Bullens, Dominique M A
2007-06-01
Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.
Airway and Pulmonary β2-Adrenergic Vasodilatory Function in Current Smokers and Never Smokers.
Hurwitz, Barry E; Mendes, Eliana S; Schmid, Andreas; Parker, Meela; Arana, Johana; Gonzalez, Alex; Wanner, Adam
2017-03-01
Cigarette smoking has been associated with diminished vasodilatory function in the airway circulation. It is possible that cigarette smoking similarly affects the pulmonary circulation before resting pulmonary circulatory abnormalities become manifested. The aim of this study was to compare the acute effect of inhaled albuterol on airway and pulmonary hemodynamic function as an index of β 2 -adrenoceptor-mediated vasodilation in smokers and never smokers. In 30 adults, airway and pulmonary vascular function was assessed before and 15 min after albuterol inhalation (270 μg). From mean systemic arterial pressure, cardiac output, airway blood flow, and mean pulmonary arterial pressure, airway vascular resistance (AVR) and pulmonary vascular resistance (PVR) were derived. Albuterol induced a substantial drop in mean (± SE) PVR (-67.2% ± 5%), with no difference between groups. In contrast, the albuterol-induced decrease in AVR was significantly greater in never smokers than in smokers (-28.6% ± 3% vs -3.1% ± 6%; P < .02). These results are consistent with a dysfunction in a β 2 -adrenergic signaling pathway mediating vasorelaxation in the airway circulation of current smokers. The vasodilatory deficit in the airway circulation but not in the pulmonary circulation could be related to local differences in the impact of cigarette smoke on the vascular endothelium. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T
1999-01-01
Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.
Shen, Yang; Zhang, Zhi-Hai; Hu, Di; Ke, Xia; Gu, Zheng; Zou, Qi-Yuan; Hu, Guo-Hua; Song, Shang-Hua; Kang, Hou-Yong; Hong, Su-Ling
2018-06-29
Particulate matter (PM) is one of the most important environmental issues in China. This study aimed to explore the correlation between PM2.5 and airway inflammation in healthy rats. The PM2.5 group was given an intranasal instillation of PM2.5 suspension on 15 consecutive days, and each received oral saline from day 16 to 90. The BV intervention group was treated as the PM2.5 exposure group, except that BV instead of saline was given daily. A histopathologic examination was performed to evaluate the airway inflammation. The prevalence and function of Th1/Th2/Treg/Th17 cells were detected by flow cytometry and ELISA. The expression of AhR was detected by western blot and real-time PCR. We found that epithelial damage and increased infiltration of inflammatory cell were present in the airways after PM2.5 exposure; there was an immune imbalance of Th cells in the PM2.5 group; the expression of AhR was increased in the airways after PM2.5 exposure. In the PM2.5 + BV group, we demonstrated alleviated immune imbalance and reduced inflammatory cell infiltration in the airways. Our study showed that exposure to PM2.5 induced airway inflammation. The imbalance of Th1/Th2/Treg/Th17 in PM2.5-induced airway inflammation might be associated with activation of the AhR pathway. Oral BV reduces PM2.5-induced airway inflammation and regulates systemic immune responses in rats.
Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.
2009-01-01
Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246
Airway surface mycosis in chronic TH2-associated airway disease.
Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber
2014-08-01
Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
RhoA orchestrates glycolysis for Th2 cell differentiation and allergic airway inflammation
Yang, Jun-Qi; Kalim, Khalid W.; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun
2015-01-01
Background Mitochondrial metabolism is known to be important for T cell activation. However, its involvement in effector T cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T cell activation and effector cell differentiation and function remains largely unknown. Objective We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for Th2 cell differentiation and Th2-mediated allergic airway inflammation. Methods Conditional RhoA-deficient mice were generated by crossing RhoAflox/flox mice with CD2-Cre transgenic mice. Effects of RhoA on Th2 differentiation were evaluated by in vitro Th2-polarized culture conditions, and in vivo in ovalbumin (OVA)-induced allergic airway inflammation. Cytokines were measured by intracellular staining and ELISA. T cell metabolism was measured by Seahorse XF24 Analyzer and flow cytometry. Results Disruption of RhoA inhibited T cell activation and Th2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on Th1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to Th2 cell differentiation and allergic airway inflammation via regulating IL-4 receptor mRNA expression and Th2-specific signaling events. Finally, inhibition of Rho-associated protein kinase (ROCK), an immediate downstream effector of RhoA, blocked Th2 differentiation and allergic airway inflammation. Conclusion RhoA is a key component of the signaling cascades leading to Th2-differentiation and allergic airway inflammation, at least in part, through the control of T cell metabolism and via ROCK pathway. PMID:26100081
Nitric oxide enhances Th9 cell differentiation and airway inflammation.
Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y
2014-08-07
Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.
Fonseca, Wendy; Lucey, Kaitlyn; Jang, Sihyug; Fujimura, Kei E.; Rasky, Andrew; Ting, Hung-An; Petersen, Julia; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis R.; Levine, Albert M.; Bobbit, Kevin R.
2017-01-01
Summary Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii-supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii-supplementation reduced airway Th2 cytokines, dendritic cell function, increased T-regulatory cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone-marrow derived dendritic cells (BMDC) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice, or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice, or with wild-type derived BMDCs pre-treated with plasma from L. johnsonii-supplemented mice, reduced airway pathologic responses to infection in recipient animals. Thus, L. johnsonii-supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function. PMID:28295020
GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie
2008-09-26
Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less
Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J
2004-09-15
Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.
Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J
2004-01-01
Background Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. Methods To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. Results We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. Conclusion We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2. PMID:15377395
Nitric oxide enhances Th9 cell differentiation and airway inflammation
Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y.; Salmond, Robert J.; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y.
2014-01-01
Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4+ T cells. NO de-represses the tumor suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2−/− mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared to wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells. PMID:25099390
Sutton, Troy C; Tayyari, Farnoosh; Khan, M Aatif; Manson, Heather E; Hegele, Richard G
2007-05-01
A family history of allergy has been implicated in children who develop post-bronchiolitis wheezing and asthma. In a guinea pig model of respiratory syncytial virus (RSV) lung infection, we evaluated the role of host Th1 background (either genetic or induced) on the development of a persistent infection, nonspecific airway hyperresponsiveness (AHR) and airway inflammation. Allergy resistant/T helper 1 (Th1)-skewed strain 2 guinea pigs (STR2) and cytosine phosphate guanine oligodeoxynucleotides (CpG-ODN) (Th1 stimuli) pretreated Cam Hartley guinea pigs (CH) were inoculated with RSV and compared with virus-inoculated allergy-susceptible/Th2-skewed CHs and to sham-inoculated STR2 and CH, 60 d post-inoculation. We measured titers of intrapulmonary RSV, lung interferon (IFN)-gamma and interleukin (IL)-5 mRNA expression, AHR and airway T cells and eosinophils. All virus-inoculated groups of animals showed evidence of persistent RSV lung infection; however, Th2-skewed guinea pigs had virus-associated AHR and significantly greater levels of airway T cells and eosinophils. In conclusion, RSV can establish persistent infection of the guinea pig lung regardless of host Th1/Th2 background; however; a host Th1 background limits the extent of virus-associated AHR and airway inflammation. Heterogeneity in virus-host interactions may be relevant to understanding why some children hospitalized for RSV bronchiolitis go on to develop recurrent wheezing/asthma symptoms.
Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N
2012-12-01
Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.
PKCλ/ι regulates Th17 differentiation and house dust mite-induced allergic airway inflammation.
Yang, Yingying; Dong, Panpan; Zhao, Jing; Zhou, Wei; Zhou, Yonghua; Xu, Yongliang; Mei, Congjin; Guo, Fukun; Zheng, Yi; Yang, Jun-Qi
2018-03-01
Asthma is a chronic airway inflammation in which Th2 and Th17 cells play critical roles in its pathogenesis. We have reported that atypical protein kinase (PKC) λ/ι is a new regulator for Th2 differentiation and function. However, the role of PKCλ/ι for Th17 cells remains elusive. In this study, we explored the effect of PKCλ/ι on Th17 cells in the context of ex vivo cell culture systems and an in vivo murine model of allergic airway inflammation with the use of activated T cell-specific conditional PKCλ/ι-deficient mice. Our findings indicate that PKCλ/ι regulates Th17 cells. The secretion of Th17 effector cytokines, including IL-17, IL-21 and IL-22, were inhibited from PKCλ/ι-deficient T cells under non-skewing or Th17-skewing culture conditions. Moreover, the impaired Th17 differentiation and function by the PKCλ/ι-deficiency was associated with the downregulation of Stat3 and Rorγt, key Th17 transcription factors. We developed a model of Th17 and neutrophil-involved allergic airway inflammation by intratracheal inoculation of house dust mites. PKCλ/ι-deficiency significantly inhibited airway inflammations. The infiltrating cells in the lungs and bronchoalveolar lavage fluids were significantly reduced in conditional PKCλ/ι-deficient mice. Th17 effector cytokines were reduced in the bronchoalveolar lavage fluids and lungs at protein and mRNA levels. Thus, PKCλ/ι emerges as a critical regulator of Th17 differentiation and allergic airway hyperresponsiveness. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae
2013-01-01
HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.
The active contribution of Toll-like receptors to allergic airway inflammation.
Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming
2011-10-01
Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. Copyright © 2011 Elsevier B.V. All rights reserved.
Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F
2017-01-15
Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics.
Loughlin, Ceila E; Esther, Charles R; Lazarowski, Eduardo R; Alexis, Neil E; Peden, David B
2010-01-01
Airway dehydration is a potential trigger of bronchoconstriction in exercise-induced asthma; however, its role in stable asthma has not been explored. Using sputum percent solids, as an indicator of airway hydration, we sought relationships between airway hydration and other known markers of neutrophilic (TH1) and allergic (TH2) inflammation in stable asthma. Thirty-seven atopic subjects with stable asthma and 15 healthy controls underwent sputum induction. Sputum was analyzed for percent solids, cell counts, cellular and biochemical markers of inflammation and purines. Sputum percent solids was significantly elevated in stable asthmatics vs. controls and positively correlated with markers of neutrophilic/TH1-type inflammation (neutrophils, IL-8 and AMP). Sputum percent solids were not correlated with markers of allergic/TH2-type inflammation. These data suggest a direct relationship between neutrophil inflammation and airway hydration in stable asthmatics. Copyright 2009 Elsevier Ltd. All rights reserved.
Counterbalancing of TH2-driven allergic airway inflammation by IL-12 does not require IL-10.
Tournoy, K G; Kips, J C; Pauwels, R A
2001-03-01
Asthma is characterized by allergen-induced airway inflammation orchestrated by TH2 cells. The TH1-promoting cytokine IL-12 is capable of inhibiting the TH2-driven allergen-induced airway changes in mice and is therefore regarded as an interesting strategy for treating asthma. The antiallergic effects of IL-12 are only partially dependent of IFN-gamma. Because IL-12 is a potent inducer of the anti-inflammatory cytokine IL-10, the aim of the present study was to investigate in vivo whether the antiallergic effects of IL-12 are mediated through IL-10. C57BL/6J-IL-10 knock-out (IL-10(-/-)) mice were sensitized intraperitoneally to ovalbumin (OVA) and subsequently exposed from day 14 to day 21 to aerosolized OVA (1%). IL-12 was administered intraperitoneally during sensitization, subsequent OVA exposure, or both. IL-12 inhibited the OVA-induced airway eosinophilia, despite the absence of IL-10. Moreover, a shift from a TH2 inflammatory pattern toward a TH1 reaction was observed, with concomitant pronounced mononuclear peribronchial inflammation after IL-12 treatment. Allergen-specific IgE synthesis was completely suppressed only when IL-12 was administered along with the allergen sensitization. Furthermore, treating the animals with IL-12 at the time of the secondary allergen challenge resulted not only in a significant suppression of the airway responsiveness but also in an important IFN-gamma-associated toxicity. These results indicate that IL-12 is able to inhibit allergen-induced airway changes, even in the absence of IL-10. In addition, our results raise concerns regarding the redirection of TH2 inflammation by TH1-inducing therapies because treatment with IL-12 resulted not only in a disappearance of the TH2 inflammation but also in a TH1-driven inflammatory pulmonary pathology.
Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.
2014-01-01
Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337
Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae
2013-01-01
HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4+ T cells displayed increased Th1 (IFN-γ+ cell) as well as decreased Th2 (IL-4+ cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance. PMID:23844220
Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation
Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A.; Korfhagen, Thomas R.; Whitsett, Jeffrey A.
2015-01-01
Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef–/– mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971
2011-01-01
Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses. Conclusions Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses. PMID:21936897
Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina
2013-01-01
Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192
Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma.
Koh, Byung Hee; Hwang, Soo Seok; Kim, Joo Young; Lee, Wonyong; Kang, Min-Jong; Lee, Chun Geun; Park, Jung-Won; Flavell, Richard A; Lee, Gap Ryol
2010-06-08
Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.
Zhang, Fang; Su, Xin; Huang, Gang; Xin, Xiao-Feng; Cao, E-Hong; Shi, Yi; Song, Yong
2017-01-01
Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4 + T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.
Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.
2009-01-01
SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641
Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min
2017-01-01
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364
Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min
2017-08-04
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.
Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.
Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank
2016-06-01
TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue
2011-01-01
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200
Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training
ERIC Educational Resources Information Center
Berry, David C.; Seitz, S. Robert
2011-01-01
The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…
Barboza, Renato; Câmara, Niels Olsen Saraiva; Gomes, Eliane; Sá-Nunes, Anderson; Florsheim, Esther; Mirotti, Luciana; Labrada, Alexis; Alcântara-Neves, Neuza Maria; Russo, Momtchilo
2013-01-01
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation. PMID:23805294
Serum periostin: a novel biomarker for asthma management.
Matsumoto, Hisako
2014-06-01
Chronic airway inflammation and remodeling are fundamental features of asthma. Even with adequate inhaled corticosteroid (ICS) treatment, there are still patients who exhibit Th2/eosinophilic inflammation and develop airflow limitation, a functional consequence of airway remodeling. There are few biomarkers that are applicable in the clinical setting that reflect refractory Th2/eosinophilic inflammation and remodeling of the asthmatic airways. Therefore, establishing such biomarkers is essential for managing patients who suffer from these conditions. This review addresses the importance of serum periostin measurements by describing observations made in a KiHAC multicenter cohort with periostin used as a marker of pulmonary function decline and refractory Th2/eosinophilic inflammation in patients with asthma receiving long-term ICS treatment. Furthermore, serum periostin could be a companion diagnostic for targeted therapy against refractory Th2/eosinophilic inflammation. Finally, the distinct characteristics of serum periostin as compared to conventional biomarkers are addressed.
Interleukin-21-Producing CD4(+) T Cells Promote Type 2 Immunity to House Dust Mites.
Coquet, Jonathan M; Schuijs, Martijn J; Smyth, Mark J; Deswarte, Kim; Beyaert, Rudi; Braun, Harald; Boon, Louis; Karlsson Hedestam, Gunilla B; Nutt, Steven L; Hammad, Hamida; Lambrecht, Bart N
2015-08-18
Asthma is a T helper 2 (Th2)-cell-mediated disease; however, recent findings implicate Th17 and innate lymphoid cells also in regulating airway inflammation. Herein, we have demonstrated profound interleukin-21 (IL-21) production after house dust mite (HDM)-driven asthma by using T cell receptor (TCR) transgenic mice reactive to Dermatophagoides pteronyssinus 1 and an IL-21GFP reporter mouse. IL-21-producing cells in the mediastinal lymph node (mLN) bore characteristics of T follicular helper (Tfh) cells, whereas IL-21(+) cells in the lung did not express CXCR5 (a chemokine receptor expressed by Tfh cells) and were distinct from effector Th2 or Th17 cells. Il21r(-/-) mice developed reduced type 2 responses and the IL-21 receptor (IL-21R) enhanced Th2 cell function in a cell-intrinsic manner. Finally, administration of recombinant IL-21 and IL-25 synergistically promoted airway eosinophilia primarily via effects on CD4(+) lymphocytes. This highlights an important Th2-cell-amplifying function of IL-21-producing CD4(+) T cells in allergic airway inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Qing, Miao; Yongge, Liu; Wei, Xu; Yan, Wang; Zhen, Li; Yixin, Ren; Hui, Guan; Li, Xiang
2018-03-31
To investigate whether there were differences in Th17 cells mediated immunological responses among asthmatics with or without allergic rhinitis. A case-control comparison was conducted in a cohort of 67 children with asthma (AS), 50 children with allergic rhinitis (AR), 52 children with both AS and AR (ASR), 25 infectious rhinitis (IR), and 55 healthy controls (HC). The percentages of circulating Th17 cells were determined by flow cytometry. The Th2- and Th17-related cytokines in plasma and culture supernatants were measured by enzyme-linked immunosorbent assay. The effect of proinflammation cytokine IL-17E on Th2 cytokines production from human T helper (Th) lymphocytes was analyzed. (1) A inter-group comparison revealed that Th17 cells levels were highest in ASR group [(0.89% ± 0.27) %], following by AS group [(0.82 ± 0.29) %] and AR group[(0.78 ± 0.17) %] (P< 0.05). (2) After in-vitro stimulation with house dust mite (HDM) antigen, the levels of IL-4 and IL-17E in culture supernatants of PBMCs from allergic children (AS group, AR group and ASR group) were significantly enhanced. (3) The release of Th2 cytokines from IL-17E treated Th cells of allergic children (AS group, AR group and ASR group) were significantly induced, no similar result was observed in IR group and HC group. Our findings preliminarily revealed that Th17 cell and its related cytokines might be involved in pathogenesis of airway inflammation diseases, and also presenting varying immunological characteristics among asthmatic children with or without allergic rhinitis.
Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells
Longphre, M.; Li, D.; Gallup, M.; Drori, E.; Ordoñez, C.L.; Redman, T.; Wenzel, S.; Bice, D. E.; Fahy, J.V.; Basbaum, C.
1999-01-01
A hallmark of asthma is mucin overproduction, a condition that contributes to airway obstruction. The events responsible for mucin overproduction are not known but are thought to be associated with mediators of chronic inflammation. Others have shown that T-helper 2 (Th2) lymphocytes are required for mucous cell metaplasia, which then leads to mucin overproduction in animal models of allergy. We hypothesized that Th2 cell mediators are present in asthmatic airway fluid and directly stimulate mucin synthesis in airway epithelial cells. Results in cultured airway epithelial cells showed that samples of asthmatic fluid stimulated mucin (MUC5AC) synthesis severalfold more potently than non-asthmatic fluid. Consistent with this, lavage fluid from the airways of allergen-challenged dogs stimulated mucin synthesis severalfold more potently than that from non–allergen-challenged dogs. Fractionation of dog samples revealed 2 active fractions at <10 kDa and 30–100 kDa. Th2 cytokines in these molecular weight ranges are IL-9 (36 kDa), IL-5 (56 kDa), and IL-13 (10 kDa). Antibody blockade of ligand-receptor interaction for IL-9 (but not IL-5 or IL-13) inhibited mucin stimulation by dog airway fluid. Furthermore, recombinant IL-9, but not IL-5 or IL-13, stimulated mucin synthesis. These results indicate that IL-9 may account for as much as 50–60% of the mucin-stimulating activity of lung fluids in allergic airway disease. J. Clin. Invest. 104:1375–1382 (1999). PMID:10562299
Taher, Yousef A; Piavaux, Benoit J A; Gras, Reneé; van Esch, Betty C A M; Hofman, Gerard A; Bloksma, Nanne; Henricks, Paul A J; van Oosterhout, Antoon J M
2008-04-01
The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. We examined (1) whether IDO activity is required during tolerance induction by allergen immunotherapy or for the subsequent suppressive effects on asthma manifestations and (2) whether tryptophan depletion or generation of its downstream metabolites is involved. Ovalbumin (OVA)-sensitized and OVA-challenged BALB/c mice that display increased airway responsiveness to methacholine, serum OVA-specific IgE levels, bronchoalveolar eosinophilia, and TH2 cytokine levels were used as a model of allergic asthma. Sensitized mice received subcutaneous optimal (1 mg) or suboptimal (100 microg) OVA immunotherapy. Inhibition of IDO by 1-methyl-DL-tryptophan during immunotherapy, but not during inhalation challenge, partially reversed the suppressive effects of immunotherapy on airway eosinophilia and TH2 cytokine levels, whereas airway hyperresponsiveness and serum OVA-specific IgE levels remained suppressed. Administration of tryptophan during immunotherapy failed to abrogate its beneficial effects toward allergic airway inflammation. Interestingly, administration of tryptophan or its metabolites, kynurenine, 3-hydroxykynurenine, and xanthurenic acid, but not 3-hydroxyanthranilinic acid, quinolinic acid, and kynurenic acid, during suboptimal immunotherapy potentiated the reduction of eosinophilia. These effects coincided with reduced TH2 cytokine levels in bronchoalveolar lavage fluid, but no effects on IgE levels were detected. During immunotherapy, the tryptophan metabolites kynurenine, 3-hydroxykynurenine, and xanthurenic acid generated through IDO contribute to tolerance induction regarding TH2-dependent allergic airway inflammation.
The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation
Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.
2006-01-01
The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093
Yun, Xiang; Shang, Yunxiao; Li, Miao
2015-01-01
Bronchial asthma is a chronic airway inflammatory disease that involves T lymphocytes. In order to explore the effect of Lactobacillus salivarius on Th1/Th2 cytokines and the number of spleen CD4(+) CD25(+) Foxp3(+) Treg in asthma Balb/c mouse, we constructed acute asthma model with ovalbumin to observe the mouse behavior change in Balb/c mice. The expression of GATA-3 mRNA and T-bet mRNA was measured by real-time PCR. The proportion of CD4(+) CD25(+) Foxp3(+) Treg/CD4(+) was determined by flow cytometry. The results demonstrated that oral gavage with Lactobacillus salivarius before sensitization could alleviate the clinical symptoms, airway hyper-reactivity and airway inflammation in asthma mouse to some extent; Lactobacillus salivarius may improve the imbalance of Th1/Th2 in asthma mouse through increasing the expression of T-bet mRNA at the transcriptional level and inhibiting the expression of GATA-3 mRNA simultaneously. CD4(+) CD25(+) Foxp3(+) Treg cells may be involved in the pathogenesis of bronchial asthma, and may be the upstream regulatory mechanism of the improvement of Th1/Th2 imbalance by Lactobacillus salivarius.
Antiasthmatic Effects of Herbal Complex MA and Its Fermented Product MA128.
Kim, Dong-Seon; Kim, Seung-Hyung; Kim, Bok-Kyu; Yang, Min Cheol; Ma, Jin Yeul
2012-01-01
This study was conducted to determine if oral administration of the novel herbal medicine, MA, and its Lactobacillus acidophilus fermented product, MA128, have therapeutic properties for the treatment of asthma. Asthma was induced in BALB/c mice by systemic sensitization to ovalbumin (OVA) followed by intratracheal, intraperitoneal, and aerosol allergen challenges. MA and MA128 were orally administered 6 times a week for 4 weeks. At 1 day after the last ovalbumin exposure, airway hyperresponsiveness was assessed and samples of bronchoalveolar lavage fluid, lung cells, and serum were collected for further analysis. We investigated the effect of MA and MA128 on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, OVA-specific IgE production, and Th1/Th2 cytokine production in this mouse model of asthma. In BALB/c mice, we found that MA and MA128 treatment suppressed eosinophil infiltration into airways and blood, allergic airway inflammation and AHR by suppressing the production of IL-5, IL-13, IL-17, Eotaxin, and OVA-specific IgE, by upregulating the production of OVA-specific Th1 cytokine (IFN-γ), and by downregulating OVA-specific Th2 cytokine (IL-4) in the culture supernatant of spleen cells. The effectiveness of MA was increased by fermentation with Lactobacillus acidophilus.
Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun
2015-01-01
Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929
Allard, Jenna B; Poynter, Matthew E; Marr, Kieren A; Cohn, Lauren; Rincon, Mercedes; Whittaker, Laurie A
2006-10-15
Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.
A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease.
Shibata, Takehiko; Ato, Manabu
2017-11-01
Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.
Kobayashi, Minoru; Ashino, Shigeru; Shiohama, Yasuo; Wakita, Daiko; Kitamura, Hidemitsu; Nishimura, Takashi
2012-02-01
The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation.
Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y; Wang, Hongshan; Siebenlist, Ulrich
2009-02-01
IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.
Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F
2006-01-01
Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.
Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.
Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio
2007-09-01
Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.
Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.
Ou-Yang, Hai-Feng; Hu, Xing-Bin; Ti, Xin-Yu; Shi, Jie-Ran; Li, Shu-Jun; Qi, Hao-Wen; Wu, Chang-Gui
2009-09-01
Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette-Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4(+) CD25(+) Foxp3(+) T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4(+) CD25(+) T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-beta (TGF-beta)-producing CD4(+) CD25(+) Foxp3(+) regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma.
Liu, L-L; Li, F-H; Zhang, Y; Zhang, X-F; Yang, J
2017-07-20
Asthma is a chronic allergic disease characterized by airway inflammation, airway hyper-responsiveness (AHR), and mucus hypersecretion. T-lymphocytes are involved in the pathogenesis of asthma, mediating airway inflammatory reactions by secreting cytokines. The phosphoinositide 3-kinase (PI3K) and Notch signaling pathways are associated with T cell signaling, proliferation, and differentiation, and are important in the progression of asthma. Thus, compounds that can modulate T cell proliferation and function may be of clinical value. Here, we assessed the effects of tangeretin, a plant-derived flavonoid, in experimental asthma. BALB/c mice at postnatal day (P) 12 were challenged with ovalbumin (OVA). Separate groups of mice (n=18/group) were administered tangeretin at 25 or 50 mg/kg body weight by oral gavage. Dexamethasone was used as a positive control. Tangeretin treatment reduced inflammatory cell infiltration in bronchoalveolar lavage fluid (BALF) and also restored the normal histology of lung tissues. OVA-specific IgE levels in serum and BALF were reduced. AHR, as determined by airway resistance and lung compliance, was normalized. Flow cytometry analyses revealed a reduced Th17 cell population. Tangeretin reduced the levels of Th2 and Th17 cytokines and raised IFN-γ levels. PI3K signaling was inhibited. The expressions of the Notch 1 receptor and its ligands Jagged 1 and 2 were downregulated by tangeretin. Our findings support the possible use of tangeretin for treating allergic asthma.
Whitehead, Gregory S; Thomas, Seddon Y; Cook, Donald N
2014-01-01
Humans with asthma display considerable heterogeneity with regard to T helper (Th) 2-associated eosinophilic and Th17-associated neutrophilic inflammation, but the impact of the environment on these different forms of asthma is poorly understood. We studied the nature and longevity of asthma-like responses triggered by inhalation of allergen together with environmentally relevant doses of inhaled lipopolysaccharide (LPS). Ovalbumin (OVA) was instilled into the airways of mice together with a wide range of LPS doses. Following a single OVA challenge, or multiple challenges, animals were assessed for pulmonary cytokine production, airway inflammation, and airway hyperresponsiveness (AHR). Mice instilled with OVA together with very low doses (≤10⁻³ μg) of LPS displayed modest amounts of Th2 cytokines, with associated airway eosinophilia and AHR after a single challenge, and these responses were sustained after multiple OVA challenges. When the higher but still environmentally relevant dose of 10⁻¹ μg LPS was used, mice initially displayed similar Th2 responses, as well as Th17-associated neutrophilia. After multiple OVA challenges, however, the 10⁻¹ μg LPS animals also accumulated large numbers of allergen-specific T regulatory (Treg) cells with high levels of inducible co-stimulatory molecule (ICOS). As a result, asthma-like features in these mice were shorter-lived than in mice sensitized using lower doses of LPS. The nature and longevity of Th2, Th17, and Treg immune responses to inhaled allergen are dependent on the quantity of LPS inhaled at the time of allergic sensitization. These findings might account in part for the heterogeneity of inflammatory infiltrates seen in lungs of asthmatics.
Th9 and other IL-9-producing cells in allergic asthma.
Koch, Sonja; Sopel, Nina; Finotto, Susetta
2017-01-01
Allergic asthma is a worldwide increasing chronic disease of the airways which affects more than 300 million people. It is associated with increased IgE, mast cell activation, airway hyperresponsiveness (AHR), mucus overproduction and remodeling of the airways. Previously, this pathological trait has been associated with T helper type 2 (Th2) cells. Recently, different CD4 + T cell subsets (Th17, Th9) as well as cells of innate immunity, like mast cells and innate lymphoid cells type 2 (ILC2s), which are all capable of producing the rediscovered cytokine IL-9, are known to contribute to this disease. Regarding Th9 cells, it is known that naïve T cells develop into IL-9-producing cells in the presence of interleukin-4 (IL-4) and transforming growth factor beta (TGFβ). Downstream of IL-4, several transcription factors like signal transducer and activator of transcription 6 (STAT6), interferon regulatory factor 4 (IRF4), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BATF) and nuclear factor of activated T cells (NFAT) are activated. Additionally, the transcription factor PU.1, which is downstream of TGFβ signaling, also seems to be crucial in the development of Th9 cells. IL-9 is a pleiotropic cytokine that influences various distinct functions of different target cells such as T cells, B cells, mast cells and airway epithelial cells by activating STAT1, STAT3 and STAT5. Because of its pleiotropic functions, IL-9 has been demonstrated to be involved in several diseases, such as cancer, autoimmunity and other pathogen-mediated immune-regulated diseases. In this review, we focus on the role of Th9 and IL-9-producing cells in allergic asthma.
PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice.
Ogino, Keiki; Nagaoka, Kenjiro; Okuda, Tomoaki; Oka, Akira; Kubo, Masayuki; Eguchi, Eri; Fujikura, Yoshihisa
2017-03-01
The allergic inflammatory effects of particulate matter (PM) 2.5, collected with the cyclone system in Yokohama city in Japan, were investigated in NC/Nga mice, which are hypersensitive to mite allergens. PM2.5 with alum was injected intraperitoneally for sensitization. Five days later, 200 μg of PM2.5 in 25 μL of saline was administered to mice intranasally five times for further sensitization. On the 11th day, PM2.5 was administered as a challenge. On the 12th day, mice were examined for airway hyperresponsiveness (AHR), the bronchoalveolar lavage fluid (BALF) cell count, mRNA expression of Th 1 , Th 2 cytokines, and metallothioneins in lung tissue, and histopathology. PM2.5 increased AHR, total cell numbers including eosinophils in BALF, and mRNA levels of IL-5, IL-22, eotaxin, eotaxin 2, and metallothionein 3. In PM2.5-induced lungs, inflammation was observed around the bronchus. These results demonstrate that PM2.5 alone, collected with the cyclone system in Yokohama city in Japan, induces asthma-like airway inflammation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1047-1054, 2017. © 2016 Wiley Periodicals, Inc.
NBR1 is a new PB1 signalling adapter in Th2 differentiation and allergic airway inflammation in vivo
Yang, Jun-Qi; Liu, Hongzhu; Diaz-Meco, Maria T; Moscat, Jorge
2010-01-01
Allergic airway inflammation is a disease in which T helper 2 (Th2) cells have a critical function. The molecular mechanisms controlling Th2 differentiation and function are of paramount importance in biology and immunology. Recently, a network of PB1-containing adapters and kinases has been shown to be essential in this process owing to its function in regulating cell polarity and the activation of critical transcription factors. Here, we show in vivo data showing that T-cell-specific NBR1-deficient mice show impaired lung inflammation and have defective Th2 differentiation ex vivo with alterations in T-cell polarity and the selective inhibition of Gata3 and nuclear factor of activated T c1 activation. These results establish NBR1 as a novel PB1 adapter in Th2 differentiation and asthma. PMID:20808283
Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.
Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei
2012-01-01
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.
Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation
Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei
2012-01-01
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4+FoxP3+) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275
The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation1
Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y.; Wang, Hongshan; Siebenlist, Ulrich
2008-01-01
IL-17 is the signature cytokine of recently discovered T helper type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (a.k.a. Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses these two cytokines elicit. We identify CD11c+ macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo. PMID:19155511
Tilp, C; Bucher, H; Haas, H; Duechs, M J; Wex, E; Erb, K J
2016-07-01
Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2 responses through nicotine and other products released by burning tobacco. © 2015 John Wiley & Sons Ltd.
Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun
2013-01-01
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback. PMID:23306703
Th-2 signature in chronic airway diseases: towards the extinction of asthma-COPD overlap syndrome?
Cosío, Borja G; Pérez de Llano, Luis; Lopez Viña, Antolin; Torrego, Alfons; Lopez-Campos, Jose Luis; Soriano, Joan B; Martinez Moragon, Eva; Izquierdo, Jose Luis; Bobolea, Irina; Callejas, Javier; Plaza, Vicente; Miravitlles, Marc; Soler-Catalunya, Juan Jose
2017-05-01
We aimed to describe the differences and similarities between patients with chronic obstructive airway disease classified on the basis of classical diagnostic labels (asthma, chronic obstructive pulmonary disease (COPD), or asthma-COPD overlap (ACOS)) or according to the underlying inflammatory pattern (Th-2 signature, either Th-2-high or Th-2-low).We performed a cross-sectional study of patients aged ≥40 years and with a post-bronchodilator forced expiratory volume in 1 s to forced vital capacity ratio ≤0.7 with a previous diagnosis of asthma (non-smoking asthmatics (NSA)), COPD or ACOS, the latter including both smoking asthmatics (SA) and patients with eosinophilic COPD (COPD-e). Clinical, functional and inflammatory parameters (blood eosinophil count, IgE and exhaled nitric oxide fraction ( F eNO )) were compared between groups. Th-2 signature was defined by a blood eosinophil count ≥300 cells·μL -1 and/or a sputum eosinophil count ≥3%.Overall, 292 patients were included in the study: 89 with COPD, 94 NSA and 109 with ACOS (44 SA and 65 with COPD-e). No differences in symptoms or exacerbation rate were found between the three groups. With regards the underlying inflammatory pattern, 94 patients (32.2%) were characterised as Th-2-high and 198 (67.8%) as Th-2-low. The Th-2 signature was found in 49% of NSA, 3.3% of patients with COPD, 30% of SA and 49.3% of patients with COPD-e. This classification yielded significant differences in demographic, functional and inflammatory characteristics.We conclude that a classification based upon the inflammatory profile, irrespective of the taxonomy, provides a more clear distinction of patients with chronic obstructive airway disease. Copyright ©ERS 2017.
Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen
2016-08-01
Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.
Interferon response factor 3 is essential for house dust mite-induced airway allergy.
Marichal, Thomas; Bedoret, Denis; Mesnil, Claire; Pichavant, Muriel; Goriely, Stanislas; Trottein, François; Cataldo, Didier; Goldman, Michel; Lekeux, Pierre; Bureau, Fabrice; Desmet, Christophe J
2010-10-01
Pattern-recognition receptors (PRRs) are critically involved in the pathophysiology of airway allergy, yet most of the signaling pathways downstream of PRRs implicated in allergic airway sensitization remain unknown. We sought to study the effects of genetic depletion of interferon response factor (IRF) 3 and IRF7, important transcription factors downstream of various PRRs, in a murine model of house dust mite (HDM)-induced allergic asthma. We compared HDM-induced allergic immune responses in IRF3-deficient (IRF3(-/-)), IRF7(-/-), and wild-type mice. Parameters of airway allergy caused by HDM exposure were strongly attenuated in IRF3(-/-), but not IRF7(-/-), mice compared with those in wild-type mice. Indeed, in HDM-exposed IRF3(-/-) mice HDM-specific T(H)2 cell responses did not develop. This correlated with impaired maturation and migration of IRF3(-/-) lung dendritic cells (DCs) on HDM treatment. Furthermore, adoptive transfer of HDM-loaded DCs indicated that IRF3(-/-) DCs had an intrinsic defect rendering them unable to migrate and to prime HDM-specific T(H)2 responses. Intriguingly, we also show that DC function and allergic airway sensitization in response to HDM were independent of signaling by type I interferons, the main target genes of IRF3. Through its role in DC function, IRF3, mainly known as a central activator of antiviral immunity, is essential for the development of T(H)2-type responses to airway allergens. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Whitehead, Gregory S.; Thomas, Seddon Y.
2013-01-01
Background: Humans with asthma display considerable heterogeneity with regard to T helper (Th) 2–associated eosinophilic and Th17-associated neutrophilic inflammation, but the impact of the environment on these different forms of asthma is poorly understood. Objective: We studied the nature and longevity of asthma-like responses triggered by inhalation of allergen together with environmentally relevant doses of inhaled lipopolysaccharide (LPS). Methods: Ovalbumin (OVA) was instilled into the airways of mice together with a wide range of LPS doses. Following a single OVA challenge, or multiple challenges, animals were assessed for pulmonary cytokine production, airway inflammation, and airway hyperresponsiveness (AHR). Results: Mice instilled with OVA together with very low doses (≤ 10–3 μg) of LPS displayed modest amounts of Th2 cytokines, with associated airway eosinophilia and AHR after a single challenge, and these responses were sustained after multiple OVA challenges. When the higher but still environmentally relevant dose of 10–1 μg LPS was used, mice initially displayed similar Th2 responses, as well as Th17-associated neutrophilia. After multiple OVA challenges, however, the 10–1 μg LPS animals also accumulated large numbers of allergen-specific T regulatory (Treg) cells with high levels of inducible co-stimulatory molecule (ICOS). As a result, asthma-like features in these mice were shorter-lived than in mice sensitized using lower doses of LPS. Conclusions: The nature and longevity of Th2, Th17, and Treg immune responses to inhaled allergen are dependent on the quantity of LPS inhaled at the time of allergic sensitization. These findings might account in part for the heterogeneity of inflammatory infiltrates seen in lungs of asthmatics. Citation: Whitehead GS, Thomas SY, Cook DN. 2014. Modulation of distinct asthmatic phenotypes in mice by dose-dependent inhalation of microbial products. Environ Health Perspect 122:34–42; http://dx.doi.org/10.1289/ehp.1307280 PMID:24168764
Kozy, Heather M.; Lum, Jeremy A.; Sweetwood, Rosemary; Chu, Mabel; Cunningham, Cameron R.; Salamon, Hugh; Lloyd, Clare M.; Coffman, Robert L.; Hessel, Edith M.
2015-01-01
Background CpG-containing oligodeoxynucleotides (CpG-ODN) are potent inhibitors of Th2-mediated allergic airway disease in sensitized mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. Objective To optimize the treatment regimen and determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. Methods A limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were given to ragweed allergen-sensitized mice chronically exposed to allergen during and after the 1018 ISS treatment regimen. Treatment effects were evaluated by measuring effect on lung Th2 cytokines and eosinophilia as well as lung dendritic cell function and T cell responses. Results Twelve intranasal 1018 ISS treatments induced significant suppression of BAL eosinophilia and IL-4, IL-5, and IL-13 levels and suppression was maintained through 13 weekly ragweed exposures administered after treatment cessation. At least 5 treatments were required for lasting Th2 suppression. CpG-ODN induced moderate Th1 responses but Th2 suppression did not require IFN-γ. Th2 suppression was associated with induction of a regulatory T cell response. Conclusion A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen. PMID:24464743
Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N J; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A; Galli, Stephen J; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu
2015-07-21
House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. Copyright © 2015 Elsevier Inc. All rights reserved.
TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.
Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young
2018-05-01
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.
Wang, Henry E.; Prince, David; Stephens, Shannon W.; Herren, Heather; Daya, Mohamud; Richmond, Neal; Carlson, Jestin; Warden, Craig; Colella, M. Riccardo; Brienza, Ashley; Aufderheide, Tom P.; Idris, Ahamed; Schmicker, Robert; May, Susanne; Nichol, Graham
2016-01-01
Airway management is an important component of resuscitation from out-of-hospital cardiac arrest (OHCA). The optimal approach to advanced airway management is unknown. The Pragmatic Airway Resuscitation Trial (PART) will compare the effectiveness of endotracheal intubation (ETI) and Laryngeal Tube (LT) insertion upon 72-hour survival in adult OHCA. Encompassing United States Emergency Medical Services agencies affiliated with the Resuscitation Outcomes Consortium (ROC), PART will use a cluster-crossover randomized design. Participating subjects will include adult, non-traumatic OHCA requiring bag-valve-mask ventilation. Trial interventions will include 1) initial airway management with ETI and 2) initial airway management with LT. The primary and secondary trial outcomes are 72-hour survival and return of spontaneous circulation. Additional clinical outcomes will include airway management process and adverse events. The trial will enroll a total of 3,000 subjects. Results of PART may guide the selection of advanced airway management strategies in OHCA. PMID:26851059
Bui, T D; Dabdub, D; George, S C
1998-06-01
The steady-state exchange of inert gases across an in situ canine trachea has recently been shown to be limited equally by diffusion and perfusion over a wide range (0.01-350) of blood solubilities (betablood; ml . ml-1 . atm-1). Hence, we hypothesize that the exchange of ethanol (betablood = 1,756 at 37 degrees C) in the airways depends on the blood flow rate from the bronchial circulation. To test this hypothesis, the dynamics of the bronchial circulation were incorporated into an existing model that describes the simultaneous exchange of heat, water, and a soluble gas in the airways. A detailed sensitivity analysis of key model parameters was performed by using the method of Latin hypercube sampling. The model accurately predicted a previously reported experimental exhalation profile of ethanol (R2 = 0.991) as well as the end-exhalation airstream temperature (34.6 degrees C). The model predicts that 27, 29, and 44% of exhaled ethanol in a single exhalation are derived from the tissues of the mucosa and submucosa, the bronchial circulation, and the tissue exterior to the submucosa (which would include the pulmonary circulation), respectively. Although the concentration of ethanol in the bronchial capillary decreased during inspiration, the three key model outputs (end-exhaled ethanol concentration, the slope of phase III, and end-exhaled temperature) were all statistically insensitive (P > 0.05) to the parameters describing the bronchial circulation. In contrast, the model outputs were all sensitive (P < 0.05) to the thickness of tissue separating the core body conditions from the bronchial smooth muscle. We conclude that both the bronchial circulation and the pulmonary circulation impact soluble gas exchange when the entire conducting airway tree is considered.
Naringin Protects Ovalbumin-Induced Airway Inflammation in a Mouse Model of Asthma.
Guihua, Xiong; Shuyin, Liu; Jinliang, Gao; Wang, Shumin
2016-04-01
Many plant species containing flavonoids have been widely used in traditional Chinese medicine. Naringin, a well-known flavanone glycoside of citrus fruits, possesses antioxidant, anti-inflammatory, anti-apoptotic, anti-ulcer, anti-osteoporosis, and anti-carcinogenic properties. The aim of the study was to investigate the anti-asthmatic effects of naringin and the possible mechanisms. Asthma model was established by ovalbumin. A total of 50 mice were randomly assigned to five experimental groups: control, model, and dexamethasone (2 mg/kg, orally) and naringin (5 mg/kg, 10 mg/kg, orally). Airway resistance (Raw) were measured, histological studies were evaluated by the hematoxylin and eosin (HE) staining, OVA-specific serum and BALF IgE levels and Th1/Th2 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th1/Th2 cells was evaluated by flow cytometry (FCM). T-bet and GABA3 in the lung were evaluated by Western blot. Our study demonstrated that naringin inhibited OVA-induced increases in Raw and eosinophil count; OVA-induced effects on interleukin (IL)-4 and INF-gamma levels were blunted with naringin administration. Histological studies demonstrated that naringin substantially inhibited OVA-induced eosinophilia in lung tissue and airway tissue. Flow cytometry studies demonstrated that naringin substantially inhibited Th2 cells and enhanced Th1 cells. Naringin substantially inhibited GABA3 and increased T-bet. These findings suggest that naringin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.
The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation
Pham, Duy; Sehra, Sarita; Sun, Xin; Kaplan, Mark H.
2014-01-01
Background The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. Objectives We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. Methods TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite–induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. Results We identify Etv5 as a signal transducer and activator of transcription 3–induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting 0a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a–Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. Conclusions These data define signal transducer and activator of transcription 3–dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell–dependent airway inflammation. PMID:24486067
Mertens, Tinne C J; van der Does, Anne M; Kistemaker, Loes E; Ninaber, Dennis K; Taube, Christian; Hiemstra, Pieter S
2017-07-01
Allergic airways inflammation in asthma is characterized by an airway epithelial gene signature composed of POSTN , CLCA1 , and SERPINB2 This Th2 gene signature is proposed as a tool to classify patients with asthma into Th2-high and Th2-low phenotypes. However, many asthmatics smoke and the effects of cigarette smoke exposure on the epithelial Th2 gene signature are largely unknown. Therefore, we investigated the combined effect of IL-13 and whole cigarette smoke (CS) on the Th2 gene signature and the mucin-related genes MUC5AC and SPDEF in air-liquid interface differentiated human bronchial (ALI-PBEC) and tracheal epithelial cells (ALI-PTEC). Cultures were exposed to IL-13 for 14 days followed by 5 days of IL-13 with CS exposure. Alternatively, cultures were exposed once daily to CS for 14 days, followed by 5 days CS with IL-13. POSTN , SERPINB2 , and CLCA1 expression were measured 24 h after the last exposure to CS and IL-13. In both models POSTN , SERPINB2 , and CLCA1 expression were increased by IL-13. CS markedly affected the IL-13-induced Th2 gene signature as indicated by a reduced POSTN , CLCA1 , and MUC5AC expression in both models. In contrast, IL-13-induced SERPINB2 expression remained unaffected by CS, whereas SPDEF expression was additively increased. Importantly, cessation of CS exposure failed to restore IL-13-induced POSTN and CLCA1 expression. We show for the first time that CS differentially affects the IL-13-induced gene signature for Th2-high asthma. These findings provide novel insights into the interaction between Th2 inflammation and cigarette smoke that is important for asthma pathogenesis and biomarker-guided therapy in asthma. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Finlay, C M; Stefanska, A M; Coleman, M M; Jahns, H; Cassidy, J P; McLoughlin, R M; Mills, K H G
2017-10-01
There is evidence from epidemiology studies of a negative association between infection with helminth parasites and the development of allergy and asthma. Here, we demonstrate that the excretory/secretory products of the helminth Fasciola hepatica (FHES) protected mice against ovalbumin (OVA)-induced allergic asthma when administered at time of allergen sensitization. FHES reduced the accumulation of mucus, eosinophils and lymphocytes into the airways of allergen-challenged mice. Furthermore, FHES treatment suppressed Th2 responses in the airways. Interestingly, systemic administration of FHES at allergen challenge had no effect on airway inflammation, demonstrating that alum-induced Th2 response is set following initial allergen sensitization. Our findings highlight the immunomodulatory potential of molecules secreted by F. hepatica. © 2017 John Wiley & Sons Ltd.
Yao, Yinan; Lu, Shan; Lu, Guohua
2012-01-01
To investigate whether low doses of exogenous interferon (IFN)-γ attenuate airway inflammation, and the underlying mechanisms, in asthma. C57BL/6 mice (n=42), after intraperitoneal ovalbumin (OVA) sensitization on day 0 and day 12, were challenged with OVA aerosol for 6 consecutive days. Different doses of IFN-γ were then administered intraperitoneally 5 min before each inhalation during OVA challenge. Airway hyperresponsiveness, airway inflammatory cells, cytokine profiles, and Fas/FasL expression on CD4+ T cells were evaluated in an asthma model. The effect of various IFN-γ doses on Fas/FasL expression and CD4+ T cell apoptosis were assessed in vitro. We demonstrated that low doses of IFN-γ reduced pulmonary infiltration of inflammatory cells, Th2 cytokine production, and goblet cells hyperplasia (P<0.05), while high doses of endogenous IFN-γ had almost no effect. We also found that low doses of IFN-γ relocated Fas/FasL to the CD4+ T cell surface in the asthma model (P<0.05) and increased FasL-induced apoptosis in vitro (P<0.05). Furthermore, treatment with MFL-3, an anti-FasL antibody, partially abolished the anti- inflammatory properties of IFN-γ in the airway rather than affecting the Th1/Th2 balance. This research has revealed an alternative mechanism in asthma that involves low doses of IFN-γ, which attenuate airway inflammation through enhancing Fas/FasL-induced CD4+ T cell apoptosis. PMID:22994871
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun
2010-10-01
Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K
2010-01-01
Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607
Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan
2016-05-01
This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.
2012-01-01
Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977
Type 2 innate lymphoid cells: at the cross-roads in allergic asthma.
van Rijt, Leonie; von Richthofen, Helen; van Ree, Ronald
2016-07-01
Allergic asthma is a chronic inflammatory disease of the lower airways that affects millions of people worldwide. Allergic asthma is a T helper 2 cell (Th2)-mediated disease, in which Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 are closely associated with the symptoms. IL-4 is needed by B cells to switch toward an IgE response, IL-5 recruits and activates eosinophils while IL-13 increases mucus production. The identification of type 2 innate lymphoid cells (ILC2), which are able to rapidly produce large amounts of IL-5 and IL-13 in response to epithelial derived cytokines, implicated a new key player besides Th2 cells. ILCs constitute a family of innate lymphocytes distinct from T and B cells. ILC2s are located in various epithelial compartments in mice and human, including the lung. The recent finding of increased numbers of ILC2s in the airways of severe asthma patients prompts further research to clarify their immunological function. Murine studies have shown that ILC2s are an early innate source of IL-5 and IL-13 after allergen exposure, which induce airway eosinophilic infiltration, mucus hyperproduction, and airway hyperresponsiveness but not allergen-specific IgE production. ILC2s contribute to the initiation as well as to the maintenance of the adaptive type 2 immune response. Here, we review the recent progress on our understanding of the role of ILC2s in the immunopathology of allergic asthma, in particular by studies using murine models which have elucidated fundamental mechanisms by which ILC2s act.
Fujimura, Kei E; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A; Jang, Sihyug; Johnson, Christine C; Boushey, Homer A; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W; Lynch, Susan V
2014-01-14
Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
Fujimura, Kei E.; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A.; Jang, Sihyug; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis; Lukacs, Nicholas W.; Lynch, Susan V.
2014-01-01
Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c+/CD11b+ and CD11c+/CD8+ cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults. PMID:24344318
Asthma: T-bet--a master controller?
Robinson, Douglas S; Lloyd, Clare M
2002-04-30
The transcription factors T-bet and GATA3 are important reciprocal determinants of Th1 and Th2 T helper cell differentiation. Recent evidence suggests that these factors may affect airway immunopathology in asthma.
Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects
Neil E. Alexis, PhD, Marlowe W. Eldridge, MD, David B. Peden, MD, MS
Chapel Hill and Research Triangle Park, NC
Backgrou...
NASA Astrophysics Data System (ADS)
Sayers, Brian C.
Exposure to multiwalled carbon nanotubes (MWCNT) has been demonstrated to exacerbate airway inflammation and fibrosis in allergen-challenged mouse model. These data have led to concern that individuals with asthma could represent a susceptible population to adverse health effects following exposure to MWCNT, and possibly other engineered nanoparticles. Asthma pathogenesis is caused by the interaction of a complex genetic predisposition and environmental exposures. Because chronic airway inflammation is common to all asthma phenotypes, it is logical to investigate genes that are involved in inflammatory pathways in order to understand the genetic basis of asthma. The metabolism of arachidonic acid by cyclooxygenase (COX) enzymes is the rate-determining step in the synthesis of prostanoids, which are biologically active lipids that are important modulators of inflammation. Based on the role of COX enzymes in inflammatory pathways, we sought to investigate how COX enzymes are involved in the inflammatory response following MWCNT exposure in asthmatic airways. We report that MWCNT significantly exacerbated allergen-induced airway inflammation and mucus cell metaplasia in COX-2 deficient mice compared to wild type mice. In addition, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13, IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2 deficient mice but not in WT mice. We conclude that exacerbation of allergen-induced airway inflammation and mucus cell metaplasia by MWCNTs is enhanced by deficiency in COX-2 and associated with activation of a mixed Th1/Th2/Th17 immune response. Based on our observation that COX-2 deficient mice developed a mixed Th immune response following MWCNT exposure, we sought to evaluate how cytokines associated with different Th immune responses alter COX expression following MWCNT exposure. For this study, a mouse macrophage cell line (RAW264.7) was used because MWCNT were largely sequestered within alveolar macrophages with 24 hours after aspiration in mice. We report that the Th1 cytokine interferon gamma (IFNgamma) causes decreased COX-1 expression but increased prostaglandin E2 (PGE 2) production in mouse macrophages exposed to nickel nanoparticles (NiNP), a residual impurity found in MWCNT from the catalytic synthesis process. NiNP exposure alone increased COX-2 and decreased COX-1 in the absence of exogenous cytokines. IFNgamma further reduced COX-1 levels suppressed by NiNP. IL-4, IL-13, or IL-17 did not reduce COX-1 expression alone or in combination with NiNP. Exogenous PGE2 enhanced NiNP- or IFN-gamma-mediated COX-1 suppression. Pharmacologic inhibition of ERK1,2 or JAK/STAT-1 cell signaling pathways inhibited PGE2 production in all dose groups and restored COX-1 expression in cells treated with IFNgamma and NiNP. These data show that PGE2 production is induced in macrophages exposed to IFNgamma and NiNP and suggest that macrophages could be an important source of the anti-inflammatory mediator PGE2 following nanoparticle exposure in a Th1 immune microenvironment. In summary, these studies highlight an important role for COX enzymes in regulating inflammation in response to engineered nanoparticles and show that prostanoid production in response to nanoparticle exposure could be determined in part by the Th immune microenvironment.
Alcohol and Airways Function in Health and Disease
Sisson, Joseph H.
2007-01-01
The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883
Silva, F M C; Oliveira, E E; Gouveia, A C C; Brugiolo, A S S; Alves, C C; Correa, J O A; Gameiro, J; Mattes, J; Teixeira, H C; Ferreira, A P
2017-07-01
Clinical and epidemiological studies indicate that obesity affects the development and phenotype of asthma by inducing inflammatory mechanisms in addition to eosinophilic inflammation. The aim of this study was to assess the effect of obesity on allergic airway inflammation and T helper type 2 (Th2) immune responses using an experimental model of asthma in BALB/c mice. Mice fed a high-fat diet (HFD) for 10 weeks were sensitized and challenged with ovalbumin (OVA), and analyses were performed at 24 and 48 h after the last OVA challenge. Obesity induced an increase of inducible nitric oxide synthase (iNOS)-expressing macrophages and neutrophils which peaked at 48 h after the last OVA challenge, and was associated with higher levels of interleukin (IL)-4, IL-9, IL-17A, leptin and interferon (IFN)-γ in the lungs. Higher goblet cell hyperplasia was associated with elevated mast cell influx into the lungs and trachea in the obese allergic mice. In contrast, early eosinophil influx and lower levels of IL-25, thymic stromal lymphopoietin (TSLP), CCL11 and OVA-specific immunoglobulin (IgE) were observed in the obese allergic mice in comparison to non-obese allergic mice. Moreover, obese mice showed higher numbers of mast cells regardless of OVA challenge. These results indicate that obesity affects allergic airway inflammation through mechanisms involving mast cell influx and the release of TSLP and IL-25, which favoured a delayed immune response with an exacerbated Th1, Th2 and Th17 profile. In this scenario, an intense mixed inflammatory granulocyte influx, classically activated macrophage accumulation and intense mucus production may contribute to a refractory therapeutic response and exacerbate asthma severity. © 2017 British Society for Immunology.
Bronchial blood supply after lung transplantation without bronchial artery revascularization.
Nicolls, Mark R; Zamora, Martin R
2010-10-01
This review discusses how the bronchial artery circulation is interrupted following lung transplantation and what may be the long-term complications of compromising systemic blood flow to allograft airways. Preclinical and clinical studies have shown that the loss of airway microcirculations is highly associated with the development of airway hypoxia and an increased susceptibility to chronic rejection. The bronchial artery circulation has been highly conserved through evolution. Current evidence suggests that the failure to routinely perform bronchial artery revascularization at the time of lung transplantation may predispose patients to develop the bronchiolitis obliterans syndrome.
Skuljec, Jelena; Chmielewski, Markus; Happle, Christine; Habener, Anika; Busse, Mandy; Abken, Hinrich; Hansen, Gesine
2017-01-01
Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.
Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret
2012-04-01
In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.
Liu, Y; Yao, Y; Wang, Z-C; Ning, Q; Liu, Z
2018-06-01
Host immunity (innate and adaptive immunity) plays essential roles in the pathogenesis of inflammatory upper airway diseases, including allergic rhinitis and chronic rhinosinusitis. Recently, the discovery of novel innate immune cells, particularly innate lymphoid cells, has renewed our view on the role of innate immunity in inflammatory upper airway diseases. Meanwhile, the identification of new subsets of T helper (Th) cells, including Th22, Th9 and follicular Th cells, and regulatory B cells in the adaptive immunity, has broadened our knowledge on the complex immune networks in inflammatory upper airway diseases. In this review, we focus on these newly identified innate and adaptive lymphocytes with their contributions to the immunological disturbance in allergic rhinitis and chronic rhinosinusitis. We further discuss the perspective for future research and potential clinical utility of regulating these novel lymphocytes for the treatment of allergic rhinitis and chronic rhinosinusitis. © 2018 John Wiley & Sons Ltd.
Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest
NASA Astrophysics Data System (ADS)
Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David
2009-02-01
Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.
Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori
2018-01-01
Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won
Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct ofmore » humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection.« less
Airway Fibrinogenolysis and the Initiation of Allergic Inflammation
Millien, Valentine Ongeri; Lu, Wen; Mak, Garbo; Yuan, Xiaoyi; Knight, J. Morgan; Porter, Paul; Kheradmand, Farrah
2014-01-01
The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention. PMID:25525732
IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG
Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.
2007-01-01
Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704
Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs.
Coleridge, H M; Coleridge, J C
1977-04-01
We recorded impulses from afferent vagal C-fibres (conduction velocities 0.8-2.4 m/sec) arising from endings in the lungs of anesthetized dogs with open chest. Endings were of two types ('pulmonary' and 'bronchial') distinguished by their response and accessibility to capsaicin and phenyl diguanide injected into the right or left atrium. 'Pulmonary' endings, stimulated only by capsaicin and accessible through the pulmonary circulation, have been described previously. 'Bronchial' endings were stimulated by both capsicin and phenyl diguanide and were accessible through the bronchial circulation. Eight of 28 'bronchial' endings were located in large airways within 4 cm of the hilum, and two were in small airways near the edge of the lung. The precise location of the remaining 'bronchial' endings was not determined but we think that many were in the airways. 'Bronchial' endings had a sparse and irregular spontaneous discharge. They were stimulated by the inhalation of 5% histamine aerosol, the evoked discharge having no obvious relation to the phase of ventilation. A few were weakly stimulated by hyperinflating the lungs; deflation was without effect. The function of these endings is unknown.
Namvar, S; Warn, P; Farnell, E; Bromley, M; Fraczek, M; Bowyer, P; Herrick, S
2015-05-01
In susceptible individuals, exposure to Aspergillus fumigatus can lead to the development of atopic lung diseases such as allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal sensitization (SAFS). Protease allergens including Asp f 5 and Asp f 13 from Aspergillus fumigatus are thought to be important for initiation and progression of allergic asthma. To assess the importance of secreted protease allergens Asp f 5 (matrix metalloprotease) and Asp f 13 (serine protease) in Aspergillus fumigatus-induced inflammation, airway hyperactivity, atopy and airway wall remodelling in a murine model following chronic exposure to secreted allergens. BALB/c mice were repeatedly intranasally dosed over the course of 5 weeks with culture filtrate from wild-type (WT), Asp f 5 null (∆5) or Asp f 13 null (∆13) strains of Aspergillus fumigatus. Airway hyper-reactivity was measured by non-invasive whole-body plethysmography, Th2 response and airway inflammation by ELISA and cell counts, whilst airway remodelling was assessed by histological analysis. Parent WT and ∆5 culture filtrates showed high protease activity, whilst protease activity in ∆13 culture filtrate was low. Chronic intranasal exposure to the three different filtrates led to comparable airway hyper-reactivity and Th2 response. However, protease allergen deleted strains, in particular ∆13 culture filtrate, induced significantly less airway inflammation and remodelling compared to WT culture filtrate. Aspergillus fumigatus-secreted allergen proteases, Asp f 5 and Asp f 13, are important for recruitment of inflammatory cells and remodelling of the airways in this murine model. However, deletion of a single allergen protease fails to alleviate airway hyper-reactivity and allergic immune response. Targeting protease activity of Aspergillus fumigatus in conditions such as SAFS or ABPA may have beneficial effects in preventing key aspects of airway pathology. © 2014 John Wiley & Sons Ltd.
Role of Arginase 1 from Myeloid Cells in Th2-Dominated Lung Inflammation
Barron, Luke; Smith, Amber M.; El Kasmi, Karim C.; Qualls, Joseph E.; Huang, Xiaozhu; Cheever, Allen; Borthwick, Lee A.; Wilson, Mark S.; Murray, Peter J.; Wynn, Thomas A.
2013-01-01
Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution. PMID:23637937
Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma.
Park, Jun Ho; Kim, Jong Won; Lee, Chang-Min; Kim, Yeong Dae; Chung, Sung Woon; Jung, In Duk; Noh, Kyung Tae; Park, Jin Wook; Heo, Deok Rim; Shin, Yong Kyoo; Seo, Jong Keun; Park, Yeong-Min
2012-05-01
Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Daqing; Wang, Jing; Yang, Niandi
Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion moleculesmore » in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.« less
Lourenço, Ruy V.; Klimek, Mary F.; Borowski, Claudia J.
1971-01-01
Deposition and clearance of inhaled particles of iron oxide labeled with 198Au were studied in 19 normal subjects (10 nonsmokers and 9 smokers). For this purpose, monodisperse aerosols of particles with a 2 μ diameter were produced in a spinning disc atomizer. Thoracic counts and images with a scintillation camera were begun immediately after inhalation of the aerosol and continued for 6 hr. In all subjects, smokers and nonsmokers, the deposition of the particles was uniform throughout both lung fields, with approximately half of the particles deposited in the ciliated airways (tracheobronchial deposition) and half in the nonciliated airways (alveolar deposition). Tracheobronchial clearance in nonsmokers occurred immediately after inhalation, first at a fast rate for particles deposited in the largest and most central airways, and then at a slower rate for particles from the smaller and more peripheral airways. Photoscintigrams showed that the particles cleared steadily with no retention in any area. The general pattern of clearance may be likened to a model of multiple conveyor belts with speed increasing from the peripheral to the central airways in such a way as to prevent “particle jams” at airway confluence points. In smokers, tracheobronchial clearance was delayed for periods of 1-4 hr after inhalation. Furthermore, in contrast with the findings in nonsmokers, significant clearance was still occurring in many of the smokers in the 5th and 6th hr after inhalation. Also, photoscintigrams showed an abnormal accumulation of particles in the large airways several hours after inhalation of the aerosol. Images PMID:5090057
Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U
2014-12-01
Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.
Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo
2017-09-01
Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Activation states of blood eosinophils in asthma
Johansson, Mats W.
2014-01-01
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodeling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or “primed”, or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil-surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil-surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAb) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease. PMID:24552191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchetti, Lorenza, E-mail: lbianchetti@avail-research.com; Laboratory of Cytopathology and Cytogenetics, Italian ABR Operative Unit, Milan; Marini, Maurizio A., E-mail: mam.marini@yahoo.com
2012-09-14
Highlights: Black-Right-Pointing-Pointer IL-33 is considered a new therapeutic target for reducing inflammation in asthma. Black-Right-Pointing-Pointer This study shows that IL-33 is a potent chemoattractant for fibrocytes in asthma. Black-Right-Pointing-Pointer IL-33 also promotes fibrocyte proliferation without reducing collagen production. Black-Right-Pointing-Pointer The study uncovers a novel non-inflammatory, profibrotic function of IL-33. -- Abstract: The release of IL-33 increases in the bronchial mucosa of asthmatic patients in relation to disease severity and several studies have demonstrated that IL-33 may enhance airway inflammation in asthma. This study tested the hypothesis that IL-33 may also contribute to the development of irreversible structural changes in asthmamore » by favoring the airway recruitment and profibrotic function of circulating fibrocytes during episodes of allergen-induced asthma exacerbation. The circulating fibrocytes from patients with allergen-exacerbated asthma (PwAA) showed increased expression of the specific IL-33 receptor component ST2L in comparison with the cells from non-asthmatic individuals (NAI). Recombinant IL-33 induced the migration of circulating fibrocytes from PwAA at clinically relevant concentrations and stimulated their proliferation in a concentration-dependent manner between 0.1 and 10 ng/ml, without affecting the constitutive release of type I collagen. The recombinant protein did not induce similar responses in circulating fibrocytes from NAI. This study uncovers an important mechanism through which fibrocytes may accumulate in the airways of allergic asthmatics when their disease is not adequately controlled by current treatment and provides novel information on the function of IL-33 in asthma.« less
Alcohol and airways function in health and disease.
Sisson, Joseph H
2007-08-01
The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.
Shi, Ying; Xu, Xiantao; Tan, Yan; Mao, Shan; Fang, Surong; Gu, Wei
2014-01-01
The liver-X-receptors have shown anti-inflammatory ability in several animal models of respiratory disease. Our purpose is to investigate the effect of LXR ligand in allergen-induced airway remodeling in mice. Ovalbumin-sensitized mice were chronically challenged with aerosolized ovalbumin for 8 weeks. Some mice were administered a LXR agonist, T0901317 (12.5, 25, 50 mg/kg bodyweight) before challenge. Then mice were evaluated for airway inflammation, airway hyperresponsiveness and airway remodeling. T0901317 failed to attenuate the inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid. But the application of T0901317 reduced the thickness of airway smooth muscle and the collagen deposition. Meanwhile, T0901317 treatment evidently abolished the high level of OVA-specific IgE, TGF-β1 and MMP-9 in lung. So LXRs may attenuate the progressing of airway remodeling, providing a potential treatment of asthma.
TNF is required for TLR ligand-mediated but not protease-mediated allergic airway inflammation.
Whitehead, Gregory S; Thomas, Seddon Y; Shalaby, Karim H; Nakano, Keiko; Moran, Timothy P; Ward, James M; Flake, Gordon P; Nakano, Hideki; Cook, Donald N
2017-09-01
Asthma is associated with exposure to a wide variety of allergens and adjuvants. The extent to which overlap exists between the cellular and molecular mechanisms triggered by these various agents is poorly understood, but it might explain the differential responsiveness of patients to specific therapies. In particular, it is unclear why some, but not all, patients benefit from blockade of TNF. Here, we characterized signaling pathways triggered by distinct types of adjuvants during allergic sensitization. Mice sensitized to an innocuous protein using TLR ligands or house dust extracts as adjuvants developed mixed eosinophilic and neutrophilic airway inflammation and airway hyperresponsiveness (AHR) following allergen challenge, whereas mice sensitized using proteases as adjuvants developed predominantly eosinophilic inflammation and AHR. TLR ligands, but not proteases, induced TNF during allergic sensitization. TNF signaled through airway epithelial cells to reprogram them and promote Th2, but not Th17, development in lymph nodes. TNF was also required during the allergen challenge phase for neutrophilic and eosinophilic inflammation. In contrast, TNF was dispensable for allergic airway disease in a protease-mediated model of asthma. These findings might help to explain why TNF blockade improves lung function in only some patients with asthma.
TNF is required for TLR ligand–mediated but not protease-mediated allergic airway inflammation
Whitehead, Gregory S.; Thomas, Seddon Y.; Shalaby, Karim H.; Nakano, Keiko; Moran, Timothy P.; Ward, James M.; Flake, Gordon P.; Cook, Donald N.
2017-01-01
Asthma is associated with exposure to a wide variety of allergens and adjuvants. The extent to which overlap exists between the cellular and molecular mechanisms triggered by these various agents is poorly understood, but it might explain the differential responsiveness of patients to specific therapies. In particular, it is unclear why some, but not all, patients benefit from blockade of TNF. Here, we characterized signaling pathways triggered by distinct types of adjuvants during allergic sensitization. Mice sensitized to an innocuous protein using TLR ligands or house dust extracts as adjuvants developed mixed eosinophilic and neutrophilic airway inflammation and airway hyperresponsiveness (AHR) following allergen challenge, whereas mice sensitized using proteases as adjuvants developed predominantly eosinophilic inflammation and AHR. TLR ligands, but not proteases, induced TNF during allergic sensitization. TNF signaled through airway epithelial cells to reprogram them and promote Th2, but not Th17, development in lymph nodes. TNF was also required during the allergen challenge phase for neutrophilic and eosinophilic inflammation. In contrast, TNF was dispensable for allergic airway disease in a protease-mediated model of asthma. These findings might help to explain why TNF blockade improves lung function in only some patients with asthma. PMID:28758900
Inflammatory airway responses by nasal inoculation of suspended particulate matter in NC/Nga mice.
Ogino, Keiki; Takahashi, Noriko; Kubo, Masayuki; Takeuchi, Akihito; Nakagiri, Motoharu; Fujikura, Yoshihisa
2014-06-01
To evaluate the allergic effect of airborne particulate matter (PM) on the airway, separated soluble supernatant (Sup) and insoluble precipitate (Pre) in suspended PM were inoculated into NC/Nga mice with a high sensitivity for mite allergens. Sup, Pre, or both Sup and Pre with or without pronase treatment were inoculated via the nasal route five times for sensitization and a challenge inoculation on the 11th day in NC/Nga mice. On the 14th day, mice were examined for airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF) cell count, mRNA expression of Th1 and Th2 cytokines in the lung tissue, and histopathology. Synergistic effects of Sup and Pre were observed as increases in AHR and a histopathological change of Periodic acid-Schiff (PAS) staining. Increases in neutrophils, macrophages, and lymphocytes of BALF cells were dependent on Pre. The expression of IL-4 mRNA was increased by Sup, and those of IL-5 mRNA and Il-13 mRNA was increased by Sup and Pre. Augmented AHR, mRNA expression of IL-4, peribronchial inflammation, and PAS staining by Sup plus Pre were attenuated by treatment of Sup with pronase to digest proteins. These results suggest that some proteins of ambient PM may be important environmental factors for AHR and airway inflammation with the aid of insoluble particulates, although some soluble factors such as endotoxins cannot be ruled out. Copyright © 2012 Wiley Periodicals, Inc.
Mega-dose vitamin C attenuated lung inflammation in mouse asthma model.
Jeong, Young-Joo; Kim, Jin-Hee; Kang, Jae Seung; Lee, Wang Jae; Hwang, Young-Il
2010-12-01
Asthma is a Th2-dependent disease mediated by IgE and Th2 cytokines, and asthmatic patients suffer from oxidative stresses from abnormal airway inflammation. Vitamin C is a micro-nutrient functioning as an antioxidant. When administered at a mega-dose, vitamin C has been reported to shift immune responses toward Th1. Thus, we tried to determine whether vitamin C exerted beneficial effects in asthma animal model. Asthma was induced in mice by sensitizing and challenging with ovalbumin. At the time of challenge, 3~5 mg of vitamin C was administered and the effects were evaluated. Vitamin C did not modulate Th1/Th2 balance in asthma model. However, it decreased airway hyperreactivity to methacholine, decreased inflammatory cell numbers in brochoalveolar lavage fluid, and moderate reduction of perivascular and peribronchiolar inflammatory cell infiltration. These results suggest that vitamin C administered at the time of antigen challenge exerted anti-inflammatory effects. Further studies based on chronic asthma model are needed to evaluate a long-term effect of vitamin C in asthma. In conclusion, even though vitamin C did not show any Th1/Th2 shifting effects in this experiment, it still exerted moderate anti-inflammatory effects. Considering other beneficial effects and inexpensiveness of vitamin C, mega-dose usage of vitamin C could be a potential supplementary modality for the management of asthma.
Chenery, Alistair L; Antignano, Frann; Burrows, Kyle; Scheer, Sebastian; Perona-Wright, Georgia; Zaph, Colby
2016-02-01
Immunological cross talk between mucosal tissues such as the intestine and the lung is poorly defined during homeostasis and disease. Here, we show that a low-dose infection with the intestinally restricted helminth parasite Trichuris muris results in the production of Th1 cell-dependent gamma interferon (IFN-γ) and myeloid cell-derived interleukin-10 (IL-10) in the lung without causing overt airway pathology. This cross-mucosal immune response in the lung inhibits the development of papain-induced allergic airway inflammation, an innate cell-mediated type 2 airway inflammatory disease. Thus, we identify convergent and nonredundant roles of adaptive and innate immunity in mediating cross-mucosal suppression of type 2 airway inflammation during low-dose helminth-induced intestinal inflammation. These results provide further insight in identifying novel intersecting immune pathways elicited by gut-to-lung mucosal cross talk. Copyright © 2016 Chenery et al.
IL-33: biological properties, functions, and roles in airway disease.
Drake, Li Yin; Kita, Hirohito
2017-07-01
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.
Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...
Triple selectin knockout (ELP-/-) mice fail to develop OVA-induced acute asthma phenotype
2011-01-01
Objective The recruitment of leukocytes from circulation to sites of inflammation requires several families of adhesion molecules among which are selectins expressed on a variety of cells. In addition, they have also been shown to play key roles in the activation of cells in inflammation. Methods To explore the collective role of E-, L-, and P- selectins in OVA-induced Th2 mediated response in acute asthma pathophysiology, ELP-/- mice were used and compared with age-matched wildtype (WT). Results Asthma phenotype was assessed by measuring pulmonary function, inflammation and OVA-specific serum IgE, which were completely abrogated in ELP-/- mice. Adoptive transfer of sensitized L selectin+CD4+ T cells into naïve ELP-/- mice which post-OVA challenge, developed asthma, suggesting that L-selectin may be critically involved in the onset of Th2 response in asthma. Tissue resident ELP-deficient cells were otherwise functionally competent as proved by normal proliferative response. Conclusions: Comparative studies between ELP-/- and WT mice uncovered functional roles of these three integrins in inflammatory response in allergic asthma. All three selectins seem to impede inflammatory migration while only L-selectin also possibly regulates activation of specific T cell subsets in lung and airways. PMID:21835035
Dasgupta, Preeta; Qi, Xiulan; Smith, Elizabeth P; Keegan, Achsah D
2013-01-01
The T(H)2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates T(H)2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling T(H)2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γ(c)) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4⁺ OT-II T cells were adoptively transferred into RAG2⁻/⁻ and γ(c)⁻/⁻ mice and allergic lung disease was induced. Both γ(c)⁻/⁻ and γcxRAG2⁻/⁻ mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2⁻/⁻ mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γ(c)⁻/⁻ mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher T(H)2 cytokine levels in the BAL and an altered DC phenotype in the γ(c)⁻/⁻ recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γ(c)-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of T(H)2 effectors. However, the Type I R regulates AAM protein expression in macrophages.
B Cell Depletion Therapy Normalizes Circulating Follicular Th Cells in Primary Sjögren Syndrome.
Verstappen, Gwenny M; Kroese, Frans G M; Meiners, Petra M; Corneth, Odilia B; Huitema, Minke G; Haacke, Erlin A; van der Vegt, Bert; Arends, Suzanne; Vissink, Arjan; Bootsma, Hendrika; Abdulahad, Wayel H
2017-01-01
To assess the effect of B cell depletion therapy on effector CD4+ T cell homeostasis and its relation to objective measures of disease activity in patients with primary Sjögren syndrome (pSS). Twenty-four patients with pSS treated with rituximab (RTX) and 24 healthy controls (HC) were included. Frequencies of circulating effector CD4+ T cell subsets were examined by flow cytometry at baseline and 16, 24, 36, and 48 weeks after the first RTX infusion. Th1, Th2, follicular Th (TFH), and Th17 cells were discerned based on surface marker expression patterns. Additionally, intracellular cytokine staining was performed for interferon-γ, interleukin (IL)-4, IL-21, and IL-17 and serum levels of these cytokines were analyzed. In patients with pSS, frequencies of circulating TFH cells and Th17 cells were increased at baseline compared with HC, whereas frequencies of Th1 and Th2 cells were unchanged. B cell depletion therapy resulted in a pronounced decrease in circulating TFH cells, whereas Th17 cells were only slightly lowered. Frequencies of IL-21-producing and IL-17-producing CD4+ T cells and serum levels of IL-21 and IL-17 were also reduced. Importantly, the decrease in circulating TFH cells was associated with lower systemic disease activity over time, as measured by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index scores and serum IgG levels. B cell depletion therapy in patients with pSS results in normalization of the elevated levels of circulating TFH cells. This reduction is associated with improved objective clinical disease activity measures. Our observations illustrate the pivotal role of the crosstalk between B cells and TFH cells in the pathogenesis of pSS.
Altered expression of regulatory T and Th17 cells in murine bronchial asthma
Zhu, Jianbo; Liu, Xiaoying; Wang, Wenxia; Ouyang, Xiuhe; Zheng, Wentao; Wang, Qingyuan
2017-01-01
Alteration of the careful balance of the ratio of Th1/Th2 cell subsets impacts immune function and plays an important role in the pathogenesis of asthma. There is little research on the impact of changes on the balance of the regulatory T (Treg)/Th17 subset ratio and its possible repercussions for asthma. This investigation used a murine model of asthma to measure the expression levels of Treg and Th17 cells and the levels of their transcription factors Foxp3 and retinoic acid receptor-related orphan nuclear receptor (ROR)γt in bronchial asthma while assessing indexes of airway inflammation. Thirty female SPF BALB/c mice were divided into three equally numbered groups: a normal control, an asthma and a dexamethasone treatment group. All the airway inflammation indexes measured were more prominent in the asthma group and less so in the control group. The percentage of the lymphocyte subset CD4+CD25+Foxp3+ cells in the CD4+ cells in the asthma group was significantly lower than that in the normal control group (P<0.01). The percentage of the lymphocyte subset CD4+IL-17+ cells in the CD4+ cells in the asthma group was significantly higher than that in the normal control group (P<0.01). The ratio of CD4+CD25+Foxp3+ cells/CD4+IL-17+ cells in the asthma group decreased compared with that in the normal control group (P<0.01). The expression level of Foxp3 of the mice in the asthma group was significantly lower than that in the control group (P<0.01). The expression intensity of RORγt in the asthma group was higher than that in the normal control group (P<0.01). Finally, the Foxp3/RORγt protein expression ratio in the asthma group was significantly lower than that in the normal control group (P<0.01). The Foxp3/RORγt protein expression ratio and the airway responsiveness were negatively correlated. The average levels of inflammation markers in the dexamethasone group were intermediate between the other groups. During the course of bronchial asthma the unbalanced expression of Treg and Th17 affects mostly the expression of Foxp3/RORγt, leading to inflammation of the airways. Dexamethasone may inhibit airway inflammation by regulating the balance between Treg and Th17. PMID:28672989
Control of epithelial immune-response genes and implications for airway immunity and inflammation.
Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J
1998-01-01
A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.
Toman, Huseyin; Erbas, Mesut; Sahin, Hasan; Kiraz, Hasan Ali; Uzun, Metehan; Ovali, Mehmet Akif
2015-12-01
In this study, we aimed to compare the effects of various airway devices on QTc interval in rabbits under general anesthesia. The subjects were randomly separated into four groups: Group ETT, Group LMA, Group PLA, Group V-gel. Baseline values and hearth rate, mean arterial pressure and ECG was obtained at the 1st, 5th and 30th minutes after administration of anesthesia and placement of airway device and, QTc interval was evaluated. Difference was observed between ET group and V-gel group in the 5th minute mean arterial pressure values (p < 0.05). It was observed that QTc intervals at the 1st and 5th minute in the ET group significantly increased when compared with the other groups (p < 0.05). Again, it was observed that QTc interval of ET group at the 15th and 30th minute was longer when compared with PLA and V-gel groups (p < 0.05). It was also observed that QTc interval of LMA Group at the 5th minute after intubation significantly increased when compared with V-gel group (p < 0.05). It was observed that HR values of ETT group at the 1st, 5th and 15th minutes after intubation increased with regards to PLA and V-gel groups (p < 0.05). It was determined that the 30th minute hearth rate of ETT group was higher when compared to V-gel group (p < 0.05). In our study we observed that V-gel Rabbit affected both hemodynamic response and QT interval less than other airway devices.
Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö
In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori
2016-01-01
Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre
An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatorymore » therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy.« less
Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice.
Xue, Zheng; Zhang, Xin-Guang; Wu, Jie; Xu, Wan-Chao; Li, Li-Qing; Liu, Fei; Yu, Jian-Er
2016-06-01
Asthma, a complex highly prevalent airway disease, is a major public health problem for which current treatment options are inadequate. To evaluate the antiasthma activity of geraniol and investigate its underlying molecular mechanisms. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with geraniol (100 or 200 mg/kg) or a vehicle control, during ovalbumin challenge. Treatment of ovalbumin-sensitized/challenged mice with geraniol significantly decreased airway hyperresponsiveness to inhaled methacholine. Geraniol treatment reduced eotaxin levels in bronchoalveolar lavage fluid and attenuated infiltration of eosinophils induced by ovalbumin. Geraniol treatment reduced TH2 cytokines (including interleukins 4, 5, and 13), increased TH1 cytokine interferon γ in bronchoalveolar lavage fluid, and reduced ovalbumin-specific IgE in serum. In addition, treatment of ovalbumin-sensitized/challenged mice with geraniol enhanced T-bet (TH1 response) messenger RNA expression and reduced GATA-3 (TH2 response) messenger RNA expression in lungs. Furthermore, treatment of ovalbumin -sensitized/challenged mice with geraniol further enhanced Nrf2 protein expression and activated Nrf2-directed antioxidant pathways, such as glutamate-cysteine ligase, superoxide dismutase, and glutathione S-transferase, and enhanced formation of reduced glutathione and reduced formation of malondialdehyde in lungs. Geraniol attenuated important features of allergic asthma in mice, possibly through the modulation of TH1/TH2 balance and activation the of Nrf2/antioxidant response element pathway. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Role of prostaglandin D2/CRTH2 pathway on asthma exacerbation induced by Aspergillus fumigatus
Liu, Haixia; Zheng, Mingrui; Qiao, Jianou; Dang, Yajie; Zhang, Pengyu; Jin, Xianqiao
2014-01-01
Aspergillus fumigatus is often associated in asthmatic patients with the exacerbation of asthma symptoms. The pathomechanism of this phenomenon has not been fully understood. Here, we evaluated the immunological mechanisms and the role of the prostaglandin D2/ Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells (CRTH2) pathway in the development of Aspergillus-associated asthma exacerbation. We studied the effects of A. fumigatus on airway inflammation and bronchial hyper-responsiveness in a rat model of chronic asthma. Inhalation delivery of A. fumigatus conidia increased the airway eosinophilia and bronchial hyper-responsiveness in ovalbumin-sensitized, challenged rats. These changes were associated with prostaglandin D2 synthesis and CRTH2 expression in the lungs. Direct inflammation occurred in ovalbumin-sensitized, challenged animals, whereas pre-treatment with an antagonist against CRTH2 nearly completely eliminated the A. fumigatus-induced worsening of airway eosinophilia and bronchial hyper-responsiveness. Our data demonstrate that production of prostaglandin D2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenic factors responsible for the A. fumigatus-induced enhancement of airway inflammation and responsiveness. PMID:24329550
Li, Yan; Wang, Wei; Lv, Zhe; Li, Yun; Chen, Yan; Huang, Kewu; Corrigan, Chris J; Ying, Sun
2018-04-01
The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in "real-life" human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity ( n = 70) and control subjects ( n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls ( p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = -0.488, p < 0.0001; TSLP: r = -0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects ( p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets. Copyright © 2018 by The American Association of Immunologists, Inc.
2015-01-01
Several lines of evidence indicate that exposure to nanoparticles (NPs) is able to modify airway immune responses, thus facilitating the development of respiratory diseases. Graphene oxide (GO) is a promising carbonaceous nanomaterial with unique physicochemical properties, envisioned for a multitude of medical and industrial applications. In this paper, we determined how exposure to GO modulates the allergic pulmonary response. Using a murine model of ovalbumin (OVA)-induced asthma, we revealed that GO, given at the sensitization stage, augmented airway hyperresponsiveness and airway remodeling in the form of goblet cell hyperplasia and smooth muscle hypertrophy. At the same time, the levels of the cytokines IL-4, IL-5, and IL-13 were reduced in broncho-alveolar lavage (BAL) fluid in GO-exposed mice. Exposure to GO during sensitization with OVA decreased eosinophil accumulation and increased recruitment of macrophages in BAL fluid. In line with the cytokine profiles, sensitization with OVA in the presence of GO stimulated the production of OVA-specific IgG2a and down-regulated the levels of IgE and IgG1. Moreover, exposure to GO increased the macrophage production of the mammalian chitinases, CHI3L1 and AMCase, whose expression is associated with asthma. Finally, molecular modeling has suggested that GO may directly interact with chitinase, affecting AMCase activity, which has been directly proven in our studies. Thus, these data show that GO exposure attenuates Th2 immune response in a model of OVA-induced asthma, but leads to potentiation of airway remodeling and hyperresponsiveness, with the induction of mammalian chitinases. PMID:24847914
Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon
2014-01-01
Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911
Differences in lung local dosimetry of the carcinogens benzo(a)pyrene and NNK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, A.R.; Muggenburg, B.A.; Thornton-Manning, J.R.
1996-12-31
A diffusion model predicts that highly lipophilic toxicants penetrate the comparatively thick epithelium of the conducting airways much more slowly than less lipophilic toxicants. To validate this model, the tracheal walls of a Beagle dog were sprayed with very small quantities of tritiated, highly lipophilic benzo(a)pyrene (BaP), moderately lipophilic pyrene, or slightly lipophilic 4-(methylnitrosamino)-1-(3 pyridyl)-1-butanone-(NNK). The concentration of the hydrocarbons and their metabolites were measured in the circulating blood for up to 6 hr, and tissue retention was determined at the end of the experiment. Differences in absorption of these compounds into blood were manifested in several independent measurements. Themore » highly lipophilic toxicant manifested: (1) a much slower penetration into azygous vein blood, the principal drainage system from the exposed area of the trachea; (2) a much slower appearance in the systemic circulation and (3) a much greater retention in the tracheal tissues at the end of the exposure. Increased retention mm in the airway mucosa allowed a grew fraction of lipophilic toxicants to be metabolized locally in the airway walls. This finding led us to conclude that, for example, if the carcinogens BaP and NNK are deposited at the same surface density on the airway mucosa, the highly lipophilic BaP will reach a far higher concentration in the airway epithelium than will the less lipophilic NNK. Such sharp differences in local dosimetry should be considered in order to improve the accuracy of risk assessment models for inhalants.« less
Indirect evidence suggests that induced sputum derives from the surfaces of the bronchial airways. To confirm this experimentally, we employed a radiolabeled aerosol bolus delivery technique that preferentially deposits aerosol in the central airways in humans. We hypothesized th...
Sin Singer Brugiolo, Alessa; Carvalho Gouveia, Ana Cláudia; de Souza Alves, Caio César; de Castro E Silva, Flávia Márcia; Esteves de Oliveira, Érick; Ferreira, Ana Paula
2017-08-01
Asthma is characterized by intermittent airway obstruction and chronic inflammation, orchestrated primarily by Th2 cytokines. There is a strong rationale for developing new asthma therapies, since current treatment protocols present side effects and may not be effective in cases of difficult-to-control asthma. The purpose of this study was to evaluate the effect of ferulic acid, a phenolic acid commonly present in plants, in the ovalbumin-induced pulmonary allergy murine model. BALB/c mice were sensitized and challenged with ovalbumin, and treatments were provided by gavage. Six groups of mice (n = 6) were studied, labeled as: control, pulmonary allergy, dexamethasone, and 3 receiving ferulic acid (at 25, 50, and 100 mg/kg). Lung tissue, bronchoalveolar lavage fluid and serum were collected for analysis. Ferulic acid treatment inhibited an established allergic Th2-response by decreasing the key features of pulmonary allergy, including lung and airway inflammation, eosinophil infiltration, mucus production and serum levels of OVA-specific IgE. These results were associated with lower levels of CCL20, CCL11 and CCL5 chemokines and IL-4, IL-5, IL-13, TSLP, IL-25 and IL-33 cytokines in lung tissue homogenate. In this study it was demonstrated for the first time that ferulic acid treatment is able to suppress one of the main features of the airway remodeling, indicated by reduction of mucus production, besides the Th2 pathogenic response on ovalbumin-induced pulmonary allergy. Taken together, results shows that the immunopathological mechanism underlying these effects is linked to a reduction of the epithelial-derived chemokines and cytokines, suggesting that ferulic acid may be useful as a potential therapeutic agent for asthma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Srinivasa, Bharat T; Restori, Katherine H; Shan, Jichuan; Cyr, Louis; Xing, Li; Lee, Soojin; Ward, Brian J; Fixman, Elizabeth D
2017-02-01
Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development. © Society for Leukocyte Biology.
Wu, Chia-Jen; Huang, Wen-Chung; Chen, Li-Chen; Shen, Chia-Rui; Kuo, Ming-Ling
2012-11-01
Airway infiltration by eosinophils is a major characteristic of chronic asthma. CCL11 (eotaxin-1) is secreted by lung epithelial cells and functions as the major chemokine for eosinophil recruitment. Pseudotyped adeno-associated virus (AAV) 2/9, composed by the AAV2 rep and AAV9 cap genes, can efficiently target lung epithelial cells and might carry gene sequences with therapeutic potential for asthma. This study aimed to determine whether pseudotyped AAV2/9 virus carrying the small hairpin RNA targeting CCL11 and expressed by CMV/U6 promoter could reduce eosinophilia and asthmatic responses in mite allergen-sensitized mice. Mice were sensitized by intraperitoneal and challenged by intratracheal injection with recombinant Dermatophagoides pteronyssinus group 2 allergen (rDp2). AAV2/9 viral vectors were intratracheally injected three days before the first challenge. AAV2/9 sh47 virus significantly reduced airway hyperresponsiveness, airway resistance, CCL11 levels, and eosinophilia in the lungs of sensitized mice. Th2 cytokines, including interleukins (IL)-4, IL-5, and IL-10, were also significantly reduced in the bronchoalveolar lavage fluid of AAV2/9 sh47 virus-treated mice. Th2 cytokine levels were also reduced in rDp2-stimulated mediastinal lymphocytes in treated mice. However, serum levels of rDp2-specific IgG1 and IgE, as well as Th2 cytokine levels in rDp2-stimulated splenocyte culture supernatants, were comparable to the sensitized control group. The results suggest that AAV2/9 sh47 virus relieved local instead of systemic inflammatory responses. Therefore, the CMV/U6 promoter with AAV2/9 viral vector, which is preferable to target lung epithelia cells, might be applied as a novel therapeutic approach for asthma.
Wu, Chia-Jen; Huang, Wen-Chung; Chen, Li-Chen; Shen, Chia-Rui
2012-01-01
Abstract Airway infiltration by eosinophils is a major characteristic of chronic asthma. CCL11 (eotaxin-1) is secreted by lung epithelial cells and functions as the major chemokine for eosinophil recruitment. Pseudotyped adeno-associated virus (AAV) 2/9, composed by the AAV2 rep and AAV9 cap genes, can efficiently target lung epithelial cells and might carry gene sequences with therapeutic potential for asthma. This study aimed to determine whether pseudotyped AAV2/9 virus carrying the small hairpin RNA targeting CCL11 and expressed by CMV/U6 promoter could reduce eosinophilia and asthmatic responses in mite allergen-sensitized mice. Mice were sensitized by intraperitoneal and challenged by intratracheal injection with recombinant Dermatophagoides pteronyssinus group 2 allergen (rDp2). AAV2/9 viral vectors were intratracheally injected three days before the first challenge. AAV2/9 sh47 virus significantly reduced airway hyperresponsiveness, airway resistance, CCL11 levels, and eosinophilia in the lungs of sensitized mice. Th2 cytokines, including interleukins (IL)-4, IL-5, and IL-10, were also significantly reduced in the bronchoalveolar lavage fluid of AAV2/9 sh47 virus-treated mice. Th2 cytokine levels were also reduced in rDp2-stimulated mediastinal lymphocytes in treated mice. However, serum levels of rDp2-specific IgG1 and IgE, as well as Th2 cytokine levels in rDp2-stimulated splenocyte culture supernatants, were comparable to the sensitized control group. The results suggest that AAV2/9 sh47 virus relieved local instead of systemic inflammatory responses. Therefore, the CMV/U6 promoter with AAV2/9 viral vector, which is preferable to target lung epithelia cells, might be applied as a novel therapeutic approach for asthma. PMID:22913580
Cavagnero, Kellen; Doherty, Taylor A
2017-08-01
The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.
Yasuda, Yasuki; Matsumura, Yoko; Kasahara, Kazuki; Ouji, Noriko; Sugiura, Shigeki; Mikasa, Keiichi; Kita, Eiji
2010-01-01
The immunological explanation for the "hygiene hypothesis" has been proposed to be induction of T helper 1 (Th1) responses by microbial products. However, the protective results of hygiene hypothesis-linked microbial exposures are currently shown to be unlikely to result from a Th1-skewed response. Until now, effect of microbial exposure early in life on airway innate resistance remained unclear. We examined the role of early life exposure to microbes in airway innate resistance to a respiratory pathogen. Specific pathogen-free weanling mice were nasally exposed to the mixture of microbial extracts or PBS (control) every other day for 28 days and intratracheally infected with Streptococcus pneumoniae 10 days after the last exposure. Exposure to microbial extracts facilitated colonization of aerobic gram-positive bacteria, anaerobic microorganisms, and Lactobacillus in the airway, compared with control exposure. In pneumococcal pneumonia, the exposure prolonged mouse survival days by suppressing bacterial growth and by retarding pneumococcal blood invasion, despite significantly low levels of leukocyte recruitment in the lung. Enhancement of airway resistance was associated with a significant decrease in production of leukocyte chemokine (KC) and TNFalpha, and suppression of matrix metalloproteinase (MMP-9) expression/activation with enhancement of tissue inhibitor of MMP (TIMP-3) activation. The exposure increased production of IFN-gamma, IL-4, and monocyte chemoattractant-1 following infection. Furthermore, expression of Toll-like receptor 2, 4, and 9 was promoted by the exposure but no longer upregulated upon pneumococcal infection. Thus, we suggest that hygiene hypothesis is more important in regulating the PMN-dominant inflammatory response than in inducing a Th1-dominant response.
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang
2016-01-01
Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention.
Raeven, Pierre; Salibasic, Alma; Drechsler, Susanne; Weixelbaumer, Katrin Maria; Jafarmadar, Mohammad; van Griensven, Martijn; Bahrami, Soheyl; Osuchowski, Marcin Filip
2013-01-01
Introduction Plasminogen activator inhibitor 1 (PAI-1) is a key factor in trauma- and sepsis-induced coagulopathy. We examined how trauma-hemorrhage (TH) modulates PAI-1 responses in subsequent cecal ligation and puncture (CLP)-induced sepsis, and the association of PAI-1 with septic outcomes. Methods Mice underwent TH and CLP 48 h later in three separate experiments. In experiment 1, mice were sacrificed pre- and post-CLP to characterize the trajectory of PAI-1 in plasma (protein) and tissues (mRNA). Post-CLP dynamics in TH-CLP (this study) and CLP-Only mice (prior study) were then compared for modulatory effects of TH. In experiment 2, to relate PAI-1 changes to outcome, mice underwent TH-CLP and were sampled daily and followed for 14 days to compare non-survivors (DEAD) and survivors (SUR). In experiment 3, plasma and tissue PAI-1 expression were compared between mice predicted to die (P-DIE) and to live (P-LIVE). Results In experiment 1, an early post-TH rise of circulating PAI-1 was contrasted by a delayed (post-TH) decrease of PAI-1 mRNA in organs. In the post-CLP phase, profiles of circulating PAI-1 were similar between TH-CLP and CLP-Only mice. Conversely, PAI-1 mRNA declined in the liver and heart of TH-CLP mice versus CLP-Only. In experiment 2, there were no DEAD/SUR differences in circulating PAI-1 prior to CLP. Post-CLP, circulating PAI-1 in DEAD was 2–4-fold higher than in SUR. PAI-1 increase heralded septic deaths up to 48 h prior but DEAD/SUR thrombomodulin (endothelial injury marker) levels were identical. In experiment 3, levels of circulating PAI-1 and its hepatic gene expression were higher in P-DIE versus P-LIVE mice and those increases closely correlated with liver dysfunction. Conclusions Trauma modulated septic PAI-1 responses in a compartment-specific fashion. Only post-CLP increases in circulating PAI-1 predicted septic outcomes. In posttraumatic sepsis, pre-lethal release of PAI-1 was mostly of hepatic origin and was independent of endothelial injury. PMID:23408987
Jin, Niyun; Roark, Christina L.; Miyahara, Nobuaki; Taube, Christian; Aydintug, M. Kemal; Wands, JM; Huang, Yafei; Hahn, Youn-Soo; Gelfand, Erwin W.; O’Brien, Rebecca L.; Born, Willi K.
2008-01-01
Allergic airway hyperresponsiveness (AHR) in OVA-sensitized and challenged mice, mediated by allergen-specific Th2 cells and Th2-like iNKT cells, develops under the influence of enhancing and inhibitory γδ T cells. The AHR-enhancing cells belong to the Vγ1+ γδ T cell subset, cells that are capable of increasing IL-5 and IL-13 levels in the airways in a manner like Th2 cells. They also synergize with iNKT cells in mediating AHR. However, unlike Th2 cells, the AHR-enhancers arise in untreated mice, and we show here that they exhibit their functional bias already as thymocytes, at an HSAhi maturational stage. In further contrast to Th2 cells and also unlike iNKT cells, they could not be stimulated to produce IL-4 and IL-13, consistent with their synergistic dependence on iNKT cells in mediating AHR. Mice deficient in IFN-γ, TNFRp75 or IL-4 did not produce these AHR-enhancing γδ T cells, but in the absence of IFN-γ, their spontaneous development was restored by adoptive transfer of IFN-γ competent dendritic cells from untreated donors. Intra-peritoneal injection of OVA/alum restored development of the AHR-enhancers in all of the mutant strains, indicating that the enhancers still can be induced when they fail to develop spontaneously, and that they themselves need not express TNFRp75, IFN-γ or IL-4 in order to exert their function. We conclude that both the development and the cytokine potential of the AHR-enhancing γδ T cells differs critically from that of Th2 cells and NKT cells, despite similar influences of these cell populations on AHR. PMID:19201853
Adult Non-Cystic Fibrosis Bronchiectasis Is Characterised by Airway Luminal Th17 Pathway Activation
Chen, Alice C.-H.; Martin, Megan L.; Lourie, Rohan; Rogers, Geraint B.; Burr, Lucy D.; Hasnain, Sumaira Z.; Bowler, Simon D.; McGuckin, Michael A.; Serisier, David J.
2015-01-01
Background Non-cystic fibrosis (CF) bronchiectasis is characterised by chronic airway infection and neutrophilic inflammation, which we hypothesised would be associated with Th17 pathway activation. Methods Th17 pathway cytokines were quantified in bronchoalveolar lavage fluid (BALF), and gene expression of IL-17A, IL-1β, IL-8 and IL-23 determined from endobronchial biopsies (EBx) in 41 stable bronchiectasis subjects and 20 healthy controls. Relationships between IL-17A levels and infection status, important clinical measures and subsequent Pseudomonas aeruginosa infection were determined. Results BALF levels of all Th17 cytokines (median (IQR) pg/mL) were significantly higher in bronchiectasis than control subjects, including IL-17A (1.73 (1.19, 3.23) vs. 0.27 (0.24, 0.35), 95% CI 1.05 to 2.21, p<0.0001) and IL-23 (9.48 (4.79, 15.75) vs. 0.70 (0.43, 1.79), 95% CI 4.68 to 11.21, p<0.0001). However, BALF IL-17A levels were not associated with clinical measures or airway microbiology, nor predictive of subsequent P. aeruginosa infection. Furthermore, gene expression of IL-17A in bronchiectasis EBx did not differ from control. In contrast, gene expression (relative to medians of controls) in bronchiectasis EBx was significantly higher than control for IL1β (4.12 (1.24, 8.05) vs 1 (0.13, 2.95), 95% CI 0.05 to 4.07, p = 0.04) and IL-8 (3.75 (1.64, 11.27) vs 1 (0.54, 3.89), 95% CI 0.32 to 4.87, p = 0.02) and BALF IL-8 and IL-1α levels showed significant relationships with clinical measures and airway microbiology. P. aeruginosa infection was associated with increased levels of IL-8 while Haemophilus influenzae was associated with increased IL-1α. Conclusions and Clinical Relevance Established adult non-CF bronchiectasis is characterised by luminal Th17 pathway activation, however this pathway may be relatively less important than activation of non-antigen-specific innate neutrophilic immunity. PMID:25822228
We recently reported that baseline expression of circulating CD11b is associated with the magnitude of the neutrophil response following inhaled endotoxin. In this study, we examined whether circulating CD11b plays a similar role in the inflammatory response following inhaled ozo...
Wu, Mei-Yao; Hung, Shih-Kai; Fu, Shu-Ling
2011-10-12
Fisetin, a flavonoid compound commonly present in fruits and vegetables, can exert anti-inflammation activities via inhibition of the NF-κB-signaling pathway. This study aims to evaluate the antiasthma activity of fisetin and investigate its possible molecular mechanisms. We found that fisetin attenuated lung inflammation, goblet cell hyperplasia, and airway hyperresponsiveness in ovalbumin-induced asthma and decreased eosinophils and lymphocytes in bronchoalveolar lavage fluid. Fisetin treatment reduced expression of the key initiators of allergic airway inflammation (eotaxin-1 and TSLP), Th2-associated cytokines (IL-4, IL-5, and IL-13) in lungs, and Th2-predominant transcription factor GATA-3 and cytokines in thoracic lymph node cells and splenocytes. Notably, fisetin treatment impaired NF-κB activation in OVA-stimulated lung tissues and TNF-α-stimulated bronchial epithelial cells. Collectively, this study demonstrated the beneficial effect of fisetin in the amelioration of asthmatic phenotypes. The antiasthma activity of fisetin is associated with reduction of Th2 responses as well as suppression of NF-κB and its downstream chemokines.
Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma.
Greer, Alexandra M; Matthay, Michael A; Kukreja, Jasleen; Bhakta, Nirav R; Nguyen, Christine P; Wolters, Paul J; Woodruff, Prescott G; Fahy, John V; Shin, Jeoung-Sook
2014-01-01
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1⁺ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1⁺ DCs, we found that the numbers of BDCA1⁺ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1⁺ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre; ...
2015-09-21
An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatorymore » therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy.« less
Drinić, Mirjana; Wagner, Angelika; Sarate, Priya; Zwicker, Christian; Korb, Elke; Loupal, Gerhard; Peschke, Roman; Joachim, Anja; Wiedermann, Ursula; Schabussova, Irma
2017-11-09
Epidemiological and experimental studies have shown an inverse relationship between infections with certain parasites and a reduced incidence of allergic diseases. We and others have shown that infection with Toxoplasma gondii prevents the development of allergy in mice. To establish whether this beneficial effect could be recapitulated by soluble products of this parasite, we tested an extract derived from T. gondii tachyzoites. Immunization of BALB/c mice with tachyzoites lysate antigen (TLA) elicited mixed Th1/Th2 responses. When TLA was applied together with the sensitizing ovalbumin (OVA), the development of allergic airway inflammation was reduced, with decreased airway hyperresponsiveness associated with reduced peribronchial and perivascular cellular infiltration, reduced production of OVA-specific Th2 cytokines in lungs and spleens and reduced levels of serum OVA-specific IgG1 as well as IgE-dependent basophil degranulation. Of note, TLA retained its immunomodulatory properties, inducing high levels of IL-6, TNFα, IL-10 and IL-12p70 in bone marrow-derived dendritic cells after heat-inactivation or proteinase K-treatment for disruption of proteins, but not after sodium metaperiodate-treatment that degrades carbohydrate structures, suggesting that carbohydrates may play a role in immunomodulatory properties of TLA. Here we show that extracts derived from parasites may replicate the benefits of parasitic infection, offering new therapies for immune-mediated disorders.
Interaction between allergic asthma and atherosclerosis
Liu, Conglin; Zhang, Jingying; Shi, Guo-Ping
2015-01-01
Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the two seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a Th2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the two diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by much more than just T cell immunity. Here we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis, and propose an interaction between the two diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which one disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from anti-asthmatic medications, or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma. PMID:26608212
Wannamethee, S Goya; Shaper, A Gerald; Papacosta, Olia; Lennon, Lucy; Welsh, Paul; Whincup, Peter H
2016-01-01
Aims The association between lung function and cardiac markers and heart failure (HF) has been little studied in the general older population. We have examined the association between lung function and airway obstruction with cardiac markers N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) and risk of incident HF in older men. Methods and results Prospective study of 3242 men aged 60–79 years without prevalent HF or myocardial infarction followed up for an average period of 13 years, in whom 211 incident HF cases occurred. Incident HF was examined in relation to % predicted FEV1 and FVC. The Global Initiative on Obstructive Lung Diseases spirometry criteria were used to define airway obstruction. Reduced FEV1, but not FVC in the normal range, was significantly associated with increased risk of HF after adjustment for established HF risk factors including inflammation. The adjusted HRs comparing men in the 6–24th percentile with the highest quartile were 1.91 (1.24 to 2.94) and 1.30 (0.86 to 1.96) for FEV1 and FVC, respectively. FEV1 and FVC were inversely associated with NT-proBNP and cTnT, although the association between FEV1 and incident HF remained after adjustment for NT-proBNP and cTnT. Compared with normal subjects (FEV1/FVC ≥0.70 and FVC≥80%), moderate or severe (FEV1/FVC <0.70 and FEV1 <80%) airflow obstruction was independently associated with HF ((adjusted relative risk 1.59 (1.08 to 2.33)). Airflow restriction (FEV1/FVC ≥0.70 and FVC <80%) was not independently associated with HF. Conclusions Reduced FEV1 reflecting airflow obstruction is associated with cardiac dysfunction and increased risk of incident HF in older men. PMID:26811343
Fonseca, W; Lucey, K; Jang, S; Fujimura, K E; Rasky, A; Ting, H-A; Petersen, J; Johnson, C C; Boushey, H A; Zoratti, E; Ownby, D R; Levine, A M; Bobbit, K R; Lynch, S V; Lukacs, N W
2017-11-01
Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii supplementation reduced airway T helper type 2 cytokines and dendritic cell (DC) function, increased regulatory T cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone marrow-derived DCs (BMDCs) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T-cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice or with wild-type derived BMDCs pretreated with plasma from L. johnsonii-supplemented mice reduced airway pathological responses to infection in recipient animals. Thus L. johnsonii supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Lisa A.; California National Primate Research Center, University of California, Davis, CA 95616; Gerriets, Joan E.
2009-04-01
The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone + HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air;more » animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone + HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone + HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone + HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.« less
Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients.
Seys, Sven F; Scheers, Hans; Van den Brande, Paul; Marijsse, Gudrun; Dilissen, Ellen; Van Den Bergh, Annelies; Goeminne, Pieter C; Hellings, Peter W; Ceuppens, Jan L; Dupont, Lieven J; Bullens, Dominique M A
2017-02-23
Asthma is characterized by a heterogeneous inflammatory profile and can be subdivided into T(h)2-high and T(h)2-low airway inflammation. Profiling of a broader panel of airway cytokines in large unselected patient cohorts is lacking. Patients (n = 205) were defined as being "cytokine-low/high" if sputum mRNA expression of a particular cytokine was outside the respective 10 th /90 th percentile range of the control group (n = 80). Unsupervised hierarchical clustering was used to determine clusters based on sputum cytokine profiles. Half of patients (n = 108; 52.6%) had a classical T(h)2-high ("IL-4-, IL-5- and/or IL-13-high") sputum cytokine profile. Unsupervised cluster analysis revealed 5 clusters. Patients with an "IL-4- and/or IL-13-high" pattern surprisingly did not cluster but were equally distributed among the 5 clusters. Patients with an "IL-5-, IL-17A-/F- and IL-25- high" profile were restricted to cluster 1 (n = 24) with increased sputum eosinophil as well as neutrophil counts and poor lung function parameters at baseline and 2 years later. Four other clusters were identified: "IL-5-high or IL-10-high" (n = 16), "IL-6-high" (n = 8), "IL-22-high" (n = 25). Cluster 5 (n = 132) consists of patients without "cytokine-high" pattern or patients with only high IL-4 and/or IL-13. We identified 5 unique asthma molecular phenotypes by biological clustering. Type 2 cytokines cluster with non-type 2 cytokines in 4 out of 5 clusters. Unsupervised analysis thus not supports a priori type 2 versus non-type 2 molecular phenotypes. www.clinicaltrials.gov NCT01224938. Registered 18 October 2010.
Adam8 Limits the Development of Allergic Airway Inflammation in Mice
Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.
2013-01-01
To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189
Bakker, Jessie P; Neill, Alister M; Campbell, Angela J
2012-09-01
This single-blinded, randomized, controlled pilot study aimed to investigate whether there is a difference between nasal and oronasal masks in therapeutic continuous positive airway pressure (CPAP) requirement, residual disease, or leak when treating obstructive sleep apnea (OSA) and if differences were related to measures of upper airway size. Patients with severe OSA currently using CPAP at ≥4 h/night with a nasal mask were examined (including Mallampati scale, incisal relationship, and mandibular protrusion) and then randomized to receive auto-positive airway pressure (PAP) or fixed CPAP at a manually titrated pressure for 1 week each at home, with immediate crossover. Within each week, a nasal mask and two oronasal masks were to be used for two or three nights each in random order. Data were downloaded from the device. Twelve patients completed the trial (mean ± SD AHI 59.8 ± 28.6 events/h; CPAP 11.1 ± 3.2 cmH(2)O; BMI 37.7 ± 5.0 kg/m(2)). During auto-PAP, the median 95th percentile pressure delivered with all masks was within 0.5 cmH(2)O (p > 0.05). During CPAP, median residual AHI was 0.61 (IQR = 1.18) for the nasal mask, 1.70 (IQR = 4.04) for oronasal mask 1, and 2.48 (IQR = 3.74) for oronasal mask 2 (p = 0.03). The 95th percentile leak was lowest with the nasal mask during both CPAP and auto-PAP (both p < 0.01). Differences in pressure or residual disease were not related to measures of upper airway shape or body habitus. In obese OSA patients changing from a nasal to oronasal mask increased leak and residual AHI but did not affect the therapeutic pressure requirement. The findings of the current study highlight mask leak as the major difficulty in the use of oronasal masks.
Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.
1990-01-01
1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168
Mjösberg, Jenny; Spits, Hergen
2012-05-01
Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Henderson Jr, William R.; Ye, Xin; Lai, Ying; Ni, Zhanglin; Bollinger, James G.; Tien, Ying-Tzang; Chi, Emil Y.; Gelb, Michael H.
2013-01-01
Background Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible – in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells. Methodology and Principal Findings The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA2-V−/− mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V−/− mice diminishes Th2 cytokine responses in the airways. Conclusions This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders. PMID:23451035
1982-06-02
simultaneous pleural anI mouth pressure data the distensibility of airway walls were computable also. In the absence of other non-invasive procedures for...measurement of airway distensions and distensibility , we have compared our results with data gathered from human autopsy material and found adequate...coupled equations of motion of the blood, the muscular heart wall, and the heart valve. The results of such a calculation constitute a prediction of
Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model
Toledo, AC; Sakoda, CPP; Perini, A; Pinheiro, NM; Magalhães, RM; Grecco, S; Tibério, IFLC; Câmara, NO; Martins, MA; Lago, JHG; Prado, CM
2013-01-01
Background and Purpose Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice. Experimental Approach Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg–1 per mice) or dexamethasone (5 mg kg–1 per mice) daily beginning from 24th to 29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-α, IFN-γ and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry. Key Results We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation. Conclusions and Implications These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma. PMID:23170811
Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F
2007-12-01
Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At <0.5 mg/kg, these LXA4 analogs reduced leukocyte trafficking into the lung by >50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.
Cheng, Sheng; Chen, Huilong; Wang, Aili; Bunjhoo, Hansvin; Cao, Yong; Xie, Jungang; Xu, Yongjian; Xiong, Weining
2016-12-01
Tc17 cells are interleukin (IL)-17-producing CD8 + T cells and have been found to participate in the development of allergic asthma. Interleukin-23 is a cytokine that may be involved in modulating the IL-17 response via Th17 cells. This study aimed to investigate whether IL-23 also has immunomodulatory effects on Tc17 cells. An allergic asthmatic mouse model was induced by sensitizing and challenging with ovalbumin (OVA). Anti-IL-23 antibody was administered intratracheally before challenge to the OVA-induced asthmatic mouse model. Airway hyperresponsiveness, lung inflammation, Tc17 cell percentages and IL-17 level in the lung tissue homogenate were measured. Anti-IL-23 treatment reduced airway hyperresponsiveness (Rn 2.471 ±0.5077 vs. 4.051 ±0.2334, p < 0.05), inflammatory cell infiltration in bronchoalveolar lavage fluid (eosinophils 140.0 ±9.869 vs. 222.4 ±31.55, p < 0.05, neutrophils 75.93 ±6.745 vs. 127.4 ±19.73, p < 0.05), airway inflammation and mucus secretion. Treatment with anti-IL-23 antibody also markedly reduced IL-17 level (398.1 ±28.74 vs. 590.6 ±36.13, p < 0.01) and percentage of Th17 and Tc17 cells in lung tissue homogenate (4.200 ±0.1581 vs. 9.314 ±1.027, p < 0.01 and 2.852 ±0.2566 vs. 5.588 ±0.3631, p < 0.01, Th17 and Tc17 cells respectively). Our data suggest that the IL-23/Tc17 cell axis may be involved in the pathogenesis of asthma as the complement of IL-23/Th17 cells.
Toxoplasma gondii infection induces suppression in a mouse model of allergic airway inflammation.
Fenoy, Ignacio M; Chiurazzi, Romina; Sánchez, Vanesa R; Argenziano, Mariana A; Soto, Ariadna; Picchio, Mariano S; Martin, Valentina; Goldman, Alejandra
2012-01-01
Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-β and CD4(+)FoxP3(+) cells.
De Grove, Katrien C; Provoost, Sharen; Hendriks, Rudi W; McKenzie, Andrew N J; Seys, Leen J M; Kumar, Smitha; Maes, Tania; Brusselle, Guy G; Joos, Guy F
2017-01-01
Although the prominent role of T H 2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. We sought to investigate the relative contribution of ILC2 and adaptive T H 2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. Wild-type, Gata-3 +/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα) fl/fl IL7R Cre (ILC2-deficient), and recombination-activating gene (Rag) 2 -/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and T H 2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and T H 2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and T H 2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2 -/- mice. These data indicate that dysregulation of ILC2s and T H 2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.
Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien
2013-09-01
To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.
Hong, Wei-Sheng; Chen, Yen-Po; Dai, Ting-Yeu; Huang, I-Nung; Chen, Ming-Ju
2011-08-24
In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.
Kato, Takuma; Tada-Oikawa, Saeko; Wang, Linan; Murata, Mariko; Kuribayashi, Kagemasa
2013-11-15
In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen, but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Takuma, E-mail: katotaku@doc.medic.mie-u.ac.jp; Tada-Oikawa, Saeko; Wang, Linan
In the past few decades, there has been a significant increase in incidence of allergic diseases. The hygiene hypothesis may provide some clues to explain this rising trend, but it may also be attributable to other environmental factors that exert a proallergic adjuvant effects. However, there is limited information on the risks of developing allergic asthma and related diseases through the ingestion of environmental chemicals found in food contaminants. In the present study, we have shown that oral administration of tributyltin, used as a model environmental chemical, induced oxidative-stress status in the bronchial lymph node, mesenteric lymph node and spleen,more » but not in the lung, where the initial step of allergic asthma pathogenesis takes place. Mice exposed to tributyltin exhibited heightened Th2 immunity to the allergen with more severe airway inflammation. Tributyltin also induced Treg cells apoptosis preferentially over non-Treg cells. All these effects of tributyltin exposure were canceled by the administration of glutathione monoethyl ester. Meanwhile, tributyltin did not affect airway inflammation of mice transferred with allergen-specific Th2 cells. Collectively, these results suggest that tributyltin exerts its pathological effect during the sensitization phase through oxidative stress that enhances the development of allergic diseases. The current study dissects the pathogenic role of oxidative stress induced by oral exposure to an environmental chemical during the sensitization phase of allergic airway inflammation and would be important for developing therapeutics for prevention of allergic diseases. - Highlights: • Oral exposure to TBT exacerbates airway inflammation. • TBT induces oxidative stress in secondary lymphoid organs, but not in the lung. • TBT preferentially induces regulatory T cell apoptosis over non-Treg cells. • TBT does not enhance pre-existing airway inflammation in sensitized mice. • Chemicals in food contaminants contribute to allergic asthma via oxidative stress.« less
Novel measurements of the length of the subglottic airway in infants and young children.
Sirisopana, Metee; Saint-Martin, Christine; Wang, Ning Nan; Manoukian, John; Nguyen, Lily H P; Brown, Karen A
2013-08-01
To date, the lengths of the subglottic and tracheal airway segments have been measured from autopsy specimens. Images of the head and neck obtained from computerized tomography (CT) provide an alternate method. Our objective in this study was to identify anatomic landmarks from CT scans in infants and young children to estimate the lengths of the subglottic and tracheal airway segments and to correlate these lengths with age. We performed a retrospective analysis of CT images of the neck for various diagnostic indications in children ≤3 years. We obtained planes of reconstruction at the level of the vocal cords (VCs), cricoid cartilage, and carina (C) which were parallel to each other and perpendicular to sagittal long axis of the trachea. The lengths of the subglottic airway (LengthSG) and total length of the laryngotracheal airway (LengthVC-C) were measured from the distance between, respectively, the VC versus cricoid cartilage and the VC versus C planes of reconstruction. Tracheal length was then calculated as the difference between LengthVC-C and LengthSG. Fifty-six children met the inclusion criteria. There were 29 boys. The median weight was 10.7 kg (range 3.1-19.0 kg). Regression analysis yielded mean LengthSG (mm) = 7.8 + 0.03·corrected age (months), r(2) = 0.07, P = 0.056; lower and upper 95% confidence interval for β = 0.03 were -0.001 and 0061. The mean LengthSG was 8.4 mm with an SD of 1.4 mm. The 95th percentile for LengthSG was 10.8 mm, and the 5% to 95% interquartile range was 4.9 mm. The estimate for the 95% confidence interval of the 95th percentile was between 10.2 and 11.3 mm. The LengthVC-C increased with age: mean LengthVC-C (cm) = 5.3 + 0.05·corrected age (months), r(2) = 0.7, P < 0.001. Tracheal length also increased with age: mean tracheal length (cm) = 4.5 + 0.05·corrected age (months), r(2) = 0.6, P < 0.001. We report a novel estimate method for the lengths of the airway segments between the VC and C in 56 infants and young children and suggest that the growth characteristics of the subglottic and tracheal airway may differ.
Confidential inquiry into quality of care before admission to intensive care
McQuillan, Peter; Pilkington, Sally; Allan, Alison; Taylor, Bruce; Short, Alasdair; Morgan, Giles; Nielsen, Mick; Barrett, David; Smith, Gary
1998-01-01
Objective: To examine the prevalence, nature, causes, and consequences of suboptimal care before admission to intensive care units, and to suggest possible solutions. Design: Prospective confidential inquiry on the basis of structured interviews and questionnaires. Setting: A large district general hospital and a teaching hospital. Subjects: A cohort of 100 consecutive adult emergency admissions, 50 in each centre. Main outcome measures: Opinions of two external assessors on quality of care especially recognition, investigation, monitoring, and management of abnormalities of airway, breathing, and circulation, and oxygen therapy and monitoring. Results: Assessors agreed that 20 patients were well managed (group 1) and 54 patients received suboptimal care (group 2). Assessors disagreed on quality of management of 26 patients (group 3). The casemix and severity of illness, defined by the acute physiology and chronic health evaluation (APACHE II) score, were similar between centres and the three groups. In groups 1, 2, and 3 intensive care mortalities were 5 (25%), 26 (48%), and 6 (23%) respectively (P=0.04) (group 1 versus group 2, P=0.07). Hospital mortalities were 7 (35%), 30 (56%), and 8 (31%) (P=0.07) and standardised hospital mortality ratios (95% confidence intervals) were 1.23 (0.49 to 2.54), 1.4 (0.94 to 2.0), and 1.26 (0.54 to 2.48) respectively. Admission to intensive care was considered late in 37 (69%) patients in group 2. Overall, a minimum of 4.5% and a maximum of 41% of admissions were considered potentially avoidable. Suboptimal care contributed to morbidity or mortality in most instances. The main causes of suboptimal care were failure of organisation, lack of knowledge, failure to appreciate clinical urgency, lack of supervision, and failure to seek advice. Conclusions: The management of airway, breathing, and circulation, and oxygen therapy and monitoring in severely ill patients before admission to intensive care units may frequently be suboptimal. Major consequences may include increased morbidity and mortality and requirement for intensive care. Possible solutions include improved teaching, establishment of medical emergency teams, and widespread debate on the structure and process of acute care. Key messages Suboptimal management of oxygen therapy, airway, breathing, circulation, and monitoring before admission to intensive care occurred in over half of a consecutive cohort of acute adult emergency patients. This may be associated with increased morbidity, mortality, and avoidable admissions to intensive care At least 39% of acute adult emergency patients were admitted to intensive care late in the clinical course of the illness Major causes of suboptimal care included failure of organisation, lack of knowledge, failure to appreciate clinical urgency, lack of supervision, and failure to seek advice A medical emergency team may be useful in responding pre-emptively to the clinical signs of life threatening dysfunction of airway, breathing, and circulation, rather than relying on a cardiac arrest team The structure and process of acute care and their importance require major re-evaluation and debate PMID:9632403
Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin
2018-06-01
Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang
2016-01-01
Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention. PMID:26872019
Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.
Wang, Lingwei; Li, Jie; Zhang, Jian; He, Qi; Weng, Xuanwen; Huang, Yanmei; Guan, Minjie; Qiu, Chen
2017-02-26
Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) -5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNA and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Karelina, T; Voronova, V; Demin, O; Colice, G
2016-01-01
Emerging T‐helper type 2 (Th2) cytokine‐based asthma therapies, such as tralokinumab, lebrikizumab (anti‐interleukin (IL)‐13), and mepolizumab (anti‐IL‐5), have shown differences in their blood eosinophil (EOS) response. To better understand these effects, we developed a mathematical model of EOS dynamics. For the anti‐IL‐13 therapies, lebrikizumab and tralokinumab, the model predicted an increase of 30% and 10% in total and activated EOS in the blood, respectively, and a decrease in the total and activated EOS in the airways. The model predicted a rapid decrease in total and activated EOS levels in blood and airways for the anti‐IL‐5 therapy mepolizumab. All model‐based predictions were consistent with published clinical observations. The modeling approach provided insights into EOS response after treatment with Th2‐targeted therapies, and supports the hypothesis that an increase in blood EOS after anti‐IL‐13 therapy is part of the pharmacological action of these therapies. PMID:27885827
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.
Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G
2011-01-01
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.
Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E
2016-05-02
Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma.
Pelly, Victoria S; Coomes, Stephanie M; Kannan, Yashaswini; Gialitakis, Manolis; Entwistle, Lewis J; Perez-Lloret, Jimena; Czieso, Stephanie; Okoye, Isobel S; Rückerl, Dominik; Allen, Judith E; Brombacher, Frank; Wilson, Mark S
2017-06-05
Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4 + Foxp3 + regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex-T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3 + cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus Through selective deletion of Il4ra on Foxp3 + cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell-mediated suppression. © 2017 Pelly et al.
Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths
Coomes, Stephanie M.; Kannan, Yashaswini; Entwistle, Lewis J.; Perez-Lloret, Jimena; Czieso, Stephanie
2017-01-01
Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression. PMID:28507062
Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert
2014-04-01
Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.
Peták, Ferenc; Fodor, Gergely H; Babik, Barna; Habre, Walid
2016-07-01
The contribution of the hematocrit (Hct) of the blood in the pulmonary vasculature to the overall lung mechanics has not been characterized. We therefore set out to establish how changes of the Hct level in the pulmonary circulation affect the airway and lung tissue viscoelastic properties. The Hct level of the blood in an isolated perfused rat lung model was randomly altered. Intermediate (26.5%), followed by low (6.6%) or normal (43.7%), Hct was set in two consecutive sequences. The pulmonary capillary pressure was maintained constant throughout the experiment, and the pulmonary hemodynamic parameters were monitored continuously. The airway resistance (Raw), the viscous (G) and elastic (H) parameters, and the hysteresivity (η = G/H) of the lung tissues were obtained from measurements of forced oscillatory input impedance data. Raw was not affected by the alterations of the Hct levels. As concerns the lung tissues, the decrease of Hct to intermediate or low levels resulted in close to proportional decreases in the viscoelastic parameters G [16.5 ± 7.7% (SD), 12.1 ± 9.5%, P < 0.005] and H (13.2 ± 8.6%, 10.8 ± 4.7%, P < 0.001). No significant changes in η were detected in a wide range of Hct, which indicates that coupled processes cause alterations in the resistive and elastic properties of the lungs following Hct changes in the pulmonary circulation. The diminishment of the viscous and elastic parameters of the pulmonary parenchyma following a reduction of blood Hct demonstrates the significant contribution of the red blood cells to the overall lung viscoelasticity. Copyright © 2016 the American Physiological Society.
Christenson, Stephanie A; Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Hiemstra, Pieter S; Postma, Dirkje S; Lenburg, Marc E; Spira, Avrum; Woodruff, Prescott G
2015-04-01
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids. To determine whether asthma-associated gene signatures are increased in COPD and associated with asthma-related features. We compared disease-associated airway epithelial gene expression alterations in an asthma cohort (n = 105) and two COPD cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S) score, a gene expression metric induced in Th2-high asthma, was evaluated in these COPD cohorts. The T2S score was correlated with asthma-related features and response to corticosteroids in COPD in a randomized, placebo-controlled trial, the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD; n = 89). The 200 genes most differentially expressed in asthma versus healthy control subjects were enriched among genes associated with more severe airflow obstruction in these COPD cohorts (P < 0.001), suggesting significant gene expression overlap. A higher T2S score was associated with decreased lung function (P < 0.001), but not asthma history, in both COPD cohorts. Higher T2S scores correlated with increased airway wall eosinophil counts (P = 0.003), blood eosinophil percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and improvement in hyperinflation after corticosteroid treatment (P = 0.019) in GLUCOLD. These data identify airway gene expression alterations that can co-occur in asthma and COPD. The association of the T2S score with increased severity and "asthma-like" features (including a favorable corticosteroid response) in COPD suggests that Th2 inflammation is important in a COPD subset that cannot be identified by clinical history of asthma.
Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Hiemstra, Pieter S.; Postma, Dirkje S.; Lenburg, Marc E.; Spira, Avrum; Woodruff, Prescott G.
2015-01-01
Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids. Objectives: To determine whether asthma-associated gene signatures are increased in COPD and associated with asthma-related features. Methods: We compared disease-associated airway epithelial gene expression alterations in an asthma cohort (n = 105) and two COPD cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S) score, a gene expression metric induced in Th2-high asthma, was evaluated in these COPD cohorts. The T2S score was correlated with asthma-related features and response to corticosteroids in COPD in a randomized, placebo-controlled trial, the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD; n = 89). Measurements and Main Results: The 200 genes most differentially expressed in asthma versus healthy control subjects were enriched among genes associated with more severe airflow obstruction in these COPD cohorts (P < 0.001), suggesting significant gene expression overlap. A higher T2S score was associated with decreased lung function (P < 0.001), but not asthma history, in both COPD cohorts. Higher T2S scores correlated with increased airway wall eosinophil counts (P = 0.003), blood eosinophil percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and improvement in hyperinflation after corticosteroid treatment (P = 0.019) in GLUCOLD. Conclusions: These data identify airway gene expression alterations that can co-occur in asthma and COPD. The association of the T2S score with increased severity and “asthma-like” features (including a favorable corticosteroid response) in COPD suggests that Th2 inflammation is important in a COPD subset that cannot be identified by clinical history of asthma. PMID:25611785
Magen, Eli; Feldman, Arie; Cohen, Ziona; Alon, Dora Ben; Minz, Evegeny; Chernyavsky, Alexey; Linov, Lina; Mishal, Joseph; Schlezinger, Menacham; Sthoeger, Zev
2010-02-01
A possible link between chronic vascular inflammation and arterial hypertension is now an object of intensive studies. To compare Th1/Th2/Th17 cells-related cytokines, circulating endothelial progenitor cells (EPC), and endothelial function in subjects with resistant arterial hypertension (RAH) and controlled arterial hypertension (CAH). Blood pressure was measured by electronic sphygmomanometer. EPC were identified as CD34+/CD133+/kinase insert domain receptor (KDR)+ cells by flow cytometry. Th1/Th2/Th17 cells-related cytokines were identified using the Human Th1/Th2/Th17 Cytokines MultiAnalyte ELISArray Kit. Endothelium-dependent (FMD) vasodilatation of brachial artery was measured by Doppler ultrasound scanning. RAH group (n = 20) and CAH group (n = 20) and 17 healthy individuals (control group) were recruited. In the RAH group, lower blood levels of EPC number (42.4 +/- 16.7 cells/mL) and EPC% (0.19 +/- 0.08%) were observed than in the CAH group (93.1 +/- 88.7 cells/mL; P = 0.017; 0.27 +/- 0.17; P = 0.036) and control group (68.5 +/- 63.6 cells/mL; P < 0.001; 0.28 +/- 0.17%; P = 0.003), respectively. Plasma transforming growth factor-beta1 levels were significantly higher in the RAH group (1767 +/- 364 pg/mL) than in the CAH group (1292 +/- 349; P < 0.001) and in control group (1203 +/- 419 pg/mL; P < 0.001). In the RAH group, statistically significant negative correlation was observed between systolic blood pressure and EPC% (r = -0.72, P < 0.01). FMD in the RAH group was significantly lower (5.5 +/- 0.8%) than in the CAH group (9.2 +/- 1.4; P < 0.001) and in healthy controls (10.1 +/- 1.1%; P < 0.001). RAH is characterized by reduced circulating EPC, substantial endothelial dysfunction, and increased plasma transforming growth factor-beta1 levels.
Bronchial circulation in the marsupial opossum, Didelphis marsupialis.
Bernard, S L; Luchtel, D L; Glenny, R W; Lakshminarayan, S
1996-08-01
This study characterizes the existence of a bronchial circulation in a marsupial, an animal which does not undergo placental development and does not have a ductus arteriosus. Direct perfusion of the lung by the pulmonary vasculature during the fetal development of opossums may occur, potentially eliminating the need for a bronchial circulation. We used radio- and fluorescent-labeled microspheres in conjunction with postmortem intravascular casting to determine if opossums have a systemic (bronchial) blood supply to the lung (n = 9). Gross postmortem examination of the intravascular casts showed a well-developed common bronchial artery. The histological distribution pattern of fluorescent microspheres was primarily to the airways. A few fluorescent microspheres were observed in the alveolar capillaries, indicating that a precapillary bronchial-to-pulmonary anastomosis exists in the opossum. Using the reference flow technique, total bronchial blood flow to the left lung averaged 0.95 +/- 0.58 SE ml/min. The presence of a bronchial circulation in the opossum suggests that it is more than a vestigial structure from embryonic development, potentially supporting its functional importance for carrying nutrients to the airway.
Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ
2015-01-01
Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788
Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J
2015-09-01
Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida
2013-01-01
Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607
Commensal bacterial–derived signals regulate basophil hematopoiesis and allergic inflammation
Hill, David A.; Siracusa, Mark C.; Abt, Michael C.; Kim, Brian S.; Kobuley, Dmytro; Kubo, Masato; Kambayashi, Taku; LaRosa, David F.; Renner, Ellen D.; Orange, Jordan S.; Bushman, Frederic D.; Artis, David
2012-01-01
Commensal bacteria that colonize mammalian barrier surfaces are reported to influence T helper type 2 (TH2) cytokine–dependent inflammation and susceptibility to allergic disease, although the mechanisms that underlie these observations are poorly understood. In this report, we identify that deliberate alteration of commensal bacterial populations via oral antibiotic treatment resulted in elevated serum immunoglobulin E (IgE) levels, increased steady–state circulating basophil populations, and exaggerated basophil–mediated TH2 cell responses and allergic inflammation. Elevated serum IgE levels correlated with increased circulating basophil populations in mice and subjects with hyperimmunoglobulinemia E syndrome. Furthermore, B cell–intrinsic expression of MyD88 was required to limit serum IgE levels and circulating basophil populations in mice. Commensal–derived signals were found to influence basophil development by limiting proliferation of bone marrow–resident precursor populations. Collectively, these results identify a previously unrecognized pathway through which commensal–derived signals influence basophil hematopoiesis and susceptibility to TH2 cytokine–dependent inflammation and allergic disease. PMID:22447074
Yoneda, Mitsuhiro; Xu, Lei; Kajiyama, Hiroaki; Kawabe, Shuko; Paiz, Jorge; Ward, Jerrold M; Kimura, Shioko
2016-01-01
Secretoglobin (SCGB) 3A2, a novel, lung-enriched, cytokine-like, secreted protein of small molecular weight, was demonstrated to exhibit various biological functions including anti-inflammatory, antifibrotic and growth-factor activities. Anti-inflammatory activity was uncovered using the ovalbumin-induced allergic airway inflammation model. However, further validation of this activity using knockout mice in a different allergic inflammation model is necessary in order to establish the antiallergic inflammatory role for this protein. Scgb3a2-null (Scgb3a2-/-) mice were subjected to nasal inhalation of Dermatophagoides pteronyssinus extract for 5 days/week for 5 consecutive weeks; control mice received nasal inhalation of saline as a comparator. Airway inflammation was assessed by histological analysis, the number of inflammatory cells and various Th2-type cytokine levels in the lungs and bronchoalveolar lavage fluids by qRT-PCR and ELISA, respectively. Exacerbated inflammation was found in the airway of Scgb3a2-/- mice subjected to house dust mite (HDM)-induced allergic airway inflammation compared with saline-treated control groups. All the inflammation end points were increased in the Scgb3a2-/- mice. The Ccr4 and Ccl17 mRNA levels were higher in HDM-treated lungs of Scgb3a2-/- mice than wild-type mice or saline-treated Scgb3a2-/- mice, whereas no changes were observed for Ccr3 and Ccl11 mRNA levels. These results demonstrate that SCGB3A2 has an anti-inflammatory activity in the HDM-induced allergic airway inflammation model, in which SCGB3A2 may modulate the CCR4-CCL17 pathway. SCGB3A2 may provide a useful tool to treat allergic airway inflammation, and further studies on the levels and function of SCGB3A2 in asthmatic patients are warranted. © 2016 S. Karger AG, Basel.
Airport and airway trust fund issues in the 106th Congress
DOT National Transportation Integrated Search
2000-11-02
Legislation that modifies the budget treatment of the airport and airway trust fund (aviation trust fund) was reported from Conference Committee and passed by the Senate on March 8, 2000. The House is expected to take up this legislation, the Wendell...
Koppel, Jonathan; Brown, Adam D; Stone, Charles B; Coman, Alin; Hirst, William
2013-01-01
We examined and compared the predictors of autobiographical memory (AM) consistency and event memory accuracy across two publicly documented yet disparate public events: the inauguration of Barack Obama as the 44th president of the United States on January 20th 2009, and the emergency landing of US Airways Flight 1549, off the coast of Manhattan, on January 15th 2009. We tracked autobiographical and event memories for both events, with assessments taking place within 2½ weeks of both events (Survey 1), and again between 3½ and 4 months after both events (Survey 2). In a series of stepwise regressions we found that the psychological variables of recalled emotional intensity and personal importance/centrality predicted AM consistency and event memory accuracy for the inauguration. Conversely, the rehearsal variables of covert rehearsal and media attention predicted, respectively, AM consistency and event memory accuracy for the plane landing. We conclude from these findings that different factors may underlie autobiographical and event memory for personally and culturally significant events (e.g., the inauguration), relative to noteworthy, yet less culturally significant, events (e.g., the plane landing).
Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingwei; Li, Jie; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou
Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) −5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNAmore » and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. - Highlights: • Penh, airway remodeling and the gene expression and protein of TRPC3 are increased in OVA-sensitized mice. • Inhibition of TRPC3 suppresses the OVA-sensitized mice Penh and airway remodeling. • Inhibition of TRPC3 decreases OVA-sensitized mice ASMC proliferation and migration.« less
Wu, Wei; Xu, Yuzhu; He, Xinliang; Lu, Yan; Guo, Yali; Yin, Zhuoran; Xie, Jungang; Zhao, Jianping
2014-12-01
Although it is recognized that IL-33 plays a key role in the onset of asthma, it is currently unclear whether IL-33 acts on any other target cells besides mast cells and Th2 cells in asthma. We investigated that whether airway smooth muscle cells (ASMCs) could contribute to asthma via stimulation with IL-33. To create a mouse model of acute asthma, murine ASMCs were isolated and cultured in vitro with IL-33. The ASMCs were divided into two groups, ASMCs from normal mice and ASMCs from ovalbumin-sensitized mice. The release of mouse KC was analyzed by PCR and ELISA. Immunocytochemical Staining of murine ASMCs for ST2 and IL-1RAcP was performed. IL-33 promoted KC expression, both in terms of mRNA and protien levels, in ASMCs from ovalbumin-sensitized mice. ST2 and IL-1RAcP were expressed in the membrane of ASMCs in ovalbumin-sensitized mice. IL-33 may contribute to the inflammation in the airways by acting on airway smooth muscle cells. IL-33 and ST2 may play important roles in allergic bronchial asthma.
Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg
2017-07-01
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin
2017-05-15
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD. Copyright © 2017 American Society for Microbiology.
Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing
2017-01-01
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8+ lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD. PMID:28275186
Yu, Li; Liu, Qi; Canning, Brendan J
2018-03-05
Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.
Park, Da-Eun; Woo, Yeon Duk; Kim, Hye Young; Kim, Hang-Rae; Cho, Sang-Heon; Min, Kyung-Up; Kang, Hye-Ryun; Chang, Yoon-Seok
2015-01-01
Background Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood. Objective This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma. Methods Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro. Results The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro. Conclusion These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide. PMID:25905462
Sul, Bora; Wallqvist, Anders; Morris, Michael J; Reifman, Jaques; Rakesh, Vineet
2014-09-01
Obstructive lung diseases in the lower airways are a leading health concern worldwide. To improve our understanding of the pathophysiology of lower airways, we studied airflow characteristics in the lung between the 8th and the 14th generations using a three-dimensional computational fluid dynamics model, where we compared normal and obstructed airways for a range of breathing conditions. We employed a novel technique based on computing the Pearson׳s correlation coefficient to quantitatively characterize the differences in airflow patterns between the normal and obstructed airways. We found that the airflow patterns demonstrated clear differences between normal and diseased conditions for high expiratory flow rates (>2300ml/s), but not for inspiratory flow rates. Moreover, airflow patterns subjected to filtering demonstrated higher sensitivity than airway resistance for differentiating normal and diseased conditions. Further, we showed that wall shear stresses were not only dependent on breathing rates, but also on the distribution of the obstructed sites in the lung: for the same degree of obstruction and breathing rate, we observed as much as two-fold differences in shear stresses. In contrast to previous studies that suggest increased wall shear stress due to obstructions as a possible damage mechanism for small airways, our model demonstrated that for flow rates corresponding to heavy activities, the wall shear stress in both normal and obstructed airways was <0.3Pa, which is within the physiological limit needed to promote respiratory defense mechanisms. In summary, our model enables the study of airflow characteristics that may be impractical to assess experimentally. Published by Elsevier Ltd.
Oriss, Timothy B.; Raundhal, Mahesh; Morse, Christina; Huff, Rachael E.; Das, Sudipta; Hannum, Rachel; Gauthier, Marc C.; Scholl, Kathryn L.; Chakraborty, Krishnendu; Nouraie, Seyed M.; Wenzel, Sally E.; Ray, Prabir
2017-01-01
Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1–dominated (IFN-γ–dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ– and IL-17–producing CD4+ T cells and IRF5–/– mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics. PMID:28515358
Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...
Rebamipide suppresses mite-induced asthmatic responses in NC/Nga mice.
Murakami, Ikuo; Zhang, Ran; Kubo, Masayuki; Nagaoka, Kenjiro; Eguchi, Eri; Ogino, Keiki
2015-10-15
Allergic asthma caused by continuous allergen exposure evokes allergen-specific Th2 responses and is characterized by chronic airway inflammation and hyperresponsiveness. A previous report showed that rebamipide improved asthmatic symptoms in an ovalbumin/trypsin mice model. However, it is still unclear how rebamipide exerts its effects in asthma. In this study, rebamipide improved the asthmatic responses induced by mite exposure in NC/Nga mice, revealing the mechanism of this therapeutic effect. Rebamipide suppressed the infiltration of eosinophils into the airways and lung as well as attenuating the production of reactive oxygen species in tissues. In addition to these anti-inflammatory effects, rebamipide inhibited the production of IL-33, a member of the IL-1 family that drives the subsequent production of Th2-associated cytokines. These observations identify the point where rebamipide exerts its suppressive action on asthma and suggest that rebamipide has therapeutic potential in preventing mite-induced asthma. Copyright © 2015 the American Physiological Society.
Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations.
Chang, Hun Soo; Lee, Tae-Hyeong; Jun, Ji Ae; Baek, Ae Rin; Park, Jong-Sook; Koo, So-My; Kim, Yang-Ki; Lee, Ho Sung; Park, Choon-Sik
2017-01-01
Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Circulating FABP4 and FABP5 levels are differently linked to OSA severity and treatment.
Català, Raquel; Cabré, Anna; Hernández-Flix, Salvador; Ferré, Raimón; Sangenís, Sandra; Plana, Núria; Texidó, Anna; Masana, Lluís
2013-12-01
To evaluate circulating adipocyte and epidermal fatty acid-binding protein (FABP4 and FABP5) concentrations in patients with obstructive sleep apnea (OSA), as well as the effects of continuous positive airway pressure (CPAP) treatment. Our cross-sectional study included 125 patients. After polysomnography, 58 participants met the criteria for CPAP treatment and were included in a closed cohort study of 8 weeks of CPAP treatment. General anthropometric and biochemical data and circulating FABP4 and FABP5 levels were determined in all patients at baseline and after CPAP treatment in those receiving this therapy. Circulating FABP4 but not FABP5 levels were higher in patients with OSA (P = 0.003). FABP4 but not FABP5 values were associated with parameters of OSA severity independently of age, gender, adiposity and insulin resistance (P < 0.05). FABP4 but not FABP5 concentrations were determinants of OSA presence (OR: 1.11, P = 0.010) and severity (OR: 1.06, P = 0.020). After CPAP treatment, FABP4 levels decreased in the more severe patients (P = 0.019), while FABP5 levels increased in all patients (P < 0.001). FABP4 is directly associated with obstructive sleep apnea severity and did not change with continuous positive airway pressure treatment, while FABP5 was not associated with obstructive sleep apnea severity and increased with continuous positive airway pressure treatment. FABP4 and FABP5 have different associations with obstructive sleep apnea. FABP4 but not FABP5 could be considered a marker of metabolic alterations in obstructive sleep apnea patients.
SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation
Anagnostopoulou, Pinelopi; Riederer, Brigitte; Duerr, Julia; Michel, Sven; Binia, Aristea; Agrawal, Raman; Liu, Xuemei; Kalitzki, Katrin; Xiao, Fang; Chen, Mingmin; Schatterny, Jolanthe; Hartmann, Dorothee; Thum, Thomas; Kabesch, Michael; Soleimani, Manoocher; Seidler, Ursula; Mall, Marcus A.
2012-01-01
Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl–) secretion plays a role in the disease. However, the molecular mechanism underlying Cl– secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl– channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl– secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13–induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3′ UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl– channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl– secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging. PMID:22945630
Silibinin attenuates allergic airway inflammation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu
Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesismore » of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.« less
IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure
Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.
2017-01-01
Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice. PMID:28093832
The effect of glossopexy on weight velocity in infants with Pierre Robin syndrome.
Cozzi, Francesco; Totonelli, Giorgia; Frediani, Simone; Zani, Augusto; Spagnol, Lorna; Cozzi, Denis A
2008-02-01
In infants with Pierre Robin syndrome (PRS), mandibular distraction may be more advantageous than glossopexy as it not only relieves oropharyngeal airway obstruction but also reverses body growth retardation. Because no data are available on body weight velocity after glossopexy, we assessed longitudinally the body weight velocity in a cohort of children undergoing glossopexy. The records of 48 infants with PRS undergoing glossopexy after unsuccessful nonoperative treatment between 1981 and 2005 were reviewed. Weight measurements were analyzed at 4 time-points: at birth, on admission for glossopexy, on admission for lysis of lip-tongue adhesion (TLA), and at follow-up. Weight velocity was assessed using Tanner's tables. Adhesion dehiscence occurred in 9 patients (18.7%). Lip-tongue adhesion resolved airway compromise in 36 infants (75%). Release of TLA was accomplished in 34 patients. Data on weight velocity from birth to follow-up (mean, 5.57 +/- 0.59 years) were available for 31 patients. After glossopexy, mean body weight increased from the 9.7 +/- 2.6th to the 17.5 +/- 4.6th percentile (P > .05), whereas mean weight velocity increased from the 19.1 +/- 4.9th to the 74.2 +/- 4.7th percentile (P < .001). No temporal correlation was found between glossopexy and oropharyngeal dysphagia. In infants with PRS, glossopexy is a valid alternative to mandibular distraction because it does not cause decline in body growth.
Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A
2014-05-01
Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, J; Zhao, Q; Liu, B B; Wang, J; Xu, H B; Zhang, Y; Song, X M; He, B; Huang, W
2016-05-01
To investigate the effects of short-term exposure to traffic-related air pollution on airway oxidative stress and inflammation in chronic obstructive pulmonary diseases (COPD) patients. A panel of forty-five diagnosed COPD patients were recruited and followed with repeated measurements of biomarkers reflecting airway oxidative stress and inflammation in exhaled breath condensate (EBC), including nitrate and nitrite, 8-isoprostane, interleukin-8 and acidity of EBC (pH), between 5(th) September in 2014 and 26(th) May in 2015. The associations between air pollution and biomarkers were analyzed with mixed-effects models, controlling for confounding covariates. The concentration of PM2.5, black carbon, NO2 and number concentration of particles with diameter less than 100 nm (PNC100), and particles in size ranges between 100 nm to 200 nm (PNC100-200) during the first follow-up were (156.5±117.7), (10.7±0.7), (165.9±66.0)μg/m(3) and 397 521±96 712, 79 421±44 090 per cubic meter, respectively; the concentration were (67.9±29.6), (3.4±1.3), (126.1±10.9) μg/m(3) and (295 682±39 430), (24 693±12 369) per cubic meter, respectively during the second follow-up. The differences were of significance, with t value being 3.10, 4.42, 2.61, 4.02, 5.12, respectively and P value being 0.005,<0.001, 0.016, <0.001 and <0.001, respectively. In our COPD-patient panel, per interquartile range (IQR) increase in PNC100-200, we observed an increase of 65% (95% CI: 8%-152%) in nitrate and nitrite in EBC reflecting airway oxidative stress. For an IQR increase in PM2.5, black carbon and PNC100-200, respective increases of 0.17 ng/ml (95% CI: 0.02-0.33), 0.12 ng/ml (95% CI: 0.01-0.24) and 0.13 ng/ml (95% CI:0.02-0.24) in interleukin-8 in EBC reflecting airway inflammation were also observed. An IQR increase in ozone was also associated with a 0.24 (95%CI: 0.05-0.42) decrease in pH of EBC reflecting increased airway inflammation. No significant association observed between air pollution and 8-isoprostane in EBC in COPD patients. Our results suggested that short-term exposure to traffic-related air pollution was responsible for exacerbation of airway oxidative stress and inflammation in COPD patients.
Post, Sijranke; Heijink, Irene H.; Petersen, Arjen H.; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.
2014-01-01
Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif) ligand 17 (CCL17) and thymic stromal lymphopoietin (TSLP), were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT) and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM-driven allergic airway disease. PMID:24651123
Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc. E.; Dweik, Raed; Erzurum, Serpil C.
2016-01-01
Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge, and prior to airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and murine model of asthma. Exvivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wildtype mice transplanted with eotaxin-1/2 deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, while adoptive transfer of proangiogenic progenitor cells from wildtype mice in an atopic asthma model into the eotaxin-1/2 deficient mice led to angiogenesis and airway inflammation. The findings indicate that TH2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221
Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.
Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun
2018-01-01
In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.
Jordakieva, Galateja; Wallmann, Julia; Schmutz, René; Lemell, Patrick; Wegmann, Michael; Nittke, Thomas; Mittlböck, Martina; Fehrenbach, Heinz; Godnic-Cvar, Jasminka; Zieglmayer, René; Jensen-Jarolim, Erika
2014-01-01
Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i) sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii) grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC). BALB/c mice (n = 20) were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10) or the non-specific antigen ovalbumin (OVA) (n = 10). A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42) at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens. A rapid recruitment of erythrocytes to the lungs to compensate for hypoxia is a possible explanation for these findings.
Popov, T A; Petrova, D; Kralimarkova, T Z; Ivanov, Y; Popova, T; Peneva, M; Odzhakova, T; Ilieva, Y; Yakovliev, P; Lazarova, T; Georgiev, O; Hodzhev, V; Hodzheva, E; Staevska, M T; Dimitrov, V D
2013-12-01
In an attempt to establish how treatment with inhaled extra-fine beclomethasone/formoterol (I-EF-BDP/F) formulation differs from other combinations of inhaled corticosteroid (ICS) and long acting beta-agonist (LABA), we studied lung function and markers of airway inflammation upon switching to the extra-fine formulation and after 8 weeks of treatment with it. We carried out a real-life clinical observation of undercontrolled asthmatic patients switched over from dry powder inhalers of fluticasone/salmeterol and budesonide/formoterol to I-EF-BDP/F (Foster(®), Chiesi Farmaceutici S.p.A., Italy). The effects of 8-weeks of treatment were documented by means of visual analog scale (VAS), quality of life by Asthma Quality of Life Questionnaire (AQLQ), spirometry and markers of airway or systemic inflammation: exhaled breath temperature (EBT), blood eosinophils (Eos), and high sensitivity C-reactive protein (CRP). Before/after treatment differences between forced vital capacity percent of predicted (%FVC), a simple indicator of small airways involvement, were calculated and subjects were ranked accordingly to reflect the magnitude of the therapeutic response. Subjects above the 75th percentile (n = 15), "top responders", were then compared with those below the 25th percentile (n = 15) "poor responders". On average, the 59 patients completing the study (mean age ± SD 51 ± 12 years, 38 women) had significant improvement in VAS and QLQ scores at the end of the treatment period (49.1 ± 2.4 vs. 73.1 ± 2.05 and 146.1 ± 2.7 vs. 176.7.1 ± 3.4 respectively, P < 0.001), but not in the inflammatory indicators (EBT, CRP and Eos). However, when comparing the "top responders" with the "poor responders", significant improvement in these inflammatory indicators was observed: EBT significantly decreased from 34.04/mean/± 0.30/s.e.m./[°C] to 33.57 ± 0.33, P = 0.003, Eos in blood fell from 381.7 ± 91.2 [cells/μL] to 244.2 ± 43.2, P = 0.02. Before/after treatment differences in hsCRP decreased significantly in the top responders compared with the poor responders (Mann-Whitney test, P = 0.04). Asthmatic subjects who had the most improvement in FVC after transition to I-EF-BDP/F from other combined ICS/LABA preparations also demonstrated a significant decrease in some indicators of airway/systemic inflammation. These results support the notion that I-EF-BDP/F exerts an effect also at the level of the small airways through a reduction of the level of air trapping. Patients in whom inflammation of the small airways plays an important clinical role are the ones to derive most benefit from this small airways tailored treatment. However, improved compliance due to the "promise of a new drug" effect should also be considered as contributing to the treatment results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Omalizumab therapy is associated with reduced circulating basophil populations in asthmatic children
Hill, D.A.; Siracusa, M.; Ruymann, K.; Wojno, E.D. Tait; Artis, D.; Spergel, J.M.
2014-01-01
Basophils have been implicated in promoting the early development of TH2 cell responses in some murine models of TH2 cytokine-associated inflammation. However, the specific role of basophils in allergic asthma remains an active area of research. Recent studies in animal models and human subjects suggest that IgE may regulate the homeostasis of human basophil populations. Here, we examine basophil populations in children with severe asthma before and during therapy with the IgE directed monoclonal antibody omalizumab. Omalizumab therapy was associated with a significant reduction in circulating basophil numbers, a finding that was concurrent with improved clinical outcomes. The observation that circulating basophils are reduced following omalizumab therapy supports a mechanistic link between IgE levels and circulating basophil populations and may provide new insights into one mechanism by which omalizumab improves asthma symptoms. PMID:24611974
Aspergillus fumigatus viability drives allergic responses to inhaled conidia.
Nayak, Ajay P; Croston, Tara L; Lemons, Angela R; Goldsmith, W T; Marshall, Nikki B; Kashon, Michael L; Germolec, Dori R; Beezhold, Donald H; Green, Brett J
2018-04-13
Aspergillus fumigatus induced allergic airway disease has been shown to involve conidial germination in vivo but the immunological mechanisms remain uncharacterized. A subchronic murine exposure model was used to examine the immunological mediators that are regulated in response to either culturable or non-culturable A. fumigatus conidia. Female B6C3F1/N mice were repeatedly dosed via inhalation with 1 x 105 viable or heat inactivated conidia (HIC), twice a week for 13 weeks (26 exposures). Control mice inhaled HEPA-filtered air. The influence of A. fumigatus conidial germination on the pulmonary immunopathological outcomes was evaluated by flow cytometry analysis of cellular infiltration in the airways, assessment of lung mRNA expression, and quantitative proteomics and histopathology of whole lung tissue. Repeated inhalation of viable conidia, but not HIC, resulted in allergic inflammation marked by vascular remodeling, extensive eosinophilia, and accumulation of alternatively activated macrophages (AAMs) in the murine airways. More specifically, mice that inhaled viable conidia resulted in a mixed TH1 and TH2 (IL-13) cytokine response. Recruitment of eosinophils corresponded with increased Ccl11 transcripts. Furthermore, genes associated with M2 or alternatively activated macrophage polarization (e.g. Arg1, Chil3 and Retnla) were significantly upregulated in viable A. fumigatus exposed mice. In mice inhaling HIC, CD4+ T cells expressing IFN-γ (TH1) dominated the lymphocytic infiltration. Quantitative proteomics of the lung revealed metabolic reprogramming accompanied by mitochondrial dysfunction and endoplasmic reticulum stress stimulated by oxidative stress from repetitive microbial insult. Our studies demonstrate that A. fumigatus conidial viability in vivo is critical to the immunopathological presentation of chronic fungal allergic disease. Copyright © 2018. Published by Elsevier Inc.
DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).
We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...
Educating the Educator: Use of Pulse Oximetry in Athletic Training
ERIC Educational Resources Information Center
Berry, David C.; Seitz, S. Robert
2012-01-01
The 5th edition of the "Athletic Training Education Competencies" expanded the scope of knowledge and skill set of entry-level athletic trainers related to the domain of "Acute Care of Injuries and Illnesses." One of these major changes includes the introduction of adjunct airway techniques, such as oropharyngeal and nasopharyngeal airways and…
A mathematical model for human brain cooling during cold-water near-drowning.
Xu, X; Tikuisis, P; Giesbrecht, G
1999-01-01
A two-dimensional mathematical model was developed to estimate the contributions of different mechanisms of brain cooling during cold-water near-drowning. Mechanisms include 1) conductive heat loss through tissue to the water at the head surface and in the upper airway and 2) circulatory cooling to aspirated water via the lung and via venous return from the scalp. The model accounts for changes in boundary conditions, blood circulation, respiratory ventilation of water, and head size. Results indicate that conductive heat loss through the skull surface or the upper airways is minimal, although a small child-sized head will conductively cool faster than a large adult-sized head. However, ventilation of cold water may provide substantial brain cooling through circulatory cooling. Although it seems that water breathing is required for rapid "whole" brain cooling, it is possible that conductive cooling may provide some advantage by cooling the brain cortex peripherally and the brain stem centrally via the upper airway.
Circulating FABP4 and FABP5 Levels Are Differently Linked to OSA Severity and Treatment
Català, Raquel; Cabré, Anna; Hernández-Flix, Salvador; Ferré, Raimón; Sangenís, Sandra; Plana, Núria; Texidó, Anna; Masana, Lluís
2013-01-01
Objective: To evaluate circulating adipocyte and epidermal fatty acid-binding protein (FABP4 and FABP5) concentrations in patients with obstructive sleep apnea (OSA), as well as the effects of continuous positive airway pressure (CPAP) treatment. Methods: Our cross-sectional study included 125 patients. After polysomnography, 58 participants met the criteria for CPAP treatment and were included in a closed cohort study of 8 weeks of CPAP treatment. General anthropometric and biochemical data and circulating FABP4 and FABP5 levels were determined in all patients at baseline and after CPAP treatment in those receiving this therapy. Results Circulating FABP4 but not FABP5 levels were higher in patients with OSA (P = 0.003). FABP4 but not FABP5 values were associated with parameters of OSA severity independently of age, gender, adiposity and insulin resistance (P < 0.05). FABP4 but not FABP5 concentrations were determinants of OSA presence (OR: 1.11, P = 0.010) and severity (OR: 1.06, P = 0.020). After CPAP treatment, FABP4 levels decreased in the more severe patients (P = 0.019), while FABP5 levels increased in all patients (P < 0.001). Conclusions FABP4 is directly associated with obstructive sleep apnea severity and did not change with continuous positive airway pressure treatment, while FABP5 was not associated with obstructive sleep apnea severity and increased with continuous positive airway pressure treatment. FABP4 and FABP5 have different associations with obstructive sleep apnea. FABP4 but not FABP5 could be considered a marker of metabolic alterations in obstructive sleep apnea patients. Citation: Català R; Cabré A; Hernández-Flix S; Ferré R; Sangenís S; Plana N; Texidó A; Masana L. Circulating FABP4 and FABP5 levels are differently linked to OSA severity and treatment. SLEEP 2013;36(12):1831-1837. PMID:24293757
Mondal, Nandan Kumar; Saha, Hirak; Mukherjee, Bidisha; Tyagi, Neetu; Ray, Manas Ranjan
2018-01-24
The study was carried out to examine whether chronic exposure to smoke during daily household cooking with biomass fuel (BMF) elicits changes in airway cytology and expressions of Nrf2 (nuclear factor erythroid 2 [NF-E2]-related factor 2 [Nrf2]), Keap1 (Kelch-like erythroid-cell-derived protein with CNC homology [ECH]-associated protein 1), and NQO1 (NAD(P)H:quinone oxidoreductase 1) proteins in the airways. For this, 282 BMF-using women (median age 34 year) and 236 age-matched women who cooked with liquefied petroleum gas (LPG) were enrolled. Particulate matter with diameters of < 10 µm (PM 10 ) and < 2.5 µm (PM 2.5 ) were measured in indoor air with real-time laser photometer. Routine hematology, sputum cytology, Nrf2, Keap1, NQO1, and generation of reactive oxygen species (ROS) along with the levels of superoxide dismutase (SOD) and catalase were measured in both groups. PM 10 and PM 2.5 levels were significantly higher in BMF-using households compared to LPG. Compared with LPG users, BMF users had 32% more leukocytes in circulation and their sputa were 1.4-times more cellular with significant increase in absolute number of neutrophils, lymphocytes, eosinophils, and alveolar macrophages, suggesting airway inflammation. ROS generation was 1.5-times higher in blood neutrophils and 34% higher in sputum cells of BMF users while erythrocyte SOD was 31% lower and plasma catalase was relatively unchanged, suggesting oxidative stress. In BMF users, Keap1 expression was reduced, the percentage of AEC with nuclear expression of Nrf2 was two- to three-times more, and NQO1 level in sputum cell lysate was two-times higher than that of LPG users. In conclusion, cooking with BMF was associated with Nrf2 activation and elevated NQO1 protein level in the airways. The changes may be adaptive cellular response to counteract biomass smoke-elicited oxidative stress and inflammation-related tissue injury in the airways.
Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong
2017-10-01
The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.
Kim, Seung-Hyung; Hong, Jung-Hee; Lee, Ji-Eun; Lee, Young-Cheol
2017-06-01
18β-Glycyrrhetinic acid (18Gly), the major bioactive component of Glycyrrhizae Radix, possesses anti-ulcerative, anti-inflammatory, and other pharmacological properties. Although 18Gly is associated with immunoregulatory functions of allergic diseases, the pathophysiological mechanisms of 18Gly action in allergic inflammatory lung disease have not been examined. Moreover, there are no in vivo studies on the anti-asthmatic effects of 18Gly in allergic asthma. We investigated its effect and mechanism of action in airway inflammation in a BALB/c mouse model of allergic asthma. Interestingly, 18Gly strongly suppressed airway hyperresponsiveness, accumulation of inflammatory cells, and levels of T helper type 2 (Th2) cytokines (interleukin (IL)-5 and IL-13) in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-5, IL-13, and IL-4 expression, but it upregulated peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression in lungs. Moreover, it exerted immunomodulatory effects by suppressing Th2 cytokines (IL-5, IL-13) production through upregulation of forkhead box p3 (Foxp3), and downregulation of signal transducer and activator of transcription (STAT6), GATA-binding protein 3 (GATA-3), and retinoic acid-related orphan receptor γ t (RORγt) expression. These results suggest that the anti-asthmatic activity of 18Gly may occur by the suppression of IL-5, IL-13, and OVA-specific Immunoglobulin E (IgE) production through inhibition of the RORγt, STAT6, GATA-3 pathways and upregulation of the Foxp3 transcription pathway. Also, 18Gly treatment was protective against the oxidative stress by inducing significant decrease of reactive oxygen species (ROS) generation in MH-S alveolar macrophage cells. Our results suggest that 18Gly can improve allergic asthma and can be a novel therapeutic component for the treatment of allergic asthma. Copyright © 2017 Elsevier B.V. All rights reserved.
Kainu, Annette; Lindqvist, Ari; Sovijärvi, Anssi R. A.
2016-01-01
Background New Finnish (Kainu2015) and international Global Lung Function Initiative (GLI2012) reference values for spirometry were recently published. The aim of this study is to compare the interpretative consequences of adopting these new reference values with older, currently used Finnish reference values (Viljanen1982) in the general population of native Finns. Methods Two Finnish general population samples including 1,328 adults (45% males) aged 21–74 years were evaluated. Airway obstruction was defined as a reduced ratio of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC), possible restrictive pattern as reduced FVC, and decreased ventilatory capacity as reduced FEV1 below their respective 2.5th percentiles. The severity gradings of reduced lung function were also compared. Results Using the Kainu2015 reference values, the prevalence of airway obstruction in the population was 5.6%; using GLI2012 it was 4.0% and with Viljanen1982 it was 13.0%. Possible restrictive pattern was found in 4.2% using the Kainu2015 values, in 2.0% with GLI2012, and 7.9% with the Viljanen1982 values. The prevalence of decreased ventilatory capacity was 6.8, 4.0, and 13.3% with the Kainu2015, GLI2012 and Viljanen1982 values, respectively. Conclusions The application of the GLI2012 reference values underestimates the prevalence of abnormal spirometric findings in native Finns. The adoption of the Kainu2015 reference values reduces the prevalences of airways obstruction, decreased ventilatory capacity, and restrictive impairment by approximately 50%. Changing from the 2.5th percentile, the previously used lower limit of normal, to the 5th percentile recommended by the American Thoracic Society/European Respiratory Society will not increase the prevalence of abnormal findings in the implementation of spirometry reference values. PMID:27608270
The Protective Effects of Astaxanthin on the OVA-Induced Asthma Mice Model.
Hwang, Yun-Ho; Hong, Seong-Gyeol; Mun, Seul-Ki; Kim, Su-Jin; Lee, Sung-Ju; Kim, Jong-Jin; Kang, Kyung-Yun; Yee, Sung-Tae
2017-11-21
Although astaxanthin has a variety of biological activities such as anti-oxidant effects, inhibitory effects on skin deterioration and anti-inflammatory effects, its effect on asthma has not been studied. In this paper, the inhibitory effect of astaxanthin on airway inflammation in a mouse model of ovalbumin (OVA)-induced asthma was investigated. We evaluated the number of total cells, Th1/2 mediated inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness as well as histological structure. The level of total IgE, IgG1, IgG2a, OVA-specific IgG1, and OVA-specific IgG2a were also examined. The oral administration of 50 mg/mL astaxanthin inhibited the respiratory system resistance, elastance, newtonian resistance, tissue damping, and tissue elastance. Also, astaxanthin suppressed the total cell number, IL-4, and IL-5, and increased the IFN-γ in the BALF. In the sera, total IgE, IgG1, and OVA-specific IgG1 were reduced by astaxanthin exposure and IgG2a and OVA-specific IgG2a were enhanced via oral administration of astaxanthin. Infiltration of inflammatory cells in the lung, production of mucus, lung fibrosis, and expression of caspase-1 or caspase-3 were suppressed in OVA-induced asthmatic animal treated with astaxanthin. These results suggest that astaxanthin may have therapeutic potential for treating asthma via inhibiting Th2-mediated cytokine and enhancing Th1-mediated cytokine.
Edwards, Timothy; Williams, Julia; Cottee, Michaela
2018-05-11
To describe the association between prehospital airway management and neurological outcomes in patients transferred by the ambulance service directly to a heart attack centre (HAC) post-return of spontaneous circulation (ROSC). A retrospective observational cohort study in which ambulance records were reviewed to determine prehospital airway management strategy and collect physiological and demographic data. HAC notes were obtained to determine in-hospital management and quantify neurological outcome via the cerebral performance category (CPC) scale. Statistical analyses were performed via χ 2 -test, Mann-Whitney U-test, odds ratios and binomial logistic regression. Two hundred and twenty patients were included between August 2013 and August 2014, with complete outcome data obtained for 209. Median age of patients with complete outcome data was 67 years and 71.3% were male (n = 149). Airway management was provided using a supraglottic airway (SGA) in 72.7% of cases (n = 152) with the remainder undergoing endotracheal intubation (ETI). There was no significant difference in the proportion of patients who had a good neurological outcome (CPC 1 and 2) at discharge between the SGA and ETI groups (P = 0.29). Binomial logistic regression incorporating factors known to influence outcome demonstrated no significant difference in neurological outcomes between the SGA and ETI groups (adjusted OR 0.73, 95% CI 0.34-1.56). In this observational study, there was no significant difference in the proportion of good neurological outcomes in patients managed with SGA versus ETI during cardiac arrest and in the post-ROSC transfer phase. Further research is required to provide more definitive evidence in relation to the optimal airway management strategy in out-of-hospital cardiac arrest. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes
2014-12-01
The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.
Hoshino, Katsuaki; Kashiwamura, Shin-ichiro; Kuribayashi, Kozo; Kodama, Taku; Tsujimura, Tohru; Nakanishi, Kenji; Matsuyama, Tomohiro; Takeda, Kiyoshi; Akira, Shizuo
1999-01-01
T1/ST2, an orphan receptor with homology with the interleukin (IL)-1 receptor family, is expressed constitutively and stably on the surface of T helper type 2 (Th2) cells, but not on Th1 cells. T1/ST2 is also expressed on mast cells, which are critical for Th2-mediated effector responses. To evaluate whether T1/ST2 is required for Th2 responses and mast cell function, we have generated T1/ST2-deficient (T1/ST2−/−) mice and examined the roles of T1/ST2. Naive CD4+ T cells isolated from T1/ST2−/− mice developed to Th2 cells in response to IL-4 in vitro. T1/ST2−/− mice showed normal Th2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis as well as in the mouse model of allergen-induced airway inflammation. In addition, differentiation and function of bone marrow–derived cultured mast cells were unaffected. These findings demonstrate that T1/ST2 does not play an essential role in development and function of Th2 cells and mast cells. PMID:10562328
Shirlaw, Teresa; Hanssen, Kevin; Duce, Brett; Hukins, Craig
2017-01-01
Study Objectives: To assess the benefit and tolerance of autotitrating positive airway pressure (APAP) versus continuous positive airway pressure (CPAP) in subjects who experience aerophagia. Methods: This is the report of a prospective, two-week, double-blinded, randomized crossover trial set in an Australian clinical sleep laboratory in a tertiary hospital. Fifty-six subjects who reported symptoms of aerophagia that they attributed to CPAP were recruited. Full face masks were used by 39 of the 56 subjects recruited. Subjects were randomly and blindly allocated to either CPAP at their treatment recommended pressure or APAP 6–20 cm H2O, in random order. Subjects spent two weeks on each therapy mode. Therapy usage hours, 95th centile pressure, maximum pressure, 95th centile leak, and residual apnea-hypopnea index (AHI) were reported at the end of each two-week treatment period. Functional Outcome of Sleepiness Questionnaire, Epworth Sleepiness Scale, and visual analog scale to measure symptoms of aerophagia were also completed at the end of each 2-week treatment arm. Results: The median pressure (P < .001) and 95th centile pressure (P < .001) were reduced with APAP but no differences in compliance (P = .120) and residual AHI were observed. APAP reduced the symptoms of bloating (P = .011), worst episode of bloating (P = .040), flatulence (P = .010), and belching (P = .001) compared to CPAP. There were no differences in Epworth Sleepiness Scale or Functional Outcome of Sleepiness Questionnaire outcomes between CPAP and APAP. Conclusions: APAP therapy reduces the symptoms of aerophagia while not affecting compliance when compared with CPAP therapy. Clinical Trial Registration: Australian and New Zealand Clinical Trials Registry at https://www.anzctr.org.au, trial number ACTRN12611001250921. Commentary: A commentary on this article appears in this issue on page 859. Citation: Shirlaw T, Hanssen K, Duce B, Hukins C. A randomized crossover trial comparing autotitrating and continuous positive airway pressure in subjects with symptoms of aerophagia: effects on compliance and subjective symptoms. J Clin Sleep Med. 2017;13(7):881–888. PMID:28558864
Carlsten, Chris; Blomberg, Anders; Pui, Mandy; Sandstrom, Thomas; Wong, Sze Wing; Alexis, Neil; Hirota, Jeremy
2016-01-01
Traffic-related air pollution has been shown to augment allergy and airway disease. However, the enhancement of allergenic effects by diesel exhaust in particular is unproven in vivo in the human lung, and underlying details of this apparent synergy are poorly understood. To test the hypothesis that a 2 h inhalation of diesel exhaust augments lower airway inflammation and immune cell activation following segmental allergen challenge in atopic subjects. 18 blinded atopic volunteers were exposed to filtered air or 300 µg PM(2.5)/m(3) of diesel exhaust in random fashion. 1 h post-exposure, diluent-controlled segmental allergen challenge was performed; 2 days later, samples from the challenged segments were obtained by bronchoscopic lavage. Samples were analysed for markers and modifiers of allergic inflammation (eosinophils, Th2 cytokines) and adaptive immune cell activation. Mixed effects models with ordinal contrasts compared effects of single and combined exposures on these end points. Diesel exhaust augmented the allergen-induced increase in airway eosinophils, interleukin 5 (IL-5) and eosinophil cationic protein (ECP) and the GSTT1 null genotype was significantly associated with the augmented IL-5 response. Diesel exhaust alone also augmented markers of non-allergic inflammation and monocyte chemotactic protein (MCP)-1 and suppressed activity of macrophages and myeloid dendritic cells. Inhalation of diesel exhaust at environmentally relevant concentrations augments allergen-induced allergic inflammation in the lower airways of atopic individuals and the GSTT1 genotype enhances this response. Allergic individuals are a susceptible population to the deleterious airway effects of diesel exhaust. NCT01792232. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Park, Sang-Joon; Lee, Eun-Ji; Lee, Jong-Hwa; Han, Sang-Seop; Pyo, Byeong Sik; Park, Dae-Hun; Kim, Bong-Hee
2013-01-01
The World Health Organization reports that 235 million people are currently affected by asthma. This disease is associated with an imbalance of Th1 and Th2 cells, which results in the upregulation of cytokines that promote chronic inflammation of the respiratory system. The inflammatory response causes airway obstruction and can ultimately result in death. In this study we evaluated the effect of 1′-acetoxychavicol acetate (ACA) isolated from Alpinia galanga rhizomes in a mouse model of ovalbumin (OVA)-induced asthma. To generate the mouse model, BALB/c mice were sensitized by intraperitoneal injection of OVA and then challenged with OVA inhalation for 5 days. Mice in the vehicle control group were sensitized with OVA but not challenged with OVA. Treatment groups received dexamethasone, 25 mg/kg/day ACA, or 50 mg/kg/day ACA for 5 days. Asthma-related inflammation was assessed by bronchoalveolar lavage fluid cell counts and histopathological and immunohistochemical analysis of lung tissues. Our results showed that ACA reduced the infiltration of white blood cells (especially eosinophils) and the level of IgE in the lungs of mice challenged with OVA and suppressed histopathological changes such as airway remodeling, goblet-cell hyperplasia, eosinophil infiltration, and glycoprotein secretion. In addition, ACA inhibited expression of the Th2 cytokines interleukin (IL)-4 and IL-13, and Th1 cytokines IL-12α and interferon-γ. Because asthmatic reactions are mediated by diverse immune and inflammatory pathways, ACA shows promise as an antiasthmatic drug candidate. PMID:23451048
Perspective: ambient air pollution: inflammatory response and effects on the lung’s vasculature
Esmaeil, Nafiseh; Reibman, Joan
2014-01-01
Abstract Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung’s vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung’s vasculature, with emphasis on the lung’s inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all. PMID:25006418
Airway exchange of highly soluble gases.
Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C
2013-03-01
Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.
Airway exchange of highly soluble gases
Powell, Frank L.; Anderson, Joseph C.
2013-01-01
Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981
IL17A Regulates Tumor Latency and Metastasis in Lung Adeno and Squamous SQ.2b and AD.1 Cancer.
You, Ran; DeMayo, Francesco J; Liu, Jian; Cho, Sung-Nam; Burt, Bryan M; Creighton, Chad J; Casal, Roberto F; Lazarus, Donald R; Lu, Wen; Tung, Hui-Ying; Yuan, Xiaoyi; Hill-McALester, Andrea; Kim, Myunghoo; Perusich, Sarah; Cornwell, Loraine; Rosen, Daniel; Song, Li-Zhen; Paust, Silke; Diehl, Gretchen; Corry, David; Kheradmand, Farrah
2018-04-13
Somatic mutations can promote malignant transformation of airway epithelial cells and induce inflammatory responses directed against resultant tumors. Tumor-infiltrating T lymphocytes (TIL) in early-stage non-small cell lung cancer (NSCLC) secrete distinct proinflammatory cytokines, but the contribution of these TILs to tumor development and metastasis remains unknown. We show here that TILs in early-stage NSCLC are biased toward IL17A expression (Th17) when compared with adjacent tumor-free tissue, whereas Th17 cells are decreased in tumor infiltrating locoregional lymph nodes in advanced NSCLC. Mice in which Pten and Smad4 ( Pts4 d/d ) are deleted from airway epithelial cells develop spontaneous tumors, that share genetic signatures with squamous- (SQ.2b), and adeno- (AD.1) subtypes of human NSCLC. Pts4 d/d mice globally lacking in IL17a ( Pts4 d/d Il17a -/- ) showed decreased tumor latency and increased metastasis. Th17 cells were required for recruitment of CD103 + dendritic cells, and adoptive transfer of IL17a -sufficient CD4 + T cells reversed early tumor development and metastasis in Pts4 d/d Il17a -/- mice. Together, these findings support a key role for Th17 cells in TILs associated with the Pts4 d/d model of NSCLC and suggest therapeutic and biomarker strategies for human SQ2b and AD1 lung cancer. Cancer Immunol Res; 1-13. ©2018 AACR. ©2018 American Association for Cancer Research.
Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C
2016-03-01
Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.
Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Stradling, John; Kohler, Malcolm
2013-01-01
Obstructive sleep apnea has been associated with impaired endothelial function; however, the mechanisms underlying this association are not completely understood. Cell-derived microparticles may provide a link between obstructive sleep apnea and endothelial dysfunction. This randomized controlled trial aimed to examine the effect of a 2-week withdrawal of continuous positive airway pressure (CPAP) therapy on levels of circulating microparticles. Forty-one obstructive sleep apnea patients established on CPAP treatment were randomized to either CPAP withdrawal (subtherapeutic CPAP) or continuing therapeutic CPAP, for 2 weeks. Polysomnography was performed and circulating levels of microparticles were analyzed by flow cytometry at baseline and 2 weeks. CPAP withdrawal led to a recurrence of obstructive sleep apnea. Levels of CD62E+ endothelium-derived microparticles increased significantly in the CPAP withdrawal group compared to the continuing therapeutic CPAP group (median difference in change +32.4 per µl; 95% CI +7.3 to +64.1 per µl, p = 0.010). CPAP withdrawal was not associated with a statistically significant increase in granulocyte, leukocyte, and platelet-derived microparticles when compared with therapeutic CPAP. Short-term withdrawal of CPAP therapy leads to a significant increase in endothelium-derived microparticles, suggesting that microparticle formation may be causally linked to obstructive sleep apnea and may promote endothelial activation. Copyright © 2012 S. Karger AG, Basel.
Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.
2001-01-01
Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588
Brattström, A; Schapowal, A; Kamal, M A; Maillet, I; Ryffel, B; Moser, R
2010-07-01
The herbal Isatis tinctoria extract (ITE) inhibits the inducible isoform of cyclooxygenase (COX-2) as well as lipoxygenase (5-LOX) and therefore possesses anti-inflammatory properties. The extract might also be useful in allergic airway diseases which are characterized by chronic inflammation. ITE obtained from leaves by supercritical carbon dioxide extraction was investigated in ovalbumin (OVA) immunised BALB/c mice given intranasally together with antigen challenge in the murine model of allergic airway disease (asthma) with the analysis of the inflammatory and immune parameters in the lung. ITE given with the antigen challenge inhibited in a dose related manner the allergic response. ITE diminished airway hyperresponsiveness (AHR) and eosinophil recruitment into the bronchoalveolar lavage (BAL) fluid upon allergen challenge, but had no effect in the saline control mice. Eosinophil recruitment was further assessed in the lung by eosinophil peroxidase (EPO) activity at a dose of 30 microg ITE per mouse. Microscopic investigations revealed less inflammation, eosinophil recruitment and mucus hyperproduction in the lung in a dose related manner. Diminution of AHR and inflammation was associated with reduced IL-4, IL-5, and RANTES production in the BAL fluid at the 30 microg ITE dose, while OVA specific IgE and eotaxin serum levels remained unchanged. ITE, which has been reported inhibiting COX-2 and 5-LOX, reduced allergic airway inflammation and AHR by inhibiting the production of the Th2 cytokines IL-4 and IL-5, and RANTES. (c) 2009 Elsevier GmbH. All rights reserved.
Ekman, B; Alstrand, N; Bachrach-Lindström, M; Jenmalm, M C; Wahlberg, J
2014-01-01
The adrenalitis found in autoimmune Addison's disease (AAD) is considered having a Th1-driven pathogenesis. Circulating Th1- and Th2-associated chemokines responsible for the trafficking of leukocytes to inflammatory sites are markers for the Th1/Th2 balance. The aim of the study was to assess if the same daily hydrocortisone dose of 30 mg given in either 2 or 4 doses to patients with AAD could affect the Th1/Th2 balance of circulating chemokines.Fifteen patients (6 women) with AAD were included in this randomised, placebo controlled, double blind cross-over study. Samples for chemokines, Th1-associated (CXCL10, CXCL11) and Th2-associated (CCL17, CCL22), were drawn 5 times during a 24-h period at the end of each treatment period and analysed with Luminex. Seven control subjects did the same diurnal blood sampling once. Subjects with AAD had higher median diurnal levels of the Th1-associated chemokines than controls, CXCL10 [43 (33-56) pg/ml vs. 22 (19-34) pg/ml, p<0.01] and CXCL11 [37 (29-48) pg/ml vs. 16 (9-24) pg/ml, p<0.001], whereas no significant difference was found regarding the Th2-related chemokines. Similar chemokine levels were found when the same hydrocortisone dose of 30 mg was divided in 2 or 4 doses. Levels of CXCL11 correlated negatively with scores of SF-36 domains (high score indicate better health) of General Health (GH) and total score for Physical Component Summary (PCS), and these negative correlations were most pronounced at 04:00 h on the 2-dose regimen. Patients with AAD have a dominant Th1 chemokine profile that partially correlates to reduced quality of life. © Georg Thieme Verlag KG Stuttgart · New York.
Hemodynamic instability following airway spray cryotherapy
Pedoto, Alessia; Desiderio, Dawn; Amar, David; Downey, Robert J.
2016-01-01
Background Spray cryotherapy (SCT) of airway lesions is used to effectively palliate respiratory symptoms related to airway obstruction but significant intraoperative hemodynamic complications have been noted. We reviewed the experience at a single institution using SCT for the treatment of obstructive airway tumors. Methods A retrospective review of a single institution experience with intraoperative and postoperative hemodynamic complications associated with SCT was performed. Descriptive statistics were performed. Results Between June 2009 and April 2010, 34 treatment sessions were performed on 28 patients. Median age was 60 years (range, 15–88 years). Tumor characteristics were as follows: 13 primary lung cancers (43%), 11 pulmonary metastases (50%), 1 direct extension of an esophageal cancer (3%) and 2 benign pulmonary lesions (7%). Twenty-one tumors (75%) were distal to the carina; 14 (50%) were >95% occlusive. Median procedure length was 78 min (range, 15–176 min). Eleven sessions (31%) led to severe hypotension and/or bradycardia, with 2 patients requiring cardiopulmonary resuscitation. One patient died intraoperatively after cardiac arrest; a second patient was stable intra-operatively but died within 24 h of SCT. Four patients required reintubation and short-term mechanical ventilation. Conclusions Unpredictable life-threatening hemodynamic instability can follow endobronchial SCT. We propose that the most likely cause is pulmonary venous gaseous emboli entering the right heart, the coronary arteries and the systemic circulation. Although SCT may offer advantages over airway laser therapy (such as no risk of fire and rapid hemostasis), further study is needed to delineate the relative likelihood of therapeutic benefit versus catastrophic complications. PMID:27763916
Garg, Rakesh; Ahmed, Syed Moied; Kapoor, Mukul Chandra; Rao, SSC Chakra; Mishra, Bibhuti Bhusan; Kalandoor, M Venkatagiri; Singh, Baljit; Divatia, Jigeeshu Vasishtha
2017-01-01
The cardiopulmonary resuscitation (CPR) guideline of comprehensive cardiopulmonary life support (CCLS) for management of the patient with cardiopulmonary arrest in adults provides an algorithmic step-wise approach for optimal outcome of the patient inside the hospital by trained medics and paramedics. This guideline has been developed considering the infrastructure of healthcare delivery system in India. This is based on evidence in the international and national literature. In the absence of data from the Indian population, the extrapolation has been made from international data, discussed with Indian experts and modified accordingly to ensure their applicability in India. The CCLS guideline emphasise the need to recognise patients at risk for cardiac arrest and their timely management before a cardiac arrest occurs. The basic components of CPR include chest compressions for blood circulation; airway maintenance to ensure airway patency; lung ventilation to enable oxygenation and defibrillation to convert a pathologic ‘shockable’ cardiac rhythm to one capable to maintaining effective blood circulation. CCLS emphasises incorporation of airway management, drugs, and identification of the cause of arrest and its correction, while chest compression and ventilation are ongoing. It also emphasises the value of organised team approach and optimal post-resuscitation care. PMID:29217853
Yao, Song; McCann, Susan E.; Dolnick, Ree Y.; Wallace, Paul K.; Gong, Zhihong; Quan, Lei; Lee, Kelvin P.; Evans, Sharon S.; Repasky, Elizabeth A.; Edge, Stephen B.; Ambrosone, Christine B.
2014-01-01
Immune signatures in breast tumors differ by estrogen receptor (ER) status. The purpose of this study was to assess associations between ER phenotypes and circulating levels of cytokines that co-ordinate cell-mediated [T-helper type 1 (Th1)] and humoral [T-helper type 2 (Th2)] immunity. We conducted a case–case comparison of 523 women with newly diagnosed breast cancer to evaluate associations between 27 circulating cytokines, measured using Luminex XMap technology, and breast cancer phenotypes [ER− vs. ER+; triple negative breast cancer (TNBC) vs. luminal A (LumA)]. Ratios of Th1 to Th2 cytokines were also evaluated. Levels of interleukin (IL)-5, a Th-2 cytokine, were higher in ER− than in ER+ tumors. The highest tertile of IL-5 was more strongly associated with ER− (OR = 2.33, 95 % CI 1.40–3.90) and TNBCs (OR = 2.78, 95 % CI 1.53–5.06) compared to ER+ and LumA cancers, respectively, particularly among premenopausal women (OR = 4.17, 95 % CI 1.86–9.34, ER− vs. ER+; OR = 5.60, 95 % CI 2.09–15.01, TNBC vs. LumA). Elevated Th1 cytokines were also detected in women with ER− and TNBCs, with women in the highest tertile of interferon α2 (OR = 2.39, 95 % CI 1.31–4.35) or tumor necrosis factor-α (OR = 2.27, 95 % CI 1.21–4.26) being twice as likely to have TNBC versus LumA cancer. When cytokine ratios were examined, women with the highest ratios of Th1 cytokines to IL-5 levels were least likely to have ER− or TNBCs compared to ER+ or LumA cancers, respectively. The strongest associations were in premenopausal women, who were up to 80 % less likely to have TNBC than LumA cancers (IL-12p40/IL-5, OR = 0.19, 95 % CI 0.07–0.56). These findings indicate that immune function is associated with ER− and TNBC and may be most relevant among younger women, who are likely to be diagnosed with these aggressive phenotypes. PMID:23624818
Chan, Yap-Hang; Lam, Tai-Hing; Lau, Kui-Kai; Yiu, Kai-Hang; Siu, Chung-Wah; Li, Sheung-Wai; Chan, Hiu-Ting; Tam, Sidney; Lau, Chu-Pak; Tse, Hung-Fat
2011-06-01
Endogenous estrogen is known to positively influence the level and functionality of endothelial progenitor cells (EPC). However, the effect of phytoestrogen on EPC is unknown. Isoflavone is a major component of phytoestrogen. This study aims to investigate if the intake of isoflavone has any impact on the circulating level of EPC. We studied 102 consecutive patients (mean age: 66.5 ± 9.5 years, 78% male, all female post-menopausal) with cardiovascular disease (atherothrombotic stroke 62%, coronary artery disease 38%). Circulating levels of CD133(+) EPC were determined by flow cytometry. Non-invasive pulse wave velocity (PWV) was measured. Long-term intake of isoflavone was determined by a validated food frequency questionnaire. Isoflavone intake was positively associated with circulating CD133(+) EPC (r = 0.31, p = 0.001). Patients with circulating CD133(+) EPC <10th percentile had significantly lower isoflavone intake than patients with CD133(+)EPC ≥10th percentile (4.6 ± 3.7 mg/day versus 19.3 ± 30.2 mg/day, p < 0.001). A significant overall linear trend of circulating EPC across increasing tertiles of isoflavone intake was observed (p = 0.004). Adjusted for potential confounders, increased isoflavone intake from the 1st to the 3rd tertile independently predicted increased circulating CD133(+) EPC level by 221 cells/µl (95%CI: 71.4 to 369.8, relative increase 160%, p = 0.004). Gender was not a significant factor (p > 0.05). Furthermore, circulating CD133(+) EPC <10th percentile was independently predictive of increased PWV by 261.7 cm/s (95% CI: 37.1 to 486.2, p = 0.024). The study demonstrated that circulating EPC increased by more than one fold in patients with cardiovascular disease who had higher intake of isoflavone, suggesting that isoflavone may confer vascular protection through enhanced endothelial repair.
Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui
2017-09-01
Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.
Gao, Jinming; Xu, Xiaohua; Ying, Zhekang; Jiang, Lei; Zhong, Mianhua; Wang, Aixia; Chen, Lung-Chi; Lu, Bo; Sun, Qinghua
2017-08-01
This study's aim was to investigate the post-effect of an air quality improvement on systemic inflammation and circulating microparticles in asthmatic patients during, and 2 months after, the Beijing Olympics 2008. We measured the levels of circulating inflammatory cytokines and microparticles in the peripheral blood from asthma patients and healthy controls during (phase 1), and 2 months after (phase 2) the Beijing 2008 Olympic Games. The concentrations of circulating cytokines (including TNFα, IL-6, IL-8, and IL-10) were still seen reduced in phase 2 when compared with those in phase 1. The number of circulating endothelial cell-derived microparticles was significantly lower during the phase 2 than that during phase 1 in asthma patients. The level of plasma lipopolysaccharide-binding protein (LBP) was significantly decreased in asthmatics in phase 2. The level of norepinephrine was significantly higher in phase 2 than that in phase 1 in plasma from both asthma patients and healthy subjects. There were no significant differences in the gene profile for the toll-like receptor (TLR) signaling from peripheral blood mononuclear cells. In vitro, microvesicles from patients with asthma impaired the relaxation to bradykinin and contraction to acetylcholine, whereas microparticles from healthy subjects did not. These data suggested that reduction in systemic pro-inflammatory responses and circulating LBP and increased level of norepinephrine in asthma patients persisted even after 2 months of the air pollution intervention. These changes were independent of the TLR signaling pathway. Circulating microparticles might be associated with airway smooth muscle dysfunction.
Klier, John; May, Anna; Fuchs, Sebastian; Schillinger, Ulrike; Plank, Christian; Winter, Gerhard; Gehlen, Heidrun; Coester, Conrad
2011-11-15
Recurrent airway obstruction (RAO) in horses has become a common problem in stabled horses in industrialized countries and deserves new therapeutic strategies. CpG-oligodeoxynucleotides (CpG-ODNs) were developed as effective immunostimulating agents to induce a Th2/Th1 shift. These agents showed a beneficial therapeutic effect in allergic diseases with predominant Th2 immunoresponse. CpG-ODN delivery by gelatin nanoparticles (GNPs) resulted in enhanced cellular uptake in murine and human in vitro studies and was a starting point for the present trial. The aim of this study was to identify an optimal stimulating CpG motif in horses with regard to species specificity on equine bronchoalveolar lavage (BAL) cells, in terms of a possible specific immunomodulation effect (Th2/Th1 shift) by used CpG-ODN. Accordingly, GNPs were evaluated as a delivery system to improve CpG-ODN immunostimulation in equine BAL cells. BAL fluid (BALF) was obtained from seven horses with moderate RAO and from four healthy horses and was subsequently incubated with five different CpG-ODN sequences (from A-, B- and C-class) and one ODN without any CpG motif. Release of three key cytokines (IL-4, IL-10 and IFN-γ) was quantified by ELISA to detect an allergy mediated Th2 immunoresponse (IL-4) as well as a proinflammatory Th1 response (IFN-γ). Due to its specific anti-inflammatory and anti-allergic effects, IL-10 was considered as a beneficial agent in pathophysiology of RAO. Results showed a significant upregulation of IL-10 and IFN-γ on the one hand and a downregulation of IL-4 on the other hand in RAO affected horses. Cell cultures from healthy horses had a significantly stronger response in cytokine release to all the applied stimuli in contrast to RAO derived cells. Comparing all five CpG sequences, A-class 2216 significantly showed the highest immunomodulatory effects on equine BALF cells and, hence, was chosen for follow-up preliminary clinical studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu
2016-01-01
Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092
Zeki, Amir A; Bratt, Jennifer M; Chang, Kevin Y; Franzi, Lisa M; Ott, Sean; Silveria, Mark; Fiehn, Oliver; Last, Jerold A; Kenyon, Nicholas J
2015-01-01
Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography – mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research. PMID:25969462
Pro- and antiinflammatory cytokines in threatened miscarriages.
Calleja-Agius, Jean; Muttukrishna, Shanthi; Pizzey, Arnold R; Jauniaux, Eric
2011-07-01
The purpose of this study was to evaluate circulating and intracellular levels of Th1 and Th2 cytokines in women with threatened miscarriage (TM) and subsequent outcome. Plasma levels of tumor necrosis factor (TNF)-receptors 1 and 2, TNFα, interferon gamma (IFNγ), and interleukins (IL) -6 and -10 were measured by flow cytometric bead assays in 80 women with TM: 53 women with normal outcome and 27 women who miscarried. Fluorescent antibody labeling was also performed on whole blood in a subgroup of 27 women of TM: 16 women with normal outcome and 11 women who miscarried. Monocyte expression of TNFα and circulating levels of TNFα, IFNγ, IL-10, IL-6, and TNF-R1 were significantly lower, whereas circulating levels of TNFα/IL-10, IFNγ/IL-10, and TNFα/IL-6 ratios were significantly higher, in women with TM who subsequently miscarried, compared with the women with normal outcome. An increased Th1 type of immune response, which was similar to that observed in preterm delivery, was found in TM cases that were complicated by a subsequent miscarriage. Copyright © 2011. Published by Mosby, Inc.
Basic management of medical emergencies: recognizing a patient's distress.
Reed, Kenneth L
2010-05-01
Medical emergencies can happen in the dental office, possibly threatening a patient's life and hindering the delivery of dental care. Early recognition of medical emergencies begins at the first sign of symptoms. The basic algorithm for management of all medical emergencies is this: position (P), airway (A), breathing (B), circulation (C) and definitive treatment, differential diagnosis, drugs, defibrillation (D). The dentist places an unconscious patient in a supine position and comfortably positions a conscious patient. The dentist then assesses airway, breathing and circulation and, when necessary, supports the patient's vital functions. Drug therapy always is secondary to basic life support (that is, PABCD). Prompt recognition and efficient management of medical emergencies by a well-prepared dental team can increase the likelihood of a satisfactory outcome. The basic algorithm for managing medical emergencies is designed to ensure that the patient's brain receives a constant supply of blood containing oxygen.
NASA Astrophysics Data System (ADS)
Rutgers van der Loeff, Michiel; Venchiarutti, Celia; Stimac, Ingrid; van Ooijen, Jan; Huhn, Oliver; Rohardt, Gerd; Strass, Volker
2016-12-01
Upwelling of Circumpolar Deep Water in the Weddell Gyre and low scavenging rates south of the Antarctic Circumpolar Current (ACC) cause an accumulation of particle reactive nuclides in the Weddell Gyre. A ventilation/reversible scavenging model that successfully described the accumulation of 230Th in this area was tested with other particle reactive nuclides and failed to adequately describe the depth-distributions of 231Pa and 210Pb. We present here a modified model that includes a nutrient-like accumulation south of the Antarctic Polar Front in an upper meridional circulation cell, as well as transport to a deep circulation cell in the Weddell Gyre by scavenging and subsequent release at depth. The model also explains depletion of 231Pa and 230Th in Weddell Sea Bottom Water (WSBW) by ventilation of newly formed deep water on a timescale of 10 years, but this water mass is too dense to leave the Weddell Gyre. In order to quantify the processes responsible for the 231Pa- and 230Th-composition of newly formed Antarctic Bottom Water (AABW) we present a mass balance of 231Pa and 230Th in the Atlantic sector of the Southern Ocean based on new data from the GEOTRACES program. The ACC receives 6.0 ± 1.5 ×106 dpms-1 of 230Th from the Weddell Sea, similar in magnitude to the net input of 4.2 ± 3.0 ×106 dpms-1 from the north. For 231Pa, the relative contribution from the Weddell Sea is much smaller, only 0.3 ± 0.1 ×106, compared to 2.7 ± 1.4 ×106 dpms-1 from the north. Weddell Sea Deep Water (WSDW) leaving the Weddell Gyre northward to form AABW is exposed in the ACC to resuspended opal-rich sediments that act as efficient scavengers with a Th/Pa fractionation factor F ≤ 1. Hydrothermal inputs may provide additional removal with low F. Scavenging in the full meridional circulation across the opal-rich ACC thus acts as a double 231Pa and 230Th trap that preconditions newly formed AABW.
Prasad, Priya; Singh, Namita; Das, Banashree; Raisuddin, Sheikh; Dudeja, Mridu; Rastogi, Sangita
2017-09-01
The study aimed to elucidate role of Th1/Th2/Th17 cytokines in the immunopathogenesis of spontaneous abortion in Chlamydia trachomatis (Ct)-positive first-trimester aborters. Endometrial curettage tissue and serum were collected from 145 aborters (spontaneous abortion (SA) group, n = 85; recurrent miscarriage (RM) group, n = 60) and 120 controls attending Department of Obstetrics & Gynecology at Safdarjung hospital, New Delhi (India). Polymerase chain reaction was used to detect Ct plasmid/MOMP, while commercial cytometric bead array kit was utilized to estimate circulating serum cytokines. 13.7% aborters were Ct-positive, however, none was found to be infected among controls. IFN-γ, TNF-α, IL-2, IL-6 and IL-17A cytokines were significantly increased in SA group/RM group (Ct-infected) versus controls. IL-4 showed no difference between groups, while IL-10 was significantly elevated in controls versus Ct-infected subjects in SA group/RM group. Furthermore, IFN-γ, TNF-α, IL-6, IL-17A cytokines were significantly elevated in Ct-positive RM group versus Chlamydia-infected SA group. However, IL-2, IL-4 and IL-10 cytokines showed no significant difference between Ct-positive SA group versus infected RM group. Positive correlation was found between few cytokines (TNF-α and IFN-γ/IL-17A; IL-17A and IFN-γ/IL-6) in Ct-positive aborters. Our study clearly established the role of Th1/Th2/Th17 cytokines in the pathogenesis of spontaneous abortion in Ct-infected subjects and found that Chlamydia-positive recurrent aborters had a predominant Th1/Th17 bias. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distinct CD4+-T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia.
Rivera, Amariliz; Van Epps, Heather L; Hohl, Tobias M; Rizzuto, Gabrielle; Pamer, Eric G
2005-11-01
Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4+-T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus-specific CD4+ T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4+-T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-gamma)-producing, fungus-specific CD4+ T cells to lung airways, achieving A. fumigatus-specific frequencies exceeding 5% of total CD4+ T cells. While heat-inactivated spores did not induce detectable levels of IFN-gamma-producing, A. fumigatus-specific CD4+ T cells in the airways, they did prime CD4+ T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus-specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.
Effect of fenspiride on pulmonary function in the rat and guinea pig.
Bee, D; Laude, E A; Emery, C J; Howard, P
1995-03-01
1. Fenspiride is an anti-inflammatory agent that may have a role in reversible obstructive airways disease. Small, but significant, improvements have been seen in airways function and arterial oxygen tension in patients with mild chronic obstructive pulmonary disease. These changes have been attributed to the anti-inflammatory properties of the drug. However, airways function can be improved by other means, e.g. improved ventilation/perfusion ratio or reduced airways resistance. The possibility that fenspiride may have actions other than anti-inflammatory was investigated in two animal species. 2. In the rat, actions on the pulmonary circulation were investigated in the isolated perfused lung, but fenspiride proved to be a poor pulmonary vasodilator, showing only a small reversal of the raised pulmonary artery pressure induced by hypoxia. 3. Ventilation was measured in the anaesthetized rat using whole-body plethysmography. Fenspiride caused no increase in ventilation or changes in arterial blood gases. However, a profound hypotensive action was observed with high doses. 4. The possibility that a decrease in airways resistance (R(aw)) might occur with fenspiride was investigated in anaesthetized guinea pigs. Capsaicin (30 mumol/l) was used to increase baseline R(aw) through bronchoconstriction. Fenspiride gave a dose-dependent partial reversal of the raised R(aw), and its administration by aerosol proved as efficacious as the intravenous route. In addition, the hypotensive side-effect found with intravenous injection was alleviated by aerosolized fenspiride.(ABSTRACT TRUNCATED AT 250 WORDS)
Human lactoferrin induces asthmatic symptoms in NC/Nga mice.
Nagaoka, Kenjiro; Ito, Tatsuo; Ogino, Keiki; Eguchi, Eri; Fujikura, Yoshihisa
2017-08-01
Lactoferrin in commercial supplements is known to exert anti-viral and anti-allergic effects. However, this is the first study to evaluate the induction of allergic airway inflammation in NC/Nga mice. Human lactoferrin was administered intraperitoneally with aluminum oxide for sensitization. Five days later, lactoferrin was inoculated intranasally for 5 days, and then on the 12th day, the single inoculation of lactoferrin intranasally was performed as a challenge. On the 13th day, airway hypersensitivity was assessed (AHR), a bronchoalveolar fluid (BALF) cell analysis was conducted, serum IgE and serum lactoferrin-specific IgG and IgE levels as well as the mRNA expression levels of cytokines and chemokines in the lung were measured, and a histopathological analysis of the lung was performed. Human lactoferrin increased AHR, the number of eosinophils in BALF, serum lactoferrin-specific IgG levels, and the mRNA levels of IL-13, eotaxin 1, and eotaxin 2. Moreover, the accumulation of inflammatory cells around the bronchus and the immunohistochemical localization of arginase I and human lactoferrin were detected. Collectively, these results indicate that human lactoferrin induced allergic airway inflammation in mice. Therefore, the commercial use of human lactoferrin in supplements warrants more intensive study. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
USDA-ARS?s Scientific Manuscript database
Mice in which dendritic cells (DCs)lack ADAM10 (ADAM10DC-/-) were found to have a dramatic decrease in TH2 immunity and IgE production, as measured by both lung inflammation to house dust mite (HDM) and active systemic anaphylaxis models (ASA). With HDM, the ADAM10DC-/- had significantly less airway...
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Wang, Xiaoting; Li, Jianfeng; Wang, Haibo
2016-01-01
Background: More recently, a large amount of experimental and clinical discovered that dietary- fiber intake would decrease the susceptibility to allergic airway disease (AAD) and respiratory inflammation. Objective: To investigate whether a fiber-intake supplement is able to influence the induction of AAD and to elucidate the interactive relationship. Methods: AAD model mice and control mice were raised on a fundamental diet with standard 4% fiber content, whereas other mice were fed a 10% fiber-content diet in the high fiber-content group, along with a 25% fiber-content diet instead in very-high fiber-content group. All experimental mice were sensitized and challenged with ovalbumin to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD were examined in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, T-helper type 1 (Th1) to Th2 skewing of the immune response. Furthermore, to elucidate the interrelations, we generated 16S ribosomal DNA from fecal samples and further validated the variation of colony composition in each group. Results: The excessive high-fiber supplement induced a promoting effect rather than a suppressive effect, including a rise in nasal rubbing and sneezing, an increase in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, and promoted Th2 skewing of the immune response as well as the production of serum levels of ovalbumin-specific immunoglobulin E. Moreover, overconsumption of dietary fiber greatly altered the construction of bacterial flora in the intestinal tract, including an increased proportion of Firmicutes, Actinobacteria, and Proteobacteria, and a decreased proportion of Bacteroidetes. Conclusion: Our work indicated that, instead of a protecting impact, excessive fiber intake preformed a negative influence on the induction of AAD. Therefore, we suspected that an excessive supplement of dietary fiber might not be an advisable method for the prevention and treatment of AADs. PMID:28683248
Shirlaw, Teresa; Hanssen, Kevin; Duce, Brett; Hukins, Craig
2017-07-15
To assess the benefit and tolerance of autotitrating positive airway pressure (APAP) versus continuous positive airway pressure (CPAP) in subjects who experience aerophagia. This is the report of a prospective, two-week, double-blinded, randomized crossover trial set in an Australian clinical sleep laboratory in a tertiary hospital. Fifty-six subjects who reported symptoms of aerophagia that they attributed to CPAP were recruited. Full face masks were used by 39 of the 56 subjects recruited. Subjects were randomly and blindly allocated to either CPAP at their treatment recommended pressure or APAP 6-20 cm H 2 O, in random order. Subjects spent two weeks on each therapy mode. Therapy usage hours, 95th centile pressure, maximum pressure, 95th centile leak, and residual apnea-hypopnea index (AHI) were reported at the end of each two-week treatment period. Functional Outcome of Sleepiness Questionnaire, Epworth Sleepiness Scale, and visual analog scale to measure symptoms of aerophagia were also completed at the end of each 2-week treatment arm. The median pressure ( P < .001) and 95th centile pressure ( P < .001) were reduced with APAP but no differences in compliance ( P = .120) and residual AHI were observed. APAP reduced the symptoms of bloating ( P = .011), worst episode of bloating ( P = .040), flatulence ( P = .010), and belching ( P = .001) compared to CPAP. There were no differences in Epworth Sleepiness Scale or Functional Outcome of Sleepiness Questionnaire outcomes between CPAP and APAP. APAP therapy reduces the symptoms of aerophagia while not affecting compliance when compared with CPAP therapy. Australian and New Zealand Clinical Trials Registry at https://www.anzctr.org.au, trial number ACTRN12611001250921. A commentary on this article appears in this issue on page 859. © 2017 American Academy of Sleep Medicine
Isgrò, M; Bianchetti, L; Marini, M A; Bellini, A; Schmidt, M; Mattoli, S
2013-07-01
The C-C motif chemokine ligand 5 (CCL5), CCL11, and CCL24 are involved in the pathogenesis of asthma, and their function is mainly associated with the airway recruitment of eosinophils. This study tested their ability to induce the migration of circulating fibrocytes, which may contribute to the development of irreversible airflow obstruction in severe asthma. The sputum fluid phase (SFP) from patients with severe/treatment-refractory asthma (PwSA) contained elevated concentrations of CCL5, CCL11, and CCL24 in comparison with the SFP from patients with non-severe/treatment-responsive asthma (PwNSA). The circulating fibrocytes from PwSA expressed the receptors for these chemokines at increased levels and migrated in response to recombinant CCL5, CCL11, and CCL24. The SFP from PwSA induced the migration of autologous fibrocytes, and its activity was significantly attenuated by neutralization of endogenous CCL5, CCL11, and CCL24. These findings suggest that CCL5, CCL11, and CCL24 may contribute to the airway recruitment of fibrocytes in severe asthma.
Shin, In Sik; Lee, Mee Young; Lim, Hye Sun; Ha, Hyekyung; Seo, Chang Seob; Kim, Jong-Choon; Shin, Hyeun Kyoo
2012-01-01
Crataegus pinnatifida (Chinese hawthorn) has long been used as a herbal medicine in Asia and Europe. It has been used for the treatment of various cardiovascular diseases such as myocardial weakness, tachycardia, hypertension and arteriosclerosis. In this study, we investigated the anti-inflammatory effects of Crataegus pinnatifida ethanolic extracts (CPEE) on Th2-type cytokines, eosinophil infiltration, expression of matrix metalloproteinase (MMP)-9, and other factors, using an ovalbumin (OVA)-induced murine asthma model. Airways of OVA-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. CPEE was applied 1 h prior to OVA challenge. Mice were administered CPEE orally at doses of 100 and 200 mg/kg once daily on days 18-23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent (ELISA) assays. Lung tissue sections 4 µm in thickness were stained with Mayer's hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS staining, in conjunction with ELISA, and Western blot analyses for the expression of MMP-9, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 protein expression. CPEE significantly decreased the Th2 cytokines including IL-4 and IL-5 levels, reduced the number of inflammatory cells in BALF and airway hyperresponsiveness, suppressed the infiltration of eosinophil-rich inflammatory cells and mucus hypersecretion and reduced the expression of ICAM-1, VCAM-1 and MMP-9 and the activity of MMP-9 in lung tissue of OVA-challenged mice. These results showed that CPEE can protect against allergic airway inflammation and can act as an MMP-9 modulator to induce a reduction in ICAM-1 and VCAM-1 expression. In conclusion, we strongly suggest the feasibility of CPEE as a therapeutic drug for allergic asthma.
Lim, Hye Sun; Ha, Hyekyung; Seo, Chang Seob; Kim, Jong-Choon; Shin, Hyeun Kyoo
2012-01-01
Background Crataegus pinnatifida (Chinese hawthorn) has long been used as a herbal medicine in Asia and Europe. It has been used for the treatment of various cardiovascular diseases such as myocardial weakness, tachycardia, hypertension and arteriosclerosis. In this study, we investigated the anti-inflammatory effects of Crataegus pinnatifida ethanolic extracts (CPEE) on Th2-type cytokines, eosinophil infiltration, expression of matrix metalloproteinase (MMP)-9, and other factors, using an ovalbumin (OVA)-induced murine asthma model. Methods/Principal Finding Airways of OVA-sensitized mice exposed to OVA challenge developed eosinophilia, mucus hypersecretion and increased cytokine levels. CPEE was applied 1 h prior to OVA challenge. Mice were administered CPEE orally at doses of 100 and 200 mg/kg once daily on days 18–23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4 and IL-5 in BALF were measured using enzyme-linked immunosorbent (ELISA) assays. Lung tissue sections 4 µm in thickness were stained with Mayer’s hematoxylin and eosin for assessment of cell infiltration and mucus production with PAS staining, in conjunction with ELISA, and Western blot analyses for the expression of MMP-9, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 protein expression. CPEE significantly decreased the Th2 cytokines including IL-4 and IL-5 levels, reduced the number of inflammatory cells in BALF and airway hyperresponsiveness, suppressed the infiltration of eosinophil-rich inflammatory cells and mucus hypersecretion and reduced the expression of ICAM-1, VCAM-1 and MMP-9 and the activity of MMP-9 in lung tissue of OVA-challenged mice. Conclusions These results showed that CPEE can protect against allergic airway inflammation and can act as an MMP-9 modulator to induce a reduction in ICAM-1 and VCAM-1 expression. In conclusion, we strongly suggest the feasibility of CPEE as a therapeutic drug for allergic asthma. PMID:23029210
RELATIONSHIP BETWEEN INDUCED OXIDENT GENERATION AND ASTHMA SEVERITY
The role of oxygen radicals is implicated in many disease processes, including asthma. There is evidence that elevated oxidant status is associated with airway hyper responsiveness, however it is less clear whether increased levels of circulating reactive oxygen species are assoc...
Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae.
Urb, Mirjam; Snarr, Brendan D; Wojewodka, Gabriella; Lehoux, Mélanie; Lee, Mark J; Ralph, Benjamin; Divangahi, Maziar; King, Irah L; McGovern, Toby K; Martin, James G; Fraser, Richard; Radzioch, Danuta; Sheppard, Donald C
2015-09-01
Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Dasgupta, Sugata; Singh, Shipti Shradha; Chaudhuri, Arunima; Bhattacharya, Dipasri; Choudhury, Sourav Das
2016-01-01
Background: Although tracheal tubes are essential devices to control and protect airway in a critical care unit (CCU), they are not free from complications. Aims: To document the incidence and nature of airway accidents in the CCU of a government teaching hospital in Eastern India. Methods: Retrospective analysis of all airway accidents in a 5-bedded (medical and surgical) CCU. The number, types, timing, and severity of airway accidents were analyzed. Results: The total accident rate was 19 in 233 intubated and/or tracheostomized patients over 1657 tube days (TDs) during 3 years. Fourteen occurred in 232 endotracheally intubated patients over 1075 endotracheal tube (ETT) days, and five occurred in 44 tracheostomized patients over 580 tracheostomy TDs. Fifteen accidents were due to blocked tubes. Rest four were unplanned extubations (UEs), all being accidental extubations. All blockages occurred during night shifts and all UEs during day shifts. Five accidents were mild, the rest moderate. No major accident led to cardiorespiratory arrest or death. All blockages occurred after 7th day of intubation. The outcome of accidents were more favorable in tracheostomy group compared to ETT group (P = 0.001). Conclusions: The prevalence of airway accidents was 8.2 accidents per 100 patients. Blockages were the most common accidents followed by UEs. Ten out of the 15 blockages and all 4 UEs were in endotracheally intubated patients. Tracheostomized patients had 5 blockages and no UEs. PMID:27076709
Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model
Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias
2012-01-01
Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943
Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.
Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C; Lehmann, Irina; Polte, Tobias
2012-01-01
Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.
Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells.
Xue, Di; Kaufman, Gabriel N; Dembele, Marieme; Beland, Marianne; Massoud, Amir H; Mindt, Barbara C; Fiter, Ryan; Fixman, Elizabeth D; Martin, James G; Friedel, Roland H; Divangahi, Maziar; Fritz, Jörg H; Mazer, Bruce D
2017-01-01
The regulatory properties of B cells have been studied in autoimmune diseases; however, their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C), an axonal guidance molecule, plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure, with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells, indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19 + CD138 + cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c -/- CD19 + CD138 + cells induced marked pulmonary inflammation, eosinophilia, and increased bronchoalveolar lavage fluid IL-4 and IL-5, whereas adoptive transfer of wild-type CD19 + CD138 + IL-10 + cells dramatically decreased allergic airway inflammation in wild-type and Sema4c -/- mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138 + B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore, we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138 + B cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M
2017-12-01
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Hendricks, Deborah W; Fink, Pamela J
2011-01-27
After intrathymic development, T cells exit the thymus and join the peripheral T-cell pool. Such recent thymic emigrants (RTEs) undergo both phenotypic and functional maturation during the first 3 weeks they reside in the periphery. Using a well-controlled in vitro polarization scheme, we now show that CD4(+) RTEs are defective in T-helper (Th) type 0 (Th0), Th1, Th17, and regulatory T-cell lineage commitment, with dampened cytokine production and transcription factor expression. In contrast, CD4(+) RTES are biased toward the Th2 lineage both in vitro and in vivo, with more robust interleukin-4, interleukin-5, and interleukin-13 production than their mature naive counterparts. Coculture experiments demonstrate that mature naive T cells influence neighboring RTEs in their Th responses. In adoptive hosts, CD4(+) RTEs drive production of the Th2-associated antibody isotype immunoglobulin G1 and mediate airway inflammatory disease. This bias in RTEs likely results from dampened negative regulation of the Th2 lineage by diminished levels of T-bet, a key Th1 transcription factor. CD4(+) RTEs thus represent a transitional population with a distinct interpretation of, and response to, immunologic cues. These characteristics may be beneficial during the postthymic maturation period by leading to the avoidance of inappropriate immune responses, particularly in lymphopenic neonates and adults.
Grading Severity of Productive Cough Based on Symptoms and Airflow Obstruction.
Vazquez Guillamet, Rodrigo; Petersen, Hans; Meek, Paula; Sood, Akshay; Tesfaigzi, Yohannes
2018-04-26
The binary approach to the diagnosis of Chronic Bronchitis (CB) is a major barrier to the study of the disease. We investigated whether severity of productive cough can be graded using symptoms and presence of fixed airflow obstruction (FAO), and whether the severity correlates with health status, exposures injurious to the lung, biomarkers of inflammation, and measures of airway wall thickening. Findings from a cross-sectional sample of 1,422 participants from the Lovelace Smokers Cohort (LSC) were validated in 4,488 participants from the COPDGene cohort (COPDGene). Health status was based on the St. George's Respiratory Questionnaire, and Medical Outcomes Study 36-Item Short Form Health Survey. Circulating CC16 levels were quantified by ELISA (LSC), and airway wall thickening was measured using computed tomography (COPDGene). FAO was defined as postbronchodilator FEV 1 /FVC <0.7. The presence and duration of productive cough and presence of FAO or wheeze were graded into Healthy Smokers, Productive Cough (PC), Chronic PC, PC with Signs of Airflow Obstruction, and Chronic PC with Signs of Airflow Obstruction. In both cohorts, higher grade of severity correlated with lower health status, greater frequency of injurious exposures, greater airway wall thickening, and lower circulating CC16 levels. Further, longitudinal follow-up suggested that disease resolution can occur at every grade of severity but is more common in groups of lower severity and least common once airway remodeling develops. Therefore, severity of productive cough can be graded based on symptoms and FAO and early intervention may benefit patients by changing the natural history of disease.
Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C
2009-01-01
Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.
Effector and central memory T helper 2 cells respond differently to peptide immunotherapy
Mackenzie, Karen J.; Nowakowska, Dominika J.; Leech, Melanie D.; McFarlane, Amanda J.; Wilson, Claire; Fitch, Paul M.; O’Connor, Richard A.; Howie, Sarah E. M.; Schwarze, Jürgen; Anderton, Stephen M.
2014-01-01
Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios. PMID:24516158
RSV Vaccine-Enhanced Disease Is Orchestrated by the Combined Actions of Distinct CD4 T Cell Subsets
Knudson, Cory J.; Hartwig, Stacey M.; Meyerholz, David K.; Varga, Steven M.
2015-01-01
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. PMID:25769044
Importance of basophils in eosinophilic asthma: the murine counterpart.
Poddighe, D; Mathias, C B; Brambilla, I; Marseglia, G L; Oettgen, H C
2018-01-01
Several experimental studies in mice showed that basophils participate in the initiation of Th2 adaptive immune response, in addition to the effector phase. However, the role of basophils in allergic airway inflammation is less clear. The aim of this experiment was to assess the importance of basophils in recruiting inflammatory cells and, in particular, eosinophils in a murine model of asthma induced by Aspergillus fumigatus allergens. Additionally, bronchial reactivity was evaluated. Basophil depletion resulted in a reduction of inflammatory cells in the airways and eosinophil recruitment was significantly impaired. Also bronchial reactivity seemed to be impaired in basophil-depleted mice, but the result was not statistically significant. According to these preliminary data, basophils seem to influence the local eosinophilic response of allergic asthma.
Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C
2014-01-01
Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.
Perez, Geovanny F.; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M.; Pillai, Dinesh K.; Rose, Mary C.
2014-01-01
Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations. PMID:25546419
Ibitokou, Samad A.; Denoeud-Ndam, Lise; Ezinmegnon, Sèm; Ladékpo, Rodolphe; Zannou, Djimon-Marcel; Massougbodji, Achille; Girard, Pierre-Marie; Cot, Michel; Luty, Adrian J. F.; Ndam, Nicaise Tuikue
2015-01-01
We investigated the circulating plasma levels of Th1- (Interleukin-2 [IL-2], tumor necrosis factor-α [TNF-α], interferon-gamma [IFN-γ]) and Th2-type (IL-4, IL-5, IL-10) cytokines in human immunodeficiency virus (HIV)-infected pregnant women living in a malaria-endemic area. We analyzed samples from 200 pregnant women included in the prevention of pregnancy-associated malaria in HIV-infected women: cotrimoxazole prophylaxis versus mefloquine (PACOME) clinical trial who were followed until delivery. Cytokine concentrations were measured by flow cytometry-based multiplex bead array. Significantly elevated levels of IL-10 and lower levels of TNF-α were observed at delivery compared with inclusion (P = 0.005). At inclusion, the presence of circulating IFN-γ, a higher CD4+ T cell count and having initiated intermittent preventive treatment of malaria with sulfadoxine pyrimethamine (SP-IPTp) were all associated with a lower likelihood of Plasmodium falciparum infection. At delivery, the inverse relationship between the presence of infection and circulating IFN-γ persisted, although there was a positive association between the likelihood of infection and the presence of circulating TNF-α. Initiation of antiretroviral therapy was associated with elevated IL-5 production. Consistent with our own and others' observations in HIV seronegative subjects, this study shows circulating IL-10 to be a marker of infection with P. falciparum during pregnancy even in HIV-infected women, although plasma IFN-γ may be a marker of anti-malarial protection in such women. PMID:26101276
Zhang, Qiong; Wang, Liangrong; Chen, Baihui; Zhuo, Qian; Bao, Caiying; Lin, Lina
2017-10-01
Propofol, one of the most commonly used intravenous anesthetic agents, has been reported to have anti-inflammatory property. However, the anti-allergic inflammation effect of propofol and its underlying molecular mechanisms have not been elucidated. In the present study, we aim to investigate the roles of NF-kB activation in propofol anti-asthma effect on OVA-induced allergic airway inflammation in mice. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with propofol (50,100,150mg/kg) or a vehicle control 1h before OVA challenge. Blood samples, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested after measurement of airway hyperresponsiveness. Results revealed that propofol not only significantly inhibit airway hyperresponsiveness, but also inhibited the production of Th2 cytokines, NO, Ova-specific IgE and eotaxin. Histological studies indicated that propofol significantly attenuated OVA-induced inflammatory cell infiltration in the peribronchial areas and mucus hypersecretion. Meanwhile, our results indicated that propofol was found to inhibit NF-kB activation in OVA-Induced mice. Furthermore, propofol significantly reduced the TNF-α-induced NF-kB activation in A549 cells. In conclusion, our study suggested that propofol effectively reduced allergic airway inflammation by inhibiting NF-kB activation and could thus be used as a therapy for allergic asthma. Copyright © 2017. Published by Elsevier B.V.
The Immunotherapeutic Role of Bacterial Lysates in a Mouse Model of Asthma.
Liu, Chentao; Huang, Rong; Yao, Rujie; Yang, Aimei
2017-10-01
Asthma is the most common chronic lower respiratory disease in childhood throughout the world. Recurrent respiratory tract infections in young children, especially viral infections, are the major cause of acute asthmatic exacerbations and contribute to development of asthma. Bacterial extracts have been used to improve the immune defenses of the respiratory tract. However, seldom studies have examined the effect of bacterial lysates on childhood asthma. In this study, we examined whether bacterial lysates (OM-85) will improve symptoms of asthmatic mice via modulation of the immune response. Asthmatic mice models were established with OVA challenge and treated with oral administration of Broncho-Vaxom (OM-85). Next, infiltrations of inflammatory cells including eosinophil and neutrophils were examined. Pulmonary tissues in asthmatic mice models were analyzed by hematoxylin and eosin (HE) staining. The levels of Th1/Th2-typed cytokines in bronchoalveolar lavage fluid (BALF) of asthmatic mice models were examined by enzyme-linked immunosorbent assay. Compared to control group, we found significant reduction of airway wall thickness, luminal stenosis, and mucus plug formation in asthmatic mice models after oral administration of OM-85. The infiltrations of eosinophil were also significantly decreased in BALF in asthmatic mice models. Oral administration of OM-85 was shown to suppress Th2-type cytokine levels. Our findings provide evidence that oral administration of OM-85 is capable of attenuating airway inflammation in asthmatic mice models. Oral administration of OM-85 may have a positive impact in terms of asthma severity.
Fu, Ran; Li, Jian; Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin
2014-01-01
Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.
Komiya, Takaki; Sugiyama, Tetsuya; Takeda, Kazuhiko; Watanabe, Noriki; Imai, Masamichi; Kokubo, Masaya; Tokuda, Natsuko; Ochiai, Hiroshi; Habashita, Hiromu; Shibayama, Shiro
2013-11-15
CC chemokine receptor 4 (CCR4) has been implicated as a preferential marker for T helper type 2 (Th2) cells, and is believed to be involved in the pathology of allergic diseases by controlling Th2 cell trafficking into inflamed tissues. The objective of the study was to characterize the pharmacological properties of E0001-163, a novel CCR4 antagonist. E0001-163 was tested in both in vitro chemotaxis assays as well as in vivo mouse models of CCR4 ligand-induced air pouch and antigen-induced airway inflammation by utilizing in vitro-polarized Th2 cells. In vitro, E0001-163 inhibited migratory response of human Th2-polarized cells to CCL22, a CCR4 ligand, with an IC50 value of 11.9 nM. E0001-163 significantly suppressed CCL22-induced Th2 cell trafficking into mouse air pouch in a dose-dependent manner at doses of 3 and 10mg/kg, suggesting that E0001-163 has an inhibitory effect on CCR4-mediated T cell trafficking in vivo. In addition, E0001-163 partially decreased Th2 cell trafficking and the level of IL-4 in the lungs in Th2-tansferred and ovalbumin (OVA)-challenged mice. T cell trafficking involves multiple chemokine receptors both in acute and chronic phases, and our findings suggest that CCR4, together with other chemokine receptors, may be involved in Th2 cell trafficking under disease conditions. © 2013 Elsevier B.V. All rights reserved.
[Quality assurance in airway management: education and training for difficult airway management].
Kaminoh, Yoshiroh
2006-01-01
Respiratory problem is one of the main causes of death or severe brain damage in perioperative period. Three major factors of respiratory problem are esophageal intubation, inadequate ventilation, and difficult airway. The wide spread of pulse oximeter and capnograph reduced the incidences of esophageal intubation and inadequate ventilation, but the difficult airway still occupies the large portion in the causes of adverse events during anesthesia. "Practice guideline for management of the difficult airway" was proposed by American Society of Anesthesiologists (ASA) in 1992 and 2002. Improvement of knowledge, technical skills, and cognitive skills are necessary for the education and training of the difficult airway management. "The practical seminar of difficult airway management (DAM practical seminar)" has been cosponsored by the Japanese Association of Medical Simulation (JAMS) in the 51 st and 52 nd annual meetings of Japanese Society of Anesthesiologists and the 24th annual meeting of Japanese Society for Clinical Anesthesia. The DAM practical seminar is composed of the lecture session for ASA difficult airway algorithm, the hands-on training session for technical skills, and the scenario-based training session for cognitive skills. Ninty six Japanese anesthesiologists have completed the DAM practical seminar in one year. "The DAM instructor course" should be immediately prepared to organize the seminar more frequently.
Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes
In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...
Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series.
Segal, Nicolas; Parquette, Brent; Ziehr, Jonathon; Yannopoulos, Demetris; Lindstrom, David
2013-04-01
Intrathoracic pressure regulation (IPR) is a novel, noninvasive therapy intended to increase cardiac output and blood pressure in hypotensive states by generating a negative end expiratory pressure of -12 cm H2O between positive pressure ventilations. In this first feasibility case-series, we tested the hypothesis that IPR improves End tidal (ET) CO2 during cardiopulmonary resuscitation (CPR). ETCO2 was used as a surrogate measure for circulation. All patients were treated initially with manual CPR and an impedance threshold device (ITD). When IPR-trained medics arrived on scene the ITD was removed and an IPR device (CirQLATOR™) was attached to the patient's advanced airway (intervention group). The IPR device lowered airway pressures to -9 mmHg after each positive pressure ventilation for the duration of the expiratory phase. ETCO2, was measured using a capnometer incorporated into the defibrillator system (LifePak™). Values are expressed as mean ± SEM. Results were compared using paired and unpaired Student's t test. p values of <0.05 were considered statistically significant. ETCO2 values in 11 patients in the case series were compared pre and during IPR therapy and also compared to 74 patients in the control group not treated with the new IPR device. ETCO2 values increased from an average of 21 ± 1 mmHg immediately before IPR application to an average value of 32 ± 5 mmHg and to a maximum value of 45 ± 5mmHg during IPR treatment (p<0.001). In the control group ETCO2 values did not change significantly. Return of spontaneous circulation (ROSC) rates were 46% (34/74) with standard CPR and ITD versus 73% (8/11) with standard CPR and the IPR device (p<0.001). ETCO2 levels and ROSC rates were significantly higher in the study intervention group. These findings demonstrate that during CPR circulation may be significantly augmented by generation of a negative end expiratory pressure between each breath. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics
Sutcliffe, A; Kaur, D; Page, S; Woodman, L; Armour, C L; Baraket, M; Bradding, P; Hughes, J M; Brightling, C E
2006-01-01
Background Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines. Methods Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined. Results Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant. Conclusion Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma. PMID:16601090
Gabrielsen, Kristin Møller; Krokstad, Julie Stene; Villanger, Gro Dehli; Blair, David A D; Obregon, Maria-Jesus; Sonne, Christian; Dietz, Rune; Letcher, Robert J; Jenssen, Bjørn Munro
2015-01-01
Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Xue; Bao, Wuping; Fei, Xia; Zhang, Yingying; Zhang, Guoqing; Zhou, Xin; Zhang, Min
2018-04-01
Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity. Copyright © 2018. Published by Elsevier Ltd.
Boyoglu-Barnum, Seyhan; Gaston, Kelsey A; Todd, Sean O; Boyoglu, Cemil; Chirkova, Tatiana; Barnum, Thomas R; Jorquera, Patricia; Haynes, Lia M; Tripp, Ralph A; Moore, Martin L; Anderson, Larry J
2013-10-01
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Wang, Xiaoqin; Xu, Weidong; Mohapatra, Subhra; Kong, Xiaoyuan; Li, Xu; Lockey, Richard F; Mohapatra, Shyam S
2008-01-01
Background Asthma is a complex disease, characterized by reversible airway obstruction, hyperresponsiveness and chronic inflammation. Principle pharmacologic treatments for asthma include bronchodilating beta2-agonists and anti-inflammatory glucocorticosteroids; but these agents do not target the main cause of the disease, the generation of pathogenic Th2 cells. We previously reported reduction in allergic inflammation in mice deficient in the ANP receptor NPRA. Here we determined whether siRNA for natriuretic peptide receptor A (siNPRA) protected against asthma when administered transdermally. Methods Imiquimod cream mixed with chitosan nanoparticles containing either siRNA green indicator (siGLO) or siNPRA was applied to the skin of mice. Delivery of siGLO was confirmed by fluorescence microscopy. The anti-inflammatory activity of transdermal siNPRA was tested in OVA-sensitized mice by measuring airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines. Results SiGLO appearing in the lung proved the feasibility of transdermal delivery. In a mouse asthma model, BALB/c mice treated with imiquimod cream containing siNPRA chitosan nanoparticles showed significantly reduced airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines IL-4 and IL-5 in lung homogenates compared to controls. Conclusion These results demonstrate that topical cream containing imiquimod and siNPRA nanoparticles exerts an anti-inflammatory effect and may provide a new and simple therapy for asthma. PMID:18279512
Allergic manifestations in patients with rheumatoid arthritis.
Olsson, Asa Reckner; Wingren, Gun; Skogh, Thomas; Svernell, Olle; Ernerudh, Jan
2003-10-01
A functional dichotomy between Th1- and Th2-type immune responses has been suggested. This study was performed to investigate whether rheumatoid arthritis (RA), a disease with indications of Th1-deviated immune activation, is inversly related to atopic conditions which are Th2-mediated. Two hundred and sixty-three adult cases of RA, fulfilling the American Rheumatism Association (ARA) 1987 Revised Classification Criteria for RA, were identified in 1995 and compared with 541 randomly selected population referents. The presence of atopic manifestations was established through a postal questionnaire and by demonstrating circulating IgE antibodies to common allergens. RA was inversely associated with certain manifestations of rhinitis, which were regarded as the most reliable indicators of atopic disease in the present study. However, no negative association was seen between RA and asthma and eczema, respectively. The main results give some support for an inverse relationship between RA and rhinitis. The prevalence of circulating IgE antibodies was however similar in cases and controls, suggesting that the T-cell commitment mainly occurs in the affected organs.
Improving operative flow during pediatric airway evaluation: a quality-improvement initiative.
Prager, Jeremy D; Ruiz, Amanda G; Mooney, Kristin; Gao, Dexiang; Szolnoki, Judit; Shah, Rahul K
2015-03-01
Microlaryngoscopy and bronchoscopy procedures (MLBs) are short-duration, high-acuity procedures that carry risk. Poor case flow and communication exacerbate such potential risk. Efficient operative flow is critical for patient safety and resource expenditure. To identify areas for improvement and evaluate the effectiveness of a multidisciplinary quality-improvement (QI) initiative. A QI project using the "Plan-Do-Study-Act" (PDSA) cycle was implemented to assess MLBs performed on pediatric patients in a tertiary academic children's hospital. Forty MLBs were audited using a QI evaluation tool containing 144 fields. Each MLB was evaluated for flow, communication, and timing. Opportunities for improvement were identified. Subsequently, QI interventions were implemented in an iterative cycle, and 66 MLBs were audited after the intervention. Specific QI interventions addressed issues of personnel frequently exiting the operating room (OR) and poor preoperative preparation, identified during QI audit as areas for improvement. Interventions included (1) conducting "huddles" between surgeon and OR staff to discuss needed equipment; (2) implementing improvements to surgeon case ordering and preference cards review; (3) posting an OR door sign to limit traffic during airway procedures; and (4) discouraging personnel breaks during airway procedures. Operating room exiting behavior of OR personnel, preoperative preparation, and case timing were assessed and compared before and after the QI intervention. Personnel exiting the OR during the MLB was identified as a preintervention issue, with the surgical technologist, circulator, or surgeon exiting the room in 55% of cases (n = 22). The surgical technologist and circulator left the room to retrieve equipment in 40% of cases (n = 16), which indicated the need for increased preoperative preparation to improve case timing and operative flow. The QI interventions implemented to address these concerns included education regarding break timing, improvements in communication, and improvements in ordering and preparation of equipment. After the QI intervention, the surgical technologist exiting rate decreased from 20% (n = 8) to 8% (n = 5), and the circulator exiting rate decreased from 38% (n = 15) to 27% (n = 17). In addition, the rate of surgeon exiting decreased significantly (from 25% [n = 10 of 40] to 9% [n = 6 of 66]) (P = .03). The surgical technologist and circulating nurse remaining in the room were significantly associated with decreased operating time (1.84-minute decrease for surgical technologist [P = .04] and 1.95-minute decrease for circulating nurse [P = .001]). Gains were made in personnel exiting behavior and case timing after implementation of the QI interventions, potentially leading to decreased risk. This process is easily reproduced and is widely accepted by stakeholders.
Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W
2008-01-01
It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.
Longobardo, G S; Evangelisti, C J; Cherniack, N S
2009-12-01
We examined the effect of arousals (shifts from sleep to wakefulness) on breathing during sleep using a mathematical model. The model consisted of a description of the fluid dynamics and mechanical properties of the upper airways and lungs, as well as a controller sensitive to arterial and brain changes in CO(2), changes in arterial oxygen, and a neural input, alertness. The body was divided into multiple gas store compartments connected by the circulation. Cardiac output was constant, and cerebral blood flows were sensitive to changes in O(2) and CO(2) levels. Arousal was considered to occur instantaneously when afferent respiratory chemical and neural stimulation reached a threshold value, while sleep occurred when stimulation fell below that value. In the case of rigid and nearly incompressible upper airways, lowering arousal threshold decreased the stability of breathing and led to the occurrence of repeated apnoeas. In more compressible upper airways, to maintain stability, increasing arousal thresholds and decreasing elasticity were linked approximately linearly, until at low elastances arousal thresholds had no effect on stability. Increased controller gain promoted instability. The architecture of apnoeas during unstable sleep changed with the arousal threshold and decreases in elasticity. With rigid airways, apnoeas were central. With lower elastances, apnoeas were mixed even with higher arousal thresholds. With very low elastances and still higher arousal thresholds, sleep consisted totally of obstructed apnoeas. Cycle lengths shortened as the sleep architecture changed from mixed apnoeas to total obstruction. Deeper sleep also tended to promote instability by increasing plant gain. These instabilities could be countered by arousal threshold increases which were tied to deeper sleep or accumulated aroused time, or by decreased controller gains.
S-nitrosothiol repletion by an inhaled gas regulates pulmonary function
NASA Astrophysics Data System (ADS)
Moya, Martin P.; Gow, Andrew J.; McMahon, Timothy J.; Toone, Eric J.; Cheifetz, Ira M.; Goldberg, Ronald N.; Stamler, Jonathan S.
2001-05-01
NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O2-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O2/O. This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O2 or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.
Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases.
Gela, A; Kasetty, G; Jovic, S; Ekoff, M; Nilsson, G; Mörgelin, M; Kjellström, S; Pease, J E; Schmidtchen, A; Egesten, A
2015-02-01
During bacterial infections of the airways, a Th1-profiled inflammation promotes the production of several host defense proteins and peptides with antibacterial activities including β-defensins, ELR-negative CXC chemokines, and the cathelicidin LL-37. These are downregulated by Th2 cytokines of the allergic response. Instead, the eosinophil-recruiting chemokines eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 are expressed. This study set out to investigate whether these chemokines could serve as innate host defense molecules during allergic inflammation. Antibacterial activities of the eotaxins were investigated using viable count assays, electron microscopy, and methods assessing bacterial permeabilization. Fragments generated by mast cell proteases were characterized, and their potential antibacterial, receptor-activating, and lipopolysaccharide-neutralizing activities were investigated. CCL11, CCL24, and CCL26 all showed potent bactericidal activity, mediated through membrane disruption, against the airway pathogens Streptococcus pneumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa. CCL26 retained bactericidal activity in the presence of salt at physiologic concentrations, and the region holding the highest bactericidal activity was the cationic and amphipathic COOH-terminus. Proteolysis of CCL26 by chymase and tryptase, respectively, released distinct fragments of the COOH- and NH2 -terminal regions. The COOH-terminal fragment retained antibacterial activity while the NH2 -terminal had potent LPS-neutralizing properties in the order of CCL26 full-length protein. An identical fragment to NH2 -terminal fragment generated by tryptase was obtained after incubation with supernatants from activated mast cells. None of the fragments activated the CCR3-receptor. Taken together, the findings show that the eotaxins can contribute to host defense against common airway pathogens and that their activities are modulated by mast cell proteases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Luo, Yu-long; Li, Pei-bo; Zhang, Chen-chen; Zheng, Yan-fang; Wang, Sheng; Nie, Yi-chu; Zhang, Ke-jian; Su, Wei-wei
2013-12-01
The effects of four antitussives, including codeine phosphate (CP), moguisteine, levodropropizine (LVDP) and naringin, on airway neurogenic inflammation and enhanced cough were investigated in guinea pig model of chronic cough. Guinea pigs were exposed to CS for 8 weeks. At the 7th and 8th week, the animals were treated with vehicle, CP (4.8 mg/kg), moguisteine (24 mg/kg), LVDP (14 mg/kg) and naringin (18.4 mg/kg) respectively. Then the cough and the time-enhanced pause area under the curve (Penh-AUC) during capsaicin challenge were recorded. The substance P (SP) content, NK-1 receptor expression and neutral endopeptidase (NEP) activity in lung were determined. Chronic CS exposure induced a bi-phase time course of cough responsiveness to capsaicin. Eight weeks of CS exposure significantly enhanced the airway neurogenic inflammation and cough response in guinea pigs. Two weeks of treatment with CP, moguisteine, LVDP or naringin effectively attenuated the chronic CS-exposure enhanced cough. Only naringin exerted significant effect on inhibiting Penh-AUC, SP content and NK-1 receptor expression, as well as preventing the declining of NEP activity in lung. Chronic CS-exposed guinea pig is suitable for studying chronic pathological cough, in which naringin is effective on inhibiting both airway neurogenic inflammation and enhanced cough.
Pennacchio, Gisela E; Neira, Flavia J; Soaje, Marta; Jahn, Graciela A; Valdez, Susana R
2017-02-15
Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jeon, Woo-Young; Shin, In-Sik; Shin, Hyeun-Kyoo; Jin, Seong Eun; Lee, Mee-Young
2016-01-01
Gumiganghwal-tang is a traditional herbal prescription that is used widely for the treatment of the common cold and inflammatory diseases in Korea and other Asian countries. In this study, we investigated the protective effects of a Gumiganghwal-tang aqueous extract (GGTA) against airway inflammation and pulmonary fibrosis using a mouse model of chronic asthma. Chronic asthma was modeled in BALB/c mice via sensitization/challenge with an intraperitoneal injection of 1% ovalbumin (OVA) and inhalation of nebulized 1% OVA for 4 weeks. GGTA (100 mg/kg or 200 mg/kg) was also administered by oral gavage once a day for 4 weeks. We investigated the number of inflammatory cells, production of T-helper type 2 (Th2) cytokines, chemokine and the total transforming growth factor-β1 (TGF-β1) in bronchoalveolar lavage fluid (BALF); the levels of immunoglobulin E (IgE) in the plasma; the infiltration of inflammatory cells in lung tissue; and the expression of TGF-β1, Smad-3, and collagen in lung tissue. Our results revealed that GGTA lowered the recruitment of inflammatory cells (particularly, lymphocyte); and decreased the production of Th2 cytokines, chemokine and total TGF-β1; and attenuated the levels of total and OVA-specific IgE; and decreased the infiltration of inflammatory cells. Moreover, GGTA significantly reduced the expression of TGF-β1 and Smad-3, and lowered collagen deposition. These results indicate that GGTA reduces airway inflammation and pulmonary fibrosis by regulating Th2 cytokines production and the TGF-β1/Smad-3 pathway, thus providing a potential treatment for chronic asthma.
Physiologic control. Anatomy and physiology of the airway circulation.
Widdicombe, J
1992-11-01
Both for the nose and the lower airways there is an extensive subepithelial capillary network. That for the nose is fenestrated, and this is true for the tracheobronchial tree of rats, guinea pigs, and hamsters, and for that of human asthmatics. However, healthy humans, dogs, and sheep have capillaries without fenestrations except for those close to neuroepithelial bodies and submucosal glands. Deeper in the mucosa there is a capacitance system of vessels, conspicuous in the nose but present also in the lower airways of rabbits and sheep and, to a lesser extent, in those of dogs and humans. Both for the nose and the lower airways, parasympathetic nerves are vasodilator, sympathetic nerves are vasoconstrictor, and sensory nerves are able to release dilator neuropeptides. Most inflammatory and immunologic mediators are vasodilator. A conspicuous difference between the nasal and lower airway vasculatures is the presence of arteriovenous anastomoses only in the former. Countercurrent mechanisms also exist in the nose to increase its efficiency in air conditioning, but they have not been established for the trachea. The pulmonary vasculature could be part of such a system for the bronchi. Distension of the airway vasculature thickens the mucosa, probably both by vascular distension and by edema formation. The latter can lead to exudation into the airway lumen. These processes have not been well quantitated, and the balance sheet of capillary and capacitance vessel volumes, interstitial liquid volume, and exudate volume needs to be worked out in physiologic and pathologic conditions.
Comparative cardiopulmonary effects of size-fractionated airborne particulate matter.
Amatullah, Hajera; North, Michelle L; Akhtar, Umme S; Rastogi, Neeraj; Urch, Bruce; Silverman, Frances S; Chow, Chung-Wai; Evans, Greg J; Scott, Jeremy A
2012-02-01
Strong epidemiological evidence exists linking particulate matter (PM) exposures with hospital admissions of individuals for cardiopulmonary symptoms. The PM size is important in influencing the extent of infiltration into the respiratory tract and systemic circulation and directs the differential physiological impacts. To investigate the differential effects of the quasi-ultrafine (PM(0.2)), fine (PM(0.15-2.5)), and coarse PM (PM(2.5-10)) size fractions on pulmonary and cardiac function. Female BALB/c mice were exposed to HEPA-filtered laboratory air or concentrated coarse, fine, or quasi-ultrafine PM using Harvard Ambient Particle Concentrators in conjunction with our nose-only exposure system. These exposures were conducted as part of the "Health Effects of Aerosols in Toronto (HEAT)" campaign. Following a 4 h exposure, mice underwent assessment of respiratory function and recording of electrocardiograms using the flexiVent® system. Exposure to coarse and fine PM resulted in a significant reduction in quasistatic compliance of the lung. Baseline total respiratory resistance and maximum responsiveness to methacholine were augmented after coarse PM exposures but were not affected by quasi-ultrafine PM exposures. In contrast, quasi-ultrafine PM alone had a significant effect on heart rate and in reducing heart rate variability. These findings indicate that coarse and fine PM influence lung function and airways responsiveness, while ultrafine PM can perturb cardiac function. This study supports the hypothesis that coarse and fine PM exerts its predominant physiologic effects at the site of deposition in the airways, whereas ultrafine PM likely crosses the alveolar epithelial barrier into the systemic circulation to affect cardiovascular function.
Mina: A Th2 response regulator meets TGFβ
Pillai, Meenu R.; Lian, Shangli; Bix, Mark
2014-01-01
The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina’s role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina’s involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. PMID:25282476
Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S.; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki
2015-01-01
The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. PMID:25673693
Ogasawara, Takashi; Kohashi, Yuko; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hatano, Masahiko; Hirata, Hirokuni; Fukushima, Yasutsugu; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi; Arima, Masafumi
2018-01-01
Transcriptional repressor B-cell lymphoma 6 (Bcl6) appears to regulate TH2 immune responses in allergies, but its precise role is unclear. We previously reported that Bcl6 suppressed IL-4 production in naïve CD4+ T cell-derived memory TH2 cells. To investigate Bcl6 function in allergic responses in naturally occurring memory phenotype CD4+ T (MPT) cells and their derived TH2 (MPTH2) cells, Bcl6-manipulated mice, highly conserved intron enhancer (hcIE)-deficient mice, and reporter mice for conserved noncoding sequence 2 (CNS2) 3′ distal enhancer region were used to elucidate Bcl6 function in MPT cells. The molecular mechanisms of Bcl6-mediated TH2 cytokine gene regulation were elucidated using cellular and molecular approaches. Bcl6 function in MPT cells was determined using adoptive transfer to naïve mice, which were assessed for allergic airway inflammation. Bcl6 suppressed IL-4 production in MPT and MPTH2 cells by suppressing CNS2 enhancer activity. Bcl6 downregulated Il4 expression in MPTH2 cells, but not MPT cells, by suppressing hcIE activity. The inhibitory functions of Bcl6 in MPT and MPTH2 cells attenuated allergic responses. Bcl6 is a critical regulator of IL-4 production by MPT and MPTH2 cells in TH2 immune responses related to the pathogenesis of allergies. PMID:29696026
Pharmacology and Immunological Mechanisms of an Herbal Medicine, ASHMI™ on Allergic Asthma
Zhang, Tengfei; Srivastava, Kamal; Wen, Ming-Chun; Yang, Nan; Cao, Jing; Busse, Paula; Birmingham, Neil; Goldfarb, Joseph; Li, Xiu-Min
2015-01-01
Allergic asthma is a chronic and progressive inflammatory disease for which there is no satisfactory treatment. Studies reported tolerability and efficacy of an anti-asthma herbal medicine intervention (ASHMI) for asthma patients, developed from traditional Chinese medicine. To investigate the pharmacological actions of ASHMI on early- and late-phase airway responses (EAR and LAR), Ovalbumin (OVA)-sensitized mice received 6 weeks of ASHMI treatment beginning 24 h following the first intra tracheal OVA challenge. EAR were determined 30 min following the fourth challenge and LAR 48 h following the last challenge. ASHMI effects on cytokine secretion, murine tracheal ring contraction and human bronchial smooth muscle cell prostaglandin (PG) production were also determined. ASHMI abolished EAR, which was associated with significantly reduced histamine, leukotriene C4, and OVA-specific IgE levels, as well as LAR, which was associated with significantly reduced bronchoalveolar lavage fluid (BALF) eosinophils, decreased airway remodeling, and lower Th2 cytokine levels in BALF and splenocyte cultures. Furthermore, ASHMI inhibited contraction of murine tracheal rings and increased production of the potent smooth muscle relaxer PGI2. ASHMI abrogation of allergic airway responses is associated with broad effects on asthma pathological mechanisms. PMID:19998324
Ma, Chun-Hua; Ma, Zhan-Qiang; Fu, Qiang; Ma, Shi-Ping
2014-05-01
Ma Huang Tang (Ephedra decoction, MHT) is a famous classical formula from Shang Han Lun by Zhang Zhongjing in the Han Dynasty. The anti-asthmatic effects of MHT and the possible mechanisms were tested. An asthma model was established by ovalbumin (OVA)-induction in mice. A total of forty-eight mice were randomly assigned to six experimental groups: control, model, dexamethasone (2 mg·kg(-1)) and MHT (5, 10, and 20 mg·kg(-1)). Airway resistance (Raw) was measured by the forced oscillation technique, histological studies were evaluated by hematoxylin and eosin (HE) staining, Th1/Th2 and Th17 cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA), and Th17 cells were evaluated by flow cytometry (FCM). This study demonstrated that MHT inhibited OVA-induced increases in Raw and eosinophil count; interleukin (IL)-4 and IL-17 levels were recovered in bronchoalveolar lavage fluid, increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that MHT substantially inhibited OVA-induced eosinophilia in lung tissue. Flow cytometry studies demonstrated that MHT substantially inhibited Th17 cells. These findings suggest that MHT may effectively ameliorate the progression of asthma, and could be further investigated for potential use as a therapy for patients with allergic asthma. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
[Basic life support in pediatrics].
Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J
2006-09-01
Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.
The who, where, and when of IgE in allergic airway disease.
Dullaers, Melissa; De Bruyne, Ruth; Ramadani, Faruk; Gould, Hannah J; Gevaert, Philippe; Lambrecht, Bart N
2012-03-01
Allergic asthma and allergic rhinitis/conjunctivitis are characterized by a T(H)2-dominated immune response associated with increased serum IgE levels in response to inhaled allergens. Because IgE is a key player in the induction and maintenance of allergic inflammation, it represents a prime target for therapeutic intervention. However, our understanding of IgE biology remains fragmentary. This article puts together our current knowledge on IgE in allergic airway diseases with a special focus on the identity of IgE-secreting cells ("who"), their location ("where"), and the circumstances in which they are induced ("when"). We further consider the therapeutic implications of the insights gained. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
LAGIER, B; LEBEL, B; BOUSQUET, J; PÈNE, J
1997-01-01
Histamine, an important inflammatory mediator in allergic diseases and asthma, has been reported to have modulator effects on T cells, suggesting that the bronchial microenvironment may regulate the function of resident T cells. We examined the effect of histamine on the release of the Th2-associated cytokines IL-4 and IL-5 and the Th1-associated cytokine IFN-γ by 30 CD4+ T cell clones from peripheral blood or bronchial biopsy of one atopic subject. Based on the IL-4/IFN-γ ratio, the clones were ascribed to the Th2 (ratio >1), Th0 (ratio ⩾ 0.1 and ⩽1) or Th1 (ratio <0.1) phenotype. Histamine inhibited IFN-γ production by Th1-like cells (P<0.02, Kruskall–Wallis), especially from bronchial biopsy, but had no effect on IL-4 release. Regarding Th0 clones, histamine inhibited IL-4 production (P<0.02) in a dose-dependent manner and slightly inhibited IFN-γ production, but had no effect on Th2-like cells. Histamine had a heterogeneous and insignificant effect on IL-5 production. The H2-receptor antagonist ranitidine completely reversed the inhibition of IL-4 and IFN-γ production, whereas the agonist dimaprit mimicked this effect. In contrast, H1- and H3-receptor agonists and antagonists had no significant effect. These data demonstrate that histamine has different effects on IL-4 and IFN-γ release by T helper cells according to their phenotype via H2-receptors. This study extends the immunomodulatory effects of histamine which may contribute to the perpetuation of airway inflammation in asthma. PMID:9182905
Endocrine regulation of airway contractility is overlooked.
Bossé, Ynuk
2014-08-01
Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.
Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar
2017-12-01
Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.
ERIC Educational Resources Information Center
Neale, Claire
2013-01-01
Within primary schools, the core subjects of literacy and numeracy are highly regarded, and rightly so, as children need to learn to read, write and be numerically literate. This means that all children learn their ABCs at an early age, But, what about the "other ABC"--"Airway, Breathing and Circulation?" Accidents and medical…
Nrf2 protects against airway disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hye-Youn, E-mail: cho2@niehs.nih.go; Kleeberger, Steven R.
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver,more » gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.« less
Rahul, P R C; Bhawar, R L; Ayantika, D C; Panicker, A S; Safai, P D; Tharaprabhakaran, V; Padmakumari, B; Raju, M P
2014-01-14
First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.
Airway Management and Smoke Inhalation Injury in the Burn Patient
2009-10-01
transtracheal catheter). In the ‘‘final stage’’ of the injury, they developed diffuse bronchiolitis, mucous plugging, peripheral airway obstruction, and lobular...10.1016/j.cps.2009.05.013 0094-1298/09/$ – see front matter. Published by Elsevier Inc. p la st ic su rg er y. th ec li ni cs .c om Report Documentation...circumferentially around the patient’s neck (see Fig. 1A, B). Also, the tube may become obstructed in patients who have copious mucous production. This may be
Sagar, Seil; Morgan, Mary E; Chen, Si; Vos, Arjan P; Garssen, Johan; van Bergenhenegouwen, Jeroen; Boon, Louis; Georgiou, Niki A; Kraneveld, Aletta D; Folkerts, Gert
2014-04-16
Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.
2014-01-01
Background Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. Methods To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Results Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. Conclusion These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma. PMID:24735374
Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice.
Tripathi, Prabhanshu; Kukreja, Neetu; Singh, B P; Arora, Naveen
2009-05-01
Studies with mite allergens demonstrated that proteolytic activity augments allergic airway inflammation. This knowledge is limited to few enzyme allergens. The objective of this study is to investigate the effect of serine protease Cur l 1 from Curvularia lunata in airway inflammation/hyper-responsiveness. Cur l 1 was purified and inactivated using a serine protease inhibitor. Balb/c mice were sensitized with enzymatically active Cur l 1 or C. lunata extract. Sensitized mice were given booster dose on day 14 with active or inactivated Cur l 1. Intranasal challenge was given on day 28, 29, and 30. Airway hyper-responsiveness was measured by plethysmography. Blood, bronchoalveolar lavage fluid (BALF), spleen, and lungs from mice were analyzed for cellular infiltration, immunoglobulins, and cytokine levels. Mice challenged with enzymatically active Cur l 1 demonstrated significantly higher airway inflammation than inactive Cur l 1 group mice (p < 0.01). There was a significant difference in serum IgE and IgG1 levels among mice immunized with active Cur l 1 and inactive Cur l 1 (p < 0.01). IL-4 and IL-5 were higher in BALF and splenocyte culture supernatant of active Cur l 1 than inactive Cur l 1 mice. Lung histology revealed increased eosinophil infiltration, goblet cell hyperplasia and mucus secretion in active group. Proteolytic activity of Cur l 1 plays an important role in airway inflammation and the inactivated Cur l 1 has potential to be explored for immunotherapy.
Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko
2015-01-01
Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.
Cardiopulmonary resuscitation update.
Reynolds, Joshua C; Bond, Michael C; Shaikh, Sanober
2012-02-01
Cardiopulmonary resuscitation (CPR) is vital therapy in cardiac arrest care by lay and trained rescuers. Chest compressions are the key component of CPR. Ventilation and airway management should be secondary to high-quality and continuous chest compressions in patients receiving CPR. Only after the patient has had return of spontaneous circulation or completed a cycle of CPR with defibrillation (if appropriate) should attempts at securing an advanced airway be made. Even then, interruptions of chest compressions should be minimized to maintain cardiocerebral perfusion and increase survival. Finally, the ventilation rate should be no more than 8 to 10 breaths per minute. Copyright © 2012 Elsevier Inc. All rights reserved.
Rivera, Dagmar García; Hernández, Ivones; Merino, Nelson; Luque, Yilian; Álvarez, Alina; Martín, Yanet; Amador, Aylin; Nuevas, Lauro; Delgado, René
2011-10-01
The aim was to study the effects of Mangifera indica extract and its major component mangiferin on lung inflammation response and Th2 cytokine production using a murine experimental model of allergic asthma. BALB/c mice were intraperitoneally sensitized with 10 µg of ovoalbumin (OVA) adsorbed on aluminium hydroxide on days 0, 7 and 14. Seven days after the last injection, the mice were challenged with 2% aerosolized OVA inhalation for 30 min beginning on day 21 and continuing until day 24. To evaluate the protective effect, mice were orally treated with M. indica extract (50, 100 or 250 mg/kg) or mangiferin (50 mg/kg) from days 0 to 24. Anti-OVA immunoglobulin E, interleukin (IL)-4 and IL-5 were determined by ELISA and lungs were analysed by histology. M. indica extract and mangiferin produced a marked reduction of airway inflammation around vessels and bronchi, inhibition of IL-4 and IL-5 cytokines in bronchoalveolar lavage fluid and lymphocyte culture supernatant, IgE levels and lymphocyte proliferation. This is the first pre-clinical report of the anti-inflammatory properties of M. indica extract and mangiferin in experimental asthma and it could be an important part of pre-clinical requirement necessary for its use to complement the treatment of this complex disease. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo
2015-01-01
Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine. However, the pro-Th2 activity of alum-based vaccine formulations has not been fully appreciated. Here we found that alum-based tetanus toxoid (TT) vaccine was biased toward a Th-2 profile as shown by TT-induced airway eosinophilic inflammation, type 2 cytokine production, and high levels of IgE anaphylactic antibodies. The adsorption into alum of prototypic TLR4 agonists such as lipopolysaccharides (LPS) derived from Escherichia coli consistently dampened TT-induced Th2 activities without inducing IFNγ or Th1-like responses in the lung. Conversely, adsorption of monophosphoryl lipid A (MPLA) extracted from Salmonella minnesota, which is a TIR-domain-containing adapter-inducing interferon-β- (TRIF-) biased TLR4 agonist, was less effective in decreasing Th-2 responses. Importantly, in a situation with antigenic competition (OVA plus TT), TT-specific IgG1 or IgG2a was decreased compared with TT sensitization. Notably, LPS increased the production of IgG1 and IgG2a TT-specific antibodies. In conclusion, the addition of LPS induces a more robust IgG1 and IgG2a TT-specific antibody production and concomitantly decreases Th2-cellular and humoral responses, indicating a potential use of alum/TLR-based vaccines.
Morphology and Three-Dimensional Inhalation Flow in Human Airways in Healthy and Diseased Subjects
NASA Astrophysics Data System (ADS)
Van de Moortele, Tristan
We investigate experimentally the relation between anatomical structure and respiratory function in healthy and diseased airways. Computed Tomography (CT) scans of human lungs are analyzed from the data base of a large multi-institution clinical study on Chronic Obstructive Pulmonary Disease (COPD). Through segmentation, the 3D volumes of the airways are determined at total lung capacity. A geometric analysis provides data on the morphometry of the airways, including the length and diameter of branches, the child-to-parent diameter ratio, and branching angles. While several geometric parameters are confirmed to match past studies for healthy subjects, previously unreported trends are reported on the length of branches. Specifically, in most dichotomous airway bifurcation, the branch of smaller diameter tends to be significantly longer than the one of larger diameter. Additionally, the branch diameter tends to be smaller in diseased airways than in healthy airways up to the 7th generation of bronchial branching. 3D fractal analysis is also performed on the airway volume. Fractal dimensions of 1.89 and 1.83 are found for healthy non-smokers and declining COPD subjects, respectively, furthering the belief that COPD (and lung disease in general) significantly affects the morphometry of the airways already in early stages of the disease. To investigate the inspiratory flow, 3D flow models of the airways are generated using Computer Aided Design (CAD) software and 3D printed. Using Magnetic Resonance Velocimetry (MRV), 3-component 3D flow fields are acquired for steady inhalation at Reynolds number Re 2000 defined at the trachea. Analysis of the flow data reveals that diseased subjects may experience greater secondary flow strength in their conducting airways, especially in deeper generations.
Zhong, Hua; Yu, Dehong; Zeng, Xianping; Deng, Mengxia; Sun, Yueqi; Wen, Weiping; Li, Huabin
2014-01-01
Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells. PMID:24667347
Interleukin 13 and the beta-adrenergic blockade theory of asthma revisited 40 years later.
Townley, Robert G
2007-09-01
Beta2-Adrenergic agonists are the most potent agents clinically used in inhibiting and preventing the immediate response to bronchoconstricting agents and in inhibiting mast cell mediator release. This raises the possibility that an abnormality in beta-adrenergic receptor function or circulating catecholamine levels could contribute to airway hyperresponsiveness. To link interleukin 13 (IL-13) to the pathogenesis of asthma. Almost 4 decades ago, Andor Szentivanyi published a beta-adrenergic theory of atopic abnormality in bronchial asthma. He proposed 9 characteristics to define bronchial asthma. Because he published these 9 tenets of the beta-adrenergic blockade theory of asthma in 1968, it is appropriate and important to evaluate their relevance in light of advances in pharmacology, inflammation, and immunology. We describe the effects of the allergic reaction on beta-adrenergic responses and airway responsiveness. Both IL-1beta and tumor necrosis factor a have been detected in increased amounts in bronchial lavage fluids in allergic airway inflammation. Both IL-13 and the proinflammatory cytokines IL-1beta and tumor necrosis factor a have been demonstrated in airway smooth muscle to cause a decreased relaxation response to beta-adrenergic agonist. However, IL-13 has been shown to be necessary and sufficient to produce the characteristics of asthma. The decreased adrenergic bronchodilator activity and associated hypersensitivity to mediators put forth by Szentivanyi can be elicited with IL-13 and support its role in the pathogenesis of asthma.
Queto, Túlio; Vasconcelos, Zilton F M; Luz, Ricardo Alves; Anselmo, Carina; Guiné, Ana Amélia A; e Silva, Patricia Machado R; Farache, Júlia; Cunha, José Marcos T; Bonomo, Adriana C; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro
2011-05-09
Granulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation. Allergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production. Contrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation. These observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Fair, Patricia A; Montie, Eric; Balthis, Len; Reif, John S; Bossart, Gregory D
2011-11-01
Thyroid hormones (TH) are key regulators of metabolism and development, yet our understanding of the variability in serum TH concentrations in free-ranging marine mammals is limited. Thus, we examined the interrelationships between TH and age, sex, reproductive status, geographic location, and ocean temperatures in wild bottlenose dolphins (Tursiops truncatus). Circulating concentrations of TH (total thyroxine (tT(4)), free T(4) (fT(4)), and total triiodothyronine (tT(3))) were determined in a total of 195 dolphins; 80 from the coastal waters of Charleston, South Carolina (CHS) and 115 from the Indian River Lagoon, Florida (IRL). Age had the most influence on circulating TH concentrations in dolphins at both sites with decreasing concentrations (p<0.0001) observed with increasing age for all TH. No significant differences were found between males and non-reproductive females. Geographic location significantly influenced tT(4) and tT(3) concentrations; CHS dolphins had higher concentrations than IRL animals. These TH differences between CHS and IRL dolphins may be attributed to the colder year-round water temperature that CHS dolphins inhabit compared to IRL dolphins and could constitute an adaptive response to their colder environment. Results from this study highlight the importance of establishing reference values for dolphins in different geographic locations to support valid comparisons. This initial assessment provides a foundation of how biological and environmental variables could affect circulating TH in dolphins, which will help to elucidate the impacts of disease, pollution, and climate change on the thyroid hormone system of aquatic mammals. Published by Elsevier Inc.
Scherrer, Patricia D; Mallory, Michael D; Cravero, Joseph P; Lowrie, Lia; Hertzog, James H; Berkenbosch, John W
2015-07-01
To evaluate the impact of obesity on adverse events and required interventions during pediatric procedural sedation. The Pediatric Sedation Research Consortium database of prospectively collected procedural sedation encounters was queried to identify patients for whom body mass index (BMI) could be calculated. Obesity was defined as BMI ≥95th percentile for age and gender. Sedation-related outcomes, adverse events, and therapeutic interventions were compared between obese and nonobese patients. For analysis, 28,792 records were eligible. A total of 5,153 patients (17.9%) were obese; they were predominantly male and older and had a higher median American Society of Anesthesiologists Physical Status classification (P < 0.001). Total adverse events were more common in obese patients (odds ratio [OR] 1.49, 95% confidence interval [1.31, 1.70]). Respiratory events (airway obstruction OR 1.94 [1.54, 2.44], oxygen desaturation OR 1.99 [1.50, 2.63], secretions OR 1.48 [1.01, 2.15], laryngospasm OR 2.30 [1.30, 4.05]), inability to complete the associated procedure (OR 1.96 [1.16, 3.30]), and prolonged recovery (OR 2.66 [1.26, 5.59]) were increased in obese patients. Obese patients more frequently required airway intervention including repositioning, suctioning, jaw thrust, airway adjuncts, and bag-valve-mask ventilation. Multivariate regression analysis demonstrated obesity to be independently associated with minor and moderate but not major adverse events. Obesity is an independent risk factor for adverse respiratory events during procedural sedation and is associated with an increased frequency of airway interventions, suggesting that additional vigilance and expertise are required when sedating these patients. © 2015 John Wiley & Sons Ltd.
Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD
Doe, Camille; Bafadhel, Mona; Siddiqui, Salman; Desai, Dhananjay; Mistry, Vijay; Rugman, Paul; McCormick, Margaret; Woods, Joanne; May, Richard; Sleeman, Matthew A.; Anderson, Ian K.
2010-01-01
Background: Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain. Methods: We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD. Results: The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04). Conclusions: Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation. PMID:20538817
Role of Polyamines in Asthma Pathophysiology
2018-01-01
Asthma is a complex disease of airways, where the interactions of immune and structural cells result in disease outcomes with airway remodeling and airway hyper-responsiveness. Polyamines, which are small-sized, natural super-cations, interact with negatively charged intracellular macromolecules, and altered levels of polyamines and their interactions have been associated with different pathological conditions including asthma. Elevated levels of polyamines have been reported in the circulation of asthmatic patients as well as in the lungs of a murine model of asthma. In various studies, polyamines were found to potentiate the pathogenic potential of inflammatory cells, such as mast cells and granulocytes (eosinophils and neutrophils), by either inducing the release of their pro-inflammatory mediators or prolonging their life span. Additionally, polyamines were crucial in the differentiation and alternative activation of macrophages, which play an important role in asthma pathology. Importantly, polyamines cause airway smooth muscle contraction and thus airway hyper-responsiveness, which is the key feature in asthma pathophysiology. High levels of polyamines in asthma and their active cellular and macromolecular interactions indicate the importance of the polyamine pathway in asthma pathogenesis; therefore, modulation of polyamine levels could be a suitable approach in acute and severe asthma management. This review summarizes the possible roles of polyamines in different pathophysiological features of asthma. PMID:29316647
The latest generation in flexible bronchoscopes: a description and evaluation.
Hsia, David W; Tanner, Nichole T; Shamblin, Clayton; Mehta, Hiren J; Silvestri, Gerard A; Musani, Ali I
2013-10-01
Since the introduction of the flexible bronchoscope over 50 years ago, bronchoscopists have seen vast improvement in the technology available for diagnostics and therapeutics in the bronchoscopy laboratory. We set forth to evaluate the latest evolution in flexible bronchoscopes with features designed to improve imaging and airway navigation. The BF-Q190, BF-H190, and/or BF-1TH190 bronchoscopes were evaluated prospectively in 105 patients undergoing bronchoscopy from November 2010 to August 2011 at 2 tertiary care centers in the United States. Data collected from each procedure included method of insertion, airway images, and therapeutic interventions. At the completion of the study, 10 bronchoscopists were surveyed using a 7-point Likert scale to identify the perceived benefits of the design. Insertion methods included nasal, oral, laryngeal mask airway or endotracheal tube, and tracheostomy. Procedures performed included bronchoalveolar lavage, endobronchial biopsy or brushing, transbronchial biopsy, transbronchial needle aspiration or injection, peripheral navigation, and large airway therapeutic interventions. Survey of bronchoscopists revealed that when compared with current bronchoscopes, the features rated as having the most significant impact on functionality are the 210-degree tip angulation (average 2.4/3) and rotational capability of the insertion tube (average 2.4/3). The new-generation flexible bronchoscope offers improvement in image quality, magnification options, unique insertion tube rotation, and an increased 210-degree distal tip angulation over currently available flexible bronchoscopes. The bronchoscopes are an overall improvement to the current generation of bronchoscopes. The increased tip angulation and novel rotating insertion tube add the most to improvement in functionality.
Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark
2014-01-01
Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443
Improving the safety of remote site emergency airway management.
Wijesuriya, Julian; Brand, Jonathan
2014-01-01
Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications. We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.
Identification of an IL-17–producing NK1.1neg iNKT cell population involved in airway neutrophilia
Michel, Marie-Laure; Keller, Alexandre Castro; Paget, Christophe; Fujio, Masakazu; Trottein, François; Savage, Paul B.; Wong, Chi-Huey; Schneider, Elke; Dy, Michel; Leite-de-Moraes, Maria C.
2007-01-01
Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)-γ and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (α-galactosylceramide [α-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1neg iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by α-GalCer or lipopolysaccharide instillation was significantly reduced in iNKT-cell–deficient Jα18−/− mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before α-GalCer administration. Collectively, our findings reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion. PMID:17470641
Alterations in circulating T-cell lymphocyte populations in children with obstructive sleep apnea.
Tan, Hui-Leng; Gozal, David; Wang, Yang; Bandla, Hari P R; Bhattacharjee, Rakesh; Kulkarni, Richa; Kheirandish-Gozal, Leila
2013-06-01
Changes in lymphocyte phenotype and functionality have been described in adult patients with obstructive sleep apnea (OSA). We hypothesized that OSA is associated with T lymphocyte alterations in children, particularly in T regulatory lymphocytes (T regs), and aimed to characterize circulating T lymphocyte subsets in children with OSA. Cross-sectional. Kosair Children's Hospital (Louisville, KY, USA) and Comer Children's Hospital (Chicago, IL, USA). Consecutively recruited children being evaluated for habitual snoring. N/A. Overnight polysomnography (PSG) was performed and a fasting blood sample was obtained from the patients. Flow cytometry was performed on peripheral blood mononuclear cells stained for CD3, CD4, CD8, CD25, FOXP3, interleukin-4 (IL-4), interferon-γ (IFN-γ), and IL-17. Patients were divided into three groups based on their PSG: controls (apnea-hypopnea indices [AHI] < 1/h total sleep time [TST]), mild OSA (1 ≤ AHI < 5/hTST), moderate-severe OSA (AHI ≥ 5/h TST). The percentage of CD4+ and T reg lymphocytes differed across groups. Children with moderate-severe OSA had significantly reduced T reg than control children (median [interquartile range] 4.8 [3.8-5.7% CD4+] versus 7.8 [7.0-9.2% CD4+]; P < 0.001). There were also significant differences in the percentage of T helper 1 (Th1) lymphocytes and in Th1:Th2 ratios between groups. Children with moderate-severe OSA had increased Th1 cells (P = 0.001) and Th1:Th2 ratios (P = 0.0026) compared with children with mild OSA and control children. Associations between AHI and T reg (P = 0.0003; r = -0.46), CD4+ lymphocytes (P = 0.0047; r = -0.37), and Th1:Th2 ratios (P = 0.0009; r = 0.43) emerged. In addition, the percentage of T reg was inversely correlated with Th1:Th2 ratios (P = 0.029; r = -0.29). Pediatric OSA is associated with reduced T reg population and altered Th1:Th2 balance toward Th1 predominance, suggesting a shift to a proinflammatory state. The changes in lymphocytic phenotypes associated with OSA may contribute to the variance in systemic inflammation and downstream morbidities associated with this condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeshita, W.M.; Gushiken, V.O.; Ferreira-Duarte, A.P.
Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure.more » Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF and SDF-1α. • Our results contribute to elucidating BM events during SEA-induced lung inflammation.« less
[Changes of CD(4)(+) Foxp3+ regulatory T cells and CD(4)(+)IL-17+T cells in acrolein exposure rats].
Wei, Ming; Tu, Ling; Liang, Yinghong; Li, Jia; Gong, Yanjie; Zhang, Yihua; Yang, Lu
2015-09-01
To evaluate the changes of CD(4)(+) IL-17+T (Th17) and CD(4)(+)Foxp3+regulatory T (Treg) cells in peripheral blood and bronchoalveolar lavage fluid (BALF) , and therefore to explore the role of Th17 and Treg in acrolein exposure airway inflammation in rats. Forty male Wistar rats were randomly divided into 4 groups: a 2 wk acrolein exposure group, a 4 wk acrolein exposure group, a 2 wk control group and a 4 wk control group (n=10 each). Cells in BALF were collected and analyzed by absolute and differential cell counts.IL-17 and IL-6 levels in serum and BALF were tested by enzyme linked immunosorbent assay (ELISA). The proportion of CD(4)(+)IL-17+T and CD(4)(+) Foxp3+Treg in peripheral blood and BALF were determined by flow cytometry.The mRNA expressions of IL-17 and Foxp3 were measured by real-time PCR. Comparisons of the data between different groups were performed using one-way ANOVA, and SNK and Games-Howell test were used for comparison between 2 groups. Levels of IL-17 were remarkable increased in the 2 wk acrolein exposure group and the 4 wk acrolein exposure group in serum [(52.64 ± 1.89) ng/L, (76.73 ± 5.57) ng/L], and BALF [(79.07 ± 5.67) ng/L, (96.61 ± 6.44) ng/L] compared with the 2 wk control group [(40.05 ± 3.12) ng/L, (56.75 ± 4.37) ng/L] and the 4 wk control group [(38.75 ± 3.23) ng/L, (53.27 ± 4.48) ng/L], all P<0.01. IL-6 was increased in the 2 wk and the 4 wk acrolein exposure group [ (33.28 ± 2.27) ng/L, (46.24 ± 3.16) ng/L] compared with the 2 wk and the 4 wk control group [ (16.37 ± 1.49) ng/L, (17.02 ± 1.43) ng/L] in BALF.Ratio of Th17 was higher in the 2 wk and the 4 wk acrolein exposure groups in peripheral blood (1.82 ± 0.18) %, (3.75 ± 0.48) % and BALF [(7.23 ± 0.27) %, (8.12 ± 0.38) %] compared with the 2 wk [(0.96 ± 0.07) %, (5.64 ± 0.63) %] and the 4 wk control group [(1.01 ± 0.08) %, (5.86 ± 0.57) %]. Ratio of Treg in BALF was higher in the acrolein exposure groups [ (8.83 ± 0.52) %, (12.05 ± 0.74) %] compared with the control groups [(4.37 ± 0.27) %, (5.01 ± 0.37) %]. The level of IL-17 mRNA was increased in the 2 wk and the 4 wk acrolein exposure group in peripheral blood [(25.78 ± 2.31), (34.69 ± 2.01) ] and in BALF [(23.04 ± 1.78), (34.56 ± 3.12)] compared with the 2 wk [(11.04 ± 2.53), (11.08 ± 2.05)] and the 4 wk [(12.03 ± 2.34), (12.69 ± 2.69)] control groups. Foxp3 mRNA was increased in the acrolein exposure groups [ (26.37 ± 3.24), (33.19 ± 2.98)] (24.4 ± 2.7), (30.3 ± 2.7) compared with the control groups [(12.37 ± 2.56), (13.12 ± 3.08)]. Th17 in acrolein exposure groups was positively correlated with counts of total cells and macrophages (r=0.5126, 0.5437, all P<0.01). A changed expression of Th17 and Treg cells and an vary of inflammatory cytokines were evident in airway inflammation of acrolein exposed rats, suggesting that Treg was involved in the immunological regulation and Th17 was associated with the persistent inflammation in acrolein induced airway inflammation in rats.
New Insights into Thyroid Hormone Action
Mendoza, Arturo; Hollenberg, Anthony N.
2017-01-01
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093
Zhang, Xian; Staimer, Norbert; Gillen, Daniel L.; Tjoa, Tomas; Schauer, James J.; Shafer, Martin M.; Hasheminassab, Sina; Pakbin, Payam; Vaziri, Nosratola D.; Sioutas, Constantinos; Delfino, Ralph J.
2016-01-01
Background Exposure to air pollution has been associated with cardiorespiratory morbidity and mortality. However, the chemical constituents and pollution sources underlying these associations remain unclear. Method We conducted a cohort panel study involving 97 elderly subjects living in the Los Angeles metropolitan area. Airway and circulating biomarkers of oxidative stress and inflammation were measured weekly over 12 weeks and included, exhaled breath condensate malondialdehyde (EBC MDA), fractional exhaled nitric oxide (FeNO), plasma oxidized low-density lipoprotein (oxLDL), and plasma interleukin-6 (IL-6). Exposures included 7-day personal nitrogen oxides (NOX), daily criteria-pollutant data, five-day average particulate matter (PM) measured in three size-fractions and characterized by chemical components including transition metals, and in vitro PM oxidative potential (dithiothreitol and macrophage reactive oxygen species). Associations between biomarkers and pollutants were assessed using linear mixed effects regression models. Results We found significant positive associations of airway oxidative stress and inflammation with traffic-related air pollutants, ultrafine particles and transition metals. Positive but nonsignificant associations were observed with PM oxidative potential. The strongest associations were observed among PM variables in the ultrafine range (PM <0.18 μm). It was estimated that an interquartile increase in 5-day average ultrafine polycyclic aromatic hydrocarbons was associated with a 6.3% (95% CI: 1.1%, 11.6%) increase in EBC MDA and 6.7% (95% CI: 3.4%, 10.2%) increase in FeNO. In addition, positive but nonsignificant associations were observed between oxLDL and traffic-related pollutants, ultrafine particles and transition metals while plasma IL-6 was positively associated with 1-day average traffic-related pollutants. Conclusion Our results suggest that exposure to pollutants with high oxidative potential (traffic-related pollutants, ultrafine particles, and transition metals) may lead to increased airway oxidative stress and inflammation in elderly adults. This observation was less clear with circulating biomarkers. PMID:27336235
Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation
NASA Astrophysics Data System (ADS)
Shipkowski, Kelly Anne
The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment induced during asthma can modulate the innate inflammatory response to MWCNTs through inhibition of caspase-1 and inflammasome activation in the lung and through alteration of the transcription factors involved in the T helper immune responses systemically.
... exposure; Irritant-induced reactive airways disease Images Spirometry Respiratory system References Lemiere C, Vandenplas O. Asthma in the workplace. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and ... of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...
NASA Astrophysics Data System (ADS)
Bellomo, K.; Polvani, L. M.
2017-12-01
It is widely believed that the Walker Circulation will weaken in response to increasing greenhouse gases (GHG) by the end of the 21st century. But over the 20th century, the existence of a statistical significant weakening trends in the observations remains unclear. We here present new modelling evidence showing that Ozone Depleting Substances (ODS) may have significantly contributed to the weakening of the Walker Circulation over the years 1955-2005. While the primary impact of increasing ODS has been the formation of the ozone hole, it is perhaps not as widely appreciated that ODS are also powerful greenhouse gases. Using an ensemble of integrations with the the Whole Atmosphere Chemistry Climate Model, we show that the surface warming caused by increasing ODS over the second half of the 20th century causes a statistically significant weakening of the Walker Circulation in the model. In fact, we find that the increase of the other well-mixed GHG alone leads to a strengthening, not a weakening of the Walker Circulation, over that period in our model. When ODS concentrations are held fixed at 1950's levels, the effect of the other GHG is not sufficient, and a warming delay in the eastern tropical Pacific SST leads to an increase in the east-west SST gradient which is accompanied by a strengthening of the Walker Circulation. But, when the forcing from ODS is added in, the additional radiative forcing causes the eastern Pacific to warm faster, and the trend in the Walker Circulation reverses sign and becomes negative over the second half of the 20th century.
Mina: a Th2 response regulator meets TGFβ.
Pillai, Meenu R; Lian, Shangli; Bix, Mark
2014-12-01
The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina's role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina's involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Nan; Van Crombruggen, Koen; Holtappels, Gabriele; Lan, Feng; Katotomichelakis, Michail; Zhang, Luo; Högger, Petra; Bachert, Claus
2014-01-01
Topical glucocorticosteroids are the first line therapy for airway inflammation. Modern compounds with higher efficacy have been developed, but head-to-head comparison studies are sparse. To compare the activity of two intranasal glucocorticoids, fluticasone furoate (FF) and mometasone furoate (MF) with respect to the inhibition of T helper (Th)1, Th2 and Th17 cytokine release in airway mucosa. We used an ex-vivo human nasal mucosal tissue model and employed pre- and post- Staphylococcus aureus enterotoxin B (SEB)-challenge incubations with various time intervals and drug concentrations to mimic typical clinical situations of preventive or therapeutic use. At a fixed concentration of 10-10 M, FF had significantly higher suppressive effects on interferon (IFN)-γ, interleukin (IL)-2 and IL-17 release, but not IL-5 or tumor necrosis factor (TNF)-α, vs. MF. While the maximal suppressive activity was maintained when FF was added before or after tissue stimulation, the cytokine suppression capacity of MF appeared to be compromised when SEB-induced cell activation preceded the addition of the drug. In a pre-challenge incubation setting with removal of excess drug concentrations, MF approached inhibition of IL-5 and TNF-α after 6 and 24 hours while FF maximally blocked the release of these cytokines right after pre-incubation. Furthermore, FF suppressed a wider range of T helper cytokines compared to MF. The study demonstrates the potential of our human mucosal model and shows marked differences in the ability to suppress the release of various cytokines in pre- and post-challenge settings between FF and MF mimicking typical clinical situations of preventive or therapeutic use.
Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki
2015-04-24
The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Jenmalm, M C; Van Snick, J; Cormont, F; Salman, B
2001-10-01
Allergic diseases are believed to be due to T helper (Th)2-like immunity to allergens in affected tissues, and immune responses to allergens are characterized by a cross-regulation between Th1 and Th2 cells. Atopic individuals may develop IgE antibodies to only one or more allergens. However, the mechanisms behind sensitization to a specific allergen, e.g. why an individual develops IgE to cat but not birch, are not known. Our aim was to study birch- and cat-induced Th1 and Th2 cytokine secretion in children who were sensitized to birch but not to cat, and vice versa. The subjects in the study were 60 12-year-old children. Seventeen of the children were sensitized (skin prick test and circulating IgE positive) to birch but not cat, 13 were sensitized to cat but not birch, 11 were sensitized both to birch and cat, and 19 children were skin prick test and circulating IgE negative. Forty-six children had a history of atopic symptoms, and 42 of them had current symptoms. Peripheral blood mononuclear cells were separated from venous blood and stimulated with cat or birch allergen. The levels of IL-4, IL-5, IL-9, IL-10, IL-13 and IFN-gamma in the cell supernatants were analysed by ELISA. Sensitized children produced more of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 than non-sensitized atopic and non-atopic children in response to stimulation with the allergen they were sensitized to. High levels of the Th2 cytokines IL-4 and IL-5 and low levels of the anti-inflammatory cytokine IL-10 were associated with atopic symptoms, and high cat-induced IL-9 levels with asthma. The Th2 cytokines IL-4, IL-5, IL-9 and IL-13 were all commonly detected in sensitized children after stimulation with the specific, in contrast to an unrelated, allergen. Atopic symptoms were associated with increased levels of IL-4 and IL-5 and tended to be associated with low levels of IL-10, and asthma with high cat-induced IL-9 levels.
Bai, Yan; Sanderson, Michael J
2009-06-01
To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.
Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells
Watanabe, Yukiko; Onodera, Atsushi; Kanai, Urara; Ichikawa, Tomomi; Obata-Ninomiya, Kazushige; Wada, Tomoko; Kiuchi, Masahiro; Iwamura, Chiaki; Tumes, Damon J.; Shinoda, Kenta; Yagi, Ryoji; Motohashi, Shinichiro; Hirahara, Kiyoshi; Nakayama, Toshinori
2014-01-01
Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin−/− T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression. PMID:25136117
Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation
Wright, Paulette L.; Yu, Jun; Di, Y.P. Peter; Homer, Robert J.; Chupp, Geoffrey; Elias, Jack A.; Cohn, Lauren
2010-01-01
Nogo-B is a member of the reticulon family of proteins (RTN-4B) that is highly expressed in lung tissue; however, its function remains unknown. We show that mice with Th2-driven lung inflammation results in a loss of Nogo expression in airway epithelium and smooth muscle compared with nonallergic mice, a finding which is replicated in severe human asthma. Mice lacking Nogo-A/B (Nogo-KO) display an exaggerated asthma-like phenotype, and epithelial reconstitution of Nogo-B in transgenic mice blunts Th2-mediated lung inflammation. Microarray analysis of lungs from Nogo-KO mice reveals a marked reduction in palate lung and nasal clone (PLUNC) gene expression, and the levels of PLUNC are enhanced in epithelial Nogo-B transgenic mice. Finally, transgenic expression of PLUNC into Nogo-KO mice rescues the enhanced asthmatic-like responsiveness in these KO mice. These data identify Nogo-B as a novel protective gene expressed in lung epithelia, and its expression regulates the levels of the antibacterial antiinflammatory protein PLUNC. PMID:20975041
Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.
Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K
2013-01-01
Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.
Xia, Mingcan; Viera-Hutchins, Loida; Garcia-Lloret, Maria; Noval Rivas, Magali; Wise, Petra; McGhee, Sean A; Chatila, Zena K; Daher, Nancy; Sioutas, Constantinos; Chatila, Talal A
2015-08-01
Traffic-related particulate matter (PM) has been linked to a heightened incidence of asthma and allergic diseases. However, the molecular mechanisms by which PM exposure promotes allergic diseases remain elusive. We sought to determine the expression, function, and regulation of pathways involved in promotion of allergic airway inflammation by PM. We used gene expression transcriptional profiling, in vitro culture assays, and in vivo murine models of allergic airway inflammation. We identified components of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells. PM, especially ultrafine particles, upregulated TH cytokine levels, IgE production, and allergic airway inflammation in mice in a Jag1- and Notch-dependent manner, especially in the context of the proasthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacologic antagonism of AhR or its lineage-specific deletion in CD11c(+) cells abrogated the augmentation of airway inflammation by PM. PM activates an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with proasthmatic alleles. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Alnahas, Safa; Hagner, Stefanie; Raifer, Hartmann; Kilic, Ayse; Gasteiger, Georg; Mutters, Reinier; Hellhund, Anne; Prinz, Immo; Pinkenburg, Olaf; Visekruna, Alexander; Garn, Holger; Steinhoff, Ulrich
2017-01-01
Alterations of the airway microbiome are often associated with pulmonary diseases. For example, detection of the bacterial pathogen Moraxella catarrhalis in the upper airways is linked with an increased risk to develop or exacerbate asthma. However, the mechanisms by which M. catarrhalis augments allergic airway inflammation (AAI) remain unclear. We here characterized the cellular and soluble mediators of M. catarrhalis triggered excacerbation of AAI in wt and IL-17 deficient as well as in animals treated with TNF-α and IL-6 neutralizing antibodies. We compared the type of inflammatory response in M. catarrhalis infected, house dust mite (HDM)-allergic and animals infected with M. catarrhalis at different time points of HDM sensitization. We found that airway infection of mice with M. catarrhalis triggers a strong inflammatory response with massive neutrophilic infiltrates, high amounts of IL-6 and TNF-α and moderate levels of CD4+ T-cell-derived IFN-γ and IL-17. If bacterial infection occurred during HDM allergen sensitization, the allergic airway response was exacerbated, particularly by the expansion of Th17 cells and increased TNF-α levels. Neutralization of IL-17 or TNF-α but not IL-6 resulted in accelerated clearance of M. catarrhalis and effectively prevented infection-induced exacerbation of AAI. Taken together, our data demonstrate an essential role for TNF-α and IL-17 in infection-triggered exacerbation of AAI. PMID:29184554
231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)
NASA Astrophysics Data System (ADS)
Gu, Sifan; Liu, Zhengyu
2017-12-01
The sediment 231Pa / 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of the sediment 231Pa / 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa / 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa / 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa / 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.
Novel approaches to the management of noneosinophilic asthma
Thomson, Neil C.
2016-01-01
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of ‘off-label’ use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies. PMID:26929306
Echinacea complex--chemical view and anti-asthmatic profile.
Šutovská, Martina; Capek, Peter; Kazimierová, Ivana; Pappová, Lenka; Jošková, Marta; Matulová, Mária; Fraňová, Soňa; Pawlaczyk, Izabela; Gancarz, Roman
2015-12-04
Echinacea purpurea (L.) Moench is one of the mostly used herbs in the traditional medicine for the treatment of respiratory diseases. Modern interest in Echinacea is directed to its immunomodulatory activity. Recent studies have shown that secretion of asthma-related cytokines in the bronchial epithelial cells can be reversed by Echinacea preparations. To examine the pharmacodynamics profile of Echinacea active principles, a complex has been isolated from its flowers by alkaline extraction and has been tested using an animal model of allergic asthma. The structural features of Echinacea purpurea complex was determined using chemical and spectroscopic methods. Allergic inflammation of the airways was induced by repetitive exposure of guinea pigs to ovalbumin. Echinacea complex was then administered 14 days in 50mg/kg b.w. daily dose perorally. Bronchodilatory effect was verified as decrease in the specific airway resistance (sRaw) in vivo and by reduced contraction amplitude (mN) of tracheal and pulmonary smooth muscle to cumulative concentrations of acetylcholine and histamine in vitro. The impact on mucociliary clearance evaluated measurement of ciliary beat frequency (CBF) in vitro using LabVIEW™ Software. Anti-inflammatory effect of Echinacea complex was verified by changes in exhaled NO levels and by Bio-Plex® assay of Th2 cytokine concentrations (IL-4, IL-5, IL-13 and TNF-alpha) in serum and bronchoalveolar lavage fluid (BALF). Chemical and spectroscopic studies confirmed the presence of carbohydrates, phenolic compounds and proteins, as well as the dominance of rhamnogalacturonan and arabinogalactan moieties in Echinacea complex. The significant decrease in sRaw values and suppressed histamine and acetylcholine-induced contractile amplitude of isolated airways smooth muscle that were similar to effects of control drug salbutamol confirmed Echinacea complex bronchodilatory activity. The anti-inflammatory effect was comparable with that of control agent budesonide and was verified as significantly reduced exhaled NO levels and concentration of Th2 cytokines in serum and BALF. The values of CBF were changed only insignificantly on long-term administration of Echinacea complex suggested its minimal negative impact on mucociliary clearance. Pharmacodynamic studies have confirmed significant bronchodilatory and anti-inflammatory effects of Echinacea complex that was similar to effects of classic synthetic drugs. Thus, results provide a scientific basis for the application of this herb in traditional medicine as a supplementary treatment of allergic disorders of the airways, such as asthma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhao, Yingxin; Jamaluddin, Mohammad; Zhang, Yueqing; Sun, Hong; Ivanciuc, Teodora; Garofalo, Roberto P.; Brasier, Allan R.
2017-01-01
Lower respiratory tract infections (LRTIs) from Respiratory Syncytial Virus (RSV) are due, in part, to secreted signals from lower airway cells that modify immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea (hBECs) vs small airway bronchiolar cells (hSAECs). A workflow was established using telomerase- immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in both secreted proteins and nanoparticles (exosomes). Approximately one-third of secretome proteins are exosomal, with the remainder from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea (phBECs) vs bronchioles (phSAECs). 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate (FDR). Fifteen proteins unique to RSV-infected phBECs were regulated by epithelial-specific ets homology factor (EHF). 106 proteins unique to RSV-infected hSAECs were regulated by the transcription factor NFκB. In this latter group, we validated the differential expression of Chemokine (C-C Motif) Ligand 20 (CCL20)/macrophage-inducible protein (MIP)3α, thymic stromal lymphopoietin (TSLP) and chemokine (CC) ligand 3-like 1(CCL3-L1) because of their roles in Th2 polarization. CCL20/MIP3α was the most active mucin-inducing factor in the RSV-infected hSAEC secretome, and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses, and regional differences in epithelial secretome participating in RSV LRTI-induced airway remodeling. PMID:28258195
Choi, Inseon-S; Takizawa, Hajime; Rhim, TaiYoun; Lee, June-Hyuk; Park, Sung-Woo; Park, Choon-Sik
2005-01-01
Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (Penh) was measured. Levels of IL-4 and IFN-γ were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher Penh than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-γ were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-γ suggesting that DEP amplify Th2 immune response. PMID:16224148
ERK1 is important for Th2 differentiation and development of experimental asthma
Goplen, Nicholas; Karim, Zunayet; Guo, Lei; Zhuang, Yonghua; Huang, Hua; Gorska, Magdalena M.; Gelfand, Erwin; Pagés, Gilles; Pouysségur, Jacques; Alam, Rafeul
2012-01-01
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1−/− mice. ERK1−/− mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1−/− mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1−/− mice manifested reduced proliferation in response to the sensitizing allergen. ERK1−/− T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1−/− mice showed reduced numbers of CD44high CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1−/− mice had reduced numbers of CD44high cells. Finally, CD4 T cells form ERK1−/− mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44high Th2 cells, was much reduced in ERK1−/− mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.—Goplen, N., Karim, Z., Guo, L., Zhuang, Y., Huang, H., Gorska, M. M., Gelfand, E., Pagés, G., Pouysségur, J., Alam, R. ERK1 is important for Th2 differentiation and development of experimental asthma. PMID:22262639
Choi, S-P; Oh, H-N; Choi, C-Y; Ahn, H; Yun, H S; Chung, Y M; Kim, B; Lee, S J; Chun, T
2018-03-01
In this study, we evaluated the therapeutic efficacy of selected probiotics in a mouse model of birch pollen (BP)-induced allergic rhinitis. Oral administration of Lactobacillus plantarum CJLP133 and CJLP243 ameliorated the symptoms of BP-induced allergic rhinitis by reducing airway hyperresponsiveness, and both the histological scores and the number of infiltrated cells in the nasal cavities and lungs. Compared with those from vehicle-treated mice, bronchoalveolar lavage fluid and draining lymph node samples from CJLP133 and CJLP243-administrated mice showed diminished numbers of immune cells, increased secretion of a Th1-type cytokine (IFN-γ) and decreased production of Th2-type cytokines (IL-4, IL-5 and IL-13). Consistent with these results, levels of IL-4, IL-5, IL-13, serum IgE and BP-specific serum IgG1 were decreased, whereas secretion of IFN-γ and BP-specific serum IgG2a was augmented upon administration of CJLP133 and CJLP243 in mice. Oral administration of L. plantarum CJLP133 and CJLP243 alleviates symptoms of BP-induced allergic rhinitis in mice by recovering Th1/Th2 balance via enhancement of the Th1-type immune response. Lactobacillus plantarum CJLP133 and CJLP243 have therapeutic effects on BP-induced allergic rhinitis in an animal model. © 2017 The Society for Applied Microbiology.
Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret
2016-01-01
The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.
The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion
Bassingthwaighte, James B.; Raymond, Gary M.; Dash, Ranjan K.; Beard, Daniel A.; Nolan, Margaret
2016-01-01
The ‘Pathway for Oxygen’ is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system’s basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: 1) a ‘one-alveolus lung’ with airway resistance, lung volume compliance, 2) bidirectional transport of solute gasses like O2 and CO2, 3) gas exchange between alveolar air and lung capillary blood, 4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and 5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there. PMID:26782201
Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Ken-ichiro; Koike, Eiko; Yanagisawa, Rie
The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology,more » levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.« less
John, Alison E.; Lukacs, Nicholas W.; Berlin, Aaron A.; Palecanda, Aiyappa; Bargatze, Robert F.; Stoolman, Lloyd M.; Nagy, Jon O.
2010-01-01
The severity of allergic asthma is dependent, in part, on the intensity of peribronchial inflammation. P-selectin is known to play a role in the development of allergen-induced peribronchial inflammation and airway hyperreactivity. Selective inhibitors of P-selectin-mediated leukocyte endothelial-cell interactions may therefore attenuate the inflammatory processes associated with allergic airway disease. Novel P-selectin inhibitors were created using a polyvalent polymer nanoparticle capable of displaying multiple synthetic, low molecular weight ligands. By assembling a particle that presents an array of groups, which as monomers interact with only low affinity, we created a construct that binds extremely efficiently to P-selectin. The ligands acted as mimetics of the key binding elements responsible for the high-avidity adhesion of P-selectin to the physiologic ligand, PSGL-1. The inhibitors were initially evaluated using an in vitro shear assay system in which interactions between circulating cells and P-selectin-coated capillary tubes were measured. The nanoparticles were shown to preferentially bind to selectins expressed on activated endothelial cells. We subsequently demonstrated that nanoparticles displaying P-selectin blocking arrays were functionally active in vivo, significantly reducing allergen-induced airway hyperreactivity and peribronchial eosinophilic inflammation in a murine model of asthma. PMID:14563683
Cruz-Martinez, Rogelio; Moreno-Alvarez, Oscar; Garcia, Maritza; Méndez, Antonio; Pineda, Hugo; Cruz-Martinez, Miriam Alejandra; Cruz, Miriam A; Martinez-Morales, Cecilia
2015-01-01
Congenital neck masses are associated with high perinatal mortality and morbidity secondary to airway obstruction due to a mass effect of the tumor with subsequent neonatal asphyxia and/or neonatal death. Currently, the only technique designed to establish a secure neonatal airway is the ex utero intrapartum treatment (EXIT) procedure, which involves neonatal tracheal intubation while fetal oxygenation is maintained by the uteroplacental circulation in a partial fetal delivery under maternal general anesthesia. We present a case with a giant cervical teratoma and huge displacement and compression of the fetal trachea that was treated successfully at 35 weeks of gestation with a novel fetoscopic procedure to ensure extrauterine tracheal permeability by means of a fetal endoscopic tracheal intubation (FETI) before delivery. The procedure consisted of a percutaneous fetal tracheoscopy under maternal epidural anesthesia using an 11-Fr exchange catheter covering the fetoscope that allowed a conduit to introduce a 3.0-mm intrauterine orotracheal cannula under ultrasound guidance. After FETI, a conventional cesarean section was performed uneventfully with no need for an EXIT procedure. This report is the first to illustrate that in cases with large neck tumors involving fetal airways, FETI is feasible and could potentially replace an EXIT procedure by allowing prenatal airway control.
TSLP: A Key Regulator of Asthma Pathogenesis.
West, Erin E; Kashyap, Mohit; Leonard, Warren J
2012-12-01
Asthma is a complex disorder of the airways that is characterized by T helper type 2 (Th2) inflammation. The pleiotrophic cytokine TSLP has emerged as an important player involved in orchestrating the inflammation seen in asthma and other atopic diseases. Early research elucidated the role of TSLP on CD4 + T cells, and recent work has revealed the impact of TSLP on multiple cell types. Furthermore, TSLP plays an important role in the sequential progression of atopic dermatitis to asthma, clarifying the key role of TSLP in the pathogenesis of asthma, a finding with therapeutic implications.
Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, In-Sik; Lee, Mee-Young; Cho, Eun-Sang
Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and is widely dispersed in the environment. In this study, we investigated the effects of maternal exposure to DEHP during pregnancy on neonatal asthma susceptibility using a murine model of asthma induced by ovalbumin (OVA). Pregnant BALB/c mice received DEHP from gestation day 13 to lactation day 21. Their offspring were sensitized on postnatal days (PNDs) 9 and 15 by intraperitoneal injection of 0.5 μg OVA with 200 μg aluminum hydroxide. On PNDs 22, 23 and 24, live pups received an airway challenge of OVA for 30 min. Offspring from pregnant micemore » that received DEHP showed reductions in inflammatory cell count, interleukin (IL)-4, IL-13, and eotaxin in their bronchoalveolar lavage fluid and in total immunoglobulin E and OVA-specific IgE in their plasma compared with offspring from pregnant mice that did not receive DEHP treatment. These results were consistent with histological analysis and immunoblotting. Maternal exposure to DEHP reduces airway inflammation and mucus production in offspring, with a decrease in inducible nitric oxide synthase (iNOS) in the lung tissue. This study suggests that maternal exposure to DEHP during pregnancy reduces asthmatic responses induced by OVA challenge in offspring. These effects were considered to be closely related to the suppression of Th2 immune responses and iNOS expression. - Highlights: • Maternal exposure to di(2-ethylhexyl)phthalate reduces asthmatic response in pups. • Di(2-ethylhexyl)phthalate reduces eosinophilia induced by ovalbumin exposure. • Di(2-ethylhexyl)phthalate reduces T-helper type 2 cytokine production. • Di(2-ethylhexyl)phthalate attenuates airway inflammation and mucus production. • Di(2-ethylhexyl)phthalate suppresses inducible nitric oxide synthase in lung tissue.« less
Pulmonary arterial remodeling induced by a Th2 immune response
Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele
2008-01-01
Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220
ABC versus CAB for cardiopulmonary resuscitation: a prospective, randomized simulator-based trial.
Marsch, Stephan; Tschan, Franziska; Semmer, Norbert K; Zobrist, Roger; Hunziker, Patrick R; Hunziker, Sabina
2013-09-06
After years of advocating ABC (Airway-Breathing-Circulation), current guidelines of cardiopulmonary resuscitation (CPR) recommend CAB (Circulation-Airway-Breathing). This trial compared ABC with CAB as initial approach to CPR from the arrival of rescuers until the completion of the first resuscitation cycle. 108 teams, consisting of two physicians each, were randomized to receive a graphical display of either the ABC algorithm or the CAB algorithm. Subsequently teams had to treat a simulated cardiac arrest. Data analysis was performed using video recordings obtained during simulations. The primary endpoint was the time to completion of the first resuscitation cycle of 30 compressions and two ventilations. The time to execution of the first resuscitation measure was 32 ± 12 seconds in ABC teams and 25 ± 10 seconds in CAB teams (P = 0.002). 18/53 ABC teams (34%) and none of the 55 CAB teams (P = 0.006) applied more than the recommended two initial rescue breaths which caused a longer duration of the first cycle of 30 compressions and two ventilations in ABC teams (31 ± 13 vs.23 ± 6 sec; P = 0.001). Overall, the time to completion of the first resuscitation cycle was longer in ABC teams (63 ± 17 vs. 48 ± 10 sec; P <0.0001). This randomized controlled trial found CAB superior to ABC with an earlier start of CPR and a shorter time to completion of the first 30:2 resuscitation cycle. These findings endorse the change from ABC to CAB in international resuscitation guidelines.
Influenza A(H3N2) Outbreak at Transit Center at Manas, Kyrgyzstan, 2014
2015-01-01
influenza-like illness symptoms from 3 December 2013 through 28 February 2014. There were 85 specimens positive for influenza (18 influenza A( H1N1 ...February 2014. Th ere were 85 specimens positive for infl uenza (18 infl uenza A( H1N1 )pdm09, 65 infl uenza A(H3N2), one infl uenza A/not subtyped, and one...Health Organization reports, both infl uenza A( H1N1 )pdm09 and A(H3N2) viruses were circulating during the time of this outbreak.9 Th is is
Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation
Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou
2014-01-01
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361
Dimier-Poisson, Isabelle; Carpentier, Rodolphe; N'Guyen, Thi Thanh Loi; Dahmani, Fatima; Ducournau, Céline; Betbeder, Didier
2015-05-01
Development of sub-unit mucosal vaccines requires the use of specific delivery systems or immune-modulators such as adjuvants to improve antigen immunogenicity. Nasal route for vaccine delivery by nanoparticles has attracted much interest but mechanisms triggering effective mucosal and systemic immune response are still poorly understood. Here we study the loading of porous nanoparticles (DGNP) with a total extract of Toxoplasma gondii antigens (TE), the delivery of TE by DGNP into airway epithelial, macrophage and dendritic cells, and the subsequent cellular activation. In vitro, DGNP are able to load complex antigens in a stable and quantitative manner. The outstanding amount of antigen association by DGNP is used to deliver TE in airway mucosa cells to induce a cellular maturation with an increased secretion of pro-inflammatory cytokines. Evaluation of nasal vaccine efficiency is performed in vivo on acute and chronic toxoplasmosis mouse models. A specific Th1/Th17 response is observed in vivo after vaccination with DGNP/TE. This is associated with high protection against toxoplasmosis regarding survival and parasite burden, correlated with an increased delivery of antigens by DGNP in airway mucosa cells. This study provides evidence of the potential of DGNP for the development of new vaccines against a range of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNA methylation and childhood asthma in the inner city.
Yang, Ivana V; Pedersen, Brent S; Liu, Andrew; O'Connor, George T; Teach, Stephen J; Kattan, Meyer; Misiak, Rana Tawil; Gruchalla, Rebecca; Steinbach, Suzanne F; Szefler, Stanley J; Gill, Michelle A; Calatroni, Agustin; David, Gloria; Hennessy, Corinne E; Davidson, Elizabeth J; Zhang, Weiming; Gergen, Peter; Togias, Alkis; Busse, William W; Schwartz, David A
2015-07-01
Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma. Published by Elsevier Inc.
Faulde, Michael K; Spiesberger, Michael; Abbas, Babiker
2012-08-01
The Horn of Africa represents a region formerly known to be highly susceptible to mosquito-borne infectious diseases. In order to investigate whether autochthonous WNV transmission occurs in the Djibouti City area, in how far, and which of, the endemic Culex mosquito species are involved in WNV circulation activity,and whether sentinel site-enhanced near-real time surveillance (SSE-NRTS) may increase WNV detection sensitivity, mosquito vector monitoring was conducted from January 2010 to June 2012. Six monitoring locations, including two identified sentinel sites, considered most probable for potential anthroponotic and zoonotic virus circulation activity, have been continuously employed. Among the 20431 mosquitoes collected, 19069 (93.4%) were Cx. quinquefasciatus, and 1345 (6.6%) Cx. pipiens ssp. torridus. WNV lineage 2 circulation activity was detected between December 20th, 2010 and January 7th, 2011. Overall, 19 WNV RNA-positive mosquito pools were detected. Generally, urban environment-specific WNV-RNA circulation took place in Cx. pipiens ssp. torridus, whereas periurban and rural area-linked circulation was detected only in Cx. quinquefasciatus. Serological investigation data from 10 volunteers employed at the dislocated zoonotic WNV transmission sentinel site suggest that six persons (60%) had an acute, or recent, WNV infection. Results show that WNV should be considered endemic for Djibouti and sentinel site-enhanced near-real time surveillance is an elegant and highly effective epidemiological tool. In Djibouti, the endemicity level, public health impact and transmission modes of vector-borne diseases in concordance with locally optimized monitoring and control regimen deserve further investigation.
Walters, Elizabeth Lea; Morawski, Kyle; Dorotta, Ihab; Ramsingh, Davinder; Lumen, Kelly; Bland, David; Clem, Kathleen; Nguyen, H Bryant
2011-04-01
Patients who present to the emergency department (ED) with return of spontaneous circulation after cardiac arrest generally have poor outcomes. Guidelines for treatment can be complicated and difficult to implement. This study examined the feasibility of implementing a care bundle including therapeutic hypothermia (TH) and early hemodynamic optimization for comatose patients with return of spontaneous circulation after out-of-hospital cardiac arrest. The study included patients over a 2-year period in the ED and intensive care unit of an academic tertiary-care medical center. The first year (prebundle) provided a historical control, followed by a prospective observational period of bundle implementation during the second year. The bundle elements included (a) TH initiated; (b) central venous pressure/central venous oxygen saturation monitoring in 2 h; (c) target temperature in 4 h; (d) central venous pressure greater than 12 mmHg in 6 h; (e) MAP greater than 65 mmHg in 6 h; (f) central venous oxygen saturation greater than 70% in 6 h; (g) TH maintained for 24 h; and (h) decreasing lactate in 24 h. Fifty-five patients were enrolled, 26 patients in the prebundle phase and 29 patients in the bundle phase. Seventy-seven percent of bundle elements were completed during the bundle phase. In-hospital mortality in bundle compared with prebundle patients was 55.2% vs. 69.2% (P = 0.29). In the bundle patients, those patients who received all elements of the care bundle had mortality 33.3% compared with 60.9% in those receiving some of the bundle elements (P = 0.22). Bundle patients tended to achieve good neurologic outcome compared with prebundle patients, Cerebral Performance Category 1 or 2 in 31 vs. 12% patients, respectively (P = 0.08). Our study demonstrated that a post-cardiac arrest care bundle that incorporates TH and early hemodynamic optimization can be implemented in the ED and intensive care unit collaboratively and can achieve similar clinical benefits compared with those observed in previous clinical trials.
Airway responses of healthy farmers and nonfarmers to exposure in a swine confinement building.
Palmberg, Lena; Larssson, Brit-Marie; Malmberg, Per; Larsson, Kjell
2002-08-01
The objective of the study was to determine whether swine farmers continuously exposed to the farming environment react differently to acute exposure than previously unexposed nonfarmers. Nine healthy nonfarmers, not previously exposed to a farming environment, and eight swine farmers were exposed in a swine confinement building for 3 hours while weighing pigs. Lung function measurements, methacholine challenge tests, and nasal lavages were performed before and after the exposure. Blood samples were drawn repeatedly during the exposure day. Differential cell counts and cytokine levels were analyzed in the nasal lavage fluid and blood. The exposure levels were the same in both groups. Bronchial responsiveness to methacholine increased by a median of 4.0 (25th-75th percentiles 2.2-10.1 among the nonfarmers) and 0.7 (25th-75th percentiles 0.01-3.5 among the farmers) doubled concentration steps. The median serum levels of interleukin-6 increased from 3.8 (25th-75th percentiles <3-5.8) ng/l to 23.7 (25th-75th percentiles 11.6-41.6) ng/l among the nonfarmers and from <3 to 3.8 (25th-75th percentiles 3.1-11.6) ng/l among the swine farmers after the exposure. Swine dust exposure induced a ninefold increase in the total cell counts in the nasal lavage fluid of the nonfarmers, but no significant increase among the swine farmers. The exposure altered lung function and bronchial responsiveness, as well as cell number and cytokines in blood and nasal lavage fluid in previously unexposed nonfarming subjects, whereas only minor alterations were found in the farmers. This finding suggests possible adaptation mechanisms in chronically exposed swine farmers.
Wang, Hong; Jia, Ming; Mao, Bin; Hou, Xiaotong
2017-09-01
Veno-arterial extracorporeal membrane oxygenation (VA ECMO) is used in cardiopulmonary failure patients to provide temporary assisted circulation. Usually, prolonged intubation and invasive mechanical ventilation are required in patients with ECMO support. We report on two cases of patients who had no pre-existing injuries of the affected lung, underwent VA ECMO support after open-heart surgery and received airway extubation (AE) or awake ECMO with the recovery of left ventricular ejection fraction. Atelectasis happened after AE and non-invasive positive pressure ventilation attenuated the atelectasis of one patient. The atelectasis of the other patient was corrected 10 hours after weaning from ECMO. Both patients were discharged successfully. Awake VA ECMO for post-cardiac surgery patients should be performed with prudence and needs further research.
Th22 cells are associated with hepatocellular carcinoma development and progression
Qin, Shanyu; Ma, Shijia; Huang, Xiaoli; Lu, Donghong
2014-01-01
Objective IL-22-producing CD4+ T helper cells (Th22 cells) have been identified as major inducers of tissue inflammation and immune responses. Currently, no previous study explored the role of Th22 cells in the pathogenesis of hepatocellular carcinoma (HCC). The study aimed to determine the biological function of Th22 cells and its effector IL-22 in HCC patients. Methods Forty-five HCC patients and 19 healthy controls were recruited and their peripheral blood was collected. The fresh HCC tissues, adjacent HCC tissues and ten normal liver tissues were also collected. Flow cytometry analysis was used to determine the frequencies of circulating Th22 cells and Th17 cells. Serum IL-22 levels were tested by enzyme-linked immunosorbent assay (ELISA). Immunohistochemical staining and real-time polymerase chain reaction (PCR) were used to detect IL-22 protein and mRNA in tissues specimens, respectively. Results Circulating Th22 cells, Th17 cells and serum IL-22 levels were significantly elevated in HCC patients compared with those of healthy controls (P<0.001). Th22 cells were showed to be positively correlated with IL-22 in HCC patients (P<0.05), but not in healthy controls. No significant differences were found in HCC patients with HBeAg positivity or negativity in term of Th22 cells and serum IL-22 levels. The expression of IL-22 protein and mRNA was highest in HCC tissues, followed by adjacent HCC tissues and normal liver tissues. Furthermore, Th22 cells, serum IL-22 levels and IL-22 mRNA were elevated at stage III-IV compared with stage I-II of HCC (P<0.05). Conclusions Elevation of circulating Th22 cells and IL-22 may be implicated in the pathogenesis of HCC, and potentially be cellular targets for therapeutic intervention. PMID:24826053
[Experimental study on effect of airway pressure on cardiopulmonary resuscitation].
Tan, Dingyu; Sun, Feng; Fu, Yangyang; Shao, Shihuan; Zhang, Yazhi; Hu, Yingying; Xu, Jun; Zhu, Huadong; Yu, Xuezhong
2017-06-01
To observe the effect of different airway pressure on ventilation, organ perfusion and return of spontaneous circulation (ROSC) of cardiac arrest (CA) pigs during cardiopulmonary resuscitation (CPR), and to explore the possible beneficial mechanism of positive airway pressure during CPR. Twenty healthy landrace pigs of clean grade were divided into low airway pressure group (LP group, n = 10) and high airway pressure group (HP group, n = 10) with random number table. The model of ventricular fibrillation (VF) was reproduced by electrical stimulation, and mechanical chest compressions and mechanical ventilation (volume-controlled mode, tidal volume 7 mL/kg, frequency 10 times/min) were performed after 8 minutes of untreated VF. Positive end expiratory pressure (PEEP) in LP group and HP group was set to 0 cmH 2 O and 6 cmH 2 O (1 cmH 2 O = 0.098 kPa) respectively. Up to three times of 100 J biphasic defibrillation was delivered after 10 minutes of CPR. The ROSC of animals were observed, and the respiratory parameters, arterial and venous blood gas and hemodynamic parameters were recorded at baseline, 5 minutes and 10 minutes of CPR. The number of animals with ROSC in the HP group was significantly more than that in the LP group (8 vs. 3, P < 0.05). Intrathoracic pressure during chest compression relaxation was negative in the HP group, and its absolute value was significantly lower than that in LP group at the same time [intrathoracic negative pressure peak (cmH 2 O): -4.7±2.2 vs. -10.8±3.5 at 5 minutes, -3.9±2.8 vs. -6.5±3.4 at 10 minutes], however, there was significantly difference only at 5 minutes of CPR (P < 0.01). Intrathoracic pressure variation during CPR period in the HP group were significantly higher than those in the LP group (cmH 2 O: 22.5±7.9 vs. 14.2±4.4 at 5 minutes, 23.1±6.4 vs. 12.9±5.1 at 10 minutes, both P < 0.01). Compared to the LP group, arterial partial pressure of oxygen [PaO 2 (mmHg, 1 mmHg = 0.133 kPa): 81.5±10.7 vs. 68.0±12.1], venous oxygen saturation (SvO 2 : 0.493±0.109 vs. 0.394±0.061) at 5 minutes of CPR, and PaO 2 (mmHg: 77.5±13.4 vs. 63.3±10.5), arterial pH (7.28±0.09 vs 7.23±0.11), SvO 2 (0.458±0.096 vs. 0.352±0.078), aortic blood pressure [AoP (mmHg): 39.7±9.5 vs. 34.0±6.9], coronary perfusion pressure [CPP (mmHg): 25.2±9.6 vs. 19.0±7.6], and carotid artery flow (mL/min: 44±16 vs. 37±14) at 10 minutes of CPR in the HP group were significantly higher (all P < 0.05). Arterial partial pressure of carbon dioxide (PaCO 2 ) in the HP group was significantly lower than that in the LP group at 10 minutes of CPR (mmHg: 60.1±9.7 vs. 67.8±8.6, P < 0.05). Compared to low airway pressure, a certain degree of positive airway pressure can still maintain the negative intrathoracic pressure during relaxation of chest compressions of CPR, while increase the degree of intrathoracic pressure variation. Positive airway pressure can improve oxygenation and hemodynamics during CPR, and is helpful to ROSC.
McManus, J F; Francois, R; Gherardi, J-M; Keigwin, L D; Brown-Leger, S
2004-04-22
The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.
Changes in present and future circulation types frequency in northwest Iberian Peninsula.
Lorenzo, María N; Ramos, Alexandre M; Taboada, Juan J; Gimeno, Luis
2011-01-21
The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th) assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.
Changes in Present and Future Circulation Types Frequency in Northwest Iberian Peninsula
Lorenzo, María N.; Ramos, Alexandre M.; Taboada, Juan J.; Gimeno, Luis
2011-01-01
The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types. PMID:21283703
Henning, Jill D; Karamchandani, Jaideep M; Bonachea, Luis A; Bunker, Clareann H; Patrick, Alan L; Jenkins, Frank J
2017-05-01
Serum-prostate specific antigen (PSA) levels have been used for many years as a biomarker for prostate cancer. This usage is under scrutiny due to the fact that elevated PSA levels can be caused by other conditions such as benign prostatic hyperplasia and infections of or injury to the prostate. As a result, the identification of specific pathogens capable of increasing serum levels of PSA is important. A potential candidate responsible for elevated PSA is human herpesvirus 8 (HHV-8). We have reported previously that HHV-8 is capable of infecting and establishing a latent infection in the prostate. In this current study we test the hypothesis that HHV-8 infection is associated with elevated PSA levels. Circulating cytokine levels between men with elevated PSA and controls are also compared. HHV-8 serostatus was determined among men with elevated serum PSA (≥4 ng/ml; n = 168, no prostate cancer on biopsy) and age-matched controls (PSA <4 ng/ml; n = 234), Circulating cytokine levels were determined among a subset of each group (116 with elevated PSA and 85 controls). Men with an elevated serum PSA were significantly more likely to be HHV-8 seropositive (42.9%) than the age-matched cancer-free men (22.2%; OR 2.51; 95%CI 1.48-4.29, P = 00001). Comparison of circulating cytokine levels between men with elevated serum PSA and controls indicated that elevated serum PSA is associated with a pro-inflammatory response with a mixed Th1/Th2 response while HHV-8 infection was associated with significantly higher levels of IL12p70, IL-10, and IL-13 indicating a Th2 immune response. We found a significant association between HHV-8 infection and increased levels of serum PSA. In an age of patient-centered medicine, men with an elevated serum PSA should be considered for HHV-8 serology testing to determine if HHV-8 is responsible for the elevated PSA. Prostate 77: 617-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M
2013-01-01
Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.
Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Sohn, Ki-Young; Lee, Tae-Suk; Kim, Jae-Wha; Ahn, Kyung-Seop; Oh, Sei-Ryang
2014-01-01
EC-18 is a synthetic monoacetyldiaglyceride that is a major constituent in antlers of Sika deer (Cervus nippon Temmenick). In this study, we evaluated the protective effects of EC-18 on Th2-type cytokines, eosinophil infiltration, and other factors in an aluminum hydroxide/ovalbumin (OVA)-induced murine asthma model. Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On days 21, 22 and 23 after the initial sensitization, the mice received an airway challenge with OVA for 1h using an ultrasonic nebulizer. EC-18 was administered to mice by oral gavage at doses of 30mg/kg and 60mg/kg once daily from day 18 to 23. Methacholine responsiveness was measured 24h after the final OVA challenge, and the bronchoalveolar lavage fluid (BALF) was collected 48h after the final OVA challenge. EC-18 significantly reduced methacholine responsiveness, T helper type 2 (Th2) cytokines, eotaxin-1, immunoglobulin (Ig) E, IgG, and the number of inflammatory cells. In addition, EC-18-treated mice exhibited the reduction in the expression of inducible nitric oxide synthase (iNOS) in lung tissue. In the histological analysis using hematoxylin-eosin stain and periodic acid-Schiff stain, EC-18 attenuated the infiltration of inflammatory cells into the airway and reduced the level of mucus production. Our results showed that EC-18 effectively suppressed the asthmatic response induced by OVA challenge. These effects were considered to be associated with iNOS suppression. In conclusion, this study suggests that EC-18 may be a therapeutic agent for allergic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.
Schure, Rose-Minke; de Rond, Lia; Öztürk, Kemal; Hendrikx, Lotte; Sanders, Elisabeth; Berbers, Guy; Buisman, Anne-Marie
2012-01-01
Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. Trial Registration Controlled-Trials.com ISRCTN64117538 PMID:22860033
Propst, Evan J; Amin, Reshma; Talwar, Natasha; Zaman, Michele; Zweerink, Allison; Blaser, Susan; Zaarour, Christian; Luginbuehl, Igor; Karsli, Cengiz; Aziza, Albert; Forrest, Christopher; Drake, James; Narang, Indra
2017-03-01
To examine outcomes following midline posterior glossectomy (MPG) plus lingual tonsillectomy (LT) for the treatment of significant obstructive sleep apnea (OSA) in children with Down syndrome (DS). Patients with DS who had persistent OSA following tonsillectomy and adenoidectomy (TA) and were relatively intolerant of positive airway pressure (PAP) therapy were evaluated by physical examination and sleep/CINE magnetic resonance imaging to determine the etiology of upper airway obstruction. Patients with relative macroglossia underwent MPG plus LT if required. Successful surgical outcome was defined as the resolution of OSA or the ability to tolerate PAP. Thirteen children (8 male, 5 female), mean (standard deviation) age 14.2 (4.0) years underwent MPG plus LT. Fifty-four percent of patients were obese (Body mass index [BMI] > 95th centile) and 8% were overweight (BMI 85th-95th centile) preoperatively. All patients underwent pre- and postoperative polysomnography. Postoperatively, the obstructive apnea-hypopnea index fell significantly from 47.0/hour to 5.6/hour (P <.05) in normal weight individuals who did not become obese, but not in obese patients or those who became obese postoperatively. Successful surgical outcome was seen in all (N = 6) children who were normal weight or overweight preoperatively compared with none who were obese preoperatively (N = 7). Midline posterior glossectomy and LT are beneficial in normal weight and overweight children with DS who have persistent OSA following TA and are intolerant of PAP therapy. Obesity pre- or postoperatively portends a worse prognosis following MPG, suggesting that aggressive weight loss initiatives should be considered as an adjunct to surgery in this population. 4. Laryngoscope, 127:757-763, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E
2018-05-28
Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.
Choi, Sanghun; Choi, Jiwoong; Lin, Ching-Long
2018-01-01
The aim of this study was to investigate and quantify contributions of kinetic energy and viscous dissipation to airway resistance during inspiration and expiration at various flow rates in airway models of different bifurcation angles. We employed symmetric airway models up to the 20th generation with the following five different bifurcation angles at a tracheal flow rate of 20 L/min: 15 deg, 25 deg, 35 deg, 45 deg, and 55 deg. Thus, a total of ten computational fluid dynamics (CFD) simulations for both inspiration and expiration were conducted. Furthermore, we performed additional four simulations with tracheal flow rate values of 10 and 40 L/min for a bifurcation angle of 35 deg to study the effect of flow rate on inspiration and expiration. Using an energy balance equation, we quantified contributions of the pressure drop associated with kinetic energy and viscous dissipation. Kinetic energy was found to be a key variable that explained the differences in airway resistance on inspiration and expiration. The total pressure drop and airway resistance were larger during expiration than inspiration, whereas wall shear stress and viscous dissipation were larger during inspiration than expiration. The dimensional analysis demonstrated that the coefficients of kinetic energy and viscous dissipation were strongly correlated with generation number. In addition, the viscous dissipation coefficient was significantly correlated with bifurcation angle and tracheal flow rate. We performed multiple linear regressions to determine the coefficients of kinetic energy and viscous dissipation, which could be utilized to better estimate the pressure drop in broader ranges of successive bifurcation structures.
Radionuclide and biomarker proxies of past ocean circulation and productivity in the Arabian Sea
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.; Bianchi, T. S.; Canuel, E. A.; Waterson, E. J.
2005-05-01
We present new excess 231Pa/230Th activity ratios and lipid biomarker results from northeastern Arabian Sea sediments (core 93KL) spanning the past 50 ka in an effort to constrain further the relationship between climate at low and high latitudes. 231Pa/230Th activity ratios are maintained at values significantly higher than the water-column production ratio of 0.093. Average 231Pa/230Th activity ratios are lower during the last glacial period than during the Holocene. The lowest 231Pa/230Th activity ratios coincide with the timing of Heinrich Events 1-5. Profiles of lipid biomarker fluxes and 231Pa/230Th activity ratios from 32 to 12 ka show similar patterns, suggesting that 231Pa is more efficiently scavenged relative to 230Th at times when diatoms make up a proportionally larger part of the primary biomass signal. In the Holocene, high 231Pa/230Th activity ratios may indicate enhanced 231Pa export from the southern to the northern Indian Ocean via intensified thermohaline circulation.
Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.
2006-01-01
The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543
Changes in pulmonary circulation in severe bronchopulmonary dysplasia.
Bush, A; Busst, C M; Knight, W B; Hislop, A A; Haworth, S G; Shinebourne, E A
1990-01-01
Eight patients with severe bronchopulmonary dysplasia underwent cardiac catheterisation. Seven had a pulmonary vascular resistance greater than 3 mm Hg.l-1 min.m2 (mean 8.9, range 2.2-13.8). All had raised intrapulmonary shunts (mean 25.6%, range 5.4-50%, normal less than 5%). Two had a high alveolar dead space, and two had unsuspected congenital heart disease. Epoprostenol (prostacyclin), but not 100% oxygen, caused a significant fall in pulmonary vascular resistance. Death was associated with a high pulmonary vascular resistance and a high shunt. Morphometric studies in three cases showed normal numbers of airways, but increased thickness of bronchial muscle. The numbers of alveoli were reduced and the walls thickened. There was increased medial thickness in small pulmonary arteries with distal extension of muscle. In the oldest child some vessels were obliterated by fibrosis. We speculate that measurements of pulmonary vascular resistance and shunt may have prognostic value; that a trial of pulmonary vasodilators other than oxygen might be worthwhile in patients with poor prognosis; and that abnormalities of the pulmonary circulation contribute to the difficulties of managing patients with bronchopulmonary dysplasia. Images Figure 7 PMID:2117421
Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot
2012-01-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176
Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C
2012-02-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G
2008-02-01
The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.
SARS-like cluster of circulating bat coronavirus pose threat for human emergence
Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.
2016-01-01
The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008
Raiden, Silvina; Sananez, Inés; Remes-Lenicov, Federico; Pandolfi, Julieta; Romero, Cecilia; De Lillo, Leonardo; Ceballos, Ana; Geffner, Jorge; Arruvito, Lourdes
2017-04-01
Although human airway epithelial cells are the main target of respiratory syncytial virus (RSV), it also infects immune cells, such as macrophages and B cells. Whether T cells are permissive to RSV infection is unknown. We sought to analyze the permissiveness of CD4+ T cells to RSV infection. CD4+ and CD8+ T cells from cord blood, healthy young children, and adults were challenged by RSV or cocultured with infected HEp-2 cells. Infection, phenotype, and cytokine production by T cells were analyzed by flow cytometry or enzyme-linked immunosorbent assay. Expression of RSV antigens by circulating CD4+ T cells from infected children was analyzed by flow cytometry, and disease severity was defined by standard criteria. CD4+ and CD8+ T cells were productively infected by RSV. Infection decreased interleukin 2 and interferon γ production as well as the expression of CD25 and Ki-67 by activated CD4+ T cells. Respiratory syncytial virus antigens were detected in circulating CD4+ and CD8+ T cells during severe RSV infection of young children. Interestingly, the frequency of CD4+ RSV+ T cells positively correlated with disease severity. Respiratory syncytial virus infects CD4+ and CD8+ T cells and compromises T-cell function. The frequency of circulating CD4+ RSV+ T cells might represent a novel marker of severe infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Inhibition of tracheal vascular extravasation by liposome-encapsulated albuterol in rats.
Zhang, W; Guo, L; Nadel, J A; Papahadjopoulos, D
1998-03-01
To develop a liposome-based system for systemic delivery of anti-inflammatory drugs to airways and other inflamed tissues. Postcapillary venular gap junctions open during airway inflammation and allow fluid accumulation and permit molecules (e.g. complement, kininogen) to enter tissues, initiating inflammatory cascades. Beta-adrenergic agonists prevent inflammatory plasma extravasation, but because of their deleterious side effects, they are not used intravenously. When sterically stabilized "stealth" liposomes are injected i.v., they remain in the circulation for long periods. Inflammatory mediators [e.g., substance P(SP)] open postcapillary venular gaps and allow liposomes and their contents to be deposited selectively in the inflamed tissue. We hypothesized that liposomes encapsulating a beta-adrenergic agonist, such as albuterol, would deposit selectively in inflamed airway tissue, where the drug would slowly leak out of the liposomes, resulting in closure of the gaps, thus preventing subsequent inflammatory extravasation. To test this hypothesis, we delivered albuterol-loaded liposomes i.v. in rats. Then we injected SP to open the venular gaps and allow accumulation of the drug-loaded liposomes in airway tissue. We examined whether this treatment resulted in inhibition of subsequent plasma extravasation induced by SP. The results indicate that liposome-encapsulated albuterol inhibits subsequent extravasation, presumably by leaking out of liposomes in airway tissue. This inhibition occurs for prolonged periods of time and with limited side effects compared to the effect of free albuterol. We conclude that liposomes loaded with appropriate drugs, by migrating to inflamed tissue and subsequently inhibiting inflammatory cascades, may be of therapeutic value in inflammatory diseases.
Janosi, Tibor; Peták, Ferenc; Fontao, Fabienne; Morel, Denis R; Beghetti, Maurice; Habre, Walid
2008-11-01
The available treatment strategies against pulmonary hypertension include the administration of endothelin-1 (ET-1) receptor subtype blockers (ET(A) and ET(B) antagonists); vasoactive intestinal polypeptide (VIP) has recently been suggested as a potential new therapeutic agent. We set out to investigate the ability of these agents to protect against the vasoconstriction and impairment of lung function commonly observed in patients with pulmonary hypertension. An ET(A) blocker (BQ123), ET(B) blocker (BQ788), a combination of these selective blockers (ET(A) + ET(B) blockers) or VIP (V6130) was administered into the pulmonary circulation in four groups of perfused normal rat lungs. Pulmonary vascular resistance (PVR) and forced oscillatory lung input impedance (Z(L)) were measured in all groups under baseline conditions and at 1 min intervals following ET-1 administrations. The airway resistance, inertance, tissue damping and elastance were extracted from the Z(L) spectra. While VIP, ET(A) blocker and combined ET(A) and ET(B) blockers significantly prevented the pulmonary vasoconstriction induced by ET-1, ET(B) blockade enhanced the ET-1-induced increases in PVR. In contrast, the ET(A) and ET(B) blockers markedly elevated the ET-1-induced increases in airway resistance, while VIP blunted this constrictor response. Our results suggest that VIP potently acts against the airway and pulmonary vascular constriction mediated by endothelin-1, while the ET(A) and ET(B) blockers exert a differential effect between airway resistance and PVR.
Distinguishing adult-onset asthma from COPD: a review and a new approach
Abramson, Michael J; Perret, Jennifer L; Dharmage, Shyamali C; McDonald, Vanessa M; McDonald, Christine F
2014-01-01
Adult-onset asthma and chronic obstructive pulmonary disease (COPD) are major public health burdens. This review presents a comprehensive synopsis of their epidemiology, pathophysiology, and clinical presentations; describes how they can be distinguished; and considers both established and proposed new approaches to their management. Both adult-onset asthma and COPD are complex diseases arising from gene–environment interactions. Early life exposures such as childhood infections, smoke, obesity, and allergy influence adult-onset asthma. While the established environmental risk factors for COPD are adult tobacco and biomass smoke, there is emerging evidence that some childhood exposures such as maternal smoking and infections may cause COPD. Asthma has been characterized predominantly by Type 2 helper T cell (Th2) cytokine-mediated eosinophilic airway inflammation associated with airway hyperresponsiveness. In established COPD, the inflammatory cell infiltrate in small airways comprises predominantly neutrophils and cytotoxic T cells (CD8 positive lymphocytes). Parenchymal destruction (emphysema) in COPD is associated with loss of lung tissue elasticity, and small airways collapse during exhalation. The precise definition of chronic airflow limitation is affected by age; a fixed cut-off of forced expiratory volume in 1 second/forced vital capacity leads to overdiagnosis of COPD in the elderly. Traditional approaches to distinguishing between asthma and COPD have highlighted age of onset, variability of symptoms, reversibility of airflow limitation, and atopy. Each of these is associated with error due to overlap and convergence of clinical characteristics. The management of chronic stable asthma and COPD is similarly convergent. New approaches to the management of obstructive airway diseases in adults have been proposed based on inflammometry and also multidimensional assessment, which focuses on the four domains of the airways, comorbidity, self-management, and risk factors. Short-acting beta-agonists provide effective symptom relief in airway diseases. Inhalers combining a long-acting beta-agonist and corticosteroid are now widely used for both asthma and COPD. Written action plans are a cornerstone of asthma management although evidence for self-management in COPD is less compelling. The current management of chronic asthma in adults is based on achieving and maintaining control through step-up and step-down approaches, but further trials of back-titration in COPD are required before a similar approach can be endorsed. Long-acting inhaled anticholinergic medications are particularly useful in COPD. Other distinctive features of management include pulmonary rehabilitation, home oxygen, and end of life care. PMID:25246782
Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Shon, Dong-Hwa; Chai, Ok Hee
2017-12-01
Piper nigrum (Piperaceae) is commonly used as a spice and traditional medicine in many countries. P. nigrum has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the effect of P. nigrum on allergic asthma has not been known. This study investigated the effect of P. nigrum ethanol extracts (PNE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we analysed the number of inflammatory cells and cytokines production in bronchoalveolar lavage fluid (BALF) and lung tissue; histological structure; as well as the total immunoglobulin (Ig)E, anti-OVA IgE, anti-OVA IgG 1 and histamine levels in serum. The oral administration (200 mg/kg) of PNE reduced the accumulation of inflammatory cells (eosinophils, neutrophils in BALF and mast cells in lung tissue); regulated the balance of the cytokines production of Th1, Th2, Th17 and Treg cells, specifically, inhibited the expressions of GATA3, IL-4, IL-6, IL-1β, RORγt, IL-17A, TNF-α and increased the secretions of IL-10, INF-γ in BALF and lung homogenate. Moreover, PNE suppressed the levels of total IgE, anti-OVA IgE, anti-OVA IgG 1 and histamine release in serum. The histological analysis showed that the fibrosis and infiltration of inflammatory cells were also ameliorated in PNE treated mice. On the other hand, PNE inhibited the allergic responses via inactivation of rat peritoneal mast cells degranulation. These results suggest that PNE has therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 responses and mast cells activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Yueh-Lun; Lee, Lin-Wen; Su, Chen-Yao; Hsiao, George; Yang, Yi-Yuan; Leu, Sy-Jye; Shieh, Ying-Hua; Burnouf, Thierry
2013-09-01
Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-β1 (TGF-β1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-β in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-β1 was used as control. PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-β-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-β-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates. © 2013 American Association of Blood Banks.
On-chip microwave circulators using quantum Hall plasmonics
NASA Astrophysics Data System (ADS)
Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael
Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.
Achalasia—An Autoimmune Inflammatory Disease: A Cross-Sectional Study
Furuzawa-Carballeda, J.; Aguilar-León, D.; Gamboa-Domínguez, A.; Valdovinos, M. A.; Nuñez-Álvarez, C.; Martín-del-Campo, L. A.; Enríquez, A. B.; Coss-Adame, E.; Svarch, A. E.; Flores-Nájera, A.; Villa-Baños, A.; Ceballos, J. C.; Torres-Villalobos, G.
2015-01-01
Idiopathic achalasia is a disease of unknown etiology. The loss of myenteric plexus associated with inflammatory infiltrates and autoantibodies support the hypothesis of an autoimmune mechanism. Thirty-two patients diagnosed by high-resolution manometry with achalasia were included. Twenty-six specimens from lower esophageal sphincter muscle were compared with 5 esophagectomy biopsies (control). Immunohistochemical (biopsies) and flow cytometry (peripheral blood) analyses were performed. Circulating anti-myenteric autoantibodies were evaluated by indirect immunofluorescence. Herpes simplex virus-1 (HSV-1) infection was determined by in situ hybridization, RT-PCR, and immunohistochemistry. Histopathological analysis showed capillaritis (51%), plexitis (23%), nerve hypertrophy (16%), venulitis (7%), and fibrosis (3%). Achalasia tissue exhibited an increase in the expression of proteins involved in extracellular matrix turnover, apoptosis, proinflammatory and profibrogenic cytokines, and Tregs and Bregs versus controls (P < 0.001). Circulating Th22/Th17/Th2/Th1 percentage showed a significant increase versus healthy donors (P < 0.01). Type III achalasia patients exhibited the highest inflammatory response versus types I and II. Prevalence of both anti-myenteric antibodies and HSV-1 infection in achalasia patients was 100% versus 0% in controls. Our results suggest that achalasia is a disease with an important local and systemic inflammatory autoimmune component, associated with the presence of specific anti-myenteric autoantibodies, as well as HSV-1 infection. PMID:26078981
Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N
2013-02-21
Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung. Copyright © 2013 Elsevier Inc. All rights reserved.
Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...
RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction
Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.
2014-01-01
Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657
Meng, Jing-jing; Zhong, Xiao-ning; Bai, Jing; He, Zhi-yi; Zhang, Jian-quan; Huang, Qiu-pin
2012-01-01
To evaluate the changes of CD(4)(+)IL-17(+) T (Th17) and CD(4)(+)Foxp3(+) regulatory T (Treg) cells in peripheral blood and bronchoalveolar lavage fluid (BALF), and therefore to explore the role of Th17 and Treg in cigarette smoke-induced airway inflammation/COPD in rats. Forty male Wistar rats were randomly divided into 4 groups: a 12 wk smoke-exposure group, a 24 wk smoke-exposure group, a 12 wk control group and a 24 wk control group (n = 10 each). Cells in BALF were collected and analyzed by absolute and differential cell counts. IL-17 and IL-6 levels in serum and BALF were tested by enzyme linked immunosorbent assay (ELISA). The proportion of CD(4)(+)IL-17(+) T and CD(4)(+)Foxp3(+) Treg in peripheral blood and BALF were determined by flow cytometry. The mRNA expressions of IL-17 and Foxp3 were measured by real-time PCR. Comparisons of the data between different groups were performed using one-way ANOVA, and SNK and Games-Howell test were used for comparison between 2 groups. Levels of IL-17 were remarkable increased in the 12 wk smoke-exposure group and the 24 wk smoke-exposure group in serum [(52.6 ± 1.8) ng/L, (75.4 ± 6.0) ng/L] and BALF [(78.1 ± 5.8) ng/L, (95.0 ± 6.8) ng/L] compared with the 12 wk control group [(40.0 ± 3.2)ng/L, (54.5 ± 4.6) ng/L] and the 24 wk control group [(36.7 ± 3.2) ng/L, (53.9 ± 3.7) ng/L], all P < 0.05. IL-6 in serum was significantly increased in the 24 wk smoke-exposure group [(31.4 ± 2.1) ng/L] compared with the 24 wk control group [(11.5 ± 0.5) ng/L], and it was increased in the 12 wk and the 24 wk smoke-exposure group [(33.3 ± 2.3) ng/L, (44.6 ± 3.0) ng/L] compared with the 12 wk and the 24 wk control group [(15.6 ± 1.8) ng/L, (18.0 ± 1.9) ng/L] in BALF. Ratio of Th17 was higher in the 12 wk and the 24 wk smoke-exposure groups in peripheral blood [(1.81 ± 0.19)%, (3.74 ± 0.55)%] and BALF [(7.84 ± 0.28)%, (8.01 ± 0.39)%] compared with the12 wk [(0.97 ± 0.08)%, (5.64 ± 0.54)%] and the 24 wk control group [(1.08 ± 0.10)%, (5.95 ± 0.48)%]. Ratio of Treg in BALF was higher in the smoke-exposure groups [(8.81 ± 0.49)%, (11.98 ± 0.72)%] compared with the control groups [(4.34 ± 0.28)%, (5.21 ± 0.42)%]. The level of IL-17 mRNA was increased in the 12 wk and the 24 wk smoke-exposure group in peripheral blood (25.7 ± 2.0, 33.9 ± 1.5) and in BALF (22.2 ± 1.8, 34.7 ± 4.2) compared with the 12 wk (11.3 ± 2.6, 11.6 ± 2.4) and the 24 wk (11.1 ± 2.0, 13.5 ± 3.4) control groups. Foxp3 mRNA was increased in the smoke-exposure groups (24.4 ± 2.7, 30.3 ± 2.7) compared with the control groups (12.7 ± 2.7, 14.6 ± 3.8). Th17 in smoke-exposure groups was positively correlated with counts of total cells and macrophages (r = 0.512, 0.543, all P < 0.05). An elevated expression of Th17 and Treg cells and an increase of inflammatory cytokines were evident in airway inflammation of cigarette smoke-exposed rats, suggesting that Treg was involved in the immunological regulation and Th17 was associated with the persistent inflammation in cigarette smoke-induced airway inflammation in rats.
The Pathology of Chronic Obstructive Pulmonary Disease: Progress in the 20th and 21st Centuries.
Berg, Kyra; Wright, Joanne L
2016-12-01
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and is the fourth leading cause of death worldwide. There has been significant progress in the pathologic description and pathophysiologic analysis of COPD in the 20th and 21st centuries. We review the history, progression, and significance of pathologic alterations in COPD, including emphysematous changes, airway alterations, and vascular alterations. We also indicate what pathologic features of COPD the practicing pathologist should be describing in standard surgical and autopsy specimens.
Extraintestinal roles of bombesin-like peptides and their receptors: lung.
Qin, Xiao-Qun; Qu, Xiangping
2013-02-01
Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.
The lung may play a role in the pathogenesis of rheumatoid arthritis
Demoruelle, M Kristen; Solomon, Joshua J; Fischer, Aryeh; Deane, Kevin D
2015-01-01
Multiple studies have identified strong associations between the lung and rheumatoid arthritis (RA). Such studies identify a high prevalence of lung disease, both airways and parenchymal disease, in subjects with clinically classifiable RA. It has been suggested that lung disease in RA results from targeting of the lung from circulating autoimmunity or other factors such as medications. However, findings that lung disease, specifically inflammatory airways disease, and lung generation of autoimmunity can be present before the onset of joint symptoms suggest that immune reactions in the lung may be involved in the initial development of RA-related autoimmunity. Herein we review these issues in detail, as well as outline a potential research agenda to understand the natural history of lung involvement in RA and its relation to the overall pathogenesis of RA. PMID:26089988
Zhu, Qiang; Zang, Qi; Jiang, Zhong-min; Wang, Wei; Cao, Ming
2013-06-01
To assess the feasibility, safety and efficacy of the use of a fully covered self-expandable stent for the treatment of airway fistula. From August 2005 to November 2011, 9 patients underwent treatment by the introduction of a tracheo-bronchial or bronchial fully covered self-expandable metallic stent. There were 7 males and 2 females, aged from 28-65 years with a mean of 46 years. In this group, 7 cases were diagnosed as bronchopleural fistula, 1 case as tracheopleural fistula, 1 case as broncho-esophageal fistula, 8 cases with thoracic empyema. The fistula orifices were from 3.5-25.0 mm in diameter with a mean 8.4 mm. All patients received topical anesthesia, and L-shaped stent was placed in 6 patients and I-shaped stent in 3 patients under fluoroscopic guidance. After the stent placement, the patients with empyema were treated with continual irrigation of the empyema cavity. Stent placement in the tracheo-bronchial tree was technically successful in all patients, without procedure-related complications. The operating time was from 5-16 minutes, mean time (10 ± 4) minutes. Except for 1 patient, immediate closure of the airway fistula was achieved in the other patients after the procedure, as shown by the immediate cessation of bubbling in the chest drain system or the contrast examination. In this study, 1 patient coughed the inserted stent out due to irritable cough on the 5th day and had to receive repositioning of a new stent. Among the patients who were with empyema, 1 patient died of septicemia on the 8th day and 1 patient died of brain metastases from lung cancer 6 months after the stent insertion with empyema not cured, the other 6 patients' empyema healed from 2-5 months, mean time 3.7 months. Seven patients were followed from 3 to 36 months with a median of 13.5 months. During follow-up, 1 stent was removed from a patient 8 months after the stent implantation without empyema recurred. The remaining patient presented good tolerability to the existence of stent. The stents remained stable, no migration occurred, no empyema recurred, and the patient with broncho-esophageal fistula fed and drunk well. The use of fully covered self-expandable stents proved to be a safe, effective and fast minimally invasive method to treat airway fistula, especially for patients with a higher surgical risk or other failed treatments.
Bergot, Anne-Sophie; Monnet, Nastasia; Tran, Le Son; Mittal, Deepak; Al-Kouba, Jane; Steptoe, Raymond J.; Grimbaldeston, Michele A.; Frazer, Ian H.; Wells, James W.
2014-01-01
Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk Human Papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the Keratin 14 promoter. We show that HPV 16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV 16 E7 expressing skin secreted high levels of TSLP and contained increased numbers of ILCs. High levels of circulating IgE were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T-cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration. PMID:25601274
Matsukura, S.; Odaka, M.; Kurokawa, M.; Kuga, H.; Homma, T.; Takeuchi, H.; Notomi, K.; Kokubu, F.; Kawaguchi, M.; Schleimer, R. P.; Johnson, M. W.; Adachi, M.
2013-01-01
Summary Background Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-β) may be involved in the process of airway remodelling. Objective We analysed the effects of TGF-β on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. Methods HASM cells were cultured and treated with TGF-β and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. Results IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-β alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-β. Activation by IL-4 or IL-4 plus TGF-β was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-β was inhibited by mutation of the binding site for nuclear factor-κB (NF-κB) in the promoter. Pretreatment with an inhibitor of NF-κB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-β, indicating the importance of NF-κB in the cooperative activation of CCL11 transcription by TGF-β and IL-4. Conclusion These results indicate that Th2 cytokines and TGF-β may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-κB may play pivotal roles in this process. PMID:20214667
Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M
2010-05-01
Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.
Strandmark, J; Steinfelder, S; Berek, C; Kühl, A A; Rausch, S; Hartmann, S
2017-05-01
Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4 + T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5 + PD-1 + T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA + germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.
Mizoguchi, Izuru; Ohashi, Mio; Chiba, Yukino; Hasegawa, Hideaki; Xu, Mingli; Owaki, Toshiyuki; Yoshimoto, Takayuki
2017-01-01
The use of animal models in chemical safety testing will be significantly limited due to the recent introduction of the 3Rs principle of animal experimentation in research. Although several in vitro assays to predict the sensitizing potential of chemicals have been developed, these methods cannot distinguish chemical respiratory sensitizers and skin sensitizers. In the present study, we describe a novel in vitro assay that can discriminate respiratory sensitizers from chemical skin sensitizers by taking advantage of the fundamental difference between their modes of action, namely the development of the T helper 2 immune response, which is critically important for respiratory sensitization. First, we established a novel three-dimensional (3D) coculture system of human upper airway epithelium using a commercially available scaffold. It consists of human airway epithelial cell line BEAS-2B, immature dendritic cells (DCs) derived from human peripheral blood CD14 + monocytes, and human lung fibroblast cell line MRC-5. Respective cells were first cultured in individual scaffolds and subsequently assembled into a 3D multi-cell tissue model to more closely mimic the in vivo situation. Then, three typical chemicals that are known respiratory sensitizers (ortho-phthaldialdehyde, hexamethylene diisocyanate, and trimellitic anhydride) and skin sensitizers (oxazolone, formaldehyde, and dinitrochlorobenzene) were added individually to the 3D coculture system. Immunohistochemical analysis revealed that DCs do not migrate into other scaffolds under the experimental conditions. Therefore, the 3D structure was disassembled and real-time reverse transcriptase-PCR analysis was performed in individual scaffolds to analyze the expression levels of molecules critical for Th2 differentiation such as OX40 ligand (OX40L), interleukin (IL)-4, IL-10, IL-33, and thymic stromal lymphopoietin. Both sensitizers showed similarly augmented expression of DC maturation markers (e.g., CD86), but among these molecules, OX40L expression in DCs was most consistently and significantly enhanced by respiratory sensitizers as compared to that by skin sensitizers. Thus, we have established a 3D coculture system mimicking the airway upper epithelium that may be successfully applied to discriminate chemical respiratory sensitizers from skin sensitizers by measuring the critical molecule for Th2 differentiation, OX40L, in DCs.
Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G
2007-01-01
Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839
Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian
2010-03-01
To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.
Davis, Benjamin B.; Shen, Yi-Hsin; Tancredi, Daniel J.; Flores, Vanessa; Davis, Ryan P.; Pinkerton, Kent E.
2012-01-01
Chronic obstructive pulmonary disease (COPD) kills approximately 2.8 million people each year, and more than 80% of COPD cases can be attributed to smoking. Leukocytes recruited to the lung contribute to COPD pathology by releasing reactive oxygen metabolites and proteolytic enzymes. In this work, we investigated where leukocytes enter the lung in the early stages of COPD in order to better understand their effect as a contributor to the development of COPD. We simultaneously evaluated the parenchyma and airways for neutrophil accumulation, as well as increases in the adhesion molecules and chemokines that cause leukocyte recruitment in the early stages of tobacco smoke induced lung disease. We found neutrophil accumulation and increased expression of adhesion molecules and chemokines in the bronchial blood vessels that correlated with the accumulation of leukocytes recovered from the lung. The expression of adhesion molecules and chemokines in other vascular beds did not correlate with leukocytes recovered in bronchoalveolar lavage fluid (BALF). These data strongly suggest leukocytes are recruited in large measure through the bronchial circulation in response to tobacco smoke. Our findings have important implications for understanding the etiology of COPD and suggest that pharmaceuticals designed to reduce leukocyte recruitment through the bronchial circulation may be a potential therapy to treat COPD. PMID:22457750
Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Lit, Q. H.; Zhang, Y. G.; Meng, A. H.
The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.
Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2.
Jones, Victoria C; Birrell, Mark A; Maher, Sarah A; Griffiths, Mark; Grace, Megan; O'Donnell, Valerie B; Clark, Stephen R; Belvisi, Maria G
2016-03-01
Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX-mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor-deficient mice to define the receptor subtype involved. PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2-induced MVL was demonstrated in Ptger2−/− and Ptger4−/− mice and in wild-type mice pretreated simultaneously with EP2 (PF-04418948) and EP4 (ER-819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2−/− and Ptger4−/− mice. PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2.
Van Herck, Stijn L J; Delbaere, Joke; Bourgeois, Nele M A; McAllan, Bronwyn M; Richardson, Samantha J; Darras, Veerle M
2015-04-01
Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the general circulation. We conclude that the tight regulation of TH exchange at the brain barriers from early embryonic stages is one of the factors needed to allow the brain to develop within a relative microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.
Taher, Yousef A; van Esch, Betty C A M; Hofman, Gerard A; Henricks, Paul A J; van Oosterhout, Antoon J M
2008-04-15
1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a potent inhibitor of NF-kappaB expression, can prevent the maturation of dendritic cells in vitro leading to tolerogenic dendritic cells with increased potential to induce regulatory T cells. Herein, we investigated whether the combination of allergen immunotherapy with 1,25(OH)(2)D(3) potentiates the suppressive effects of immunotherapy and whether the immunoregulatory cytokines IL-10 and TGF-beta are involved in the effector phase. OVA-sensitized and challenged BALB/c mice displayed airway hyperresponsiveness (AHR) and increased serum OVA-specific IgE levels, bronchoalveolar lavage eosinophilia, and Th2 cytokine levels. In this model, the dose response of allergen immunotherapy 10 days before OVA inhalation challenge shows strong suppression of asthma manifestations at 1 mg of OVA, but partial suppression of bronchoalveolar lavage eosinophilia, IgE up-regulation, and no reduction of AHR at 100 microg. Interestingly, coadministration of 10 ng of 1,25(OH)(2)D(3) with 100 microg of OVA immunotherapy significantly inhibited AHR and potentiated the reduction of serum OVA-specific IgE levels, airway eosinophilia, and Th2-related cytokines concomitant with increased IL-10 levels in lung tissues and TGF-beta and OVA-specific IgA levels in serum. Similar effects on suboptimal immunotherapy were observed by inhibition of the NF-kappaB pathway using the selective IkappaB kinase 2 inhibitor PS-1145. The suppressive effects of this combined immunotherapy were partially reversed by treatment with mAb to either IL-10R or TGF-beta before OVA inhalation challenge but completely abrogated when both Abs were given. These data demonstrate that 1,25(OH)(2)D(3) potentiates the efficacy of immunotherapy and that the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model.
Globig, Anna-Maria; Hennecke, Nadine; Martin, Bianca; Seidl, Maximilian; Ruf, Günther; Hasselblatt, Peter; Thimme, Robert; Bengsch, Bertram
2014-12-01
Skewed T helper (TH) cell responses and specific functions of TH1, TH2, TH17, and Treg cells have been implicated in the pathogenesis of inflammatory bowel disease (IBD) that led to the establishment of the pathogenic TH1/TH2 and TH17/Treg cell imbalance paradigms. However, the relevant TH cell population driving mucosal inflammation is still unknown. We performed a comprehensive TH cell profiling of circulating and intestinal lymphocytes isolated from patients with Crohn's disease (CD; n = 69) and ulcerative colitis (UC; n = 41) undergoing endoscopy or surgical resection and compared them with healthy controls (n = 45). Mucosal inflammation was assessed endoscopically and histologically. TH cells were analyzed by flow cytometric evaluation of cytokine production and differentiation marker expression. Specialized TH cell populations were enriched in the intestinal mucosa compared with peripheral blood. Specifically, we observed a concomitant upregulation of TH17 cells and Tregs in active inflammatory lesions in patients with both CD and UC compared with quiescent/mildly inflamed lesions and healthy tissue. Of note, interferon γ+ interleukin (IL)-17+coproducing CD4+ T cells with high expression of T-bet, CD26, and IL-22 resembling recently described pathogenic TH17 cells were specifically enriched in the inflamed mucosal tissue. Our results argue against the controversial TH1/TH2 or TH17/Treg paradigms. In contrast, they suggest that a subpopulation of TH17 cells sharing a TH1 signature may be specifically involved in intestinal inflammation in CD and UC. These findings provide a better understanding of IBD pathogenesis and may help explain the efficacy of anti-IL-12p40/IL-23 and failure of anti-IL-17A therapies despite the enrichment of TH17 cells.
Immunoevasive Aspergillus virulence factors.
Chotirmall, Sanjay H; Mirkovic, Bojana; Lavelle, Gillian M; McElvaney, Noel G
2014-12-01
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
2012-02-01
et al. (2002), U-Th dating of marine isotope stage 7 in Bahamas slope sediments, Earth and Planetary Science Letters, 196(3-4), Pii S0012- 821x(01...and radioisotope studies, Earth Planet. Sci. Lett., 32(2), 420–429, doi:10.1016/ 0012-821X(76)90082-0. Krishnaswami, S., M. M. Sarin, and B. L. K...degree of Doctor of Philosophy ABSTRACT Radioactive isotopes can be used in paleoceanography both for dating samples and as tracers of ocean
Toxoplasma gondii infection blocks the development of allergic airway inflammation in BALB/c mice.
Fenoy, I; Giovannoni, M; Batalla, E; Martin, V; Frank, F M; Piazzon, I; Goldman, A
2009-02-01
There is a link between increased allergy and a reduction of some infections in western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofaecal and foodborne microbes such as Toxoplasma gondii. Infection with T. gondii induces a strong cell-mediated immunity with a highly polarized T helper type 1 (Th1) response in early stages of infection. Using a well-known murine model of allergic lung inflammation, we sought to investigate whether T. gondii infection could modulate the susceptibility to develop respiratory allergies. Both acute and chronic infection with T. gondii before allergic sensitization resulted in a diminished allergic inflammation, as shown by a decrease in bronchoalveolar lavage (BAL) eosinophilia, mononuclear and eosinophil cell infiltration around airways and vessels and goblet cell hyperplasia. Low allergen-specific immunoglobulin (Ig)E and IgG1 and high levels of allergen-specific IgG2a serum antibodies were detected. A decreased interleukin (IL)-4 and IL-5 production by lymph node cells was observed, while no antigen-specific interferon-gamma increase was detected. Higher levels of the regulatory cytokine IL-10 were found in BAL from infected mice. These results show that both acute and chronic parasite infection substantially blocked development of airway inflammation in adult BALB/c mice. Our results support the hypothesis that T. gondii infection contributes to protection against allergy in humans.
NASA Astrophysics Data System (ADS)
Hasegawa, Y.; Kawaoka, H.; Yamada, T.; Matsushima, M.; Kawabe, T.; Shikida, M.
2017-12-01
We previously proposed an evaluation method for detecting both respiration and heartbeat signals from the airflow at the mouth (Kawaoka et al 201518th Int. Conf. on Solid-State Sensors, Actuators and Microsystems; Kawaoka et al 2015 IEEE Sensors; Kawaoka et al 2016 Technical Digest IEEE Micro Electro Mechanical Systems Conf.). In the current study, we developed a catheter flow sensor with temperature compensation that uses MEMS technologies and used it to directly detect the breathing airflow in the airway of a rat. The temperature sensors were integrated with the catheter flow sensor. Heaters working as airflow and temperature sensors were produced on polymer film by using the same fabrication process so that the temperature coefficients of their resistances would coincide. As a result, the variation in sensor outputs due to the airflow temperature changes ranging from 20 °C to 34 °C was suppressed to less than 2.5%. The developed catheter flow sensor was inserted into the airway of a rat to detect both respiration and heartbeat signals. The accuracy of the breathing airflow measurements was improved thanks to the temperature compensation. The tidal volume variations between the expired and inspired air were suppressed to within 5%. Heartbeat signal information was extracted from the measured breathing waveforms by applying a discrete Fourier transform.
Toxoplasma gondii infection blocks the development of allergic airway inflammation in BALB/c mice
Fenoy, I; Giovannoni, M; Batalla, E; Martin, V; Frank, F M; Piazzon, I; Goldman, A
2009-01-01
There is a link between increased allergy and a reduction of some infections in western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofaecal and foodborne microbes such as Toxoplasma gondii. Infection with T. gondii induces a strong cell-mediated immunity with a highly polarized T helper type 1 (Th1) response in early stages of infection. Using a well-known murine model of allergic lung inflammation, we sought to investigate whether T. gondii infection could modulate the susceptibility to develop respiratory allergies. Both acute and chronic infection with T. gondii before allergic sensitization resulted in a diminished allergic inflammation, as shown by a decrease in bronchoalveolar lavage (BAL) eosinophilia, mononuclear and eosinophil cell infiltration around airways and vessels and goblet cell hyperplasia. Low allergen-specific immunoglobulin (Ig)E and IgG1 and high levels of allergen-specific IgG2a serum antibodies were detected. A decreased interleukin (IL)-4 and IL-5 production by lymph node cells was observed, while no antigen-specific interferon-γ increase was detected. Higher levels of the regulatory cytokine IL-10 were found in BAL from infected mice. These results show that both acute and chronic parasite infection substantially blocked development of airway inflammation in adult BALB/c mice. Our results support the hypothesis that T. gondii infection contributes to protection against allergy in humans. PMID:19032550
Protease activity of Per a 10 potentiates Th2 polarization by increasing IL-23 and OX40L.
Agrawal, Komal; Kale, Sagar L; Arora, Naveen
2015-12-01
Proteases are implicated in exacerbation of allergic diseases. In this study, the role of proteolytic activity of Per a 10 was evaluated on Th2 polarization. Intranasal administration of Per a 10 in mice led to allergic airway inflammation as seen by higher IgE levels, cellular infiltration, IL-17A, and Th2 cytokines, whereas, inactive (Δ)Per a 10 showed attenuated response. There was an increased OX40L expression on lung and lymph node dendritic cells in Per a 10 immunized group and on Per a 10 stimulated BMDCs. Reduction in CD40 expression without any change at transcript level in lungs of Per a 10 immunized mice suggested CD40 cleavage. BMDCs pulsed with Per a 10 showed reduced CD40 expression with lower IL-12p70 secretion as compared to heat inactivated Per a 10. IL-23, TNF-α, and IL-6 levels were significantly higher in Per a 10 stimulated BMDCs supernatant. In DC-T cell coculture studies, Per a 10 pulsed BMDCs showed higher levels of IL-4 and IL-13 that were reduced on blocking of either IL-23 or OX40L. In conclusion, the data suggests a critical role of protease activity of Per a 10 in promoting Th2 polarization by increasing IL-23 secretion and OX40L expression on dendritic cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeyanathan, Mangalakumari; Afkhami, Sam; Khera, Amandeep; Mandur, Talveer; Damjanovic, Daniela; Yao, Yushi; Lai, Rocky; Haddadi, Siamak; Dvorkin-Gheva, Anna; Jordana, Manel; Kunkel, Steven L; Xing, Zhou
2017-10-01
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung. Copyright © 2017 by The American Association of Immunologists, Inc.
From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes
NASA Astrophysics Data System (ADS)
Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team
2016-11-01
Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.
Neurogenic plasma leakage in mouse airways
Baluk, Peter; Thurston, Gavin; Murphy, Thomas J; Bunnett, Nigel W; McDonald, Donald M
1999-01-01
This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. Single bolus intravenous injections of capsaicin (0.5 and 1 μmol kg−1, i.v.) or substance P (1, 10 and 37 nmol kg−1, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. Pretreatment with captopril (2.5 mg kg−1, i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg−1, i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg−1, i.v.). After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg−1, i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg−1, i.v.). Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature. PMID:10077247
Thomas, LeeShawn D.; Keller, Thomas C.S.; Lee, Henry J.
2013-01-01
The underlying inflammation present in chronic airway diseases is orchestrated by increased secretion of CC and CXC chemokines that selectively recruit the leukocyte populations into the pulmonary system. Human chemokines, eotaxins (CCL11 and CCL26), RANTES, and interleukin (IL)-8, are dramatically upregulated through G-protein receptors in cell inflammation, including human asthma. In previous studies, a series of new glucocorticoid antedrugs (GCAs) were synthesized as derivatives of isoxazoline and oxime, and their pharmacological properties based on the antedrug concepts were evaluated. Utilizing both human airway epithelium (HAE) and eosinophil (EOS) cell culture models, we carried out studies to test the hypothesis that new GCA cell treatment would ameliorate Th-1/Th-2-driven secretion of these asthmatic biomarkers, eotaxins (CCL11 and CCL26), RANTES, and IL-8 chemokines, that would in turn decrease recruitment, proliferation, and activation of EOS cells. Results demonstrate that isoxazoline and oxime derivatives exhibit concentration-dependent inhibition, and specifically the compound No. 7 decreases significantly the secretion of eotaxins, RANTES, and IL-8 in cytokine-stimulated HAE cells. It was shown that EOS proliferation and activation were reduced considerably, and cell apoptosis occurred when exposed to nonfluorinated isoxazoline derivatives. These results provide evidence that concentration and structural manipulation of GCAs could increase the anti-inflammatory potency in treatment of chronic diseases, including asthma. PMID:23679817
Ohsaki, M; Tsutsumi, H; Kumagai, T; Yamanaka, T; Wataya, Y; Furukawa, H; Kojima, H; Saito, A; Yano, S; Chiba, S
1999-02-01
The immune mechanism of gelatin allergy, especially the participation of TH1 and TH2 cells and their cytokine secretion, has not been investigated. We investigated the characteristics of T lymphocytes from patients allergic to gelatin-containing vaccine by secondary in vitro stimulation of circulating mononuclear cells with gelatin. We studied 8 children with a history of immediate-type reactions and 8 with nonimmediate-type reactions after inoculation of gelatin-containing vaccine. The expression of IFN-gamma (TH1 ), IL-2 (TH1 ), IL-4 (TH2 ), and IL-13 (TH2 ) mRNA was examined semiquantitatively by using a reverse transcriptase PCR. IgE antibody to bovine gelatin was measured with the fluorometric ELISA system, and gelatin-specific T-cell responses were detected by an in vitro lymphocyte proliferation assay. Patients with an immediate reaction all had gelatin-specific IgE antibody, whereas others did not. However, all patients exhibited positive T-lymphocyte responses specific to gelatin. Lymphocytes from subjects with nonimmediate-type reactions generally expressed very weak or sometimes no IFN-gamma, IL-2, or IL-13 genes and especially no IL-4 gene. On the other hand, the lymphocytes of subjects with immediate-type reactions significantly expressed not only IL-4 and IL-13 but also IFN-gamma and IL-2 mRNA. Our observations suggest that both gelatin-specific TH2 and TH1 responses are involved in the pathogenesis of the immediate reaction to gelatin. The gelatin-specific IL-4 and/or IL-13 responses consistently observed in patients with an immediate reaction may be associated with the production of gelatin-specific IgE antibody.
Rosenkranz, Melissa A.; Esnault, Stephane; Christian, Bradley T.; Crisafi, Gina; Gresham, Lauren K.; Higgins, Andrew T.; Moore, Mollie N.; Moore, Sarah M.; Weng, Helen Y.; Salk, Rachel H.; Busse, William W.; Davidson, Richard J.
2016-01-01
Background Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. Methods We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Results Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Conclusions Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. PMID:27039241
Rosenkranz, Melissa A; Esnault, Stephane; Christian, Bradley T; Crisafi, Gina; Gresham, Lauren K; Higgins, Andrew T; Moore, Mollie N; Moore, Sarah M; Weng, Helen Y; Salk, Rachel H; Busse, William W; Davidson, Richard J
2016-11-01
Psychological stress has long been recognized as a contributing factor to asthma symptom expression and disease progression. Yet, the neural mechanisms that underlie this relationship have been largely unexplored in research addressing the pathophysiology and management of asthma. Studies that have examined the mechanisms of this relationship in the periphery suggest that it is the superimposition of acute stress on top of chronic stress that is of greatest concern for airway inflammation. We compared asthmatic individuals with high and low levels of chronic life stress in their neural and peripheral physiological responses to the Trier Social Stress Test and a matched control task. We used FDG-PET to measure neural activity during performance of the two tasks. We used both circulating and airway-specific markers of asthma-related inflammation to assess the impact of acute stress in these two groups. Asthmatics under chronic stress had a larger HPA-axis response to an acute stressor, which failed to show the suppressive effects on inflammatory markers observed in those with low chronic stress. Moreover, our PET data suggest that greater activity in the anterior insula during acute stress may reflect regulation of the effect of stress on inflammation. In contrast, greater activity in the mid-insula and perigenual anterior cingulate seems to reflect greater reactivity and was associated with greater airway inflammation, a more robust alpha amylase response, and a greater stress-induced increase in proinflammatory cytokine mRNA expression in airway cells. Acute stress is associated with increases in markers of airway inflammation in asthmatics under chronic stress. This relationship may be mediated by interactions between the insula and anterior cingulate cortex, that determine the salience of environmental cues, as well as descending regulatory influence of inflammatory pathways in the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.
Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.
Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W
2017-01-01
Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.
Pulit-Penaloza, Joanna A.; Simpson, Natosha; Yang, Hua; Creager, Hannah M.; Jones, Joyce; Carney, Paul; Belser, Jessica A.; Yang, Genyan; Chang, Jessie; Zeng, Hui; Thor, Sharmi; Jang, Yunho; Killian, Mary Lea; Jenkins-Moore, Melinda; Janas-Martindale, Alicia; Dubovi, Edward; Wentworth, David E.; Stevens, James; Tumpey, Terrence M.; Davis, C. Todd; Maines, Taronna R.
2017-01-01
Background A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since then, this CIV has caused thousands of infections in dogs in multiple states. Methods In this study, genetic and antigenic properties of the new CIV were evaluated. In addition, structural and glycan array binding features of the recombinant hemagglutinin were determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in animal models were also assessed. Results A(H3N2) CIVs maintained molecular and antigenic features related to low pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The structural and glycan array binding profile confirmed these findings and revealed avian-like receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice and ferrets, and the virus was inefficiently transmitted among cohoused ferrets. Conclusions Further adaptation is needed for A(H3N2) CIVs to present a likely threat to humans. However, the potential for coinfection of dogs and possible reassortment of human and other animal influenza A viruses presents an ongoing risk to public health. PMID:28934454
Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook
2016-03-01
Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.
Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi
2017-10-05
Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma
Ionescu, Lavinia I.; Alphonse, Rajesh S.; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R.; Walsh, Kenneth
2012-01-01
Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow–derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the TH2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10–induced and IL-10–secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma. PMID:21903873
Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.
Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard
2012-02-01
Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.
A mathematical model of airway and pulmonary arteriole smooth muscle.
Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James
2008-03-15
Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.
Yamamoto, Yuki; Yamamoto, Tatsuya; Yuto, Natsuki; Hildebrandt, Thomas B; Lueders, Imke; Wibbelt, Gudrun; Shiina, Osamu; Mouri, Yasushi; Sugimura, Keisuke; Sakamoto, Sayuri; Kaewmanee, Saroch; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi
2012-01-01
The objective of the present study was to define the secretion of prolactin (PRL) in pregnant African and Asian elephants. Levels of immunoreactive (ir-) PRL in serum and placental homogenates were measured by a heterologous radioimmunoassay (RIA) based on an ovine and human RIA system, and the localization of ir-PRL in the placenta was detected by immunohistochemistry using anti-human PRL. Circulating ir-PRL clearly showed a biphasic pattern during pregnancy in African and Asian elephants. Serum levels of ir-PRL started to increase from the 4 - 6th month of gestation and reached the first peak level around the 11-14th month. A second peak of circulating ir-PRL levels was observed around the 18-20th month of gestation followed by an abrupt decline after parturition. In contrast, in a case of abortion of an African elephant, the second peak of ir-PRL was not observed, and the levels remained low for about four months until parturition. The weight of the fetus delivered at the 17th month of gestation was 23.5 kg, which was quite small compared with normal fetuses in previous reports. Ir-PRL was detected in placental homogenates, and immunolocalization was observed in trophoblasts in both the African and Asian elephants, indicating that the placenta is the source of ir-PRL during pregnancy in elephants. The present results clearly demonstrated that circulating ir-PRL shows a biphasic pattern during normal pregnancy and that the placenta appears to be an important source of circulating ir-PRL during pregnancy in both African and Asian elephants.
Exposure of cultured cells to particulate matter air pollution is usually accomplished by collecting particles on a solid matrix, extracting the particles from the matrix, suspending them in liquid, and applying the suspension to cells grown on plastic and submerged in medium. Th...
Chopra, Amla; Cevc, Gregor
2014-06-02
A non-invasive, intra/transcutaneous immunisation of mice with a suitable combination of tetanus toxoid, ultradeformable vesicle (Transfersome®) carrier, and monophosphoryl lipid A adjuvant targets immuno-competent cells in a body and can protect 100% of the tested mice against an otherwise lethal (50×LD50) parenteral tetanus toxin challenge. The late immune response to the epicutaneously applied tetanus toxoid in such vesicles consists chiefly of circulating IgG1 and IgG2b antibody isotypes, indicative of a specific Th2 cellular response bias. Immunisations by subcutaneous injections moreover protect 100% of mice against a similar, otherwise lethal, dose of tetanus toxin. However, the immune response to transcutaneous and invasive immunisation differs. The latter elicits mainly IgG1 and IgG2b as well as IgG2a antibody isotypes, indicative of a mixed Th1/Th2 response. The cytokine response of the intra/transcutaneously and subcutaneously immunised mice reflects the difference in the organ-specific manner. IFN-γ concentration is appreciably increased in the draining lymph nodes and IL-10 in spleen. Since tetanus is a neutral antigen, both the Th1-specific IFN-γ and the Th-2 specific-IL-10 are observable. Copyright © 2014 Elsevier B.V. All rights reserved.
Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium.
Weng, Chih-Ming; Lee, Meng-Jung; He, Jung-Re; Chao, Ming-Wei; Wang, Chun-Hua; Kuo, Han-Pin
2018-05-01
IL-17A is implicated in many aspects of pathogenesis of severe asthma, including inducing neutrophilic inflammation, airway hyperresponsiveness, steroid insensitivity and airway remodeling. Diesel exhaust particles (DEP) emission from vehicles has been shown to expand Th17 cells to increase IL-17A release that contributes to DEP-mediated exacerbation of asthma severity. It is not known whether non-immune cells in airways may also release IL-17A in response to DEP exposure. In this study, We found IL-17A expression was upregulated in the epithelium of severe allergic asthma patients from high road traffic pollution areas compared to those in low. Furthermore, we found DEP concentration-dependently increased IL-17A synthesis and release by 122.3 ± 15.72% and 235.5 ± 18.37%, respectively in primary bronchial epithelial cells (PBEC), accompanied with increased ROS production. Pretreatment of ROS scavenger (NAC) significantly inhibited DEP-induced IL-17A mRNA expression. DEP-induced IκBα degradation can be inhibited by NAC. We also found DEP increased p65 and RelB subunits expression, and pretreatment of NF-κB inhibitor (SN50) also inhibited DEP-induced IL-17A expression. We further found DEP increased NF-κB subunit RelB recruitment to IL-17A promoter in PBEC and airway tissue of severe allergic asthma patients from high road traffic pollution areas. These results indicate DEP stimulates IL-17A expression in airway epithelium through ROS/NF-κB pathway, and provide a possible link between traffic pollution exposure and IL-17A-related responses in severe allergic asthma patients. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoffmann, S. S.; Dalsing, R.; McManus, J. F.
2016-12-01
Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.
Human Lung Small Airway-on-a-Chip Protocol.
Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E
2017-01-01
Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.
A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.
Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S
2015-12-01
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.
Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to...
Depression May Reduce Adherence during CPAP Titration Trial
Law, Mandy; Naughton, Matthew; Ho, Sally; Roebuck, Teanau; Dabscheck, Eli
2014-01-01
Study Objectives: Depression is a risk factor for medication non-compliance. We aimed to identify if depression is associated with poorer adherence during home-based autotitrating continuous positive airway pressure (autoPAP) titration. Design: Mixed retrospective-observational study. Setting: Academic center. Participants: Two-hundred forty continuous positive airway pressure-naïve obstructive sleep apnea (OSA) patients. Measurements: Patients underwent approximately 1 week of home-based autoPAP titration with adherence data downloaded from the device. Electronic hospital records were reviewed in a consecutive manner for inclusion. Three areas of potential predictors were examined: (i) demographics and clinical factors, (ii) disease severity, and (iii) device-related variables. Depression and anxiety were assessed using the Hospital Anxiety and Depression Scale (HADS). Scores on the subscales were categorized as normal or clinical diagnoses of depression (≥ 8) and anxiety (≥ 11). The primary outcome variable was the mean hours of autoPAP used per night. Results: Patients were diagnosed with OSA by either attended polysomnography (n = 73, AHI 25.5[15.1-41.5]) or unattended home oximetry (n = 167, ODI3 34.0[22.4-57.4]) and had home-based autoPAP titration over 6.2 ± 1.2 nights. Mean autoPAP use was 4.5 ± 2.4 hours per night. Multiple linear regression analysis revealed that depression and lower 95th percentile pressures significantly predicted lesser hours of autoPAP use (R2 = 0.19, p < 0.001). Significantly milder OSA in those requiring lower pressures may have confounded the relationship between 95th percentile pressure and autoPAP use. Conclusion: Depression was independently associated with poorer adherence during home-based autoPAP titration. Depression may be a potential target for clinicians and future research aimed at enhancing adherence to autoPAP therapy. Citation: Law M; Naughton M; Ho S; Roebuck T; Dabscheck E. Depression may reduce adherence during CPAP titration trial. J Clin Sleep Med 2014;10(2):163-169. PMID:24532999
Comparison of the Ambu AuraFlex with the laryngeal mask airway Flexible: a manikin study.
Sanuki, Takuro; Nakatani, Gosuke; Sugioka, Shingo; Daigo, Erina; Kotani, Junichiro
2011-07-01
The present study compared the Ambu AuraFlex and the laryngeal mask airway (LMA) Flexible with regard to time required for and success rates of insertion on a manikin by dental students who had never used an LMA. In addition, participants' views on ease of insertion of each device were surveyed. Subjects consisted of 30 dental students who inserted each airway device in a manikin. The time required for and success rates of insertion were measured. Subjects were then asked to rate the ease of insertion of each device using the 100-mm visual analog scale (from 0 mm = extremely easy to 100 mm = extremely difficult). Insertion time was shorter with the Ambu AuraFlex (26.6 ± 7.1 seconds) than with the LMA Flexible (30.3 ± 6.8 seconds; P = .045). The rate of successful insertion using the Ambu AuraFlex (28 of 30 attempts, 93.3%) was greater than that with the LMA Flexible (23 of 30 attempts, 76.7%), although the difference was not statistically significant (P = .145). Ambu AuraFlex insertion was considered less difficult (median, 41 mm; 10th to 90th percentiles, 18 to 78 mm) than LMA Flexible insertion (60 mm; 42 to 82 mm; P = .004), as rated using the 100-mm visual analog scale. The Ambu AuraFlex appears to be useful for inexperienced users because it enables quicker and easier insertion than the LMA Flexible. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.
2012-01-01
T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013
Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J
2012-08-30
T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.
Management of Foreign Body Removal in Children by Flexible Bronchoscopy.
Tenenbaum, Tobias; Kähler, Georg; Janke, Christoph; Schroten, Horst; Demirakca, Süha
2017-01-01
Rigid bronchoscopy remains the gold standard in many countries to remove airway foreign bodies (FBs). We aimed to analyze the feasibility of airway FB removal in children, primarily by flexible bronchoscopy through a laryngeal mask. Between 2008 and 2013, 62 children with suspected airway FB who underwent flexible bronchoscopy were analyzed in a retrospective chart review at a tertiary university hospital with respect to clinical presentation and medical management. In 28/62 children (45.2%) an airway FB could be found and in all patients removed by flexible bronchoscopy. Additional 19/34 children (55.8%), in which no FB was found, showed macroscopic evidence of prior FB aspiration. The most frequently removed airway FBs were nuts (13/28; 46.4%) followed by other organic airway FBs (9/28; 32.2%) and nonorganic airway FBs (6/28; 21.4%). All FBs were uneventfully removed with a grasping forceps (16/28; 57.1%), basket forceps (9/28; 32.2%), suction (2/28; 7.1%), or polypectomy snare (1/28; 3.6%). Children with proven airway FB were significantly younger than children without an airway FB (24 vs. 27 mo). Adjuvant antibiotic therapy was given in 15/28 (53.6%) children with proven airway FB and 13/34 (38.2%) without, steroids in 24/28 (85.7%) and 21/34 (61.8%), respectively. In 6/28 (9.7%) children epinephrine intrabronchial was used to mobilize the airway FB during bronchoscopy. In an optimized clinical setting, flexible bronchoscopy can be regarded as a feasible procedure to remove airway FB through a laryngeal mask. Short-term and long-term outcome is favorable.
Jackson-Sillah, Dolly; Cliff, Jacqueline M.; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A.; Addo, Kwasi K.; Ottenhoff, Tom H. M.; Bothamley, Graham; Dockrell, Hazel M.
2013-01-01
Background Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Methods Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. Results The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. Conclusions These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes. PMID:23826366
A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle
Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James
2008-01-01
Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464
A structural abnormality associated with graded levels of ...
A large number of environmental contaminants reduce circulating levels of thyroid hormone (TH), but clear markers of neurological insult associated with modest TH insufficiency are lacking. We have previously identified the presence of an abnormal cluster of misplaced neurons in the corpus callosum (CC), a heterotopia, in adult rats following hypothyroidism induced by the hormone synthesis inhibitor, propylthiouracil (PTU). In this report we have investigated the dose- response relationships to administered dose of PTU, the magnitude of reductions in circulating TH, and the incidence and volume of the heterotopia in adult offspring of PTU-treated dams. Pregnant rat dams were administered 0, 1, 2, 3 or 10 ppm of PTU in the drinking water from gestational day 6 until pups were weaned on postnatal day 21 (PN2 1). Serum hormones in the dams were reduced in a dose-dependent manner, but at the lower dose levels (1, 2 and 3ppm) reductions were limited to T4 with no change in serum T3. At higher PTU concentrations, serum T3 was reduced in dams (1 Oppm) and pups on PN14 and 21 (3 and 10 ppm). All hormone levels returned to control levels in adulthood. On PN 130, female offspring were perfused with paraformaldehyde and sections prepared for immunohistochemistry for the neuron-specific antibody NeuN. All sections (40-45 50u through the hippocampus) were examined for the presence of a heterotopia in the CC. A dose-dependent increase in incidence and volume of heterotopic re
SPDEF regulates goblet cell hyperplasia in the airway epithelium
Park, Kwon-Sik; Korfhagen, Thomas R.; Bruno, Michael D.; Kitzmiller, Joseph A.; Wan, Huajing; Wert, Susan E.; Khurana Hershey, Gurjit K.; Chen, Gang; Whitsett, Jeffrey A.
2007-01-01
Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo. PMID:17347682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.
Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure andmore » would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased L-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.« less
CLIMATE VARIABILITY, CHANGE, AND CONSEQUENCES IN ESTUARIES
Climate change operates at global, hemispheric, and regional scales, sometimes involving rapid shifts in ocean and atmospheric circulation. Changes of global scope occurred in the transition into the Little Ice Age (1350-1880) and subsequent warming during the 20th century. In th...
Bradtmiller, Louisa I; McManus, Jerry F; Robinson, Laura F
2014-12-18
The strength of Atlantic meridional overturning circulation is believed to affect the climate over glacial-interglacial and millennial timescales. The marine sedimentary (231)Pa/(230)Th ratio is a promising paleocirculation proxy, but local particle effects may bias individual reconstructions. Here we present new Atlantic sedimentary (231)Pa/(230)Th data from the Holocene, the last glacial maximum and Heinrich Stadial 1, a period of abrupt cooling ca. 17,500 years ago. We combine our results with published data from these intervals to create a spatially distributed sedimentary (231)Pa/(230)Th database. The data reveal a net (231)Pa deficit during each period, consistent with persistent (231)Pa export. In highly resolved cores, Heinrich (231)Pa/(230)Th ratios exceed glacial ratios at nearly all depths, indicating a significant reduction, although not cessation, of overturning during Heinrich Stadial 1. These results support the inference that weakened overturning was a driver of Heinrich cooling, while suggesting that abrupt climate oscillations do not necessarily require a complete shutdown of overturning.
Innate lymphoid cells in asthma: Will they take your breath away?
Kim, Hye Young; Umetsu, Dale. T.; Dekruyff, Rosemarie H.
2016-01-01
Asthma is a complex and heterogeneous disease that is characterized by airway hyperreactivity (AHR) and airway inflammation. Although asthma was long thought to be driven by allergen-reactive Th2 cells, it has recently become clear that the pathogenesis of asthma is more complicated and associated with multiple pathways and cell types. A very exciting recent development was the discovery of innate lymphoid cells (ILCs) as key players in the pathogenesis of asthma. ILCs do not express antigen receptors but react promptly to “danger signals” from inflamed tissue and produce an array of cytokines that direct the ensuing immune response. The roles of ILCs may differ in distinct asthma phenotypes. ILC2s may be critical for initiation of adaptive immune responses in inhaled allergen-driven AHR, but may also function independently of adaptive immunity, mediating influenza-induced AHR. ILC2s also contribute to resolution of lung inflammation through their production of amphiregulin. Obesity-induced asthma, is associated with expansion of IL-17A-producing ILC3s in the lungs. Furthermore, ILCs may also contribute to steroid-resistant asthma. Although the precise roles of ILCs in different types of asthma are still under investigation, it is clear that inhibition of ILC function represents a potential target that could provide novel treatments for asthma. PMID:26891006
Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation
Kale, Sagar L.; Agrawal, Komal; Gaur, Shailendra Nath; Arora, Naveen
2017-01-01
Protease allergens are known to enhance allergic inflammation but their exact role in initiation of allergic reactions at mucosal surfaces still remains elusive. This study was aimed at deciphering the role of serine protease activity of Per a 10, a major cockroach allergen in initiation of allergic inflammation at mucosal surfaces. We demonstrate that Per a 10 increases epithelial permeability by disruption of tight junction proteins, ZO-1 and occludin, and enhances the migration of Monocyte derived dendritic cell precursors towards epithelial layer as exhibited by trans-well studies. Per a 10 exposure also leads to secretion of IL-33, TSLP and intracellular Ca2+ dependent increase in ATP levels. Further, in vivo experiments revealed that Per a 10 administration in mice elevated allergic inflammatory parameters along with high levels of IL-33, TSLP, IL-1α and uric acid in the mice lungs. We next demonstrated that Per a 10 cleaves CD23 (low affinity IgE receptor) from the surface of PBMCs and purified B cells and CD25 (IL-2 receptor) from the surface of PBMCs and purified T cells in an activity dependent manner, which might favour Th2 responses. In conclusion, protease activity of Per a 10 plays a significant role in initiation of allergic airway inflammation at the mucosal surfaces. PMID:28198394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema
Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples weremore » obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.« less
Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.
Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong
2017-02-01
Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.
The epidemiology of upper airway injury in patients undergoing major surgical procedures.
Hua, May; Brady, Joanne; Li, Guohua
2012-01-01
Airway injury is a potentially serious and costly adverse event of anesthesia care. The epidemiologic characteristics of airway injury have not been well documented. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) is a multicenter, prospective, outcome-oriented database for patients undergoing major surgical procedures. Using the NSQIP data for the years 2005 to 2008, we examined the incidence of, and risk factors for, airway injury. Of the 563,190 patients studied, 1202 (0.2%) sustained airway injury. The most common airway injury was lip laceration/hematoma (61.4%), followed by tooth injury (26.1%), tongue laceration (5.7%), pharyngeal laceration (4.7%), and laryngeal laceration (2.1%). Multivariable logistic modeling revealed an increased risk of airway injury in patients with Mallampati class III (adjusted odds ratio [OR], 1.69; 99% confidence interval [CI], 1.36-2.11, relative to patients with Mallampati classes I and II) or class IV (adjusted OR, 2.6; 99% CI, 1.52-4.02), and in patients aged 80 years or older (adjusted OR, 1.50; 99% CI, 1.02-2.19, relative to patients aged 40 to 49 years). The risk of airway injury for patients undergoing major surgical procedures is approximately 1 in 500. Patients with difficult airways as indicated by Mallampati classes III and IV are at significantly increased risk of sustaining airway injury during anesthesia for major surgical procedures.
RTD-03-031
Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).
Abstract
Oral exposures to high concentrations of th...
Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.
Ramos-Leví, Ana Maria; Marazuela, Mónica
2016-10-01
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie
2017-10-09
Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of this age group for future vaccine interventions in the context of population ageing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Initial Diagnosis and Management of Coma.
Traub, Stephen J; Wijdicks, Eelco F
2016-11-01
Coma represents a true medical emergency. Drug intoxications are a leading cause of coma; however, other metabolic disturbances and traumatic brain injury are also common causes. The general emergency department approach begins with stabilization of airway, breathing, and circulation, followed by a thorough physical examination to generate a limited differential diagnosis that is then refined by focused testing. Definitive treatment is ultimately disease-specific. This article presents an overview of the pathophysiology, causes, examination, and treatment of coma. Copyright © 2016 Elsevier Inc. All rights reserved.
Newcomb, Dawn C; Cephus, Jacqueline Yvonne; Boswell, Madison G; Fahrenholz, John M; Langley, Emily W; Feldman, Amy S; Zhou, Weisong; Dulek, Daniel E; Goleniewska, Kasia; Woodward, Kimberly B; Sevin, Carla M; Hamilton, Robert G; Kolls, Jay K; Peebles, R Stokes
2015-10-01
Women have an increased prevalence of severe asthma compared with men. IL-17A is associated with severe asthma and requires IL-23 receptor (IL-23R) signaling, which is negatively regulated by let-7f microRNA. We sought to Determine the mechanism by which 17β-estradiol (E2) and progesterone (P4) increase IL-17A production. IL-17A production was determined by using flow cytometry in TH17 cells from women (n = 14) and men (n = 15) with severe asthma. Cytokine levels were measured by using ELISA, and IL-23R and let-7f expression was measured by using quantitative PCR in TH17-differentiated cells from healthy women (n = 13) and men (n = 14). In sham-operated or ovariectomized female mice, 17β-E2, P4, 17β-E2+P4, or vehicle pellets were administered for 3 weeks before ex vivo TH17 cell differentiation. Airway neutrophil infiltration and CXCL1 (KC) expression were also determined in ovalbumin (OVA)-challenged wild-type female recipient mice with an adoptive transfer of OVA-specific TH17 cells from female and male mice. In patients with severe asthma and healthy control subjects, IL-17A production was increased in TH17 cells from women compared with men. IL-23R expression was increased and let-7f expression was decreased in TH17-differentiated cells from women compared with men. In ovariectomized mice IL-17A and IL-23R expression was increased and Let-7f expression was decreased in TH17 cells from mice administered 17β-E2+P4 compared with those administered vehicle. Furthermore, transfer of female OVA-specific TH17 cells increased acute neutrophil infiltration in the lungs of OVA-challenged recipient mice compared with transfer of male OVA-specific TH17 cells. 17β-E2+P4 increased IL-17A production from TH17 cells, providing a potential mechanism for the increased prevalence of severe asthma in women compared with men. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Tube Law of the Pharyngeal Airway in Sleeping Patients with Obstructive Sleep Apnea.
Genta, Pedro R; Edwards, Bradley A; Sands, Scott A; Owens, Robert L; Butler, James P; Loring, Stephen H; White, David P; Wellman, Andrew
2016-02-01
Obstructive sleep apnea (OSA) is characterized by repetitive pharyngeal collapse during sleep. However, the dynamics of pharyngeal narrowing and re-expansion during flow-limited breathing are not well described. The static pharyngeal tube law (end-expiratory area versus luminal pressure) has demonstrated increasing pharyngeal compliance as luminal pressure decreases, indicating that the airway would be sucked closed with sufficient inspiratory effort. On the contrary, the airway is rarely sucked closed during inspiratory flow limitation, suggesting that the airway is getting stiffer. Therefore, we hypothesized that during inspiratory flow limitation, as opposed to static conditions, the pharynx becomes stiffer as luminal pressure decreases. Upper airway endoscopy and simultaneous measurements of airflow and epiglottic pressure were performed during natural nonrapid eye movement sleep. Continuous positive (or negative) airway pressure was used to induce flow limitation. Flow-limited breaths were selected for airway cross-sectional area measurements. Relative airway area was quantified as a percentage of end-expiratory area. Inspiratory airway radial compliance was calculated at each quintile of epiglottic pressure versus airway area plot (tube law). Eighteen subjects (14 males) with OSA (apnea-hypopnea index = 57 ± 27 events/h), aged 49 ± 8 y, with a body mass index of 35 ± 6 kg/m(2) were studied. A total of 163 flow limited breaths were analyzed (9 ± 3 breaths per subject). Compliances at the fourth (2.0 ± 4.7 % area/cmH2O) and fifth (0.0 ± 1.7 % area/cmH2O) quintiles were significantly lower than the first (12.2 ± 5.5 % area/cmH2O) pressure quintile (P < 0.05). The pharyngeal tube law is concave (airway gets stiffer as luminal pressure decreases) during respiratory cycles under inspiratory flow limitation. © 2016 Associated Professional Sleep Societies, LLC.
Abelius, Martina S; Lempinen, Esma; Lindblad, Karin; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Nilsson, Lennart J; Jenmalm, Maria C
2014-06-01
The influence of the intra-uterine environment on the immunity and allergy development in the offspring is unclear. We aimed to investigate (i) whether the pregnancy magnifies the Th2 immunity in allergic and non-allergic women, (ii) whether the maternal chemokine levels during pregnancy influenced the offspring's chemokine levels during childhood and (iii) the relationship between circulating Th1/Th2-associated chemokines and allergy in mothers and children. The Th1-associated chemokines CXCL9, CXCL10, CXCL11, and the Th2-associated chemokines CCL17, CCL18 and CCL22 were quantified by Luminex and ELISA in 20 women with and 36 women without allergic symptoms at gestational week (gw) 10-12, 15-16, 25, 35, 39 and 2 and 12 months post-partum and in their children at birth, 6, 12, 24 months and 6 years of age. Total IgE levels were measured using ImmunoCAP Technology. The levels of the Th2-like chemokines were not magnified by pregnancy. Instead decreased levels were shown during pregnancy (irrespectively of maternal allergy status) as compared to post-partum. In the whole group, the Th1-like chemokine levels were higher at gw 39 than during the first and second trimester and post-partum. Maternal CXCL11, CCL18 and CCL22 levels during and after pregnancy correlated with the corresponding chemokines in the offspring during childhood. Increased CCL22 and decreased CXCL10 levels in the children were associated with sensitisation and increased CCL17 levels with allergic symptoms during childhood. Maternal chemokine levels were not associated with maternal allergic disease. Allergic symptoms and sensitisation were associated with decreased Th1- and increased Th2-associated chemokine levels during childhood, indicating a Th2 shift in the allergic children, possibly influenced by the maternal immunity during pregnancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cardiopulmonary Circuit Models for Predicting Injury to the Heart
NASA Astrophysics Data System (ADS)
Ward, Richard; Wing, Sarah; Bassingthwaighte, James; Neal, Maxwell
2004-11-01
Circuit models have been used extensively in physiology to describe cardiopulmonary function. Such models are being used in the DARPA Virtual Soldier (VS) Project* to predict the response to injury or physiological stress. The most complex model consists of systemic circulation, pulmonary circulation, and a four-chamber heart sub-model. This model also includes baroreceptor feedback, airway mechanics, gas exchange, and pleural pressure influence on the circulation. As part of the VS Project, Oak Ridge National Laboratory has been evaluating various cardiopulmonary circuit models for predicting the effects of injury to the heart. We describe, from a physicist's perspective, the concept of building circuit models, discuss both unstressed and stressed models, and show how the stressed models are used to predict effects of specific wounds. *This work was supported by a grant from the DARPA, executed by the U.S. Army Medical Research and Materiel Command/TATRC Cooperative Agreement, Contract # W81XWH-04-2-0012. The submitted manuscript has been authored by the U.S. Department of Energy, Office of Science of the Oak Ridge National Laboratory, managed for the U.S. DOE by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Alfred, E-mail: Alfred.bernard@uclouvain.be; Nickmilder, Marc; Dumont, Xavier
It has been suggested that allergic diseases might be epithelial disorders driven by various environmental stressors but the epidemiological evidence supporting this concept is limited. In a cross-sectional study of 835 school adolescents (365 boys; mean age, 15.5 yr), we measured the serum concentrations of Club cell protein (CC16), surfactant-associated protein D (SP-D) and of total and aeroallergen-specific IgE. We used the serum CC16/SP-D concentration ratio as an index integrating changes in the permeability (SP-D) and secretory function (CC16) of the airway epithelium. In both sexes, early swimming in chlorinated pools emerged as the most consistent and strongest predictor ofmore » low CC16 and CC16/SP-D ratio in serum. Among girls, a low CC16/SP-D ratio was associated with increased odds (lowest vs. highest tertile) for pet sensitization (OR 2.97, 95% CI 1.19–8.22) and for hay fever in subjects sensitized to pollen (OR 4.12, 95% CI 1.28–14.4). Among boys, a low CC16/SP-D ratio was associated with increased odds for house-dust mite (HDM) sensitization (OR 2.01, 95% CI 1.11–3.73), for allergic rhinitis in subjects sensitized to HDM (OR 3.52, 95% CI 1.22–11.1) and for asthma in subjects sensitized to any aeroallergen (OR 3.38, 95% CI 1.17–11.0), HDM (OR 5.20, 95% CI 1.40–24.2) or pollen (OR 5.82, 95% CI 1.51–27.4). Odds for allergic sensitization or rhinitis also increased with increasing SP-D or decreasing CC16 in serum. Our findings support the hypothesis linking the development of allergic diseases to epithelial barrier defects due to host factors or environmental stressors such as early swimming in chlorinated pools. - Highlights: • We conducted a cross-sectional study of 835 school adolescents. • The airway epithelium integrity was evaluated by measuring serum pneumoproteins. • The risk of allergic diseases was associated with a defective airway epithelium. • Childhood swimming in chlorinated pools can cause persistent epithelial alterations.« less
Airway remodeling in murine asthma correlates with a defect in PGE2 synthesis by lung fibroblasts
Stumm, Camila Leindecker; Wettlaufer, Scott H.; Jancar, Sonia
2011-01-01
Asthma is a chronic lung disease characterized by local inflammation that can result in structural alterations termed airway remodeling. One component of airway remodeling involves fibroblast accumulation and activation, resulting in deposition of collagen I around small bronchi. Prostaglandin E2 (PGE2) is the main eicosanoid lipid mediator produced by lung fibroblasts, and it exerts diverse anti-fibrotic actions. Dysregulation of the PGE2 synthesis/response axis has been identified in human pulmonary fibrotic diseases and implicated in the pathogenesis of animal models of lung parenchymal fibrosis. Here we investigated the relationship between the fibroblast PGE2 axis and airway fibrosis in an animal model of chronic allergic asthma. Airway fibrosis increased progressively as the number of airway challenges with antigen increased from 3 to 7 to 12. Compared with cells from control lungs, fibroblasts grown from the lungs of asthmatic animals, regardless of challenge number, exhibited no defect in the ability of PGE2 or its analogs to inhibit cellular proliferation and collagen I expression. This correlated with intact expression of the EP2 receptor, which is pivotal for PGE2 responsiveness. However, cytokine-induced upregulation of PGE2 biosynthesis as well as expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 declined with increasing numbers of antigen challenges. In addition, treatment with the COX-2-selective inhibitor nimesulide potentiated the degree of airway fibrosis following repeated allergen challenge. Because endogenous COX-2-derived PGE2 acts as a brake on airway fibrosis, the inability of fibroblasts to upregulate PGE2 generation in the inflammatory milieu presented by repeated allergen exposure could contribute to the airway remodeling and fibrosis observed in chronic asthma. PMID:21873451
MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens.
Thomas, S Y; Whitehead, G S; Takaku, M; Ward, J M; Xu, X; Nakano, K; Lyons-Cohen, M R; Nakano, H; Gowdy, K M; Wade, P A; Cook, D N
2018-05-01
Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.
Intrathoracic airway wall detection using graph search and scanner PSF information
NASA Astrophysics Data System (ADS)
Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan
1997-05-01
Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.
Development of otorhinological care of the child.
Ruben, Robert J
2004-05-01
During the last third of the 20th century, pediatric otolaryngology became a defined specialty in many nations, resulting in focused training, fellowships, societies, journals, textbooks, etc. This development occurred as a result of an interaction between the changing sociological and economic status of the child and medical advances. In this paper the history of the status of children is investigated during the Reformation/Counter-Reformation, Enlightenment and Romantic periods, and during the recent era of Entitlement, and an analysis is made of the relationships between otolaryngological care of children during these periods, including a consideration of selected medical advances made during the 17th to 21st centuries, and the evolving status of children. Advances in education of the deaf, understanding the role of the adenoid and care of the airway were applied to the child patient not directly, as it may sometimes seem to physicians caring for a patient in a hands-on fashion, but rather via the bridge of the social and economic context of the time. This interactive process created a special body of knowledge that is now applied in a society that places a high value on the child. In the second half of the 20th century, i.e. during the period of Entitlement, the otolaryngological needs of the child became a demand, based in part upon a need for care of airway pathology in the premature infant, which fostered the establishment of pediatric otolaryngology as a specialty.
Long-Acting Beta Agonists Enhance Allergic Airway Disease.
Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B
2015-01-01
Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.
2004-12-01
Patterns of millennial changes in productivity and eolian fluxes in the northeastern Arabian Sea are related to stadial-interstadial temperature variations observed in the Greenland ice cores. In an effort to constrain further the relationship between climate at low and high latitudes, we present new xs231Pa/xs230Th results from northeastern Arabian Sea sediments (core 93KL) spanning the past 50 ka. The unique difference in residence time between oceanic 231Pa and 230Th has allowed the xs231Pa/xs230Th activity ratio in sediments from ocean basins to be used as a proxy for various paleoclimatic indicators such as particle flux, particle composition, and thermohaline circulation. Over the past 50 ka, initial xs231Pa/xs230Th activity ratios in sediment from core 93KL are maintained at values significantly higher than the water-column production ratio of 0.093, ranging from 0.138 ( ˜16 ka) to 0.206 ( ˜4.3 ka). Average xs231Pa/xs230Th activity ratios are lower during the last glacial period than during the Holocene. In addition, there are sub-Milankovitch variations superimposed on the pattern of glacial-interglacial variability that are consistent with the timing of North Atlantic climate events. The most prominent feature of the pattern is that the lowest xs231Pa/xs230Th activity ratios coincide with the timing of Heinrich events 1 through 5. In contrast, the highest ratios are usually associated with interstadials. Increased productivity and boundary scavenging seem to exert some control on the variability we observe in the xs231Pa/xs230Th activity ratios. However, changing patterns of ocean thermohaline circulation (THC) also seem to influence these ratios. Specifically, low xs231Pa/xs230Th activity ratios during the Heinrich events may be caused by a slowdown in THC, which leads to a lower supply of Pa to our site in the northeastern Arabian Sea.
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
Helminths as governors of immune-mediated inflammation.
Elliott, David E; Summers, Robert W; Weinstock, Joel V
2007-04-01
Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.
Ribeiro, Carla M P
2011-01-01
The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).
Deposition, retention, and clearance of inhaled particles.
Lippmann, M; Yeates, D B; Albert, R E
1980-01-01
The relation between the concentrations and characteristics of air contaminants in the work place and the resultant toxic doses and potential hazards after their inhalation depends greatly on their patterns of deposition and the rates and pathways for their clearance from the deposition sites. The distribution of the deposition sites of inhaled particles is strongly dependent on their aerodynamic diameters. For normal man, inhaled non-hygroscopic particles greater than or equal to 2 micrometers that deposit in the conducting airways by impaction are concentrated on to a small fraction of the surface. Cigarette smoking and bronchitis produce a proximal shift in the deposition pattern. The major factor affecting the deposition of smaller particles is their transfer from tidal to reserve air. For particles soluble in respiratory tract fluid, systemic uptake may be relatively complete for all deposition patterns, and there may be local toxic or irritant effects or both. On the other hand, slowly soluble particles depositing in the conducting airways are carried on the surface to the glottis and are swallowed within one day. Mucociliary transport rates are highly variable, both along the ciliated airways of a given individual and between individuals. The changes in clearance rates produced by drugs, cigarette smoke, and other environmental pollutants can greatly increase or decrease these rates. Particles deposited in non-ciliated airways have large surface-to-volume ratios, and clearance by dissolution can occur for materials generally considered insoluble. They may also be cleared as free particles either by passive transport along surface liquids or, after phagocytosis, by transport within alveolar macrophages. If the particles penetrate the epithelium, either bare or within macrophages, they may be sequestered within cells or enter the lymphatic circulation and be carried to pleural, hilar, and more distant lymph nodes. Non-toxic insoluble particles are cleared from the alveolar region in a series of temporal phases. The earliest, lasting several weeks, appears to include the clearance of phagocytosed particles via the bronchial tree. The terminal phases appear to be related to solubility at interstitial sites. While the mechanisms and dynamics of particle deposition and clearance are reasonably well established in broad outline, reliable quantitative data are lacking in many specific areas. More information is needed on: (1) normal behaviour, (2) the extent of the reserve capacity of the system to cope with occupational exposures, and (3) the role of compensatory changes in airway sizes and in secretory and transport rates in providing protection against occupational exposures, and in relation to the development and progression of dysfunction and disease. PMID:7004477
Cyphert, Jaime M.; Allen, Irving C.; Church, Rachel J.; Latour, Anne M.; Snouwaert, John N.; Coffman, Thomas M.
2012-01-01
Actions of thromboxane (TXA2) to alter airway resistance were first identified over 25 years ago. However, the mechanism underlying this physiological response has remained largely undefined. Here we address this question using a novel panel of mice in which expression of the thromboxane receptor (TP) has been genetically manipulated. We show that the response of the airways to TXA2 is complex: it depends on expression of other G protein-coupled receptors but also on the physiological context of the signal. In the healthy airway, TXA2-mediated airway constriction depends on expression of TP receptors by smooth muscle cells. In contrast, in the inflamed lung, the direct actions of TXA2 on smooth muscle cell TP receptors no longer contribute to bronchoconstriction. Instead, in allergic lung disease, TXA2-mediated airway constriction depends on neuronal TP receptors. Furthermore, this mechanistic switch persists long after resolution of pulmonary inflammation. Our findings demonstrate the powerful ability of lung inflammation to modify pathways leading to airway constriction, resulting in persistent changes in mechanisms of airway reactivity to key bronchoconstrictors. Such alterations are likely to shape the pathogenesis of asthmatic lung disease. PMID:21984570
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.
Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias
2018-05-10
Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.
Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?
Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R
2015-07-01
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.
Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M
2018-06-01
The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.
Bui, Thi Tho; Piao, Chun Hua; Song, Chang Ho; Shin, Hee Soon; Chai, Ok Hee
2017-07-01
Bupleurum chinense belongs to the Bupleurum spp. family that has been used in traditional herbal medicine for over thousand years. It has been reported to have anti-inflammatory, anti-oxidant, hepato-protective, antipyretic, analgesic, anti-fibrotic and immunomodulatory effect. However, the effect of B. Chinense on allergic asthma remains unclear. This study investigated the immunomodulatory effects of B. Chinense extracts (BCE) on airway inflammation in asthmatic mice model. In the ovalbumin (OVA)-induced allergic asthma model, we evaluated the number of total cells, differential inflammatory cells and the production of proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung homogenate as well as histological structure. The levels of NFκB p65, IκBα, p-NFκB p65, p-IκBα and the total immunoglobulin (Ig) E, anti-OVA IgE, anti-OVA IgG were also examined. The oral administration of 200mg/kg BCE inhibited the accumulation of inflammatory cells especially eosinophils in BALF. Also, BCE regulated the imbalance of Th1, Th2 and Th17-related production, with attenuated the expression of GATA3, IL-1β, IL-4, IL-5, IL-6, TNF-α and RORγt, IL-17A in BALF and lung homogenate, meanwhile, up-regulated the secretion of INF-γ in lung homogenate. The levels of IgE, anti-OVA IgE, anti-OVA IgG1 and anti-OVA IgG2a were also suppressed by BCE treatment in serum. Futhermore, BCE inhibited the proinflammatory cytokines via inactivation of NFκB p65 phosphorylation and IκBα degradation in cytoplasm. The histological analysis showed that the infiltration of inflammatory cells, mucus hypersecretion and collagen fiber deposits were ameliorated in BCE treated mice. In addition, BCE induced the functional differentiation of naive CD4+ T cells forward to Th1 and Tr1 through producing INF-γ and IL-10. These results suggest that BCE may have therapeutic potential for treating allergic asthma through inhibiting Th2/Th17 cytokines production by inactivation of NFκB pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Airway structural cells regulate TLR5-mediated mucosal adjuvant activity.
Van Maele, L; Fougeron, D; Janot, L; Didierlaurent, A; Cayet, D; Tabareau, J; Rumbo, M; Corvo-Chamaillard, S; Boulenouar, S; Jeffs, S; Vande Walle, L; Lamkanfi, M; Lemoine, Y; Erard, F; Hot, D; Hussell, T; Ryffel, B; Benecke, A G; Sirard, J-C
2014-05-01
Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.
Park, Seoung Ju; Lee, Kyung Sun; Lee, Su Jeong; Kim, So Ri; Park, Seung Yong; Jeon, Myoung Shin; Lee, Heung Bum; Lee, Yong Chul
2012-01-01
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, L-2-oxothiazolidine-4-carboxylic acid (OTC) or α-lipoic acid (LA) on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA) increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor-β1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), hypoxia-inducible factor (HIF)-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling. PMID:22942681
Van Schayck, Constant P; Kaper, Janneke; Wagena, Edwin J; Wouters, Emiel F M; Severens, Johannes L
2009-12-01
In healthy smokers, antidepressants can double the odds of cessation. Because of its four times lower costs and comparable efficacy in healthy smokers, nortriptyline appears to be favourable compared to bupropion. We assessed which of both drugs was most effective and cost-effective in stopping smoking after 1 year compared with placebo among smokers at risk or with existing chronic obstructive pulmonary disease (COPD). A total of 255 participants, aged 30-70 years, received smoking cessation counselling and were assigned bupropion, nortriptyline or placebo randomly for 12 weeks. Prolonged abstinence from smoking was defined as a participant's report of no cigarettes from week 4 to week 52, validated by urinary cotinine. Costs were calculated using a societal perspective and uncertainty was assessed using the bootstrap method. The prolonged abstinence rate was 20.9% with bupropion, 20.0% with nortriptyline and 13.5% with placebo. The differences between bupropion and placebo [relative risk (RR) = 1.6; 95% confidence interval (CI) 0.8-3.0] and between nortriptyline and placebo (RR = 1.5; 95% CI 0.8-2.9) were not significant. Severity of airway obstruction did not influence abstinence significantly. Societal costs were 1368 euros (2.5th-97.5th percentile 193-5260) with bupropion, 1906 euros (2.5th-97.5th 120-17 761) with nortriptyline and 1212 euros (2.5th-97.5th 96-6602) with placebo. Were society willing to pay more than 2000 euros for a quitter, bupropion was most likely to be cost-effective. Bupropion and nortriptyline seem to be equally effective, but bupropion appears to be more cost-effective when compared to placebo and nortriptyline. This impression holds using only health care costs. As the cost-effectiveness analyses concern some uncertainties, the results should be interpreted with care and future studies are needed to replicate the findings.
Airway driving pressure and lung stress in ARDS patients.
Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo
2016-08-22
Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.
Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.
Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam
2007-01-01
Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.
HDAC2 Suppresses IL17A-Mediated Airway Remodeling in Human and Experimental Modeling of COPD.
Lai, Tianwen; Tian, Baoping; Cao, Chao; Hu, Yue; Zhou, Jiesen; Wang, Yong; Wu, Yanping; Li, Zhouyang; Xu, Xuchen; Zhang, Min; Xu, Feng; Cao, Yuan; Chen, Min; Wu, Dong; Wu, Bin; Dong, Chen; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao
2018-04-01
Although airway remodeling is a central feature of COPD, the mechanisms underlying its development have not been fully elucidated. The goal of this study was to determine whether histone deacetylase (HDAC) 2 protects against cigarette smoke (CS)-induced airway remodeling through IL-17A-dependent mechanisms. Sputum samples and lung tissue specimens were obtained from control subjects and patients with COPD. The relationships between HDAC2, IL-17A, and airway remodeling were investigated. The effect of HDAC2 on IL-17A-mediated airway remodeling was assessed by using in vivo models of COPD induced by CS and in vitro culture of human bronchial epithelial cells and primary human fibroblasts exposed to CS extract, IL-17A, or both. HDAC2 and IL-17A expression in the sputum cells and lung tissue samples of patients with COPD were associated with bronchial wall thickening and collagen deposition. Il-17a deficiency (Il-17a -/- ) resulted in attenuation of, whereas Hdac2 deficiency (Hdac2 +/- ) exacerbated, CS-induced airway remodeling in mice. IL-17A deletion also attenuated airway remodeling in CS-exposed Hdac2 +/- mice. HDAC2 regulated IL-17A production partially through modulation of CD4 + T cells during T helper 17 cell differentiation and retinoid-related orphan nuclear receptor γt in airway epithelial cells. In vitro, IL-17A deficiency attenuated CS-induced mouse fibroblast activation from Hdac2 +/- mice. IL-17A-induced primary human fibroblast activation was at least partially mediated by autocrine production of transforming growth factor beta 1. These findings suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of airway remodeling by suppressing airway inflammation and modulating fibroblast activation in COPD. Copyright © 2017. Published by Elsevier Inc.