Chen, Chi; Sung, Kuo-Tzu; Shih, Shou-Chuan; Liu, Chuan-Chuan; Kuo, Jen-Yuan; Hou, Charles Jia-Yin; Hung, Chung-Lieh; Yeh, Hung-I

    2016-01-01

    Background Advanced age is associated with left ventricle (LV) remodeling and impaired cardiac function that may increase the risk of heart failure. Even so, studies regarding age-related cardiac remodeling in a large, asymptomatic Asian population remain limited. Materials and Methods We studied 8,410 asymptomatic participants (49.7 ±11.7 y, 38.9% women) in a health evaluation cohort (2004–2012) at a tertiary center in Northern Taiwan. We analyzed age-related alterations for all echocardiography-derived cardiac structures/functions and the associations with circulating N-terminal prohormone of brain natriuretic peptide (NT-proBNP). We also explored sex-related differences in these measures. Results In our cohort of 8,410 participants, advanced age was associated with greater LV wall thickness, larger LV total mass (+5.08 g/decade), and greater LV mass index (4.41 g/m2/decade), as well as increased serum NT-proBNP level (+18.89 pg/mL/decade). An accompanying reduction of stress-corrected midwall fractional shortening (–0.1%/decade) with aging was apparent in women after multi-variate adjustment (–0.09%/decade, p = 0.001). Furthermore, women demonstrated greater overall increase in LV wall thickness, LV mass index, and NT-proBNP compared to men (p for interaction: <0.001). All blood pressure components, including systolic, diastolic, and pulse pressures were independently associated with greater wall thickness and LV mass index after adjustment for confounders (all p <0.001). The associations between age and cardiac remodeling or mid-wall functions were further confirmed in a subset of study subjects with repeated follow up by GEE model. Conclusions Significant associations of unfavorable LV remodeling and advanced age in our asymptomatic Asian population were observed, along with sex differences. These data may help explain the incidence of some diverse gender-related cardiovascular diseases, especially heart failure. PMID:27280886

  1. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice

    PubMed Central

    Seys, Leen J. M.; Verhamme, Fien M.; Dupont, Lisa L.; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F.; Brusselle, Guy G.

    2015-01-01

    Introduction Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. Objective We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na+ channel (βENaC). Methods βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Results Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. Conclusions We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD. PMID:26066648

  2. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall.

    PubMed

    Bridge, Jack C; Aylott, Jonathan W; Brightling, Christopher E; Ghaemmaghami, Amir M; Knox, Alan J; Lewis, Mark P; Rose, Felicity R A J; Morris, Gavin E

    2015-01-01

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments. PMID:26275100

  3. Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

    PubMed Central

    Bridge, Jack C.; Aylott, Jonathan W.; Brightling, Christopher E.; Ghaemmaghami, Amir M.; Knox, Alan J.; Lewis, Mark P.; Rose, Felicity R.A.J.; Morris, Gavin E.

    2015-01-01

    Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments. PMID:26275100

  4. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy

    PubMed Central

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed. PMID:26880936

  5. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis).

    PubMed

    Grene, Ruth; Klumas, Curtis; Suren, Haktan; Yang, Kuan; Collakova, Eva; Myers, Elijah; Heath, Lenwood S; Holliday, Jason A

    2012-01-01

    Microarray gene expression profiling is a powerful technique to understand complex developmental processes, but making biologically meaningful inferences from such studies has always been challenging. We previously reported a microarray study of the freezing acclimation period in Sitka spruce (Picea sitchensis) in which a large number of candidate genes for climatic adaptation were identified. In the current paper, we apply additional systems biology tools to these data to further probe changes in the levels of genes and metabolites and activities of associated pathways that regulate this complex developmental transition. One aspect of this adaptive process that is not well understood is the role of the cell wall. Our data suggest coordinated metabolic and signaling responses leading to cell wall remodeling. Co-expression of genes encoding proteins associated with biosynthesis of structural and non-structural cell wall carbohydrates was observed, which may be regulated by ethylene signaling components. At the same time, numerous genes, whose products are putatively localized to the endomembrane system and involved in both the synthesis and trafficking of cell wall carbohydrates, were up-regulated. Taken together, these results suggest a link between ethylene signaling and biosynthesis, and targeting of cell wall related gene products during the period of winter hardening. Automated Layout Pipeline for Inferred NEtworks (ALPINE), an in-house plugin for the Cytoscape visualization environment that utilizes the existing GeneMANIA and Mosaic plugins, together with the use of visualization tools, provided images of proposed signaling processes that became active over the time course of winter hardening, particularly at later time points in the process. The resulting visualizations have the potential to reveal novel, hypothesis-generating, gene association patterns in the context of targeted subcellular location. PMID:23112803

  6. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties.

    PubMed

    Fernandes, J C; Cobb, F; Tracana, S; Costa, G J; Valente, I; Goulao, L F; Amâncio, S

    2015-04-22

    The cell wall (CW) is a dynamic structure that responds to stress. Water shortage (WS) impacts grapevine berry composition and its sensorial quality. In the present work, berry texture, skin CW composition, and expression of remodeling genes were investigated in two V. vinifera varieties, Touriga Nacional (TN) and Trincadeira (TR), under two water regimes, Full Irrigation (FI) and No Irrigation (NI). The global results allowed an evident separation between both varieties and the water treatments. WS resulted in increased anthocyanin contents in both varieties, reduced amounts in cellulose and lignin at maturation, but an increase in arabinose-containing polysaccharides more tightly bound to the CW in TR. In response to WS, the majority of the CW related genes were down-regulated in a variety dependent pattern. The results support the assumption that WS affects grape berries by stiffening the CW through alteration in pectin structure, supporting its involvement in responses to environmental conditions. PMID:25828510

  7. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung

    PubMed Central

    Beamer, Celine A.; Girtsman, Teri A.; Seaver, Benjamin P.; Finsaas, Krissy J.; Migliaccio, Christopher T.; Perry, Victoria K.; Rottman, James B.; Smith, Dirk E.; Holian, Andrij

    2014-01-01

    Allergic asthma is a chronic inflammatory disorder of the airway associated with bronchial obstruction, airway hyper-reactivity (AHR), and mucus production. The epithelium may direct and propagate asthmatic-like responses. Central to this theory is the observation that viruses, air pollution, and allergens promote epithelial damage and trigger the generation of IL-25, IL-33, and TSLP via innate pathways such as TLRs and purinergic receptors. Similarly, engineered nanomaterials promote a Th2-associated pathophysiology. In this study, we tested the hypothesis that instillation of multi-walled carbon nanotubes (MWCNT) impair pulmonary function in C57Bl/6 mice due to the development of IL-33-dependent Th2-associated inflammation. MWCNT exposure resulted in elevated levels of IL-33 in the lavage fluid (likely originating from airway epithelial cells), enhanced AHR, eosinophil recruitment, and production of Th2-associated cytokines and chemokines. Moreover, these events were dependent on IL-13 signaling and the IL-33/ST2 axis, but independent of T and B cells. Finally, MWCNT exposure resulted in the recruitment of innate lymphoid cells. Collectively, our data suggest that MWCNT induce epithelial damage that results in release of IL-33, which in turn promotes innate lymphoid cell recruitment and the development of IL-13-dependent inflammatory response. PMID:22686327

  8. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa.

    PubMed

    Martínez-Núñez, Leonora; Riquelme, Meritxell

    2015-12-01

    Neurospora crassa BGT-1 (NCU06381) and BGT-2 (NCU09175) are two putative glycoside hydrolases (GHs) with additional predicted glycosyltransferase activity and binding sites for a glycosyl phosphatidyl inositol (GPI) anchor that would facilitate their attachment to the plasma membrane (PM). To discern their role in key morphogenetic events during vegetative development of N. crassa, BGT-1 and BGT-2 were labeled with the green fluorescent protein (GFP). The gfp was inserted immediately after the signal peptide sequence, within the bgt-1 encoding sequence, or directly before the GPI-binding site in the case of bgt-2. Both BGT-1-GFP and BGT-2-GFP were observed at the PM of the hyphal apical dome, excluding the foremost apical region and the Spitzenkörper (Spk), where chitin and β-1,3-glucan synthases have been previously found. These and previous studies suggest a division of labor of the cell wall synthesizing machinery at the hyphal dome: at the very tip, glucans are synthesized by enzymes that accumulate at the Spk, before getting incorporated into the PM, whereas at the subtending zone below the apex, glucans are presumably hydrolyzed, producing amenable ends for further branching and crosslinking with other cell wall polymers. Additionally, BGT-1-GFP and BGT-2-GFP were observed at the leading edge of new developing septa, at unreleased interconidial junctions, at conidial poles, at germling and hyphal fusion sites, and at sites of branch emergence, all of them processes that seemingly involve cell wall remodeling. Even though single and double mutant strains for the corresponding genes did not show a drastic reduction of growth rate, bgt-2Δ and bgt-1Δ::bgt-2Δ strains exhibited an increased resistance to the cell wall stressors calcofluor white (CW) and congo red (CR) than the reference strain, which suggests they present significant architectural changes in their cell wall. Furthermore, the conidiation defects observed in the mutants indicate a significant

  9. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis.

    PubMed

    Mittal, Amandeep; Balasubramanian, Rajagopal; Cao, Jin; Singh, Prabhjeet; Subramanian, Senthil; Hicks, Glenn; Nothnagel, Eugene A; Abidi, Noureddine; Janda, Jaroslav; Galbraith, David W; Rock, Christopher D

    2014-08-01

    Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals. PMID:24821950

  10. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis

    PubMed Central

    Mittal, Amandeep; Balasubramanian, Rajagopal; Cao, Jin; Singh, Prabhjeet; Subramanian, Senthil; Hicks, Glenn; Nothnagel, Eugene A.; Abidi, Noureddine; Janda, Jaroslav; Galbraith, David W.; Rock, Christopher D.

    2014-01-01

    Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals. PMID:24821950

  11. The Role of Urokinase Plasminogen Activator and Plasmin Activator Inhibitor-1 on Vein Wall Remodeling in Experimental Deep Vein Thrombosis

    PubMed Central

    Baldwin, Joe F.; Sood, Vikram; Elfline, Megan A.; Luke, Cathy E.; Dewyer, Nicholas A.; Diaz, Jose A.; Myers, Dan D.; Wakefield, Thomas; Henke, Peter K.

    2012-01-01

    OBJECTIVE Deep vein thrombosis (DVT) resolution instigates an inflammatory response, resulting in vessel wall damage and scarring. Urokinase-plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor-1 (PAI-1), are integral components of the fibrinolytic system, essential for VT resolution. This study determined the vein wall response when exposed to increased and decreased plasmin activity. Methods A mouse inferior vena cava (IVC) ligation model in uPA −/− or PAI-1 −/− and their genetic wild types (B6/SvEv and C57/BL6, respectively) was used to create stasis thrombi, with tissue harvest at either 8 or 21d. Tissue analysis included gene expression of vascular smooth muscle cells (alpha SMA [αSMA], SM22) and endothelial marker (CD31), by real time PCR, ELISA, matrix metalloproteinase (MMP) -2 and 9 activity by zymography and vein wall collagen by picrosirius red histological analysis. A P < .05 was considered significant. RESULTS Thrombi were significantly larger in both 8d and 21d uPA −/− as compared to WT, and were significantly smaller in both 8 and 21d PAI-1 −/− as compared to WT. Correspondingly, 8d plasmin levels were reduced in half in uPA −/− and increased 3 fold in PAI-1 −/− when compared to respective WT thrombi (P < .05, N = 5 – 6). The endothelial marker CD31 was elevated 2 fold in PAI-1 −/− mice at 8d, but reduced 2.5 fold at 21d in uPA −/− as compared with WT (P = .02, N = 5 – 6), suggesting less endothelial preservation. Vein wall VSMC gene expression showed that 8d and 21d PAI-1 −/− mice had 2.3 and 3.8 fold more SM22 and 1.8 and 2.3 fold more αSMA expression than respective WT (P < .05, N = 5 – 7), as well as 1.8 fold increased αSMA (+) cells (N = 3 – 5, P ≤ .05). No significant difference in MMP2 or 9 activity was found in the PAI-1 −/− mice compared with WT, while 5.4 fold more MMP9 was present in 21d WT than 21d uPA −/− (P = .03, N = 5). Lastly, collagen was ~2 fold

  12. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma.

    PubMed

    Van der Velden, Joanne; Harkness, Louise M; Barker, Donna M; Barcham, Garry J; Ugalde, Cathryn L; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A; Tokanovic, Ana; Burgess, Janette K; Snibson, Kenneth J

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10(+)-20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  13. The Effects of Tumstatin on Vascularity, Airway Inflammation and Lung Function in an Experimental Sheep Model of Chronic Asthma

    PubMed Central

    Van der Velden, Joanne; Harkness, Louise M.; Barker, Donna M.; Barcham, Garry J.; Ugalde, Cathryn L.; Koumoundouros, Emmanuel; Bao, Heidi; Organ, Louise A.; Tokanovic, Ana; Burgess, Janette K.; Snibson, Kenneth J.

    2016-01-01

    Tumstatin, a protein fragment of the alpha-3 chain of Collagen IV, is known to be significantly reduced in the airways of asthmatics. Further, there is evidence that suggests a link between the relatively low level of tumstatin and the induction of angiogenesis and inflammation in allergic airway disease. Here, we show that the intra-segmental administration of tumstatin can impede the development of vascular remodelling and allergic inflammatory responses that are induced in a segmental challenge model of experimental asthma in sheep. In particular, the administration of tumstatin to lung segments chronically exposed to house dust mite (HDM) resulted in a significant reduction of airway small blood vessels in the diameter range 10+–20 μm compared to controls. In tumstatin treated lung segments after HDM challenge, the number of eosinophils was significantly reduced in parenchymal and airway wall tissues, as well as in the bronchoalveolar lavage fluid. The expression of VEGF in airway smooth muscle was also significantly reduced in tumstatin-treated segments compared to control saline-treated segments. Allergic lung function responses were not attenuated by tumstatin administration in this model. The data are consistent with the concept that tumstatin can act to suppress vascular remodelling and inflammation in allergic airway disease. PMID:27199164

  14. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence.

    PubMed

    Singh, Parul; Rao, Rameshwaram Nagender; Reddy, Jala Ram Chandra; Prasad, R B N; Kotturu, Sandeep Kumar; Ghosh, Sudip; Mukhopadhyay, Sangita

    2016-01-01

    The role of the unique proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. One of the PE family proteins, PE11 (LipX or Rv1169c), specific to pathogenic mycobacteria is found to be over-expressed during infection of macrophages and in active TB patients. In this study, we report that M. smegmatis expressing PE11 (Msmeg-PE11) exhibited altered colony morphology and cell wall lipid composition leading to a marked increase in resistance against various environmental stressors and antibiotics. The cell envelope of Msmeg-PE11 also had greater amount of glycolipids and polar lipids. Msmeg-PE11 was found to have better survival rate in infected macrophages. Mice infected with Msmeg-PE11 had higher bacterial load, showed exacerbated organ pathology and mortality. The liver and lung of Msmeg-PE11-infected mice also had higher levels of IL-10, IL-4 and TNF-α cytokines, indicating a potential role of this protein in mycobacterial virulence. PMID:26902658

  15. PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence

    PubMed Central

    Singh, Parul; Rao, Rameshwaram Nagender; Reddy, Jala Ram Chandra; Prasad, RBN; Kotturu, Sandeep Kumar; Ghosh, Sudip; Mukhopadhyay, Sangita

    2016-01-01

    The role of the unique proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. One of the PE family proteins, PE11 (LipX or Rv1169c), specific to pathogenic mycobacteria is found to be over-expressed during infection of macrophages and in active TB patients. In this study, we report that M. smegmatis expressing PE11 (Msmeg-PE11) exhibited altered colony morphology and cell wall lipid composition leading to a marked increase in resistance against various environmental stressors and antibiotics. The cell envelope of Msmeg-PE11 also had greater amount of glycolipids and polar lipids. Msmeg-PE11 was found to have better survival rate in infected macrophages. Mice infected with Msmeg-PE11 had higher bacterial load, showed exacerbated organ pathology and mortality. The liver and lung of Msmeg-PE11-infected mice also had higher levels of IL-10, IL-4 and TNF-α cytokines, indicating a potential role of this protein in mycobacterial virulence. PMID:26902658

  16. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  17. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    PubMed

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  18. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  19. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  20. Redox regulation of vascular remodeling.

    PubMed

    Karimi Galougahi, Keyvan; Ashley, Euan A; Ali, Ziad A

    2016-01-01

    Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation-reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed. PMID:26483132

  1. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  2. MiR-133 modulates TGF-β1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction.

    PubMed

    Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian

    2015-02-01

    Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway

  3. Airway smooth muscle in the pathophysiology and treatment of asthma

    PubMed Central

    Solway, Julian

    2013-01-01

    Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma. PMID:23305987

  4. Airways disorders and the swimming pool.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. PMID:23830132

  5. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    PubMed

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction. PMID:24378645

  6. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology

    PubMed Central

    Ozier, Annaïg; Allard, Benoit; Bara, Imane; Girodet, Pierre-Olivier; Trian, Thomas; Marthan, Roger; Berger, Patrick

    2011-01-01

    Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function. PMID:22220184

  7. Multum non multa: airway distensibility by forced oscillations.

    PubMed

    Mermigkis, Charalampos; Schiza, Sophia E; Panagou, Panagiotis

    2016-01-01

    Airway distensibility although appears to be unaffected by airway smooth muscle tone probably related to airway remodelling, after bronchodilator treatment is significantly increased in subjects with asthma. We assessed airway distensibity and its first moment derivative in two patients with mild intermittent asthma and normal spirometry. The increase in airway distensibility after bronchodilation measured at the tidal volume range during quiet breathing by forced oscillations was not accompanied by a change in its first moment, while the latter showed a significant increase in a second patient after anti-inflammatory treatment. It appears that airway distensibility is sensitive to reduction of bronchial smooth muscle tone after bronchodilation, but in addition its first moment might provide information on a change of both bronchial smooth muscle tone and small airways inflammation. PMID:27374218

  8. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities.

    PubMed

    Gosens, Reinoud; Grainge, Chris

    2015-03-01

    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma. PMID:25732446

  9. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  10. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma.

    PubMed

    Piyadasa, Hadeesha; Altieri, Anthony; Basu, Sujata; Schwartz, Jacquie; Halayko, Andrew J; Mookherjee, Neeloffer

    2016-01-01

    House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for

  11. Expression and activation of TGF‐β isoforms in acute allergen‐induced remodelling in asthma

    PubMed Central

    Torrego, Alfons; Hew, Mark; Oates, Tim; Sukkar, Maria; Chung, Kian Fan

    2007-01-01

    Background Airway wall remodelling and inflammation are features of chronic asthma. Transforming growth factor β (TGF‐β) has been implicated in these processes. Aim To determine the effect of allergen challenge on airway inflammation and remodelling and whether TGF‐β isoforms and the Smad signalling pathways are involved. Methods Thirteen patients with atopic asthma underwent inhalational challenge with 0.9% saline, followed by allergen 3–4 weeks later. After both challenges, fibreoptic bronchoscopy was undertaken to obtain bronchial biopsies and tissue samples were processed for immunohistochemistry and examined by microscopy. Results Forced expiratory volume in 1 s (FEV1) fell after allergen challenge (mean (SE) −28.1 (0.9)% at 30 min with a late response at 7 hours (−23.0 (1.2)%). Allergen challenge caused an increase in neutrophils and eosinophils in the bronchial mucosa compared with saline. Sub‐basement membrane (SBM) thickness did not change after allergen, but tenascin deposition in SBM was increased. Intranuclear (activated) Smad 2/3 and Smad 4 detected by immunohistochemistry were increased after allergen challenge in epithelial and subepithelial cells of bronchial biopsies. No inhibitory Smad (Smad 7) protein was detected. TGF‐β isoforms 1, 2 and 3 were expressed predominantly in bronchial epithelium after saline and allergen challenges, but only TGF‐β2 expression was increased after allergen. Double immunostaining showed an increase in TGF‐β2 positive eosinophils and neutrophils but not in TGF‐β1 positive eosinophils and neutrophils after allergen challenge. Conclusions TGF‐β2 may contribute to the remodelling changes in allergic asthma following single allergen exposure. PMID:17251317

  12. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  13. Augmentation of Left Ventricular Wall Thickness With Alginate Hydrogel Implants Improves Left Ventricular Function and Prevents Progressive Remodeling in Dogs With Chronic Heart Failure

    PubMed Central

    Sabbah, Hani N.; Wang, Mengjun; Gupta, Ramesh C.; Rastogi, Sharad; Ilsar, Itamar; Sabbah, Michael S.; Kohli, Smita; Helgerson, Sam; Lee, Randall J.

    2013-01-01

    Objectives The study tested the hypothesis that augmentation of the left ventricular (LV) wall thickness with direct intramyocardial injections of alginate hydrogel implants (AHI) reduces LV cavity size, restores LV shape, and improves LV function in dogs with heart failure (HF). Background Progressive LV dysfunction, enlargement, and chamber sphericity are features of HF associated with increased mortality and morbidity. Methods Studies were performed in 14 dogs with HF produced by intracoronary microembolizations (LV ejection fraction [EF] <30%). Dogs were randomized to AHI treatment (n = 8) or to sham-operated control (n = 6). During an open-chest procedure, dogs received either intramyocardial injections of 0.25 to 0.35 ml of alginate hydrogel (Algisyl-LVR, LoneStar Heart, Inc., Laguna Hills, California) or saline. Seven injections were made ∼1.0 to 1.5 cm apart (total volume 1.8 to 2.1 ml) along the circumference of the LV free wall halfway between the apex and base starting from the anteroseptal groove and ending at the posteroseptal groove. Hemodynamic and ventriculographic measurements were made before treatment (PRE) and repeated post-surgery for up to 17 weeks (POST). Results Compared to control, AHI significantly reduced LV end-diastolic and end-systolic volumes and improved LV sphericity. AHI treatment significantly increased EF (26 ± 0.4% at PRE to 31 ± 0.4% at POST; p < 0.05) compared to the decreased EF seen in control dogs (27 ± 0.3% at PRE to 24 ± 1.3% at POST; p < 0.05). AHI treatment was well tolerated and was not associated with increased LV diastolic stiffness. Conclusions In HF dogs, circumferential augmentation of LV wall thickness with AHI improves LV structure and function. The results support continued development of AHI for the treatment of patients with advanced HF. PMID:23998003

  14. Two-dimensional airway analysis using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang Cheol; Pu, Jiantao; Sciurba, Frank C.; Leader, Joseph K.

    2010-03-01

    Although 3-D airway tree segmentation permits analysis of airway tree paths of practical lengths and facilitates visual inspection, our group developed and tested an automated computer scheme that was operated on individual 2-D CT images to detect airway sections and measure their morphometry and/or dimensions. The algorithm computes a set of airway features including airway lumen area (Ai), airway cross-sectional area (Aw), the ratio (Ra) of Ai to Aw, and the airway wall thickness (Tw) for each detected airway section depicted on the CT image slice. Thus, this 2-D based algorithm does not depend on the accuracy of 3-D airway tree segmentation and does not require that CT examination encompasses the entire lung or reconstructs contiguous images. However, one disadvantage of the 2-D image based schemes is the lack of the ability to identify the airway generation (Gb) of the detected airway section. In this study, we developed and tested a new approach that uses 2-D airway features to assign a generation number to an airway. We developed and tested two probabilistic neural networks (PNN) based on different sets of airway features computed by our 2-D based scheme. The PNNs were trained and tested on 12 lung CT examinations (8 training and 4 testing). The accuracy for the PNN that utilized Ai and Ra for identifying the generation of airway sections varies from 55.4% - 100%. The overall accuracy of the PNN for all detected airway sections that are spread over all generations is 76.7%. Interestingly, adding wall thickness feature (Tw) to PNN did not improve identification accuracy. This preliminary study demonstrates that a set of 2-D airway features may be used to identify the generation number of an airway with reasonable accuracy.

  15. Dynamics of airway response in lung microsections: a tool for studying airway-extra cellular matrix interactions.

    PubMed

    Khan, Mohammad Afzal

    2016-01-01

    The biological configuration of extracellular matrix (ECM) plays a key role in how mechanical interactions of the airway with its parenchymal attachments affect the dynamics of airway responses in different pulmonary disorders including asthma, emphysema and chronic bronchitis. It is now recognized that mechanical interactions between airway tissue and ECM play a key regulatory role on airway physiology and kinetics that can lead to the reorganization and remodeling of airway connective tissue. A connective tissue is composed of airway smooth muscle cells (ASM) and the ECM, which includes variety of glycoproteins and therefore the extent of interactions between ECM and ASM affects airway dynamics during exacerbations of major pulmonary disorders. Measurement of the velocity and magnitude of airway closure or opening provide important insights into the functions of the airway contractile apparatus and the interactions with its surrounding connective tissues. This review highlights suitability of lung microsection technique in studying measurements of airway dynamics (narrowing/opening) and associated structural distortions in airway compartments. PMID:27176036

  16. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways.

    PubMed

    Krizek, Beth A; Bequette, Carlton J; Xu, Kaimei; Blakley, Ivory C; Fu, Zheng Qing; Stratmann, Johannes W; Loraine, Ann E

    2016-07-01

    AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense. PMID:27208279

  17. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways1[OPEN

    PubMed Central

    Bequette, Carlton J.; Fu, Zheng Qing; Loraine, Ann E.

    2016-01-01

    AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae. These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense. PMID:27208279

  18. Composition of connective tissues and morphometry of vascular smooth muscle in arterial wall of DOCA-salt hypertensive rats - In relation with arterial remodeling.

    PubMed

    Hayashi, Kozaburo; Shimizu, Emiko

    2016-05-01

    Hypertension (HT) was induced in Wistar rats aged 16 and 48 weeks by a deoxycortico-sterone acetate (DOCA)-salt procedure. Common carotid arteries were resected 16 weeks after, and their histological specimens were selectively stained for observations of collagen, elastin, and vascular smooth muscle (VSM) cells. Then, the fractions of collagen and elastin and their radial distributions, and the size and number of VSM cells were determined with an image analyzer. These results were compared with the results from age-matched, non-treated, normotensive (NT) animals and also with those from our previous biomechanical studies. In both age groups, there were no significant differences in the fractions of collagen and elastin, and the ratio of collagen to elastin content between HT and NT arteries. These results correspond well with our previous biomechanical results, which showed no significant difference in wall elasticity between HT and NT vessels. Moreover, in the innermost layer out of 4 layers bordered with thick elastic lamellae, the fraction of collagen was significantly greater in HT arteries than in NT ones, which is attributable to HT-related stress concentration in the layer. VSM cells were significantly hypertrophied and their content was increased by HT, although their total number in the media remained unchanged. The increased size and content of cells correspond to the enhancement of vascular tone and contractility in HT arteries. PMID:26987272

  19. Biomarker discovery in asthma-related inflammation and remodeling.

    PubMed

    Calvo, Florence Quesada; Fillet, Marianne; de Seny, Dominique; Meuwis, Marie-Alice; Maree, Raphael; Crahay, Céline; Paulissen, Geneviève; Rocks, Natacha; Gueders, Maud; Wehenkel, Louis; Merville, Marie-Paule; Louis, Renaud; Foidart, Jean-Michel; Noël, Agnes; Cataldo, Didier

    2009-04-01

    Asthma is a complex inflammatory disease of airways. A network of reciprocal interactions between inflammatory cells, peptidic mediators, extracellular matrix components, and proteases is thought to be involved in the installation and maintenance of asthma-related airway inflammation and remodeling. To date, new proteic mediators displaying significant activity in the pathophysiology of asthma are still to be unveiled. The main objective of this study was to uncover potential target proteins by using surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) on lung samples from mouse models of allergen-induced airway inflammation and remodeling. In this model, we pointed out several protein or peptide peaks that were preferentially expressed in diseased mice as compared to controls. We report the identification of different five proteins: found inflammatory zone 1 or RELM alpha (FIZZ-1), calcyclin (S100A6), clara cell secretory protein 10 (CC10), Ubiquitin, and Histone H4. PMID:19322781

  20. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Naidu, Nikhil A.; Mesaros, Clementina; Blair, Ian A.; Weiser, Jeffrey N.

    2015-01-01

    Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae–mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa. PMID:26426079

  1. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope.

    PubMed

    Tanaka, Hiroshi; Yamada, Gen; Saikai, Toyohiro; Hashimoto, Midori; Tanaka, Shintaro; Suzuki, Kazuhiko; Fujii, Masaru; Takahashi, Hiroki; Abe, Shosaku

    2003-12-15

    Hypervascularity in the bronchial wall is part of airway remodeling, but has remained an ill-defined process in asthma pathogenesis. Previous morphologic assessment has been limited to biopsy specimens, and therefore a high-magnification bronchovideoscope (side-viewing type) was developed for less invasive examination of subepithelial vessels. We evaluated vascularity in the lower trachea, using this novel scope in 12 normal control subjects, 13 patients with chronic obstructive pulmonary disease, and 24 subjects with stable asthma; 8 were steroid naive with newly diagnosed asthma (Group A) and 16 had been treated with inhaled corticosteroids for more than 5 years (Group B). The redness of bronchial mucosa in patients with asthma observed by conventional fiberoptic bronchoscopy proved to be due to a fine vascular network. Morphometric measurements of subepithelial vessels showed that both vessel area density and vessel length density were significantly (p<0.0001) increased in subjects with asthma as compared with control subjects and patients with chronic obstructive pulmonary disease. The degree of increase in vessels did not differ between Group A and Group B. The increase in subepithelial vessels of the airway is present even in newly diagnosed asthma. This novel bronchovideoscope is useful for assessment of vessel network in the surface of the airway lumen in vivo. PMID:14512267

  2. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  3. Emergency airway puncture

    MedlinePlus

    Emergency airway puncture is the placement of a hollow needle through the throat into the airway. It ... Emergency airway puncture is done in an emergency situation, when someone is choking and all other efforts ...

  4. Fungal glycan interactions with epithelial cells in allergic airway disease

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2014-01-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

  5. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  6. The impact of vitamin D on asthmatic human airway smooth muscle.

    PubMed

    Hall, Sannette C; Fischer, Kimberly D; Agrawal, Devendra K

    2016-02-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  7. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  8. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  9. Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study

    PubMed Central

    2010-01-01

    Background Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD. Methods To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects. Results Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02). Conclusions Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences. PMID:20670454

  10. Brief mechanical ventilation impacts airway cartilage properties in neonatal lambs

    PubMed Central

    Kim, Minwook; Pugarelli, Joan; Miller, Thomas L.; Wolfson, Marla R.; Dodge, George R.; Shaffer, Thomas H.

    2012-01-01

    Ultrasound imaging allows in vivo assessment of tracheal kinetics and cartilage structure. To date, the impact of mechanical ventilation (MV) on extracellular matrix (ECM) in airway cartilage is unclear, but an indication of its functional and structural change may support the development of protective therapies. The objective of this study was to characterize changes in mechanical properties of the neonatal airway during MV with alterations in cartilage ECM. Trachea segments were isolated in a neonatal lamb model; ultrasound dimensions and pressure-volume relationships were measured on sham (no MV; n = 6) and MV (n = 7) airways for 4 h. Tracheal cross-sections were harvested at 4 h, tissues were fixed and stained, and Fourier transform infrared imaging spectroscopy (FT-IRIS) was performed. Over 4 h of MV, bulk modulus (28%) and elastic modulus (282%) increased. The MV tracheae showed higher collagen, proteoglycan content, and collagen integrity (new tissue formation); whereas no changes were seen in the controls. These data are clinically relevant in that airway properties can be correlated with MV and changes in cartilage extracellular matrix. Mechanical ventilation increases the in vivo dimensions of the trachea, and is associated with evidence of airway tissue remodeling. Injury to the neonatal airway from MV may have relevance for the development of tracheomalacia. We demonstrated active airway tissue remodeling during MV using a FT-IRIS technique which identifies changes in ECM. PMID:22170596

  11. Mechanism of chromatin remodeling.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2010-02-23

    Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a central role in the remodeling process. RSC may disrupt histone-DNA contacts by affecting histone octamer conformation and through extensive interaction with the DNA. Bulging of the DNA from the octamer surface is possible, and twisting is unavoidable, but neither is the basis of remodeling. PMID:20142505

  12. Recent insights into the relationship between airway inflammation and asthma.

    PubMed

    Siva, R; Berry, M; Pavord, I D

    2003-01-01

    There have been important recent advances in our understanding of the relationship between eosinophilic airway inflammation and airway dysfunction. Observational studies have shown that eosinophilic airway inflammation is not always present in asthma nor is it an exclusive feature of asthma. Its presence seems to be more closely linked to the presence of corticosteroid responsive airways disease and the occurrence of severe exacerbations than the presence of symptoms or the extent of airway dysfunction--indeed recent evidence suggests that in asthma these features may be more closely linked to the site of localisation of mast cells in the airway wall. One implication of this new understanding of the significance of eosinophilic airway inflammation is that it predicts that measuring airway inflammation might provide information that it is not readily available from a more traditional clinical assessment, and that patients might do better if this information is available. Recent studies support this view, showing a marked reduction in asthma exacerbation in patients with moderate to severe disease who are managed with reference to markers of airway inflammation as well as symptoms and simple tests of airway function. The development of new agents that have the potential to modulate specific aspects of airway inflammation, together with refinements in non-invasive techniques to assess the efficacy of these agents offers the prospect of further refining our understanding of the role of this aspect of the inflammatory response in asthma and other airway diseases. PMID:15148839

  13. Arterial remodeling of basilar atherosclerosis in isolated pontine infarction.

    PubMed

    Feng, Chao; Hua, Ting; Xu, Yu; Liu, Xue-Yuan; Huang, Jing

    2015-04-01

    Isolated pontine infarctions are usually classified as paramedian pontine infarction (PPI) and lacunar pontine infarction (LPI). Although they have different shapes and locations, some recent studies proved that they might both be associated with basilar artery atherosclerosis in pathogenesis. This study aimed to explore the difference of basilar artery remodeling between two subtypes of pontine infarctions. Patients with PPI or LPI were scanned by High-resolution MRI (HR-MRI). The MR images of patients with basilar artery atherosclerosis were further analyzed to measure the vessel, lumen and wall areas at different segments of basilar arteries. Stenosis rate and remodeling index were calculated according to which arterial remodeling was divided into positive, intermediate and negative remodeling. Vascular risk factors and remodeling-related features were compared between PPI and LPI, and also between patients with and without positive remodeling. 34 patients with PPI and 21 patients with LPI had basilar artery atherosclerosis identified by HR-MRI. Positive remodeling was dominant in LPI group while in PPI group, three subtypes of remodeling were equal. Patients with positive remodeling had higher levels of low-density lipoprotein and homocysteine. Positive remodeling of basilar artery might reflect the low stability of basilar atherosclerotic plaques, which was more closely associated with LPI than PPI. PMID:25367406

  14. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  15. Human airway measurement from CT images

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Reeves, Anthony P.; Fotin, Sergei; Apanasovich, Tatiyana; Yankelevitz, David

    2008-03-01

    A wide range of pulmonary diseases, including common ones such as COPD, affect the airways. If the dimensions of airway can be measured with high confidence, the clinicians will be able to better diagnose diseases as well as monitor progression and response to treatment. In this paper, we introduce a method to assess the airway dimensions from CT scans, including the airway segments that are not oriented axially. First, the airway lumen is segmented and skeletonized, and subsequently each airway segment is identified. We then represent each airway segment using a segment-centric generalized cylinder model and assess airway lumen diameter (LD) and wall thickness (WT) for each segment by determining inner and outer wall boundaries. The method was evaluated on 14 healthy patients from a Weill Cornell database who had two scans within a 2 month interval. The corresponding airway segments were located in two scans and measured using the automated method. The total number of segments identified in both scans was 131. When 131 segments were considered altogether, the average absolute change over two scans was 0.31 mm for LD and 0.12 mm for WT, with 95% limits of agreement of [-0.85, 0.83] for LD and [-0.32, 0.26] for WT. The results were also analyzed on per-patient basis, and the average absolute change was 0.19 mm for LD and 0.05 mm for WT. 95% limits of agreement for per-patient changes were [-0.57, 0.47] for LD and [-0.16, 0.10] for WT.

  16. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice.

    PubMed

    Hirota, Ryoji; Nakamura, Hiroyuki; Bhatti, Sabah Asif; Ngatu, Nlandu Roger; Muzembo, Basilua Andre; Dumavibhat, Narongpon; Eitoku, Masamitsu; Sawamura, Masayoshi; Suganuma, Narufumi

    2012-05-01

    Limonene is one of the main flavonoids which is reported to inhibit the inflammatory response by suppressing the production of reactive oxygen species. The aim of this study was to evaluate whether limonene can inhibit Dermatophagoides farinae-induced airway hyperresponsiveness (AHR), eosinophilic infiltration and other histological changes in the lung, T helper (Th) 2 cytokine production and airway remodeling in a mice model of asthma. Treatment with limonene significantly reduced the levels of IL-5, IL-13, eotaxin, MCP-1, and TGF-β₁ in bronchoalveolar lavage fluid. The goblet cell metaplasia, thickness of airway smooth muscle, and airway fibrosis were markedly decreased in limonene-treated mice. Furthermore, AHR to acetylcholine was significantly abrogated in limonene-treated mice. These results indicate that limonene has a potential to reduce airway remodeling and AHR in asthma model. PMID:22564095

  17. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  18. A critical role for dendritic cells in the evolution of IL-1β-mediated murine airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Goodsell, Amanda; Ma, Royce; Moermans, Catherine; McKnelly, Kate J.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Chronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease (COPD) and are refractory to current treatments. How and if chronic inflammation contributes to airway fibrosis remains controversial. Here, we use a model of COPD airway disease utilizing adenoviral (Ad) delivery of IL-1β to determine that adaptive T-cell immunity is required for airway remodeling since mice deficient in α/β T-cells (tcra −/−) are protected. Dendritic cells (DCs) accumulate around COPD airways and are critical to prime adaptive immunity, but have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor, ccr6, both protect from Ad-IL-1β-induced airway adaptive T-cell immune responses, and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of α/β T-cells and driven by DCs, is critical to airway fibrosis. PMID:25786688

  19. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease.

    PubMed

    Pera, T; Zuidhof, A B; Smit, M; Menzen, M H; Klein, T; Flik, G; Zaagsma, J; Meurs, H; Maarsingh, H

    2014-05-01

    Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown. This study aimed to investigate the role of arginase in pulmonary inflammation and remodeling using an animal model of COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or vehicle. Repeated LPS exposure increased lung arginase activity, resulting in increased l-ornithine/l-arginine and l-ornithine/l-citrulline ratios. Both ratios were reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, neutrophils, and goblet cells as well as airway fibrosis. Remarkably, LPS-induced right ventricular hypertrophy, indicative of pulmonary hypertension, was prevented by ABH. Strong correlations were found between arginase activity and inflammation, airway remodeling, and right ventricular hypertrophy. Increased arginase activity contributes to pulmonary inflammation, airway remodeling, and right ventricular hypertrophy in a guinea pig model of COPD, indicating therapeutic potential for arginase inhibitors in this disease. PMID:24563530

  20. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  1. Upper airway test (image)

    MedlinePlus

    An upper airway biopsy is obtained by using a flexible scope called a bronchoscope. The scope is passed down through ... may be performed when an abnormality of the upper airway is suspected. It may also be performed as ...

  2. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  3. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  4. The multifactorial nature of microRNAs in vascular remodelling.

    PubMed

    Welten, S M J; Goossens, E A C; Quax, P H A; Nossent, A Y

    2016-05-01

    Vascular remodelling is a multifactorial process that involves both adaptive and maladaptive changes of the vessel wall through, among others, cell proliferation and migration, but also apoptosis and necrosis of the various cell types in the vessel wall. Vascular remodelling can be beneficial, e.g. during neovascularization after ischaemia, as well as pathological, e.g. during atherosclerosis and aneurysm formation. In recent years, it has become clear that microRNAs are able to target many genes that are involved in vascular remodelling processes and either can promote or inhibit structural changes of the vessel wall. Since many different processes of vascular remodelling are regulated by similar mechanisms and factors, both positive and negative vascular remodelling can be affected by the same microRNAs. A large number of microRNAs has been linked to various aspects of vascular remodelling and indeed, several of these microRNAs regulate multiple vascular remodelling processes, including both the adaptive processes angiogenesis and arteriogenesis as well as maladaptive processes of atherosclerosis, restenosis and aneurysm formation. Here, we discuss the multifactorial role of microRNAs and microRNA clusters that were reported to play a role in multiple forms of vascular remodelling and are clearly linked to cardiovascular disease (CVD). The microRNAs reviewed are miR-126, miR-155 and the microRNA gene clusters 17-92, 23/24/27, 143/145 and 14q32. Understanding the contribution of these microRNAs to the entire spectrum of vascular remodelling processes is important, especially as these microRNAs may have great potential as therapeutic targets for treatment of various CVDs. PMID:26912672

  5. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease.

    PubMed

    Siddesha, Jalahalli M; Nakada, Emily M; Mihavics, Bethany R; Hoffman, Sidra M; Rattu, Gurkiranjit K; Chamberlain, Nicolas; Cahoon, Jonathon M; Lahue, Karolyn G; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G; Desai, Dhimant H; Poynter, Matthew E; Anathy, Vikas

    2016-06-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  6. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  7. Phenotyping airways disease: an A to E approach.

    PubMed

    Gonem, S; Raj, V; Wardlaw, A J; Pavord, I D; Green, R; Siddiqui, S

    2012-12-01

    The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic. PMID:23181785

  8. The Physiologically Difficult Airway.

    PubMed

    Mosier, Jarrod M; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C

    2015-12-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  9. The Physiologically Difficult Airway

    PubMed Central

    Mosier, Jarrod M.; Joshi, Raj; Hypes, Cameron; Pacheco, Garrett; Valenzuela, Terence; Sakles, John C.

    2015-01-01

    Airway management in critically ill patients involves the identification and management of the potentially difficult airway in order to avoid untoward complications. This focus on difficult airway management has traditionally referred to identifying anatomic characteristics of the patient that make either visualizing the glottic opening or placement of the tracheal tube through the vocal cords difficult. This paper will describe the physiologically difficult airway, in which physiologic derangements of the patient increase the risk of cardiovascular collapse from airway management. The four physiologically difficult airways described include hypoxemia, hypotension, severe metabolic acidosis, and right ventricular failure. The emergency physician should account for these physiologic derangements with airway management in critically ill patients regardless of the predicted anatomic difficulty of the intubation. PMID:26759664

  10. Cell Jamming in the Airway Epithelium.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J

    2016-03-01

    Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma. PMID:27027955

  11. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma.

    PubMed

    Mehra, Divya; Sternberg, David I; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua; D'Armiento, Jeanine

    2010-02-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 +/- 0.08 vs. 0.89 +/- 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  12. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma

    PubMed Central

    Mehra, Divya; Sternberg, David I.; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua

    2010-01-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 ± 0.08 vs. 0.89 ± 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  13. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  14. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.

    PubMed

    Naire, Shailesh; Jensen, Oliver E

    2005-08-01

    A theoretical model is presented describing the reopening by an advancing air bubble of an initially liquid-filled collapsed airway lined with deformable epithelial cells. The model integrates descriptions of flow-structure interaction (accounting for nonlinear deformation of the airway wall and viscous resistance of the airway liquid flow), surfactant transport around the bubble tip (incorporating physicochemical parameters appropriate for Infasurf), and cell deformation (due to stretching of the airway wall and airway liquid flows). It is shown how the pressure required to drive a bubble into a flooded airway, peeling apart the wet airway walls, can be reduced substantially by surfactant, although the effectiveness of Infasurf is limited by slow adsorption at high concentrations. The model demonstrates how the addition of surfactant can lead to the spontaneous reopening of a collapsed airway, depending on the degree of initial airway collapse. The effective elastic modulus of the epithelial layer is shown to be a key determinant of the relative magnitude of strains generated by flow-induced shear stresses and by airway wall stretch. The model also shows how epithelial-layer compressibility can mediate strains arising from flow-induced normal stresses and stress gradients. PMID:15802368

  15. Inflammatory responses of airway smooth muscle cells and effects of endothelin receptor antagonism.

    PubMed

    Knobloch, Jürgen; Lin, Yingfeng; Konradi, Jürgen; Jungck, David; Behr, Juergen; Strauch, Justus; Stoelben, Erich; Koch, Andrea

    2013-07-01

    Endothelin receptor antagonists (ETRAs), authorized for pulmonary hypertension, have failed to prove their utility in chronic lung diseases with corticosteroid-resistant airway inflammation when applied at late disease stages with emphysema/fibrosis. Earlier administration might prove effective by targeting the interaction between airway inflammation and tissue remodeling. We hypothesized that human airway smooth muscle cells (HASMCs) participate in linking inflammation with remodeling and that associated genes become differentially suppressed by ambrisentan (A-receptor selective ETRA) and bosentan (nonselective/dual ETRA). Inflammatory responses of ex vivo-cultivated HASMCs to TNF-α were investigated by whole-genome microarray analyses. qRT-PCR and ELISA were used to test inflammatory and remodeling genes for sensitivity to bosentan and ambrisentan and to investigate differential sensitivities mechanistically. ETRA and corticosteroid effects were compared in HASMCs from patients with chronic obstructive pulmonary disease. TNF-α induced the expression of 18 cytokines/chemokines and five tissue remodeling genes involved in severe, corticosteroid-insensitive asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and/or pulmonary hypertension. Thirteen cytokines/chemokines, MMP13, and WISP1 were suppressed by ETRAs. Eight genes had differential sensitivity to bosentan and ambrisentan depending on the endothelin-B receptor impact on transcriptional regulation and mRNA stabilization. Chemokine (C-C motif) ligands 2 and 5, granulocyte macrophage colony-stimulating factor, and MMP13 had increased sensitivity to bosentan or bosentan/dexamethasone combination versus dexamethasone alone. Suppression of cytokine and remodeling gene expression by ETRAs was confirmed in TNF-α-activated human bronchial epithelial cells. HASMCs and human bronchial epithelial cells participate in the interaction of inflammation and tissue remodeling. This interaction is

  16. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling

    PubMed Central

    McDonald, Robert A.; Hata, Akiko; MacLean, Margaret R.; Morrell, Nicholas W.; Baker, Andrew H.

    2012-01-01

    Vascular remodelling is an integral pathological process central to a number of cardiovascular diseases. The complex interplay between distinct cell populations in the vessel wall following vascular injury leads to inflammation, cellular dysfunction, pro-growth signals in the smooth muscle cell (SMC) compartment, and the acquisition of a synthetic phenotype. Although the signals for vascular remodelling are diverse in different pathological contexts, SMC proliferation and migration are consistently observed. It is therefore critical to elucidate key mechanisms central to these processes. MicroRNAs (miRNAs) are small non-coding sequences of RNA that have the capacity to regulate many genes, pathways, and complex biological networks within cells, acting either alone or in concert with one another. In diseases such as cancer and cardiac disease, the role of miRNA in disease pathogenesis has been documented in detail. In contrast, despite a great deal of interest in miRNA, relatively few studies have directly assessed the role of miRNA in vascular remodelling. The potential for modulation of miRNA to achieve therapeutic benefits in this setting is attractive. Here, we focus on the role of miRNA in vascular inflammation and remodelling associated with acute vascular injury (vein graft disease, angioplasty restenosis, and in-stent restenosis) as well as in vascular remodelling associated with the development of pulmonary arterial hypertension. PMID:22065733

  17. Engineering Airway Epithelium

    PubMed Central

    Soleas, John P.; Paz, Ana; Marcus, Paula; McGuigan, Alison; Waddell, Thomas K.

    2012-01-01

    Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium. PMID:22523471

  18. Sex-specific lung remodeling and inflammation changes in experimental allergic asthma.

    PubMed

    Antunes, Mariana A; Abreu, Soraia C; Silva, Adriana L; Parra-Cuentas, Edwin R; Ab'Saber, Alexandre M; Capelozzi, Vera L; Ferreira, Tatiana P T; Martins, Marco A; Silva, Patricia M R; Rocco, Patricia R M

    2010-09-01

    There is evidence that sex and sex hormones influence the severity of asthma. Airway and lung parenchyma remodeling and the relationship of ultrastructural changes to airway responsiveness and inflammation in male, female, and oophorectomized mice (OVX) were analyzed in experimental chronic allergic asthma. Seventy-two BALB/c mice were randomly divided into three groups (n=24/each): male, female, and OVX mice, whose ovaries were removed 7 days before the start of sensitization. Each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, the amount of matrix metalloproteinase (MMP)-2 and MMP-9, and the number of eosinophils and interleukin (IL)-4, IL-5, and transforming growth factor (TGF)-β levels in bronchoalveolar lavage fluid were higher in female than male OVA mice. The response of OVX mice was similar to that of males, except that IL-5 remained higher. Nevertheless, after OVA provocation, airway responsiveness to methacholine was higher in males compared with females and OVX mice. In conclusion, sex influenced the remodeling process, but the mechanisms responsible for airway hyperresponsiveness seemed to differ from those related to remodeling. PMID:20634353

  19. Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle

    PubMed Central

    Vogel, Elizabeth R.; VanOosten, Sarah K.; Holman, Michelle A.; Hohbein, Danielle D.; Thompson, Michael A.; Vassallo, Robert; Pandya, Hitesh C.; Prakash, Y. S.

    2014-01-01

    Cigarette smoke is a common environmental insult associated with increased risk of developing airway diseases such as wheezing and asthma in neonates and children. In adults, asthma involves airway remodeling characterized by increased airway smooth muscle (ASM) cell proliferation and increased extracellular matrix (ECM) deposition, as well as airway hyperreactivity. The effects of cigarette smoke on remodeling and contractility in the developing airway are not well-elucidated. In this study, we used canalicular-stage (18–20 wk gestational age) human fetal airway smooth muscle (fASM) cells as an in vitro model of the immature airway. fASM cells were exposed to cigarette smoke extract (CSE; 0.5–1.5% for 24–72 h), and cell proliferation, ECM deposition, and intracellular calcium ([Ca2+]i) responses to agonist (histamine 10 μM) were used to evaluate effects on remodeling and hyperreactivity. CSE significantly increased cell proliferation and deposition of ECM molecules collagen I, collagen III, and fibronectin. In contrast, [Ca2+]i responses were not significantly affected by CSE. Analysis of key signaling pathways demonstrated significant increase in extracellular signal-related kinase (ERK) and p38 activation with CSE. Inhibition of ERK or p38 signaling prevented CSE-mediated changes in proliferation, whereas only ERK inhibition attenuated the CSE-mediated increase in ECM deposition. Overall, these results demonstrate that cigarette smoke may enhance remodeling in developing human ASM through hyperplasia and ECM production, thus contributing to development of neonatal and pediatric airway disease. PMID:25344066

  20. Conquering the difficult airway.

    PubMed

    Gandy, William E

    2008-01-01

    Every medic should practice regularly for the inevitable difficult airway case. Practice should include review of the causes of difficult airways, as well as skill practice. Having a preassembled airway kit can make your response to an unexpected difficult situation easier. Of all the devices mentioned, the bougie is the airway practitioner's best friend. Using the BURP technique, if not contraindicated, together with the bougie will enable you to intubate many difficult patients with confidence. Remember, "If your patient cannot breathe, nothing else matters. PMID:18251307

  1. The Redox State of Transglutaminase 2 Controls Arterial Remodeling

    PubMed Central

    van den Akker, Jeroen; VanBavel, Ed; van Geel, Remon; Matlung, Hanke L.; Guvenc Tuna, Bilge; Janssen, George M. C.; van Veelen, Peter A.; Boelens, Wilbert C.; De Mey, Jo G. R.; Bakker, Erik N. T. P.

    2011-01-01

    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall. PMID:21901120

  2. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  3. Cell wall integrity

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Bellincampi, Daniela; Zabotina, Olga

    2013-01-01

    The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways. PMID:23857352

  4. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice.

    PubMed

    Chetty, Anne; Cao, Gong-Jie; Sharda, Azeem; Tsay, Theresia; Nielsen, Heber C

    2016-01-01

    The temporal origins of childhood asthma are incompletely understood. We hypothesize that allergen sensitization which begins in early infancy causes IgE-mediated airway and vascular remodeling, and airway hyper-responsiveness. Mice were sensitized with ovalbumin (OVA) without or with anti-IgE antibody from postnatal day (P) 10 through P42. We studied airway resistance in response to Methacholine (MCh) challenge, bronchoalveolar lavage fluid (BAL) inflammatory cell content, immunohistochemistry for inflammation, alpha-smooth muscle actin (alpha-SMA) and platelet/endothelial cell adhesion molecule (PECAM) proteins, and Western blotting for vascular endothelial growth factor (VEGF) protein. Compared to controls, mice treated with OVA had increased airway resistance (baseline: 192% of control; MCH 12 mg/mL 170% of control; P less than 0.0.5). OVA treatment also increased lung alpha-SMA, VEGF and PECAM compared to controls. Inflammatory cells in the BAL and perivascular and peribronchiolar inflammatory cell infiltrates increased over controls with OVA exposure. These changes were counteracted by anti-IgE treatment. We conclude that mice sensitized in early infancy develop an IgE-mediated hyper-reactive airway disease with airway and vascular remodeling. Preventive approaches in early infancy of at-risk individuals may reduce childhood asthma. PMID:27100345

  5. Computational Study of Growth and Remodeling in the Aortic Arch

    PubMed Central

    Alford, Patrick W.; Taber, Larry A.

    2009-01-01

    Opening angles (OAs) are associated with growth and remodeling in arteries. One curiosity has been the relatively large OAs found in the aortic arch of some animals. Here, we use computational models to explore the reasons behind this phenomenon. The artery is assumed to contain a smooth muscle/collagen phase and an elastin phase. In the models, growth and remodeling of smooth muscle/collagen depends on wall stress and fluid shear stress. Remodeling of elastin, which normally turns over very slowly, is neglected. The results indicate that OAs generally increase with longitudinal curvature (torus model), earlier elastin production during development, and decreased wall stiffness. Correlating these results with available experimental data suggests that all of these effects may contribute to the large OAs in the aortic arch. The models also suggest that the slow turnover rate of elastin limits longitudinal growth. These results should promote increased understanding of the causes of residual stress in arteries. PMID:18792831

  6. Brachycephalic airway syndrome: management.

    PubMed

    Lodato, Dena L; Hedlund, Cheryl S

    2012-08-01

    Brachycephalic airway syndrome (BAS) is a group of primary and secondary abnormalities that result in upper airway obstruction. Several of these abnormalities can be addressed medically and/or surgically to improve quality of life. This article reviews potential complications, anesthetic considerations, recovery strategies, and outcomes associated with medical and surgical management of BAS. PMID:22935992

  7. Simvastatin Inhibits Airway Hyperreactivity

    PubMed Central

    Zeki, Amir A.; Franzi, Lisa; Last, Jerold; Kenyon, Nicholas J.

    2009-01-01

    Rationale: Statin use has been linked to improved lung health in asthma and chronic obstructive pulmonary disease. We hypothesize that statins inhibit allergic airway inflammation and reduce airway hyperreactivity via a mevalonate-dependent mechanism. Objectives: To determine whether simvastatin attenuates airway inflammation and improves lung physiology by mevalonate pathway inhibition. Methods: BALB/c mice were sensitized to ovalbumin over 4 weeks and exposed to 1% ovalbumin aerosol over 2 weeks. Simvastatin (40 mg/kg) or simvastatin plus mevalonate (20 mg/kg) was injected intraperitoneally before each ovalbumin exposure. Measurements and Main Results: Simvastatin reduced total lung lavage leukocytes, eosinophils, and macrophages (P < 0.05) in the ovalbumin-exposed mice. Cotreatment with mevalonate, in addition to simvastatin, reversed the antiinflammatory effects seen with simvastatin alone (P < 0.05). Lung lavage IL-4, IL-13, and tumor necrosis factor-α levels were all reduced by treatment with simvastatin (P < 0.05). Simvastatin treatment before methacholine bronchial challenge increased lung compliance and reduced airway hyperreactivity (P = 0.0001). Conclusions: Simvastatin attenuates allergic airway inflammation, inhibits key helper T cell type 1 and 2 chemokines, and improves lung physiology in a mouse model of asthma. The mevalonate pathway appears to modulate allergic airway inflammation, while the beneficial effects of simvastatin on lung compliance and airway hyperreactivity may be independent of the mevalonate pathway. Simvastatin and similar agents that modulate the mevalonate pathway may prove to be treatments for inflammatory airway diseases, such as asthma. PMID:19608720

  8. Excessive Dynamic Airway Collapse Detected Using Nondynamic CT.

    PubMed

    Harada, Yukinori; Kondo, Tomoo

    2016-01-01

    Excessive dynamic airway collapse (EDAC) has been diagnosed using dynamic CT during inspiration and expiration. We herein report an asthma patient with EDAC that was detected incidentally using nondynamic CT. The patient presented with wheezing, cough and mild fever. Treatment for the asthma did not improve her wheeze. CT revealed tracheal narrowing and bulging of the posterior bronchial wall. The patient was diagnosed with EDAC by bronchoscopy. Her wheeze improved with continuous positive airway pressure therapy. Clinicians should be aware of the airway shape when performing nondynamic CT in refractory asthma patients because recognizing the existence of EDAC may help when deciding on the treatment strategy. PMID:27250056

  9. Patterns of recruitment and injury in a heterogeneous airway network model.

    PubMed

    Stewart, Peter S; Jensen, Oliver E

    2015-10-01

    In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air-liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440

  10. Upper Airway Elasticity Estimation in Pediatric Down Syndrome Sleep Apnea Patients Using Collapsible Tube Theory.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-05-01

    Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity. PMID:26314989

  11. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  12. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle.

    PubMed

    Robinson, Mac B; Deshpande, Deepak A; Chou, Jeffery; Cui, Wei; Smith, Shelly; Langefeld, Carl; Hastie, Annette T; Bleecker, Eugene R; Hawkins, Gregory A

    2015-07-15

    Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling. PMID:26001777

  13. Immunoregulation of bone remodelling

    PubMed Central

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  14. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease.

    PubMed

    Royce, Simon G; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Ricardo, Sharon D; Samuel, Chrishan S

    2015-11-01

    This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs. PMID:26426509

  15. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  16. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases.

    PubMed

    Reuter, Sebastian; Beckert, Hendrik; Taube, Christian

    2016-02-01

    Bronchial asthma and chronic obstructive pulmonary disease (COPD) are chronic diseases that are associated with inflammation and structural changes in the airways and lungs. Recent findings have implicated Wnt pathways in critically regulating inflammatory responses, especially in asthma. Furthermore, canonical and noncanonical Wnt pathways are involved in structural changes such as airway remodeling, goblet cell metaplasia, and airway smooth muscle (ASM) proliferation. In COPD, Wnt pathways are not only associated with structural changes in the airways but also involved in the development of emphysema. The present review summarizes the role and function of the canonical and noncanonical Wnt pathway with regard to airway inflammation and structural changes in asthma and COPD. Further identification of the role and function of different Wnt molecules and pathways could help to develop novel therapeutic options for these diseases. PMID:26595171

  17. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  18. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  19. Airway hyperresponsiveness; smooth muscle as the principal actor.

    PubMed

    Lauzon, Anne-Marie; Martin, James G

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  20. Airway dysfunction in swimmers.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2012-05-01

    Elite competitive swimmers are particularly affected by airway disorders that are probably related to regular and intense training sessions in a chlorinated environment. Upper and lower airway respiratory symptoms, rhinitis, airway hyper-responsiveness, and exercise-induced bronchoconstriction are highly prevalent in these athletes, but their influence on athletic performance is still unclear. The authors reviewed the main upper and lower respiratory ailments observed in competitive swimmers who train in indoor swimming pools, their pathophysiology, clinical significance and possible effects on performance. Issues regarding the screening of these disorders, their management and preventive measures are addressed. PMID:22247299

  1. Meteorological conditions along airways

    NASA Technical Reports Server (NTRS)

    Gregg, W R

    1927-01-01

    This report is an attempt to show the kind of meteorological information that is needed, and is in part available, for the purpose of determining operating conditions along airways. In general, the same factors affect these operating conditions along all airways though in varying degree, depending upon their topographic, geographic, and other characteristics; but in order to bring out as clearly as possible the nature of the data available, a specific example is taken, that of the Chicago-Dallas airway on which regular flying begins this year (1926).

  2. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma.

    PubMed

    Firszt, Rafael; Francisco, Dave; Church, Tony D; Thomas, Joseph M; Ingram, Jennifer L; Kraft, Monica

    2014-02-01

    Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-β1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-β1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma. PMID:23682108

  3. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  4. Clinical Implications and Pathogenesis of Esophageal Remodeling in Eosinophilic Esophagitis

    PubMed Central

    Hirano, Ikuo; Aceves, Seema S.

    2014-01-01

    In eosinophilic esophagitis (EoE), remodeling changes are manifest histologically in both the epithelium as well as in the subepithelium where lamina propria (LP) fibrosis, expansion of the muscularis propria and increased vascularity occur. The major clinical symptoms and complications of EoE are largely consequences of esophageal remodeling. Important mediators of the process include IL-5, IL-13, TGFβ1, mast cells, fibroblasts and eosinophils. Methods to detect remodeling effects include upper endoscopy, histopathology, barium esophagram, endoscopic ultrasonography, esophageal manometry, and functional luminal imaging. These modalities provide evidence of organ dysfunction that include focal and diffuse esophageal strictures, expansion of the mucosa and subepithelium, esophageal motor abnormalities and reduced esophageal distensibility. Complications of food impaction and perforations of the esophageal wall have been associated with reduction in esophageal caliber and increased esophageal mural stiffness. The therapeutic benefits of topical corticosteroids and elimination diet therapy in resolving mucosal eosinophilic inflammation of the esophagus are evident. Available therapies, however, have demonstrated variable ability to reverse existing remodeling changes of the esophagus. Systemic therapies that include novel, targeted biologic agents have the potential of addressing subepithelial remodeling. Esophageal dilation remains a useful, adjunctive therapeutic maneuver in symptomatic adults with esophageal stricture. As novel treatments emerge, it is essential that therapeutic endpoints account for the fundamental contributions of esophageal remodeling to overall disease activity. PMID:24813517

  5. The role of microRNAs in arterial remodelling.

    PubMed

    Nazari-Jahantigh, M; Wei, Y; Schober, A

    2012-04-01

    Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regulate the phenotype of smooth muscle cells (SMCs) and control the inflammatory response in endothelial cells and macrophages. In SMCs, different sets of miRs induce either a synthetic or contractile phenotype, respectively. The conversion into a synthetic SMC phenotype is a crucial event in arterial remodelling. Therefore, reprogramming of the SMC phenotype by miR targeting can modulate the remodelling process. Furthermore, the effects of stimuli that induce remodelling, such as shear stress, angiotensin II, oxidised low-density lipoprotein, or apoptosis, on endothelial cells are mediated by miRs. The endothelial cell-specific miR-126, for example, is transferred in microvesicles from apoptotic endothelial cells and plays a protective role in atherogenesis. The inflammatory response of the innate immune system, especially through macrophages, promotes arterial remodelling. miR-155 induces the expression of inflammatory cytokines, whereas miR-146a and miR-147 are involved in the resolution phase of inflammation. However, in vivo data on the role of miRs in vascular remodelling are still scarce, which are required to test the therapeutic potential of the available, highly effective miR inhibitors. PMID:22371089

  6. Systems physiology of the airways in health and obstructive pulmonary disease.

    PubMed

    Bates, Jason H T

    2016-09-01

    Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website. PMID:27340818

  7. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.

    PubMed

    Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon

    2015-06-01

    Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs. PMID:25724668

  8. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  9. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation

    PubMed Central

    Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  10. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation.

    PubMed

    Saha, Shumit; Bradley, T Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  11. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  12. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  13. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  14. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  15. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  16. Role of upper airway ultrasound in airway management.

    PubMed

    Osman, Adi; Sum, Kok Meng

    2016-01-01

    Upper airway ultrasound is a valuable, non-invasive, simple, and portable point of care ultrasound (POCUS) for evaluation of airway management even in anatomy distorted by pathology or trauma. Ultrasound enables us to identify important sonoanatomy of the upper airway such as thyroid cartilage, epiglottis, cricoid cartilage, cricothyroid membrane, tracheal cartilages, and esophagus. Understanding this applied sonoanatomy facilitates clinician to use ultrasound in assessment of airway anatomy for difficult intubation, ETT and LMA placement and depth, assessment of airway size, ultrasound-guided invasive procedures such as percutaneous needle cricothyroidotomy and tracheostomy, prediction of postextubation stridor and left double-lumen bronchial tube size, and detecting upper airway pathologies. Widespread POCUS awareness, better technological advancements, portability, and availability of ultrasound in most critical areas facilitate upper airway ultrasound to become the potential first-line non-invasive airway assessment tool in the future. PMID:27529028

  17. AVE 0991, a non-peptide mimic of angiotensin-(1–7) effects, attenuates pulmonary remodelling in a model of chronic asthma

    PubMed Central

    Rodrigues-Machado, M G; Magalhães, G S; Cardoso, J A; Kangussu, L M; Murari, A; Caliari, M V; Oliveira, M L; Cara, D C; Noviello, M L M; Marques, F D; Pereira, J M; Lautner, R Q; Santos, R A S; Campagnole-Santos, M J

    2013-01-01

    BACKGROUND AND PURPOSE AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1–7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation. EXPERIMENTAL APPROACH We used BALB/c mice (6–8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse−1, i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg−1·per day, s.c.) or saline (100 μL·kg−1·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates. KEY RESULTS Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs. CONCLUSIONS AND IMPLICATIONS AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1–7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma. PMID:23889691

  18. Supraglottic airway devices.

    PubMed

    Ramachandran, Satya Krishna; Kumar, Anjana M

    2014-06-01

    Supraglottic airway devices (SADs) are used to keep the upper airway open to provide unobstructed ventilation. Early (first-generation) SADs rapidly replaced endotracheal intubation and face masks in > 40% of general anesthesia cases due to their versatility and ease of use. Second-generation devices have further improved efficacy and utility by incorporating design changes. Individual second-generation SADs have allowed more dependable positive-pressure ventilation, are made of disposable materials, have integrated bite blocks, are better able to act as conduits for tracheal tube placement, and have reduced risk of pulmonary aspiration of gastric contents. SADs now provide successful rescue ventilation in > 90% of patients in whom mask ventilation or tracheal intubation is found to be impossible. However, some concerns with these devices remain, including failing to adequately ventilate, causing airway damage, and increasing the likelihood of pulmonary aspiration of gastric contents. Careful patient selection and excellent technical skills are necessary for successful use of these devices. PMID:24891199

  19. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  20. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice.

    PubMed

    Su, Xinming; Ren, Yuan; Yu, Na; Kong, Lingfei; Kang, Jian

    2016-09-01

    Asthma is a chronic obstructive disease which is characterized by recurring airway inflammation, reversible airway obstruction, airway hyper responsiveness and vascular remodeling. Thymoquinone (TQ), an active ingredient isolated from Nigella sativa, was reported to exhibit anti-inflammation and anti-proliferation of in various cancer cells as well as epithelial cells. The aim of this study was to evaluate the effect of TQ on the inflammation, neoangiogenesis and vascular remodeling induced by Ovalbumin (OVA) in asthma mice in vivo and the anti-angiogenesis effects of TQ in VEGF-induced human umbilical vein endothelial cells (HUVECs) in vitro. Our results revealed that TQ inhibited the production of inflammatory factors interleukin-4/-5 (IL-4/-5) by enzyme-linked immunesorbent assay (ELISA). Immunohistochemistry analysis showed that the increase of platelet endothelial cell adhesion molecule-1, which is also known as CD31 and α-smooth muscle actinalpha (α-SMA) expression in asthma mice challenged by OVA was suppressed by TQ. Moreover, TQ suppressed the activation of VEGFR2-PI3K-Akt pathway and up-regulated the expression of Slit glycoprotein-2 (Slit-2) both in vivo and in vitro with the inhibition of tube information in HUVEC cells. Meanwhile immunofluorescence analysis showed that Slit-2 and Roundabout-4 (Robo-4) were co-expressing after TQ treatment in OVA-challenged asthma mice. Our study demonstrates that TQ attenuated the inflammatory reaction by antagonizing IL-4/-5 while the anti-neoangiogenesis effect of TQ is mediated by inhibition of vascular endothelial growth factor (VEGF) expression through VEGFR2/PI3K/Akt signaling pathway, which supports a potential role for TQ in ameliorating asthma. PMID:27240137

  1. Issues of critical airway management (Which anesthesia; which surgical airway?).

    PubMed

    Bonanno, Fabrizio Giuseppe

    2012-10-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient's level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator's training and experience is relevant for indications and performance. PMID:23248494

  2. Compliance Measurements of the Upper Airway in Pediatric Down Syndrome Sleep Apnea Patients.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J

    2016-04-01

    Compliance of soft tissue and muscle supporting the upper airway are two of several factors contributing to pharyngeal airway collapse. We present a novel, minimally invasive method of estimating regional variations in pharyngeal elasticity. Magnetic resonance images for pediatric sleep apnea patients with Down syndrome [9.5 ± 4.3 years (mean age ± standard deviation)] were analyzed to segment airways corresponding to baseline (no mask pressure) and two positive pressures. A three dimensional map was created to evaluate axial and circumferential variation in radial displacements of the airway, dilated by the positive pressures. The displacements were then normalized with respect to the appropriate transmural pressure and radius of an equivalent circle to obtain a measure of airway compliance. The resulting elasticity maps indicated the least and most compliant regions of the pharynx. Airway stiffness of the most compliant region [403 ± 204 (mean ± standard deviation) Pa] decreased with severity of obstructive sleep apnea. The non-linear response of the airway wall to continuous positive airway pressure was patient specific and varied between anatomical locations. We identified two distinct elasticity phenotypes. Patient phenotyping based on airway elasticity can potentially assist clinical practitioners in decision making on the treatments needed to improve airway patency. PMID:26215306

  3. Plant cell remodeling by autophagy

    PubMed Central

    Kim, Jimi; Lee, Han Nim; Chung, Taijoon

    2014-01-01

    Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. PMID:24492493

  4. Total airway reconstruction.

    PubMed

    Connor, Matthew P; Barrera, Jose E; Eller, Robert; McCusker, Scott; O'Connor, Peter

    2013-02-01

    We present a case of obstructive sleep apnea (OSA) that required multilevel surgical correction of the airway and literature review and discuss the role supraglottic laryngeal collapse can have in OSA. A 34-year-old man presented to a tertiary otolaryngology clinic for treatment of OSA. He previously had nasal and palate surgeries and a Repose tongue suspension. His residual apnea hypopnea index (AHI) was 67. He had a dysphonia associated with a true vocal cord paralysis following resection of a benign neck mass in childhood. He also complained of inspiratory stridor with exercise and intolerance to continuous positive airway pressure. Physical examination revealed craniofacial hypoplasia, full base of tongue, and residual nasal airway obstruction. On laryngoscopy, the paretic aryepiglottic fold arytenoid complex prolapsed into the laryngeal inlet with each breath. This was more pronounced with greater respiratory effort. Surgical correction required a series of operations including awake tracheostomy, supraglottoplasty, midline glossectomy, genial tubercle advancement, maxillomandibular advancement, and reconstructive rhinoplasty. His final AHI was 1.9. Our patient's supraglottic laryngeal collapse constituted an area of obstruction not typically evaluated in OSA surgery. In conjunction with treating nasal, palatal, and hypopharyngeal subsites, our patient's supraglottoplasty represented a key component of his success. This case illustrates the need to evaluate the entire upper airway in a complicated case of OSA. PMID:22965285

  5. Epithelial hyperplasia, airways

    Cancer.gov

    Number of respiratory epithelial cells is increased diffusely or focally. Frequently luminal protrusions are observed, sometimes forming papillae. Mucous (goblet) cell metaplastic hyperplasia is a variant, in which the respiratory epithelium of conducting airways is replaced by mucous cells either as a single or a pseudostratified layer.

  6. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  7. Advances in prehospital airway management

    PubMed Central

    Jacobs, PE; Grabinsky, A

    2014-01-01

    Prehospital airway management is a key component of emergency responders and remains an important task of Emergency Medical Service (EMS) systems worldwide. The most advanced airway management techniques involving placement of oropharyngeal airways such as the Laryngeal Mask Airway or endotracheal tube. Endotracheal tube placement success is a common measure of out-of-hospital airway management quality. Regional variation in regard to training, education, and procedural exposure may be the major contributor to the findings in success and patient outcome. In studies demonstrating poor outcomes related to prehospital-attempted endotracheal intubation (ETI), both training and skill level of the provider are usually often low. Research supports a relationship between the number of intubation experiences and ETI success. National standards for certification of emergency medicine provider are in general too low to guarantee good success rate in emergency airway management by paramedics and physicians. Some paramedic training programs require more intense airway training above the national standard and some EMS systems in Europe staff their system with anesthesia providers instead. ETI remains the cornerstone of definitive prehospital airway management, However, ETI is not without risk and outcomes data remains controversial. Many systems may benefit from more input and guidance by the anesthesia department, which have higher volumes of airway management procedures and extensive training and experience not just with training of airway management but also with different airway management techniques and adjuncts. PMID:24741499

  8. Methods of airway resistance assessment.

    PubMed

    Urbankowski, Tomasz; Przybyłowski, Tadeusz

    2016-01-01

    Airway resistance is the ratio of driving pressure to the rate of the airflow in the airways. The most frequent methods used to measure airway resistance are whole-body plethysmography, the interrupter technique and the forced oscillation technique. All these methods allow to measure resistance during respiration at the level close to tidal volume, they do not require forced breathing manoeuvres or deep breathing during measurement. The most popular method for measuring airway resistance is whole-body plethysmography. The results of plethysmography include among others the following parameters: airway resistance (Raw), airway conductance (Gaw), specific airway resistance (sRaw) and specific airway conductance (sGaw). The interrupter technique is based on the assumption that at the moment of airway occlusion, air pressure in the mouth is equal to the alveolar pressure . In the forced oscillation technique (FOT), airway resistance is calculated basing on the changes in pressure and flow caused by air vibration. The methods for measurement of airway resistance that are described in the present paper seem to be a useful alternative to the most common lung function test - spirometry. The target group in which these methods may be widely used are particularly the patients who are unable to perform spirometry. PMID:27238174

  9. Chlorine-induced injury to the airways in mice.

    PubMed

    Martin, James G; Campbell, Holly R; Iijima, Hiroaki; Gautrin, Denyse; Malo, Jean-Luc; Eidelman, David H; Hamid, Qutayba; Maghni, Karim

    2003-09-01

    Exposure to chlorine gas (Cl2) causes occupational asthma that we hypothesized occurs through the induction of airway inflammation and airway hyperresponsiveness by oxidative damage. Respiratory mechanics and airway responsiveness to methacholine were assessed in A/J mice 24 hours after a 5-minute exposure to 100, 200, 400, or 800 ppm Cl2 and 2 and 7 days after inhalation of 400 ppm Cl2. Airway responsiveness was higher 24 hours after 400 and 800 ppm Cl2. Responsiveness after inhalation of 400 ppm Cl2 returned to normal by 2 days but was again elevated at 7 days. Airway epithelial loss, patchy alveolar damage, proteinaceous exudates, and inflammatory cells within alveolar walls were observed in animals exposed to 800 ppm Cl2. Macrophages, granulocytes, epithelial cells, and nitrate/nitrite levels increased in lung lavage fluid. Increased inducible nitric oxide synthase expression and oxidation of lung proteins were observed. Epithelial cells and alveolar macrophages from mice exposed to 800 ppm Cl2 stained for 3-nitrotyrosine residues. Inhibition of inducible nitric oxide synthase with 1400W (1 mg/kg) abrogated the Cl2-induced changes in responsiveness. We conclude that chlorine exposure causes functional and pathological changes in the airways associated with oxidative stress. Inducible nitric oxide synthase is involved in the induction of changes in responsiveness to methacholine. PMID:12724121

  10. Airway distension promotes leukocyte recruitment in rat tracheal circulation.

    PubMed

    Lim, Lina H K; Wagner, Elizabeth M

    2003-11-01

    Mechanical distortion of blood vessels is known to activate endothelial cells. Whether airway distension likewise activates the vascular endothelium within the airway wall is unknown. Using intravital microscopy in the rat trachea, we investigated if airway distention with the application of positive end-expiratory pressure (PEEP) caused leukocyte recruitment to the airway. Tracheal postcapillary venules were visualized and leukocyte kinetics monitored in anesthetized, mechanically ventilated rats (80 breaths/minute, 6 ml/kg VT, 1 cm H(2)O PEEP). Leukocyte rolling velocity (Vwbc) and the number of adherent cells were not altered with normal ventilation over the course of 2 hours. Ventilation with sustained PEEP (8 cm H(2)O for 1 hour reduced Vwbc and increased adhesion, reaching a maximum at 1 hour of PEEP. Intermittent (2x and 5x) 8 cm H(2)O PEEP also induced a similar reduction in Vwbc, accompanied by an increase in adhesion. However, leukocyte recruitment after airway distension is localized to the airways because increased PEEP did not induce leukocyte recruitment in the mesenteric microcirculation or when PEEP was applied to the lung distal to the site of measurement. Pretreatment with endothelin receptor and selectin inhibitors blocked the effects of distension on leukocyte recruitment, suggesting their involvement in the proinflammatory response. PMID:12869357

  11. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  12. Mechanisms of BDNF regulation in asthmatic airway smooth muscle.

    PubMed

    Aravamudan, Bharathi; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-08-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by airway smooth muscle (ASM), enhances inflammation effects on airway contractility, supporting the idea that locally produced growth factors influence airway diseases such as asthma. We endeavored to dissect intrinsic mechanisms regulating endogenous, as well as inflammation (TNF-α)-induced BDNF secretion in ASM of nonasthmatic vs. asthmatic humans. We focused on specific Ca(2+) regulation- and inflammation-related signaling cascades and quantified BDNF secretion. We find that TNF-α enhances BDNF release by ASM cells, via several mechanisms relevant to asthma, including transient receptor potential channels TRPC3 and TRPC6 (but not TRPC1), ERK 1/2, PI3K, PLC, and PKC cascades, Rho kinase, and transcription factors cAMP response element binding protein and nuclear factor of activated T cells. Basal BDNF expression and secretion are elevated in asthmatic ASM and increase further with TNF-α exposure, involving many of these regulatory mechanisms. We conclude that airway BDNF secretion is regulated at multiple levels, providing a basis for autocrine effects of BDNF under conditions of inflammation and disease, with potential downstream influences on contractility and remodeling. PMID:27317689

  13. Management of the Traumatized Airway.

    PubMed

    Jain, Uday; McCunn, Maureen; Smith, Charles E; Pittet, Jean-Francois

    2016-01-01

    There is a lack of evidence-based approach regarding the best practice for airway management in patients with a traumatized airway. General recommendations for the management of the traumatized airway are summarized in table 5. Airway trauma may not be readily apparent, and its evaluation requires a high level of suspicion for airway disruption and compression. For patients with facial trauma, control of the airway may be significantly impacted by edema, bleeding, inability to clear secretions, loss of bony support, and difficulty with face mask ventilation. With the airway compression from neck swelling or hematoma, intubation attempts can further compromise the airway due to expanding hematoma. For patients with airway disruption, the goal is to pass the tube across the injured area without disrupting it or to insert the airway distal to the injury using a surgical approach. If airway injury is extensive, a surgical airway distal to the site of injury may be the best initial approach. Alternatively, if orotracheal intubation is chosen, spontaneous ventilation may be maintained or RSI may be performed. RSI is a common approach. Thus, some of the patients intubated may subsequently require tracheostomy. A stable patient with limited injuries may not require intubation but should be watched carefully for at least several hours. Because of a paucity of evidence-based data, the choice between these approaches and the techniques utilized is a clinical decision depending on the patient's condition, clinical setting, injuries to airway and other organs, and available personnel, expertise, and equipment. Inability to obtain a definitive airway is always an absolute indication for an emergency cricothyroidotomy or surgical tracheostomy. PMID:26517857

  14. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma. PMID:16014803

  15. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  16. Treatment with Pyranopyran-1, 8-Dione Attenuates Airway Responses in Cockroach Allergen Sensitized Asthma in Mice

    PubMed Central

    Jung, Kyung-Hwa; Song, Joohyun; Kim, You Ah; Cho, Hi Jae; Min, Byung-Il; Bae, Hyunsu

    2014-01-01

    Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling. PMID:24489937

  17. Treatment with pyranopyran-1, 8-dione attenuates airway responses in cockroach allergen sensitized asthma in mice.

    PubMed

    Park, Soojin; Park, Min-Sun; Jung, Kyung-Hwa; Song, Joohyun; Kim, You Ah; Cho, Hi Jae; Min, Byung-Il; Bae, Hyunsu

    2014-01-01

    Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling. PMID:24489937

  18. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  19. Surgery of the airway: historic notes

    PubMed Central

    2016-01-01

    Prior to the 20th century, the need for surgical procedures on the airway was infrequent and consisted mainly of tracheostomy to relieve airway obstruction or repair of tracheal injuries such as lacerations. Even the ability of tracheal suture lines to heal primarily was viewed with concern due to the rigidity of the tracheal wall, its precarious blood supply and uncertainty as to whether the cartilage components could heal without complications. In the 20th century the evolution of tracheal procedures on major airways evolved to meet the challenges provided by the expanding fields of thoracic surgery and advent of mechanical respiratory support with its associated complications. In the first half of the century lobar and lung resections done for tuberculosis and lung cancer required methods for safe closure of the resulting bronchial stumps and end-to-end bronchial anastomosis in the case of sleeve resections of the lung. Beginning in mid-century the advent of respiratory care units for the treatment of polio and for the expanding fields of thoracic and cardiac surgery resulted in a significant number of post-intubation tracheal stenosis requiring resection and primary repair. In the last 20 years of the century the development of lung transplantation with its requirement for successful bronchial anastomoses between the donor and recipient bronchi, created unique challenges including ischemia of the donor bronchus the adverse effects of immunosuppression, donor lung preservation and diagnosis and management of post-transplant infection and rejection. PMID:26981261

  20. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  1. Surgery of the airway: historic notes.

    PubMed

    Cooper, Joel D

    2016-03-01

    Prior to the 20(th) century, the need for surgical procedures on the airway was infrequent and consisted mainly of tracheostomy to relieve airway obstruction or repair of tracheal injuries such as lacerations. Even the ability of tracheal suture lines to heal primarily was viewed with concern due to the rigidity of the tracheal wall, its precarious blood supply and uncertainty as to whether the cartilage components could heal without complications. In the 20(th) century the evolution of tracheal procedures on major airways evolved to meet the challenges provided by the expanding fields of thoracic surgery and advent of mechanical respiratory support with its associated complications. In the first half of the century lobar and lung resections done for tuberculosis and lung cancer required methods for safe closure of the resulting bronchial stumps and end-to-end bronchial anastomosis in the case of sleeve resections of the lung. Beginning in mid-century the advent of respiratory care units for the treatment of polio and for the expanding fields of thoracic and cardiac surgery resulted in a significant number of post-intubation tracheal stenosis requiring resection and primary repair. In the last 20 years of the century the development of lung transplantation with its requirement for successful bronchial anastomoses between the donor and recipient bronchi, created unique challenges including ischemia of the donor bronchus the adverse effects of immunosuppression, donor lung preservation and diagnosis and management of post-transplant infection and rejection. PMID:26981261

  2. The Role of the T lymphocytes and Remodeling in Asthma.

    PubMed

    Amin, Kawa

    2016-08-01

    In allergic asthma (AA), inflammatory changes in the airway epithelium may contribute to the characteristic pathophysiology and symptoms. The presence of T lymphocytes, eosinophils, mast cells and macrophages, the presence of cytokines, and also structural changes in the airway mucous membrane are characteristic for asthma. Bronchial biopsy specimens were obtained from 33 AA, 25 nonallergic asthma (NAA), and 20 healthy controls (HC). This study used immunohistochemical techniques for identified monoclonal antibodies (CD3, CD4, CD8, CD25, ECP, MBP, tenascin, and laminin) in the bronchi. The highest number of eosinophils and T lymphocyte cells in bronchial biopsies was found in AA, and NAA. The number of T lymphocytes in AA was significantly higher than in NAA and HC. The degree of epithelial damage was higher in the AA group compared to the other groups. The tenascin- and laminin-positive layers in AA were thicker than other groups. In AA, a significant negative correlation was found between epithelial integrity and the count for eosinophils or T lymphocytes. T lymphocytes and eosinophils in AA were found in the area of epithelial and lamina propria damage. This article suggests that T lymphocytes may not only contribute to the chronic airway inflammatory response, airway remodeling, and symptomatology but may also have a central role at the initiation of the allergic immune response. Th-targeted therapy would be of considerable interest in controlling AA. Having more knowledge on the roles of T lymphocytes in the pathogenesis of allergic inflammation highlights the contributions of these cells in regulating and may lead to a new therapeutic target-AA. PMID:27221139

  3. Pulmonary arterial remodeling in chronic obstructive pulmonary disease is lobe dependent.

    PubMed

    Wrobel, Jeremy P; McLean, Catriona A; Thompson, Bruce R; Stuart-Andrews, Christopher R; Paul, Eldho; Snell, Gregory I; Williams, Trevor J

    2013-09-01

    Abstract Pulmonary arterial remodeling has been demonstrated in patients with severe chronic obstructive pulmonary disease (COPD), but it is not known whether lobar heterogeneity of remodeling occurs. Furthermore, the relationship between pulmonary hypertension (PH) and pulmonary arterial remodeling in COPD has not been established. Muscular pulmonary arterial remodeling in arteries 0.10-0.25 mm in diameter was assessed in COPD-explanted lungs and autopsy controls. Remodeling was quantified as the percentage wall thickness to vessel diameter (%WT) using digital image analysis. Repeat measures mixed-effects remodeling for %WT was performed according to lobar origin (upper and lower), muscular pulmonary arterial size (small, medium, and large), and echocardiography-based pulmonary arterial pressure (no PH, mild PH, and moderate-to-severe PH). Lobar perfusion and emphysema indices were determined from ventilation-perfusion and computed tomography scans, respectively. Overall, %WT was greater in 42 subjects with COPD than in 5 control subjects ([Formula: see text]). Within the COPD group, %WT was greater in the upper lobes ([Formula: see text]) and in the small muscular pulmonary arteries ([Formula: see text]). Lobar differences were most pronounced in medium and large arteries. Lobar emphysema index was not associated with arterial remodeling. However, there was a significant positive relationship between the lobar perfusion index and pulmonary arterial remodeling ([Formula: see text]). The presence of PH on echocardiography showed only a trend to a small effect on lower lobe remodeling. The pattern of pulmonary arterial remodeling in COPD is complicated and lobe dependent. Differences in regional blood flow partially account for the lobar heterogeneity of pulmonary arterial remodeling in COPD. PMID:24618551

  4. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  5. A Novel Algorithm to Quantify Coronary Remodeling Using Inferred Normal Dimensions

    PubMed Central

    Falcão, Breno A. A.; Falcão, João Luiz A. A.; Morais, Gustavo R.; Silva, Rafael C.; Lopes, Augusto C.; Soares, Paulo R.; Mariani Jr, José; Kalil-Filho, Roberto; Edelman, Elazer R.; Lemos, Pedro A.

    2015-01-01

    Background Vascular remodeling, the dynamic dimensional change in face of stress, can assume different directions as well as magnitudes in atherosclerotic disease. Classical measurements rely on reference to segments at a distance, risking inappropriate comparison between dislike vessel portions. Objective to explore a new method for quantifying vessel remodeling, based on the comparison between a given target segment and its inferred normal dimensions. Methods Geometric parameters and plaque composition were determined in 67 patients using three-vessel intravascular ultrasound with virtual histology (IVUS-VH). Coronary vessel remodeling at cross-section (n = 27.639) and lesion (n = 618) levels was assessed using classical metrics and a novel analytic algorithm based on the fractional vessel remodeling index (FVRI), which quantifies the total change in arterial wall dimensions related to the estimated normal dimension of the vessel. A prediction model was built to estimate the normal dimension of the vessel for calculation of FVRI. Results According to the new algorithm, “Ectatic” remodeling pattern was least common, “Complete compensatory” remodeling was present in approximately half of the instances, and “Negative” and “Incomplete compensatory” remodeling types were detected in the remaining. Compared to a traditional diagnostic scheme, FVRI-based classification seemed to better discriminate plaque composition by IVUS-VH. Conclusion Quantitative assessment of coronary remodeling using target segment dimensions offers a promising approach to evaluate the vessel response to plaque growth/regression. PMID:26559986

  6. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  7. Upper Airway Mechanics

    PubMed Central

    Verbraecken, Johan A.; De Backer, Wilfried A.

    2009-01-01

    This review discusses the pathophysiological aspects of sleep-disordered breathing, with focus on upper airway mechanics in obstructive and central sleep apnoea, Cheyne-Stokes respiration and obesity hypoventilation syndrome. These disorders constitute the end points of a spectrum with distinct yet interrelated mechanisms that lead to substantial pathology, i.e. increased upper airway collapsibility, control of breathing instability, increased work of breathing, disturbed ventilatory system mechanics and neurohormonal changes. Concepts are changing. Although sleep apnoea is considered more and more to be an increased loop gain disorder, the central type of apnoea is now considered as an obstructive event, because it causes pharyngeal narrowing, associated with prolonged expiration. Although a unifying concept for the pathogenesis is lacking, it seems that these patients are in a vicious circle. Knowledge of common patterns of sleep-disordered breathing may help to identify these patients and guide therapy. PMID:19478479

  8. Brachycephalic airway syndrome.

    PubMed

    Meola, Stacy D

    2013-08-01

    Brachycephalic airway syndrome is a common finding in brachycephalic breeds. A combination of primary and secondary changes can progress to life-threatening laryngeal collapse. Early recognition of primary anatomic abnormalities that include stenotic nares, elongated soft palate, and hypoplastic trachea would allow the clinician to make early recommendations for medical and surgical management, which can improve the quality of life in affected animals. PMID:24182996

  9. Upper airway resistance syndrome.

    PubMed

    Hasan, N; Fletcher, E C

    1998-07-01

    Many clinicians are familiar with the clinical symptoms and signs of obstructive sleep apnea (OSA). In its most blatant form, OSA is complete airway obstruction with repetitive, prolonged pauses in breathing, arterial oxyhemoglobin desaturation; followed by arousal with resumption of breathing. Daytime symptoms of this disorder include excessive daytime somnolence, intellectual dysfunction, and cardiovascular effects such as systemic hypertension, angina, myocardial infarction, and stroke. It has been recently recognized that increased pharyngeal resistance with incomplete obstruction can lead to a constellation of symptoms identical to OSA called "upper airway resistance syndrome" (UARS). The typical findings of UARS on sleep study are: (1) repetitive arousals from EEG sleep coinciding with a (2) waxing and waning of the respiratory airflow pattern and (3) increased respiratory effort as measured by esophageal pressure monitoring. There may be few, if any, obvious apneas or hypopneas with desaturation, but snoring may be a very prominent finding. Treatment with nasal positive airway pressure (NCPAP) eliminates the symptoms and confirms the diagnosis. Herein we describe two typical cases of UARS. PMID:9676067

  10. Airway closure in microgravity.

    PubMed

    Dutrieue, Brigitte; Verbanck, Sylvia; Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Recent single breath washout (SBW) studies in microgravity and on the ground have suggested an important effect of airway closure on gas mixing in the human lung, reflected particularly in the phase III slope of vital capacity SBW and bolus tests. In order to explore this effect, we designed a SBW in which subjects inspired 2-l from residual volume (RV) starting with a 150 ml bolus of He and SF6. In an attempt to vary the pattern of airways closure configuration before the test, the experiments were conducted in 1G and in microgravity during parabolic flight allowing the pre-test expiration to RV to be either in microgravity or at 1.8 G, with the actual test gas inhalation performed entirely in microgravity. Contrary to our expectations, the measured phase III slope and phase IV height and volume obtained from seven subjects in microgravity were essentially identical irrespective of the gravity level during the pre-test expiration to RV. The results suggest that airway closure configuration at RV before the test inspiration has no apparent impact on phases III and IV generation. PMID:15979418

  11. Automatic measurement of oblique-oriented airway dimension at volumetric CT: effect of imaging parameters and obliquity of airway with FWHM method using a physical phantom

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Song, Koun Sik; Kang, Suk-Ho

    2007-03-01

    This study is conducted to assess the influence of various CT imaging parameters and airway obliquity, such as reconstruction kernel, field of view, slice thickness, and obliquity of airway on automatic measurement of airway wall thickness with FWHM method and physical phantom. The phantom, consists of 11 poly-acryl tubes with various inner lumen diameters and thickness, was used in this study. The measured density of the wall was 150HU. The airspace outside of tube was filled with poly-urethane foam, whose density was -900HU, which is similar density of emphysema region. CT images, obtained with MDCT (Sensation 16, Siemens), was reconstructed with various reconstruction kernel (B10f, B30f, B50f, B70f and B80f), different field of views (180mm, 270mm, 360mm), and different thicknesses (0.75, 1, and 2 mm). The phantom was scanned at various oblique angles (0, 30, 45, 60 degree). Using in-house airway measurement software, central axis of oblique airway was determined by 3D thinning algorithm and CT image perpendicular to the axis was reconstructed. The luminal area, outer boundary, and wall thickness was measured by FWHM method at each image. Actual dimension of each tube and measured CT values on each CT data set was compared. Sharper reconstruction kernel, thicker image thickness, and larger oblique angle of airway axis results in decrease of measured wall thickness. There was internal interaction between imaging parameters and obliquity of airway on the accuracy of measurement. There was a threshold point of 1-mm wall thickness, below which the measurement failed to represent the change of real thickness. Even using the smaller FOV, the accuracy was not improved. Usage of standard kernel (B50f) and 0.75mm thickness results in the most accurate measurement results, which is independent of obliquity of airway. (Mean error: 0 Degree 0.067+/-0.05mm, 30 Degree 0.076+/-0.09, 45 Degree 0.074+/-0.09, 60 Degree 0.091+/-0.09). In this imaging parameters, there was no

  12. Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma.

    PubMed

    Shimura, S; Andoh, Y; Haraguchi, M; Shirato, K

    1996-07-01

    The aim of this study was to elucidate the mechanism of the formation of the widespread mucous-plugging observed in autopsied lungs from patients with bronchial asthma. We performed morphometric analysis of airways of autopsied lungs from eight patients with bronchial asthma (Group BA), and compared it with those of six chronic bronchitics (Group CB) and four control patients (Control). The following parameters were measured in paraffin sections: volume proportion of bronchial glands to bronchial wall (Gland%); goblet cell granules to total epithelial layer (Goblet %); intraluminal mucus expressed as the mucus occupying ratio (MOR); volume ratio of intraluminal mucus continuous with goblet cells to total intraluminal mucus (Vc/Vtol %); and surface ratio of the contact surface of intraluminal mucus continuous with goblet cells to the total luminal surface (Sc/Stot %). Gland%, Goblet %, and MOR or inflammatory cell numbers in the airway walls both from Group BA and CB were larger than those from the Control group. However, no significant differences were observed between Group BA and CB in Gland%, Goblet %, MOR or inflammatory cell numbers, except for the eosinophil number: i.e. 23 +/- 3, 22 +/- 3 and 6 +/- 2% in Gland%; 22 +/- 9, 5 +/- 4 and 2 +/- 2% in Goblet%; 10 +/- 3, 18 +/- 3 and 0.3 +/- 0.5% in MOR; 199 +/- 68, 10 +/- 3 and 2 +/- 2 cells. mm-2 in eosinophil number of the peripheral airways from Groups BA, CB and Control, respectively. In contrast, marked and significant increases were observed both in Vc/Vtot% and Sc/Stot% in Group BA compared to Groups CB and Control both in central and peripheral airways: i.e. Vc/Vtot% in the peripheral airways was 53 +/- 5, 4 +/- 3 and 0.8 +/- 0.8% from Groups BA, CB and Control, respectively (BA vs CB or BA vs Control, p < 0.01 each). These findings suggest that the continuity of goblet cells and intraluminal mucus or lack of full release of mucus, from goblet cells, is peculiar to asthmatic airways, and may contribute to

  13. Management of the artificial airway.

    PubMed

    Branson, Richard D; Gomaa, Dina; Rodriquez, Dario

    2014-06-01

    Management of the artificial airway includes securing the tube to prevent dislodgement or migration as well as removal of secretions. Preventive measures include adequate humidification and appropriate airway suctioning. Monitoring airway patency and removing obstruction are potentially life-saving components of airway management. Cuff pressure management is important for preventing aspiration and mucosal damage as well as assuring adequate ventilation. A number of new monitoring techniques have been introduced, and automated cuff pressure control is becoming more common. The respiratory therapist should be adept with all these devices and understand the appropriate application and management. PMID:24891202

  14. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  15. Angiogenesis is induced by airway smooth muscle strain.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD. PMID:17693481

  16. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths. PMID:17827075

  17. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome

    PubMed Central

    Belperio, John A.; Keane, Michael P.; Burdick, Marie D.; Gomperts, Brigitte; Xue, Ying Ying; Hong, Kurt; Mestas, Javier; Ardehali, Abbas; Mehrad, Borna; Saggar, Rajan; Lynch, Joseph P.; Ross, David J.; Strieter, Robert M.

    2005-01-01

    Angiogenesis and vascular remodeling support fibroproliferative processes; however, no study has addressed the importance of angiogenesis during fibro-obliteration of the allograft airway during bronchiolitis obliterans syndrome (BOS) that occurs after lung transplantation. The ELR+ CXC chemokines both mediate neutrophil recruitment and promote angiogenesis. Their shared endothelial cell receptor is the G-coupled protein receptor CXC chemokine receptor 2 (CXCR2). We found that elevated levels of multiple ELR+ CXC chemokines correlated with the presence of BOS. Proof-of-concept studies using a murine model of BOS not only demonstrated an early neutrophil infiltration but also marked vascular remodeling in the tracheal allografts. In addition, tracheal allograft ELR+ CXC chemokines were persistently expressed even in the absence of significant neutrophil infiltration and were temporally associated with vascular remodeling during fibro-obliteration of the tracheal allograft. Furthermore, in neutralizing studies, treatment with anti-CXCR2 Abs inhibited early neutrophil infiltration and later vascular remodeling, which resulted in the attenuation of murine BOS. A more profound attenuation of fibro-obliteration was seen when CXCR2–/– mice received cyclosporin A. This supports the notion that the CXCR2/CXCR2 ligand biological axis has a bimodal function during the course of BOS: early, it is important for neutrophil recruitment and later, during fibro-obliteration, it is important for vascular remodeling independent of neutrophil recruitment. PMID:15864347

  18. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome.

    PubMed

    Belperio, John A; Keane, Michael P; Burdick, Marie D; Gomperts, Brigitte; Xue, Ying Ying; Hong, Kurt; Mestas, Javier; Ardehali, Abbas; Mehrad, Borna; Saggar, Rajan; Lynch, Joseph P; Ross, David J; Strieter, Robert M

    2005-05-01

    Angiogenesis and vascular remodeling support fibroproliferative processes; however, no study has addressed the importance of angiogenesis during fibro-obliteration of the allograft airway during bronchiolitis obliterans syndrome (BOS) that occurs after lung transplantation. The ELR(+) CXC chemokines both mediate neutrophil recruitment and promote angiogenesis. Their shared endothelial cell receptor is the G-coupled protein receptor CXC chemokine receptor 2 (CXCR2). We found that elevated levels of multiple ELR(+) CXC chemokines correlated with the presence of BOS. Proof-of-concept studies using a murine model of BOS not only demonstrated an early neutrophil infiltration but also marked vascular remodeling in the tracheal allografts. In addition, tracheal allograft ELR(+) CXC chemokines were persistently expressed even in the absence of significant neutrophil infiltration and were temporally associated with vascular remodeling during fibro-obliteration of the tracheal allograft. Furthermore, in neutralizing studies, treatment with anti-CXCR2 Abs inhibited early neutrophil infiltration and later vascular remodeling, which resulted in the attenuation of murine BOS. A more profound attenuation of fibro-obliteration was seen when CXCR2(-/-) mice received cyclosporin A. This supports the notion that the CXCR2/CXCR2 ligand biological axis has a bimodal function during the course of BOS: early, it is important for neutrophil recruitment and later, during fibro-obliteration, it is important for vascular remodeling independent of neutrophil recruitment. PMID:15864347

  19. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  20. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway. (a... provide a patent airway. (b) Classification. Class I (general controls). The device is exempt from...

  1. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  2. Selective targeting of TGF-β activation to treat fibroinflammatory airway disease.

    PubMed

    Minagawa, Shunsuke; Lou, Jianlong; Seed, Robert I; Cormier, Anthony; Wu, Shenping; Cheng, Yifan; Murray, Lynne; Tsui, Ping; Connor, Jane; Herbst, Ronald; Govaerts, Cedric; Barker, Tyren; Cambier, Stephanie; Yanagisawa, Haruhiko; Goodsell, Amanda; Hashimoto, Mitsuo; Brand, Oliver J; Cheng, Ran; Ma, Royce; McKnelly, Kate J; Wen, Weihua; Hill, Arthur; Jablons, David; Wolters, Paul; Kitamura, Hideya; Araya, Jun; Barczak, Andrea J; Erle, David J; Reichardt, Louis F; Marks, James D; Baron, Jody L; Nishimura, Stephen L

    2014-06-18

    Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor-β (TGF-β) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-β is expressed in a latent form that requires activation. The integrin αvβ8 (encoded by the itgb8 gene) is a receptor for latent TGF-β and is essential for its activation. Expression of integrin αvβ8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human αvβ8 (B5) inhibited TGF-β activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-β activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that αvβ8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity αvβ8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-β pathway to treat fibroinflammatory airway diseases. PMID:24944194

  3. Selective Targeting of TGF-β Activation to Treat Fibroinflammatory Airway Disease

    PubMed Central

    Minagawa, Shunsuke; Lou, Jianlong; Seed, Robert I.; Cormier, Anthony; Wu, Shenping; Cheng, Yifan; Murray, Lynne; Tsui, Ping; Connor, Jane; Herbst, Ronald; Govaerts, Cedric; Barker, Tyren; Cambier, Stephanie; Yanagisawa, Haruhiko; Goodsell, Amanda; Hashimoto, Mitsuo; Brand, Oliver J.; Cheng, Ran; Ma, Royce; McKnelly, Kate J.; Wen, Weihua; Hill, Arthur; Jablons, David; Wolters, Paul; Kitamura, Hideya; Araya, Jun; Barczak, Andrea J.; Erle, David J.; Reichardt, Louis F.; Marks, James D.; Baron, Jody L.; Nishimura, Stephen L.

    2015-01-01

    Airway remodeling, caused by inflammation and fibrosis, is a major component of chronic obstructive pulmonary disease (COPD) and currently has no effective treatment. Transforming growth factor–β (TGF-β) has been widely implicated in the pathogenesis of airway remodeling in COPD. TGF-β is expressed in a latent form that requires activation. The integrin αvβ8 (encoded by the itgb8 gene) is a receptor for latent TGF-β and is essential for its activation. Expression of integrin αvβ8 is increased in airway fibroblasts in COPD and thus is an attractive therapeutic target for the treatment of airway remodeling in COPD. We demonstrate that an engineered optimized antibody to human αvβ8 (B5) inhibited TGF-β activation in transgenic mice expressing only human and not mouse ITGB8. The B5 engineered antibody blocked fibroinflammatory responses induced by tobacco smoke, cytokines, and allergens by inhibiting TGF-β activation. To clarify the mechanism of action of B5, we used hydrodynamic, mutational, and electron microscopic methods to demonstrate that αvβ8 predominantly adopts a constitutively active, extended-closed headpiece conformation. Epitope mapping and functional characterization of B5 revealed an allosteric mechanism of action due to locking-in of a low-affinity αvβ8 conformation. Collectively, these data demonstrate a new model for integrin function and present a strategy to selectively target the TGF-β pathway to treat fibroinflammatory airway diseases. PMID:24944194

  4. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  5. A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling

    PubMed Central

    Wan, William; Hansen, Laura

    2010-01-01

    In contrast to the widely applied approach to model soft tissue remodeling employing the concept of volumetric growth, microstructurally motivated models are capable of capturing many of the underlying mechanisms of growth and remodeling; i.e., the production, removal, and remodeling of individual constituents at different rates and to different extents. A 3-dimensional constrained mixture computational framework has been developed for vascular growth and remodeling, considering new, microstructurally motivated kinematics and constitutive equations and new stress and muscle activation mediated evolution equations. Our computational results for alterations in flow and pressure, using reasonable physiological values for rates of constituent growth and turnover, concur with findings in the literature. For example, for flow-induced remodeling, our simulations predict that, although the wall shear stress is restored completely, the circumferential stress is not restored employing realistic physiological rate parameters. Also, our simulations predict different levels of thickening on inner versus outer wall locations, as shown in numerous reports of pressure-induced remodeling. Whereas the simulations are meant to be illustrative, they serve to highlight the experimental data currently lacking to fully quantify mechanically mediated adaptations in the vasculature. PMID:20039091

  6. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy. PMID:26602431

  7. Brachycephalic airway obstructive syndrome.

    PubMed

    Wykes, P M

    1991-06-01

    This is a complex condition, recognized primarily in brachycephalic breeds, that results in varying degrees of upper airway obstruction. The signs consist of respiratory distress, stridor, reduced exercise tolerance, and in more severe cases, cyanosis and collapse. The inherent anatomy of the brachycephalic skull contributes to the development of these signs. Such anatomic features include: a shortened and distorted nasopharynx, stenotic nares, an elongated soft palate, and everted laryngeal saccules. The increased negative pressure created in the pharyngolaryngeal region, as a result of these obstructing structures, ultimately results in distortion and collapse of the arytenoid cartilages of the larynx. PMID:1802247

  8. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  9. Particle Deposition During Airway Closure

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng; Halpern, David; Grotberg, James B.

    2011-11-01

    Inhaled aerosol particles deposit in the lung and may be from environmental, toxic, or medical therapy sources. While much research focuses on inspiratory deposition, primarily at airway bifurcations due to inertial impaction, there are other mechanisms that allow the particles to reach the airway surface, such as gravitational settling and diffusion depending on particle size. We introduce a new mechanism not previously studied, i.e. aerosol deposition from airway closure. The airways are lined with a liquid layer. Due to the surface tension driven instability, a liquid plug can form from this layer which blocks the airway. This process of airway closure tends to occur toward the end of expiration. In this study, the efficiency of the impaction of the particles during airway closure will be investigated. The particles will be released from the upstream of the airway and convected by the air flow and deposited onto the closing liquid layer. We solve the governing equations using a finite volume approach in conjunction with a sharp interface method for the interfaces. Once the velocity field of the gas flow is obtained, the path of the particles will be calculated and the efficiency of the deposition can be estimated. We acknowledge support from the National Institutes of Health grant number NIH HL85156.

  10. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  11. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    SciTech Connect

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  12. Allergic rhinitis and asthma: inflammation in a one-airway condition

    PubMed Central

    Jeffery, Peter K; Haahtela, Tari

    2006-01-01

    Background Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. Discussion In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. Conclusion Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites. PMID:17140423

  13. Airway smooth muscle and bronchospasm: fluctuating, fluidizing, freezing

    PubMed Central

    Krishnan, Ramaswamy; Trepat, Xavier; Nguyen, Trang T. B.; Lenormand, Guillaume; Oliver, Madavi; Fredberg, Jeffrey J.

    2008-01-01

    We review here four recent findings that have altered in a fundamental way our understanding of airways smooth muscle (ASM), its dynamic responses to physiological loading, and their dominant mechanical role in bronchospasm. These findings highlight ASM remodeling processes that are innately out-of-equilibrium and dynamic, and bring to the forefront a striking intersection between topics in condensed matter physics and ASM cytoskeletal biology. By doing so, they place in a new light the role of enhanced ASM mass in airway hyper-responsiveness as well as in the failure of a deep inspiration to relax the asthmatic airway. These findings have established that (i) ASM length is equilibrated dynamically, not statically; (ii) ASM dynamics closely resemble physical features exhibited by so-called soft glassy materials; (iii) static force-length relationships fail to describe dynamically contracted ASM states; (iv) stretch fluidizes the ASM cytoskeleton. Taken together, these observations suggest that at the origin of the bronchodilatory effect of a deep inspiration, and its failure in asthma, may lie glassy dynamics of the ASM cell. PMID:18514592

  14. Contribution of air pollution to COPD and small airway dysfunction.

    PubMed

    Berend, Norbert

    2016-02-01

    Although in many Western countries levels of ambient air pollution have been improving with the setting of upper limits and better urban planning, air pollution in developing countries and particularly those with rapid industrialization has become a major global problem. Together with increased motor vehicle ownership and traffic congestion, there is a growing issue with airborne particles of respirable size. These particles are thought responsible for respiratory and cardiovascular effects and have also been implicated in cancer pathogenesis. The pathologic effects in the lung are mediated via inflammatory pathways and involve oxidative stress similar to cigarette smoking. These effects are seen in the peripheral airways where the smaller particle fractions are deposited and lead to airway remodelling. However, emphysema and loss of bronchioles seen with cigarette smoking have not been described with ambient air pollution, and there are few studies specifically looking at peripheral airway function. Definitive evidence of air pollution causing COPD is lacking and a different study design is required to link air pollution and COPD. PMID:26412571

  15. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases

    PubMed Central

    Hsu, Alan C-Y.; Nair, Prema M.; Haw, Tatt Jhong; Fricker, Michael; Gellatly, Shaan L.; Kim, Richard Y.; Inman, Mark D.; Tjin, Gavin; Wark, Peter A.B.; Walker, Marjorie M.; Horvat, Jay C.; Oliver, Brian G.; Knight, Darryl A.; Burgess, Janette K.; Hansbro, Philip M.

    2016-01-01

    Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke–induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c−/− mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases. PMID:27398409

  16. Estimating the diameter of airways susceptible for collapse using crackle sound

    PubMed Central

    Majumdar, Arnab; Hantos, Zoltán; Tolnai, József; Parameswaran, Harikrishnan; Tepper, Robert

    2009-01-01

    Airways that collapse during deflation generate a crackle sound when they reopen during subsequent reinflation. Since each crackle is associated with the reopening of a collapsed airway, the likelihood of an airway to be a crackle source is identical to its vulnerability to collapse. To investigate this vulnerability of airways to collapse, crackles were recorded during the first inflation of six excised rabbit lungs from the collapsed state, and subsequent reinflations from 5, 2, 1, and 0 cmH2O end-expiratory pressure levels. We derived a relationship between the amplitude of a crackle sound at the trachea and the generation number (n) of the source airway where the crackle was generated. Using an asymmetrical tree model of the rabbit airways with elastic walls, airway vulnerability to collapse was also determined in terms of airway diameter D. During the reinflation from end-expiratory pressure = 0 cmH2O, the most vulnerable airways were estimated to be centered at n = 12 with a peak. Vulnerability in terms of D ranged between 0.1 and 1.3 mm, with a peak at 0.3 mm. During the inflation from the collapsed state, however, vulnerability was much less localized to a particular n or D, with maximum values of n = 8 and D = 0.75 mm. Numerical simulations using a tree model that incorporates airway opening and closing support these conclusions. Thus our results indicate that there are airways of a given range of diameters that can become unstable during deflation and vulnerable to collapse and subsequent injury. PMID:19729587

  17. Emphysema- and airway-dominant COPD phenotypes defined by standardised quantitative computed tomography.

    PubMed

    Subramanian, Deepak R; Gupta, Sumit; Burggraf, Dorothe; Vom Silberberg, Suzan J; Heimbeck, Irene; Heiss-Neumann, Marion S; Haeussinger, Karl; Newby, Chris; Hargadon, Beverley; Raj, Vimal; Singh, Dave; Kolsum, Umme; Hofer, Thomas P; Al-Shair, Khaled; Luetzen, Niklas; Prasse, Antje; Müller-Quernheim, Joachim; Benea, Giorgio; Leprotti, Stefano; Boschetto, Piera; Gorecka, Dorota; Nowinski, Adam; Oniszh, Karina; Castell, Wolfgang Zu; Hagen, Michael; Barta, Imre; Döme, Balázs; Strausz, Janos; Greulich, Timm; Vogelmeier, Claus; Koczulla, Andreas R; Gut, Ivo; Hohlfeld, Jens; Welte, Tobias; Lavae-Mokhtari, Mahyar; Ziegler-Heitbrock, Loems; Brightling, Christopher; Parr, David G

    2016-07-01

    EvA (Emphysema versus Airway disease) is a multicentre project to study mechanisms and identify biomarkers of emphysema and airway disease in chronic obstructive pulmonary disease (COPD). The objective of this study was to delineate objectively imaging-based emphysema-dominant and airway disease-dominant phenotypes using quantitative computed tomography (QCT) indices, standardised with a novel phantom-based approach.441 subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1-3) were assessed in terms of clinical and physiological measurements, laboratory testing and standardised QCT indices of emphysema and airway wall geometry.QCT indices were influenced by scanner non-conformity, but standardisation significantly reduced variability (p<0.001) and led to more robust phenotypes. Four imaging-derived phenotypes were identified, reflecting "emphysema-dominant", "airway disease-dominant", "mixed" disease and "mild" disease. The emphysema-dominant group had significantly higher lung volumes, lower gas transfer coefficient, lower oxygen (PO2 ) and carbon dioxide (PCO2 ) tensions, higher haemoglobin and higher blood leukocyte numbers than the airway disease-dominant group.The utility of QCT for phenotyping in the setting of an international multicentre study is improved by standardisation. QCT indices of emphysema and airway disease can delineate within a population of patients with COPD, phenotypic groups that have typical clinical features known to be associated with emphysema-dominant and airway-dominant disease. PMID:27230444

  18. Fatty acid binding protein 4 regulates VEGF-induced airway angiogenesis and inflammation in a transgenic mouse model: implications for asthma.

    PubMed

    Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G; Bhandari, Vineet; Comhair, Suzy A; Erzurum, Serpil C; Hotamisligil, Gökhan S; Elias, Jack A; Cataltepe, Sule

    2013-04-01

    Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4(-/-) mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4(-/-) mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391

  19. Optimal Graph Search Based Segmentation of Airway Tree Double Surfaces Across Bifurcations

    PubMed Central

    Chen, Danny Z.; Tawhai, Merryn H.; Wu, Xiaodong; Hoffman, Eric A.; Sonka, Milan

    2014-01-01

    Identification of both the luminal and the wall areas of the bronchial tree structure from volumetric X-ray computed tomography (CT) data sets is of critical importance in distinguishing important phenotypes within numerous major lung diseases including chronic obstructive pulmonary diseases (COPD) and asthma. However, accurate assessment of the inner and outer airway wall surfaces of a complete 3-D tree structure is difficult due to their complex nature, particularly around the branch areas. In this paper, we extend a graph search based technique (LOGISMOS) to simultaneously identify multiple inter-related surfaces of branching airway trees. We first perform a presegmentation of the input 3-D image to obtain basic information about the tree topology. The presegmented image is resampled along judiciously determined paths to produce a set of vectors of voxels (called voxel columns). The resampling process utilizes medial axes to ensure that voxel columns of appropriate lengths and directions are used to capture the object surfaces without interference. A geometric graph is constructed whose edges connect voxels in the resampled voxel columns and enforce validity of the smoothness and separation constraints on the sought surfaces. Cost functions with directional information are employed to distinguish inner and outer walls. The assessment of wall thickness measurement on a CT-scanned double-wall physical phantom (patterned after an in vivo imaged human airway tree) achieved highly accurate results on the entire 3-D tree. The observed mean signed error of wall thickness ranged from −0.09 ± 0.24 mm to 0.07 ± 0.23 mm in bifurcating/nonbifurcating areas. The mean unsigned errors were 0.16 ± 0.12 mm to 0.20 ± 0.11 mm. When the airway wall surface was partitioned into meaningful subregions, the airway wall thickness accuracy was the same in most tested bifurcation/nonbifurcation and carina/noncarina regions (p=NS). Once validated on phantoms, our method was applied

  20. Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke

    PubMed Central

    Oldenburger, Anouk; Timens, Wim; Bos, Sophie; Smit, Marieke; Smrcka, Alan V.; Laurent, Anne-Coline; Cao, Junjun; Hylkema, Machteld; Meurs, Herman; Maarsingh, Harm; Lezoualc'h, Frank; Schmidt, Martina

    2014-01-01

    Cigarette smoke (CS) induces inflammatory responses characterized by increase of immune cells and cytokine release. Remodeling processes, such as mucus hypersecretion and extracellular matrix protein production, are also directly or indirectly induced by CS. Recently, we showed that activation of the exchange protein directly activated by cAMP (Epac) attenuates CS extract-induced interleukin (IL)-8 release from cultured airway smooth muscle cells. Using an acute, short-term model of CS exposure, we now studied the role of Epac1, Epac2, and the Epac effector phospholipase-Cε (PLCε) in airway inflammation and remodeling in vivo. Compared to wild-type mice exposed to CS, the number of total inflammatory cells, macrophages, and neutrophils and total IL-6 release was lower in Epac2−/− mice, which was also the case for neutrophils and IL-6 in PLCε−/− mice. Taken together, Epac2, acting partly via PLCε, but not Epac1, enhances CS-induced airway inflammation in vivo. In total lung homogenates of Epac1−/− mice, MUC5AC and matrix remodeling parameters (transforming growth factor-β1, collagen I, and fibronectin) were increased at baseline. Our findings suggest that Epac1 primarily is capable of inhibiting remodeling processes, whereas Epac2 primarily increases inflammatory processes in vivo.—Oldenburger, A., Timens, W., Bos, S., Smit, M., Smrcka, A. V., Laurent, A.-C., Cao, J., Hylkema, M., Meurs, H., Maarsingh, H., Lezoualc'h, F., and Schmidt, M. Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke. PMID:25103224

  1. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease.

    PubMed

    Bonini, Matteo; Usmani, Omar S

    2015-12-01

    Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. PMID:26037949

  2. Airway clearance in neuromuscular weakness.

    PubMed

    Gauld, Leanne Maree

    2009-05-01

    Impaired airway clearance leads to recurrent chest infections and respiratory deterioration in neuromuscular weakness. It is frequently the cause of death. Cough is the major mechanism of airway clearance. Cough has several components, and assessment tools are available to measure the different components of cough. These include measuring peak cough flow, respiratory muscle strength, and inspiratory capacity. Each is useful in assessing the ability to generate an effective cough, and can be used to guide when techniques of assisting airway clearance may be effective for the individual and which are most effective. Techniques to assist airway clearance include augmenting inspiration by air stacking, augmenting expiration by assisting the cough, and augmenting both inspiration and expiration with the mechanical insufflator-exsufflator or by direct suctioning via a tracheostomy. Physiotherapists are invaluable in assisting airway clearance, and in teaching patients and their families how to use these techniques. Use of the mechanical insufflator-exsufflator has gained popularity in recent times, but several simpler, more economical methods are available to assist airway clearance that can be used effectively alone or in combination. This review examines the literature available on the assessment and management of impaired airway clearance in neuromuscular weakness. PMID:19379290

  3. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    SciTech Connect

    Gao, Fu; Chambon, Pierre; Tellides, George; Kong, Wei; Zhang, Xiaoming; Li, Wei

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  4. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  5. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  6. Advances in understanding cartilage remodeling

    PubMed Central

    Li, Yefu; Xu, Lin

    2015-01-01

    Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current “controversial” observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis. PMID:26380073

  7. Irritant-induced airway disorders.

    PubMed

    Brooks, Stuart M; Bernstein, I Leonard

    2011-11-01

    Thousands of persons experience accidental high-level irritant exposures each year but most recover and few die. Irritants function differently than allergens because their actions proceed nonspecifically and by nonimmunologic mechanisms. For some individuals, the consequence of a single massive exposure to an irritant, gas, vapor or fume is persistent airway hyperresponsiveness and the clinical picture of asthma, referred to as reactive airways dysfunction syndrome (RADS). Repeated irritant exposures may lead to chronic cough and continual airway hyperresponsiveness. Cases of asthma attributed to repeated irritant-exposures may be the result of genetic and/or host factors. PMID:21978855

  8. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  9. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  10. Rare Upper Airway Anomalies.

    PubMed

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  11. [Reactive airways dysfunction syndrome].

    PubMed

    Costa, R; Orriols, R

    2005-01-01

    Reactive airways dysfunction syndrome, better known as RADS, was described as a clinical entity consisting in the appearance of bronchial asthma due to massive toxic inhalation. The term was coined and recognised for the first time in 1985. Since then different publications have verified new cases as well as different causal agents. It usually arises from an accident at the work place and in closed or poorly ventilated spaces, where high concentrations of irritant products are inhaled in the form of gas, smoke or vapour. In the following minutes or hours symptoms of bronchial obstruction appear in an acute form, with bronchial hyperresponsiveness persisting for months or years. The affected patients do not show a recurrence of symptoms following exposure to non-toxic doses of the same agent that started the symptoms. This is why diagnosis is based on clinical manifestations as it is not reproducible through a provocation test. PMID:15915173

  12. PTH signaling mediates perilacunar remodeling during exercise.

    PubMed

    Gardinier, Joseph D; Al-Omaishi, Salam; Morris, Michael D; Kohn, David H

    2016-01-01

    Mechanical loading and release of endogenous parathyroid hormone (PTH) during exercise facilitate the adaptation of bone. However, it remains unclear how exercise and PTH influence the composition of bone and how exercise and PTH-mediated compositional changes influence the mechanical properties of bone. Thus, the primary purpose of this study was to establish compositional changes within osteocytes' perilacunar region of cortical bone following exercise, and evaluate the influence of endogenous PTH signaling on this perilacunar adaptation. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to evaluate tissue composition surrounding individual lacuna within the tibia of 19week old male mice exposed to treadmill running for 3weeks. As a result of exercise, tissue within the perilacunar region (within 0-5μm of the lacuna wall) had a lower mineral-to-matrix ratio (MMR) compared to sedentary controls. In addition, exercise also increased the carbonate-to-phosphate ratio (CPR) across both perilacunar and non-perilacunar regions (5-10μm and 10-15μm from the lacuna walls). Tibial post-yield work had a significant negative correlation with perilacunar MMR. Inhibition of PTH activity with PTH(7-34) demonstrated that perilacunar remodeling during exercise was dependent on the cellular response to endogenous PTH. The osteocytes' response to endogenous PTH during exercise was characterized by a significant reduction in SOST expression and significant increase in FGF-23 expression. The potential reduction in phosphate levels due to FGF-23 expression may explain the increase in carbonate substitution. Overall, this is the first study to demonstrate that adaptation in tissue composition is localized around individual osteocytes, may contribute to the changes in whole bone mechanics during exercise, and that PTH signaling during exercise contributes to these adaptations. PMID:26924474

  13. Mechanisms of Cardiovascular Remodeling in Hyperhomocysteinemia

    PubMed Central

    Steed, Mesia M.

    2011-01-01

    Abstract In hypertension, an increase in arterial wall thickness and loss of elasticity over time result in an increase in pulse wave velocity, a direct measure of arterial stiffness. This change is reflected in gradual fragmentation and loss of elastin fibers and accumulation of stiffer collagen fibers in the media that occurs independently of atherosclerosis. Similar results are seen with an elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), which increases vascular thickness, elastin fragmentation, and arterial blood pressure. Studies from our laboratory have demonstrated a decrease in elasticity and an increase in pulse wave velocity in HHcy cystathionine β synthase heterozygote knockout (CBS−/+) mice. Nitric oxide (NO) is a potential regulator of matrix metalloproteinase (MMP) activity in MMP-NO-TIMP (tissue inhibitor of metalloproteinase) inhibitory tertiary complex. We have demonstrated the contribustion of the NO synthase (NOS) isoforms, endothelial NOS and inducible NOS, in the activation of latent MMP. The differential production of NO contributes to oxidative stress and increased oxidative/nitrative activation of MMP resulting in vascular remodeling in response to HHcy. The contribution of the NOS isoforms, endothelial and inducible in the collagen/elastin switch, has been demonstrated. We have showed that an increase in inducible NOS activity is a key contributor to HHcy-mediated collagen/elastin switch and resulting decline in aortic compliance. In addition, increased levels of Hcy compete and suppress the γ-amino butyric acid-receptor, N-methyl-d-aspartame-receptor, and peroxisome proliferator-activated receptor. The HHcy causes oxidative stress by generating nitrotyrosine, activating the latent MMPs and decreasing the endothelial NO concentration. The HHcy causes elastinolysis and decrease elastic complicance of the vessel wall. The treatment with γ-amino butyric acid-receptor agonist (muscimol), N

  14. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  15. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  16. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  17. Tachykinin receptors and airway pathophysiology.

    PubMed

    Maggi, C A

    1993-05-01

    The mammalian tachykinins (TKs), substance P and neurokinin A, are present in sensory nerve fibres in the upper and lower airways of various mammalian species, including humans. TKs are released from these afferent nerves in an "efferent" mode at peripheral level, especially in response to irritant stimuli. TKs exert a variety of biological effects (bronchoconstriction, plasma protein extravasation, stimulation of mucus secretion), collectively known as "neurogenic inflammation", and this process is thought to be of potential pathogenic relevance for various airway diseases. The recent development of potent and selective TK receptor antagonists on the one hand provides important new tools for the understanding of basic airway physiology and pathophysiology and, on the other, opens new possibilities for therapy of airway diseases. PMID:8390944

  18. Eosinophilic phenotypes of airway disease.

    PubMed

    Pavord, Ian D

    2013-12-01

    Our understanding of the clinical implications of eosinophilic airway inflammation has increased significantly over the last 20 years, aided by the development of noninvasive means to assess it. This pattern of airway inflammation can occur in a diverse range of airway diseases. It is associated with a positive response to corticosteroids and a high risk of preventable exacerbations. Our new understanding of the role of eosinophilic airway inflammation has paved the way for the clinical development of a number of more specific inhibitors that may become new treatment options. Different definitions, ideas of disease, and adoption of biomarkers that are not well known are necessary to fully realize the potential of these treatments. PMID:24313765

  19. Imaging of the Distal Airways

    PubMed Central

    Tashkin, Donald P.; de Lange, Eduard E.

    2009-01-01

    Imaging techniques of the lung continues to advance with improving ability to image the more distal airways. Two imaging techniques are reviewed, computerized tomography and magnetic resonance with hyperpolarized helium-3. PMID:19962040

  20. The Virtual Pediatric Airways Workbench.

    PubMed

    Quammen, Cory W; Taylor Ii, Russell M; Krajcevski, Pavel; Mitran, Sorin; Enquobahrie, Andinet; Superfine, Richard; Davis, Brad; Davis, Stephanie; Zdanski, Carlton

    2016-01-01

    The Virtual Pediatric Airways Workbench (VPAW) is a patient-centered surgical planning software system targeted to pediatric patients with airway obstruction. VPAW provides an intuitive surgical planning interface for clinicians and supports quantitative analysis regarding prospective surgeries to aid clinicians deciding on potential surgical intervention. VPAW enables a full surgical planning pipeline, including importing DICOM images, segmenting the airway, interactive 3D editing of airway geometries to express potential surgical treatment planning options, and creating input files for offline geometric analysis and computational fluid dynamics simulations for evaluation of surgical outcomes. In this paper, we describe the VPAW system and its use in one case study with a clinician to successfully describe an intended surgery outcome. PMID:27046595

  1. Tribbles 3: A potential player in diabetic aortic remodelling.

    PubMed

    Ti, Yun; Xie, Guo-lu; Wang, Zhi-hao; Ding, Wen-yuan; Zhang, Yun; Zhong, Ming; Zhang, Wei

    2016-01-01

    Tribbles 3, whose expression is up-regulated by insulin resistance, was confirmed to be involved in diabetic cardiomyopathy in our previous study. However, it is not known whether Tribbles 3 has a role on conduit arteries such as the aorta in diabetes. Type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin. We evaluated the characteristics of diabetic rats by serial ultrasonography and histopathologic analyses of aortic wall architecture. Diabetic rats displayed increased aortic medial thickness, excessive collagen deposition, diminished elastic fibres and reduced vascular compliance together with Tribbles 3 overexpression. To further investigate the role of Tribbles 3 in aortic remodelling, we used Tribbles 3 gene silencing in vivo 12 weeks after onset of diabetes. Silence of Tribbles 3 significantly reversed pathological aortic remodelling without blood pressure modification. In Tribbles 3-small interfering RNA group, medial thickness and perivascular fibrosis were markedly decreased; moreover, there were prominent reductions in collagen content and collagen/elastin ratio, resulting in an improved arterial compliance. Additionally, with Tribbles 3 silencing, the diminished phosphorylation of PI3K/Akt was restored, and increased activation of MKK4/JNK was decreased. Silence of Tribbles 3 is potent in mediating reversal of aortic remodelling, implicating that Tribbles 3 is proposed to be a potential therapeutic target for vascular complication in diabetes. PMID:26410836

  2. Impact of exercise training on arterial wall thickness in humans

    PubMed Central

    Thijssen, Dick H. J.; Cable, N. Timothy; Green, Daniel J.

    2011-01-01

    Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been consistently reported in asymptomatic subjects and those with cardiovascular risk factors and diseases. In the present review, we summarize evidence pertaining to the impact of exercise and physical activity on arterial wall remodelling of the carotid artery and peripheral arteries in the upper and lower limbs. We consider the potential role of exercise intensity, duration and modality in the context of putative mechanisms involved in wall remodelling, including haemodynamic forces. Finally, we discuss the impact of exercise training in terms of primary prevention of wall thickening in healthy subjects and remodelling of arteries in subjects with existing cardiovascular disease and risk factors. PMID:22150253

  3. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    PubMed

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected. PMID:27377929

  4. Airway Surface Mycosis in Chronic Th2-Associated Airway Disease

    PubMed Central

    Porter, Paul; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L.; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-01-01

    Background Environmental fungi have been linked to T helper type 2 (Th2) cell-related airway inflammation and the Th2-associated chronic airway diseases asthma, chronic rhinosinusitis with nasal polyps (CRSwNP) and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. Objective To determine the frequency of fungus isolation and fungus-specific immunity in Th2-associated and non-associated airway disease patients. Methods Sinus lavage fluid and blood were collected from sinus surgery patients (n=118) including CRS patients with and without nasal polyps and AFRS and non-CRS/non-asthmatic control patients. Asthma status was deteremined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. Peripheral blood mononuclear cells were restimulated with fungal antigens in an enzyme linked immunocell spot (ELISpot) assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared to fungus-specific IgE levels measured from plasma by ELISA. Results Filamentous fungi were significantly more commonly cultured from Th2-associated airway disease subjects (asthma, CRSwNP, or AFRS: n=68) compared to non-Th2-associated control patients (n=31); 74% vs 16% respectively, p<0.001. Both fungus-specific IL-4 ELISpot (n=48) and specific IgE (n=70) data correlated with Th2-associated diseases (sensitivity 73% and specificity 100% vs. 50% and 77%, respectively). Conclusions The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with Th2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Clinical Implications Airway fungi may contribute to the expression of sinusitis with nasal polyps and

  5. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  6. Airway obstruction with cricoid pressure.

    PubMed

    Hartsilver, E L; Vanner, R G

    2000-03-01

    Cricoid pressure may cause airway obstruction. We investigated whether this is related to the force applied and to the technique of application. We recorded expired tidal volumes and inflation pressures during ventilation via a face-mask and oral airway in 52 female patients who were anaesthetised and about to undergo elective surgery. An inspired tidal volume of 900 ml was delivered using a ventilator. Ventilation was assessed under five different conditions: no cricoid pressure, backwards cricoid pressure applied with a force of 30 N, cricoid pressure applied in an upward and backward direction with a force of 30 N, backwards cricoid pressure with a force of 44 N and through a tracheal tube. An expired tidal volume of < 200 ml was taken to indicate airway obstruction. Airway obstruction did not occur without cricoid pressure, but did occur in one patient (2%) with cricoid pressure at 30 N, in 29 patients (56%) with 30 N applied in an upward and backward direction and in 18 (35%) patients with cricoid pressure at 44 N. Cricoid pressure applied with a force of 44 N can cause airway obstruction but if cricoid pressure is applied with a force of 30 N, airway obstruction occurs less frequently (p = 0.0001) unless the force is applied in an upward and backward direction. PMID:10671836

  7. Tachykinin antagonists and the airways.

    PubMed

    Joos, G F; Kips, J C; Peleman, R A; Pauwels, R A

    1995-01-01

    There is now convincing evidence for the presence of substance P (SP) and neurokinin A (NKA) in human airway nerves. Studies on autopsy tissue, on bronchoalveolar lavage fluid and on sputum suggest that SP may be present in increased amounts in the asthmatic airway. Substance P and NKA are potent bronchoconstrictors of human airways, asthmatics being more sensitive than normal persons. The major enzyme responsible for the degradation of the tachykinins, the neutral endopeptidase, is present in the airways and is involved in the breakdown of exogenously administered SP and NKA, both in normal and asthmatic persons. Other, less well documented airway effects of SP and NKA include mucus secretion, vasodilation and plasma extravasation, as well as the chemoattraction and stimulation of various cells presumed to be involved in asthmatic airway inflammation. NK2 receptors and, to a lesser extent, NK1 receptors have been shown to be involved in bronchoconstriction, whereas NK1 receptors were found to be involved in mucus secretion, microvascular leakage and vasodilatation, and in most of the effects on inflammatory cells. The first clinical trial with FK224, a peptide NK1 and NK2 receptor antagonist, and CP99994, a nonpeptide NK1 receptor antagonist, are negative. However, FK224 failed to block the bronchoconstrictor effect of NKA in asthmatics and the dose of CP99994, needed to antagonize tachykinin effects in man, remains to be determined. PMID:7543746

  8. Surfactant and allergic airway inflammation.

    PubMed

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  9. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways. PMID:25068642

  10. Relationship of small airway chymase-positive mast cells and lung function in severe asthma.

    PubMed

    Balzar, Silvana; Chu, Hong Wei; Strand, Matthew; Wenzel, Sally

    2005-03-01

    Distal lung inflammation may be important in asthma pathophysiology. The goal of this study was to measure cellular inflammation in the large airway and four distal lung regions (small airway inner and outer wall, alveolar attachments, and peripheral alveolar tissue) and to correlate the specific inflammatory cells with several lung function parameters. Sections of concurrently obtained endobronchial and transbronchial/surgical biopsy tissue from 20 individuals with severe asthma were immunostained for T-lymphocyte, eosinophil, monocyte/macrophage, neutrophil, and two mast cell markers (tryptase and chymase). Specific cell distributions were determined and correlated with lung function measures. The number of inflammatory cells generally increased toward the periphery, but the percentage of T-lymphocytes, eosinophils, monocytes/macrophages, and neutrophils remained similar or decreased from large to small airways. In contrast, mast cell number, percentage, and the chymase-positive phenotype increased in small airway regions. After the analysis was adjusted for multiple comparisons, only chymase-positive mast cells significantly and positively correlated with lung function. Such a relationship was seen only in the small airway/alveolar attachments lung region (r(s) = 0.61-0.89; p airway outer wall/alveolar attachments region, may be protective for lung function in severe asthma. PMID:15563633

  11. Transbronchial biopsy as a tool to evaluate small airways in asthma.

    PubMed

    Balzar, S; Wenzel, S E; Chu, H W

    2002-08-01

    Small airway (SA) inflammation in asthmatics is poorly understood. Surgical biopsies to obtain peripheral lung tissue are seldom justified in asthmatics. Therefore, the authors hypothesised that transbronchial biopsy could be an alternative approach to evaluate SA in asthma. Transbronchial and endobronchial biopsy tissue samples (TBBX and EBBX) from 12 severe asthmatics were evaluated for airway and parenchymal total inflammatory cell count expressed as the sum of immunostained T-cells (CD3), macrophages (CD68), mast cells (tryptase AAI), neutrophils (neutrophil elastase) and eosinophils (EG2) per mm2. The large airways (LA) were evaluated in EBBXs, while SA, medium airways (MA) and alveolar tissue (AT) were evaluated in TBBXs. When cell counts from SA, MA, LA and AT were compared, SA had a significantly higher cell count than MA or LA (SA 1011 x mm(-2) (539-1,290), MA 346 x mm(-2) (223-415), LA 332 x mm(-2) (189-416), AT 464 x mm(-2) (298-834)). The cell density and pattern of the inflammatory cell distribution in subjects with TBBXs appeared similar to those in three severe asthmatics whose inflammatory cells were analysed in surgical tissue samples. This study suggests that small airway may be identified and analysed in transbronchial biopsy tissue samples and therefore transbronchial biopsy tissue samples could expand the analysis of inflammation and tissue remodelling in asthma. PMID:12212952

  12. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    PubMed

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit

    2016-03-01

    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders. PMID:26222144

  13. Dynamin, a membrane remodelling GTPase

    PubMed Central

    Ferguson, Shawn M.; De Camilli, Pietro

    2012-01-01

    Dynamin, the founding member of a family of dynamin-like GTPases (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live cell imaging, cell free-studies, X-ray crystallography and genetic studies in mice has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged that highlight specific contributions of this GTPase to the physiology of different tissues. PMID:22233676

  14. Fatty Acid Binding Protein 4 Regulates VEGF-Induced Airway Angiogenesis and Inflammation in a Transgenic Mouse Model

    PubMed Central

    Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule

    2014-01-01

    Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391

  15. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  16. Excessive Dynamic Airway Collapse: An Unexpected Contributor to Respiratory Failure in a Surgical Patient.

    PubMed

    Lyaker, Michael R; Davila, Victor R; Papadimos, Thomas J

    2015-01-01

    Central airway collapse plays a significant, underrecognized role in respiratory failure after extubation of critically ill patients. Historically, airway collapse has been attributed to tracheomalacia (TM), softening of the cartilage in the trachea and other large airways. More recently, excessive dynamic airway collapse (EDAC) has been described as a distinct process unrelated to a loss of cartilaginous airway support. EDAC is caused by the posterior wall of the trachea bulging forward and causing airway obstruction during exhalation. This process is exaggerated when intrathoracic pressure is increased and results in a clinical picture of coughing, difficulty clearing secretions, dyspnea, and stridor. The increased use of computerized tomography and fiberoptic bronchoscopy has identified varying degrees of EDAC and TM in both symptomatic and asymptomatic individuals. This has led to renewed consideration of airway collapse and the different processes that contribute to it. Here we describe a 43-year-old morbidly obese patient who failed repeated attempts at extubation after elective hysterectomy. We will discuss the processes of EDAC and TM, describe how this condition contributed to this patient's respiratory failure, and review diagnosis and management options. PMID:26167306

  17. Excessive Dynamic Airway Collapse: An Unexpected Contributor to Respiratory Failure in a Surgical Patient

    PubMed Central

    Lyaker, Michael R.; Davila, Victor R.; Papadimos, Thomas J.

    2015-01-01

    Central airway collapse plays a significant, underrecognized role in respiratory failure after extubation of critically ill patients. Historically, airway collapse has been attributed to tracheomalacia (TM), softening of the cartilage in the trachea and other large airways. More recently, excessive dynamic airway collapse (EDAC) has been described as a distinct process unrelated to a loss of cartilaginous airway support. EDAC is caused by the posterior wall of the trachea bulging forward and causing airway obstruction during exhalation. This process is exaggerated when intrathoracic pressure is increased and results in a clinical picture of coughing, difficulty clearing secretions, dyspnea, and stridor. The increased use of computerized tomography and fiberoptic bronchoscopy has identified varying degrees of EDAC and TM in both symptomatic and asymptomatic individuals. This has led to renewed consideration of airway collapse and the different processes that contribute to it. Here we describe a 43-year-old morbidly obese patient who failed repeated attempts at extubation after elective hysterectomy. We will discuss the processes of EDAC and TM, describe how this condition contributed to this patient's respiratory failure, and review diagnosis and management options. PMID:26167306

  18. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    PubMed

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction. PMID:25583659

  19. Comparing the Laryngeal Mask Airway, Cobra Perilaryngeal Airway and Face Mask in Children Airway Management

    PubMed Central

    Tekin, Beyza; Hatipoğlu, Zehra; Türktan, Mediha; Özcengiz, Dilek

    2016-01-01

    Objective We compared the effects of the laryngeal mask airway (LMA), face mask and Cobra perilaryngeal airway (PLA) in the airway management of spontaneously breathing paediatric patients undergoing elective inguinal surgery. Methods In this study, 90 cases of 1–14-year-old children undergoing elective inguinal surgery were scheduled. The patients were randomly divided into three groups. Anaesthesia was provided with sevoflurane and 50%–50% nitrous oxide and oxygen. After providing an adequate depth of anaesthesia, supraglottic airway devices were inserted in the group I and II patients. The duration and number of insertion, haemodynamic parameters, plateau and peak inspiratory pressure and positive end-expiratory pressure of the patients were recorded preoperatively, after induction and at 5, 10, 15 and 30 min peroperatively. Results There were no statistical differences between the groups in terms of haemodynamic parameters (p>0.05). In group II, instrumentation success was higher and instrumentation time was shorter than group II. The positive end-expiratory pressure and plateau and peak inspiratory pressure values were statistically lower in group II (p<0.05). Conclusion We concluded that for airway safety and to avoid possible complications, LMA and Cobra PLA could be alternatives to face mask and that the Cobra PLA provided lower airway pressure and had a faster and more easy placement than LMA. PMID:27366563

  20. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  1. Fluoroscopic and computed tomographic features of the pharyngeal airway in obstructive sleep apnea.

    PubMed

    Suratt, P M; Dee, P; Atkinson, R L; Armstrong, P; Wilhoit, S C

    1983-04-01

    Because it has been suggested that patients with obstructive sleep apnea have a narrower pharyngeal airway than normal persons, we performed lateral fluoroscopy and computed tomographic (CT) scans of the pharynx in patients with this syndrome. Fluoroscopy in 6 sleeping patients showed that the obstruction always began during inspiration when the soft palate touched the tongue and posterior pharyngeal wall. The CT scans in 9 awake subjects demonstrated that the narrowest section of the airway in patients and in control subjects was the region posterior to the soft palate. The cross-sectional area of this region was significantly narrower in patients than it was in control subjects (p less than 0.001). Because a narrow airway would be more likely to collapse during inspiration than a normal one would (Bernoulli's Principle), we conclude that the narrow airways we observed in awake patients may be an important contributing factor in the pathogenesis of obstructive sleep apnea. PMID:6838055

  2. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  3. Role of Small Airways in Asthma.

    PubMed

    Finkas, Lindsay K; Martin, Richard

    2016-08-01

    Asthma is an inflammatory condition of both the small and large airways. Recently the small airways have gained attention as studies have shown significant inflammation in the small airways in all severities of asthma. This inflammation has correlated with peripheral airway resistance and as a result, noninvasive methods to reliably measure small airways have been pursued. In addition, recent changes in asthma inhalers have led to alterations in drug formulations and the development of extrafine particle inhalers that improve delivery to the distal airways. PMID:27401620

  4. Airway smooth muscle changes in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Belik, Jaques; Davidge, Sandra T; Zhang, Wei; Pan, Jingyi; Greer, John J

    2003-05-01

    In the fetal rat, nitrofen induces congenital diaphragmatic hernia (CDH) and pulmonary vascular remodeling similar to what is observed in the human condition. Airway hyperactivity is common in infants with CDH and attributed to the ventilator-induced airway damage. The purpose of this study was to test the hypothesis that airway smooth muscle mechanical properties are altered in the nitrofen-induced CDH rat model. Lungs from nitrofen-exposed fetuses with hernias (CDH) or intact diaphragm (nitrofen) and untreated fetuses (control) were studied on gestation d 21. The left intrapulmonary artery and bronchi were removed and mounted on a wire myograph, and lung expression, content, and immunolocalization of cyclooxygenases COX-1 and COX-2 were evaluated. Pulmonary artery muscle in the CDH group had significantly (p < 0.01) lower force generation compared with control and nitrofen groups. In contrast, the same generation bronchial smooth muscle of the CDH and nitrofen groups developed higher force compared with control. Whereas no differences were found in endothelium-dependent pulmonary vascular muscle tone, the epithelium-dependent airway muscle relaxation was significantly decreased (p < 0.01) in the CDH and nitrofen groups. The lung mRNA levels of COX-1 and COX-2 were increased in the CDH and nitrofen groups. COX-1 vascular and airway immunostaining, as well as COX-1 and COX-2 lung protein content, were increased in the CDH group. This is the first report of airway smooth muscle abnormalities in the nitrofen-induced fetal rat model of CDH. We speculate that congenital airway muscle changes may be present in the human form of this disease. PMID:12612200

  5. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms.

    PubMed

    Carr, Richard; Koziol-White, Cynthia; Zhang, Jie; Lam, Hong; An, Steven S; Tall, Gregory G; Panettieri, Reynold A; Benovic, Jeffrey L

    2016-01-01

    Gαqβγ heterotrimer (Gq), an important mediator in the pathology of airway disease, plays a central role in bronchoconstriction and airway remodeling, including airway smooth muscle growth and inflammation. Current therapeutic strategies to treat airway disease include the use of muscarinic and leukotriene receptor antagonists; however, these pharmaceuticals demonstrate a limited clinical efficacy as multiple Gq-coupled receptor subtypes contribute to these pathologies. Thus, broadly inhibiting the activation of Gq may be an advantageous therapeutic approach. Here, we investigated the effects of broadly inhibiting Gq activation in vitro and ex vivo using receptor-dependent and receptor-independent strategies. P4pal-10 is a protease activated receptor 4-derived pepducin that exhibits efficacy toward multiple Gq-coupled receptors. Mechanistic studies demonstrated that P4pal-10 selectively inhibits all G protein coupling to several Gq-coupled receptors, including protease activated receptor 1, muscarinic acetylcholine M3, and histamine H1 receptors, while demonstrating no direct effect on Gq. We also evaluated the ability of FR900359, also known as UBO-QIC, to directly inhibit Gq activation. FR900359 inhibited spontaneous Gαq nucleotide exchange, while having little effect on Gαsβγ, Gαiβγ, or Gα12/13βγ heterotrimer activity. Both P4pal-10 and FR900359 inhibited Gq-mediated intracellular signaling and primary human airway smooth muscle growth, whereas only FR900359 effectively interdicted agonist-promoted airway contraction in human precision cut lung slices. These studies serve as a proof of concept that the broad-based inhibition of Gq activation may be a useful therapeutic approach to treat multiple common pathologies of airway disease. PMID:26464325

  6. Experimental evidence of age-related adaptive changes in human acinar airways.

    PubMed

    Quirk, James D; Sukstanskii, Alexander L; Woods, Jason C; Lutey, Barbara A; Conradi, Mark S; Gierada, David S; Yusen, Roger D; Castro, Mario; Yablonskiy, Dmitriy A

    2016-01-15

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized (3)He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized (3)He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  7. Etiology and pathogenesis of airway disease in children and adults from rural communities.

    PubMed Central

    Schwartz, D A

    1999-01-01

    Asthma is the most common chronic disease of childhood and affects nearly 5 million children. The prevalence and severity of childhood asthma have continued to increase over the past decade despite major advances in the recognition and treatment of this condition. A comparison of urban and rural children suggests that the etiology of airway disease is multifactorial and that unique exposures and genetic factors contribute to the development of asthma in both settings. The most important environmental exposure that distinguishes the rural environment and is known to cause asthma is the organic dusts. However, animal-derived proteins, common allergens, and low concentrations of irritants also contribute to the development of airway disease in children and adults living in rural communities. A fundamental unanswered question regarding asthma is why only a minority of children who wheeze at an early age develop persistent airway disease that continues throughout their life. Although genetic factors are important in the development of asthma, recurrent airway inflammation, presumably mediated by environmental exposures, may result in persistent airway hyperresponsiveness and the development of chronic airway disease. Increasing evidence indicates that control of the acute inflammatory response substantially improves airflow and reduces chronic airway remodeling. Reducing exposure to agricultural dusts and treatment with anti-inflammatory medication is indicated in most cases of childhood asthma. In addition, children with asthma from rural (in comparison to urban) America face multiple barriers that adversely affect their health e.g., more poverty, geographic barriers to health care, less health insurance, and poorer access to health care providers. These unique problems must be considered in developing interventions that effectively reduce the morbidity and mortality of asthma in children from rural communities. Images Figure 1 Figure 2 Figure 3 PMID:10346988

  8. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  9. Peripheral Airway Smooth Muscle, but Not the Trachealis, Is Hypercontractile in an Equine Model of Asthma.

    PubMed

    Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie

    2016-05-01

    Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation. PMID:26473389

  10. Reverse Cardiac Remodeling: A Marker of Better Prognosis in Heart Failure

    PubMed Central

    Reis, José Rosino de Araújo Rocha; Cardoso, Juliano Novaes; Cardoso, Cristina Martins dos Reis; Pereira-Barretto, Antonio Carlos

    2015-01-01

    In heart failure syndrome, myocardial dysfunction causes an increase in neurohormonal activity, which is an adaptive and compensatory mechanism in response to the reduction in cardiac output. Neurohormonal activity is initially stimulated in an attempt to maintain compensation; however, when it remains increased, it contributes to the intensification of clinical manifestations and myocardial damage. Cardiac remodeling comprises changes in ventricular volume as well as the thickness and shape of the myocardial wall. With optimized treatment, such remodeling can be reversed, causing gradual improvement in cardiac function and consequently improved prognosis. PMID:26131706

  11. Osteocyte-Driven Bone Remodeling

    PubMed Central

    Bellido, Teresita

    2013-01-01

    Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and it is downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet to be identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone resorbing osteoclasts. Osteocytes are also the source of molecules that regulate generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function, or to altered expression of either molecule in osteocytes, markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling. PMID:24002178

  12. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  13. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  14. Remodeling of conduit arteries in hypertension and flow-overload obeys a minimum energy principle

    PubMed Central

    Zhang, Wei; Kassab, Ghassan S.

    2009-01-01

    Arterial remodeling is an important process in physiology and pathophysiology. Based on an energy minimization method, Murray’s law predicts the optimal inner radius. Application of Darcy’s law in the wall results in an optimal outer radius. The average wall stress is computed by the Laplace’s law. Using these formulas, a large porcine coronary artery in hypertension is studied. The results reveal how wall thickness and average circumferential stress change after increasing blood pressure and volume flow rate. The theoretical predictions are in good qualitative agreement with experimental observations. The advantage and limitation of the current approach are discussed. PMID:18606418

  15. Alveolar wall relations.

    PubMed

    Gil, J

    1982-01-01

    We have presented a highly dynamic view of the alveolar septum and its main enclosed structure, the dense capillary network. The septal or perimicrovascular interstitium is the space between alveolar epithelial sheets after exclusion of the capillary network. It contains cells, fibers, and a viscous matrix. Capillaries form a very complex network, which closely follows the geometry of the terminal airways and participates in functional adaptations of the wall, particularly septal pleating. The level of filling and configuration of different capillaries ranging from collapse to full distension are variable, depending on factors such as transmural balance of forces but also on tissular configuration. Alveolar flooding of any cause will produce an immediate change of capillary configuration and volume. PMID:6953828

  16. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways.

    PubMed

    Redhu, Naresh Singh; Shan, Lianyu; Al-Subait, Duaa; Ashdown, Heather L; Movassagh, Hesam; Lamkhioued, Bouchaib; Gounni, Abdelilah S

    2013-01-01

    Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation. PMID:24499258

  17. Airway Gland Structure and Function.

    PubMed

    Widdicombe, Jonathan H; Wine, Jeffrey J

    2015-10-01

    Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis. PMID:26336032

  18. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  19. Allergen-induced airway responses.

    PubMed

    Gauvreau, Gail M; El-Gammal, Amani I; O'Byrne, Paul M

    2015-09-01

    Environmental allergens are an important cause of asthma and can contribute to loss of asthma control and exacerbations. Allergen inhalation challenge has been a useful clinical model to examine the mechanisms of allergen-induced airway responses and inflammation. Allergen bronchoconstrictor responses are the early response, which reaches a maximum within 30 min and resolves by 1-3 h, and late responses, when bronchoconstriction recurs after 3-4 h and reaches a maximum over 6-12 h. Late responses are followed by an increase in airway hyperresponsiveness. These responses occur when IgE on mast cells is cross-linked by an allergen, causing degranulation and the release of histamine, neutral proteases and chemotactic factors, and the production of newly formed mediators, such as cysteinyl leukotrienes and prostaglandin D2. Allergen-induced airway inflammation consists of an increase in airway eosinophils, basophils and, less consistently, neutrophils. These responses are mediated by the trafficking and activation of myeloid dendritic cells into the airways, probably as a result of the release of epithelial cell-derived thymic stromal lymphopoietin, and the release of pro-inflammatory cytokines from type 2 helper T-cells. Allergen inhalation challenge has also been a widely used model to study potential new therapies for asthma and has an excellent negative predictive value for this purpose. PMID:26206871

  20. The Airway Microbiome at Birth.

    PubMed

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  1. Flat trachea syndrome: a rare condition with symptoms similar to obstructive airway disease.

    PubMed

    Gani, Mohammed Akil D; Rogers, Vanessa J C; Sachak, Khalid H; Marzouk, Joseph F K

    2015-01-01

    Flat trachea syndrome, commonly known as 'tracheobronchomalacia', is a central airway disease characterised by excessive expiratory collapse of the tracheobronchial posterior membrane due to weakness in the airway walls. Patients present with symptoms such as chronic cough, dyspnoea and recurrent respiratory tract infections, which are often attributed to more common conditions such as asthma and chronic obstructive pulmonary disease (COPD). The term 'Flat Trachea Syndrome' was first proposed by Niranjan and Marzouk in 2010 following a retrospective study of 28 patients with the condition who underwent surgery for it. The authors advocated the term due to the primary abnormality being collapse of the posterior membranous wall of the central airways as opposed to softening of the tracheal cartilage (tracheobronchomalacia), which they proposed is a misnomer. We present a rare case of a patient with flat trachea syndrome on a history of COPD who initially presented with recurrent respiratory tract infections. PMID:25721828

  2. Impedance of intrathoracic airway models during low-frequency periodic flow.

    PubMed

    Fredberg, J J; Mead, J

    1979-08-01

    The total pulmonary and lower airway impedances of the normal adult lung were simulated from 0.5 to 10 Hz using a distributed parameter model of the complete tracheobronchial tree. The model includes branching asymmetry; distributed representation of gas compliance, inertance, viscous effects, and inertial distortion of velocity profiles; and nonrigid airway walls. The model predicts closely similar resistance and frequency dependence of resistance but substantially greater reactances than observed by Finucane et al. (J. Appl. Physiol. 38: 517--530, 1975). Increases in resistance with frequency could be explained by changes in the distribution of flow among parallel inhomogeneities (47%), inertial distortion of velocity profiles (35%), changes in the serial distribution of flow due to gas compliance (11%), and airway wall compliance (7%). The disparity between measured and simulated reactance is attirbutable to artifact in the previously reported reactance measurement. PMID:468692

  3. An Analysis of the Residential Remodeling Occupation.

    ERIC Educational Resources Information Center

    Scruggs, Kenneth

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the residential remodeling occupation. The analysis only briefly covers the many areas of residential remodeling. The document opens with a brief introduction followed by a job description. The bulk of the…

  4. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  5. Chromatin Remodelers: From Function to Dysfunction

    PubMed Central

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616