Altered Sputum Microstructure as a Marker of Airway Obstruction in Cystic Fibrosis Patients
NASA Astrophysics Data System (ADS)
Duncan, Gregg; Jung, James; West, Natalie; Boyle, Michael; Suk, Jung Soo; Hanes, Justin
In the lungs of cystic fibrosis (CF) patients, highly viscoelastic mucus remains stagnant in the lung leading to obstructed airways prone to recurrent infections. Bulk-fluid rheological measurement is primarily used to assess the pathological features of mucus. However, this approach is limited in detecting microscopic properties on the length scale of pathogens and immune cells. We have shown in prior work based on the transport of muco-inert nanoparticles (MIP) in CF sputum that patients can carry significantly different microstructural properties. In this study, we aimed to determine the factors leading to variations between patients in sputum microstructure and their clinical implications. The microrheological properties of CF sputum were measured using multi-particle tracking experiments of MIP. MIP were made by grafting polyethylene glycol onto the surface of polystyrene nanoparticles which prior work has shown prevents adhesion to CF sputum. Biochemical analyses show that sputum microstructure was significantly altered by elevated mucin and DNA content. Reduction in sputum pore size is characteristic of patients with obstructed airways as indicated by measured pulmonary function tests. Our microstructural read-out may serve as a novel biomarker for CF.
NASA Astrophysics Data System (ADS)
Yang, Ying; Whiteman, Suzanne; Gey van Pittius, Daniel; He, Yonghong; Wang, Ruikang K.; Spiteri, Monica A.
2004-04-01
An ideal diagnostic system for the human airways should be able to detect and define early development of premalignant pathological lesions, to facilitate optimal curative treatment and prevent irreversible and/or invasive lung disease. There is great need for exploration of safe, repeatable imaging techniques which can run at real-time and with high spatial resolution. In this study, optical coherence tomography (OCT) was utilized to acquire cross-sectional images of upper and lower airways using fresh pig lung resections as a model system. Obtained OCT images were compared with parallel tissue characterization by conventional histological analysis. Our objective was to determine whether OCT differentiates the composite structural layers and inherent anatomical variations along different airway locations. The data show that OCT can clearly display the multilayered structure of the airways. The subtle architectural differences in three separate anatomical locations including trachea, main bronchus and tertiary bronchus were clearly delineated. Images of the appropriate anatomical profiles, with depth of up to 2 mm and 10 µm spatial resolution were obtained by our current OCT system, which was sufficient for recognition of the epithelium, subepithelial tissues and cartilage. In addition, the relative thickness of individual structural components was accurately reflected and comparable to histological sections. These data support OCT as a highly feasible, optical biopsy tool, which merits further exploration for early diagnosis of human airway epithelial pathology.
Pérez-Sánchez, José M.; Rodríguez, Ignacio; Ruiz-Cabello, Jesús
2009-01-01
Abstract Apparent diffusion coefficient (ADC) measurement in the lung using gas magnetic resonance imaging is a promising technique with potential for reflecting changes in lung microstructure. Despite some recent impressive human applications, full interpretation of ADC measures remains an elusive goal, due to a lack of detailed knowledge about the structure dependency of ADC. In an attempt to fill this gap we have performed random walk simulations in a three-dimensional geometrical model of the lung acinus, the distal alveolated sections of the lung tree accounting for ∼90% of the total lung volume. Simulations were carried out adjusting model parameters after published morphological data for the rat peripheral airway system, which predict an ADC behavior as microstructure changes with lung inflation in partial agreement with measured ADCs at different airway pressures. The approach used to relate experimental ADCs to lung microstructural changes does not make any assumption about the cause of the changes, so it could be applied to other scenarios such as chronic obstructive pulmonary disease, lung development, etc. The work presented here predicts numerically for the first time ADC values measured in the lung from independent morphological measures of lung microstructure taken at different inflation stages during the breath cycle. PMID:19619480
Micro-imaging of the Mouse Lung via MRI
NASA Astrophysics Data System (ADS)
Wang, Wei
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.
Probing Lung Microstructure with Hyperpolarized 3He Gradient Echo MRI
Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A
2014-01-01
In this paper we demonstrate that Gradient Echo MRI with hyperpolarized 3He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized 3He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of 3He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and blood vessel network. Data obtained on 8 healthy volunteers are in good agreement with literature values. This information is complementary to the information that is obtained by means of in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group and opens new opportunities to study lung microstructure in health and disease. PMID:24920182
Experimental evidence of age-related adaptive changes in human acinar airways
Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario
2015-01-01
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518
Cephalometric norms for the upper airway of 12-year-old Chinese children.
Gu, Min; McGrath, Colman P J; Wong, Ricky W K; Hägg, Urban; Yang, Yanqi
2014-09-13
To establish cephalometric norms for the upper airway of 12-year-old Chinese children, and to assess these norms with regard to gender, age, ethnicity and other craniofacial structures. Lateral cephalograms were obtained from a random sample of 425 12-year-old Chinese children (224 boys and 201 girls) to establish the Chinese norms, and from a matched group of 108 12-year-old Caucasian children (61 boys and 47 girls) as an ethnic comparison. Published data on the upper airway norms of Chinese adults were used to make age comparisons. Nine upper airway and 14 craniofacial variables were measured. Chinese boys tended to have a thicker soft palate (P = 0.008), and less depth in the retropalatal (P = 0.011), retroglossal (P = 0.034) and hypopharyngeal (P < 0.001) pharynx than Chinese girls, whereas no gender dimorphism was found in Caucasian children. Ethnic differences were found in the depth of the retroglossal oropharynx in both genders and the position of the hyoid bone in boys. Compared with Chinese adults, the overall size of the upper airway in Chinese children was smaller. The mandibular body length and the craniocervical inclination were found to be statistically significantly, albeit weakly correlated with upper airway variables. Cephalometric norms for the upper airway of Chinese 12-year-old children were established, indicating gender-specific differences, and some ethnic differences were found in comparison with those of 12-year-old Caucasian children. An association between the mandibular body length and the craniocervical inclination with upper airway variables was also noticeable.
Lakshmi, K Bhagya; Yelchuru, Sri Harsha; Chandrika, V; Lakshmikar, O G; Sagar, V Lakshmi; Reddy, G Vivek
2018-01-01
The main aim is to determine whether growth pattern had an effect on the upper airway by comparing different craniofacial patterns with pharyngeal widths and its importance during the clinical examination. Sixty lateral cephalograms of patients aged between 16 and 24 years with no pharyngeal pathology or nasal obstruction were selected for the study. These were divided into skeletal Class I ( n = 30) and skeletal Class II ( n = 30) using ANB angle subdivided into normodivergent, hyperdivergent, and hypodivergent facial patterns based on SN-GoGn angle. McNamara's airway analysis was used to determine the upper- and lower-airway dimensions. One-way ANOVA was used to do the intergroup comparisons and the Tukey's test as the secondary statistical analysis. Statistically significant difference exists between the upper-airway dimensions in both the skeletal malocclusions with hyperdivergent growth patterns when compared to other growth patterns. In both the skeletal malocclusions, vertical growers showed a significant decrease in the airway size than the horizontal and normal growers. There is no statistical significance between the lower airway and craniofacial growth pattern.
Paxian, M; Preussler, N P; Reinz, T; Schlueter, A; Gottschall, R
2015-08-01
Transtracheal access and subsequent jet ventilation are among the last options in a 'cannot intubate-cannot oxygenate' scenario. These interventions may lead to hypercapnia, barotrauma, and haemodynamic failure in the event of an obstructed upper airway. The aim of the present study was to evaluate the efficacy and the haemodynamic effects of the Ventrain, a manually operated ventilation device that provides expiratory ventilation assistance. Transtracheal ventilation was carried out with the Ventrain in different airway scenarios in live pigs, and its performance was compared with a conventional jet ventilator. Pigs with open, partly obstructed, or completely closed upper airways were transtracheally ventilated either with the Ventrain or by conventional jet ventilation. Airway pressures, haemodynamic parameters, and blood gases obtained in the different settings were compared. Mean (SD) alveolar minute ventilation as reflected by arterial partial pressure of CO2 was superior with the Ventrain in partly obstructed airways after 6 min in comparison with traditional manual jet ventilation [4.7 (0.19) compared with 7.1 (0.37) kPa], and this was also the case in all simulated airway conditions. At the same time, peak airway pressures were significantly lower and haemodynamic parameters were altered to a lesser extent with the Ventrain. The results of this study suggest that the Ventrain device can ensure sufficient oxygenation and ventilation through a small-bore transtracheal catheter when the airway is open, partly obstructed, or completely closed. Minute ventilation and avoidance of high airway pressures were superior in comparison with traditional hand-triggered jet ventilation, particularly in the event of complete upper airway obstruction. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.
Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver
2012-06-01
Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.
Raman, Pavithra; Raman, Raghav; Newman, Beverley; Venkatraman, Raman; Raman, Bhargav; Robinson, Terry E
2010-12-01
To address potential concern for cumulative radiation exposure with serial spiral chest computed tomography (CT) scans in children with chronic lung disease, we developed an approach to match bronchial airways on low-dose spiral and low-dose high-resolution CT (HRCT) chest images to allow serial comparisons. An automated algorithm matches the position and orientation of bronchial airways obtained from HRCT slices with those in the spiral CT scan. To validate this algorithm, we compared manual matching vs automatic matching of bronchial airways in three pediatric patients. The mean absolute percentage difference between the manually matched spiral CT airway and the index HRCT airways were 9.4 ± 8.5% for the internal diameter measurements, 6.0 ± 4.1% for the outer diameter measurements, and 10.1 ± 9.3% for the wall thickness measurements. The mean absolute percentage difference between the automatically matched spiral CT airway measurements and index HRCT airway measurements were 9.2 ± 8.6% for the inner diameter, 5.8 ± 4.5% for the outer diameter, and 9.9 ± 9.5% for the wall thickness. The overall difference between manual and automated methods was 2.1 ± 1.2%, which was significantly less than the interuser variability of 5.1 ± 4.6% (p<0.05). Tests of equivalence had p<0.05, demonstrating no significant difference between the two methods. The time required for matching was significantly reduced in the automated method (p<0.01) and was as accurate as manual matching, allowing efficient comparison of airways obtained on low-dose spiral CT imaging with low-dose HRCT scans.
Moritz, Andreas; Heinrich, Sebastian; Irouschek, Andrea; Birkholz, Torsten; Prottengeier, Johannes; Schmidt, Joachim
2017-01-01
Single-use plastic blades (SUPB) and single-use metal blades (SUMB) for direct laryngoscopy and tracheal intubation have not yet been compared with reusable metal blades (RUMB) in difficult airway scenarios. The purpose of our manikin study was to compare the effectiveness of these different laryngoscope blades in a difficult airway scenario, as well as in a difficult airway scenario with simulated severe inhalation injury. Thirty anesthetists performed tracheal intubation (TI) with each of the three laryngoscope blades in the two scenario manikins. In the inhalation injury scenario, SUPB were associated with prolonged intubation times when compared with the metal blades. In the inhalation injury scenario, both metal laryngoscope blades provided a quicker, easier, and safer TI. In the difficult airway scenario, intubation times were significantly prolonged in the SUPB group in comparison to the RUMB group, but there were no significant differences between the SUPB and the SUMB. In this scenario, the RUMB demonstrated the shortest intubation times and seems to be the most effective device. Generally, results are in line with previous studies showing significant disadvantages of SUPB in both manikin scenarios. Therefore, metal blades might be beneficial, especially in the airway management of patients with inhalation injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Irving, Benjamin J; Goussard, Pierre; Andronikou, Savvas; Gie, Robert; Douglas, Tania S; Todd-Pokropek, Andrew; Taylor, Paul
2014-10-01
Airway deformation and stenosis can be key signs of pathology such as lymphadenopathy. This study presents a local airway point distribution model (LA-PDM) to automatically analyse regions of the airway tree in CT scans and identify abnormal airway deformation. In our method, the airway tree is segmented and the centreline identified from each chest CT scan. Thin-plate splines, along with a local mesh alignment method for tubular meshes, are used to register the airways and develop point distribution models (PDM). Each PDM is then used to analyse and classify local regions of the airway. This LA-PDM method was developed using 89 training cases and evaluated on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases (with airway involvement) and non-TB cases (without airway involvement). The LA-PDM was able to accurately distinguish cases with airway involvement with an AUC of the ROC classification (and 95% confidence interval) of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90) for the RMB-RUL-BI region - outperforming a comparison method based on airway cross-sectional features. This has the potential to assist and improve airway analysis from CT scans by detecting involved airways and visualising affected airway regions. Copyright © 2014 Elsevier B.V. All rights reserved.
Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid
2016-03-01
In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers--due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation.
3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization
Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.
2010-01-01
The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the results. It is demonstrated that the optimal choice represents three not equidistant b-values: b1 = 0, b2 ~ 2 s/cm2, b3 ~ 8 s/cm2. PMID:20937564
Airway Obstruction Among Latino Poultry Processing Workers in North Carolina
MIRABELLI, MARIA C.; CHATTERJEE, ARJUN B.; MORA, DANA C.; ARCURY, THOMAS A.; BLOCKER, JILL N.; CHEN, HAIYING; GRZYWACZ, JOSEPH G.; MARÍN, ANTONIO J.; SCHULZ, MARK R.; QUANDT, SARA A.
2015-01-01
This analysis was conducted to evaluate the prevalence of airway obstruction among Latino poultry processing workers. Data were collected from 279 poultry processing workers and 222 other manual laborers via spirometry and interviewer-administered questionnaires. Participants employed in poultry processing reported the activities they perform at work. Participants with forced expiratory volume in 1 second (FEV1) or FEV1/forced expiratory volume (FVC) below the lower limits of normal were categorized as having airway obstruction. Airway obstruction was identified in 13% of poultry processing workers and 12% of the comparison population. Among poultry processing workers, the highest prevalence of airway obstruction (21%) occurred among workers deboning chickens (prevalence ratio: 1.75; 95% confidence interval: 0.97, 3.15). These findings identify variations in the prevalence of airway obstruction across categories of work activities. PMID:24965321
OCT imaging in chronic obstructive pulmonary disease
NASA Astrophysics Data System (ADS)
Ohtani, K.; Lopez Lisbona, R. M.; Lee, A. M. D.; Hyun, C.; Shaipanich, T.; McWilliams, A.; Lane, P.; Coxson, H. O.; MacAulay, C.; Lam, S.
2013-03-01
Introduction: A recent ex-vivo study using micro-CT in patients with chronic obstructive pulmonary disease (COPD) showed that narrowing and disappearance of small conducting airways precedes the onset of emphysematous destruction in COPD. Until recently, the airway remodeling process could not be studied in detail in-vivo. In this study, we investigated the repeatability of navigating an Optical Coherence Tomography (OCT) catheter to image the same airways in smokers with and without COPD. Method: OCT imaging was performed by inserting the catheter through a sub-segmental airway to a small bronchiole. Three-dimensional OCT imaging of 5 cm of airway segments was obtained. The catheter was removed and reinsertion into the same airway was attempted. The number of airway generations and quantitative measurements of the airway wall area were investigated. Results: Sixty-three airways in 30 subjects were analyzed. Repeated insertion into the same airway was observed at 53.8 %, 92.3% and 70.8% of the time in the upper, middle and lower lobes respectively. The percentage differences of paired measurements of airway wall area between matched and unmatched airways in bronchioles were 5.8 +/- 4.6 % and 7.3 +/- 5.4 % respectively Conclusions: Repeated OCT imaging of airways is possible in the majority of cases except in the upper lobes. For airways that are not completely matched, some of the airway segments can still be used for comparison by careful alignment of the airway. OCT may be a useful method to study the remodeling process in small airways and the effect of therapeutic intervention.
In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background
NASA Astrophysics Data System (ADS)
Sukstanskii, A. L.; Yablonskiy, D. A.
2008-02-01
MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.
NASA Astrophysics Data System (ADS)
Adams, David C.; Holz, Jasmin A.; Szabari, Margit V.; Hariri, Lida P.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.
2016-03-01
Present understanding of the pathophysiological mechanisms of asthma has been severely limited by the lack of an imaging modality capable of assessing airway conditions of asthma patients in vivo. Of particular interest is the role that airway smooth muscle (ASM) plays in the development of asthma and asthma related symptoms. With standard Optical Coherence Tomography (OCT), imaging ASM is often not possible due to poor structural contrast between the muscle and surrounding tissues. A potential solution to this problem is to utilize additional optical contrast factors intrinsic to the tissue, such as birefringence. Due to its highly ordered structure, ASM is strongly birefringent. Previously, we demonstrated that Polarization Sensitive OCT(PS-OCT) has the potential to be used to visualize ASM as well as easily segment it from the surrounding (weakly) birefringent tissue by exploiting a property which allows it to discriminate the orientation of birefringent fibers. We have already validated our technology with a substantial set of histological comparisons made against data obtained ex vivo. In this work we present a comprehensive comparison of ASM distributions in asthmatic and non-asthmatic human volunteers. By isolating the ASM we parameterize its distribution in terms of both thickness and band width, calculated volumetrically over centimeters of airway. Using this data we perform analyses of the asthmatic and non-asthmatic airways using a broad number and variety and subjects.
DOT National Transportation Integrated Search
1979-03-01
Air traffic control specialists (ATCSs) and airway facility technicians (AFTs) were compared on measures of job attitudes and interests. A total of 792 ATCSs and 2,366 AFTs completed the Strong Vocational Interest Blank (SVIB) and questionnaires conc...
The Human Airway Epithelial Basal Cell Transcriptome
Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.
2011-01-01
Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528
[A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation].
Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel
Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anaesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical assisted intubation compared to other devices. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
A comparison of various supraglottic airway devices for fiberoptical guided tracheal intubation.
Metterlein, Thomas; Dintenfelder, Anna; Plank, Christoph; Graf, Bernhard; Roth, Gabriel
Fiberoptical assisted intubation via placed supraglottic airway devices has been described as safe and easy procedure to manage difficult airways. However visualization of the glottis aperture is essential for fiberoptical assisted intubation. Various different supraglottic airway devices are commercially available and might offer different conditions for fiberoptical assisted intubation. The aim of this study was to compare the best obtainable view of the glottic aperture using different supraglottic airway devices. With approval of the local ethics committee 52 adult patients undergoing elective anesthesia were randomly assigned to a supraglottic airway device (Laryngeal Tube, Laryngeal Mask Airway I-Gel, Laryngeal Mask Airway Unique, Laryngeal Mask Airway Supreme, Laryngeal Mask Airway Aura-once). After standardized induction of anesthesia the supraglottic airway device was placed according to the manufacturers recommendations. After successful ventilation the position of the supraglottic airway device in regard to the glottic opening was examined with a flexible fiberscope. A fully or partially visible glottic aperture was considered as suitable for fiberoptical assisted intubation. Suitability for fiberoptical assisted intubation was compared between the groups (H-test, U-test; p<0.05). Demographic data was not different between the groups. Placement of the supraglottic airway device and adequate ventilation was successful in all attempts. Glottic view suitable for fiberoptical assisted intubation differed between the devices ranging from 40% for the laringeal tube (LT), 66% for the laryngeal mask airway Supreme, 70% for the Laryngeal Mask Airway I-Gel and 90% for both the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once. None of the used supraglottic airway devices offered a full or partial glottic view in all cases. However the Laryngeal Mask Airway Unique and the Laryngeal Mask Airway Aura-once seem to be more suitable for fiberoptical assisted intubation compared to other devices. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C
2017-09-01
Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction, and equivalent diameter had smaller measurement differences than area and perimeter measurements. In conclusion, the use of IR with low- and ultralow-dose CT protocols with CT volume dose indices down to 0.32 mGy maintains selected quantitative parenchymal and airway measurements relevant to pulmonary disease characterization. © 2017 American Association of Physicists in Medicine.
The paper gives results of a comparison of several standard materials and techniques for the Warren-Averbach determination of microstructure characteristics of calcium hydroxide--Ca(OH)2--sorbent materials. The comparison is part of an investigation of the injection of dry Ca(OH)...
Brewster, D J; Nickson, C P; Gatward, J J; Staples, M; Hawker, F
2018-03-01
This study aimed to determine whether airway education should be introduced to the continuing professional development (CPD) program for College of Intensive Care Medicine (CICM) Fellows. A random representative sample of 11 tertiary intensive care units (ICUs) was chosen from the list of 56 units accredited for 12 or 24 months of CICM training. All specialist intensive care Fellows (n=140) currently practising at the eleven ICUs were sent the questionnaire via email. Questionnaire data collection and post-collection data analysis was used to determine basic respondent demographics, frequency of certain airway procedures in the past 12 months, confidence with advanced airway practices in ICU, participation in airway education in the past three years, knowledge of can't intubate, can't oxygenate (CICO) algorithms, preference for certain airway equipment/techniques, and support for required airway education as a component of the CICM CPD program. All responses were tabled for comparison. Data was analysed to establish any significant effect of another specialty qualification and current co-practice in anaesthesia on volume of practice, confidence with multiple airway procedures, use of airway equipment, and support for airway education. In total, 112 responses (response rate 80%) to the questionnaire were received within four weeks; 107 were completed in full (compliance 96%). All results were tabled. There is currently widespread support amongst CICM Fellows for airway skills education as a CPD requirement for CICM Fellows. Volumes of practice and confidence levels with different airway procedures vary amongst Fellows and further support the need for education.
Kuvaki, B; Küçükgüçlü, S; Iyilikçi, L; Tuncali, B E; Cinar, O
2008-10-01
We investigated whether insertion of the disposable Soft Seal laryngeal mask airway (SSLM) was successful without intra-oral digital manipulation. One hundred patients undergoing anaesthesia using the SSLM were randomly assigned into two groups. Insertion was performed by either a direct or a rotational technique, both without intra-oral digital manipulation. The primary outcome measure was successful insertion at first attempt. Other outcomes included insertion time, fibreoptic assessment of the airway view and airway morbidity. The first attempt success rate was higher (98%) with the direct technique than with the rotational technique (75%; p = 0.002) but insertion time was faster with the latter method (mean [range] 15 [8-50] s) than with the direct method (20 [8-56] s; p = 0.035). Fibreoptic assessment and airway morbidity were similar in both groups. We conclude that the SSLM can be successfully inserted without intra-oral digital manipulation.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Modeling water vapor and heat transfer in the normal and the intubated airways.
Tawhai, Merryn H; Hunter, Peter J
2004-04-01
Intubation of the artificially ventilated patient with an endotracheal tube bypasses the usual conditioning regions of the nose and mouth. In this situation any deficit in heat or moisture in the air is compensated for by evaporation and thermal transfer from the pulmonary airway walls. To study the dynamics of heat and water transport in the intubated airway, a coupled system of nonlinear equations is solved in airway models with symmetric geometry and anatomically based geometry. Radial distribution of heat, water vapor, and velocity in the airway are described by power-law equations. Solution of the time-dependent system of equations yields dynamic airstream and mucosal temperatures and air humidity. Comparison of model results with two independent experimental studies in the normal and intubated airway shows a close correlation over a wide range of minute ventilation. Using the anatomically based model a range of spatially distributed temperature paths is demonstrated, which highlights the model's ability to predict thermal behavior in airway regions currently inaccessible to measurement. Accurate representation of conducting airway geometry is shown to be necessary for simulating mouth-breathing at rates between 15 and 100 l x min(-1), but symmetric geometry is adequate for the low minute ventilation and warm inspired air conditions that are generally supplied to the intubated patient.
The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity.
Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud H; Kuan, Shin-Ping; Liao, Yan-Shin J; Bormann, Nicholas L; Bair, Thomas B; Price, Margaret; Stoltz, David A; Welsh, Michael J
2018-04-05
Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity. As a comparison, we also utilized previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating airway hyperreactivity; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.
Stochastic dosimetry model for radon progeny in the rat lung.
Winkler-HeiI, R; Hofmann, W; Hussain, M
2014-07-01
The stochastic dosimetry model presented here considers the distinctly asymmetric, stochastic branching pattern reported in morphometric measurements. This monopodial structure suggests that an airway diameter is a more appropriate morphometric parameter to classify bronchial dose distributions for inhaled radon progeny than the commonly assigned airway generation numbers. Bronchial doses were calculated for the typical exposure conditions reported for the Pacific Northwest National Laboratory rat inhalation studies, yielding an average bronchial dose of 7.75 mGy WLM(-1). If plotted as functions of airway generations, the resulting dose distributions are highest in the central bronchial airways, while significantly decreasing towards peripheral generations. However, if plotted as functions of airway diameters, doses are much more uniformly distributed among bronchial airways. The comparison between rat and human lungs indicates that dose conversion coefficients for the rat lung are higher than the corresponding values for the human lung by a factor of 1.34 for the experimental PNNL exposure conditions, and of 1.25 for typical human indoor conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Manni, Antonio; Pasini, Marco; Giuca, Maria Rita; Morganti, Riccardo; Cozzani, Mauro
2016-12-01
The aim of this study is to investigate the pharyngeal airway space changes in patients treated with rapid palatal expansion (RPE) and Herbst appliance with or without skeletal anchorage. A 40-patient study group treated with the Herbst RME combination was included; moreover, a comparison between two subgroups based on whether miniscrews were used was evaluated. A subgroup 1 included 20 patients who were treated with RPE and an acrylic splint Herbst with miniscrews, and subgroup 2 included 20 patients who were treated with RPE and an acrylic splint Herbst. A cephalometric analysis was performed before (T1) and after (T2) treatment. The skeletal parameters of the sagittal occlusion analysis of Pancherz were utilized together with some extra measurements to evaluate the airways. An increased nasopharyngeal airway space was observed in group 1 (p < 0.05) from T1 to T2. Furthermore, the increase in nasopharyngeal airway space was significantly higher in subgroup 1 (p < 0.05) in comparison to the subgroup 2. Oropharyngeal (OA) and laryngopharyngeal (LA) dimensions were significantly increased in the subgroup 1 at the end of the treatment. In the subgroup 1, a significant decrease in SNA, a significant increase in SNB, and a significant decrease in ANB were observed from T1 to T2. In the subgroup 2, the treatment resulted in a significant decrease in ANB. In both groups, Pogonion increased significantly from T1 to T2. The results suggest that the RPE and the Herbst appliance allow a slight improvement of the sagittal dimensions of the airways. The oropharyngeal dimension increased significantly more in the skeletal anchorage group.
Classification of pulmonary airway disease based on mucosal color analysis
NASA Astrophysics Data System (ADS)
Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey
2005-04-01
Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.
Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment
NASA Technical Reports Server (NTRS)
Grotberg, James B.
2002-01-01
The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.
Michalek, P; Donaldson, W; Graham, C; Hinds, J D
2010-01-01
Insertion of a supraglottic airway and tracheal intubation through it may be indicated in resuscitation scenarios where conventional laryngoscopy fails. Various supraglottic devices have been used as conduits for tracheal intubation, including the intubating laryngeal mask airway (ILMA), the Ctrach laryngeal mask and the I-gel supraglottic airway. A prospective study with 25 participants evaluated the success rate of blind intubation (using a gum-elastic bougie, an Aintree intubating catheter (AIC) and designated tracheal tube) and fibrescope-guided tracheal intubation (through the intubating laryngeal mask airway and the I-gel supraglottic airway) on three different airway manikins. Twenty-five anaesthetists performed three intubations with each method on each of three manikins. The success rate of the fibrescope-guided technique was significantly higher than blind attempts (P<0.0001) with both devices. For fibreoptic techniques, there was no difference found between the ILMA and I-gel (P>0.05). All blind techniques were significantly more successful in the ILMA group compared to the I-gel (P<0.0001 for bougie, Aintree catheter and tracheal tube, respectively). The results of this study show that, in manikins, fibreoptic intubation through both ILMA and I-gel is a highly successful technique. Blind intubation through the I-gel showed a low success rate and should not be attempted. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Comparison of analysis methods for airway quantification
NASA Astrophysics Data System (ADS)
Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.
2012-03-01
Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.
A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J
2015-08-01
Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Telesman, J.
1984-01-01
Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.
Hariri, Lida P.; Applegate, Matthew B.; Mino-Kenudson, Mari; Mark, Eugene J.; Medoff, Benjamin D.; Luster, Andrew D.; Bouma, Brett E.; Tearney, Guillermo J.
2013-01-01
Background: Lung cancer is the leading cause of cancer-related mortality. Radiology and bronchoscopy techniques do not have the necessary resolution to evaluate lung lesions on the microscopic scale, which is critical for diagnosis. Bronchial biopsy specimens can be limited by sampling error and small size. Optical frequency domain imaging (OFDI) provides volumetric views of tissue microstructure at near-histologic resolution and may be useful for evaluating pulmonary lesions to increase diagnostic accuracy. Bronchoscopic OFDI has been evaluated in vivo, but a lack of correlated histopathology has limited the ability to develop accurate image interpretation criteria. Methods: We performed OFDI through two approaches (airway-centered and parenchymal imaging) in 22 ex vivo lung specimens, using tissue dye to precisely correlate imaging and histology. Results: OFDI of normal airway allowed visualization of epithelium, lamina propria, cartilage, and alveolar attachments. Carcinomas exhibited architectural disarray, loss of normal airway and alveolar structure, and rapid light attenuation. Squamous cell carcinomas showed nested architecture. Atypical glandular formation was appreciated in adenocarcinomas, and uniform trabecular gland formation was seen in salivary gland carcinomas. Mucinous adenocarcinomas showed alveolar wall thickening with intraalveolar mucin. Interstitial fibrosis was visualized as signal-dense tissue, with an interstitial distribution in mild interstitial fibrotic disease and a diffuse subpleural pattern with cystic space formation in usual interstitial pneumonitis. Conclusions: To our knowledge, this study is the first demonstration of volumetric OFDI with precise correlation to histopathology in lung pathology. We anticipate that OFDI may play a role in assessing airway and parenchymal pathology, providing fresh insights into the volumetric features of pulmonary disease. PMID:22459781
Assessment of MARMOT Grain Growth Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, B.; Zhang, Y.; Schwen, D.
2015-12-01
This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO 2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO 2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grainmore » growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.« less
Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew
2013-01-01
Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. ISRCTN: 18528625.
Benger, Jonathan Richard; Voss, Sarah; Coates, David; Greenwood, Rosemary; Nolan, Jerry; Rawstorne, Steven; Rhys, Megan; Thomas, Matthew
2013-01-01
Introduction Effective cardiopulmonary resuscitation with appropriate airway management improves outcomes following out-of-hospital cardiac arrest (OHCA). Historically, tracheal intubation has been accepted as the optimal form of OHCA airway management in the UK. The Joint Royal Colleges Ambulance Liaison Committee recently concluded that newer supraglottic airway devices (SADs) are safe and effective devices for hospital procedures and that their use in OHCA should be investigated. This study will address an identified gap in current knowledge by assessing whether it is feasible to use a cluster randomised design to compare SADs with current practice, and also to each other, during OHCA. Methods and analysis The primary objective of this study is to assess the feasibility of a cluster randomised trial to compare the ventilation success of two newer SADs: the i-gel and the laryngeal mask airway supreme to usual practice during the initial airway management of OHCA. The secondary objectives are to collect data on ventilation success, further airway interventions required, loss of a previously established airway during transport, airway management on arrival at hospital (or termination of the resuscitation attempt), initial resuscitation success, survival to intensive care admission, survival to hospital discharge and patient outcome at 3 months. Ambulance paramedics will be randomly allocated to one of the three methods of airway management. Adults in medical OHCA attended by a trial paramedic will be eligible for the study. Ethics and dissemination Approval for the study has been obtained from a National Health Service Research Ethics Committee with authority to review proposals for trials of a medical device in incapacitated adults. The results will be made publicly available on an open access website, and we will publish the findings in appropriate journals and present them at national and international conferences relevant to the subject field. Trial registration ISRCTN: 18528625. PMID:23408081
Knudsen, Kati; Pöder, Ulrika; Högman, Marieann; Larsson, Anders; Nilsson, Ulrica
2014-01-01
In Sweden, airway guidelines aimed toward improving patient safety have been recommended by the Swedish Society of Anaesthesia and Intensive Care Medicine. Adherence to evidence-based airway guidelines is known to be generally poor in Sweden. The aim of this study was to determine whether airway guidelines are present in Swedish anaesthesia departments. A nationwide postal questionnaire inquiring about the presence of airway guidelines was sent out to directors of Swedish anaesthesia departments (n = 74). The structured questionnaire was based on a review of the Swedish Society of Anaesthesia and Intensive Care voluntary recommendations of guidelines for airway management. Mean, standard deviation, minimum/maximum, percentage (%) and number of general anaesthesia performed per year as frequency (n), were used to describe, each hospital type (university, county, private). For comparison between hospitals type and available written airway guidelines were cross tabulation used and analysed using Pearson's Chi-Square tests. A p- value of less than 0 .05 was judged significant. In total 68 directors who were responsible for the anaesthesia departments returned the questionnaire, which give a response rate of 92% (n 68 of 74). The presence of guidelines showing an airway algorithm was reported by 68% of the departments; 52% reported having a written patient information card in case of a difficult airway and guidelines for difficult airways, respectively; 43% reported the presence of guidelines for preoperative assessment; 31% had guidelines for Rapid Sequence Intubation; 26% reported criteria for performing an awake intubation; and 21% reported guidelines for awake fibre-optic intubation. A prescription for the registered nurse anaesthetist for performing tracheal intubation was reported by 24%. The most frequently pre-printed preoperative elements in the anaesthesia record form were dental status and head and neck mobility. Despite recommendations from the national anaesthesia society, the presence of airway guidelines in Swedish anaesthesia departments is low. From the perspective of safety for both patients and the anaesthesia staff, airway management guidelines should be considered a higher priority.
The importance of clinical monitoring for compliance with Continuous Positive Airway Pressure.
Pelosi, Lucas B; Silveira, Mariana L C; Eckeli, Alan L; Chayamiti, Emilia M P C; Almeida, Leila A; Sander, Heidi H; Küpper, Daniel S; Valera, Fabiana C P
Obstructive sleep apnea syndrome is currently a public health problem of great importance. When misdiagnosed or improperly treated, it can lead to serious consequences on patients' quality of life. The gold standard treatment for cases of obstructive sleep apnea syndrome, especially in mild to severe and symptomatic cases, is continuous positive airway pressure therapy. Compliance with continuous positive airway pressure therapy is directly dependent on the active participation of the patient, which can be influenced by several factors. The objective of this study is to describe the factors related to compliance with continuous positive airway pressure therapy, and to analyze which associated factors directly influence the efficiency of the treatment. Patients who received continuous positive airway pressure therapy through the Municipal Health Department of the city of Ribeirão Preto were recruited. A structured questionnaire was administered to the patients. Compliance with continuous positive airway pressure therapy was assessed by average hours of continuous positive airway pressure therapy usage per night. Patients with good compliance (patients using continuous positive airway pressure therapy ≥4h/night) were compared to those with poor compliance (patients using <4h/night). 138 patients were analyzed: 77 (55.8%) were considered compliant while 61 (44.2%) were non-compliant. The comparison between the two groups showed that regular monitoring by a specialist considerably improved compliance with continuous positive airway pressure therapy (odds ratio, OR=2.62). Compliance with continuous positive airway pressure therapy is related to educational components, which can be enhanced with continuous and individualized care to patients with obstructive sleep apnea syndrome. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Le, Duc Dung; Funck, Ulrike; Wronski, Sabine; Heck, Sebastian; Tschernig, Thomas; Bischoff, Markus; Sester, Martina; Herr, Christian; Bals, Robert; Welte, Tobias; Braun, Armin; Dinh, Quoc Thai
2016-01-01
Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation. © 2015 S. Karger AG, Basel.
Bonini, Matteo; Usmani, Omar S
2015-12-01
Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), represent a major social and economic burden for worldwide health systems. During recent years, increasing attention has been directed to the role of small airways in respiratory diseases, and their exact contribution to the pathophysiology of asthma and COPD continues to be clarified. Indeed, it has been suggested that small airways play a distinct role in specific disease phenotypes. Besides providing information on small airways structure and diagnostic procedures, this review therefore aims to present updated and evidence-based findings on the role of small airways in the pathophysiology of asthma and COPD. Most of the available information derives from either pathological studies or review articles and there are few data on the natural history of small airways disease in the onset or progression of asthma and COPD. Comparisons between studies on the role of small airways are hard to draw because both asthma and COPD are highly heterogeneous conditions. Most studies have been performed in small population samples, and different techniques to characterize aspects of small airways function have been employed in order to assess inflammation and remodelling. Most methods of assessing small airways dysfunction have been largely confined to research purposes, but some data are encouraging, supporting the utilization of certain techniques into daily clinical practice, particularly for early-stage diseases, when subjects are often asymptomatic and routine pulmonary function tests may be within normal ranges. In this context further clinical trials and real-life feedback on large populations are desirable. © The Author(s), 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
Ebben, Matthew R; Milrad, Sara; Dyke, Jonathan P; Phillips, C Douglas; Krieger, Ana C
2016-03-01
It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep-disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine magnetic resonance imaging (cMRI). Ten subjects (eight men, two women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10, and 15 cm of H2O, while in the supine position along the sagittal plane. The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p = 0.016. No differences were found in the retroglossal region between mask styles. Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region.
Ebben, Matthew R.; Milrad, Sara; Dyke, Jonathan P.; Phillips, C. Douglas; Krieger, Ana C.
2016-01-01
Purpose It is known that oronasal masks are not as effective at opening the upper airway compared to nasal only continuous positive airway pressure (CPAP) masks in patients with sleep disordered breathing. However, the physiological mechanism for this difference in efficacy is not known; although, it has been hypothesized to involve the retroglossal and/or retropalatal region of the upper airway. The objective of this study was to investigate differences in retroglossal and retropalatal anterior-posterior space with the use of oronasal vs. nasal CPAP masks using real-time cine Magnetic Resonance Imaging (cMRI). Methods 10-Subjects (8-men, 2-women) with obstructive sleep apnea (OSA) were given cMRI with both nasal and oronasal CPAP masks. Each subject was imaged with each interface at pressures of 5, 10 and 15 cm of H2O, while in the supine position along the sagittal plane. Results The oronasal mask produced significantly less airway opening in the retropalatal region of the upper airway compared to the nasal mask interface. During exhalation, mask style had a significant effect on anterior-posterior distance p=0.016. No differences were found in the retroglossal region between mask styles. Conclusions Our study confirmed previous findings showing differences in treatment efficacy between oronasal and nasal mask styles. We have shown anatomic evidence that the nasal mask is more effective in opening the upper airway compared to the oronasal mask in the retropalatal region. PMID:25924934
Islam, Asef; Oldham, Michael J; Wexler, Anthony S
2017-11-01
Mammalian lungs are comprised of large numbers of tracheobronchial airways that transition from the trachea to alveoli. Studies as wide ranging as pollutant deposition and lung development rely on accurate characterization of these airways. Advancements in CT imaging and the value of computational approaches in eliminating the burden of manual measurement are providing increased efficiency in obtaining this geometric data. In this study, we compare an automated method to a manual one for the first six generations of three Balb/c mouse lungs. We find good agreement between manual and automated methods and that much of the disagreement can be attributed to method precision. Using the automated method, we then provide anatomical data for the entire tracheobronchial airway tree from three Balb/C mice. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2046-2057, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sutton, P J; Perkins, C L; Giles, S P; McAuley, D F; Gao, F
2005-01-01
In this controlled, randomised cross-over trial on 26 intensive care patients, we compared the effects on haemodynamic and respiratory profiles of continuous positive airway pressure delivered through the Hamilton Galileo ventilator or a Drager CF 800 device. We also compared the nursing time saved using the two approaches when weaning patients from mechanical ventilation. We did not find significant differences in haemodynamics, respiratory rate, physiological dead space, oxygen saturation and carbon dioxide production between the continuous positive airway pressure generated by the Galileo and Drager machines. However, there was a 10-fold reduction in nursing time using the Galileo ventilator compared with the Drager generator. We conclude that continuous positive airway pressure delivered through the Galileo ventilator is as efficient as a Drager device but consumes less nursing time.
Brake, Maria K; Anderson, Jennifer
2015-06-26
Bilateral vocal fold immobility (BVFI) is a rare diagnosis causing dyspnea, dysphonia and dysphagia. Management depends on respiratory performance, airway patency, vocal ability, and quality-of-life priorities. The authors review the presentation, management and outcome in patients diagnosed with BVFI. The utility and efficacy of the Empey index (EI) and the Expiratory Disproportion Index (EDI) are evaluated as an objective monitoring tools for BVFI patients. A 13-year retrospective review was performed of BVFI patients at St. Michael's Hospital, University of Toronto, a tertiary referral centre for laryngology. Forty-eight patients were included; 46 presented with airway obstruction symptoms. Tracheotomy was required for airway management in 40% of patients throughout the course of their treatment, which was reduced to 19% at the end of the study period. Twenty-one patients underwent endoscopic arytenoidectomy/cordotomy. Non-operative management included continuous positive airway pressure devices. Pulmonary function testing was carried out in 29 patients. Only a portion of the BVFI patients met the defined upper airway obstruction criteria (45% EI and 52% EDI). Seven patients had complete pre- and post-operative PFTs for comparison and all seven had ratios that significantly improved post-operatively which correlated clinically. The EI and EDI have limited use in evaluating patients with who have variable upper airway obstruction, but may be helpful in monitoring within subject airway function changes.
Characteristics of airborne dust in the return airways of the mechanized longwall face
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueyagueler, T.; Keskin, S.
1999-07-01
In this paper the results of a research study on the characterization of airborne dust in the return airway of the mechanized longwall face at Middle Anatolian Lignite Mine, OAL are presented. Dust, temperature, moisture and air velocity measurements are carried out in the return airways of the fully mechanized longwalls. Then the analyses of results on real-time concentration data, mass concentration data, effect of moisture, heat and air velocity on dust concentration are made. It has been found that amount of dust in return airway is directly related to the face activities and to the amount of settled dustmore » on the return airway. Moreover, the relationship between dust deposition rate and distance was studied. Another objective of this study is to determine the reliability of different dust samplers used in sampling. Comparison of results showed that for the lower dust concentration, there is not any significant differences between the measurements of samplers. But as the dust concentration exceeds 15 mg/m{sup 3}, the difference in measurements becomes significant.« less
Hold your horses: A comparison of human laryngomalacia with analogous equine airway pathology.
Lawrence, Rachael J; Butterell, Matthew J; Constable, James D; Daniel, Matija
2018-02-01
Laryngomalacia is the most common cause of stridor in infants. Dynamic airway collapse is also a well-recognised entity in horses and an important cause of surgical veterinary intervention. We compare the aetiology, clinical features and management of human laryngomalacia with equine dynamic airway collapse. A structured review of the PubMed, the Ovid Medline and the Cochrane Collaboration databases (Cochrane Central Register of Controlled Trials, Cochrane Database of Systemic Reviews). There are numerous equine conditions that cause dynamic airway collapse defined specifically by the anatomical structures involved. Axial Deviation of the Aryepiglottic Folds (ADAF) is the condition most clinically analogous to laryngomalacia in humans, and is likewise most prevalent in the immature equine airway. Both conditions are managed either conservatively, or if symptoms require it, with surgical intervention. The operative procedures performed for ADAF and laryngomalacia are technically comparable. Dynamic collapse of the equine larynx, especially ADAF, is clinically similar to human laryngomalacia, and both are treated in a similar fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Wallace, Matthew C; Britton, SSgt Tyler; Meek, Robbie; Walsh-Hart, Sharon; Carter, Col Todd E; Lisco, Steven J
2017-01-01
The critically ill or injured patient undergoing military medical evacuation may require emergent intubation. Intubation may be life-saving, but it carries risks. The novice or infrequent laryngoscopist has a distinct disadvantage because experience is critical for the rapid and safe establishment of a secured airway. This challenge is compounded by the austere environment of the back of an aircraft under blackout conditions. This study determined which of five different video-assisted intubation devices (VAIDs) was best suited for in-flight use by U.S. Air Force Critical Care Air Transport Teams by comparing time to successful intubation between novice and expert laryngoscopists under three conditions, Normal Airway Lights on (NAL), Difficult Airway Lights on (DAL) and Difficult Airway Blackout (DAB), using manikins on a standard military transport stanchion and the floor with a minimal amount of setup time and extraneous light emission. A convenience sample size of 40 participants (24 novices and 16 experts) attempted intubation with each of the 5 different video laryngoscopic devices on high-fidelity airway manikins. Time to tracheal intubation and number of optimization maneuvers used were recorded. Kruskal-Wallis testing determined significant differences between the VAIDs in time to intubation for each particular scenario. Devices with significant differences underwent pair-wise comparison testing using rank-sum analysis to further clarify the difference. Device assembly times, startup times and the amount of light emitted were recorded. Perceived ease of use was surveyed. Novices were fastest with the Pentax AWS in all difficult airway scenarios. Experts recorded the shortest median times consistently using 3 of the 5 devices. The AWS was superior overall in 4 of the 6 scenarios tested. Experts and novices subjectively judged the GlideScope Ranger as easiest to use. The light emitted by all the devices was less than the USAF-issued headlamp. Novices intubated fastest with the Pentax AWS in all difficult airway scenarios. The GlideScope required the shortest setup time, and participants judged this device as the easiest to use. The GlideScope and AWS exhibited the two fastest total setup times. Both devices are suitable for in-flight use by infrequent and seasoned laryngoscopists.
Mann, V; Limberg, F; Mann, S T W; Little, S; Müller, M; Sander, M; Röhrig, R
2018-04-11
For emergency medicine personnel (EMP), there is little evidence concerning the adequate timing for refresher courses to maintain routine in the application of extraglottic airways. The aim of this study was to evaluate the efficacy and long-term results of a simulator-based education concept teaching the basic airway management skills with extraglottic airways for EMP and also to draw conclusions concerning the adequate time interval for refresher courses. By use of an explorative, prospective simulator-study with nonphysician EMP, airway management skills using the Larynxmaske Supreme® (LMA‑S) after an introduction lecture were examined. The application of an endotracheal tube (ETT) served as control. Time for preparation of the airway devices, insertion success, and resulting apnea time were assessed immediately after the first introduction lecture (t1) and unannounced 9-12 months thereafter (t2). Comparison of the times for preparation of the LMA‑S at t1 and t2 demonstrated similar results. After the introduction lecture, all paramedics were able to insert the LMA‑S successfully after maximal 2 attempts; 9-12 months later success rates with the LMA‑S were unchanged. Apnea time during airway management was shorter with the LMA‑S compared to the ETT (p < 0.01). Times needed for preparation of the airway devices were similar. The results of this simulator study indicate that a standardized introduction lecture is appropriate to ensure long-lasting procedural skills up to 12 months, so that subsequent refresher courses in basic airway management with the LMA‑S once a year may be adequate. A simulator-based education in basic airway management skills with extraglottic airways is recommended for facilitation of further clinical education according to the current guidelines.
March, Juan A; Tassey, Theresa E; Resurreccion, Noel B; Portela, Roberto C; Taylor, Stephen E
2018-01-01
When working in a tactical environment there are several different airway management options that exist. One published manuscript suggests that when compared to endotracheal intubation, the King LT laryngotracheal airway (KA) device minimizes time to successful tube placement and minimizes exposure in a tactical environment. However, comparison of two different blind insertion supraglottic airway devices in a tactical environment has not been performed. This study compared the I-Gel airway (IGA) to the KA in a simulated tactical environment, to determine if one device is superior in minimizing exposure and minimizing time to successful tube placement. This prospective randomized cross over trial was performed using the same methods and tactical environment employed in a previously published study, which compared endotracheal intubation versus the KA in a tactical environment. The tactical environment was simulated with a one-foot vertical barrier. The participants were paramedic students who wore an Advanced Combat Helmet (ACH) and a ballistic vest (IIIA) during the study. Participants were then randomized to perform tactical airway management on an airway manikin with either the KA or the IGA, and then again using the alternate device. The participants performed a low military type crawl and remained in this low position during each tube placement. We evaluated the time to successful tube placement between the IGA and KA. During attempts, participants were videotaped to monitor their height exposure above the barrier. Following completion, participants were asked which airway device they preferred. Data was analyzed using Student's t-test across the groups for time to ventilation and height of exposure. In total 19 paramedic students who were already at the basic EMT level participated. Time to successful placement for the KA was 39.7 seconds (95%CI: 32.7-46.7) versus 14.4 seconds (95%CI: 12.0-16.9) for the IGA, p < 0.001. Maximum height exposure of the helmet above a one foot vertical barrier for the KA resulted in 1.42 inches of exposure (95%CI: 0.38-0.63) compared to the IGA with 1.42 inches, 95%CI:0.32-0.74, p = 0.99. On questioning 100% of the participants preferred the IGA device over the KA. In a simulated tactical environment placement of the IGA for airway management was faster than with the KA, but there was no difference in regard to exposure. Additionally, all the participants preferred using the IGA device over the KA.
Choo, Ji Yung; Lee, Ki Yeol; Yu, Ami; Kim, Je-Hyeong; Lee, Seung Heon; Choi, Jung Won; Kang, Eun-Young; Oh, Yu Whan
2016-09-01
To compare the diagnostic performance of digital tomosynthesis (DTS) and chest radiography for detecting airway abnormalities, using computed tomography (CT) as a reference. We evaluated 161 data sets from 149 patients (91 with and 70 without airway abnormalities) who had undergone radiography, DTS, and CT to detect airway problems. Radiographs and DTS were evaluated to localize and score the severity of the airway abnormalities, and to score the image quality using CT as a reference. Receiver operating characteristics (ROC), McNemar's test, weighted kappa, and the paired t-test were used for statistical analysis. The sensitivity of DTS was higher (reader 1, 93.51 %; reader 2, 94.29 %) than chest radiography (68.83 %; 71.43 %) in detecting airway lesions. The diagnostic accuracy of DTS (90.91 %; 94.70 %) was also significantly better than that of radiography (78.03 %; 82.58 %, all p < 0.05). DTS image quality was significantly better than chest radiography (1.83, 2.74; p < 0.05) in the results of both readers. The inter-observer agreement with respect to DTS findings was moderate and superior when compared to radiography findings. DTS is a more accurate and sensitive modality than radiography for detecting airway lesions that are easily obscured by soft tissue structures in the mediastinum. • Digital tomosynthesis offers new diagnostic options for airway lesions. • Digital tomosynthesis is more sensitive and accurate than radiography for airway lesions. • Digital tomosynthesis shows better image quality than radiography. • Assessment of lesion severity, via tomosynthesis is comparable to computed tomography.
Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H
2014-01-01
Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that responds less well to current asthma therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
Wang, Henry E; Donnelly, John P; Barton, Dustin; Jarvis, Jeffrey L
2018-05-01
Although often the focus of quality improvement efforts, emergency medical services (EMS) advanced airway management performance has few national comparisons, nor are there many assessments with benchmarks accounting for differences in agency volume or patient mix. We seek to assess variations in advanced airway management and conventional intubation performance in a national cohort of EMS agencies. We used EMS data from ESO Solutions, a national EMS electronic health record system. We identified EMS emergency responses with attempted advanced airway management (conventional intubation, rapid sequence intubation, sedation-assisted intubation, supraglottic airway insertion, and cricothyroidotomy). We also separately examined cases with initial conventional intubation. We determined EMS agency risk-standardized advanced airway management and initial conventional intubation success rates by using mixed-effects regression models, fitting agency as a random intercept, adjusting for patient age, sex, race, cardiac arrest, or trauma status, and use of rapid sequence or sedation-assisted intubation, and accounting for reliability variations from EMS agency airway volume. We assessed changes in agency advanced airway management and initial conventional intubation performance rank after risk and reliability adjustment. We also identified high and low performers (reliability-adjusted and risk-standardized success confidence intervals falling outside the mean). During 2011 to 2015, 550 EMS agencies performed 57,209 advanced airway management procedures. Among 401 EMS agencies with greater than or equal to 10 advanced airway management procedures, there were a total of 56,636 procedures. Median reliability-adjusted and risk-standardized EMS agency advanced airway management success was 92.9% (interquartile range 90.1% to 94.8%; minimum 58.2%; maximum 99.0%). There were 56 advanced airway management low-performing and 38 high-performing EMS agencies. Among 342 agencies with greater than or equal to 10 initial conventional intubations, there were a total of 37,360 initial conventional intubations. Median reliability-adjusted and risk-standardized EMS agency initial conventional intubation success was 77.3% (interquartile range 70.9% to 83.6%; minimum 47.1%; maximum 95.8%). There were 64 initial conventional intubation low-performing and 45 high-performing EMS agencies. In this national series, EMS advanced airway management and initial conventional intubation performance varied widely. Reliability adjustment and risk standardization may influence EMS airway management performance assessments. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background In Sweden, airway guidelines aimed toward improving patient safety have been recommended by the Swedish Society of Anaesthesia and Intensive Care Medicine. Adherence to evidence-based airway guidelines is known to be generally poor in Sweden. The aim of this study was to determine whether airway guidelines are present in Swedish anaesthesia departments. Methods A nationwide postal questionnaire inquiring about the presence of airway guidelines was sent out to directors of Swedish anaesthesia departments (n = 74). The structured questionnaire was based on a review of the Swedish Society of Anaesthesia and Intensive Care voluntary recommendations of guidelines for airway management. Mean, standard deviation, minimum/maximum, percentage (%) and number of general anaesthesia performed per year as frequency (n), were used to describe, each hospital type (university, county, private). For comparison between hospitals type and available written airway guidelines were cross tabulation used and analysed using Pearson’s Chi-Square tests. A p- value of less than 0 .05 was judged significant. Results In total 68 directors who were responsible for the anaesthesia departments returned the questionnaire, which give a response rate of 92% (n 68 of 74). The presence of guidelines showing an airway algorithm was reported by 68% of the departments; 52% reported having a written patient information card in case of a difficult airway and guidelines for difficult airways, respectively; 43% reported the presence of guidelines for preoperative assessment; 31% had guidelines for Rapid Sequence Intubation; 26% reported criteria for performing an awake intubation; and 21% reported guidelines for awake fibre-optic intubation. A prescription for the registered nurse anaesthetist for performing tracheal intubation was reported by 24%. The most frequently pre-printed preoperative elements in the anaesthesia record form were dental status and head and neck mobility. Conclusions Despite recommendations from the national anaesthesia society, the presence of airway guidelines in Swedish anaesthesia departments is low. From the perspective of safety for both patients and the anaesthesia staff, airway management guidelines should be considered a higher priority. PMID:24708670
Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha
2014-01-01
Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514
Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.
2016-01-01
Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553
Leong, Siaw May; Tiwari, Akhilesh; Chung, Frances; Wong, David T
2018-03-01
The association between obstructive sleep apnea (OSA) and difficult airway had been studied in various clinical trials but the relationship between the two conditions has not been clearly established. The objective of this narrative review is to determine if OSA is a risk factor associated with difficult airway. The OVID Medline in process, Medline (vis Pub Med), EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Web of Science and SCOPUS were searched up to April 2016 using specific keywords. Inclusion criteria were: [1] airway management in patients with a diagnosis of OSA, [2] comparison of airway management between OSA and non-OSA patients, [3] publications or abstracts in the English language. The incidence of difficult airway between OSA and non-OSA patients was compared using Chi-square analysis or Fisher's exact test. Ten studies were included in the final review. Overall, the incidence of difficult tracheal intubation was higher in OSA patients versus non-OSA patients [56/386 (14.5%) vs. 69/897 (7.7%); P=0.0002]. OSA patients also have a higher incidence of difficult mask ventilation [115/4626 (2.5%) vs. 471/64,684 (0.7%); P<0.0001]. Compared to non-OSA patients, OSA was not associated with difficulty in the use of a supraglottic airway (SGA) device [10/663 (1.5%) vs. 162/15,171 (1.1%); P=0.38]. No studies compared difficult surgical airway in OSA and non-OSA patients. OSA was found to be a risk factor associated with difficult tracheal intubation and difficult mask ventilation. There was no association between OSA and difficult SGA use. Copyright © 2017 Elsevier Inc. All rights reserved.
Ultrasound comparison of external and internal neck anatomy with the LMA Unique.
Lee, Steven M; Wojtczak, Jacek A; Cattano, Davide
2017-12-01
Internal neck anatomy landmarks and their relation after placement of an extraglottic airway devices have not been studied extensively by the use of ultrasound. Based on our group experience with external landmarks as well as internal landmarks evaluation with other techniques, we aimed use ultrasound to analyze the internal neck anatomy landmarks and the related changes due to the placement of the Laryngeal Mask Airway Unique. Observational pilot investigation. Non-obese adult patients with no evidence of airway anomalies, were recruited. External neck landmarks were measured based on a validated and standardized method by tape. Eight internal anatomical landmarks, reciprocal by the investigational hypothesis to the external landmarks, were also measured by ultrasound guidance. The internal landmarks were re-measured after optimal placement and inflation of the extraglottic airway devices cuff Laryngeal Mask Airway Unique. Six subjects were recruited. Ultrasound measurements of hyoid-mental distance, thyroid-cricoid distance, thyroid height, and thyroid width were found to be significantly ( p < 0.05) overestimated using a tape measure. Sagittal neck landmark distances such as thyroid height, sternal-mental distance, and thyroid-cricoid distance significantly decreased after placement of the Laryngeal Mask Airway Unique. The laryngeal mask airway Unique resulted in significant changes in internal neck anatomy. The induced changes and respective specific internal neck anatomy landmarks could help to design devices that would modify their shape accordingly to areas of greatest displacement. Also, while external neck landmark measurements overestimate their respective internal neck landmarks, as we previously reported, the concordance of each measurement and their respective conversion factor could continue to be of help in sizing extraglottic airway devices. Due to the pilot nature of the study, more investigations are warranted.
The assessment of midface distraction osteogenesis in treatment of upper airway obstruction.
Xu, Haisong; Yu, Zheyan; Mu, Xiongzheng
2009-09-01
Le Fort III osteotomy with midface distraction osteogenesis (Le Fort III DO) can improve the midface form and change the upper airway space. Some surgeons believe that midface advancement can improve respiratory outcome dramatically, but others think it does not predictably result in the cure of obstructive sleep apnea (OSA). In this study, we evaluated the structural and functional changes of the upper airway before and after Le Fort III DO; we hope these studies can improve future protocols for midface advancement. A retrospective study of 11 patients with severe midface retrusion who underwent Le Fort III osteotomy with midface external distractor system was undertaken. These patients had an average of 5.4 months of follow-up. Three-dimensional volumetric assessment of the upper airway was used before and after surgery. We also evaluated the two-dimensional cross-sectional area of the upper airway to show the changes in different airway levels. Two patients with preoperative evidence of OSA were evaluated both preoperatively and postoperatively by overnight polysomnography. The midface was distracted for an average of 20.27 +/- 8.04 mm. Comparison between preoperative and postoperative three-dimensional computed tomographic data showed an average 64.30% increase in upper airway volume, an improvement of 9.13 +/- 6.94 mL (P < 0.05). The two-dimensional measurement also showed that the cross-sectional area at the posterior nasal spine and uvula airway level increased (P < 0.05), but the cross-sectional area at the epiglottis level and the separation of airway and esophagus level did not increase (P > 0.05). Two patients with preoperative evidence of OSA had both preoperative and postoperative sleeping studies that showed improvement. Le Fort III DO can significantly improve the upper airway space in the cases of syndromic craniosynostosis. The upper airway space above the uvula level was significantly enlarged after Le Fort III DO according to two-dimensional and three-dimensional image measurements, and according to the polysomnography, the OSA was alleviated. Le Fort III DO is a promising procedure in the treatment of severe midface retrusion with OSA in young patients.
Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.
2015-01-01
In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949
System and methods to determine and monitor changes in microstructural properties
Turner, Joseph Alan [Lincoln, NE
2011-05-17
A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. The present invention includes a database of data, wherein a first set of data is used for comparison with a second set of data to determine the conditions of the material microstructure.
Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.
2007-01-01
Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852
Corley, Richard A.
2012-01-01
Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687
2009-01-01
Introduction Bronchial challenge tests by inhalation of aerosolized methacholine (MCH) are commonly used in the clinical diagnosis of airway hyperresponsiveness (AHR). While the detection of airway narrowing relies on the patient's cooperation performing forced spirometry, body plethysmographic measurements of airway resistance are less depending on the patient's cooperation and do not alter the respiratory tract by maximal maneuvers. Hence we compared both methods concerning their clinical value and correlation during MCH challenges in patients with asthma. Materials and Methods Cumulative MCH challenges test, consisting of up to 5 steps, evaluated with body plethysmography on each step were performed in 155 patients with bronchial asthma. Airway responses were recorded at each step of MCH application (Master-Screen Body, Cardinal Health, Höchberg). At the baseline test and after crossing the provocation dose (PD) threshold in body plethysmography (PD+100 sReff), forced expirations were performed and FEV1, FVC, and FEV1 %FVC were measured. Using regression analysis of the airway parameters and taking the MCH dose as the covariate, we could extrapolate to missing spirometric values and interpolate the estimated MCH dose when crossing the PD threshold (PD-20 FEV1) between two consecutive measurements. The administered PD+100 MCH doses for specific airway resistance, sRtot, and sReff were compared with resistance parameters Rtot and Reff, and to PD-20 of FEV1 and FEV1 %FVC. Results Regarding sReff we found a mild, moderate, or severe AHR in 114 patients (75%), but only 50 (32%) according to FEV1. A statistical analysis showed strongly linear correlated parameters of airway resistance, but no significant correlation between the results of body plethysmography and forced spirometry Conclusions Using MCH challenges, we found specific airway resistance to be the most sensitive parameter to detect AHR. Raw is largely independent of height and gender facilitating the interpretation of measurements carried out longitudinally. PMID:20156751
Zhang, Jingjing; Chen, Gui; Li, Weiran; Xu, Tianmin; Gao, Xuemei
2015-01-01
Objective Whether the orthodontic treatment with premolar extraction and maximum anchorage in adults will lead to a narrowed upper airway remains under debated. The study aims to investigate the airway changes after orthodontic extraction treatment in adult patients with Class II and hyperdivergent skeletal malocclusion. Materials and Methods This retrospective study enrolled 18 adults with Class II and hyperdivergent skeletal malocclusion (5 males and 13 females, 24.1 ± 3.8 years of age, BMI 20.33 ± 1.77 kg/m2). And 18 untreated controls were matched 1:1 with the treated patients for age, sex, BMI, and skeletal pattern. CBCT images before and after treatment were obtained. DOLPHIN 11.7 software was used to reconstruct and measure the airway size, hyoid position, and craniofacial structures. Changes in the airway and craniofacial parameters from pre to post treatment were assessed by Wilcoxon signed rank test. Mann-Whitney U test was used in comparisons of the airway parameters between the treated patients and the untreated controls. Significant level was set at 0.05. Results The upper and lower incisors retracted 7.87 mm and 6.10 mm based on the measurement of U1-VRL and L1-VRL (P < 0.01), while the positions of the upper and lower molars (U6-VRL, and L6-VRL) remained stable. Volume, height, and cross-sectional area of the airway were not significantly changed after treatment, while the sagittal dimensions of SPP-SPPW, U-MPW, PAS, and V-LPW were significantly decreased (P < 0.05), and the morphology of the cross sections passing through SPP-SPPW, U-MPW, PAS, and V-LPW became anteroposteriorly compressed (P <0.001). No significant differences in the airway volume, height, and cross-sectional area were found between the treated patients and untreated controls. Conclusions The airway changes after orthodontic treatment with premolar extraction and maximum anchorage in adults are mainly morphological changes with anteroposterior dimension compressed in airway cross sections, rather than a decrease in size. PMID:26588714
Ghai, Babita; Sethi, Sameer; Ram, Jagat; Wig, Jyotsna
2013-02-01
Clinical end points are often used to guide inflation and adequacy of cuff seal after laryngeal mask airway placement. However, clinical end points for cuff inflation have been shown to have significantly higher intracuff pressure. The adjusted cuff pressure between 55 and 60 cm H(2)O causes significantly better seal of laryngeal mask airway. We prospectively assessed the cuff pressures generated by cuff inflation guided by clinical end points, and the actual volume of air required to achieve cuff pressures between 55 and 60 cm H(2)O for sizes 1-2.5 reusable classic laryngeal mask airway. Two hundred and three ASA I and II children undergoing elective cataract surgery requiring general anesthesia receiving laryngeal mask airway sizes 1-2.5 were recruited to this study. The laryngeal mask airway was placed using standard technique. After insertion of laryngeal mask airway, the cuff was slowly inflated until a slight outward shift of device was noted. Cuff pressures were measured using calibrated hand held Portex Cuff Inflator Pressure Gauge (Portex Limited, Hythe, Kent, UK). If the cuff pressure was >60 cm H(2)O, the cuff was deflated to achieve a cuff pressure of 55-60 cm H(2)O. The volume of air required to achieve this pressure was recorded. The volume of air required to achieve the pressure between 55 and 60 cm H(2)O in laryngeal mask airway size 1, 1.5, 2.0, and 2.5 were 2.750 ± 0.2565, 4.951 ± 0.5378, 6.927 ± 0.6328, and 10.208 ± 1.4535 ml, respectively. The difference between the initial and the final cuff volumes and pressures in all laryngeal mask airway sizes were statistically significant(P = 0.000). Lower cuff volumes are required to achieve a pressure of 60 cm H(2)O than those required if clinical end points are used as a sole guide for determining cuff inflation for patients receiving pediatric laryngeal mask airways. © 2012 Blackwell Publishing Ltd.
Ong, Jimmy; Lee, Chia-Ling; Huang, Shen-Jer; Shyr, Ming-Hwang
2016-01-01
Objectives: It remains to be determined whether the TVI-4000 Trachway video intubating (TVI) stylet (Markstein Sichtec Medical Corp, Taichung, Taiwan), an airway device for novices, improves airway management practice by experienced anesthesiologists. The aim of this study was to evaluate the feasibility of using the TVI stylet in difficult tracheal intubation situations compared with that of using the Macintosh laryngoscope on an airway manikin. Materials and Methods: Ten anesthesiologists (with 3–21 years’ experience), including three senior residents, participated. We compared tracheal intubation in four airway scenarios: normal airway, tongue edema, cervical spine immobilization, and tongue edema combined with cervical spine immobilization. The time of tracheal intubation (TTI), success rate, and perceived difficulty of intubation for each scenario were compared and analyzed. Results: The TTI was significantly shorter in both the tongue edema and combined scenarios with the TVI stylet compared with the Macintosh laryngoscope (21.60 ± 1.45 seconds vs. 24.07 ± 1.58 seconds and 23.73 ± 2.05 seconds vs. 26.6 ± 2.77 seconds, respectively). Success rates for both devices were 100%. Concomitantly, participants rated using the TVI stylet in these two scenarios as being less difficult. Conclusion: The learning time for tracheal intubation using the TVI stylet in difficult airway scenarios was short. Use of the TVI stylet was easier and required a shorter TTI for tracheal intubation in the tongue edema and combined scenarios. PMID:28757736
Intergranular degradation assessment via random grain boundary network analysis
Kumar, Mukul; Schwartz, Adam J.; King, Wayne E.
2002-01-01
A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance. Comparison of the RGBNC microstructures of materials exposed to extreme operating conditions to unexposed materials may be used to diagnose and predict possible onset of material failure due to
Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, Melissa Christine; Teague, Melissa Christine; Rodgers, Theron
Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modelingmore » is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.« less
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
NASA Astrophysics Data System (ADS)
Ozturk, Tugce; Rollett, Anthony D.
2018-02-01
The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.
Objective characterization of airway dimensions using image processing.
Pepper, Victoria K; Francom, Christian; Best, Cameron A; Onwuka, Ekene; King, Nakesha; Heuer, Eric; Mahler, Nathan; Grischkan, Jonathan; Breuer, Christopher K; Chiang, Tendy
2016-12-01
With the evolution of medical and surgical management for pediatric airway disorders, the development of easily translated techniques of measuring airway dimensions can improve the quantification of outcomes of these interventions. We have developed a technique that improves the ability to characterize endoscopic airway dimensions using common bronchoscopic equipment and an open-source image-processing platform. We validated our technique of Endoscopic Airway Measurement (EAM) using optical instruments in simulation tracheas. We then evaluated EAM in a large animal model (Ovis aries, n = 5), comparing tracheal dimensions obtained with EAM to measurements obtained via 3-D fluoroscopic reconstruction. The animal then underwent resection of the measured segment, and direct measurement of this segment was performed and compared to radiographic measurements and those obtained using EAM. The simulation tracheas had a direct measurement of 13.6, 18.5, and 24.2 mm in diameter. The mean difference of diameter in simulation tracheas between direct measurements and measurements obtained using EAM was 0.70 ± 0.57 mm. The excised ovine tracheas had an average diameter of 18.54 ± 0.68 mm. The percent difference in diameter obtained from EAM and from 3-D fluoroscopic reconstruction when compared to measurement of the excised tracheal segment was 4.98 ± 2.43% and 10.74 ± 4.07% respectively. Comparison of these three measurements (EAM, measurement of resected trachea, 3-D fluoroscopic reconstruction) with repeated measures ANOVA demonstrated no statistical significance. Endoscopic airway measurement (EAM) provides equivalent measurements of the airway with the improved versatility of measuring non-circular and multi-level dimensions. Using optical bronchoscopic instruments and open-source image-processing software, our data supports preclinical and clinical translation of an accessible technique to provide objective quantification of airway diameter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bratton, Daniel J; Gaisl, Thomas; Schlatzer, Christian; Kohler, Malcolm
2015-11-01
Excessive daytime sleepiness is the most important symptom of obstructive sleep apnoea and can affect work productivity, quality of life, and the risk of road traffic accidents. We aimed to quantify the effects of the two main treatments for obstructive sleep apnoea (continuous positive airway pressure and mandibular advancement devices) on daytime sleepiness and to establish predictors of response to continuous positive airway pressure. We searched MEDLINE and the Cochrane Library from inception to May 31, 2015, to identify randomised controlled trials comparing the effects of continuous positive airway pressure, mandibular advancement devices or an inactive control (eg, placebo or no treatment) on the Epworth Sleepiness Scale (ESS, range 0-24 points) in patients with obstructive sleep apnoea. We did a network meta-analysis using multivariate random-effects meta-regression to assess the effect of each treatment on ESS. We used meta-regression to assess the association of the reported effects of continuous positive airway pressure versus inactive controls with the characteristics of trials and their risk of bias. We included 67 studies comprising 6873 patients in the meta-analysis. Compared with an inactive control, continuous positive airway pressure was associated with a reduction in ESS score of 2·5 points (95% CI 2·0-2·9) and mandibular advancement devices of 1·7 points (1·1-2·3). We estimated that, on average, continuous positive airway pressure reduced the ESS score by a further 0·8 points compared with mandibular advancement devices (95% CI 0·1-1·4; p=0·015). However, there was a possibility of publication bias in favour of continuous positive airway pressure that might have resulted in this difference. We noted no evidence that studies reporting higher continuous positive airway pressure adherence also reported larger treatment effects (p=0·70). Continuous positive airway pressure and mandibular advancement devices are effective treatments for reducing daytime sleepiness in patients with obstructive sleep apnoea. Continuous positive airway pressure seemed to be a more effective treatment than mandibular advancement devices, and had an increasingly larger effect in more severe or sleepier obstructive sleep apnoea patients when compared with inactive controls. However, mandibular advancement devices are an effective alternative treatment should continuous positive airway pressure not be tolerated. Swiss National Science Foundation and the University of Zurich Clinical Research Priority Program Sleep and Health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimal graph based segmentation using flow lines with application to airway wall segmentation.
Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.
Abdallah, Faraj W; Yu, Eugene; Cholvisudhi, Phantila; Niazi, Ahtsham U; Chin, Ki J; Abbas, Sherif; Chan, Vincent W
2017-01-01
Ultrasound (US) imaging of the airway may be useful in predicting difficulty of airway management (DAM); but its use is limited by lack of proof of its validity and reliability. We sought to validate US imaging of the airway by comparison to CT-scan, and to assess its inter- and intra-observer reliability. We used submandibular sonographic imaging of the mouth and oropharynx to examine how well the ratio of tongue thickness to oral cavity height correlates with the ratio of tongue volume to oral cavity volume, an established tomographic measure of DAM. A cohort of 34 patients undergoing CT-scan was recruited. Study standardized assessments included CT-measured ratios of tongue volume to oropharyngeal cavity volume; tongue thickness to oral cavity height; and US-measured ratio of tongue thickness to oral cavity height. Two sonographers independently performed US imaging of the airway before and after CT-scan. Our findings indicate that the US-measured ratio of tongue thickness to oral cavity height highly correlates with the CT-measured ratio of tongue volume to oral cavity volume. US measurements also demonstrated strong inter- and intra-observer reliability. This study suggests that US is a valid and reliable tool for imaging the oral and oropharyngeal parts of the airway, as well as for measuring the volumetric relationship between the tongue and oral cavity, and may therefore be a useful predictor of DAM. © 2016 by the American Institute of Ultrasound in Medicine.
Toler, Julianne D; Petschauer, Meredith A; Mihalik, Jason P; Oyama, Sakiko; Halverson, S Doug; Guskiewicz, Kevin M
2010-03-01
To determine how head movement and time to access airway were affected by 3 emergency airway access techniques used in American football. Prospective counterbalanced design. University research laboratory. Eighteen certified athletic trainers (ATCs) and 18 noncertified students (NCSs). Each participant performed 1 trial of each of the 3 after airway access techniques: quick release mechanism (QRM), cordless screwdriver (CSD), and pocket mask insertion (PMI). Time to task completion in seconds, head movement in each plane (sagittal, frontal, and transverse), maximum head movement in each plane, helmet movement in each plane, and maximum helmet movement in each plane. We observed a significant difference between all 3 techniques with respect to time required to achieve airway access (F(2,68) = 263.88; P < 0.001). The PMI allowed for the quickest access followed by the QRM and CSD techniques, respectively. The PMI technique also resulted in significantly less head movement (F(2,68) = 9.06; P = 0.001) and less maximum head movement (F(2,68) = 13.84; P < 0.001) in the frontal plane compared with the QRM and CSD techniques. The PMI technique should be used to gain rapid airway access when managing a football athlete experiencing respiratory arrest in the presence of a suspected cervical spine injury. In the event the athlete does not present with respiratory arrest, the facemask may be removed carefully with a pocket mask ready. Medical professionals must be familiar with differences in equipment and the effects these may have on the management of the spine-injured athlete.
Emergency cricothyrotomy in confined space airway emergencies: a comparison.
Givens, Gregory C; Shelton, Stephen L; Brown, Eric A
2011-08-01
In confined-space airway emergencies, prehospital personnel may need to perform cricothyrotomy when conventional airway techniques cannot be utilized or have failed. This study is a prospective, cross-over, randomized controlled trial that compares two widely-known techniques using two commercially available kits. Twenty residents at Palmetto Health Richland Department of Emergency Medicine participated in the study. Their performance was assessed using the time required to placement and correctness of placement for each device. The residents performed the procedures on an Air-Man™ manikin that had been situated in a confined space.The residents also indicated which kit they would prefer in a confined-space, emergency airway situation. All of the devices were placed in the airway. The mean time to placement for the Melker™ and Quicktrach™ kits was 108.5 seconds and 23.9 seconds, respectively. This yielded a mean difference of 84.5 seconds, which provided a t-statistic of 8.88 (p < 0.0001).There was no evidence of a carry-over effect (p = 0.292) or a period effect (p = 0.973). All residents preferred using the Quicktrach™ kit. Use of the Quicktrach™ kit resulted in the fastest time to placement, was placed correctly in the airway, and was preferred by each of the residents. Its small, simple,and sturdy design, with few parts and easy manipulation, allow the Quicktrach™ to be a valuable option in prehospital situations involving confined spaces. The Melker™ kit, with its many parts, and need for greater manipulation, is not as easily utilized or preferred in a confined space scenario.
Obstructive sleep apnoea treatment and fasting lipids: a comparative effectiveness study.
Keenan, Brendan T; Maislin, Greg; Sunwoo, Bernie Y; Arnardottir, Erna Sif; Jackson, Nicholas; Olafsson, Isleifur; Juliusson, Sigurdur; Schwab, Richard J; Gislason, Thorarinn; Benediktsdottir, Bryndis; Pack, Allan I
2014-08-01
Obstructive sleep apnoea (OSA) is associated with cardiovascular disease. Dyslipidaemia has been implicated as a mechanism linking OSA with atherosclerosis, but no consistent associations with lipids exist for OSA or positive airway pressure treatment. We assessed the relationships between fasting lipid levels and obesity and OSA severity, and explored the impact of positive airway pressure treatment on 2-year fasting lipid level changes. Analyses included moderate-to-severe OSA patients from the Icelandic Sleep Apnoea Cohort. Fasting morning lipids were analysed in 613 untreated participants not on lipid-lowering medications at baseline. Patients were then initiated on positive airway pressure and followed for 2 years. Sub-classification using propensity score quintiles, which aimed to replicate covariate balance associated with randomised trials and, therefore, minimise selection bias and allow causal inference, was used to design the treatment group comparisons. 199 positive airway pressure adherent patients and 118 non-users were identified. At baseline, obesity was positively correlated with triglycerides and negatively correlated with total cholesterol, and low-density and high-density lipoprotein cholesterol. A small correlation was observed between the apnoea/hypopnoea index and high-density lipoprotein cholesterol. No effect of positive airway pressure adherence on 2-year fasting lipid changes was observed. Results do not support the concept of changes in fasting lipids as a primary mechanism for the increased risk of atherosclerotic cardiovascular disease in OSA. ©ERS 2014.
Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas
2016-01-01
ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332
Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne
2015-02-01
Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. © 2014 John Wiley & Sons Ltd.
Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne
2015-01-01
Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236
Louro, R S; Calasans-Maia, J A; Mattos, C T; Masterson, D; Calasans-Maia, M D; Maia, L C
2018-05-01
The aim of this study was to evaluate the effect of counterclockwise (CCW) rotation and maxillomandibular advancement (MMA) on the upper airway space using three-dimensional images. An electronic search was performed in the PubMed, Cochrane Library, Scopus, Virtual Health Library, Web of Science, and OpenGrey databases (end date July 2016); a hand-search of primary study reference lists was also conducted. The inclusion criteria encompassed computed tomography evaluations of the upper airway spaces of adult patients undergoing orthognathic surgery with CCW rotation and MMA. The articles were evaluated for risk of bias with a tool for before-and-after studies. A meta-analysis was performed with the mean differences using a random-effects model. Heterogeneity was assessed with the Q-test and the I 2 index. The meta-analysis revealed significant (P<0.001) increases in both the total airway volume (effect size of 6832mm 3 and confidence interval of 5554-8109mm 3 ) and the minimum axial area (effect size of 92mm 2 and confidence interval of 70-113mm 2 ). The heterogeneity was low in both comparisons (I 2 =38% and 7%, respectively). The technique of mandibular advancement with CCW rotation produced significant increases in the volumes and areas of the upper airway spaces. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Lindert, Sandra; Below, Antje; Breitkreutz, Joerg
2014-02-06
The pulmonary administration of pharmaceutical aerosols to patients is affected by age-dependent variations in the anatomy of the upper airways and the inhalation pattern. Considering this aspect, different upper airway models, representing the geometries of adults and preschool children, and a conventional induction port according to the European Pharmacopeia were used for in vitro testing of dry powder inhalers with single dosed capsules (Cyclohaler®, Handihaler® and Spinhaler®). Deposition measurements were performed using steady flow rates of 30 and 60 L/min for the Handihaler®/Spinhaler® and 30, 60 and 75 L/min for the Cyclohaler®. The inhalation volume was set at 1 L. For the Cyclohaler®, the in vitro testing was supplemented by a pediatric inhalation profile. Slight differences of pulmonary deposition between the idealized adult (11%-15%) and pediatric (9%-11%) upper airway model were observed for the Cyclohaler®. The applied pediatric inhalation profile resulted in a reduction of pulmonary deposition by 5% compared to steady conditions and indicated the influence of the inhalation pattern on the amount of pulmonary deposited particles. The comparison of two pediatric upper airway models showed no differences. The performance of the Handihaler® was similar to the Cyclohaler®. The Spinhaler® showed an insufficient performance and limited reproducibility in our investigations.
Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie
2016-01-01
An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761
Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie
2016-04-12
An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.
González-García, Mauricio; Gomez, Dario Maldonado; Torres-Duque, Carlos A.; Barrero, Margarita; Villegas, Claudia Jaramillo; Pérez, Juan Manuel; Varon, Humberto
2013-01-01
OBJECTIVE: Wood smoke exposure is a risk factor for COPD. For a given degree of airway obstruction, the reduction in DLCO is smaller in individuals with wood smoke-related COPD than in those with smoking-related COPD, suggesting that there is less emphysema in the former. The objective of this study was to compare HRCT findings between women with wood smoke-related COPD and women with smoking-related COPD. METHODS: Twenty-two women with severe COPD (FEV1/FVC ratio < 70% and FEV1 < 50%) were divided into two groups: those with wood smoke-related COPD (n = 12) and those with smoking-related COPD (n = 10). The two groups were compared regarding emphysema scores and airway involvement (as determined by HRCT); and functional abnormalities-spirometry results, DLCO, alveolar volume (VA), the DLCO/VA ratio, lung volumes, and specific airway resistance (sRaw). RESULTS: There were no significant differences between the two groups in terms of FEV1, sRaw, or lung hyperinflation. Decreases in DLCO and in the DLCO/VA ratio were greater in the smoking-related COPD group subjects, who also had higher emphysema scores, in comparison with the wood smoke-related COPD group subjects. In the wood smoke-related COPD group, HRCT scans showed no significant emphysema, the main findings being peribronchial thickening, bronchial dilation, and subsegmental atelectasis. CONCLUSIONS: Female patients with severe wood smoke-related COPD do not appear to develop emphysema, although they do show severe airway involvement. The reduction in DLCO and VA, with a normal DLCO/VA ratio, is probably due to severe bronchial obstruction and incomplete mixing of inspired gas during the determination of single-breath DLCO. PMID:23670499
Kim, Min-Soo; Lee, Jeong-Rim; Shin, Yang-Sik; Chung, Ji-Won; Lee, Kyu-Ho; Ahn, Ki Ryang
2014-03-01
This single-center, prospective, randomized, double-blind, 2-arm, parallel group comparison trial was performed to establish whether the adult-sized laryngeal mask airway (LMA) Classic (The Laryngeal Mask Company Ltd, Henley-on-Thames, UK) could be used safely without any consideration of cuff hyperinflation when a cuff of the LMA Classic was inflated using half the maximum inflation volume or the resting volume before insertion of device. Eighty patients aged 20 to 70 years scheduled for general anesthesia using the LMA Classic were included. Before insertion, the cuff was partially filled with half the maximum inflation volume in the half volume group or the resting volume created by opening the pilot balloon valve to equalize with atmospheric pressure in the resting volume group. Several parameters regarding insertion, intracuff pressure, airway leak pressure, and leakage volume/fraction were collected after LMA insertion. The LMA Classic with a partially inflated cuff was successfully inserted in all enrolled patients. Both groups had the same success rate of 95% at the first insertion attempt. The half volume group had a lower mean intracuff pressure compared with the resting volume group (54.5 ± 16.1 cm H2O vs 61.8 ± 16.1 cm H2O; P = .047). There was no difference in airway leak pressure or leakage volume/fraction between the 2 groups under mechanical ventilation. The partially inflated cuff method using half the maximum recommended inflation volume or the resting volume is feasible with the adult-sized LMA Classic, resulting in a high success rate of insertion and adequate range of intracuff pressures. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparison of the Force Required for Dislodgement Between Secured and Unsecured Airways.
Davenport, Curtis; Martin-Gill, Christian; Wang, Henry E; Mayrose, James; Carlson, Jestin N
2018-05-01
Airway device placement and maintenance are of utmost importance when managing critically ill patients. The best method to secure airway devices is currently unknown. We sought to determine the force required to dislodge 4 types of airways with and without airway securing devices. We performed a prospective study using 4 commonly used airway devices (endotracheal tube [ETT], laryngeal mask airway [LMA], King laryngeal tube [King], and iGel) performed on 5 different mannequin models. All devices were removed twice per mannequin in random order, once unsecured and once secured as per manufacturers' recommendations; Thomas Tube Holder (Laerdal, Stavanger, Norway) for ETT, LMA, and King; custom tube holder for iGel. A digital force measuring device was attached to the exposed end of the airway device and gradually pulled vertically and perpendicular to the mannequin until the tube had been dislodged, defined as at least 4 cm of movement. Dislodgement force was reported as the maximum force recorded during dislodgement. We compared the relative difference in the secured and unsecured force for each device and between devices using a random-effects regression model accounting for variability in the manikins. The median dislodgment forces (interquartile range [IQR]) in pounds for each secured device were: ETT 13.3 (11.6, 14.1), LMA 16.6 (13.9, 18.3), King 21.7 (16.9, 25.1), and iGel 8 (6.8, 8.3). The median dislodgement forces for each unsecured device were: ETT 4.5 (4.3, 5), LMA 8.4 (6.8, 10.7), King 10.6 (8.2, 11.5), and iGel 3.9 (3.2, 4.2). The relative difference in dislodgement forces (95% confidence intervals) were higher for each device when secured: ETT 8.6 (6.2 to 11), LMA 8.8 (4.6 to 13), King 12.1 (7.2 to 16.6), iGel 4 (1.1 to 6.9). When compared to secured ETT, the King required greater dislodgement force (relative difference 8.6 [4.5-12.7]). The secured iGel required less force than the secured ETT (relative difference -4.8 [-8.9 to -0.8]). Compared with a secured device, an unsecured airway device requires only half the force to cause airway dislodgement. The secured King had the highest dislodgement force relative to the other studied devices.
NASA Astrophysics Data System (ADS)
Ceschini, L.; Morri, Alessandro; Morri, Andrea
2017-05-01
The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.
Diffusion Lung Imaging with Hyperpolarized Gas MRI
Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D
2015-01-01
Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342
Multiple infrared bands absorber based on multilayer gratings
NASA Astrophysics Data System (ADS)
Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli
2018-03-01
The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.
Aras, Isil; Dogan, Servet
2017-01-01
This study is a comparison of pharyngeal airways and associated soft tissues of unilateral and bilateral cleft lip and palate patients with the noncleft individuals. Twenty-four unilateral cleft lip and palate patients (UCLP), 21 bilateral cleft lip and palate patients (BCLP), and 26 noncleft patients (NC) between ages 15 to 17 were included in the study. Eleven linear, 1 angular, and 1 proportional measurements were carried out on pretreatment lateral cephalometric head films of these individuals. The nasopharyngeal depths were markedly reduced in BCLP when compared with the NC (P < .001) and UCLP (P < .01) with a significant difference (P < .01) also among UCLP and NC. Minimum space behind the tongue concerning BCLP and UCLP were significantly lower compared to the NC (P < .001 and P < .01, respectively). In pairwise comparison among the clefts, BCLP showed significant (P < .05) narrowing of this distance. Tongue heights and velar lengths were significantly (P < .001) lower in cleft groups compared to the controls. Similarly, the hyoid bone was positioned in a significantly (P < .01) anterior and inferior direction in cleft patients. Comparison of the mean ratio of velar length to nasopharyngeal depth of the three groups revealed significant (P < .001) inadequacies in cleft patients with significantly (P < .05) more severely reduced values in BCLP. Pharyngeal airways and involved soft tissues of cleft patients show serious inadequacies compared to controls, with significant diversities among cleft types pertaining to some of the parameters investigated. It should be kept in mind that these variations can influence function in terms of respiration and phonation.
Long-term clearance from small airways in subjects with ciliary dysfunction.
Lindström, Maria; Falk, Rolf; Hjelte, Lena; Philipson, Klas; Svartengren, Magnus
2006-05-20
The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD) inhaled 111 Indium labelled Teflon particles of 4.2 microm geometric and 6.2 microm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24) was higher (p < 0.001) in the PCD subjects, 79 % (95% Confidence Interval, 67.6;90.6), compared to 49% (42.3;55.5) in the healthy controls. There was a significant clearance after 24 h both in the PCD subjects and in the healthy controls with equivalent clearance. The mean Ret24 with slow inhalation flow was 73.9 +/- 1.9% compared to 68.9 +/- 7.5% with normal inhalation flow in the three PCD subjects exposed twice. During day 7-21 the three PCD subjects exposed twice cleared 9% with normal flow, probably representing predominantly alveolar clearance, compared to 19% with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.
Quick, Jacob A; MacIntyre, Allan D; Barnes, Stephen L
2014-02-01
Surgical airway creation has a high potential for disaster. Conventional methods can be cumbersome and require special instruments. A simple method utilizing three steps and readily available equipment exists, but has yet to be adequately tested. Our objective was to compare conventional cricothyroidotomy with the three-step method utilizing high-fidelity simulation. Utilizing a high-fidelity simulator, 12 experienced flight nurses and paramedics performed both methods after a didactic lecture, simulator briefing, and demonstration of each technique. Six participants performed the three-step method first, and the remaining 6 performed the conventional method first. Each participant was filmed and timed. We analyzed videos with respect to the number of hand repositions, number of airway instrumentations, and technical complications. Times to successful completion were measured from incision to balloon inflation. The three-step method was completed faster (52.1 s vs. 87.3 s; p = 0.007) as compared with conventional surgical cricothyroidotomy. The two methods did not differ statistically regarding number of hand movements (3.75 vs. 5.25; p = 0.12) or instrumentations of the airway (1.08 vs. 1.33; p = 0.07). The three-step method resulted in 100% successful airway placement on the first attempt, compared with 75% of the conventional method (p = 0.11). Technical complications occurred more with the conventional method (33% vs. 0%; p = 0.05). The three-step method, using an elastic bougie with an endotracheal tube, was shown to require fewer total hand movements, took less time to complete, resulted in more successful airway placement, and had fewer complications compared with traditional cricothyroidotomy. Published by Elsevier Inc.
Kim, Min-Soo; Lee, Jae Hoon; Han, Sang Won; Im, Young Jae; Kang, Hyo Jong; Lee, Jeong-Rim
2015-04-01
Supraglottic airway devices with noninflatable cuff have advantages in omitting the cuff pressure monitoring and reducing potential pharyngolaryngeal complications. Typical devices without cuff inflation available in children are the i-gel and the self-pressurized air-Q intubating laryngeal airway (air-Q SP). To date, there is no comparative study between these devices in pediatric patients. The purpose of this randomized study was to compare the i-gel(™) and the self-pressurized air-Q(™) intubating laryngeal airway (air-Q SP) in children undergoing general anesthesia. Eighty children, 1-108 months of age, 7-30 kg of weight, and scheduled for elective surgery in which supraglottic airway devices would be suitable for airway management, were randomly assigned to either the i-gel or the air-Q SP. Oropharyngeal leak pressure and fiberoptic view were assessed three times as follows: after insertion and fixation of the device, 10 min after initial assessment, and after completion of surgery. We also assessed insertion parameters and complications. Insertion of the i-gel was regarded as significantly easier compared to the air-Q SP (P = 0.04). Compared to the air-Q SP group, the i-gel group had significantly higher oropharyngeal leak pressures at all measurement points and significantly lower frequencies of gastric insufflation at 10 min after initial assessment and completion of surgery. The air-Q SP group had better fiberoptic views than the i-gel group at all measurement points. Our results showed that the i-gel had easier insertion and better sealing function, and the air-Q SP provided improved fiberoptic views in children requiring general anesthesia. © 2015 John Wiley & Sons Ltd.
Nasal Airway Microbiota Profile and Severe Bronchiolitis in Infants: A Case-control Study.
Hasegawa, Kohei; Linnemann, Rachel W; Mansbach, Jonathan M; Ajami, Nadim J; Espinola, Janice A; Petrosino, Joseph F; Piedra, Pedro A; Stevenson, Michelle D; Sullivan, Ashley F; Thompson, Amy D; Camargo, Carlos A
2017-11-01
Little is known about the relationship of airway microbiota with bronchiolitis in infants. We aimed to identify nasal airway microbiota profiles and to determine their association with the likelihood of bronchiolitis in infants. A case-control study was conducted. As a part of a multicenter prospective study, we collected nasal airway samples from 40 infants hospitalized with bronchiolitis. We concurrently enrolled 110 age-matched healthy controls. By applying 16S ribosomal RNA gene sequencing and an unbiased clustering approach to these 150 nasal samples, we identified microbiota profiles and determined the association of microbiota profiles with likelihood of bronchiolitis. Overall, the median age was 3 months and 56% were male. Unbiased clustering of airway microbiota identified 4 distinct profiles: Moraxella-dominant profile (37%), Corynebacterium/Dolosigranulum-dominant profile (27%), Staphylococcus-dominant profile (15%) and mixed profile (20%). Proportion of bronchiolitis was lowest in infants with Moraxella-dominant profile (14%) and highest in those with Staphylococcus-dominant profile (57%), corresponding to an odds ratio of 7.80 (95% confidence interval, 2.64-24.9; P < 0.001). In the multivariable model, the association between Staphylococcus-dominant profile and greater likelihood of bronchiolitis persisted (odds ratio for comparison with Moraxella-dominant profile, 5.16; 95% confidence interval, 1.26-22.9; P = 0.03). By contrast, Corynebacterium/Dolosigranulum-dominant profile group had low proportion of infants with bronchiolitis (17%); the likelihood of bronchiolitis in this group did not significantly differ from those with Moraxella-dominant profile in both unadjusted and adjusted analyses. In this case-control study, we identified 4 distinct nasal airway microbiota profiles in infants. Moraxella-dominant and Corynebacterium/Dolosigranulum-dominant profiles were associated with low likelihood of bronchiolitis, while Staphylococcus-dominant profile was associated with high likelihood of bronchiolitis.
Das, Bikramjit; Varshney, Rahul; Mitra, Subhro
2017-12-01
The ProSeal™ laryngeal mask airway (PLMA), i-gel™ and Laryngeal Tube Suction-D (LTS-D™) have previously been evaluated alone or in pair-wise comparisons but differing study designs make it difficult to compare the results. The aim of this study was to compare the clinical performance of these three devices in terms of efficacy and safety in patients receiving mechanical ventilation during elective surgical procedures. This prospective, randomised, double-blind study was conducted on 150 American Society of Anesthesiologists physical status I-II patients, randomly allocated into 3 groups, undergoing elective surgical procedures under general anaesthesia. PLMA, i-gel™ or LTS-D™ appropriate for weight or/and height was inserted. Primary outcome measured was airway sealing pressure. Insertion time, ease of insertion, number of attempts, overall success rate and the incidence of airway trauma and complications were also recorded. Intergroup differences were compared using one-way analysis of variance with post hoc correction for continuous data and Chi-square test for categorical variables. Overall success rate was comparable between the three devices (i-gel™ 100%, LTS-D™ 94%, PLMA 96%). Airway sealing pressure was lower with i-gel™ (23.38 ± 2.06 cm H 2 O) compared to LTS-D™ (26.06 ± 2.11 cm H 2 O) and PLMA (28.5 ± 2.8 cm H 2 O; P < 0.0005). The mean insertion time was significantly more in PLMA (38.77 ± 3.2 s) compared to i-gel™ (27.9 ± 2.53 s) and LTS-D™ (21.66 ± 2.31 s; P < 0.0005). Airway sealing pressure and insertion time were significantly higher in PLMA compared to i-gel™ and LTS-D™.
Comparison of commercial and noncommercial endotracheal tube-securing devices.
Fisher, Daniel F; Chenelle, Christopher T; Marchese, Andrew D; Kratohvil, Joseph P; Kacmarek, Robert M
2014-09-01
Tracheal intubation is used to establish a secure airway in patients who require mechanical ventilation. Unexpected extubation can have serious complications, including airway trauma and death. Various methods and devices have been developed to maintain endotracheal tube (ETT) security. Associated complications include pressure ulcers due to decreased tissue perfusion. Device consideration includes ease of use, rapid application, and low exerted pressure around the airway. Sixteen ETT holders were evaluated under a series of simulated clinical conditions. ETT security was tested by measuring distance displaced after a tug. Nine of the 16 methods could be evaluated for speed of moving the ETT to the opposite side of the mouth. Sensors located on a mannequin measured applied forces when the head was rotated vertically or horizontally. Data were analyzed using multivariate analysis of variance, with P < .05. Median displacement of the ETT by the tug test was 0 cm (interquartile range of 0.0-0.10 cm, P < .001). The mean time to move the ETT from one side of the mouth to the other ranged from 1.25 ± 0.2 s to 34.4 ± 3.4 s (P < .001). Forces applied to the face with a vertical head lift ranged from < 0.2 newtons (N) to a maximum of 3.52 N (P < .001). Forces applied to the face with a horizontal rotation ranged from < 0.2 N to 3.52 N (P < .001). Commercial devices produced greater force than noncommercial devices. Noncommercial airway holders exert less force on a patient's face than commercial devices. Airway stability is affected by the type of securing method. Many commercial holders allow for rapid but secure movement of the artificial airway from one side of the mouth to the other. Copyright © 2014 by Daedalus Enterprises.
Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus; Claeson, Anna-Sara; Lind, Nina; Nordin, Steven; Brix, Susanne
2015-01-01
Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls. Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained. The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences. We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.
Small-airway obstruction and emphysema in chronic obstructive pulmonary disease.
McDonough, John E; Yuan, Ren; Suzuki, Masaru; Seyednejad, Nazgol; Elliott, W Mark; Sanchez, Pablo G; Wright, Alexander C; Gefter, Warren B; Litzky, Leslie; Coxson, Harvey O; Paré, Peter D; Sin, Don D; Pierce, Richard A; Woods, Jason C; McWilliams, Annette M; Mayo, John R; Lam, Stephen C; Cooper, Joel D; Hogg, James C
2011-10-27
The major sites of obstruction in chronic obstructive pulmonary disease (COPD) are small airways (<2 mm in diameter). We wanted to determine whether there was a relationship between small-airway obstruction and emphysematous destruction in COPD. We used multidetector computed tomography (CT) to compare the number of airways measuring 2.0 to 2.5 mm in 78 patients who had various stages of COPD, as judged by scoring on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) scale, in isolated lungs removed from patients with COPD who underwent lung transplantation, and in donor (control) lungs. MicroCT was used to measure the extent of emphysema (mean linear intercept), the number of terminal bronchioles per milliliter of lung volume, and the minimum diameters and cross-sectional areas of terminal bronchioles. On multidetector CT, in samples from patients with COPD, as compared with control samples, the number of airways measuring 2.0 to 2.5 mm in diameter was reduced in patients with GOLD stage 1 disease (P=0.001), GOLD stage 2 disease (P=0.02), and GOLD stage 3 or 4 disease (P<0.001). MicroCT of isolated samples of lungs removed from patients with GOLD stage 4 disease showed a reduction of 81 to 99.7% in the total cross-sectional area of terminal bronchioles and a reduction of 72 to 89% in the number of terminal bronchioles (P<0.001). A comparison of the number of terminal bronchioles and dimensions at different levels of emphysematous destruction (i.e., an increasing value for the mean linear intercept) showed that the narrowing and loss of terminal bronchioles preceded emphysematous destruction in COPD (P<0.001). These results show that narrowing and disappearance of small conducting airways before the onset of emphysematous destruction can explain the increased peripheral airway resistance reported in COPD. (Funded by the National Heart, Lung, and Blood Institute and others.).
Comparison of Airway Management Methods in Entrapped Patients: A Manikin Study.
Martin, Andrew B; Lingg, Jim; Lubin, Jeffrey S
2016-01-01
Endotracheal intubation remains one of the most challenging skills in prehospital care. There is a minimal amount of data on the optimal technique to use when managing the airway of an entrapped patient. We hypothesized that use of a blindly placed device would result in both the shortest time to airway management and highest success rate. A difficult airway manikin was placed in a cervical collar and secured upside down in an overturned vehicle. Experienced paramedics and prehospital registered nurses used four different methods to secure the airway: direct laryngoscopy, digital intubation, King LT-D, and CMAC video laryngoscopy. Each participant was given three opportunities to secure the airway using each technique in random order. A study investigator timed each attempt and confirmed successful placement, which was determined upon inflation of the manikin's lungs. Intubation success rates were analyzed using a general estimating equations model to account for repeated measures and a linear mixed effects model for average time. Twenty-two prehospital providers participated in the study. The one-pass success rate for the King LT-D was significantly higher than direct laryngoscopy (OR 0.048, CI 0.006-0.351, p < 0.01) and digital intubation (OR 0.040, CI 0.005-0.297, p < 0.01). However, there was no statistical difference between the one-pass success rate of the King LT-D and CMAC video laryngoscopy (OR 0.302, 95% CI 0.026-3.44, p = 0.33). The one-pass median placement time of the King LT-D (22 seconds, IQR 17-26) was significantly lower (p < 0.001) than direct laryngoscopy (60 seconds, IQR 42-75), digital intubation (38 seconds, IQR 26-74), and the CMAC (51 seconds, IQR 43-76). In this study, while the King LT-D offered the quickest airway placement, success rates were not significantly greater than intubation using the CMAC video laryngoscope. Intubation using direct laryngoscopy and digital intubation were less successful and took more time. Use of a blindly placed device or a video laryngoscope may provide the best avenues for airway management of entrapped patients.
Nishimura, Hideko; Tokuyama, Kenichi; Arakawa, Hirokazu; Ohki, Yasushi; Sato, Akira; Kato, Masahiko; Mochizuki, Hiroyuki; Morikawa, Akihiro
2002-12-01
Chronic exposure to fenoterol (FEN), a beta(2)-adrenergic receptor (beta(2)-AR) agonist, was shown to induce both airway hyperresponsiveness and airway remodeling in experimental animals. We wanted to know the effects of chronic exposure to procaterol (PRO), a beta(2)-AR agonist, on airway function and structure, because this agent is widely used as a bronchodilator in Japan. For comparison, the effects of FEN were also examined. Aerosolized PRO (0.1 or 1 mg/ml), FEN (1 mg/ml) or vehicle (0.9% NaCl) was given to guinea pigs 3 times a day for 6 weeks. Sublaryngeal deposition of these agents was calculated using radioisotopes. At 72 h after the last inhalation of PRO, FEN or vehicle, the dose-response relationship between lung resistance (R(L)) and intravenously administered acetylcholine (ACh) was measured. After measuring R(L), histological changes in noncartilaginous airway dimensions were evaluated. The amount of sublaryngeal deposition of 0.1 mg/ml PRO in the present study was speculated to be 100 times larger than that of therapeutic dose. ACh concentrations causing 2-fold, 10-fold and maximal increases in R(L) were not different in 4 groups tested. In the smaller membranous airways (<0.4 mm in diameter), but not the larger ones, thickening of adventitial areas was significantly greater in animals treated with beta(2)-AR agonists than in control animals (23 and 25, and 96% higher in animals treated with 0.1 and 1 mg/ml PRO or 1 mg/ml FEN, respectively). The degree of the increase was significantly less in PRO-treated animals than in FEN-treated animals (p < 0.01). Our results did not provide any evidence that regular inhalation of PRO at the therapeutic dose might induce bronchial hyperresponsiveness. In addition, huge amounts of PRO only caused a mild thickening of the adventitial areas, suggesting that PRO may be a weak inducer of airway remodeling compared with FEN. Copyright 2002 S. Karger AG, Basel
Zhao, Xiao; Huang, Shiwei; Wang, Zhaomin; Chen, Lianhua; Li, Shitong
2016-01-01
Background This study aimed to compare respiratory dynamics in patients undergoing general anesthesia with a laryngeal mask airway (LMA) in lithotomy and supine positions and to validate the impact of operational position on effectiveness of LMA ventilation. Material/Methods A total of 90 patients (age range, 18–65 years) who underwent general anesthesia were selected and divided into supine position (SP group) and lithotomy position groups (LP group). Vital signs and respiratory dynamic parameters of the 2 groups were measured at different time points and after implantation of an LMA. The arterial blood gas was monitored at 15 min after induction. The intraoperative changes of hemodynamic indexes and postoperative adverse reactions of LMA were recorded. The possible correlation between body mass index (BMI) and respiratory dynamic indexes was analyzed. Results With prolonged duration of the operation, the inspiratory plateau pressure (Pplat), inspiratory resistance (RI), and work of breathing (WOB) gradually increased, while chest-lung compliance (Compl) and partial pressure of carbon dioxide in end-expiratory gas (PetCO2) gradually decreased (all P value <0.05). The mean airway pressure (Pmean), Pplat, and expiratory resistance (Re) in the LP group were significantly higher than in the SP group (P<0.05), while the peak inspiratory flow (FImax), peak expiratory flow (FEmax), WOB, and Compl in the LP group were significantly lower than in the SP group (P<0.05). BMI was positively correlated with peak airway pressure (PIP/Ppeak), Pplat, and airway resistance (Raw) and was negatively correlated with Compl; the differences among patients in lithotomy position were more remarkable (P<0.05). Conclusions The inspiratory plateau pressure and airway resistance increased with prolonged duration of the operation, accompanied by decreased chest-lung compliance. Peak airway pressure and airway resistance were positively correlated with BMI, and chest-lung compliance was negatively correlated with BMI. Changes among patients in lithotomy position were more remarkable than those in supine position. PMID:27476762
Nakanishi, Taizo; Shiga, Takashi; Homma, Yosuke; Koyama, Yasuaki; Goto, Tadahiro
2016-05-23
We examined whether the use of Airway Scope (AWS) and C-MAC PM (C-MAC) decreased the force applied on oral structures during intubation attempts as compared with the force applied with the use of Macintosh direct laryngoscope (DL). Prospective cross-over study. A total of 35 novice physicians participated. We used 6 simulation scenarios based on the difficulty of intubation and intubation devices. Our primary outcome measures were the maximum force applied on the maxillary incisors and tongue during intubation attempts, measured by a high-fidelity simulator. The maximum force applied on maxillary incisors was higher with the use of the C-MAC than with the DL and AWS in the normal airway scenario (DL, 26 Newton (N); AWS, 18 N; C-MAC, 52 N; p<0.01) and the difficult airway scenario (DL, 42 N; AWS, 24 N; C-MAC, 68 N; p<0.01). In contrast, the maximum force applied on the tongue was higher with the use of the DL than with the AWS and C-MAC in both airway scenarios (DL, 16 N; AWS, 1 N; C-MAC, 7 N; p<0.01 in the normal airway scenario; DL, 12 N; AWS, 4 N; C-MAC, 7 N; p<0.01 in the difficult airway scenario). The use of C-MAC, compared with the DL and AWS, was associated with the higher maximum force applied on maxillary incisors during intubation attempts. In contrast, the use of video laryngoscopes was associated with the lower force applied on the tongue in both airway scenarios, compared with the DL. Our study was a simulation-based study, and further research on living patients would be warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kirka, M. M.; Brindley, K. A.; Neu, R. W.; ...
2015-08-17
The aging of the microstructure of Ni-base superalloys during service is mainly characterized by coarsening and rafting of the γ' precipitates. The influence of these different aged microstructures on thermomechanical fatigue (TMF) under either continuously cycled (CC) and creep-fatigue (CF) was investigated. Three different aged microstructures, generated through accelerated aging and pre-creep treatments, were studied: stress-free coarsened γ', rafted with orientation perpendicular to loading direction (N-raft), and rafted with orientation parallel to loading direction (P-raft). Under most conditions, the aged microstructures were less resistant to TMF than the virgin microstructure; however, there were exceptions. Both stress-free coarsened and N-raft microstructuresmore » resulted in a reduction in TMF life under both CC and CF conditions in comparison to the virgin material. P-raft microstructure also resulted in reduction in TMF life under CC conditions; however, an increase in life over that of the virgin material was observed under CF conditions. Finally, these differences are discussed and hypothesized to be related to the interactions of the dislocations in the γ channels with γ' precipitates.« less
Comparisons of Auricular Cartilage Tissues from Different Species.
Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D
2017-12-01
Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.
Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background
Sukstanskii, A.L.; Yablonskiy, D.A.
2011-01-01
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985
Bang, Lasse; Rø, Øyvind; Endestad, Tor
2018-01-01
Studies point to white matter (WM) microstructure alterations in both adolescent and adult patients with anorexia nervosa (AN). These include reduced fractional anisotropy in several WM fiber tracts, suggesting reduced WM integrity. The extent to which these alterations are reversible with recovery from AN is unclear. There is a paucity of research investigating the presence of WM microstructure alterations in recovered AN patients, and results are inconsistent. This study aimed to investigate the presence of WM microstructure alterations in women long-term recovered from AN. Twenty-one adult women who were recovered from AN for at least 1 year were compared to 21 adult comparison women. Participants were recruited via user-organizations for eating disorders, local advertisements, and online forums. Diffusion tensor imaging was used to compare WM microstructure between groups. Correlations between WM microstructure and clinical characteristics were also explored. There were no statistically significant between-group differences in WM microstructure. These null findings remained when employing liberal alpha level thresholds. Furthermore, there were no statistically significant correlations between WM microstructure and clinical characteristics. Our findings showed normal WM microstructure in long-term recovered patients, indicating the alterations observed during the acute phase are reversible. Given the paucity of research and inconsistent findings, future studies are warranted to determine the presence of WM microstructure alterations following recovery from AN. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.
1989-01-01
A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.
Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.
Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P Worth
2015-10-01
CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.
Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data
Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P. Worth
2015-01-01
Purpose CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. Methods The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. Results For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. Conclusions CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods. PMID:25944585
Tommi, George; Aronow, Wilbert S; Sheehan, John C; McCleay, Matthew T; Meyers, Patrick G
Patients diagnosed with obstructive sleep apnea syndrome were randomly placed on automatic continuous positive airway pressure (ACPAP) for 2 hours followed by manual titration for the rest of the night. One hundred sixty-one patients entered the study, with at least 50 patients titrated with each of 3 ACPAP devices. The optimum continuous positive airway pressure (CPAP) was defined as the lowest pressure with an apnea-hypoxia index of ≤5/hr, which ranged from 4 cm to 18 cm. Success with ACPAP was approximately 60%-80% when the optimum CPAP was 4-6 cm but fell to below 30% if the optimum CPAP was ≥8 cm (P = 0.001). Average ACPAP ranged from 2 to 10 cm below the optimum level if the optimum CPAP was ≥8 cm. Patients who responded to a low CPAP but deteriorated on higher pressures failed to respond to any of the automatic devices. We recommend that CPAP titration be performed manually before initiation of ACPAP in patients with obstructive sleep apnea. The basal pressure for ACPAP should be the optimum pressure obtained by manual titration. Limits on the upper level of ACPAP may be necessary for patients who deteriorate on higher positive pressures.
Otsuka, Ryo; Almeida, Fernanda Ribeiro de; Lowe, Alan A; Ryan, Frank
2006-02-01
This retrospective study compared cephalometric variables between responders and nonresponders to a titratable oral appliance (OA) in a group of subjects matched for sex, pretreatment age, and body mass index (BMI). Nine nonresponders as defined by an improvement in the apnea hypopnea index (AHI; <20%) and their individually matched responders were selected for this study. The difference in age for each matched pair was +/-5 years, and, for BMI, the difference was +/-15%. The pretreatment AHI was matched to the same category (moderate, >15 to < or =30; severe I, >30 to < or =45; and severe II, >45 AHI). Middle and inferior airway space and oropharyngeal airway cross-sectional area were significantly larger in the nonresponders. Position of the mandible relative to the cervical spine was the only significant skeletal variable and was larger in nonresponders. Changes in BMI between the groups were statistically significant; the averages were a 2.9% increase in the nonresponders and a 0.5% decrease in responders. The wider airway in nonresponders might reflect an enhanced neuromuscular compensation while awake. The weight gain in nonresponders was relatively small, but it might have reduced the effectiveness of the OA. When treating OSA patients with OA therapy, clinicians should pay particular attention to airway size and weight changes.
NASA Astrophysics Data System (ADS)
Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn
2018-05-01
The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.
PHENOTYPIC COMPARISON OF ALLERGIC AIRWAY RESPONSES TO HOUSE DUST MITE IN THREE RAT STRAINS
Abstract
Brown Norway (BN) rats develop a robust response to antigens in the lung characterized by a large increase in allergen-specific immune function and pulmonary eosinophilia. The objective of this study was to investigate alternative models by determining if other rat s...
Several studies have demonstrated that individuals who smoke have greater susceptibility to influenza infections, as well as other respiratory virus infections, than non-smokers, yet the role of airway epithelial cells in this response is not clear. To determine whether in vivo t...
Emergency Airway Response Team Simulation Training: A Nursing Perspective.
Crimlisk, Janet T; Krisciunas, Gintas P; Grillone, Gregory A; Gonzalez, R Mauricio; Winter, Michael R; Griever, Susan C; Fernandes, Eduarda; Medzon, Ron; Blansfield, Joseph S; Blumenthal, Adam
Simulation-based education is an important tool in the training of professionals in the medical field, especially for low-frequency, high-risk events. An interprofessional simulation-based training program was developed to enhance Emergency Airway Response Team (EART) knowledge, team dynamics, and personnel confidence. This quality improvement study evaluated the EART simulation training results of nurse participants. Twenty-four simulation-based classes of 4-hour sessions were conducted during a 12-week period. Sixty-three nurses from the emergency department (ED) and the intensive care units (ICUs) completed the simulation. Participants were evaluated before and after the simulation program with a knowledge-based test and a team dynamics and confidence questionnaire. Additional comparisons were made between ED and ICU nurses and between nurses with previous EART experience and those without previous EART experience. Comparison of presimulation (presim) and postsimulation (postsim) results indicated a statistically significant gain in both team dynamics and confidence and Knowledge Test scores (P < .01). There were no differences in scores between ED and ICU groups in presim or postsim scores; nurses with previous EART experience demonstrated significantly higher presim scores than nurses without EART experience, but there were no differences between these nurse groups at postsim. This project supports the use of simulation training to increase nurses' knowledge, confidence, and team dynamics in an EART response. Importantly, nurses with no previous experience achieved outcome scores similar to nurses who had experience, suggesting that emergency airway simulation is an effective way to train both new and experienced nurses.
NASA Astrophysics Data System (ADS)
Moussaoui, H.; Debayle, J.; Gavet, Y.; Delette, G.; Hubert, M.; Cloetens, P.; Laurencin, J.
2017-03-01
A strong correlation exists between the performance of Solid Oxide Cells (SOCs), working either in fuel cell or electrolysis mode, and their electrodes microstructure. However, the basic relationships between the three-dimensional characteristics of the microstructure and the electrode properties are not still precisely understood. Thus, several studies have been recently proposed in an attempt to improve the knowledge of such relations, which are essential before optimizing the microstructure, and hence, designing more efficient SOC electrodes. In that frame, an original model has been adapted to generate virtual 3D microstructures of typical SOCs electrodes. Both the oxygen electrode, which is made of porous LSCF, and the hydrogen electrodes, made of porous Ni-YSZ, have been studied. In this work, the synthetic microstructures are generated by the so-called 3D Gaussian `Random Field model'. The morphological representativeness of the virtual porous media have been validated on real 3D electrode microstructures of a commercial cell, obtained by X-ray nano-tomography at the European Synchrotron Radiation Facility (ESRF). This validation step includes the comparison of the morphological parameters like the phase covariance function and granulometry as well as the physical parameters like the `apparent tortuosity'. Finally, this validated tool will be used, in forthcoming studies, to identify the optimal microstructure of SOCs.
Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.
Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B
2016-01-01
We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Baiduc, Rachael R.; Lee, Jungmee; Dhar, Sumitrajit
2014-01-01
Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies. PMID:24437770
Boutin, Sébastien; Graeber, Simon Y.; Weitnauer, Michael; Panitz, Jessica; Stahl, Mirjam; Clausznitzer, Diana; Kaderali, Lars; Einarsson, Gisli; Tunney, Michael M.; Elborn, J. Stuart
2015-01-01
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible. PMID:25629612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asgharian, Bahman; Price, Owen; McClellan, Gene
2012-11-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of themore » animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 µm in size were examined for endotracheal and and up to 5 µm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Finally, future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.« less
Asgharian, Bahman; Price, Owen; McClellan, Gene; Corley, Rick; Einstein, Daniel R.; Jacob, Richard E.; Harkema, Jack; Carey, Stephan A.; Schelegle, Edward; Hyde, Dallas; Kimbell, Julia S.; Miller, Frederick J.
2016-01-01
The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 μm in size were examined for endotracheal and and up to 5 μm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model. PMID:23121298
Efficacy of video-guided laryngoscope in airway management skills of medical students.
Peirovifar, Ali; Mahmoodpoor, Ata; Golzari, Samad Ej; Soleimanpour, Hassan; Eslampour, Yashar; Fattahi, Vahid
2014-10-01
Video-guided laryngoscopy, though unproven in achieving better success rates of laryngoscopy outcome and intubation, seems to provide better glottic visualization compared with direct laryngoscopy. The objective of this study was to compare the efficacy of video-guided laryngoscope (VGL) in the airway management skills of medical students. Medical students throughout their anesthesiology rotations were enrolled in this study. All students received standard training in the airway management during their course and were randomly allocated into two 20 person groups. In Group D, airway management was performed by direct laryngoscopy via Macintosh blade and in Group G intubation was performed via VGL. Time to intubation, number of laryngoscopy attempts and success rate were noted. Successful intubation was considered as the primary outcome. All data were analyzed using SPSS 16 software. Chi-square and Fisher's exact test were used for analysis of categorical variables. For analyzing continuous variables independent t-test was used. P < 0.05 was considered as statistically significant. Number of laryngoscopy attempts was less in Group G in comparison to Group D; this, however, was statistically insignificant (P: 0.18). Time to intubation was significantly less in Group G as compared to Group D (P: 0.02). Successful intubation in Group G was less frequently when compared to Group D (P: 0.66). Need for attending intervention, esophageal intubation and hypoxemic events during laryngoscopy were less in Group G; this, however, was statistically insignificant. The use of video-guided laryngoscopy improved the first attempt success rate, time to intubation, laryngoscopy attempts and airway management ability of medical students compared to direct laryngoscopy.
Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT
NASA Astrophysics Data System (ADS)
Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.
2014-03-01
Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.
Microstructural Effects on Initiation Behavior in HMX
NASA Astrophysics Data System (ADS)
Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip
Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.
NASA Astrophysics Data System (ADS)
Pekkarinen, J.; Kujanpää, V.
This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.
Chen, Mao-Kai; Hsu, Hung-Te; Lu, I-Cheng; Shih, Chih-Kai; Shen, Ya-Chun; Tseng, Kuang-Yi; Cheng, Kuang-I
2014-01-01
Many tools have been developed to facilitate the insertion of the ProSeal laryngeal mask airway (LMA) insertion, which can be impeded by folding of its soft cuff. The aim of this study was to compare the efficiency of ProSeal LMA insertion guided by a soft, direct optical Foley Airway Stylet Tool (FAST) with the standard introducer tool (IT). One hundred sixty patients undergoing general anesthesia using the ProSeal LMA as an airway management device were randomly allocated to either FAST-guided or IT-assisted groups. Following ProSeal LMA insertion, the glottic and esophageal openings were identified using a fiberoptic bronchoscope introduced through the airway and the drain tube. The primary outcomes were time taken to insert the ProSeal LMA and the success rate at the first attempt. Secondary end points included ease of insertion, hemodynamic response to insertion, and postoperative adverse events recorded in the recovery room and on the first postoperative morning. One hundred forty patients were included in the final analysis: 66 in the FAST-guided group and 74 in the IT-assisted group. The success rate of FAST device-guided ProSeal LMA insertion (95.7%) was broadly comparable with IT-assisted insertion (98.7%). However, the time taken to insert the ProSeal LMA was significantly longer when the FAST technique was used (p <0.001). The incidence of correct alignment of the airway tube and the drain tube did not differ significantly between the groups. There were no significant differences in ease of insertion or hemodynamic responses to insertion, except that the incidence of postoperative sore throat was significantly higher in the FAST group on the first postoperative day (22.2% compared with 6.8% in the IT group; p = 0.035). Both FAST-guided and IT-assisted techniques achieved correct ProSeal LMA positioning, but the IT technique was significantly quicker and less likely to cause a sore throat. ClinicalTrials.gov Identifier: NCT02048657.
Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.
2012-01-01
Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977
Bair, Aaron E; Olmsted, Kalani; Brown, Calvin A; Barker, Tobias; Pallin, Daniel; Walls, Ron M
2010-10-01
Video laryngoscopy has been shown to improve glottic exposure when compared to direct laryngoscopy in operating room studies. However, its utility in the hands of emergency physicians (EPs) remains undefined. A simulated difficult airway was used to determine if intubation by EPs using a video Macintosh system resulted in an improved glottic view, was easier, was faster, or was more successful than conventional direct laryngoscopy. Emergency medicine (EM) residents and attending physicians at two academic institutions performed endotracheal intubation in one normal and two identical difficult airway scenarios. With the difficult scenarios, the participants used video laryngoscopy during the second case. Intubations were performed on a medium-fidelity human simulator. The difficult scenario was created by limiting cervical spine mobility and inducing trismus. The primary outcome was the proportion of direct versus video intubations with a grade I or II Cormack-Lehane glottic view. Ease of intubation (self-reported via 10-cm visual analog scale [VAS]), time to intubation, and success rate were also recorded. Descriptive statistics as well as medians with interquartile ranges (IQRs) are reported where appropriate. The Wilcoxon matched pairs signed-rank test was used for comparison testing of nonparametric data. Participants (n = 39) were residents (59%) and faculty. All had human intubation experience; 51% reported more than 100 prior intubations. On difficult laryngoscopy, a Cormack-Lehane grade I or II view was obtained in 20 (51%) direct laryngoscopies versus 38 (97%) of the video-assisted laryngoscopies (p < 0.01). The median VAS score for difficult airways was 50 mm (IQR = 28–73 mm) for direct versus 18 mm (IQR = 9–50 mm) for video (p < 0.01). The median time to intubation in difficult airways was 25 seconds (IQR = 16–44 seconds) for direct versus 20 seconds (IQR = 12–35 seconds) for video laryngoscopy (p < 0.01). All intubations were successful without need for an invasive airway. In this simulation, video laryngoscopy was associated with improved glottic exposure, was perceived as easier, and was slightly faster than conventional direct laryngoscopy in a simulated difficult airway. Absence of secretions and blood limits the generalizability of our findings; human studies are needed.
Romano, Michael J; Lee, Jacques S; Chenkin, Jordan
2018-02-04
Ultrasound has been shown to be a highly accurate adjunct for confirming endotracheal tube (ETT) placement, however there is no universally accepted scanning technique. The objective of this study was to determine which ultrasound technique provides the highest rate of adequate airway visualisation in a sample of stable emergency department (ED) patients. We conducted a prospective observational study using a convenience sample of ED patients. Airway imaging was performed using the following five techniques: 1) transcricothryoid membrane (TCM), 2) suprasternal notch (SSN) without transducer pressure, 3) SSN with pressure, 4) SSN with pressure to the left of the trachea and 5) SSN with pressure to the right of the trachea. A blinded reviewer scored the adequacy of airway visualisation for each technique. A total of 100 patients were enrolled in the study. SSN to the left of the trachea with pressure had the highest rate of adequate airway visualisation (93.0%, 95% CI 86.1-97.1%), followed by 82.0% (95% CI 73.1-89.0%) for SSN with pressure, 74.0% (95% CI 64.3-82.3%) for TCM, 44.0% (95% CI 34.1-54.3%) for SSN without pressure, and 1.0% (95% CI 0.0-5.4%) for SSN to the right of the trachea. In 76.0% (95% CI 66.4-84.0%) of patients, the SSN view was improved by moving the probe off the midline towards the patient's left. In a sample of ED patients, the airway anatomy relevant for use in endotracheal intubation is best visualised at the SSN to the left of the trachea with transducer pressure applied. Copyright © 2018 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Li, Evan; Tsai, Chu-Lin; Maskatia, Zahida K; Kakkar, Ekta; Porter, Paul; Rossen, Roger D; Perusich, Sarah; Knight, John M; Kheradmand, Farrah; Corry, David B
2018-06-01
Fungal airway infection (airway mycosis) is increasingly recognized as a cause of asthma and related disorders. However, prior controlled studies of patients treated with antifungal antibiotics have produced conflicting results. Our objective is to measure the effect of antifungal therapy in moderate to severe adult asthmatics with positive fungal sputum cultures in a single center referral-based academic practice. We retrospectively evaluated 41 patients with asthma and culture-proven airway mycosis treated with either terbinafine, fluconazole, itraconazole, voriconazole, or posaconazole for 4 to >12 weeks together with standard bronchodilator and anti-inflammatory agents. Asthma control (1 = very poorly controlled; 2 = not well controlled; and 3 = well controlled), peak expiratory flow rates (PEFR), serum total IgE, and absolute blood eosinophil counts before and after antifungal therapy were assessed. In comparison, we also studied nine patients with airway mycosis and moderate to severe asthma who received standard therapy but no antifungals. Treatment with azole-based and allylamine antifungals was associated with improved asthma control (mean change in asthma control 1.72-2.25; p = 0.004), increased PEFR (69.4% predicted to 79.3% predicted, p = 0.0011) and markedly reduced serum IgE levels (1,075 kU/L to 463 kU/L, p = 0.0005) and blood eosinophil counts (Mean absolute count 530-275, p = 0.0095). Reduction in symptoms, medication use, and relapse rates decreased as duration of therapy increased. Asthmatics on standard therapy who did not receive antifungals showed no improvement in asthma symptoms or PEFR. Antifungals were usually well tolerated, but discontinuation (12.2%) and relapse (50%) rates were relatively high. Antifungals help control symptoms in a subset of asthmatics with culture-proven airway mycosis. Additional randomized clinical trials are warranted to extend and validate these findings. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Saito, Tomoyuki; Asai, Takashi; Arai, Takerou; Tsuchida, Misa; Ogawa, Katsumi; Okuda, Yasuhisa
2010-12-01
Tracheal intubation should be performed with great care in the multiple injury patient, particularly when damage to the cervical spine is suspected. The patient with unstable cervical spine requires a neck collar in prehospital area, and medical personnel may be required to perform tracheal intubation. We compared Macintosh laryngoscope with the Airway Scope (AWS), and Coopdeck videolaryngoscope portable VLP-100 (VLP-100) in a manikin model with the presence of a neck collar. We conducted a prospective study in 20 medical residents with little prior airway management experience. They inserted the AWS, VLP-100 and Macintosh laryngoscope, in turn, and the view of the glottis at laryngoscopy was graded, using a classification reported by Cormack and Lehane. Tracheal intubation time and the success rate of tracheal intubation (within 120 sec) were also recorded. The AWS provided a best view of the glottis, a shorter tracheal intubation time and a higher success rate of tracheal intubation, compared with VLP- 100 and Macintosh laryngoscope. The AWS may possess advantages over conventional direct laryngoscopes in patients with restricted neck movement.
Comparison of Outcomes in Conservative vs Surgical Treatments for Ludwig's Angina.
Edetanlen, Ekaniyere; Saheeb, Birch D
2018-06-10
To compare the treatment outcome in patients with Ludwig's angina in their early stages who received intravenous antibiotics alone with those who received surgical decompression and intravenous antibiotics. Individuals with early stage of Ludwig's angina were studied using a retrospective cohort study design from August 1997 to September 2017. Data were collected from case notes and logbooks. Appropriate statistical tests were chosen to analyse the independent and outcome variables. Using two-tailed test, a level of significance of 0.05 was chosen. A total of 55 patients comprising 38 (69.1%) males and 17 (30.9%) females were studied. The conservative group had a higher number of cases that developed airway compromise (26.3%) when compared to those with surgical approach (2.9%). There was an association between the treatment approach and the development of airway compromise (X2(1) = 4.83, p = 0.03). There was a higher incidence of airway compromise in patients treated with intravenous antibiotics alone than in those treated with surgical decompression and intravenous antibiotics. ©2018The Author(s). Published by S. Karger AG, Basel.
Airway mucosal bioelectric potential difference in cystic fibrosis after lung transplantation.
Wood, A; Higenbottam, T; Jackson, M; Scott, J; Stewart, S; Wallwork, J
1989-12-01
Bioelectrical potential difference (PD) across the respiratory mucosa is raised in cystic fibrosis (CF). We have recorded airway potentials from seven patients with CF who had undergone heart-lung transplantation and from eight patients without CF who had had transplants for cardiovascular disease; comparison of these populations controls for the effects of denervation and immunosuppressive treatment. Six patients without CF who had not had transplants formed an additional control. PD was recorded during routine fiberoptic bronchoscopy, using a Ringer's-perfused exploring bridge connected across a high impedance amplifier to an intravenous reference bridge. Bronchial lavage and sputum culture revealed no evidence of infection. Bronchial PD was similar in all three groups of patients at equivalent sites. However, nasal PD was raised in the CF group (mean value, 44 mV +/- 3.9 SE) compared with the patients who had transplants for cardiovascular disease (mean, 18 mV +/- 1.1 SE), and the control patients (mean, 15 mV +/- 1.2 SE). We conclude that the epithelial defects that result in raised airway potentials in CF do not recur in the transplanted lung.
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.
2018-05-01
Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.
Epidemiological studies have linked air pollution exposure to adverse respiratory health effects, especially in individuals with inflammatory airways disease. Symptomatic asthmatics appear to be at greatest risk. We previously demonstrated that exposure of rats to particulate...
Aleksandrowicz, Dawid; Gaszyński, Tomasz
2016-01-01
Airway management in patients with suspected cervical spine injury plays an important role in the pathway of care of trauma patients. The aim of this study was to evaluate three different airway devices during intubation of a patient with reduced cervical spine mobility. Forty students of the third year of emergency medicine studies participated in the study (F = 26, M = 14). The time required to obtain a view of the entry to the larynx and successful ventilation time were recorded. Cormack-Lehane laryngoscopic view and damage to the incisors were also assessed. All three airway devices were used by each student (a novice) and they were randomly chosen. The mean time required to obtain the entry-to-the-larynx view was the shortest for the Macintosh laryngoscope 13.4 s (±2.14). Truview Evo2 had the shortest successful ventilation time 35.7 s (±9.27). The best view of the entry to the larynx was obtained by the Totaltrack VLM device. The Truview Evo2 and Totaltrack VLM may be an alternative to the classic Macintosh laryngoscope for intubation of trauma patients with suspected injury to the cervical spine. The use of new devices enables achieving better laryngoscopic view as well as minimising incisor damage during intubation.
Comparison of non-invasive measures of cholinergic and allergic airway responsiveness in rats.
Glaab, T; Hecker, H; Stephan, M; Baelder, R; Braun, A; Korolewitz, R; Krug, N; Hoymann, H G
2006-04-01
Non-invasive analysis of tidal expiratory flow parameters such as Tme/TE (time needed to reach peak expiratory flow divided by total expiratory time) or midexpiratory tidal flow (EF50) has been shown useful for phenotypic characterization of lung function in humans and animal models. In this study, we aimed to compare the utility of two non-invasive measures, EF50 and Tme/TE, to monitor bronchoconstriction to inhaled cholinergic and allergic challenges in Brown-Norway rats. Non-invasive measurements of Tme/TE and EF50 were paralleled by invasive recordings of Tme/TE, EF50 and pulmonary conductance (GL). First, dose-response studies with acetylcholine were performed in naive rats, showing that EF50 better than Tme/TE reflected the dose-related changes as observed with the classical invasive outcome parameter GL. The subsequent determination of allergen-specific early airway responsiveness (EAR) showed that ovalbumin-sensitized and -challenged rats exhibited airway inflammation and allergen-specific EAR. Again, EF50 was more sensitive than Tme/TE in detecting the allergen-specific EAR recorded with invasive and non-invasive lung function methods and agreed well with classical GL measurements. We conclude that non-invasive assessment of EF50 is significantly superior to Tme/TE and serves as a suitable and valid tool for phenotypic screening of cholinergic and allergic airway responsiveness in rats.
Schiffmann, H; Singer, S; Singer, D; von Richthofen, E; Rathgeber, J; Züchner, K
1999-09-01
Thus far only few data are available on airway humidification during high-frequency oscillatory ventilation (HFOV). Therefore, we studied the performance and efficiency of a heated humidifier (HH) and a heat and moisture exchanger (HME) in HFOV using an artificial lung model. Experiments were performed with a pediatric high-frequency oscillatory ventilator. The artificial lung contained a sponge saturated with water to simulate evaporation and was placed in an incubator heated to 37 degrees C to prevent condensation. The airway humidity was measured using a capacitive humidity sensor. The water loss of the lung model was determined gravimetrically. The water loss of the lung model varied between 2.14 and 3.1 g/h during active humidification; it was 2.85 g/h with passive humidification and 7.56 g/h without humidification. The humidity at the tube connector varied between 34. 2 and 42.5 mg/l, depending on the temperature of the HH and the ventilator setting during active humidification, and between 37 and 39.9 mg/l with passive humidification. In general, HH and HME are suitable devices for airway humidification in HFOV. The performance of the ventilator was not significantly influenced by the mode of humidification. However, the adequacy of humidification and safety of the HME remains to be demonstrated in clinical practice.
Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT
NASA Astrophysics Data System (ADS)
Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.
2009-11-01
Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Xie, Y; Zhang, Y; Qin, W; Lu, S; Ni, C; Zhang, Q
2017-03-01
Increasing DTI studies have demonstrated that white matter microstructural abnormalities play an important role in type 2 diabetes mellitus-related cognitive impairment. In this study, the diffusional kurtosis imaging method was used to investigate WM microstructural alterations in patients with type 2 diabetes mellitus and to detect associations between diffusional kurtosis imaging metrics and clinical/cognitive measurements. Diffusional kurtosis imaging and cognitive assessments were performed on 58 patients with type 2 diabetes mellitus and 58 controls. Voxel-based intergroup comparisons of diffusional kurtosis imaging metrics were conducted, and ROI-based intergroup comparisons were further performed. Correlations between the diffusional kurtosis imaging metrics and cognitive/clinical measurements were assessed after controlling for age, sex, and education in both patients and controls. Altered diffusion metrics were observed in the corpus callosum, the bilateral frontal WM, the right superior temporal WM, the left external capsule, and the pons in patients with type 2 diabetes mellitus compared with controls. The splenium of the corpus callosum and the pons had abnormal kurtosis metrics in patients with type 2 diabetes mellitus. Additionally, altered diffusion metrics in the right prefrontal WM were significantly correlated with disease duration and attention task performance in patients with type 2 diabetes mellitus. With both conventional diffusion and additional kurtosis metrics, diffusional kurtosis imaging can provide additional information on WM microstructural abnormalities in patients with type 2 diabetes mellitus. Our results indicate that WM microstructural abnormalities occur before cognitive decline and may be used as neuroimaging markers for predicting the early cognitive impairment in patients with type 2 diabetes mellitus. © 2017 by American Journal of Neuroradiology.
Winkler-Heil, R; Hussain, M; Hofmann, W
2015-05-01
Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.
Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano
2013-02-01
The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P < .001), and lowest airway pressure (P < .001), compared to the Boussignac valve. In all measurements the Boussignac valve showed higher than imposed CPAP level (P < .001). In ICU subjects the high-flow mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.
Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin.
Hodge, Sandra; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N
2015-01-01
Corticosteroid resistance in chronic obstructive pulmonary disease (COPD) is a major challenge. We have reported increased bronchial epithelial cell apoptosis and increased airway CD8 T-cell numbers in COPD. Apoptosis can be induced via the serine protease, granzyme B. However, glucocorticosteroids fail to adequately suppress granzyme B production by CD8 T cells. We previously showed that low-dose azithromycin reduced airways inflammation in COPD subjects and we hypothesized that it would also reduce granzyme B production by CD8 T cells. We administered 250 mg azithromycin daily for 5 days then twice weekly (total 12 weeks) to 11 COPD subjects (five current smokers; six ex-smokers) and assessed granzyme B in the airway (bronchoalveolar lavage), intra-epithelial compartment and peripheral blood, collected before and following administration of azithromycin. To then dissect the effects of on CD4 and CD8 T-cell subsets, we applied an in vitro assay and physiologically relevant concentrations of azithromycin (and, for comparison, n-acetyl cysteine) and stimulation of peripheral blood mononuclear cells from five healthy subjects with CD3/CD28 T-cell expander. T-cell granzyme B production in both airway and intra-epithelial compartments was reduced in COPD patients following 12 weeks of azithromycin treatment, with no significant effect in blood. Both azithromycin and n-acetyl cysteine suppressed CD4 T-cell granzyme B production, but only azithromycin was effective at reducing CD8+ T-cell granzyme B production in vitro. We provide further evidence for the application of low-dose azithromycin as an attractive adjunct treatment option for controlling epithelial cell apoptosis, abnormal airway repair and chronic inflammation in COPD. © 2014 Asian Pacific Society of Respirology.
Okuyama, M; Kato, S; Sato, S; Okazaki, J; Kitamura, Y; Ishikawa, T; Sato, Y; Isono, S
2018-01-01
Difficult mask ventilation is common and is known to be associated with sleep-disordered breathing (SDB). It is our hypothesis that the incidence of expiratory retropalatal (RP) airway closure (primary outcome) during nasal positive pressure ventilation (PPV) is more frequent in patients with SDB (apnea hypopnea index ≥5 h -1 ) than non-SDB subjects. The severity of SDB was assessed before surgery using a portable sleep monitor. In anaesthetized and paralysed patients with (n=11) and without SDB (n=9), we observed the behaviour of the RP airway endoscopically during nasal PPV with the mouth closed and determined the dynamic RP closing pressure, which was defined as the highest airway pressure above which the RP airway closure was reversed. The static RP closing pressure was obtained during cessation of mechanical ventilation in patients with dynamic RP closure during nasal PPV. The expiratory RP airway closure accompanied by expiratory flow limitation occurred more frequently in SDB patients (9/11, 82%) than in non-SDB subjects (2/9, 22%; exact logistic regression analysis: P=0.022, odds ratio 3.6, 95% confidence interval 1.1-15.4). Receiver operating characteristic curve analyses indicated AHI >10h -1 and presence of habitual snoring as clinically useful predictors for the occurrence of RP closure during PPV. Dynamic RP closing pressure was greater than the static RP closing pressure by approximately 4-5 cm H 2 O. Valve-like dynamic RP closure that limits expiratory flow during nasal PPV occurs more frequently in SDB patients. Copyright © 2017. Published by Elsevier Ltd.
Otsuka, Yoji; Hirabayashi, Yoshihiro; Fujita, Akifumi; Sugimoto, Hideharu; Seo, Norimasa
2011-03-01
GlideScope videolaryngoscope (GVL) is a novel indirect laryngogoscope for tracheal intubation. Both mid-size and large blades of the GVL are available for adult patients. The distortion of the anterior airway anatomy and cervical spine motion using the mid-size GVL is unknown. We compare the degree of anterior airway distortion and cervical spine movement during the use of the mid-size GVL compared with the large GVL. Twenty patients requiring general anesthesia and tracheal intubation were studied. Each patient underwent laryngoscopy with both mid-size and large GVLs. During each laryngoscopy, a radiograph for the lateral view of the head and neck was taken when the best view of the larynx was obtained. Based on the radiographs, independent radiologists evaluated anterior airway movement and cervical spine movement. The tip of the mid-size GVL was anteriorly positioned during laryngoscopy, compared with large GVL. The distance between epiglottis and posterior laryngeal wall was longer with the mid-size GVL than with the large GVL. Both the mid-size and large GVL caused a significant anterior movement in the cervical spine during laryngoscope. The difference in the movement in the atlas and C2 was small, but statistically significant. No difference was found in the anterior movement with C3 and C4. During laryngoscopy, cervical spinal extension occurred with both GVLs, while there was no difference in the cervical spinal extension between the mid-size and large GVL. The tip of the mid-size GVL during laryngoscopy is anteriorly positioned and the distortion of the anterior airway was greater with the mid-size GVL than with the large GVL.
Schneider, Craig S.; Xu, Qingguo; Boylan, Nicholas J.; Chisholm, Jane; Tang, Benjamin C.; Schuster, Benjamin S.; Henning, Andreas; Ensign, Laura M.; Lee, Ethan; Adstamongkonkul, Pichet; Simons, Brian W.; Wang, Sho-Yu S.; Gong, Xiaoqun; Yu, Tao; Boyle, Michael P.; Suk, Jung Soo; Hanes, Justin
2017-01-01
Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery. PMID:28435870
A mechanism for upper airway stability during slow wave sleep.
McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-04-01
The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.
Comparison of stochastic lung deposition fractions with experimental data.
Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate
2012-04-01
Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.
Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun
2015-12-01
U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.
A damage analysis for brittle materials using stochastic micro-structural information
NASA Astrophysics Data System (ADS)
Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue
2016-03-01
In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.
Lind, Jonathan; Li, Shiu Fai; Kumar, Mukul
2016-05-20
The concept of twin-limited microstructures has been explored in the literature as a crystallographically constrained grain boundary network connected via only coincident site lattice (CSL) boundaries. The advent of orientation imaging has made classification of twin-related domains (TRD) or any other orientation cluster experimentally accessible in 2D using EBSD. With the emergence of 3D orientation mapping, a comparison of TRDs in measured 3D microstructures is performed in this paper and compared against their 2D counterparts. The TRD analysis is performed on a conventionally processed (CP) and a grain boundary engineered (EM) high purity copper sample that have been subjected tomore » successive anneal procedures to promote grain growth. Finally, the EM sample shows extremely large TRDs which begin to approach that of a twin-limited microstructure, while the TRDs in the CP sample remain relatively small and remote.« less
NASA Technical Reports Server (NTRS)
Adler, P.; Deiasi, R.
1974-01-01
The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.
NASA Astrophysics Data System (ADS)
Zieliński, Tomasz G.
2017-11-01
The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai
2017-07-01
Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.
Limiting factors in the production of deep microstructures
NASA Astrophysics Data System (ADS)
Tolfree, David W. L.; O'Neill, William; Tunna, Leslie; Sutcliffe, Christopher
1999-10-01
Microsystems increasingly require precision deep microstructures that can be cost-effectively designed and manufactured. New products must be able to meet the demands of the rapidly growing markets for microfluidic, micro- optical and micromechanical devices in industrial sectors which include chemicals, pharmaceuticals, biosciences, medicine and food. The realization of such products, first requires an effective process to design and manufacture prototypes. Two process methods used for the fabrication of high aspect-ratio microstructures are based on X-ray beam lithography with electroforming processes and direct micromachining with a frequency multiplied Nd:YAG laser using nanosecond pulse widths. Factors which limit the efficiency and precision obtainable using such processes are important parameters when deciding on the best fabrication method to use. A basic microstructure with narrow channels suitable for a microfluidic mixer have been fabricated using both these techniques and comparisons made of the limitations and suitability of the processes in respect of fast prototyping and manufacture or working devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...
2018-04-10
Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less
Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study
Chen, Jie; Gutmark, Ephraim
2013-01-01
Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907
Riedel, Christoph; Zimmermann, Elizabeth A; Zustin, Jozef; Niecke, Manfred; Amling, Michael; Grynpas, Marc; Busse, Björn
2017-02-01
Strontium ranelate and fluoride salts are therapeutic options to reduce fracture risk in osteoporosis. Incorporation of these elements in the physiological hydroxyapatite matrix of bone is accompanied by changes in bone remodeling, composition, and structure. However, a direct comparison of the effectiveness of strontium and fluoride treatment in human cortical bone with a focus on the resulting mechanical properties remains to be established. Study groups are composed of undecalcified specimens from healthy controls, treatment-naïve osteoporosis cases, and strontium ranelate or fluoride-treated osteoporosis cases. Concentrations of both elements were determined using instrumental neutron activation analysis (INAA). Backscattered electron imaging was carried out to investigate the calcium content and the cortical microstructure. In comparison to osteoporotic patients, fluoride and strontium-treated patients have a lower cortical porosity indicating an improvement in bone microstructure. Mechanical properties were assessed via reference point indentation as a measure of bone's resistance to deformation. The strontium-incorporation led to significantly lower total indentation distance values compared to osteoporotic cases; controls have the highest resistance to indentation. In conclusion, osteoporosis treatment with strontium and fluoride showed positive effects on the microstructure and the mechanical characteristics of bone in comparison to treatment-naïve osteoporotic bone. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 433-442, 2017. © 2016 Wiley Periodicals, Inc.
Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas
2015-01-01
Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. PMID:26657513
Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond
2010-10-01
Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo
2015-10-01
Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
NASA Astrophysics Data System (ADS)
Kumar, P.; Chandran, K. S. Ravi
2017-05-01
A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.
Coupling computational fluid dynamics (CFD) with physiologically based pharmacokinetic (PBPK) models is useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. Historically, these models were limited to discrete regions of the respiratory system. CFD/PBPK models have now been developed for the rat, monkey, and human that encompass airways from the nose or mouth to the lung. A PBPK model previously developed to describe acrolein uptake in nasal tissues was adapted to the extended airway models as an example application. Model parameters for each anatomicmore » region were obtained from the literature, measured directly, or estimated from published data. Airflow and site-specific acrolein uptake patterns were determined under steadystate inhalation conditions to provide direct comparisons with prior data and nasalonly simulations. Results confirmed that regional uptake was dependent upon airflow rates and acrolein concentrations with nasal extraction efficiencies predicted to be greatest in the rat, followed by the monkey, then the human. For human oral-breathing simulations, acrolein uptake rates in oropharyngeal and laryngeal tissues were comparable to nasal tissues following nasal breathing under the same exposure conditions. For both breathing modes, higher uptake rates were predicted for lower tracheo-bronchial tissues of humans than either the rat or monkey. These extended airway models provide a unique foundation for comparing dosimetry across a significantly more extensive range of conducting airways in the rat, monkey, and human than prior CFD models.« less
Microgravity processing of particulate reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.
1989-01-01
The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.
Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz
2016-01-01
Abstract Background: Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. Methods: ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. Results: The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5–22] sec, when compared to that of sETT at 21.5 [IQR, 20–25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5–24.5] sec (p < .001) and sETT was 27 [IQR, 24.5–31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19–25.5] sec for the ETView and 42.5 [IQR, 35–49.5] sec for sETT. Conclusions: In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. Trial Registration: clinicaltrials.gov Identifier: NCT02733536. PMID:27858851
Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz
2016-11-01
Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5-22] sec, when compared to that of sETT at 21.5 [IQR, 20-25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5-24.5] sec (p < .001) and sETT was 27 [IQR, 24.5-31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19-25.5] sec for the ETView and 42.5 [IQR, 35-49.5] sec for sETT. In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. clinicaltrials.gov Identifier: NCT02733536.
Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong
2016-01-01
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193
NASA Astrophysics Data System (ADS)
Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.
1997-06-01
Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.
A statistical model of brittle fracture by transgranular cleavage
NASA Astrophysics Data System (ADS)
Lin, Tsann; Evans, A. G.; Ritchie, R. O.
A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.
Interfacial distribution of mucus under forced expiration in a double bifurcation model
NASA Astrophysics Data System (ADS)
Rajendran, Rahul; Banerjee, Arindam
2017-11-01
Mucus is removed from the lung airways by the rhythmic beating of cilia and the mucus interaction with the turbulent core airflow generated during a cough or forced expiration. The quantity and quality of mucus are adversely altered, impairing mucociliary clearance under chronic pulmonary conditions. Existing studies on airflow induced mucus clearance have established a functional relationship between the airflow rate, mucus properties, flow bias, breathing frequency and clearance; however, the impact of airway branching, gravity, and characterization of primary and secondary flows have not been studied. The focus of the current investigation is the detailed understanding of air-mucus two-phase flow mechanism under steady expiratory airflow in a double bifurcation model. The effect of different airflow rates and mucus viscosities on the flow morphology, mucus layer thickness, mucus clearance and pressure drop across the model will be discussed. The impact of in-plane and out-of-plane configurations of the bifurcation model on the primary and secondary flow structures as well as the mucus distribution will be addressed. In addition, a detailed comparison of the flow structures in the mucus-lined airways, and its corresponding dry wall (no mucus lining) case will be presented.
Using Computational Fluid Dynamics to examine airflow characteristics in Empty Nose Syndrome
NASA Astrophysics Data System (ADS)
Flint, Tim; Esmaily-Moghadam, Mahdi; Thamboo, Andrew; Velasquez, Nathalia; Nayak, Jayakar V.; Sellier, Mathieu; Moin, Parviz
2016-11-01
The enigmatic disorder, empty nose syndrome (ENS), presents with a complex subjective symptom profile despite objectively patent nasal airways, and recent reports suggest that surgical augmentation of the nasal airway can improve quality of life and ENS-related complaints. In this study, computational fluid dynamics (CFD) was performed both prior to, and following, inferior turbinate augmentation to model the resultant changes in airflow patterns and better understand the pathophysiology of ENS. An ENS patient with marked reduction in ENS symptoms following turbinate augmentation was identified, and pre- and post-operative CT imaging was collected. A Finite element framework with the variational multiscale method (Esmaily-Moghadam, Comput. Methods Appl. Mech. Engrg. 2015) was used to compute the airflow, temperature, and moisture transport through the nasal cavity. Comparison of the CFD results following corrective surgery showed higher levels of airflow turbulence. Augmentation produced 50%, 25%, and 25% increases in root mean square pressure, wall shear stress, and heat flux respectively. These results provide insight into the changes in nasal airflow characteristics attainable through surgical augmentation, and by extension, how nasal airflow patterns may be distorted in the 'overly patent' airway of ENS patients. Supported by Stanford University CTR and Fulbright New Zealand.
Beleña, José M; Núñez, Mónica; Anta, Diego; Carnero, Maria; Gracia, José L; Ayala, José L; Alvarez, Raquel; Yuste, Javier
2013-03-01
A comparison of the efficacy and safety of the Laryngeal Mask Airway (LMA) Supreme (LMAS) versus the LMA Proseal (LMAP) in elective laparoscopic cholecystectomy. To compare the LMAS with LMAP in terms of ventilatory efficacy, airway leak pressure (airway protection), ease-of-use and complications. Prospective, single-blind, randomised, controlled study. The Hospital del Sureste and Hospital Ramon y Cajal, Madrid, between May 2009 and March 2011. The Hospital del Sureste is a secondary hospital and Hospital Ramon y Cajal is a tertiary hospital. Patients undergoing elective laparoscopic cholecystectomy were studied following informed consent. Inclusion criteria were American Society of Anesthesiologists physical status I to III and age 18 or more. Exclusion criteria were BMI more than 40 kg m, symptomatic hiatus hernia or severe gastro-oesophageal reflux. Anaesthesiologists experienced in the use of LMAP and LMAS participated in the trial. One hundred twenty-two patients were randomly allocated to LMAS or LMAP. Our primary outcome measure was the oropharyngeal leak pressure (OLP). Secondary outcomes were the time and number of attempts for insertion, ease of insertion of the drain tube, adequacy of ventilation and the incidence of complication. Patients were interviewed postoperatively to evaluate the presence of sore throat, dysphagia or dysphonia. Two patients were excluded when surgery changed from laparoscopic to open. A total of 120 patients were finally included in the analysis. The mean OLP in the LMAP group was significantly higher than that in the LMAS group (30.7 ± 6.2 versus 26.8 ± 4.1 cmH2O;P < 0.01). This was consistent with a higher maximum tidal volume achieved with the LMAP compared to the LMAS (511 ± 68 versus 475 ± 55 ml; P = 0.04). The success rate of the first attempt insertion was higher for the LMAS group than the LMAP group (96.7 and 71.2%, respectively; P < 0.01). The time taken for insertion, ease of insertion of the drain tube, complications and postoperative pharyngolaryngeal adverse events were similar in both groups. The LMAP has a higher OLP and achieves a higher maximum tidal volume compared to the LMAS, in patients undergoing elective laparoscopic cholecystectomy. The success of the first attempt insertion was higher for the LMAS.
Airway clearance devices for cystic fibrosis: an evidence-based analysis.
2009-01-01
The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference. Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF. A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance. AIRWAY CLEARANCE DEVICES: THERE ARE AT LEAST THREE CLASSES OF AIRWAY CLEARANCE DEVICES: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP) devices. Within these classes are numerous different brands of devices from various manufacturers, each with subtle iterations. At least 10 devices are licensed by Health Canada (ranging from Class 1 to Class 3 devices). EVIDENCE-BASED ANALYSIS OF EFFECTIVENESS: Does long-term use of ACDs improve outcomes of interest in comparison to CCPT in patients with CF?Does long-term use of one class of ACD improve outcomes of interest in comparison to another class of ACD in CF patients? A comprehensive literature search was performed on March 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1950 to March 7, 2009. All randomized controlled trials including those of parallel and crossover design,Systematic reviews and/or meta-analyses. Randomized controlled trials (RCTs), systematic reviews and meta-analyses Abstracts were generally excluded because their methods could not be examined; however, abstract data was included in several Cochrane meta-analyses presented in this paper;Studies of less than seven days duration (including single treatment studies);Studies that did not report primary outcomes;Studies in which less than 10 patients completed the study. Primary outcomes under review were percent-predicted forced expiratory volume (FEV-1), forced vital capacity (FVC), and forced expiratory flow between 25%-75% (FEF25-75). Secondary outcomes included number of hospitalizations, adherence, patient preference, quality of life and adverse events. All outcomes were decided a priori. Literature searching and back-searching identified 13 RCTs meeting the inclusion criteria, along with three Cochrane systematic reviews. The Cochrane reviews were identified in preliminary searching and used as the basis for formulating this review. Results were subgrouped by comparison and according to the available literature. For example, results from Cochrane meta-analyses included abstract data and therefore, additional meta-analyses were also performed on trials reported as full publications only (MAS generally excludes abstracted data when full publications are available as the methodological quality of trials reported in abstract cannot be properly assessed). Executive Summary Table 1 summarizes the results across all comparisons and subgroupings for primary outcomes of pulmonary function. Only two comparisons yielded evidence of moderate or high quality according to GRADE criteria-the comparisons of CCPT vs. PEP and handheld AOD vs. PEP-but only the comparison of CCPT vs. PEP noted a significant difference between treatment groups. In comparison to CCPT, there was a significant difference in favour of PEP for % predicted FEV-1 and FVC according to one long-term, parallel RCT. This trial was accepted as the best available evidence for the comparison. The body of evidence for the remaining comparisons was low to very low, according to GRADE criteria, being downgraded most often because of poor methodological quality and low generalizability. Specifically, trials were likely not adequately powered (low sample sizes), did not conduct intention-to-treat analyses, were conducted primarily in children and young adolescents, and outdated (conducted more than 10 years ago). Secondary outcomes were poorly or inconsistently reported, and were generally not of value to decision-making. Of note, there were a significantly higher number of hospitalizations among participants undergoing AOD therapy in comparison to PEP therapy. ES Table 1:Summarization of results for primary outcomes by comparison and subgroupingsOutcome or SubgroupNo. of StudiesEstimate of Effectiveness (95% CI)P-valueHeterogeneity (I(2))GRADECCPT vs. PEP Cochrane FEV-1 FVC FEF(25-75%)6640.08 (-1.45 to 1.62)0.38 (-1.56 to 2.23)-0.44 (-3.38 to 2.50)0.910.700.7746%63%36 N/A Full publications only FEV-1 FVC FEF(25-75%)332-0.50 (-3.93 to 2.92)-0.86 (-4.66 to 2.95)-0.12 (-6.22 to 5.98)0.770.660.9777%74%0% N/A Long-term, parallel RCTs only FEV-1 FVC FEF(25-75%)111-8.25 (-15.77 to -0.75)-8.74 (-16.03 to -1.45)-3.56 (-13.30 to 6.18)0.030.020.47N/AN/AN/A 1 TrialMODERATECCPT vs. HFCC/MP Cochrane FEV-1 FVC FEF(25-75%)332-1.76 (-4.67 to 1.16)-1.42 (-5.17 to 2.33)0.49 (-2.54 to 3.52)0.240.460.750%70%0% N/A Full publications only FEV-1 FVC FEF(25-75%)332-2.10 (-5.49 to 1.29)-3.86 (-8.05 to 0.33)0.49 (-2.54 to 3.52)0.230.070.750%0%0% 3 TrialsLOWCCPT vs. AOD 2 of 3 RCTs/Cochrane FEV-1 FVC FEF(25-75%)2220.80 (-5.79 to 7.39)6.06 (-2.42 to 14.55)1.26 (-7.56 to 10.09)0.810.160.780%12%0% 3 TrialsLOWAOD vs. PEP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF(25-75%)2220.29 (-4.17 to 4.75)-0.55 (-4.60 to 3.50)0.10 (-4.86 to 5.06)0.900.790.9773%77%0% 2 TrialsMODERATEAOD vs. HFCC/MP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF(25-75%)111-1.6 (-3.44 to 0.24)-1.80 (-4.32 to 0.72)-1.40 (-3.07 to 0.27)0.090.080.16N/AN/AN/A 1 TrialVERY LOWBolding indicates significant differencePositive summary statistics favour the former intervention AOD, airway oscillating device; CCPT, conventional chest physiotherapy; CI, confidence interval; HFCC, high frequency chest compression; MP, mechanical percussion; N/A: not applicable; PEP, positive expiratory pressure Devices ranged in cost from around $60 for PEP and handheld AODs to upwards of $18,000 for a HFCC vest device. Although the majority of device costs are paid out-of-pocket by the patients themselves, their parents, or covered by third-party medical insurance, Ontario did provide funding assistance through the Assistive Devices Program (ADP) for postural drainage boards and MP devices. These technologies, however, are either obsolete or their clinical efficacy is not supported by evidence. ADP provided roughly $16,000 in funding for the 2008/09 fiscal year. Using device costs and prevalent and incident cases of CF in Ontario, budget impact projections were generated for Ontario. Prevalence of CF in Ontario for patients from ages 6 to 71 was cited as 1,047 cases in 2002 while incidence was estimated at 46 new cases of CF diagnosed per year in 2002. Budget impact projections indicated that PEP and handheld AODs were highly economically feasible costing around $90,000 for the entire prevalent population and less than $3,000 per year to cover new incident cases. HFCC vest devices were by far the most expensive, costing in excess of $19 million to cover the prevalent population alone. There is currently a lack of sufficiently powered, long-term, parallel randomized controlled trials investigating the use of ACDs in comparison to other airway clearance techniques. While much of the current evidence suggests no significant difference between various ACDs and alternative therapies/technologies, at least according to outcomes of pulmonary function, there is a strong possibility that past trials were not sufficiently powered to identify a difference. Unfortunately, it is unlikely that there will be any future trials comparing ACDs to CCPT as withholding therapy using an ACD may be seen as unethical at present. Conclusions of clinical effectiveness are as follows: Moderate quality evidence suggests that PEP is at least as effective as or more effective than CCPT, according to primary outcomes of pulmonary function. (ABSTRACT TRUNCATED)
Chlorine (Cl2) is a high-production volume ambient air pollutant and an established respiratory irritant for which reactive airways disease or hyper-reactivity has been noted after high-concentration exposures in the occupational arena. We conducted a study to charact...
Karaman, Murat; Gün, Taylan; Temelkuran, Burak; Aynacı, Engin; Kaya, Cem; Tekin, Ahmet Mahmut
2017-05-01
To compare intra-operative and post-operative effectiveness of fiber delivered CO 2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO 2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO 2 laser. The use of CO 2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea-hypopnea index scores showed better efficacy of CO 2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO 2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.
Shabnum, Tabasum; Ali, Zulfiqar; Naqash, Imtiaz Ahmad; Mir, Aabid Hussain; Azhar, Khan; Zahoor, Syed Amer; Mir, Abdul Waheed
2017-01-01
Sympathoadrenergic responses during emergence and extubation can lead to an increase in heart rate (HR) and blood pressure whereas increased airway responses may lead to coughing and laryngospasm. The aim of our study was to compare the effects of lignocaine administered intravenously (IV) or intratracheally on airway and hemodynamic responses during emergence and extubation in patients undergoing elective craniotomies. Sixty patients with physical status American Society of Anaesthesiologists Classes I and II aged 18-70 years, scheduled to undergo elective craniotomies were included. The patients were randomly divided into three groups of twenty patients; Group 1 receiving IV lignocaine and intratracheal placebo (IV group), Group 2 receiving intratracheal lignocaine and IV placebo (I/T group), and Group 3 receiving IV and intratracheal placebo (placebo group). The tolerance to the endotracheal tube was monitored, and number of episodes of cough was recorded during emergence and at the time of extubation. Hemodynamic parameters such as HR and blood pressure (systolic, diastolic, mean arterial pressure) were also recorded. There was a decrease of HR in both IV and intratracheal groups in comparison with placebo group ( P < 0.005). Rise in blood pressure (systolic blood pressure, diastolic blood pressure and mean arterial pressure) was comparable in both Groups 1 and 2 but was lower in comparison with placebo group ( P < 0.005). Cough suppression was comparable in all the three groups. Grade III cough (15%) was documented only in placebo group. Both IV and intratracheal lignocaine are effective in attenuation of hemodynamic response if given within 20 min from skull pin removal to extubation. There was comparable cough suppression through intratracheal route and IV routes than the placebo group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasalvia, Maria; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari; Castellani, Stefano
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalizedmore » airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the plasmamembrane. • CFTR overexpression changes morphology and actin organization. • CFBE cells absorb more apical fluid than wild type bronchial epithelial cells. • Fluid absorption is increased by disorganization of actin cytoskeleton.« less
Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei
2016-02-10
The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (P<0.05). In comparison, the histological changes showed that the lung tissue damage was smallest in group C compared to the three other groups. Aspect of patients, 0.45% NaCl group and 0.9% NaCl+ambroxol group were significantly different in the levels of SP-A, IL-6, IL-8 and TNF-α (P<0.01). In the present study, 0.9% NaCl+ambroxol promote the synthesis and secretion of pulmonary surfactant, and has anti-inflammatory and antioxidant effects, which inhibit the release of inflammatory factors and cytokines, making it an ideal airway humidification liquid. Copyright © 2015 Elsevier B.V. All rights reserved.
A Mechanism for Upper Airway Stability during Slow Wave Sleep
McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-01-01
Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001
Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub
2016-01-01
The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.
NASA Astrophysics Data System (ADS)
Rejiba, F.; Sagnard, F.; Schamper, C.
2011-07-01
Time domain reflectometry (TDR) is a proven, nondestructive method for the measurement of the permittivity and electrical conductivity of soils, using electromagnetic (EM) waves. Standard interpretation of TDR data leads to the estimation of the soil's equivalent electromagnetic properties since the wavelengths associated with the source signal are considerably greater than the microstructure of the soil. The aforementioned approximation tends to hide an important issue: the influence of the microstructure and phase configuration in the generation of a polarized electric field, which is complicated because of the presence of numerous length scales. In this paper, the influence of the microstructural distribution of each phase on the TDR signal has been studied. We propose a two-step EM modeling technique at a microscale range (?): first, we define an equivalent grain including a thin shell of free water, and second, we solve Maxwell's equations over the discretized, statistically distributed triphasic porous medium. Modeling of the TDR probe with the soil sample was performed using a three-dimensional finite difference time domain scheme. The effectiveness of this hybrid homogenization approach is tested on unsaturated Nemours sand with narrow granulometric fractions. The comparisons made between numerical and experimental results are promising, despite significant assumptions concerning (1) the TDR probe head and the coaxial cable and (2) the assumed effective medium theory homogenization associated with the electromagnetic processes arising locally between the liquid and solid phases at the grain scale.
Continuous positive airway pressure: Physiology and comparison of devices.
Gupta, Samir; Donn, Steven M
2016-06-01
Nasal continuous positive airway pressure (CPAP) is increasingly used for respiratory support in preterm babies at birth and after extubation from mechanical ventilation. Various CPAP devices are available for use that can be broadly grouped into continuous flow and variable flow. There are potential physiologic differences between these CPAP systems and the choice of a CPAP device is too often guided by individual expertise and experience rather than by evidence. When interpreting the evidence clinicians should take into account the pressure generation sources, nasal interface, and the factors affecting the delivery of pressure, such as mouth position and respiratory drive. With increasing use of these devices, better monitoring techniques are required to assess the efficacy and early recognition of babies who are failing and in need of escalated support. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lung dosimetry for inhaled long-lived radionuclides and radon progeny.
Hussain, M; Winkler-Heil, R; Hofmann, W
2011-05-01
The current version of the stochastic lung dosimetry model IDEAL-DOSE considers deposition in the whole tracheobronchial (TB) and alveolar airway system, while clearance is restricted to TB airways. For the investigation of doses produced by inhaled long-lived radionuclides (LLR) together with short-lived radon progeny, alveolar clearance has to be considered. Thus, present dose calculations are based on the average transport rates proposed for the revision of the ICRP human respiratory tract model. The results obtained indicate that LLR cleared from the alveolar region can deliver up to two to six times higher doses to the TB region when compared with the doses from directly deposited particles. Comparison of LLR doses with those of short-lived radon progeny indicates that LLR in uranium mines can deliver up to 5 % of the doses predicted for the short-lived radon daughters.
NASA Astrophysics Data System (ADS)
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
Quantification of lung microstructure with hyperpolarized 3He diffusion MRI
Sukstanskii, Alexander L.; Woods, Jason C.; Gierada, David S.; Quirk, James D.; Hogg, James C.; Cooper, Joel D.; Conradi, Mark S.
2009-01-01
The structure and integrity of pulmonary acinar airways and their changes in different diseases are of great importance and interest to a broad range of physiologists and clinicians. The introduction of hyperpolarized gases has opened a door to in vivo studies of lungs with MRI. In this study we demonstrate that MRI-based measurements of hyperpolarized 3He diffusivity in human lungs yield quantitative information on the value and spatial distribution of lung parenchyma surface-to-volume ratio, number of alveoli per unit lung volume, mean linear intercept, and acinar airway radii—parameters that have been used by lung physiologists for decades and are accepted as gold standards for quantifying emphysema. We validated our MRI-based method in six human lung specimens with different levels of emphysema against direct unbiased stereological measurements. We demonstrate for the first time MRI images of these lung microgeometric parameters in healthy lungs and lungs with different levels of emphysema (mild, moderate, and severe). Our data suggest that decreases in lung surface area per volume at the initial stages of emphysema are due to dramatic decreases in the depth of the alveolar sleeves covering the alveolar ducts and sacs, implying dramatic decreases in the lung's gas exchange capacity. Our novel methods are sufficiently sensitive to allow early detection and diagnosis of emphysema, providing an opportunity to improve patient treatment outcomes, and have the potential to provide safe and noninvasive in vivo biomarkers for monitoring drug efficacy in clinical trials. PMID:19661452
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...
2017-04-13
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareige, P.; Russell, K.F.; Stoller, R.E.
1998-03-01
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less
Stable Eutectoid Transformation in Nodular Cast Iron: Modeling and Validation
NASA Astrophysics Data System (ADS)
Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.
2017-01-01
This paper presents a new microstructural model of the stable eutectoid transformation in a spheroidal cast iron. The model takes into account the nucleation and growth of ferrite grains and the growth of graphite spheroids. Different laws are assumed for the growth of both phases during and below the intercritical stable eutectoid. At a microstructural level, the initial conditions for the phase transformations are obtained from the microstructural simulation of solidification of the material, which considers the divorced eutectic and the subsequent growth of graphite spheroids up to the initiation of the stable eutectoid transformation. The temperature field is obtained by solving the energy equation by means of finite elements. The microstructural (phase change) and macrostructural (energy balance) models are coupled by a sequential multiscale procedure. Experimental validation of the model is achieved by comparison with measured values of fractions and radius of 2D view of ferrite grains. Agreement with such experiments indicates that the present model is capable of predicting ferrite phase fraction and grain size with reasonable accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin
Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less
Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa
2016-08-01
For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.
Physical principle of airway design in human lungs
NASA Astrophysics Data System (ADS)
Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young
2014-11-01
From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.
Su, Mei; Huai, De; Cao, Juan; Ning, Ding; Xue, Rong; Xu, Meijie; Huang, Mao; Zhang, Xilong
2018-03-01
Although bilevel positive airway pressure (Bilevel PAP) therapy is usually used for overlap syndrome (OS), there is still a portion of OS patients in whom Bilevel PAP therapy could not simultaneously eliminate residual apnea events and hypercapnia. The current study was expected to explore whether auto-trilevel positive airway pressure (auto-trilevel PAP) therapy with auto-adjusting end expiratory positive airway pressure (EEPAP) can serve as a better alternative for these patients. From January of 2014 to June of 2016, 32 hypercapnic OS patients with stable chronic obstructive pulmonary diseases (COPD) and moderate-to-severe obstructive sleep apnea syndrome (OSAS) were recruited. Three variable modes of positive airway pressure (PAP) from the ventilator (Prisma25ST, Weinmann Inc., Germany) were applicated for 8 h per night. We performed the design of each mode at each night with an interval of two nights with no PAP treatment as a washout period among different modes. In Bilevel-1 mode (Bilevel-1), the expiratory positive airway pressure (EPAP) delivered from Bilevel PAP was always set as the lowest PAP for abolishment of snoring. For each patient, the inspiratory positive airway pressure (IPAP) was constantly set the same as the minimal pressure for keeping end-tidal CO 2 (ETCO 2 ) ≤45 mmHg for all three modes. However, the EPAP issued by Bilevel PAP in Bilevel-2 mode (Bilevel-2) was kept 3 cmH 2 O higher than that in Bilevel-1. In auto-trilevel mode (auto-trilevel) with auto-trilevel PAP, the initial part of EPAP was fixed at the same PAP as that in Bilevel-1 while the EEPAP was automatically regulated to rise at a range of ≤4 cmH 2 O based on nasal airflow wave changes. Comparisons were made for parameters before and during or following treatment as well as among different PAP therapy modes. The following parameters were compared such as nocturnal apnea hypopnea index (AHI), minimal SpO 2 (minSpO 2 ), arousal index, sleep structure and efficiency, morning PaCO 2 , and daytime Epworth Sleepiness Scale (ESS). Compared with the parameters before PAP therapies, during each mode of PAP treatment, significant reduction was detected in nocturnal AHI, arousal index, morning PaCO 2 , and daytime ESS while significant elevation was revealed in nocturnal minSpO 2 and sleep efficiency (all P < 0.01). Comparison among three PAP modes indicated that under the same IPAP, the auto-trilevel PAP mode could result in the lowest arousal index, daytime ESS, and the highest sleep efficiency. Compared with Bilevel-1, it was detected that (a) AHI was lower but minSpO 2 was higher in both Bilevel-2 and auto-trilevel (all P < 0.05) and (b) morning PaCO 2 showed no statistical difference from that in auto-trilevel but displayed higher in Bilevel-2 (P < 0.05). Compared with Bilevel-2, in auto-trilevel, both AHI and minSpO 2 showed no obvious changes (all P > 0.05) except with a lower morning PaCO 2 (P < 0.05). Auto-trilevel PAP therapy was superior over conventional Bilevel PAP therapy for hypercapnic OS patients with their OSAS moderate to severe, since auto-trilevel PAP was more efficacious in synchronous elimination of residual obstructive apnea events and CO 2 retention as well as in obtaining a better sleep quality and milder daytime drowsiness.
NASA Astrophysics Data System (ADS)
Chen, Zhiguo; Ren, Jieke; Zhang, Jishuai; Chen, Jiqiang; Fang, Liang
2016-02-01
Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth
2014-01-01
Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less
Large area ultraviolet photodetector on surface modified Si:GaN layers
NASA Astrophysics Data System (ADS)
Anitha, R.; R., Ramesh; Loganathan, R.; Vavilapalli, Durga Sankar; Baskar, K.; Singh, Shubra
2018-03-01
Unique features of semiconductor based heterostructured photoelectric devices have drawn considerable attention in the recent past. In the present work, large area UV photodetector has been fabricated utilizing interesting Zinc oxide microstructures on etched Si:GaN layers. The surface of Si:GaN layer grown by metal organic chemical vapor deposition method on sapphire has been modified by chemical etching to control the microstructure. The photodetector exhibits response to Ultraviolet light only. Optimum etching of Si:GaN was required to exhibit higher responsivity (0.96 A/W) and detectivity (∼4.87 × 109 Jones), the two important parameters for a photodetector. Present method offers a tunable functionality of photodetector through modification of top layer microstructure. A comparison with state of art materials has also been presented.
Phan Huy, Minh Châu; Laffont, Guillaume; Dewynter, Véronique; Ferdinand, Pierre; Labonté, Laurent; Pagnoux, Dominique; Roy, Philippe; Blanc, Wilfried; Dussardier, Bernard
2006-10-30
We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.
Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.
2016-03-01
The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.
2009-01-01
The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.
2012-01-01
An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.
Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara
2011-08-01
The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.
Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei
2013-04-01
The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Nakstad, Anders R; Bredmose, Per P; Sandberg, Mårten
2013-07-26
A large number of techniques and devices for cricothyroidotomy have been developed. In this study, the Portex™ Cricothyroidotomy Kit (PCK, Smiths Medical Ltd, Hythe, UK) was compared with the bougie assisted emergency surgical cricothyrotomy technique (BACT). Twenty air ambulance anaesthesiologists performed emergency cricothyrotomy on a cadaveric porcine airway model using both PCK and BACT. Baseline performance and performance after the intensive training package were recorded. Success rate, time to secured airway and tracheal damage were the primary endpoints, and confidence rating was a secondary endpoint. During baseline testing, success rates for PCK and BACT were 60% and 95%, respectively. Tracheal injury rate with PCK was 60% while no such injury was found in BACT. A lecture was given and skills were trained until the participants were able to perform five consecutive successful procedures with both techniques. In the post-training test, all participants were successful with either technique. The mean time to successful insertion was reduced by 15.7 seconds (from 36.3 seconds to 20.6 seconds, p< 0.001) for PCK and by 7.8 seconds (from 44.9 seconds to 37.1 seconds, p=0.021) for BACT. In the post-training scenario, securing the airway with PCK was significantly faster than with BACT (p<0.001). Post-training tracheal laceration occurred in six (30%) of the PCK procedures and in none of the BACT procedures (p=0.028). Testing the base-line PCK skills of prehospital anaesthesiologists revealed low confidence, sub-optimal performance and a very high failure rate. The BACT technique demonstrated a significantly higher success rate and no tracheal damage. In spite of PCK being a significantly faster technique in the post-training test, the anaesthesiologists still reported a higher confidence in BACT. Limitations of the cadaveric porcine airway may have influenced this study because the airway did not challenge the clinicians with realistic tissue bleeding.
Pavoni, Chiara; Cretella Lombardo, Elisabetta; Franchi, Lorenzo; Lione, Roberta; Cozza, Paola
2017-10-01
To evaluate the craniofacial changes induced by functional appliances with special regard to the oro and nasopharyngeal sagittal airway dimensions in subjects with dentoskeletal Class II malocclusions when compared with an untreated Class II control group immediately after therapy and at long-term observation. A group of 40 patients (21 females and 19 males) with Class II malocclusion treated consecutively either with a Bionator or an Activator followed by fixed appliances was compared with a matched control group of 31 subjects (16 females and 15 males) with untreated Class II malocclusion. The treated sample was evaluated at T1, start of treatment (mean age: 9.9 ± 1.4 years); T2, end of functional treatment and prior to fixed appliances (mean age: 11.9 ± 1.3 years); and T3, long-term observation at the end of growth (mean age: 18.2 ± 2.1 years). Statistical comparisons were performed with independent sample t tests at T1 (baseline characteristics) and for the T1-T2, T2-T3, and T1-T3 changes. During active treatment the treated group showed a significant increment in lower airway dimension (PNS-AD1), as well as a significant improvement in the upper airway dimension (PNS-AD2). A significant decrease in the upper adenoid size (AD2-H) was also found. In the longterm evaluation, a significant increase in both lower and upper airway thickness (PNS-AD1; PNS-AD2) and a significant decrease in the upper adenoid thickness were still present in the treated group. The treatment with functional appliances produced significant favorable changes during active treatment in the oro- and nasopharyngeal sagittal airway dimensions in dentoskeletal Class II subjects when compared with untreated controls, and these changes were stable in the long-term. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of Airway Control Methods and Ventilation Success with an Automatic Resuscitator
2015-10-08
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...completing and reviewing this collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information ...including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations
A new universal laryngoscope blade: a preliminary comparison with Macintosh laryngoscope blades.
Gerlach, Klaus; Wenzel, Volker; von Knobelsdorff, Georg; Steinfath, Markus; Dörges, Volker
2003-04-01
The Dörges universal laryngoscope blade has several features designed to facilitate tracheal intubation. The number of laryngoscope blades may be reduced from four to two, or even one, which indicate less space requirement and costs. This new universal laryngoscope blade, has a lower profile (height 15 vs. 22 mm) than a Macintosh laryngoscope blade size 3 and 4, which may facilitate manoeuvring of the laryngoscope in the mouth. In random order, 40 non-anaesthesia senior house officers used a Macintosh laryngoscope blade size 3 or 4 in an adult airway management trainer, a Macintosh laryngoscope blade size 2 in a paediatric airway management trainer, and the Dörges universal laryngoscope blade for both airway management trainers to perform orotracheal intubation. The number of intubation attempts and failures was counted. Participants reported the laryngoscopic view according to Cormack and Lehane. The time from touching the laryngoscope to the first adequate lung insufflation was measured, and subjective assessment regarding handling of both blades was recorded. Number of intubation failures, the laryngoscopic view according to Cormack and Lehane, and subjective assessment was comparable between groups. Orotracheal intubation of the adult airway management trainer with the Dörges universal laryngoscope blade took significantly less time compared to the Macintosh laryngoscope blades (14 (7-57) vs. 20 (8-43) s; P<0.001); all other intubating times were comparable. In conclusion, in this model, the Dörges universal laryngoscope blade was comparable to the Macintosh laryngoscope blades size 2-4, and may save time, cost and space.
Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT
NASA Astrophysics Data System (ADS)
Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.
2014-03-01
To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.
Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children
Luo, Haiyan; Persak, Steven C.; Sin, Sanghun; McDonough, Joseph M.; Isasi, Carmen R.; Arens, Raanan
2013-01-01
Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength of correlation between various CFD endpoints, anatomical endpoints, and OSAS severity, in obese children with OSAS and controls. CFD models derived from magnetic resonance images were solved at subject-specific peak tidal inspiratory flow; pressure at the choanae was set by nasal resistance. Model endpoints included airway wall minimum pressure (Pmin), flow resistance in the pharynx (Rpharynx), and pressure drop from choanae to a minimum cross section where tonsils and adenoids constrict the pharynx (dPTAmax). Significance of endpoints was analyzed using paired comparisons (t-test or Wilcoxon signed rank test) and Spearman correlation. Fifteen subject pairs were analyzed. Rpharynx and dPTAmax were higher in OSAS than control and most significantly correlated to obstructive apnea-hypopnea index (oAHI), r = 0.48 and r = 0.49, respectively (P < 0.01). Airway minimum cross-sectional correlation to oAHI was weaker (r = −0.39); Pmin was not significantly correlated. CFD model endpoints based on pressure drops in the pharynx were more closely associated with the presence and severity of OSAS than pressures including nasal resistance, or anatomical endpoints. This study supports the usefulness of CFD to characterize anatomical restriction of the pharynx and as an additional tool to evaluate subjects with OSAS. PMID:24265282
Comparison of voluntary and reflex cough effectiveness in Parkinson’s disease
Hegland, Karen Wheeler; Troche, Michelle S.; Brandimore, Alexandra E.; Davenport, Paul W.; Okun, Michael S.
2016-01-01
Introduction Multiple airway protective mechanisms are impacted with Parkinson’s disease (PD), including swallowing and cough. Cough serves to eject material from the lower airways, and can be produced voluntarily (on command) and reflexively in response to aspirate material or other airway irritants. Voluntary cough effectiveness is reduced in PD however it is not known whether reflex cough is affected as well. The goal of this study was to compare the effectiveness between voluntary and reflex cough in patients with idiopathic PD. Methods Twenty patients with idiopathic PD participated. Cough airflow data were recorded via facemask in line with a pneumotachograph. A side delivery port connected the nebulizer for delivery of capsaicin, which was used to induce cough. Three voluntary coughs and three reflex coughs were analyzed from each participant. A two-way repeated measures analysis of variance was used to compare voluntary versus reflex cough airflow parameters. Results Significant differences were found for peak expiratory flow rate (PEFR) and cough expired volume (CEV) between voluntary and reflex cough. Specifically, both PEFR and CEV were reduced for reflex as compared to voluntary cough. Conclusion Cough PEFR and CEV are indicative of cough effectiveness in terms of the ability to remove material from the lower airways. Differences between these two cough types likely reflect differences in the coordination of the respiratory and laryngeal subsystems. Clinicians should be aware that evaluation of cough function using voluntary cough tasks overestimates the PEFR and CEV that would be achieved during reflex cough in patients with PD. PMID:25246315
Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G
2007-01-01
Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839
Szarpak, Lukasz; Smereka, Jacek; Ladny, Jerzy R
2017-05-01
In the difficult airway, the intubation skills are critically important. In selected cases, particularly in airway edema, laryngeal or tongue edema, endotracheal intubation can turn out very difficult, and repeated attempts may even worsen the airway edema, causing trauma and bleeding, and finally leading to complete airway obstruction and inability to ventilate the patient. The aim of the study was to compare the efficacy of endotracheal intubation performed by novice physicians using a standard Macintosh laryngoscope and an Intubrite videolaryngoscope. The study was designed as a prospective, randomized, crossover, simulation study and continues our research assessing the effectiveness of selected endotracheal intubation techniques in prehospital settings. All participants were experienced with the Macintosh direct laryngoscope but remained novice to videolaryngoscopy. Instructions on the correct use of the Macintosh and Intubrite laryngoscopes were given before the procedure, and all the 30 novice physicians were allowed to practice at least 10 times before the study on manikin with normal airways. We employed an airway manikin (Trucorp Airsim Bronchi; Trucorp Ltd., Belfast, Northern Ireland) to simulate difficult airway, with was obtained by inflating the tongue with 50mL of air. The participants were asked to perform tracheal intubation using an endotracheal tube with 7.5mm of internal diameter (Portex; Smiths Medical, Hythe, UK) through the vocal cords, applying either a conventional Macintosh laryngoscope with a size 3 blade (MAC; Mercury Medical, Clearwater, FL, USA) or the Intubrite videolaryngoscope, also with a Macintosh No. 3 blade (INT; Intubrite Llc, Vista, CA, USA). In both intubation techniques, a guide stylet (Rusch Inc., Duluth, GA, USA) was introduced into the endotracheal tube in order to obtain a C-shape curve to facilitate tracheal intubation. Each participating physician was randomly assigned to three attempts of tracheal intubation with each device. The effectiveness of the first intubation attempt using MAC and INT was 63.6% and 53.4%, respectively (p=0.023), and the total percentage of intubation was 100% for both methods. The median time to intubation was 29.5 (interquartile range [IQR], 27-35.5) s with MAC, and 229 (IQR, 25.5-37) s with INT. The total of 24 physicians out of all study participants would choose MAC as a device to intubate with in real terms, while only 6 physicians would choose INT. During the simulation study, the novice physicians were able to perform endotracheal intubation at the same time using both the Macintosh and Intubrite videolaryngoscope. However, the efficacy of the first intubation attempt was higher for MAC. Further studies are needed to confirm the results. Copyright © 2017 Elsevier Inc. All rights reserved.
Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.
2016-01-01
Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271
Investigating the geometry of pig airways using computed tomography
NASA Astrophysics Data System (ADS)
Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.
2015-03-01
Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.
Khan, Ahmad Raza; Hansen, Brian; Wiborg, Ove; Kroenke, Christopher D; Jespersen, Sune Nørhøj
2018-02-15
Chronic mild stress (CMS) induced depression elicits several debilitating symptoms and causes a significant economic burden on society. High variability in the symptomatology of depression poses substantial impediment to accurate diagnosis and therapy outcome. CMS exposure induces significant metabolic and microstructural alterations in the hippocampus (HP), prefrontal cortex (PFC), caudate-putamen (CP) and amygdala (AM), however, recovery from these maladaptive changes are limited and this may provide negative effects on the therapeutic treatment and management of depression. The present study utilized anhedonic rats from the unpredictable CMS model of depression to study metabolic recovery in the ventral hippocampus (vHP) and microstructural recovery in the HP, AM, CP, and PFC. The study employed 1 H MR spectroscopy ( 1 H MRS) and in-vivo diffusion MRI (d-MRI) at the age of week 18 (week 1 post CMS exposure) week 20 (week 3 post CMS) and week 25 (week 8 post CMS exposure) in the anhedonic group, and at the age of week 18 and week 22 in the control group. The d-MRI data have provided an array of diffusion tensor metrics (FA, MD, AD, and RD), and fast kurtosis metrics (MKT, W L and W T ). CMS exposure induced a significant metabolic alteration in vHP, and significant microstructural alterations were observed in the HP, AM, and PFC in comparison to the age match control and within the anhedonic group. A significantly high level of N-acetylaspartate (NAA) was observed in vHP at the age of week 18 in comparison to age match control and week 20 and week 25 of the anhedonic group. HP and AM showed significant microstructural alterations up to the age of week 22 in the anhedonic group. PFC showed significant microstructural alterations only at the age of week 18, however, most of the metrics showed significantly higher value at the age of week 20 in the anhedonic group. The significantly increased NAA concentration may indicate impaired catabolism due to astrogliosis or oxidative stress. The significantly increased W L in the AM and HP may indicate hypertrophy of AM and reduced volume of HP. Such metabolic and microstructural alterations could be useful in disease diagnosis and follow-up treatment intervention in depression and similar disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
The Development and Application of Airway Devices in China
Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong
2017-01-01
Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485
Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama
2014-11-01
To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couturier, Laurent, E-mail: laurent.couturier55@ho
The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniquesmore » is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.« less
Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan
2017-07-12
Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive to real time particle concentration and size distribution. Averaged particle concentration over 24-h period will inevitably misrepresent the sensible information critical for realistic inhalation risk assessment. Particle size distribution carries very important information in determining human airway dosimetry. A pure number or mass concentration recommendation on the exposure limit at workplace is insufficient. A particle size distribution, together with the deposition equations, is critical to recognize the actual exposure risks. In addition, human airway dosimetry in number, mass and surface area varies significantly. A complete inhalation risk assessment requires the knowledge of toxicity mechanisms in response to each individual metric. Further improvements in these areas are needed.
Rustagi, Preeti; Patkar, Geeta A; Ourasang, Anil Kumar; Tendolkar, Bharati A
2017-02-01
A sustained and effective oropharyngeal sealing with supraglottic airway is required to maintain the ventilation during laparoscopic surgery. Previous studies have observed the Oropharyngeal Seal Pressure (OSP) for Proseal Laryngeal Mask Airway (PLMA) after pneumoperitoneum in supine and trendelenburg position, where PLMA was found to be an effective airway device. This study was conducted with ProSeal LMA, for laparoscopic Urologic procedures done in lateral position. To measure OSP in supine and lateral position and to observe the effect of pneumoperitoneum in lateral position on OSP. Secondary objectives were to assess adequacy of ventilation and incidence of adverse events. A total number of 25 patients of American Society of Anaesthesiologists (ASA) physical status II and I were enrolled. After induction of anaesthesia using a standardized protocol, PLMA was inserted. Ryle's tube was inserted through drain tube. The position of PLMA was confirmed with ease of insertion of Ryle's tube and fibreoptic grading of vocal cords. Patients were then put in lateral position. The OSP was measured in supine position. This value was baseline comparison for OSP in lateral position and that after pneumoperitoneum. We assessed the efficacy of PLMA for ventilation, after carboperitoneum in lateral position (peak airway pressure, End Tidal Carbon dioxide (EtCO 2 ), SPO 2 ). Incidence of adverse effects (displacement of device, gastric insufflation, regurgitation, coughing, sore throat, blood on device, trauma) was also noted. The OSP was above Peak Airway Pressure (PAP) in supine (22.1±5.4 and 15.4±4.49cm of H 2 O) and lateral position (22.6±5.3 and 16.1±4.6). After pneumoperitoneum, which was in lateral position, there was statistically significant (p-value <0.05) increase in both PAP (19.96±4.015) and OSP (24.32±4.98, p-value 0.03). There was no intraoperative displacement of PLMA. There was no event of suboptimal oxygenation. EtCO 2 was always within normal limits. Gastric insufflation was present in one patient. One patient had coughing and blood was detected on device. Three patients had throat discomfort post-operatively. In this study, Oropharyngeal seal pressures with PLMA were found to increase after pneumoperitoneum in lateral position. PLMA forms an effective seal around airway and is an efficient and safe alternative for airway management in urological laparoscopic surgeries done in lateral position.
Clay, Candice C.; Reader, J. Rachel; Gerriets, Joan E.; Wang, Theodore T.; Harrod, Kevin S.
2014-01-01
ABSTRACT Influenza is the cause of significant morbidity and mortality in pediatric populations. The contribution of pulmonary host defense mechanisms to viral respiratory infection susceptibility in very young children is poorly understood. As a surrogate to compare mucosal immune responses of infant and adult lungs, rhesus monkey primary airway epithelial cell cultures were infected with pandemic influenza A/H1N1 virus in vitro. Virus replication, cytokine secretion, cell viability, and type I interferon (IFN) pathway PCR array profiles were evaluated for both infant and adult cultures. In comparison with adult cultures, infant cultures showed significantly increased levels of H1N1 replication, reduced alpha interferon (IFN-α) protein synthesis, and no difference in cell death following infection. Age-dependent differences in expression levels of multiple genes associated with the type I IFN pathway were observed in H1N1-infected cultures. To investigate the pulmonary and systemic responses to H1N1 infection in early life, infant monkeys were inoculated with H1N1 by upper airway administration. Animals were monitored for virus and parameters of inflammation over a 14-day period. High H1N1 titers were recovered from airways at day 1, with viral RNA remaining detectable until day 9 postinfection. Despite viral clearance, bronchiolitis and alveolitis persisted at day 14 postinfection; histopathological analysis revealed alveolar septal thickening and intermittent type II pneumocyte hyperplasia. Our overall findings are consistent with the known susceptibility of pediatric populations to respiratory virus infection and suggest that intrinsic developmental differences in airway epithelial cell immune function may contribute to the limited efficacy of host defense during early childhood. IMPORTANCE To the best of our knowledge, this study represents the first report of intrinsic developmental differences in infant airway epithelial cells that may contribute to the increased susceptibility of the host to respiratory virus infections. Despite the global burden of influenza, there are currently no vaccine formulations approved for children <6 months of age. Given the challenges of conducting experimental studies involving pediatric patients, rhesus monkeys are an ideal laboratory animal model to investigate the maturation of pulmonary mucosal immune mechanisms during early life because they are most similar to those of humans with regard to postnatal maturation of the lung structure and the immune system. Thus, our findings are highly relevant to translational medicine, and these data may ultimately lead to novel approaches that enhance airway immunity in very young children. PMID:24741104
Hoffman, Benjamin; Wingenbach, Dustin D; Kagey, Amy N; Schaneman, Justin L; Kasper, David
2010-05-01
To assess the impact on health plan and disability costs associated with continuous positive airway pressure or bi-level positive airway pressure treatment of obstructive sleep apnea in a commercial motor vehicle driver population. A retrospective, pre/post claims-based comparison analysis was performed. Health plan and disability costs, in addition to disability claimant rates and missed workdays were compared for the 12 months before treatment to the 24 months after treatment. Health plan costs were significantly lower in both the first and second years after treatment. Short-term disability metrics also exhibited favorable results, with approximately half as many using the benefit, lower costs, and fewer missed workdays in the postperiod. Effective treatment of obstructive sleep apnea in drivers is associated with lower health care and disability costs and fewer missed workdays.
[AWAKE CRANIOTOMY: IN SEARCH FOR OPTIMAL SEDATION].
Kulikova, A S; Sel'kov, D A; Kobyakov, G L; Shmigel'skiy, A V; Lubnin, A Yu
2015-01-01
Awake craniotomy is a "gold standard"for intraoperative brain language mapping. One of the main anesthetic challenge of awake craniotomy is providing of optimal sedation for initial stages of intervention. The goal of this study was comparison of different technics of anesthesia for awake craniotomy. Materials and methods: 162 operations were divided in 4 groups: 76 cases with propofol sedation (2-4mg/kg/h) without airway protection; 11 cases with propofol sedation (4-5 mg/kg/h) with MV via LMA; 36 cases of xenon anesthesia; and 39 cases with dexmedetomidine sedation without airway protection. Results and discussion: brain language mapping was successful in 90% of cases. There was no difference between groups in successfulness of brain mapping. However in the first group respiratory complications were more frequent. Three other technics were more safer Xenon anesthesia was associated with ultrafast awakening for mapping (5±1 min). Dexmedetomidine sedation provided high hemodynamic and respiratory stability during the procedure.
Heiser, Clemens; Knopf, Andreas; Hofauer, Benedikt
2017-12-01
Selective upper airway stimulation (UAS) has shown effectiveness in treating patients with obstructive sleep apnea (OSA). The terminating branches of the hypoglossal nerve show a wide complexity, requiring careful discernment of a functional breakpoint between branches for inclusion and exclusion from the stimulation cuff electrode. The purpose of this study was to describe and categorize the topographic phenotypes of these branches. Thirty patients who received an implant with selective UAS from July 2015 to June 2016 were included. All implantations were recorded using a microscope and resultant tongue motions were captured perioperatively for comparison. Eight different variations of the branches were encountered and described, both in a tabular numeric fashion and in pictorial schema. The examinations showed the complex phenotypic surgical anatomy of the hypoglossal nerve. A schematic classification system has been developed to help surgeons identify the optimal location for cuff placement in UAS. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.
2014-01-15
In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less
Kowalski, Aleksander; Ozgowicz, Wojciech; Jurczak, Wojciech; Grajcar, Adam; Boczkal, Sonia; Żelechowski, Janusz
2018-01-01
The paper presents results of the investigations on the effect of low-temperature thermomechanical treatment (LTTT) on the microstructure of AlZn6Mg0.8Zr alloy (7000 series) and its mechanical properties as well as electrochemical and stress corrosion resistance. For comparison of the LTTT effect, the alloy was subjected to conventional precipitation hardening. Comparative studies were conducted in the fields of metallographic examinations and static tensile tests. It was found that mechanical properties after the LTTT were better in comparison to after conventional heat treatment (CHT). The tested alloy after low-temperature thermomechanical treatment with increasing plastic deformation shows decreased electrochemical corrosion resistance during potentiodynamic tests. The alloy after low-temperature thermomechanical treatment with deformation degree in the range of 10 to 30% is characterized by a high resistance to stress corrosion specified by the level of PSCC indices. PMID:29642448
Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri
2018-03-01
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.
Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri
2018-01-01
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515
The effect of prone position on respiratory mechanics during spinal surgery.
Manna, Essam M; Ibraheim, Osama A; Samarkandi, Abdulhamid H; Alotaibi, Wadha M; Elwatidy, Sherif M
2005-10-01
To study the effect of prone position on respiratory mechanics during spine surgery. Prospective study. Elective spine surgery at a university hospital. 12 ASA physical I & II with no coexisting cardiorespiratory disease undergoing cervical or lumbar laminectomy under general anesthesia in prone position. Ten min after induction of general anesthesia and endotracheal intubation, while patients were in supine position, the following measurements were taken using anesthesia delivery unit (Datex Ohmeda type A_Elec, Promma, Sweden): peak airway pressure (Ppeak), peak plataeu pressure (Pplat), peak mean pressure (Pmean) and dynamic lung compliance (DLC). The same measurements were recorded 10 min after placing patients into prone position. At the end of surgery and 5 min after turning the patients supine and before tracheal extubation, the same measurements were again recorded. The results expressed as means +/- sd. One way ANOVA was used for analysis of differences in the data before, during prone position and after turning patients supine at the end of the procedure. For all comparisons p < 0.05 was considered significant. During prone position there was significant reduction in DLC and significant increase in airway pressures. We conclude that turning the patients form supine to prone position during anesthesia for spine surgery caused significant decrease of DLC and significant increase of airway pressure.
Comparison of SPECT aerosol deposition data with a human respiratory tract model.
Fleming, John S; Epps, Ben P; Conway, Joy H; Martonen, Ted B
2006-01-01
Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. In this study, two different nebulizers have been used to deliver radiolabeled aerosols of different particle size to 12 human subjects. Medical imaging has been used to assess the deposition in the body. The deposition pattern has also been estimated using the International Commission on Radiological Protection (ICRP) empirical model and compared to values obtained by experiment. The results showed generally good agreement between model and experiment for both aerosols for the deposition in the extrathoracic and conducting airways. However, there were significant differences in the fate of the remainder of the aerosol between the amount deposited in the alveolar region and that exhaled. The inter-subject variability of deposition predicted by the model was significantly less than that measured, for all regions of the body. The model predicted quite well the differences in deposition distribution pattern between the two aerosols. In conclusion, this study has shown that the ICPR model of inhaled aerosol deposition shows areas of good agreement with results from experiment. However, there are also areas of disagreement, which may be explained by hygroscopic particle growth and individual variation in airway anatomy.
Wine, Jeffrey J.
2007-01-01
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences. Introduction and overviewProtecting the Airways: mucus and submucosal glands.The airway intrinsic nervous system: a special role in innate defense?Innate defense: prophylactic secretion and local responses.Acute ‘Emergency’ airway defense reflexesAirway receptors: Improved methods reveal greater diversityHijacking emergency defense for innate defense: receptor plasticity and airways sensitization.Conclusion: Implications for cystic fibrosis and lung transplantation. PMID:17350348
Intrathoracic airway wall detection using graph search and scanner PSF information
NASA Astrophysics Data System (ADS)
Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan
1997-05-01
Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.
Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature
NASA Astrophysics Data System (ADS)
Keya, Tahmina
This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be considered when suitable as far as design modification is concerned. Above all, this study reveals important information about the pattern of microstructure, thus heat transfer mechanism inside a part which is useful to understand the SLM process.
Airway morphometry in the lungs as depicted in chest CT examinations variability of measurements
NASA Astrophysics Data System (ADS)
Leader, J. K.; Zheng, Bin; Scuirba, Frank C.; Coxson, Harvey O.; Weissfeld, Joel L.; Fuhrman, Carl R.; Maitz, Glenn S.; Gur, David
2006-03-01
The purpose of the study was to decrease the variability of computed tomographic airway measurements. We to developed and evaluated a novel computer scheme to automatically segment airways depicted on chest CT examinations at the level of the lobar and segmental bronchi and to decrease. The computer scheme begins with manual selection of a seed point within the airway from which the airway wall and lumen are automatically segmented and airway pixels were assigned full or partial membership to the lumen or wall. Airway pixels not assigned full membership to the lumen (< -900 HU) or wall (> 0 HU) were assigned partial membership to the lumen and wall. In fifteen subjects with no visible signs of emphysema and a range of pulmonary obstruction from none to severe, airway measures were compared to pulmonary function parameters in a rank order analysis to evaluate measuring a single airway versus multiple airways. The quality of the automated airway segmentation was visually acceptable. The Pearson Correlation coefficients for the ranking of FEV I versus wall area percent (percent of total airway size) and FVC versus wall area percent were 0.164 and 0.175 for a single measurement, respectively, and were 0.243 and 0.239 for multiple measurements, respectively. Our preliminary results suggest that averaging the measurements from multiple airways may improve the relation between airway measures and lung function compared to measurement from a single airway, which improve quantification of airway remodeling in COPD patients.
Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.
2001-01-01
The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.
In situ optical microscopy of the martensitic phase transformation of lithium
NASA Astrophysics Data System (ADS)
Krystian, M.; Pichl, W.
2000-12-01
The phase transformation of lithium was investigated by in situ optical microscopy in a helium cryostat. The martensite microstructure is composed of irregular segments which grow in rapid bursts from many nuclei to a final size of 10 to 20 μm and then are immobilized. A major part of the segments is arranged in groups of parallel lamellas. A theoretical consideration of lattice compatibility predicts the existence of an almost perfectly coherent habit-plane interface between bcc and 9R in lithium. Therefore, the irregular microstructure is interpreted by the presence of the disordered polytype phase. Comparison with an earlier investigation in comparably impure lithium indicates a strong influence of impurities on the transformation mechanism. The connections between the low-temperature phase diagram, the geometrical compatibility condition, and the martensite microstructure are discussed.
Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Raj, S. V.; Locci, I. E.
2001-01-01
The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.
Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi
2012-12-01
Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.
[Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation].
Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed
2016-01-01
Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Upper airway morphology in Down Syndrome patients under dexmedetomidine sedation.
Subramanyam, Rajeev; Fleck, Robert; McAuliffe, John; Radhakrishnan, Rupa; Jung, Dorothy; Patino, Mario; Mahmoud, Mohamed
2016-01-01
Children with Down Syndrome are vulnerable to significant upper airway obstruction due to relative macroglossia and dynamic airway collapse. The objective of this study was to compare the upper airway dimensions of children with Down Syndrome and obstructive sleep apnea with normal airway under dexmedetomidine sedation. IRB approval was obtained. In this retrospective study, clinically indicated dynamic sagittal midline magnetic resonance images of the upper airway were obtained under low (1mcg/kg/h) and high (3mcg/kg/h) dose dexmedetomidine. Airway anteroposterior diameters and sectional areas were measured as minimum and maximum dimensions by two independent observers at soft palate (nasopharyngeal airway) and at base of the tongue (retroglossal airway). Minimum anteroposterior diameter and minimum sectional area at nasopharynx and retroglossal airway were significantly reduced in Down Syndrome compared to normal airway at both low and high dose dexmedetomidine. However, there were no significant differences between low and high dose dexmedetomidine in both Down Syndrome and normal airway. The mean apnea hypopnea index in Down Syndrome was 16±11. Under dexmedetomidine sedation, children with Down Syndrome and obstructive sleep apnea when compared to normal airway children show significant reductions in airway dimensions most pronounced at the narrowest points in the nasopharyngeal and retroglossal airways. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Rindt, Hansjorg; Grobman, Megan E.; Graham, Amber; Bishop, Kaitlin; Cohn, Leah A.; Reinero, Carol R.
2017-01-01
Advances in the field of metagenomics using culture-independent methods of microbial identification have allowed characterization of rich and diverse communities of bacteria in the lungs of healthy humans, mice, dogs, sheep and pigs. These data challenge the long held belief that the lungs are sterile and microbial colonization is synonymous with pathology. Studies in humans and animals demonstrate differences in the composition of airway microbiota in health versus disease suggesting respiratory dysbiosis occurs. Using 16S rRNA amplicon sequencing of DNA extracted from rectal and oropharyngeal (OP) swabs, bronchoalveolar lavage fluid (BALF), and blood, our objective was to characterize the fecal, OP, blood, and lower airway microbiota over time in healthy cats. This work in healthy cats, a species in which a respiratory microbiota has not yet been characterized, sets the stage for future studies in feline asthma in which cats serve as a comparative and translational model for humans. Fecal, OP and BALF samples were collected from six healthy research cats at day 0, week 2, and week 10; blood was collected at week 10. DNA was extracted, amplified via PCR, and sequenced using the Illumina MiSeq platform. Representative operational taxonomic units (OTUs) were identified and microbial richness and diversity were assessed. Principal component analysis (PCA) was used to visualize relatedness of samples and PERMANOVA was used to test for significant differences in microbial community composition. Fecal and OP swabs provided abundant DNA yielding a mean±SEM of 65,653±6,145 and 20,6323±4,360 sequences per sample, respectively while BALF and blood samples had lower coverage (1,489±430 and 269±18 sequences per sample, respectively). Oropharyngeal and fecal swabs were significantly richer than BALF (mean number OTUs 93, 88 and 36, respectively; p < 0.001) with no significant difference (p = 0.180) in richness between time points. PCA revealed site-specific microbial communities in the feces, and upper and lower airways. In comparison, blood had an apparent compositional similarity with BALF with regard to a few dominant taxa, but shared more OTUs with feces. Samples clustered more by time than by individual, with OP swabs having subjectively greater variation than other samples. In summary, healthy cats have a rich and distinct lower airway microbiome with dynamic bacterial populations. The microbiome is likely to be altered by factors such as age, environmental influences, and disease states. Further data are necessary to determine how the distinct feline microbiomes from the upper and lower airways, feces and blood are established and evolve. These data are relevant for comparisons between healthy cats and cats with respiratory disease. PMID:28278278
Vientós-Plotts, Aida I; Ericsson, Aaron C; Rindt, Hansjorg; Grobman, Megan E; Graham, Amber; Bishop, Kaitlin; Cohn, Leah A; Reinero, Carol R
2017-01-01
Advances in the field of metagenomics using culture-independent methods of microbial identification have allowed characterization of rich and diverse communities of bacteria in the lungs of healthy humans, mice, dogs, sheep and pigs. These data challenge the long held belief that the lungs are sterile and microbial colonization is synonymous with pathology. Studies in humans and animals demonstrate differences in the composition of airway microbiota in health versus disease suggesting respiratory dysbiosis occurs. Using 16S rRNA amplicon sequencing of DNA extracted from rectal and oropharyngeal (OP) swabs, bronchoalveolar lavage fluid (BALF), and blood, our objective was to characterize the fecal, OP, blood, and lower airway microbiota over time in healthy cats. This work in healthy cats, a species in which a respiratory microbiota has not yet been characterized, sets the stage for future studies in feline asthma in which cats serve as a comparative and translational model for humans. Fecal, OP and BALF samples were collected from six healthy research cats at day 0, week 2, and week 10; blood was collected at week 10. DNA was extracted, amplified via PCR, and sequenced using the Illumina MiSeq platform. Representative operational taxonomic units (OTUs) were identified and microbial richness and diversity were assessed. Principal component analysis (PCA) was used to visualize relatedness of samples and PERMANOVA was used to test for significant differences in microbial community composition. Fecal and OP swabs provided abundant DNA yielding a mean±SEM of 65,653±6,145 and 20,6323±4,360 sequences per sample, respectively while BALF and blood samples had lower coverage (1,489±430 and 269±18 sequences per sample, respectively). Oropharyngeal and fecal swabs were significantly richer than BALF (mean number OTUs 93, 88 and 36, respectively; p < 0.001) with no significant difference (p = 0.180) in richness between time points. PCA revealed site-specific microbial communities in the feces, and upper and lower airways. In comparison, blood had an apparent compositional similarity with BALF with regard to a few dominant taxa, but shared more OTUs with feces. Samples clustered more by time than by individual, with OP swabs having subjectively greater variation than other samples. In summary, healthy cats have a rich and distinct lower airway microbiome with dynamic bacterial populations. The microbiome is likely to be altered by factors such as age, environmental influences, and disease states. Further data are necessary to determine how the distinct feline microbiomes from the upper and lower airways, feces and blood are established and evolve. These data are relevant for comparisons between healthy cats and cats with respiratory disease.
Analytical electron microscopy of biogenic and inorganic carbonates
NASA Technical Reports Server (NTRS)
Blake, David F.
1989-01-01
In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples.
Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy.
Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan
2018-03-20
Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S²PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta.
Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy
Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan
2018-01-01
Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S2PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta. PMID:29558402
Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation
Ribeiro, Carla M. P.; Lubamba, Bob A.
2017-01-01
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361
Bai, Yan; Sanderson, Michael J
2009-06-01
To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.
Airway Clearance Devices for Cystic Fibrosis
2009-01-01
Executive Summary Objective The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference. Background Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF. A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance. Airway Clearance Devices There are at least three classes of airway clearance devices: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP) devices. Within these classes are numerous different brands of devices from various manufacturers, each with subtle iterations. At least 10 devices are licensed by Health Canada (ranging from Class 1 to Class 3 devices). Evidence-Based Analysis of Effectiveness Research Questions Does long-term use of ACDs improve outcomes of interest in comparison to CCPT in patients with CF? Does long-term use of one class of ACD improve outcomes of interest in comparison to another class of ACD in CF patients? Literature Search A comprehensive literature search was performed on March 7, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1950 to March 7, 2009. Inclusion Criteria All randomized controlled trials including those of parallel and crossover design, Systematic reviews and/or meta-analyses. Randomized controlled trials (RCTs), systematic reviews and meta-analyses Exclusion Criteria Abstracts were generally excluded because their methods could not be examined; however, abstract data was included in several Cochrane meta-analyses presented in this paper; Studies of less than seven days duration (including single treatment studies); Studies that did not report primary outcomes; Studies in which less than 10 patients completed the study. Outcomes of Interest Primary outcomes under review were percent-predicted forced expiratory volume (FEV-1), forced vital capacity (FVC), and forced expiratory flow between 25%-75% (FEF25-75). Secondary outcomes included number of hospitalizations, adherence, patient preference, quality of life and adverse events. All outcomes were decided a priori. Summary of Findings Literature searching and back-searching identified 13 RCTs meeting the inclusion criteria, along with three Cochrane systematic reviews. The Cochrane reviews were identified in preliminary searching and used as the basis for formulating this review. Results were subgrouped by comparison and according to the available literature. For example, results from Cochrane meta-analyses included abstract data and therefore, additional meta-analyses were also performed on trials reported as full publications only (MAS generally excludes abstracted data when full publications are available as the methodological quality of trials reported in abstract cannot be properly assessed). Executive Summary Table 1 summarizes the results across all comparisons and subgroupings for primary outcomes of pulmonary function. Only two comparisons yielded evidence of moderate or high quality according to GRADE criteria–the comparisons of CCPT vs. PEP and handheld AOD vs. PEP–but only the comparison of CCPT vs. PEP noted a significant difference between treatment groups. In comparison to CCPT, there was a significant difference in favour of PEP for % predicted FEV-1 and FVC according to one long-term, parallel RCT. This trial was accepted as the best available evidence for the comparison. The body of evidence for the remaining comparisons was low to very low, according to GRADE criteria, being downgraded most often because of poor methodological quality and low generalizability. Specifically, trials were likely not adequately powered (low sample sizes), did not conduct intention-to-treat analyses, were conducted primarily in children and young adolescents, and outdated (conducted more than 10 years ago). Secondary outcomes were poorly or inconsistently reported, and were generally not of value to decision-making. Of note, there were a significantly higher number of hospitalizations among participants undergoing AOD therapy in comparison to PEP therapy. ES Table 1: Summarization of results for primary outcomes by comparison and subgroupings Outcome or Subgroup No. of Studies Estimate of Effectiveness (95% CI) P-value Heterogeneity (I2) GRADE CCPT vs. PEP Cochrane FEV-1 FVC FEF25-75% 664 0.08 (-1.45 to 1.62)0.38 (-1.56 to 2.23)-0.44 (-3.38 to 2.50) 0.910.700.77 46%63%36 N/A Full publications only FEV-1 FVC FEF25-75% 332 -0.50 (-3.93 to 2.92)-0.86 (-4.66 to 2.95)-0.12 (-6.22 to 5.98) 0.770.660.97 77%74%0% N/A Long-term, parallel RCTs only FEV-1 FVC FEF25-75% 111 -8.25 (-15.77 to -0.75)-8.74 (-16.03 to -1.45)-3.56 (-13.30 to 6.18) 0.030.020.47 N/AN/AN/A 1 TrialMODERATE CCPT vs. HFCC/MP Cochrane FEV-1 FVC FEF25-75% 332 -1.76 (-4.67 to 1.16)-1.42 (-5.17 to 2.33)0.49 (-2.54 to 3.52) 0.240.460.75 0%70%0% N/A Full publications only FEV-1 FVC FEF25-75% 332 -2.10 (-5.49 to 1.29)-3.86 (-8.05 to 0.33)0.49 (-2.54 to 3.52) 0.230.070.75 0%0%0% 3 TrialsLOW CCPT vs. AOD 2 of 3 RCTs/Cochrane FEV-1 FVC FEF25-75% 222 0.80 (-5.79 to 7.39)6.06 (-2.42 to 14.55)1.26 (-7.56 to 10.09) 0.810.160.78 0%12%0% 3 TrialsLOW AOD vs. PEP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF25-75% 222 0.29 (-4.17 to 4.75)-0.55 (-4.60 to 3.50)0.10 (-4.86 to 5.06) 0.900.790.97 73%77%0% 2 TrialsMODERATE AOD vs. HFCC/MP Long-term, parallel RCTs only/Cochrane FEV-1 FVC FEF25-75% 111 -1.6 (-3.44 to 0.24)-1.80 (-4.32 to 0.72)-1.40 (-3.07 to 0.27) 0.090.080.16 N/AN/AN/A 1 TrialVERY LOW Bolding indicates significant difference Positive summary statistics favour the former intervention Abbreviations: AOD, airway oscillating device; CCPT, conventional chest physiotherapy; CI, confidence interval; HFCC, high frequency chest compression; MP, mechanical percussion; N/A: not applicable; PEP, positive expiratory pressure Economic Analysis Devices ranged in cost from around $60 for PEP and handheld AODs to upwards of $18,000 for a HFCC vest device. Although the majority of device costs are paid out-of-pocket by the patients themselves, their parents, or covered by third-party medical insurance, Ontario did provide funding assistance through the Assistive Devices Program (ADP) for postural drainage boards and MP devices. These technologies, however, are either obsolete or their clinical efficacy is not supported by evidence. ADP provided roughly $16,000 in funding for the 2008/09 fiscal year. Using device costs and prevalent and incident cases of CF in Ontario, budget impact projections were generated for Ontario. Prevalence of CF in Ontario for patients from ages 6 to 71 was cited as 1,047 cases in 2002 while incidence was estimated at 46 new cases of CF diagnosed per year in 2002. Budget impact projections indicated that PEP and handheld AODs were highly economically feasible costing around $90,000 for the entire prevalent population and less than $3,000 per year to cover new incident cases. HFCC vest devices were by far the most expensive, costing in excess of $19 million to cover the prevalent population alone. Conclusions There is currently a lack of sufficiently powered, long-term, parallel randomized controlled trials investigating the use of ACDs in comparison to other airway clearance techniques. While much of the current evidence suggests no significant difference between various ACDs and alternative therapies/technologies, at least according to outcomes of pulmonary function, there is a strong possibility that past trials were not sufficiently powered to identify a difference. Unfortunately, it is unlikely that there will be any future trials comparing ACDs to CCPT as withholding therapy using an ACD may be seen as unethical at present. Conclusions of clinical effectiveness are as follows: Moderate quality evidence suggests that PEP is at least as effective as or more effective than CCPT, according to primary outcomes of pulmonary function. Moderate quality evidence suggests that there is no significant difference between PEP and handheld AODs, according to primary outcomes of pulmonary function; however, secondary outcomes may favour PEP. Low quality evidence suggests that there is no significant difference between AODs or HFCC/MP and CCPT, according to both primary and secondary outcomes. Very low quality evidence suggests that there is no significant difference between handheld AOD and CCPT, according to primary outcomes of pulmonary function. Budget impact projections show PEP and handheld AODs to be highly economically feasible. PMID:23074531
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
How anaesthesiologists understand difficult airway guidelines-an interview study.
Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan
2017-11-01
In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.
Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M
2016-01-01
Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot
2012-01-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176
Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C
2012-02-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Depover, Tom; Laureys, Aurélie; Wallaert, Elien
2018-01-01
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803
NASA Astrophysics Data System (ADS)
Dash, Manmath Kumar; Mythili, R.; Dasgupta, Arup; Saroja, S.
2018-04-01
This paper reports the optimization of consolidation process based on the evolution of microstructure, microtexture and densification in 18%-Cr Oxide Dispersion Strengthened steel. The steel powder of composition Fe-18Cr-0.01C-2W-0.25Ti-0.35Y2O3 has been consolidated by cold isostatic pressing (CIP) for green compaction after mechanical milling. Sintering (1000-1250 °C) and hot isostatic pressing (HIP) at 1150 °C has been employed to achieve good densification on compacted CIP specimen. The effect of sintering temperatures on densification behavior was evaluated and sintering at 1150°C was identified to be optimum for achieving good compaction (92% density) and homogeneous polygonal microstructure with a uniform distribution of fine pores. In addition, HIP of CIP product at 1150°C was found to yield a more homogeneous microstructure as compared to sintered product with 97% density. A static/dynamic recrystallization associated with (1 1 1) texture is observed during consolidation process. A statistical comparison has been made based on frequency of grain boundary distribution and associated texture with its theoretical attributes.
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-05-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study
NASA Astrophysics Data System (ADS)
Lei, Shi; Jiu-Ba, Wen; Chang, Ren
2018-04-01
Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).
NASA Astrophysics Data System (ADS)
Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.
2015-07-01
A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.
CVD of silicon carbide on structural fibers - Microstructure and composition
NASA Technical Reports Server (NTRS)
Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.
1992-01-01
Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.
CVD of silicon carbide on structural fibers: Microstructure and composition
NASA Technical Reports Server (NTRS)
Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.
1992-01-01
Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.
Wine, Jeffrey J
2007-04-30
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.
Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing
NASA Astrophysics Data System (ADS)
Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.
2018-03-01
Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.
NASA Astrophysics Data System (ADS)
Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.
2018-01-01
Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.
NASA Astrophysics Data System (ADS)
Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.
2016-03-01
17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.
Microstructure Modeling of 3rd Generation Disk Alloys
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2010-01-01
The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.
Ojiaku, Christie A; Yoo, Edwin J; Panettieri, Reynold A
2017-04-01
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Pharyngeal airway effects of Herbst and skeletal anchored Forsus FRD EZ appliances.
Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba
2016-11-01
To evaluate the skeletal and pharyngeal airway effects of skeletal anchored Forsus FRD EZ appliance using bilateral miniplates inserted on mandibular symphyses and to compare the findings with a well matched control group treated using a Herbst appliance. Thirty patients with skeletal Class II malocclusion due to mandibular retrusion were divided into two groups. Group 1 consisted of 15 patients (8 females and 7 males; mean age: 13.11 ± 1.29 years) treated using the Herbst appliance and Group 2 consisted of 15 patients (9 females and 7 males; 12.84 ± 1.27 years) treated using the skeletal anchored Forsus FRD EZ appliance. Treatment changes were assessed by means of linear, angular, and area measurements. The groups were well matched regarding to the chronological ages, gender distribution and initial cephalometric values (P > 0.05). In both groups, skeletal Class II malocclusion was corrected by decrease in SNA and increase in SNB, Co-Gn, VRL-B and VRL-Pog measurements. Those changes caused a significant correction in the maxillo-mandibular relationship. Upper and lower pharyngeal airway dimensions were increased in both group, while the increase in the lower pharyngeal dimension was found to be statistically significant in the skeletal anchored Forsus FRD EZ group (P < 0.05). Oropharyngeal area measurements significantly increased in both groups (P < 0.001 and P < 0.01, respectively). Comparison of the groups showed that both groups had similar changes with no statistically significant differences (P > 0.05). Skeletal changes produced by both appliances caused significant pharyngeal airway changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Toman, Huseyin; Erbas, Mesut; Sahin, Hasan; Kiraz, Hasan Ali; Uzun, Metehan; Ovali, Mehmet Akif
2015-12-01
In this study, we aimed to compare the effects of various airway devices on QTc interval in rabbits under general anesthesia. The subjects were randomly separated into four groups: Group ETT, Group LMA, Group PLA, Group V-gel. Baseline values and hearth rate, mean arterial pressure and ECG was obtained at the 1st, 5th and 30th minutes after administration of anesthesia and placement of airway device and, QTc interval was evaluated. Difference was observed between ET group and V-gel group in the 5th minute mean arterial pressure values (p < 0.05). It was observed that QTc intervals at the 1st and 5th minute in the ET group significantly increased when compared with the other groups (p < 0.05). Again, it was observed that QTc interval of ET group at the 15th and 30th minute was longer when compared with PLA and V-gel groups (p < 0.05). It was also observed that QTc interval of LMA Group at the 5th minute after intubation significantly increased when compared with V-gel group (p < 0.05). It was observed that HR values of ETT group at the 1st, 5th and 15th minutes after intubation increased with regards to PLA and V-gel groups (p < 0.05). It was determined that the 30th minute hearth rate of ETT group was higher when compared to V-gel group (p < 0.05). In our study we observed that V-gel Rabbit affected both hemodynamic response and QT interval less than other airway devices.
NASA Astrophysics Data System (ADS)
Yamaguchi, Eiichiro
2010-10-01
We employ micro-particle image velocimetry (μ-PIV) and shadowgraphy to measure the ensemble-averaged fluid-phase velocity field and interfacial geometry during pulsatile bubble propagation that includes a reverse-flow phase under influence of exogenous lung surfactant (Infasurf). Disease states such as respiratory distress syndrome (RDS) are characterized by insufficient pulmonary surfactant concentrations that enhance airway occlusion and collapse. Subsequent airway reopening, driven by mechanical ventilation, may generate damaging stresses that cause ventilator-induced lung injury (VILI). It is hypothesized that reverse flow may enhance surfactant uptake and protect the lung from VILI. The microscale observations conducted in this study will provide us with a significant understanding of dynamic physicochemical interactions that can be manipulated to reduce the magnitude of this damaging mechanical stimulus during airway reopening. Bubble propagation through a liquid-occluded fused glass capillary tube is controlled by linear-motor-driven syringe pumps that provide mean and sinusoidal velocity components. A translating microscope stage mechanically subtracts the mean velocity of the bubble tip in order to hold the progressing bubble tip in the microscope field of view. To optimize the signal-to-noise ratio near the bubble tip, μ-PIV and shadow images are recorded in separate trials then combined during post-processing with help of a custom-designed micro scale marker. Non-specific binding of Infasurf proteins to the channel wall is controlled by oxidation and chemical treatment of the glass surface. The colloidal stability and dynamic/static surface properties of the Infasurf-PIV particle solution are carefully adjusted based on Langmuir trough measurements. The Finite Time Lyapunov Exponent (FTLE) is computed to provide a Lagrangian perspective for comparison with our boundary element predictions.
Factors influencing delivered mean airway pressure during nasal CPAP with the RAM cannula.
Gerdes, Jeffrey S; Sivieri, Emidio M; Abbasi, Soraya
2016-01-01
To measure mean airway pressure (MAP) delivered through the RAM Cannula® when used with a ventilator in CPAP mode as a function of percent nares occlusion in a simulated nasal interface/test lung model and to compare the results to MAPs using a nasal continuous positive airway pressure (NCPAP) interface with nares fully occluded. An artificial airway model was connected to a spontaneous breathing lung model in which MAP was measured at set NCPAP levels between 4 and 8 cmH2 O provided by a Dräger Evita XL® ventilator and delivered through three sizes of RAM cannulae. Measurements were performed with varying leakage at the nasal interface by decreasing occlusion from 100% to 29%, half-way prong insertion, and simulated mouth leakage. Comparison measurements were made using the Dräger BabyFlow® NCPAP interface with a full nasal seal. With simulated mouth closed, the Dräger interface delivered MAPs within 0.5 cmH2 O of set CPAP levels. For the RAM cannula, with 60-80% nares occlusion, overall delivered MAPs were 60 ± 17% less than set CPAP levels (P < 0.001). Further, MAP decreased progressively with decreasing percent nares occlusion. The simulated open mouth condition resulted in significantly lower MAPs to <1.7 cmH2 O. The one-half prong insertion depth condition, with closed mouth, yielded MAPs approximately 35 ± 9% less than full insertion pressures (P < 0.001). In our bench tests, the RAM interface connected to a ventilator in NCPAP mode failed to deliver set CPAP levels when applied using the manufacturer recommended 60-80% nares occlusion, even with closed mouth and full nasal prong insertion conditions. © 2015 Wiley Periodicals, Inc.
Patino, Mario; Glynn, Susan; Soberano, Mark; Putnam, Philip; Hossain, Md Monir; Hoffmann, Clifford; Samuels, Paul; Kibelbek, Michael J; Gunter, Joel
2015-10-01
Esophagogastroduedenoscopy (EGD) in children is usually performed under general anesthesia. Anesthetic goals include minimization of airway complications while maximizing operating room (OR) efficiency. Currently, there is no consensus on which anesthetic technique best meets these goals. We performed a prospective randomized study comparing three different anesthetic techniques. To evaluate the incidence of respiratory complications (primary aim) and institutional efficiency (secondary aim) among three different anesthetic techniques in children undergoing EGD. Subjects received a standardized inhalation induction of anesthesia followed by randomization to one of the three groups: Group intubated, sevoflurane (IS), Group intubated, propofol (IP), and Group native airway, nonintubated, propofol (NA). Respiratory complications included minor desaturation (SpO2 between 94% and 85%), severe desaturation (SpO2 < 85%), apnea, airway obstruction/laryngospasm, aspiration, and/or inadequate anesthesia during the endoscopy. Evaluation of institutional efficiency was determined by examining the time spent during the different phases of care (anesthesia preparation, procedure, OR stay, recovery, and total perioperative care). One hundred and seventy-nine children aged 1-12 years (median 7 years; 4.0, 10.0) were enrolled (Group IS N = 60, Group IP N = 59, Group NA N = 61). The incidence of respiratory complications was higher in the Group NA (0.459) vs Group IS (0.033) or Group IP (0.086) (P < 0.0001). The most commonly observed complications were desaturation, inadequate anesthesia, and apnea. There were no differences in institutional efficiency among the three groups. Respiratory complications were more common in Group NA. The use of native airway with propofol maintenance during EGD does not offer advantages with respect to respiratory complications or institutional efficiency. © 2015 John Wiley & Sons Ltd.
Bernarde, Cédric; Keravec, Marlène; Mounier, Jérôme; Gouriou, Stéphanie; Rault, Gilles; Férec, Claude; Barbier, Georges; Héry-Arnaud, Geneviève
2015-01-01
Airway microbiota composition has been clearly correlated with many pulmonary diseases, and notably with cystic fibrosis (CF), an autosomal genetic disorder caused by mutation in the CF transmembrane conductance regulator (CFTR). Recently, a new molecule, ivacaftor, has been shown to re-establish the functionality of the G551D-mutated CFTR, allowing significant improvement in lung function. The purpose of this study was to follow the evolution of the airway microbiota in CF patients treated with ivacaftor, using quantitative PCR and pyrosequencing of 16S rRNA amplicons, in order to identify quantitative and qualitative changes in bacterial communities. Three G551D children were followed up longitudinally over a mean period of more than one year covering several months before and after initiation of ivacaftor treatment. 129 operational taxonomy units (OTUs), representing 64 genera, were identified. There was no significant difference in total bacterial load before and after treatment. Comparison of global community composition found no significant changes in microbiota. Two OTUs, however, showed contrasting dynamics: after initiation of ivacaftor, the relative abundance of the anaerobe Porphyromonas 1 increased (p<0.01) and that of Streptococcus 1 (S. mitis group) decreased (p<0.05), possibly in relation to the anti-Gram-positive properties of ivacaftor. The anaerobe Prevotella 2 correlated positively with the pulmonary function test FEV-1 (r=0.73, p<0.05). The study confirmed the presumed positive role of anaerobes in lung function. Several airway microbiota components, notably anaerobes (obligate or facultative anaerobes), could be valuable biomarkers of lung function improvement under ivacaftor, and could shed light on the pathophysiology of lung disease in CF patients.
A child with a difficult airway: what do I do next?
Engelhardt, Thomas; Weiss, Markus
2012-06-01
Difficulties in pediatric airway management are common and continue to result in significant morbidity and mortality. This review reports on current concepts in approaching a child with a difficult airway. Routine airway management in healthy children with normal airways is simple in experienced hands. Mask ventilation (oxygenation) is always possible and tracheal intubation normally simple. However, transient hypoxia is common in these children usually due to unexpected anatomical and functional airway problems or failure to ventilate during rapid sequence induction. Anatomical airway problems (upper airway collapse and adenoid hypertrophy) and functional airway problems (laryngospasm, bronchospasm, insufficient depth of anesthesia and muscle rigidity, gastric hyperinflation, and alveolar collapse) require urgent recognition and treatment algorithms due to insufficient oxygen reserves. Early muscle paralysis and epinephrine administration aids resolution of these functional airway obstructions. Children with an 'impaired' normal (foreign body, allergy, and inflammation) or an expected difficult (scars, tumors, and congenital) airway require careful planning and expertise. Training in the recognition and management of these different situations as well as a suitably equipped anesthesia workstation and trained personnel are essential. The healthy child with an unexpected airway problem requires clear strategies. The 'impaired' normal pediatric airway may be handled by anesthetists experienced with children, whereas the expected difficult pediatric airway requires dedicated pediatric anesthesia specialist care and should only be managed in specialized centers.
Airway-parenchymal interdependence
Paré, Peter D; Mitzner, Wayne
2015-01-01
In this manuscript we discuss the interaction of the lung parenchyma and the airways as well as the physiological and pathophysiological significance of this interaction. These two components of the respiratory organ can be thought of as two independent elastic structures but in fact the mechanical properties of one influence the behavior of the other. Traditionally the interaction has focused on the effects of the lung on the airways but there is good evidence that the opposite is also true, i.e., that the mechanical properties of the airways influence the elastic properties of the parenchyma. The interplay between components of the respiratory system including the airways, parenchyma and vasculature is often referred to as “interdependence.” This interdependence transmits the elastic recoil of the lung to create an effective pressure that dilates the airways as transpulmonary pressure and lung volume increase. By using a continuum mechanics analysis of the lung parenchyma, it is possible to predict the effective pressure between the airways and parenchyma, and these predictions can be empirically evaluated. Normal airway caliber is maintained by this pressure in the adventitial interstitium of the airway, and it counteracts airway compression during forced expiration as well as the ability of airway smooth muscle to narrow airways. Interdependence has physiological and pathophysiological significance. Weakening of the forces of interdependence contributes to airway dysfunction and gas exchange impairment in acute and chronic airway diseases including asthma and emphysema. PMID:23723029
Sera, Toshihiro; Fujioka, Hideki; Yokota, Hideo; Makinouchi, Akitake; Himeno, Ryutaro; Schroter, Robert C; Tanishita, Kazuo
2004-05-01
Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.
NASA Astrophysics Data System (ADS)
Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois
2006-03-01
Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.
Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.
Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K
2013-01-01
Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.
Borovcanin, Zana; Shapiro, Janine R.
2012-01-01
Education and training in advanced airway management as part of an anesthesiology residency program is necessary to help residents attain the status of expert in difficult airway management. The Accreditation Council for Graduate Medical Education (ACGME) emphasizes that residents in anesthesiology must obtain significant experience with a broad spectrum of airway management techniques. However, there is no specific number required as a minimum clinical experience that should be obtained in order to ensure competency. We have developed a curriculum for a new Advanced Airway Techniques rotation. This rotation is supplemented with a hands-on Difficult Airway Workshop. We describe here this comprehensive advanced airway management educational program at our institution. Future studies will focus on determining if education in advanced airway management results in a decrease in airway related morbidity and mortality and overall better patients' outcome during difficult airway management. PMID:22505885
How anaesthesiologists understand difficult airway guidelines—an interview study
Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan
2017-01-01
Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973
Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana
2014-06-01
The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less radiation dose using high kVp technique with multi-layer filter compared to the conventional technique, and 25.9% less than using the traditional copper filter 45% of the radiologists who participated in this study reported that the high kVp technique with multi-layer filter was better for diagnosing stenosis, or narrowing of the upper airways. 33% reported that, both techniques were equal, while 22% reported that the traditional copper filter allowed for better details of airway obstruction. These findings showed that the multi-layered filter was comparable to the copper filter in terms of film interpretation. Using the multi-layer filter resulted in patients receiving a lower dose of radiation, as well as similar film interpretation when compared to the traditional copper filter.
NASA Astrophysics Data System (ADS)
Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.
2017-11-01
The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.
Akça, Ozan; Wadhwa, Anupama; Sengupta, Papiya; Durrani, Jaleel; Hanni, Keith; Wenke, Mary; Yücel, Yüksel; Lenhardt, Rainer; Doufas, Anthony G.; Sessler, Daniel I.
2006-01-01
The Laryngeal Mask Airway (LMA) is a frequently-used efficient airway device, yet it sometimes seals poorly, thus reducing the efficacy of positive-pressure ventilation. The Perilaryngeal Airway (CobraPLA) is a novel airway device with a larger pharyngeal cuff (when inflated). We tested the hypothesis that the CobraPLA was superior to LMA with regard to insertion time and airway sealing pressure and comparable to LMA in airway adequacy and recovery characteristics. After midazolam and fentanyl, 81 ASA I-II outpatients having elective surgery were randomized to receive an LMA or CobraPLA. Anesthesia was induced with propofol (2.5 mg/kg, IV), and the airway inserted. We measured 1) insertion time; 2) adequacy of the airway (no leak at 15-cm-H2O peak pressure or tidal volume of 5 ml/kg); 3) airway sealing pressure; 4) number of repositioning attempts; and 5) sealing quality (no leak at tidal volume of 8 ml/kg). At the end of surgery, gastric insufflation, postoperative sore throat, dysphonia, and dysphagia were evaluated. Data were compared with unpaired t-tests, chi-square tests, or Fisher’s Exact tests; P<0.05 was significant. Patient characteristics, insertion times, airway adequacy, number of repositioning attempts, and recovery were similar in each group. Airway sealing pressure was significantly greater with CobraPLA (23±6 cm H2O) than LMA (18±5 cm H2O, P<0.001). The CobraPLA has insertion characteristics similar to LMA, but better airway sealing capabilities. PMID:15281543
Zhang, Lu; Li, Dongyue; Luo, Shuqian
2011-02-25
Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.
Stephen, Michael J; Emami, Kiarash; Woodburn, John M; Chia, Elaine; Kadlecek, Stephen; Zhu, Jianliang; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R; Rossman, Milton
2010-11-01
The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Dasgupta, D; Jain, Anand; Baxi, Vaibhavi; Parab, A; Budhakar, A
2009-01-01
Summary Any anaesthesiologist handling a paediatric airway must have a detailed understanding of the differences in airway anatomy, signs and symptoms of airway compromise and common paediatric airway abnormalities. In addition to various equipments needed to manage a difficult airway, there should be a clear plan for evaluation, preparation and management of life threatening complications. We share our experience of successfully managing a difficult airway of a 5 year old child with Tessier 7 facial cleft syndrome. We emphasize the importance of preoperative evaluation, preparation and use of various airway adjuncts. PMID:20640130
Patterns of recruitment and injury in a heterogeneous airway network model
Stewart, Peter S.; Jensen, Oliver E.
2015-01-01
In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls. PMID:26423440
NASA Astrophysics Data System (ADS)
Callahan, Patrick Gregory
A fundamental objective of materials science and engineering is to understand the structure-property-processing-performance relationship. We need to know the true 3-D microstructure of a material to understand certain geometric properties of a material, and thus fulfill this objective. Focused ion beam (FIB) serial sectioning allows us to find the true 3-D microstructure of Ni-base superalloys. Once the true 3-D microstructure is obtained, an accurate quantitative description and characterization of precipitate and/or grain shapes is needed to understand the microstructure and describe it in an unbiased way. In this thesis, second order moment invariants, the shape quotient Q, a convexity measure relating the volume of an object to the volume of its convex hull, V/Vconv, and Gaussian curvature have been used to compare an experimentally observed polycrystalline IN100 microstructure to three synthetic microstructures. The three synthetic microstructures used different shape classes to produce starting grain shapes. The three shape classes are ellipsoids, superellipsoids, and the shapes generated when truncating a cube with an octahedron. The microstructures are compared using a distance measure, the Hellinger distance. The Hellinger distance is used to compare distributions of shape descriptors for the grains in each microstructure. The synthetic microstructure that has the smallest Hellinger distance, and so best matched the experimentally observed microstructure is the microstructure that used superellipsoids as a starting grain shape. While it has the smallest Hellinger distance, and is approaching realistic grain morphologies, the superellipsoidal microstructure is still not realistic. Second order moment invariants, Q, and V/V conv have also been used to characterize the γ' precipitate shapes from four experimental Ru-containing Ni-base superalloys with differences in alloying additions. The superalloys are designated UM-F9, UM-F18, UM-F19, and UM-F22. The different alloying additions in each sample cause differences in lattice misfit and γ' precipitate shape morphology, varying from spherical, to cuboidal, to intermediate morphologies. 3-D datasets from each alloy were collected via automated Focused Ion Beam (FIB) serial sectioning. Digital image processing methods are used to register, clean, and segment the images in each of the datasets in order to digitally reconstruct the microstructures in 3-D. The distributions of the shape descriptors of the γ' precipitates from each microstructure are compared using the Hellinger distance. The Hellinger distance determines if there are quantitative differences in the γ' precipitate morphologies, or if they are the same. It was found that comparing distributions of the second order affine moment invariant Ω 3 with the Hellinger distance is sufficient for recognizing that alloys have different compositions. The secondary γ' precipitate shapes in two Ni-based superalloys, one from a UM-F20 alloy with cuboidal precipitates, and one from a Rene-88 DT alloy with more complex dendritic precipitates, have been decomposed and reconstructed using 3-D Zernike functions, which are orthogonal over the unit ball; they can be used to decompose an arbitrary shape scaled to fit inside an embedding sphere into spherical harmonics. Relatively complex shapes can be decomposed into, and reconstructed from, 3-D Zernike functions. In this thesis we show the 3-D Zernike functions and a method to derive expressions for Zernike moments from the more familiar geometric moments. Then Zernike moment reconstructions up to order 20 of precipitates from the two Ni-base superalloys are presented. The Zernike moment reconstructions were characterized using second order moment invariants, and have yielded good reconstructions of cuboidal precipitates. More orders of Zernike moments may be needed to accurately reconstruct the dendritic precipitates. We also introduce the concept of moment invariant density maps to describe 3-D shapes using 2-D moment invariants. To do this we characterize 2-D sections of a 3-D microstructure using 2-D moment invariants. The statistical distribution of 2-D moment invariants from the sections are compared to a library of density maps produced from different shapes. The sectioning plane is random so each group of particles produces a statistical distribution of 2-D moments that can represent a microstructure. Then we show three example applications: determination of a 3-D shape by computing the Hellinger distance between moment invariant density maps derived from random 2-D section micrographs and the density map database; automated detection and quantification of rafting in cuboidal microstructures; and quantitative comparison of pairs of microstructures.
Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.
Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q
2017-06-01
Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.
Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.
1993-01-01
Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487
Characterization of the tensile and microstructural properties of an aluminum metal matrix composite
NASA Technical Reports Server (NTRS)
Birt, M. J.; Johnson, W. S.
1990-01-01
This study examines a powder metallurgy aluminum alloy in the unreinforced state and with a discontinuous reinforcement of 15 v/o or 30 v/o SiC whisker or 15 v/o SiC particulate. The materials were extruded and then hot-rolled to three plate thicknesses of 6.35, 3.18 and 1.8 mm and were investigated in the as-fabricated and peak aged conditions. The influence of mechanical working on the reinforcement morphology and distribution were examined. A comparison of the mechanical properties was made and the elastic moduli of the reinforced materials were predicted using a micromechanics model. Fractography of tensile specimens revealed that the fracture process was dominated by the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement type. An analysis of these microstructural features and a description of the micromechanics model are presented in the paper.
Proton irradiation study of GFR candidate ceramics
NASA Astrophysics Data System (ADS)
Gan, Jian; Yang, Yong; Dickson, Clayton; Allen, Todd
2009-06-01
This work investigated the microstructural response of SiC, ZrC and ZrN irradiated with 2.6 MeV protons at 800 °C to a fluence of 2.75 × 10 19 protons/cm 2, corresponding to 0.71-1.8 displacement per atom (dpa), depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed. In comparison to Kr ion irradiation at 800 °C to 10 dpa from the previous studies, the proton irradiated ZrC and ZrN at 1.8 dpa show less irradiation damage to the lattice structure. The proton irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 0.71 dpa consists of black dot defects at high density.
NASA Astrophysics Data System (ADS)
Torkamani, H.; Raygan, Sh.; Rassizadehghani, J.
2011-12-01
AISI D2 is used widely in the manufacture of blanking and cold-forming dies, on account of its excellent hardness and wear behavior. Increasing toughness at a fixed high level of hardness is growing requirement for this kind of tool steel. Improving microstructure characteristics, especially refinement of coarse carbides, is an appropriate way to meet such requirement. In this study, morphology and size of carbides in martensite matrix were compared between two kinds of samples, which were bright hardened (quenching in hot alkaline salt bath consisting of 60% KOH and 40% NaOH) at 230 °C and quenched in oil bath at 60 °C. Results showed that morphology and distribution of carbides in samples performed by bright hardening were finer and almost spherical compared to that of oil quenched. This microstructure resulted in an improvement in toughness and tensile properties of alloy.
NASA Astrophysics Data System (ADS)
Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.
2008-07-01
AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.
NASA Astrophysics Data System (ADS)
Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.
2009-07-01
The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.
Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe
2017-04-01
Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.
2006-03-01
Cholesterol Depletion Enhances Chitin Phagocytosis-Induced Macrophage Activation. Abstract will be presented at AAI Meeting at Boston in May 2006...presented at AAI Meeting at Boston in May 2006. Task 2. Tsuji S, M Yamashita Tsuji, A Nishiyama, Y Shibata. Molecular structure of human and mouse...interlectin-1 and comparison of binding to a mycobacterial galactofuranosyl residue. Abstract will be presented at AAI Meeting at Boston in May 2006
Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian
2010-03-01
To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.
Mark, Lynette J; Herzer, Kurt R; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I; Berkow, Lauren C; Haut, Elliott R; Hillel, Alexander T; Miller, Christina R; Feller-Kopman, David J; Schiavi, Adam J; Xie, Yanjun J; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W; Mirski, Marek A
2015-07-01
Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. We developed a quality improvement program-the Difficult Airway Response Team (DART)-to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had 3 core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a Web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index >40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty-three patients (6%) required emergent surgical airways. Sixty-two patients (17%) were stabilized and transported to the operating room for definitive airway management. There were no airway management-related deaths, sentinel events, or malpractice claims in adult patients managed by DART. Five in situ simulations conducted in the first program year improved DART's teamwork, communication, and response times and increased the functionality of the difficult airway carts. Over the 5-year period, we conducted 18 airway courses, through which >200 providers were trained. DART is a comprehensive program for improving difficult airway management. Future studies will examine the comparative effectiveness of the DART program and evaluate how DART has impacted patient outcomes, operational efficiency, and costs of care.
Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.
2015-01-01
Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous or current tracheostomy. Twenty-three patients (6%) required emergent surgical airways. Sixty-two patients (17%) were stabilized and transported to the operating room for definitive airway management. There were no airway management-related deaths, sentinel events, or malpractice claims in adult patients managed by DART. Five in situ simulations conducted in the first program year improved DART's teamwork, communication, and response times and increased the functionality of the difficult airway carts. Over the 5-year period, we conducted 18 airway courses, through which more than 200 providers were trained. Conclusions DART is a comprehensive program for improving difficult airway management. Future studies will examine the comparative effectiveness of the DART program and evaluate how DART has impacted patient outcomes, operational efficiency, and costs of care. PMID:26086513
Xu, Jin; Wang, Zhen; Sun, Hongcun
2015-09-01
To study airway reactivity and impulse oscillation (IOS)-measured airway resistance indicators of residents of Zhenhai industrial area in Ningbo city. In the form of follow-up, both. airway reactivity and respiratory functions of populations in Zhenhai industrial zone (n = 215) and urban (n = 203) were measured, comparing difference degree between different regions. Ninty-five of 215 cases in industrial area were identified as suspected airway hyperresponsiveness, but only 43 of 203 cases were in urban areas. Forty-seven of 95 cases (49.5%) in industrial zone were positive, while only 14 cases (32.6%) in urban. The proportions of people in the two regions on different types of airway hyperresponsiveness were significantly different (P < 0.01). All airway resistance indexes of urban populations were significantly lower than that of industrial zone (P < 0.05). The prevalence of airway hyperresponsiveness and IOS airway resistance aspects of industrial area residents was higher than that of urban residents. Monitoring and evaluating the airway diseases, inflammatory lesions and respiratory function in the region were good for understanding the severe pollution in the local area in certain significance.
Factors associated with systemic hypertension in asthma
Ferguson, Susan; Teodorescu, Mihai C.; Gangnon, Ronald E.; Peterson, Andrea G.; Consens, Flavia B.; Chervin, Ronald D.; Teodorescu, Mihaela
2015-01-01
Purpose Asthmatics have unique characteristics that may influence cardiovascular morbidity. We tested the association of lower airway caliber, obstructive sleep apnea (OSA) and other asthma-related factors, with systemic hypertension (HTN). Methods Asthma individuals at specialty clinics completed the Sleep Apnea Scale of the Sleep Disorders Questionnaire (SA-SDQ). Medical records were reviewed for diagnosed HTN, OSA and comorbidities, spirometry and current medications. FEV1% predicted was categorized as ≥80 (reference), 70-79, 60-69 and <60. SA-SDQ ≥36 for men and ≥32 for women defined high OSA risk. Results Among 812 asthmatics (mean age±standard deviation: 46±14 years), HTN was diagnosed in 191 (24%), OSA in 65 (8%), and OSA or high OSA risk (combined OSA variable) in 239 (29%). HTN was more prevalent in lower FEV1% categories (p<0.0001), in subjects with OSA, and those with combined OSA variable (55% vs. 21% and 46% vs. 14%, respectively, both p<0.0001). With adjustment for covariates, associations with HTN remained significant for some FEV1% categories (70-79% odds ratio=1.60 [95% CI: 0.90-2.87]; 60-69% 2.73 [1.28-5.79]; <60% 0.96 [0.43-2.14]), and for OSA (2.20 [1.16-4.19]). The combined OSA variable in comparison to OSA alone demonstrated a stronger association with HTN (3.17 [1.99-5.04]) in a reiteration of this model. Inhaled corticosteroids (ICS) at lowest doses, in comparison to no ICS use had an independent “protective” association with HTN (0.44 [0.22-0.90]). Conclusions In this young population, lower airways obstruction and OSA were positively associated with HTN. In contrast, lower ICS doses attenuated likelihood for HTN. Adequate control of airway inflammation at appropriate ICS doses, and screening for OSA may reduce the burden of HTN in asthma. PMID:24920421
Alcohol and Airways Function in Health and Disease
Sisson, Joseph H.
2007-01-01
The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The impact of alcohol on lung airway functions is dependent on the concentration, duration and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation and probably attenuates the airway inflammation and injury observed in asthma and COPD. Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management and likely worsens outcomes including lung function and mortality in COPD patients. Non-alcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase type 2 (ALDH2). The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation and the interaction with other airway exposure agents, such as cigarette smoke, represent opportunities for future investigation. PMID:17764883
Alcohol and airways function in health and disease.
Sisson, Joseph H
2007-08-01
The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.
Infection-induced airway fibrosis in two rat strains with differential susceptibility.
McIntosh, J C; Simecka, J W; Ross, S E; Davis, J K; Miller, E J; Cassell, G H
1992-01-01
Chronic infections play a significant role in the morbidity and mortality of patients with chronic airflow limitation. By stimulating airway inflammation, persistent infection has the potential to cause airway fibrosis. However, in patient this condition is most typically found in lungs damaged by other factors, such as smoking, abnormal secretions, or barotrauma. We report the characterization of Mycoplasma pulmonis infection-induced lung fibrosis in two immunocompetent rat strains with no preexisting lung disease. The fibrosis was predominantly in the airways, as demonstrated by the findings for infected animals of increased airway inflammation, airway fibrosis, and airway wall thickness, which correlated with the collagen content of the lungs. Also, the physiological alterations were the opposite of those found in interstitial fibrosis, with a positive correlation between lung compliance and collagen content. The airway fibrosis was noted earlier and to a greater extent in Lewis rats than in Fisher rats, and this result apparently was related to regulation of the inflammatory response. Airway wall thickness, airway inflammation, and airway fibrosis are commonly reported in tissue specimens from patients with chronic airway diseases and have been shown to correlate with airflow limitation in patients with chronic obstructive pulmonary disease. Thus, this model may be useful in furthering our understanding of the role of chronic infection and airway inflammation in airflow obstruction. Images PMID:1612760
Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki
2013-01-01
Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.
2008-01-15
Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months ofmore » age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.« less
Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.
2012-06-01
The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Anatomic Optical Coherence Tomography of Upper Airways
NASA Astrophysics Data System (ADS)
Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.
The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.
Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J
2016-05-01
Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.
NASA Astrophysics Data System (ADS)
Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.
2017-12-01
The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.
Hernandez, Matthew C; Aho, Johnathon M; Zielinski, Martin D; Zietlow, Scott P; Kim, Brian D; Morris, David S
2018-01-01
Prehospital airway management increasingly involves supraglottic airway insertion and a paucity of data evaluates outcomes in trauma populations. We aim to describe definitive airway management in traumatically injured patients who necessitated prehospital supraglottic airway insertion. We performed a single institution retrospective review of multisystem injured patients (≥15years) that received prehospital supraglottic airway insertion during 2009 to 2016. Baseline demographics, number and type of: supraglottic airway insertion attempts, definitive airway and complications were recorded. Primary outcome was need for tracheostomy. Univariate and multivariable statistics were performed. 56 patients met inclusion criteria and were reviewed, 78% were male. Median age [IQR] was 36 [24-56] years. Injuries comprised blunt (94%), penetrating (4%) and burns (2%). Median ISS was 26 [22-41]. Median number of prehospital endotracheal intubation (PETI) attempts was 2 [1-3]. Definitive airway management included: (n=20, 36%, tracheostomy), (n=10, 18%, direct laryngoscopy), (n=6, 11%, bougie), (n=9, 15%, Glidescope), (n=11, 20%, bronchoscopic assistance). 24-hour mortality was 41%. Increasing number of PETI was associated with increasing facial injury. On regression, increasing cervical and facial injury patterns as well as number of PETI were associated with definitive airway control via surgical tracheostomy. After supraglottic airway insertion, operative or non-operative approaches can be utilized to obtain a definitive airway. Patients with increased craniofacial injuries have an increased risk for airway complications and need for tracheostomy. We used these factors to generate an evidence based algorithm that requires prospective validation. Level IV - Retrospective study. Retrospective single institution study. Copyright © 2017 Elsevier Inc. All rights reserved.
Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E
1999-09-01
Polymorphonuclear leukocytes (PMN) and eosinophils (Eos) are important cellular participants in a variety of acute and chronic inflammatory reactions in the airway. Histologic evidence has implicated direct interactions between these two subsets of leukocytes and airway epithelial cells during inflammation. A comprehensive characterization and comparison of physiologic stimuli and adhesion molecule involvement in granulocyte-epithelial-cell interactions done with nontransformed human airway epithelial cells has not been reported. We therefore examined the regulation and biochemical mechanisms governing granulocyte-epithelial-cell adhesion, using either purified PMN or Eos and primary cultures of human bronchial epithelial cells (HBECs). We investigated the involvement of a number of proinflammatory signals associated with allergic and nonallergic airway inflammation, as well as the contribution of several epithelial and leukocyte adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and members of the beta(1), beta(2), and beta(7) integrin families. ICAM-1 was expressed at low levels on cultured HBECs and was markedly upregulated after stimulation with interferon (IFN)-gamma or, to a lesser extent, with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1. VCAM-1 was not present on resting HBECs, and was not upregulated after stimulation with IFN-gamma, IL-1, IL-4, or TNF-alpha. PMN adhesion to HBECs could be induced either through activation of PMN with IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), or C5a, but not with IL-5 or by preactivation of HBECs with TNF-alpha or IFN-gamma. Blocking antibody studies indicated that PMN-HBEC adherence depended on beta(2) integrins, primarily alpha(M)beta(2) (Mac-1). Adherence of Eos to HBECs could be induced through activation of Eos with IL-5, GM-CSF, or C5a, but not with IL-8 or by prior activation of HBECs with TNF-alpha of IFN-gamma. Maximal adhesion of Eos and PMN required pretreatment of HBECs with either TNF-alpha or IFN-gamma in addition to leukocyte activation. Adherence of Eos to unstimulated HBECs was mediated through both beta(1) and beta(2) integrins, whereas adhesion of Eos to activated HBECs was dominated by beta(2) integrins. Adhesion of both Eos and PMN was inhibited by treatment of HBECs with blocking antibodies to ICAM-1. Differential utilization of beta(1) and beta(2) integrins by Eos, depending on the activation state of the epithelium, is a novel finding and may affect activation and/or recruitment of Eos in airway tissue. Mechanisms of adhesion of HBECs to Eos and PMN, as evidenced by the different responsiveness of the two latter types of cells to IL-8 and IL-5, may account for a prevalence of Eos over PMN in certain airway diseases.
Availability of difficult airway equipment to rural anaesthetists in Queensland, Australia.
Eley, Victoria; Lloyd, Ben; Scott, Justin; Greenland, Keith
2008-01-01
Since 1990 several airway devices have become available to assist in difficult intubation. Multiple surveys have assessed difficult airway equipment availability in international anaesthetic departments and emergency departments. The practice of GP anaesthetists is unique in both its multidisciplinary nature and geographical isolation. General practitioners performing general anaesthesia in rural and remote Queensland, Australia were surveyed to assess their access to difficult airway equipment and whether this was related to the remoteness of their location or attendance at continuing professional development activities. survey. proceduralists performing general anaesthesia in hospitals categorised as Rural, Remote and Metropolitan Area (RRMA) classification 4 to 7 inclusive were surveyed. data collected included demographic information, availability of airway management equipment, and attendance at continuing professional development activities. The received data was entered into a Microsoft Excel spreadsheet and analysed in Statistical Package for Social Sciences (SPSS Inc; Chicago, IL, USA) using the frequencies and crosstabs functions. The Fisher's exact test was used. A p-value of less than 0.10 was considered noteworthy and a p-value of less than 0.05 was considered to be significant. A statistical comparison was made between the known demographics of the target population and the survey responders. The known demographics were derived from the Health Workforce Queensland database and included age, gender, practice location and practitioner type. Seventy-nine surveys were distributed and 35 returned (response rate 44%). This represented 21 hospitals. There was no statistical difference between the target population and the survey responders in terms of age and gender. There was no statistical difference in terms of practice location, although the small percentage responding from RRMA 6 was notable. There was a statistically significant difference between the groups in terms of practitioner type. Hospital-based practitioners were relatively under-represented in the responder group. Eighty-two per cent of practitioners felt they had access to appropriate equipment and this was not significantly related the remoteness of their location. There was wide variation in available equipment. Simple adjuncts such as the bougie and stylet were not universally available but cricothyroidotomy sets were more common. Practitioners in the more remote locations were less likely to have attended an educational activity such as conference, workshop or skills laboratory (p=0.05). We suggest standardisation of difficult airway equipment for rural practitioners. This could be supported by increased availability of airway management workshops in remote areas. Such an intervention would be in line with other initiatives to standardise medical equipment in rural and remote Queensland hospitals. Familiarity with infrequently used equipment may assist practitioners and their locums. Standardisation of equipment and practice is a recognised method of improving patient safety.
Heiser, Clemens; Fthenakis, Phillippe; Hapfelmeier, Alexander; Berger, Sebastian; Hofauer, Benedikt; Hohenhorst, Winfried; Kochs, Eberhard F; Wagner, Klaus J; Edenharter, Guenther M
2017-09-01
Drug-induced sleep endoscopy (DISE) has become an important diagnostic examination tool in the treatment decision process for surgical therapies in the treatment of obstructive sleep apnea (OSA). Currently, there is a variety of regimes for the performance of DISE, which renders comparison and assessment across results difficult. It remains unclear how the different regimes influence the findings of the examination and the resulting conclusions and treatment recommendations. This study aimed to investigate the correlation between increasing levels of sedation (i.e., light, medium, and deep) induced by propofol using a target-controlled infusion (TCI) pump, with the obstruction patterns at the levels of the velum, oropharynx, tongue base, and epiglottis (i.e., VOTE classification). A second goal was the establishment of a sufficient sedation level to enable a reliable decision regarding treatment recommendations. Forty-three patients with OSA underwent a DISE procedure using propofol TCI. Three levels of sedation were defined, depending on entropy levels and assessment of sedation: light sedation, medium sedation, and deep sedation. The evaluation of the upper airway at each level, with increasing sedation, was documented using the VOTE classification. The elapsed time at which each assessment was performed was recorded. Upper airway changes occurred and were measured throughout the DISE procedure. Clinically useful determinations of airway closure occurred at medium sedation; this level of sedation was most probably achieved with a blood propofol concentration of 3.2 μg/ml. In all 43 patients, definite treatment decisions could be made at medium sedation level. Increasing sedation did not result in changes in the treatment decision. Changes in upper airway collapse during DISE with propofol TCI occur at levels of medium sedation. Decisions regarding surgical treatment could be made at this level of sedation. Upper Airway Collapse in Patients with Obstructive Sleep Apnea Syndrome by Drug Induced Sleep Endoscopy (URL: https://clinicaltrials.gov/ct2/results?term=NCT02588300&Search=Search ) REGISTRATION NUMBER: NCT02588300.
Comparison of the Proseal LMA and intersurgical I-gel during gynecological laparoscopy
Jeon, Woo Jae; Baek, Seong Jin; Kim, Kyoung Hun
2012-01-01
Background The relatively recently developed I-gel (Intersurgical Ltd., Workingham, England) is a supraglottic airway device designed for single-use that, unlike conventional LMAs, does not require an inflatable cuff. In addition, the I-gel, much like the Proseal LMA (PLMA), has a gastric drainage tube associated with an upper tube for decompression of the stomach, thereby avoiding acid reflux and decreasing the risk of pulmonary absorption. The purpose of this study was to compare PLMA and I-gel devices in patients undergoing gynecological laparoscopy based on sealing pressure before and during pneumoperitoneum, insertion time, and gas exchange. Methods Following Institutional Review Board approval and written informed consent, 30 adult patients were randomly allocated to one of two groups (the PLMA or I-gel group). In each case, insertion time and number of attempts were recorded. After successful insertion, airway leak pressure was measured. Results Successful insertion and mechanical ventilation with both supraglottic airway devices was achieved on the first attempt in all 30 patients, and there were no significant differences with respect to insertion time. Likewise, leak pressure did not vary significantly either between or within groups after CO2 insufflation. In addition, differences between leak volume and leak fraction between groups were not significant. Conclusions The results of our study indicate that the I-gel is a reasonable alternative to the PLMA for controlled ventilation during laparoscopic gynecologic surgery. PMID:23277811
Tanaka, Yasutomo; Miyazaki, Yukiko; Kitakata, Hidenori; Shibuya, Hiromi; Okada, Toshiki
2015-12-01
Studies show that McGRATH® MAC (McG) is useful during direct laryngoscopy. However, no study has examined whether McG re- duces pressure on the upper airway tract We compared direct vision with indirect vision concerning pressure on the larynx and tongue. Twenty two anesthesiologists and 16 junior residents attempted direct laryngoscopy of airway management simulator using McG with direct vision and indirect vision. Pressure was measured using pressure measurement film. In anesthesiologists group, pressure on larynx was 14.8 ± 2.7 kgf · cm(-2) with direct vision and 12.7 ± 2.7 kgf · cm(-2) with indirect vision (P < 0.05). Pressure on the tongue was 8.8 ± 3.2 kgf cm(-2) with direct vision and 7.6 ± 2.8 kgf · cm(-2) with indirect vision (P = 0.18). In junior residents group, pressure on larynx was 19.0 ± 1.3 kgf · cm(-2) with direct vision and 14.1 ± 3.1 kgf · cm(-2) with indirect vision (P < 0.05). Pressure on the tongue was 15.4 ± 3.6 kgf · cm(-2) with direct vision and 11.2 ± 4.7 kgf · cm(-2) with indirect vision (P < 0.05). McG with indirect vision can reduce pressure on the upper airway tract.
21 CFR 868.2600 - Airway pressure monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...
Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training
ERIC Educational Resources Information Center
Berry, David C.; Seitz, S. Robert
2011-01-01
The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…
Jean, Yuel-Kai; Potnuru, Paul; Diez, Christian
2018-06-11
We present an approach to airway management in a patient with machete injuries culminating in near-complete cricotracheal transection, in addition to a gunshot wound to the neck. Initial airway was established by direct intubation through the cricotracheal wound. Once the airway was secured, a bronchoscopy-guided orotracheal intubation was performed with simultaneous retraction of the cricotracheal airway to optimize the surgical field. This case offers insight into a rarely performed approach to airway management. Furthermore, our case report demonstrates that, in select airway injuries, performing through-the-wound intubation engenders a multitude of benefits.
Airway Strain during Mechanical Ventilation in an Intact Animal Model
Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.
2007-01-01
Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911
Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C
2011-12-01
Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.
Murai, M; Morimoto, H; Maeda, Y; Fujii, T
1992-06-24
FR113680 is a newly developed tripeptide substance P (SP) receptor antagonist. The effects of FR113680 on airway constriction and airway edema induced by neurokinins were investigated in guinea-pigs. In in vitro experiments, FR113680 inhibited the contraction of isolated guinea-pig trachea induced by SP and neurokinin A (NKA) in a dose-dependent manner with IC50 values of 2.3 x 10(-6) and 1.5 x 10(-5) M, respectively. The tracheal contraction induced by histamine and acetylcholine was not affected by FR113680. FR113680 (5 x 10(-5) M) also significantly inhibited the atropine-resistant contraction of isolated guinea-pig bronchi induced by electrical field stimulation. In in vivo experiments, FR113680 given i.v. inhibited SP-induced airway constriction in guinea-pigs at doses of 1 and 10 mg kg-1. However, FR113680 only inhibited NKA- and capsaicin-induced airway constriction by 40-50% even at a dose of 10 mg kg-1. FR113680 also inhibited SP-induced airway edema in guinea-pigs with the same potency as it inhibited SP-induced airway constriction. Histamine-induced airway constriction and airway edema were not affected at a dose of 10 mg kg-1. These results suggest that FR113680 preferentially inhibits responses induced by NK1 receptor activation (SP-induced airway constriction and airway edema), but is less effective on a NK2 receptor-induced response (airway constriction by NKA and neurogenic stimulation).
Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...
2016-03-03
In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less
Rezende, Thiago J R; Silva, Cynthia B; Yassuda, Clarissa L; Campos, Brunno M; D'Abreu, Anelyssa; Cendes, Fernando; Lopes-Cendes, Iscia; França, Marcondes C
2016-01-01
Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage in Friedreich's ataxia. We enrolled 31 patients and 40 controls, which were evaluated at baseline and after 1 and 2 years. To assess gray matter, we employed voxel-based morphometry and cortical thickness measurements. White matter was evaluated using diffusion tensor imaging. Statistical analyses were both cross-sectional and longitudinal (corrected for multiple comparisons). Group comparison between patients and controls revealed widespread macrostructural differences at baseline: gray matter atrophy in the dentate nuclei, brainstem, and precentral gyri; and white matter atrophy in the cerebellum and superior cerebellar peduncles, brainstem, and periventricular areas. We did not identify any longitudinal volumetric change over time. There were extensive microstructural alterations, including superior cerebellar peduncles, corpus callosum, and pyramidal tracts. Longitudinal analyses identified progressive microstructural abnormalities at the corpus callosum, pyramidal tracts, and superior cerebellar peduncles after 1 year of follow-up. Patients with Friedreich's ataxia present more widespread gray and white matter damage than previously reported, including not only infratentorial areas, but also supratentorial structures. Furthermore, patients with Friedreich's ataxia have progressive microstructural abnormalities amenable to detection in a short-term follow-up. © 2015 International Parkinson and Movement Disorder Society.
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
Burjek, Nicholas E; Nishisaki, Akira; Fiadjoe, John E; Adams, H Daniel; Peeples, Kenneth N; Raman, Vidya T; Olomu, Patrick N; Kovatsis, Pete G; Jagannathan, Narasimhan; Hunyady, Agnes; Bosenberg, Adrian; Tham, See; Low, Daniel; Hopkins, Paul; Glover, Chris; Olutoye, Olutoyin; Szmuk, Peter; McCloskey, John; Dalesio, Nicholas; Koka, Rahul; Greenberg, Robert; Watkins, Scott; Patel, Vikram; Reynolds, Paul; Matuszczak, Maria; Jain, Ranu; Khalil, Samia; Polaner, David; Zieg, Jennifer; Szolnoki, Judit; Sathyamoorthy, Kumar; Taicher, Brad; Riveros Perez, N Ricardo; Bhattacharya, Solmaletha; Bhalla, Tarun; Stricker, Paul; Lockman, Justin; Galvez, Jorge; Rehman, Mohamed; Von Ungern-Sternberg, Britta; Sommerfield, David; Soneru, Codruta; Chiao, Franklin; Richtsfeld, Martina; Belani, Kumar; Sarmiento, Lina; Mireles, Sam; Bilen Rosas, Guelay; Park, Raymond; Peyton, James
2017-09-01
The success rates and related complications of various techniques for intubation in children with difficult airways remain unknown. The primary aim of this study is to compare the success rates of fiber-optic intubation via supraglottic airway to videolaryngoscopy in children with difficult airways. Our secondary aim is to compare the complication rates of these techniques. Observational data were collected from 14 sites after management of difficult pediatric airways. Patient age, intubation technique, success per attempt, use of continuous ventilation, and complications were recorded for each case. First-attempt success and complications were compared in subjects managed with fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway and videolaryngoscopy had similar first-attempt success rates (67 of 114, 59% vs. 404 of 786, 51%; odds ratio 1.35; 95% CI, 0.91 to 2.00; P = 0.16). In subjects less than 1 yr old, fiber-optic intubation via supraglottic airway was more successful on the first attempt than videolaryngoscopy (19 of 35, 54% vs. 79 of 220, 36%; odds ratio, 2.12; 95% CI, 1.04 to 4.31; P = 0.042). Complication rates were similar in the two groups (20 vs. 13%; P = 0.096). The incidence of hypoxemia was lower when continuous ventilation through the supraglottic airway was used throughout the fiber-optic intubation attempt. In this nonrandomized study, first-attempt success rates were similar for fiber-optic intubation via supraglottic airway and videolaryngoscopy. Fiber-optic intubation via supraglottic airway is associated with higher first-attempt success than videolaryngoscopy in infants with difficult airways. Continuous ventilation through the supraglottic airway during fiber-optic intubation attempts may lower the incidence of hypoxemia.
Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?
Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R
2015-07-01
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.
Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.
2008-01-01
Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561
Forced oscillometry track sites of airway obstruction in bronchial asthma.
Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser
2015-07-01
Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Subramanian, Arun; Garcia-Marcinkiewicz, Annery G; Brown, Daniel R; Brown, Michael J; Diedrich, Daniel A
2016-03-01
The King LT(S)-D laryngeal tube (King LT) has gained popularity as a bridge airway for pre-hospital airway management. In this study, we retrospectively reviewed the use of the King LT and its associated airway outcomes at a single Level 1 trauma centre. The data on all adult patients presenting to the Mayo Clinic in Rochester, Minnesota with a King LT in situ from July 1, 2007 to October 10, 2012 were retrospectively evaluated. Data collected and descriptively analyzed included patient demographics, comorbidities, etiology of respiratory failure, airway complications, subsequent definitive airway management technique, duration of mechanical ventilation, and status at discharge. Forty-eight adult patients met inclusion criteria. The most common etiology for respiratory failure requiring an artificial airway was cardiac arrest [28 (58%) patients] or trauma [9 (19%) patients]. Four of the nine trauma patients had facial trauma. Surgical tracheostomy was the definitive airway management technique in 14 (29%) patients. An airway exchange catheter, direct laryngoscopy, and video laryngoscopy were used in 11 (23%), ten (21%), and ten (21%) cases, respectively. Seven (78%) of the trauma patients underwent surgical tracheostomy compared with seven (18%) of the medical patients. Adverse events associated with King LT use occurred in 13 (27%) patients, with upper airway edema (i.e., tongue engorgement and glottic edema) being most common (19%). In this study of patients presenting to a hospital with a King LT, the majority of airway exchanges required an advanced airway management technique beyond direct laryngoscopy. Upper airway edema was the most common adverse observation associated with King LT use.
Evans, Trip; Hanna, Mark; Hafez, Osama; Patel, Sephalie Y
2018-06-01
The use of the laryngeal mask airways is well established in routine and emergency airway management. Due to its traditional use as a supraglottic airway, it is often overlooked in patients with abnormal airway anatomy such as tracheostomies and laryngeal stomas. We present the unique method of using the laryngeal mask airways externally to facilitate preoxygenation and ventilation in a patient with a laryngeal stoma.
Airway malacia in children with achondroplasia.
Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M
2014-02-01
This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.
Höland, W; Schweiger, M; Frank, M; Rheinberger, V
2000-01-01
The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, C.D.; Sollars, C.J.; Perry, R.
1994-01-01
Ordinary Portland cement (OPC) has been used to solidify hazardous waste for about 25 years. The effects of waste components on the hydraulic activity of his binder have been subject to increasing research. Under certain circumstances, as yet to be defined, the hydration reactions thought responsible for solidification can be poisoned and appear to be retarded indefinitely. In this study, a number of wastes known to be capable of poisoning hydration were added to OPC and the effects were examined by conduction calorimetry and microstructural analysis techniques. A comparison of results showed that it was possible to classify waste/OPC interactionsmore » by phase development and the heat of hydration evolved. During the second part of this work, which is reported separately, the individual wastes were characterized, and the individual components identified as significant were added to OPC in single and combined additions. A comparison of results showed that it was possible to reproduce the poisoning effects observed.« less
Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels
Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...
2015-12-22
The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less
Liu, Xue; Guo, Xiaoyang; Lv, Ying; Hu, Yongsheng; Lin, Jie; Fan, Yi; Zhang, Nan; Liu, Xingyuan
2018-05-30
The performance and flexibility of perovskite solar cells (PSCs) have been enhanced by introducing microstructured WO 3 /Ag/WO 3 (WAW) multilayer transparent electrodes, which can be fabricated through glancing angle deposition (GLAD) method. The structure and morphology of the second WO 3 layers in WAW films can be altered significantly by changing the deposition angles. A film with porous, oriented WO 3 nanocolumns was obtained at the deposition angle of 75°. The rigid and flexible devices based on this microstructured electrodes show enhanced power conversion efficiencies (PCEs) of 14.91 and 13.79%, respectively, which are increasing by 10.36 and 10.14% in comparison with the devices based on the WAW electrodes with planar structure, respectively. Simultaneously, the bending stability of the flexible PSCs based on the microstructured WAW electrode has been improved significantly, which retains 90.97% of its initial PCE after 1000 times bending under the maximum strain of 1.3%, compared with the 78.39% of the reference device with the planar WAW electrode. This can be attributed to the unique microstructure of WAW electrodes fabricated by GLAD methods, releasing the mechanical stresses under repeated bending; moreover, the smaller grains induced by this electrode can disperse the stress, which decrease the damage on the perovskite layer; we believe that this work will pave for the way to improve the performance and flexibility of PSCs.
NASA Astrophysics Data System (ADS)
Alejos, Martin Fernando
Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.
Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong
2016-05-24
Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.
Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels
NASA Astrophysics Data System (ADS)
Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.
2007-01-01
The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Pore- and micro-structural characterization of a novel structural binder based on iron carbonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sumanta, E-mail: Sumanta.Das@asu.edu; Stone, David, E-mail: dajstone@gmail.com; Convey, Diana, E-mail: Diana.Convey@asu.edu
2014-12-15
The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days ismore » noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.« less
TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.
2016-01-01
Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804
Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R
2016-09-01
Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Double stenting with silicone and metallic stents for malignant airway stenosis.
Matsumoto, Keitaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi
2017-08-01
For severe malignant airway stenosis, there are several types of commercially available airway stents, and each has its own advantages and disadvantages. We herein describe the safety and efficacy of combination stenting with silicone and metallic stents for patients with extended malignant airway stenosis. Seven patients with malignant airway stenosis were treated via combination stenting with a silicone stent and a metallic stent for extended airway stenosis from the central to peripheral airways. Five patients were diagnosed with advanced esophageal cancer, two of whom had tracheoesophageal fistulas. One patient had adenoid cystic carcinoma, and another had mediastinal tumor. There were no specific complications related to the double stenting. Combination stenting with silicone and metallic stents proved to be a safe option for patients with severe, extended, and complicated malignant airway stenosis.
Sharples, Linda D.; Clutterbuck-James, Abigail L.; Glover, Matthew J.; Bennett, Maxine S.; Chadwick, Rebecca; Pittman, Marcus A.; Quinnell, Timothy G.
2017-01-01
Summary Obstructive sleep apnoea-hypopnoea (OSAH) causes excessive daytime sleepiness, impairs quality-of-life, and increases cardiovascular disease and road traffic accident risks. Continuous positive airway pressure (CPAP) treatment and mandibular advancement devices (MAD) have been shown to be effective in individual trials but their effectiveness particularly relative to disease severity is unclear. A MEDLINE, Embase and Science Citation Index search updating two systematic reviews to August 2013 identified 77 RCTs in adult OSAH patients comparing: MAD with conservative management (CM); MAD with CPAP; or CPAP with CM. Overall MAD and CPAP significantly improved apnoea-hypopnoea index (AHI) (MAD −9.3/hr (p < 0.001), CPAP −25.4 (p < 0.001)). In direct comparisons mean AHI and Epworth sleepiness scale score were lower (7.0/hr (p < 0.001) and 0.67 (p = 0.093) respectively) for CPAP. There were no CPAP vs. MAD trials in mild OSAH but in comparisons with CM, MAD and CPAP reduced ESS similarly (MAD 2.01 (p < 0.001); CPAP 1.23 (p = 0.012). Both MAD and CPAP are clinically effective in the treatment of OSAH. Although CPAP has a greater treatment effect, MAD is an appropriate treatment for patients who are intolerant of CPAP and may be comparable to CPAP in mild disease. PMID:26163056
Ingebrethsen, Bradley J
2006-12-01
A numerical model of an aerosol containing vaporizable nicotine depositing to the walls of a tube was developed and applied to simulate the vapor deposition of nicotine in a denuder tube and under conditions approximating those in the respiratory tract during mainstream cigarette smoke inhalation. The numerical model was validated by comparison to data for denuder tube collection of nicotine from the smoke of three types of cigarette differing in smoke acidity and nicotine volatility. Simulations predict that the absorption of water by aerosol particles inhibits nicotine vapor deposition to tube walls, and that increased temperature, decreased tube diameter, and increased dilution enhance nicotine vapor deposition rate. The combined effect of changing these four parameters to approximate the transition from conducting to gas exchange regions of the respiratory tract was a significant net increase in predicted nicotine vapor deposition rate. Comparisons of nicotine deposition rates between conditions in the conducting airways and those in the gas exchange region were informative with regard to reported nicotine retention measurements during human smoking. Reports that vaporizable nicotine can penetrate past the conducting airways, that nicotine can be retained at near 100% efficiency from mainstream smoke, and that cigarettes with differing acidity and nicotine volatility have similar nicotine uptake rates are all shown to be consistent with the results of the model simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latza, U.; Baur, X.
2005-08-01
Occupational inhalative exposures contribute to a significant proportion of obstructive airway diseases (OAD), namely chronic obstructive pulmonary disease (COPD) and asthma. The number of occupational OAD in the German industrial sector for the year 2003 are presented. Other analyses of surveillance data were retrieved from Medline. Most confirmed reports of OAD are cases of sensitizer induced occupational asthma (625 confirmed cases) followed by COPD in coal miners (414 cases), irritant induced occupational asthma (156 cases), and isocyanate asthma (54 cases). Main causes of occupational asthma in Germany comprise flour/flour constituents (35.9%), food/feed dust (9.0%), and isocyanates (6.5%). Flour and grainmore » dust is a frequent cause of occupational asthma in most European countries and South Africa. Isocyanates are still a problem worldwide. Although wide differences in the estimated incidences between countries exist due to deficits in the coverage of occupational OAD, the high numbers necessitate improvement of preventive measures.« less
MacNab, A J; MacPhail, I; MacNab, M K; Noble, R; O'Flaherty, D
1998-01-01
We conducted a prospective randomized study of success rate and time to intubation using Trachlight and Surch-Lite lighted stylets versus a regular tracheal tube stylet, in a training setting. Participants, 18 paediatric transport paramedics, performed two intubations with each of the three devices, using an airway management trainer. There was no significant difference in mean time for intubation between the three devices. The times for external confirmation of correct tube placement were comparable using the two lighted stylets. External confirmation of the tube placement using the lighted stylets was quicker than laryngoscopic visualization. In darkness, with a nonfunctioning laryngoscope, intubations were successfully performed 100% of the time with the lighted stylet, but only 11% of the time with the regular stylet. All paramedics felt that a lighted stylet would be a useful airway management adjunct for the transport environment for complicated intubations or for use in very high or low levels of ambient light.
Yegian, Courtney C; Volz, Lana M; Galgon, Richard E
2018-05-11
Tracheal extubation in children with known difficult airways is associated with an increased risk of adverse events. Currently, there is no reliable measure to predict the need for emergent reintubation due to airway inadequacy. Airway exchange catheter-assisted extubation has been shown to be a useful adjunct in decreasing the risk of adverse events due to failed extubation. We report a case of using an airway exchange catheter-assisted extubation with continuous end-tidal carbon dioxide monitoring for a pediatric patient with a known difficult airway.
Chronic obstructive pulmonary disease: knowing what we mean, meaning what we say.
Joshi, J M
2008-01-01
Chronic obstructive pulmonary disease (COPD) is defined in several different ways using different criteria based on symptoms, physiological impairment and pathological abnormalities. While some use COPD to mean smoking related chronic airway disease, others include all disorders causing chronic airway obstruction. When COPD is used as a broad descriptive term, specific disorders that cause chronic airway obstruction remain under-diagnosed and the prevalence estimates vary considerably. The lack of agreement over the precise terminology and classification of COPD has resulted in widespread confusion. Terminology includes definition, diagnostic criteria, and a system for staging severity. Recently, COPD is defined more clearly and diagnosed using precise criteria that include tobacco smoking greater than 10 pack years, symptoms and airway obstruction on spirometry. A multi-dimensional severity grading system, the BODE (body mass index, obstruction, dyspnoea, and exercise tolerance) index has been designed to assess the respiratory and systemic expressions of COPD. This review proposes that the broad group of chronic disorders of the airways (with or without airway obstruction) be called chronic airway disease (CAD). The term COPD should be used exclusively for tobacco smoking related chronic airway disease. Chronic airway obstruction or obstructive lung disease may be used to define those conditions with airways obstruction caused by factors other than tobacco smoking. The aetiology may be appended to the label, for example, chronic airway obstruction/obstructive lung disease associated with bronchiectasis, chronic airway obstruction/obstructive lung disease associated with obliterative bronchiolitis or chronic airway obstruction/obstructive lung disease due to biomass fuel/occupational exposure.
Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W
2009-04-01
Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.
Tracheal Malplacement of the King LT Airway May Be an Important Cause of Prehospital Device Failure.
Driver, Brian E; Plummer, David; Heegaard, William; Reardon, Robert F
2016-12-01
The King LT airway (King Systems, Noblesville, IN) is a popular extraglottic device that is widely used in the prehospital setting. We report a case of tracheal malplacement of the King airway with a severe kink in the distal tube. A 51-year-old unhelmeted motorcyclist collided with a freeway median and was obtunded when paramedics arrived. After bag mask ventilation, a King airway was placed uneventfully and the patient was transported to the emergency department. Because of the concern for an unstable cervical spine injury, a lateral cervical spine radiograph was obtained on arrival. No cervical injury was seen, but the King airway was noted to be malplaced; the King airway passed through the laryngeal inlet and became lodged on the anterior trachea, creating an acute kink between the two balloons. After reviewing the radiograph, ventilations were reassessed and remained adequate. Both balloons were deflated, and the King airway was removed; the patient was orotracheally intubated without complication. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: The King airway is a valuable prehospital airway that can be placed quickly and blindly with high success rates by inexperienced providers; the King airway, however, is not without complication. Ventilation was not impaired in this patient, but tracheal malplacement may be an important cause of prehospital device failure. If a first placement attempt of a King airway device fails, it is reasonable to reattempt King airway placement with a new, unkinked device before abandoning King airway placement. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton
NASA Astrophysics Data System (ADS)
Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin
2017-09-01
In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.
Infectious mononucleosis and bilateral peritonsillar abscesses resulting in airway obstruction.
Burstin, P P; Marshall, C L
1998-12-01
Upper airway obstruction is an uncommon but recognized complication of infectious mononucleosis. The management depends upon the degree of airway compromise. In the case described, severe airway obstruction was treated by securing the airway with awake fibre-optic endoscopic intubation and then proceeding to tonsillectomy. Bilateral inferiorly loculated quinsies were encountered unexpectedly and drained. This is the first report of 'bilateral' quinsies, associated with infectious mononucleosis and severe airway obstruction. The association, pathogenesis and significance of this finding are also discussed.
Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.
Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim
2018-06-01
A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.
RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction
Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.
2014-01-01
Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657
A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation
Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh
2016-01-01
Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576
NASA Astrophysics Data System (ADS)
Kogure, Toshihiro; Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Checa, Antonio G.; Sasaki, Takenori; Nagasawa, Hiromichi
2014-07-01
{110} twin density in aragonites constituting various microstructures of molluscan shells has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM), to find the factors that determine the density in the shells. Several aragonite crystals of geological origin were also investigated for comparison. The twin density is strongly dependent on the microstructures and species of the shells. The nacreous structure has a very low twin density regardless of the shell classes. On the other hand, the twin density in the crossed-lamellar (CL) structure has large variation among classes or subclasses, which is mainly related to the crystallographic direction of the constituting aragonite fibers. TEM observation suggests two types of twin structures in aragonite crystals with dense {110} twins: rather regulated polysynthetic twins with parallel twin planes, and unregulated polycyclic ones with two or three directions for the twin planes. The former is probably characteristic in the CL structures of specific subclasses of Gastropoda. The latter type is probably related to the crystal boundaries dominated by (hk0) interfaces in the microstructures with preferred orientation of the c-axis, and the twin density is mainly correlated to the crystal size in the microstructures.
Shower, Patrick T.; Roy, Shibayan; Hawkins, Charles Shane; ...
2017-06-08
Here in this study, the high temperature compressive response of cast aluminum alloys 319 and RR350 is compared in light of their microstructures. The 319 alloy is widely used in thermally critical automotive applications and provides a baseline for comparison with the RR350 alloy, whose microstructural stability at high homologous temperatures was recently reported. Cylindrical compression samples from each alloy were tested at four temperatures up to 300 °C at a constant true strain rate that was varied over four orders of magnitude. Although both alloys are strengthened by metastable precipitates (nominally Al 2Cu) in the as-aged condition, their mechanicalmore » response diverges at temperatures greater than 250 °C as the strengthening precipitates evolve in the 319 alloy and retain their as-aged morphology in the RR350 alloy. Deformation mechanisms of each alloy are examined using microstructural analysis and empirical activation energy calculations. The stability of the θ' phase in the RR350 alloy leads to effective precipitation hardening at homologous temperatures up to 0.6 and an extensive regime of grain boundary controlled deformation.« less
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-07-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.
2015-04-15
In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone nearmore » the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.« less
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-03-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... lawfulness of the rates charged by the Respondent for transportation of jet or aviation turbine fuel on its..., Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc., US Airways, Inc... Airlines, Inc., JetBlue Airways Corporation, United Air Lines, Inc., and US Airways, Inc. (collectively...
14 CFR 13.3 - Investigations (general).
Code of Federal Regulations, 2010 CFR
2010-01-01
....), the Airport and Airway Improvement Act of 1982 (49 U.S.C. 2201 et seq.), the Airport and Airway Improvement Act of 1982 (as amended, 49 U.S.C. App. 2201 et seq., Airport and Airway Safety and Capacity... Improvement Act of 1982, the Airport and Airway Improvement Act of 1982 as amended by the Airport and Airway...
Madan, Karan; Shrestha, Prajowl; Garg, Rakesh; Hadda, Vijay; Mohan, Anant; Guleria, Randeep
2017-01-01
Central airway obstruction (CAO) can result from various benign and malignant etiologies. Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancer. Rapid airway compromise is the main cause of death in ATC. We report a patient with ATC who presented with a large neck mass leading to CAO with long segment tracheal and right main bronchial compression and respiratory failure. Urgent Rigid Bronchoscopy was performed for airway stabilization and patient was managed with a combination airway stenting approach. A combination of self expanding, metallic, covered inverted Y and straight tracheal stents was used to stabilize the near complete airway structure. We herein highlight the role of therapeutic rigid bronchoscopy with airway stenting as an efficacious treatment modality for management of malignant CAO. PMID:28360477
Iwasaki, Tomonori; Saitoh, Issei; Takemoto, Yoshihiko; Inada, Emi; Kakuno, Eriko; Kanomi, Ryuzo; Hayasaki, Haruaki; Yamasaki, Youichi
2013-02-01
Rapid maxillary expansion (RME) is known to improve nasal airway ventilation. Recent evidence suggests that RME is an effective treatment for obstructive sleep apnea in children with maxillary constriction. However, the effect of RME on tongue posture and pharyngeal airway volume in children with nasal airway obstruction is not clear. In this study, we evaluated these effects using cone-beam computed tomography. Twenty-eight treatment subjects (mean age 9.96 ± 1.21 years) who required RME treatment had cone-beam computed tomography images taken before and after RME. Twenty control subjects (mean age 9.68 ± 1.02 years) received regular orthodontic treatment. Nasal airway ventilation was analyzed by using computational fluid dynamics, and intraoral airway (the low tongue space between tongue and palate) and pharyngeal airway volumes were measured. Intraoral airway volume decreased significantly in the RME group from 1212.9 ± 1370.9 mm(3) before RME to 279.7 ± 472.0 mm(3) after RME. Nasal airway ventilation was significantly correlated with intraoral airway volume. The increase of pharyngeal airway volume in the control group (1226.3 ± 1782.5 mm(3)) was only 41% that of the RME group (3015.4 ± 1297.6 mm(3)). In children with nasal obstruction, RME not only reduces nasal obstruction but also raises tongue posture and enlarges the pharyngeal airway. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Diaz, Alejandro A; Estépar, Raul San José; Washko, George R
2016-01-01
Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.
Air trapping and airflow obstruction in newborn cystic fibrosis piglets.
Adam, Ryan J; Michalski, Andrew S; Bauer, Christian; Abou Alaiwa, Mahmoud H; Gross, Thomas J; Awadalla, Maged S; Bouzek, Drake C; Gansemer, Nicholas D; Taft, Peter J; Hoegger, Mark J; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M; Hoffman, Eric A; Beichel, Reinhard R; Meyerholz, David K; Stoltz, David A
2013-12-15
Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.
NASA Astrophysics Data System (ADS)
Ebert, A.; Herwegh, M.; Karl, R.; Edwin, G.; Decrouez, D.
2007-12-01
In the upper crust, shear zones are widespread and appear at different scales. Although deformation conditions, shear zone history, and displacements vary in time and space between shear zones and also within them, in all shear zones similar trends in the evolution of large- to micro-scale fabrics can be observed. The microstructural analyses of calcite mylonites from Naxos and various Helvetic nappes show that microstructures from different metamorphic zones vary considerably on the outcrop- and even on the sample- scale. However, grain sizes tend to increase with metamorphic degree in case of Naxos and the Helvetic nappes. Although deformation conditions (e.g. deformation temperature, strain rate, and shear zone geometry, i.e. shear zone width and rock type above/below thrust) vary between the different tectonic settings, microstructural trends (e.g. grain size) correlate with each other. This is in contrast to many previous studies, where no corrections for second phase contents have been applied. In an Arrhenius-type diagram, the grain growth trends of calcite of all studied shear zones fit on a single trend, independent of the dimensions of localized large-scale structures, which is in the dm to m- and km-range in case of the Helvetic thrusts and the marble suite of Naxos, respectively. The calcite grain size increases continuously from few μm to >2mm with a temperature increase from <300°C to >700°C. In a field geologist's point of view, this is an important observation because it shows that natural dynamically stabilized steady state microfabrics can be used to estimate temperature conditions during deformation, although the tectonic settings are different (e.g. strain rate, fluid flow). The reason for this agreement might be related to a scale-dependence of the shear zone dimensions, where the widths increase with increasing metamorphic conditions. In this sense, the deformation volumes affected by localization must closely be linked to the strength of the affected rocks. In comparison to experiments, similar microstructural trends are observed. Here, however, shifts of these trends occur due to the higher strain rates.
NASA Astrophysics Data System (ADS)
Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.
2007-06-01
The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.
Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease
Siddesha, Jalahalli M.; Nakada, Emily M.; Mihavics, Bethany R.; Hoffman, Sidra M.; Rattu, Gurkiranjit K.; Chamberlain, Nicolas; Cahoon, Jonathon M.; Lahue, Karolyn G.; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G.; Desai, Dhimant H.; Poynter, Matthew E.
2016-01-01
Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200
Wignall, Jamie R; Baines, Stephen J
2014-01-01
To evaluate the effect of cuff presence and cuff inflation on airway pressure in an inspiratory model of canine tracheostomy. Ex vivo experimental study. Cadaver tracheas from Beagle dogs were attached aborally to a vacuum. Airway pressure and flow rate was measured before and after placement of tracheostomy tubes. None. Adult uncuffed tubes and cuffed tracheostomy tubes (sizes 4, 6, 8, and 10) were placed within tracheas. Cuffs were investigated without inflation and at maximum cuff inflation. Airway pressure was measured at constant airflow rates at 30 and 60 L/min. At set flow rates, airway pressures of tracheostomy tubes were compared to the intact trachea. A size 4 uncuffed tracheostomy tube showed the lowest airway pressure and a size 4 cuffed trachestomy tube with inflation showed the highest airway pressures. For sizes 6, 8, and 10 tubes, the presence of a cuff with and without inflation significantly increased airway pressure. Inflation of a cuff always significantly increased airway pressure. Similar pressure is seen between sizes 4 and 6 uncuffed tubes. Cuffed tracheostomy tubes should not be used unless specifically indicated due to increased airway pressure. © Veterinary Emergency and Critical Care Society 2013.
Sequential Stenting for Extensive Malignant Airway Stenosis
Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji
2014-01-01
Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272
Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity
Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.
2017-01-01
Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204
Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M
2011-12-15
Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge. Copyright © 2011 Elsevier B.V. All rights reserved.
A mechanical design principle for tissue structure and function in the airway tree.
LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.
Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers
Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.
2013-01-01
Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175
A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree
LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742
Kuo, H P; Lu, L C
1995-01-01
Cigarette smoke (CS) inhalation stimulates C-fibers to release sensory neuropeptides which mediate airway reflex responses to prevent irritants from entering the lower airways. When CS is inhaled via the upper airways, these airway defense responses may modulate the effect of CS on airway NEP activity and related airway hyperresponsiveness. To examine this possibility, we exposed guinea pigs to 1:10 diluted mid-tar cigarette smoke 100 puffs per day for 7 days and recorded pulmonary resistance of cumulative doses of neurokinin A (NKA, 10(-12)-10(-8) mol/kg, i.v.) or methacholine (Mch, 1-50 micrograms/kg, i.v.). NEP activity in the tracheobronchi was measured using fluorometric assay. Exposure of CS alone failed to alter the dose-response to NKA or Mch compared with air control. NEP activity in the airways after CS exposure was slightly but significantly lower than that of air control. Capsaicin pretreatment 1 week before CS exposure significantly shifted the dose-response curves of NKA, but not Mch, to the left and decreased NEP activity in the airways to a greater extent compared with CS exposure alone group. Capsaicin pretreatment alone failed to alter the responsiveness to NKA or NEP activity. CS also induced a significant increase in neutrophil counts in airways. Capsaicin pretreatment enhanced the effect of CS on neutrophil recruitment. We conclude that sensory neuropeptides may have a protective role in modulation of airways NEP activity downregulation induced by CS, probably by preventing CS from entering the lower airways or the chronic release of sensory neuropeptides induced by CS providing increased amount of substrata for NEP upregulation, and therefore modify the direct effect of CS on NEP activity and related airway hyperresponsiveness.
Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.
Turturice, Benjamin A; McGee, Halvor S; Oliver, Brian; Baraket, Melissa; Nguyen, Brian T; Ascoli, Christian; Ranjan, Ravi; Rani, Asha; Perkins, David L; Finn, Patricia W
2017-01-01
Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids. To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics. A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13) were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6) and to themselves after six weeks of treatment with fluticasone propionate (FP). Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing. Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP), termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls. The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to microbiota.
Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.
2009-01-01
Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939
Noppen, M; Piérard, D; Meysman, M; Herreweghe, R V; Vincken, W
2000-12-01
Following airway stenting, bacterial colonization of the airways with potentially pathogenic micro-organisms occurs within 4 weeks after treatment in the majority of patients. The objective of this study was to prospectively investigate whether nonstenting therapeutic rigid bronchoscopy (using laser, cryotherapy, mechanical dilatation or debridement) is followed by airway colonization or infection. Protected specimen brush sampling of the central airways and quantitative culture were performed immediately prior to, and 4 weeks after nonstenting therapeutic rigid bronchoscopy in 20 consecutive patients with central airway lesions. Prior to therapeutic bronchoscopy, airway colonization/infection was present in nine of 20 (45%) patients. In these nine patients, 10 different potential pathogens were identified: Streptococcus pneumoniae (four cases), Pseudomonas aeruginosa (three), Haemophilus influenzae (two), and Serratia marcescens (one). Eight of these nine patients had a history of postobstructive infections, of which three were currently being treated with antibiotics. Four weeks following therapeutic bronchoscopy, airway colonization/infection was present in five of 20 (25%) patients, each of whom had airway colonization/infection prior to bronchoscopy. In three of these five patients, the same organisms were found 4 weeks after bronchoscopy as at baseline bronchoscopy. In two of five patients new organisms were identified: one case of Streptococcus viridans and one case of Haemophilus parainfluenzae, both considered to be nonpathogens. In four of nine patients with airway colonization/infection prior to bronchoscopy, the airways were clear of micro-organisms after the procedure. The authors conclude that: 1) nonstenting therapeutic rigid bronchoscopy is not complicated by airway colonization or infection by new potential pathogens; and 2) therapeutic rigid bronchoscopy led to clearing of airway colonization/infection in almost half of the patients studied.
Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.
Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R
2009-10-01
Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.
Anatomic optical coherence tomography for dynamic imaging of the upper airway
NASA Astrophysics Data System (ADS)
Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.
2017-03-01
To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.
Bhola, Ruchi; Bhalla, Swaran; Gupta, Radha; Singh, Ishwar; Kumar, Sunil
2014-05-01
Literature suggests that glottic view is better when using McGrath(®) Video laryngoscope and Truview(®) in comparison with McIntosh blade. The purpose of this study was to evaluate the effectiveness of McGrath Video laryngoscope in comparison with Truview laryngoscope for tracheal intubation in patients with simulated cervical spine injury using manual in-line stabilisation. This prospective randomised study was undertaken in operation theatre of a tertiary referral centre after approval from the Institutional Review Board. A total of 100 consenting patients presenting for elective surgery requiring tracheal intubation were randomly assigned to undergo intubation using McGrath(®) Video laryngoscope (n = 50) or Truview(®) (n = 50) laryngoscope. In all patients, we applied manual-in-line stabilisation of the cervical spine throughout the airway management. Statistical testing was conducted with the statistical package for the social science system version SPSS 17.0. Demographic data, airway assessment and haemodynamics were compared using the Chi-square test. A P < 0.05 was considered significant. The time to successful intubation was less with McGrath video laryngoscope when compared to Truview (30.02 s vs. 38.72 s). However, there was no significant difference between laryngoscopic views obtained in both groups. The number of second intubation attempts required and incidence of complications were negligible with both devices. Success rate of intubation with both devices was 100%. Intubation with McGrath Video laryngoscope caused lesser alterations in haemodynamics. Both laryngoscopes are reliable in case of simulated cervical spine injury using manual-in-line stabilisation with 100% success rate and good glottic view.
Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.
2001-01-01
Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807
Impulse Oscillometry and Spirometry Small-Airway Parameters in Mild to Moderate Bronchiectasis.
Guan, Wei-Jie; Yuan, Jing-Jing; Gao, Yong-Hua; Li, Hui-Min; Zheng, Jin-Ping; Chen, Rong-Chang; Zhong, Nan-Shan
2016-11-01
Both impulse oscillometry and spirometry can reflect small-airway disorders. The objective of this work was to investigate the diagnostic value of impulse oscillometry and spirometry small-airway parameters and their correlation with radiology, disease severity, and sputum bacteriology in mild to moderate bronchiectasis (bronchiectasis severity index <9) and to validate these findings in sensitivity analyses (mild bronchiectasis). We recruited 94 subjects with mild to moderate bronchiectasis and 26 healthy subjects. The diagnostic value of small-airway parameters was compared using the receiver operating characteristic curve. Chest high-resolution computed tomography (HRCT), impulse oscillometry measurement, spirometry, and sputum culture were performed. Correlation between small-airway parameters and clinical indices was determined, adjusting for age, sex, body mass index, and smoking history. Sensitivity analyses were repeated when excluding subjects with bronchiectasis severity index ≥9 or HRCT score ≥13. Impulse oscillometry and spirometry small-airway parameters could discriminate mild to moderate bronchiectasis from healthy subjects and correlated significantly with HRCT score and the number of bronchiectatic lobes and the bronchiectasis severity index (all P < .01). Small-airway parameters were more aberrant in subjects with dyshomogeneity and cystic bronchiectasis but were independent of Pseudomonas aeruginosa isolation or the location of predominant bronchiectatic lobes. Spirometry, but not impulse oscillometry, small-airway parameters differed statistically between subjects with isolated peripheral-airway bronchiectasis and those with peripheral plus central-airway bronchiectasis (all P < .01). Subgroup analyses yielded similar findings, except for the lack of correlation between small-airway parameters and clinical parameters in subjects with HRCT score ≤6. Impulse oscillometry and spirometry small-airway parameters have similar diagnostic value in reflecting peripheral-airway disorders and correlate with the HRCT scores, the bronchiectasis severity index, and the number of bronchiectatic lobes in mild to moderate bronchiectasis. Assessment of small-airway parameters should be incorporated in future lung function investigations in bronchiectasis. Copyright © 2016 by Daedalus Enterprises.
Influence of Gender and Age on Upper-Airway Length During Development
Ronen, Ohad; Malhotra, Atul; Pillar, Giora
2008-01-01
OBJECTIVE Obstructive sleep apnea has a strong male predominance in adults but not in children. The collapsible portion of the upper airway is longer in adult men than in women (a property that may increase vulnerability to collapse during sleep). We sought to test the hypothesis that in prepubertal children, pharyngeal airway length is equal between genders, but after puberty boys have a longer upper airway than girls, thus potentially contributing to this change in apnea propensity. METHODS Sixty-nine healthy boys and girls who had undergone computed tomography scans of their neck for other reasons were selected from the computed tomography archives of Rambam and Carmel hospitals. The airway length was measured in the midsagittal plane and defined as the length between the lower part of the posterior hard palate and the upper limit of the hyoid bone. Airway length and normalized airway length/body height were compared between the genders in prepubertal (4- to 10-year-old) and postpubertal (14- to 19-year-old) children. RESULTS In prepubertal children, airway length was similar between boys and girls (43.2 ± 5.9 vs 46.8 ± 7.7 mm, respectively). When normalized to body height, airway length/body height was significantly shorter in prepubertal boys than in girls (0.35 ± 0.03 vs 0.38 ± 0.04 mm/cm). In contrast, postpubertal boys had longer upper airways (66.5 ± 9.2 vs 52.2 ± 7.0 mm) and normalized airway length/body height (0.38 ± 0.05 vs 0.33 ± 0.05 mm/cm) than girls. CONCLUSIONS Although boys have equal or shorter airway length compared with girls among prepubertal children, after puberty, airway length and airway length normalized for body height are significantly greater in boys than in girls. These data suggest that important anatomic changes at puberty occur in a gender-specific manner, which may be important in explaining the male predisposition to pharyngeal collapse in adults. PMID:17908723
Airway structure and function in Eisenmenger's syndrome.
McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L
1998-10-01
The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.
Woo, L N; Guo, W Y; Wang, X; Young, A; Salehi, S; Hin, A; Zhang, Y; Scott, J A; Chow, C W
2018-05-02
Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5-12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5-12 weeks) to develop.
Murakawa, Tomohiro; Kerklo, Michelle M; Zamora, Martin R; Wei, Yi; Gill, Ronald G; Henson, Peter M; Grover, Frederick L; Nicolls, Mark R
2005-04-01
Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.
Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.
2015-01-01
Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. PMID:26097256
NASA Astrophysics Data System (ADS)
Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.
2015-03-01
Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.
Murgu, Septimiu Dan; Egressy, Katarine; Laxmanan, Balaji; Doblare, Guillermo; Ortiz-Comino, Rosamaria; Hogarth, D Kyle
2016-08-01
The purpose of this article is to provide an update on methods for palliating symptoms in patients with histologically benign and malignant central airway obstruction. We review the published literature within the past decade on postintubation, posttracheostomy, and TB- and transplant-related airway strictures; tracheobronchomalacia; and malignant airway obstruction. We review terminology, classification systems, and parameters that impact treatment decisions. The focus is on how airway stent insertion fits into the best algorithm of care. Several case series and cohort studies demonstrate that airway stents improve dyspnea, lung function, and quality of life in patients with airway obstruction. Airway stenting, however, is associated with high rates of adverse events and should be used only when curative open surgical interventions are not feasible or are contraindicated. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Prehospital airway management on rescue helicopters in the United Kingdom.
Schmid, M; Mang, H; Ey, K; Schüttler, J
2009-06-01
Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.
Wang, Henry E.; Prince, David; Stephens, Shannon W.; Herren, Heather; Daya, Mohamud; Richmond, Neal; Carlson, Jestin; Warden, Craig; Colella, M. Riccardo; Brienza, Ashley; Aufderheide, Tom P.; Idris, Ahamed; Schmicker, Robert; May, Susanne; Nichol, Graham
2016-01-01
Airway management is an important component of resuscitation from out-of-hospital cardiac arrest (OHCA). The optimal approach to advanced airway management is unknown. The Pragmatic Airway Resuscitation Trial (PART) will compare the effectiveness of endotracheal intubation (ETI) and Laryngeal Tube (LT) insertion upon 72-hour survival in adult OHCA. Encompassing United States Emergency Medical Services agencies affiliated with the Resuscitation Outcomes Consortium (ROC), PART will use a cluster-crossover randomized design. Participating subjects will include adult, non-traumatic OHCA requiring bag-valve-mask ventilation. Trial interventions will include 1) initial airway management with ETI and 2) initial airway management with LT. The primary and secondary trial outcomes are 72-hour survival and return of spontaneous circulation. Additional clinical outcomes will include airway management process and adverse events. The trial will enroll a total of 3,000 subjects. Results of PART may guide the selection of advanced airway management strategies in OHCA. PMID:26851059
Tang, Dale D
2015-10-30
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Ahn, Eun Jin; Choi, Geun Joo; Kang, Hyun; Baek, Chong Wha; Jung, Yong Hun; Woo, Young Cheol; Bang, Si Ra
2016-01-01
Air-Q® (air-Q) is a supraglottic airway device which can be used as a guidance of intubation in pediatric as well as in adult patients. We evaluated the efficacy and safety of air-Q compared to other airway devices during general anesthesia in pediatric patients by conducting a systematic review and meta-analysis. A total of 10 studies including 789 patients were included in the final analysis. Compared with other supraglottic airway devices, air-Q showed no evidence for a difference in leakage pressure and insertion time. The ease of insertion was significantly lower than other supraglottic airway devices. The success rate of intubation was significantly lower than other airway devices. However, fiberoptic view was better through the air-Q than other supraglottic airway devices. Therefore, air-Q could be a safe substitute for other airway devices and may provide better fiberoptic bronchoscopic view.
Removal of obstructing T-tube and stabilization of the airway.
Athavale, Sanjay M; Dang, Jennifer; Rangarajan, Sanjeet; Garrett, Gaelyn
2011-05-01
Although they are extremely effective in maintaining tracheal and subglottic patency, T-tubes themselves can result in airway obstruction from plugging. Many practitioners educate patients on placing a small (5.0) endotracheal tube (ETT) through the tracheal limb of the T-tube if they develop airway obstruction. Unfortunately, this can be a difficult task to complete during acute airway obstruction. In this article, we describe a simple set of steps for rapid relief of airway obstruction and stabilization of the airway in the event of T-tube obstruction. This method requires removal of the T-tube with a Kelly clamp and stabilization of the airway with a tracheostomy tube. Although it is simple, we hope that this technique will prevent morbidity and mortality from acute airway obstructions related to T-tubes. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development
Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.
2011-01-01
Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294
Management of Foreign Body Removal in Children by Flexible Bronchoscopy.
Tenenbaum, Tobias; Kähler, Georg; Janke, Christoph; Schroten, Horst; Demirakca, Süha
2017-01-01
Rigid bronchoscopy remains the gold standard in many countries to remove airway foreign bodies (FBs). We aimed to analyze the feasibility of airway FB removal in children, primarily by flexible bronchoscopy through a laryngeal mask. Between 2008 and 2013, 62 children with suspected airway FB who underwent flexible bronchoscopy were analyzed in a retrospective chart review at a tertiary university hospital with respect to clinical presentation and medical management. In 28/62 children (45.2%) an airway FB could be found and in all patients removed by flexible bronchoscopy. Additional 19/34 children (55.8%), in which no FB was found, showed macroscopic evidence of prior FB aspiration. The most frequently removed airway FBs were nuts (13/28; 46.4%) followed by other organic airway FBs (9/28; 32.2%) and nonorganic airway FBs (6/28; 21.4%). All FBs were uneventfully removed with a grasping forceps (16/28; 57.1%), basket forceps (9/28; 32.2%), suction (2/28; 7.1%), or polypectomy snare (1/28; 3.6%). Children with proven airway FB were significantly younger than children without an airway FB (24 vs. 27 mo). Adjuvant antibiotic therapy was given in 15/28 (53.6%) children with proven airway FB and 13/34 (38.2%) without, steroids in 24/28 (85.7%) and 21/34 (61.8%), respectively. In 6/28 (9.7%) children epinephrine intrabronchial was used to mobilize the airway FB during bronchoscopy. In an optimized clinical setting, flexible bronchoscopy can be regarded as a feasible procedure to remove airway FB through a laryngeal mask. Short-term and long-term outcome is favorable.
Mitchell, Michael S; Lee White, Marjorie; King, William D; Wang, Henry E
2012-01-01
Pediatric endotracheal intubation (ETI) is difficult and can have serious adverse events when performed by paramedics in the prehospital setting. Paramedics may use the King Laryngeal Tube airway (KLT) in difficult adult airways, but only limited data describe their application in pediatric patients. To compare paramedic airway insertion speed and complications between KLT and ETI in a simulated model of pediatric respiratory arrest. This prospective, randomized trial included paramedics and senior paramedic students with limited prior KLT experience. We provided brief training on pediatric KLT insertion. Using a random allocation protocol, participants performed both ETI and KLT on a pediatric mannequin (6-month old size) in simulated respiratory arrest. The primary outcomes were 1) elapsed time to successful airway placement (seconds), and 2) proper airway positioning. We compared airway insertion performance between KLT and ETI using the Wilcoxon signed-ranks test. Subjects also indicated their preferred airway device. The 25 subjects included 19 paramedics and 6 senior paramedic students. Two subjects had prior adult KLT experience. Airway insertion time was not statistically different between the KLT (median 27 secs) and ETI (median 31 secs) (p = 0.08). Esophageal intubation occurred in 2 of 25 (8%) ETI. Airway leak occurred in 3 of 25 (12%) KLT, but ventilation remained satisfactory. Eighty-four percent of the subjects preferred the KLT over ETI. Paramedics and paramedic students demonstrated similar airway insertion performance between KLT and ETI in simulated, pediatric respiratory arrest. Most subjects preferred KLT. KLT may provide a viable alternative to ETI in prehospital pediatric airway management.
Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.
2015-01-01
Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671
A framework for understanding shared substrates of airway protection
TROCHE, Michelle Shevon; BRANDIMORE, Alexandra Essman; GODOY, Juliana; HEGLAND, Karen Wheeler
2014-01-01
Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits. PMID:25141195
Airway management in cervical spine injury
Austin, Naola; Krishnamoorthy, Vijay; Dagal, Arman
2014-01-01
To minimize risk of spinal cord injury, airway management providers must understand the anatomic and functional relationship between the airway, cervical column, and spinal cord. Patients with known or suspected cervical spine injury may require emergent intubation for airway protection and ventilatory support or elective intubation for surgery with or without rigid neck stabilization (i.e., halo). To provide safe and efficient care in these patients, practitioners must identify high-risk patients, be comfortable with available methods of airway adjuncts, and know how airway maneuvers, neck stabilization, and positioning affect the cervical spine. This review discusses the risks and benefits of various airway management strategies as well as specific concerns that affect patients with known or suspected cervical spine injury. PMID:24741498
Clinical review: Airway hygiene in the intensive care unit
Jelic, Sanja; Cunningham, Jennifer A; Factor, Phillip
2008-01-01
Maintenance of airway secretion clearance, or airway hygiene, is important for the preservation of airway patency and the prevention of respiratory tract infection. Impaired airway clearance often prompts admission to the intensive care unit (ICU) and can be a cause and/or contributor to acute respiratory failure. Physical methods to augment airway clearance are often used in the ICU but few are substantiated by clinical data. This review focuses on the impact of oral hygiene, tracheal suctioning, bronchoscopy, mucus-controlling agents, and kinetic therapy on the incidence of hospital-acquired respiratory infections, length of stay in the hospital and the ICU, and mortality in critically ill patients. Available data are distilled into recommendations for the maintenance of airway hygiene in ICU patients. PMID:18423061
Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation
NASA Astrophysics Data System (ADS)
Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.
1997-05-01
We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.
Scott, Anna E.; Vasilescu, Dragos M.; Seal, Katherine A. D.; Keyes, Samuel D.; Mavrogordato, Mark N.; Hogg, James C.; Sinclair, Ian; Warner, Jane A.; Hackett, Tillie-Louise; Lackie, Peter M.
2015-01-01
Background Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis. PMID:26030902
Use of EBSD Data in Numerical Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, R; Wiland, H
2000-01-14
Experimentation, theory and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th Century, and the theory and models evolved incrementally over the next 60 years. (Asaro provides a comprehensive review of the mechanisms and basic plasticity models.) During this time modeling was primarily concerned with the average response of polycrystalline aggregates. While somemore » detailed finite element modeling (FEM) with crystal plasticity constitutive relations was done in the early 1980s, such simulations over taxed the capabilities of the available computer hardware. Advances in computer capability led to a flurry of activity in finite element modeling in the next 10 years, increasing understanding of microstructure evolution and pushing the limits of theories and material characterization. Automated Electron Back Scatter Diffraction (EBSD) has produced a similar revolution in material characterization. The data collected is extensive and many questions about the evolution of microstructure and its role in determining mechanic properties can now be addressed. It is also now possible to obtain sufficient information about lattice orientations on a fine enough scale to allow detailed quantitative comparisons of experiments and newly emerging large scale numerical simulations. The insight gained from the coupling of EBSD and FEM studies will provide impetus for further development of microstructure models and theories of microstructure evolution. Early studies connecting EBSD data to finite element models used manual measurements to define initial orientations for the simulation. In one study, manual measurements of the deformed structure were also obtained for comparison with the model predictions. More recent work has taken advantage of automated data collection on deformed specimens as a means of collecting detailed and spatially correlated data for model validation. Although it will not be discussed in detail here, another area in which EBSD data is having a great impact is on recrystallization modeling. EBSD techniques can be used to collect data for quantitative microstructural analysis. This data can be used to infer growth kinetics of specific orientations, and this information can be synthesized into more accurate grain growth or recrystallization models. Another role which EBSD techniques may play is in determining initial structures for recrystallization models. A realistic starting structure is vital for evaluating the models, and attempts at predicting realistic structures with finite element simulations are not yet successful. As methodologies and equipment resolution continue to improve, it is possible that measured structures will serve as input for recrystallization models. Simulations have already been run using information obtained manually from a TEM.« less
NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE
Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...
2014-01-01
normal and three different obstructed airway geometries, consisting of symmetric, asym- metric, and random obstructions. Fig. 2 shows the geometric ...normal and obstructed airways Airway resistance is a measure of the opposition to the airflow caused by geometric properties, such as airway obstruction...pressure drops. Resistance values were dependent on the degree and geometric distribution of the obstruction sites. In the symmetric obstruction model
Retrotracheal Extraskeletal Ewing's Sarcoma: Case Report and Discussion on Airway Management.
Van Der Meer, Graeme; Linkhorn, Hannah; Gruber, Maayan; Mahadevan, Murali; Barber, Colin
2017-03-01
Extraskeletal Ewing's sarcoma is a rare tumor, and the management of airway compromise in case of cervical Ewing's sarcoma has not been established. This report describes the case of a patient with retrotracheal Ewing's sarcoma and discusses a successful approach to airway management. A 12-year-old male presented with a 2-week history of sore throat and sleep-disordered breathing and 48 hours of stridor. Imaging confirmed a retrotracheal soft tissue mass with airway compromise. A planned and controlled approach to his airway management resulted in a secure airway prior to definitive treatment.
Inflammatory bowel disease and airway diseases.
Vutcovici, Maria; Brassard, Paul; Bitton, Alain
2016-09-14
Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact.
Wang, Ting; Zhang, Jie; Qiu, Xiao-Jian; Wang, Juan; Pei, Ying-Hua; Wang, Yu-Ling
2018-01-01
Background: Scarring airway stenosis is commonly seen in China as compared to other developed countries, due to the high prevalence of tuberculosis. Nowadays, interventional bronchoscopy treatment has been widely used to treat this disease in China. This study demonstrated the characteristics of scarring airway stenosis in Chinese adults and retrospectively evaluated the efficacy of interventional bronchoscopy treatment of this disease. Methods: Patients with scarring airway stenosis from 18 tertiary hospitals were enrolled between January 2013 and June 2016. The causes, site, and length of scarring airway stenosis were analyzed, and the efficacy of the interventional bronchoscopy treatment was evaluated. Results: The final study cohort consisted of 392 patients. Endotracheobronchial tuberculosis (EBTB) was the most common cause of scarring airway stenosis (305/392, 77.8%) in Chinese adults with a high rate of incidence in young women. The left main bronchus was most susceptible to EBTB, and most posttuberculosis airway scarring stenosis length was 1.1–2.0 cm. The average clinical success rate of interventional bronchoscopy treatment for scarring airway stenosis in Chinese patients is 60.5%. The stent was inserted in 8.7% scarring airway stenosis in China. Conclusions: Scarring airway stenosis exhibits specific characteristics in Chinese patients. Interventional bronchoscopy is a useful and safe treatment method for the disease. PMID:29363641
Brain-Derived Neurotrophic Factor in the Airways
Prakash, Y.S.; Martin, Richard J.
2014-01-01
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686
Haddad, Stéphanie; Kerbrat, Jean-Baptiste; Schouman, Thomas; Goudot, Patrick
2017-03-01
A possible relation between an upper airway space decrease and the development of obstructive sleep apnea syndrom explains the importance to know the effect of the modification of dental arch length on the upper airway during orthodontic treatment. The aim of this article is to expose recent knowledge about upper airway development and dental arch length decrease factors, to determine the influence of this decrease on upper airway development. A review was done to determine the upper airway normal development, to define dental arch to specify if an ideal position of dental arch on apical base exists. All of the length dental arch decrease factors during orthodontic treatment (dental extraction, dental agenesis and dental malpositions) and their upper airway resounding were searched. Some authors found a diminution of upper airway space after premolars extractions while others didn't found this diminution after extractions premolars when incisor retraction is finished. A decrease of transversal maxillary diameter and nasal cavity may be due to absence of permanent teeth. The effect of dental arch length decrease during orthodontic treatment in the upper airway development was not scientifically proved. However we had to be vigilant and adapt our orthodontic treatment case by case to avoid an upper airway modification. © EDP Sciences, SFODF, 2017.
Airway growth and development: a computerized 3-dimensional analysis.
Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri
2012-09-01
The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Ezri, Tiberiu; Szmuk, Peter; Warters, R David; Katz, Jeffrey; Hagberg, Carin A
2003-09-01
To determine the extent instruction and practice in the use of airway devices and techniques varies among anesthesiologists practicing in the United States. Survey questionnaire. University medical center. Questionnaires were completed by American-trained anesthesiologists who attended the 1999 American Society of Anesthesiologists (ASA) Annual Meeting. Data collected included demographics, education, skills with airway devices/techniques, management of clinical difficult airway scenarios, and the use of the ASA Difficult Airway Algorithm. 1) DEMOGRAPHICS: 452 questionnaires were correctly completed; 62% attending anesthesiologists, 70% <50 years, 81% males, 44% from academic institutions, 63% >10 years of practice, 81% night duty, 77% board certified. 2) Education: 71% had at least one educational modality: difficult airway rotation, workshops, conferences, books, and simulators. 3) Skills: Miller blade 61%, Bullard laryngoscope 32%, LMA 86%, Combitube 43%, bougie 43%, exchangers 47%, cuffed oropharyngeal airway (COPA) 34%, retrograde 41%, transtracheal needle jet ventilation 34%, cricothyrotomy 21%, fiberoptics 59%, and blind nasal intubation 78%. The average reported use of special airway devices/techniques was 47.5%. 4) Management choices: failed intubation/ventilation: LMA (81%) and for all other situations: fiberoptic intubation. Use of ASA Difficult Airway Algorithm in clinical practice (86%). Fiberoptic intubation and the LMA are most popular in management of the difficult airway.
Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel
NASA Astrophysics Data System (ADS)
Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven
2014-01-01
Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.
NASA Astrophysics Data System (ADS)
Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.
2013-12-01
In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.
Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared
NASA Technical Reports Server (NTRS)
Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel
2009-01-01
Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.
Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2006-01-01
Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.
Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melissa Teague; Michael Tonks; Stephen Novascone
2014-01-01
Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less
The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel
Kral, Petr; Dvorak, Jiri; Sklenicka, Vaclav; Masuda, Takahiro; Horita, Zenji; Kucharova, Kveta; Kvapilova, Marie; Svobodova, Marie
2018-01-01
The effect of ultrafine-grained size on creep behaviour was investigated in P92 steel. Ultrafine-grained steel was prepared by one revolution of high-pressure torsion at room temperature. Creep tensile tests were performed at 873 K under the initially-applied stress range between 50 and 160 MPa. The microstructure was investigated using transmission electron microscopy and scanning electron microscopy equipped with an electron-back scatter detector. It was found that ultrafine-grained steel exhibits significantly faster minimum creep rates, and there was a decrease in the value of the stress exponent in comparison with coarse-grained P92 steel. Creep results also showed an abrupt decrease in the creep rate over time during the primary stage. The abrupt deceleration of the creep rate during the primary stage was shifted, with decreasing applied stress with longer creep times. The change in the decline of the creep rate during the primary stage was probably related to the enhanced precipitation of the Laves phase in the ultrafine-grained microstructure. PMID:29757206
Are the oldest 'fossils', fossils
NASA Technical Reports Server (NTRS)
Schopf, J. W.
1976-01-01
A comparative statistical study has been carried out on populations of modern algae, Precambrian algal microfossils, the 'organized elements' of the Orgueil carbonaceous meteorite, and the oldest microfossil-like objects now known (spheroidal bodies from the Fig Tree and Onverwacht Groups of the Swaziland Supergroup, South Africa). The distribution patterns exhibited by the more than 3000 m.y.-old Swaziland microstructures bear considerable resemblance to those of the abiotic 'organized elements' but differ rather markedly from those exhibited by younger, assuredly biogenic, populations. Based on these comparisons, it is concluded that the Swaziland spheroids could be, at least in part, of nonbiologic origin; these oldest known fossil-like microstructures should not be regarded as constituting firm evidence of Archean life.
Improving hydro-formability of stainless steel tubes by tube channel pressing
NASA Astrophysics Data System (ADS)
Kitano, Y.; Yuasa, M.; Miyamoto, H.; Farshidi, M. H.; Bagherpour, E.
2017-05-01
Tube channel pressing (TCP), which is one of the severe plastic deformation (SPD) technologies to refine grain size into submicron size for tubular materials, have been applied to ferritic stainless steel tubes for one pass, in order to alleviate ridging and enhance the hydro-formability. It was found that grain-scale shear bands were introduced by one-pass TCP, and texture and microstructure was successfully modified by promoting recrystallization of deformation microstructure, which is otherwise hard-to-recrystallize, in the post-TCP annealing. Elongation to failure, strain-hardening exponent (n-value) and Lankford values of both longitudinal and circumferential directions increased in comparison to with the tube fabricated by conventional process.
Cleavage crystallography of liquid metal embrittled aluminum alloys
NASA Technical Reports Server (NTRS)
Reynolds, A. P.; Stoner, G. E.
1991-01-01
The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.
Site of Allergic Airway Narrowing and the Influence of Exogenous Surfactant in the Brown Norway Rat
Risse, Paul-André; Bullimore, Sharon R.; Benedetti, Andrea; Martin, James G.
2012-01-01
Background The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing. Methods We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry. Results At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro. Conclusion Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. Surfactant inhibits airway narrowing and reduces mast cell-derived mediators. PMID:22276110
Airway recovery after face transplantation.
Fischer, Sebastian; Wallins, Joe S; Bueno, Ericka M; Kueckelhaus, Maximilian; Chandawarkar, Akash; Diaz-Siso, J Rodrigo; Larson, Allison; Murphy, George F; Annino, Donald J; Caterson, Edward J; Pomahac, Bohdan
2014-12-01
Severe facial injuries can compromise the upper airway by reducing airway volume, obstructing or obliterating the nasal passage, and interfering with oral airflow. Besides the significant impact on quality of life, upper airway impairments can have life-threatening or life-altering consequences. The authors evaluated improvements in functional airway after face transplantation. Between 2009 and 2011, four patients underwent face transplantation at the authors' institution, the Brigham and Women's Hospital. Patients were examined preoperatively and postoperatively and their records reviewed for upper airway infections and sleeping disorders. The nasal mucosa was biopsied after face transplantation and analyzed using scanning electron microscopy. Volumetric imaging software was used to evaluate computed tomographic scans of the upper airway and assess airway volume changes before and after transplantation. Before transplantation, two patients presented an exposed naked nasal cavity and two suffered from occlusion of the nasal passage. Two patients required tracheostomy tubes and one had a prosthetic nose. Sleeping disorders were seen in three patients, and chronic cough was diagnosed in one. After transplantation, there was no significant improvement in sleeping disorders. The incidence of sinusitis increased because of mechanical interference of the donor septum and disappeared after surgical correction. All patients were decannulated after transplantation and were capable of nose breathing. Scanning electron micrographs of the respiratory mucosa revealed viable tissue capable of mucin production. Airway volume significantly increased in all patients. Face transplantation successfully restored the upper airway in four patients. Unhindered nasal breathing, viable respiratory mucosa, and a significant increase in airway volume contributed to tracheostomy decannulation.
Relapsing polychondritis and airway involvement.
Ernst, Armin; Rafeq, Samaan; Boiselle, Phillip; Sung, Arthur; Reddy, Chakravarthy; Michaud, Gaetane; Majid, Adnan; Herth, Felix J F; Trentham, David
2009-04-01
To assess the prevalence and characteristics of airway involvement in relapsing polychondritis (RP). Retrospective chart review and data analysis of RP patients seen in the Rheumatology Clinic and the Complex Airway Center at Beth Israel Deaconess Medical Center from January 2004 through February 2008. RP was diagnosed in 145 patients. Thirty-one patients had airway involvement, a prevalence of 21%. Twenty-two patients were women (70%), and they were between 11 and 61 years of age (median age, 42 years) at the time of first symptoms. Airway symptoms were the first manifestation of disease in 17 patients (54%). Dyspnea was the most common symptom in 20 patients (64%), followed by cough, stridor, and hoarseness. Airway problems included the following: subglottic stenosis (n = 8; 26%); focal and diffuse malacia (n = 15; 48%); and focal stenosis in different areas of the bronchial tree in the rest of the patients. Twelve patients (40%) required and underwent intervention including balloon dilatation, stent placement, tracheotomy, or a combination of the above with good success. The majority of patients experienced improvement in airway symptoms after intervention. One patient died during the follow-up period from the progression of airway disease. The rest of the patients continue to undergo periodic evaluation and intervention. In this largest cohort described in the English language literature, we found symptomatic airway involvement in RP to be common and at times severe. The nature of airway problems is diverse, with tracheomalacia being the most common. Airway intervention is frequently required and in experienced hands results in symptom improvement.
Postnatal airway growth in cystic fibrosis piglets.
Adam, Ryan J; Abou Alaiwa, Mahmoud H; Bouzek, Drake C; Cook, Daniel P; Gansemer, Nicholas D; Taft, Peter J; Powers, Linda S; Stroik, Mallory R; Hoegger, Mark J; McMenimen, James D; Hoffman, Eric A; Zabner, Joseph; Welsh, Michael J; Meyerholz, David K; Stoltz, David A
2017-09-01
Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis. NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis. Copyright © 2017 the American Physiological Society.
Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...
Sanjar, S.; Aoki, S.; Kristersson, A.; Smith, D.; Morley, J.
1990-01-01
1. Guinea-pigs were sensitized with 3 injections of ovalbumin (OA) (1 or 10 micrograms per animal) using Al(OH)3 and pertussis vaccine as adjuvants at two week intervals. 2. Sensitized guinea-pigs were challenged with an aerosol of OA (0.1%) over a one hour period and both airway reactivity and cellular content of bronchoalveolar lavage (BAL) fluid were assessed at intervals for up to 7 days. 3. Guinea-pigs sensitized with 1 microgram of ovalbumin responded to an aerosol of OA with increased pulmonary airway eosinophilia, which was evident 1 day after challenge and was present for up to 7 days. Airway hyperreactivity was not detectable in these animals. 4. Guinea-pigs sensitized with 10 micrograms of ovalbumin responded to an aerosol of OA with increased pulmonary airway neutrophilia and eosinophilia and with increased airway reactivity which was maximal between 8 and 24 h after exposure to OA. 5. Depletion of circulating platelets or neutrophils, by use of selective antisera, did not alter either the magnitude of eosinophilia or the intensity of airway reactivity in sensitized guinea-pigs (10 micrograms) exposed to an aerosol of OA. 6. Pretreatment of sensitized guinea-pigs (10 micrograms) for 6 days with AH 21-132, aminophylline, dexamethasone or ketotifen inhibited pulmonary airway eosinophilia, but did not diminish airway hyperreactivity. Neither eosinophil accumulation nor development of airway hyperreactivity was influenced by treatment with mepyramine or salbutamol over a 6 day period before OA inhalation. 7. Although eosinophilia may occur in association with increased airway reactivity in this animal model, there is no evidence of a causal relationship. PMID:2361168
Tidal stretches do not modulate responsiveness of intact airways in vitro
Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.
2010-01-01
Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023
Harvey, Brian C; Lutchen, Kenneth R; Barbone, Paul E
2017-03-01
With every breath, the airways within the lungs are strained. This periodic stretching is thought to play an important role in determining airway caliber in health and disease. Particularly, deep breaths can mitigate excessive airway narrowing in healthy subjects, but this beneficial effect is absent in asthmatics, perhaps due to an inability to stretch the airway smooth muscle (ASM) embedded within an airway wall. The heterogeneous composition throughout an airway wall likely modulates the strain felt by the ASM but the magnitude of ASM strain is difficult to measure directly. In this study, we optimized a finite element image registration method to measure the spatial distribution of displacements and strains throughout an airway wall during pressure inflation within the physiological breathing range before and after induced narrowing with acetylcholine (ACh). The method was shown to be repeatable, and displacements estimated from different image sequences of the same deformation agreed to within 5.3μm (0.77%). We found the magnitude and spatial distribution of displacements were radially and longitudinally heterogeneous. The region in the middle layer of the airway experienced the largest radial strain due to a transmural pressure (Ptm) increase simulating tidal breathing and a deep inspiration (DI), while the region containing the ASM (i.e., closest to the lumen) strained least. During induced narrowing with ACh, we observed temporal longitudinal heterogeneity of the airway wall. After constriction, the displacements and strain are much smaller than the relaxed airway and the pattern of strains changed, suggesting the airway stiffened heterogeneously. Copyright © 2016 Elsevier B.V. All rights reserved.
Rancourt, Raymond C; Veress, Livia A; Ahmad, Aftab; Hendry-Hofer, Tara B; Rioux, Jacqueline S; Garlick, Rhonda B; White, Carl W
2013-10-01
Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O2 saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin-antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. Copyright © 2013 Elsevier Inc. All rights reserved.
FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1.
Wu, Gaohui; Yang, Liteng; Xu, Yi; Jiang, Xiaohong; Jiang, Xiaomin; Huang, Lisha; Mao, Ling; Cai, Shaoxi
2018-01-01
Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H 2 O 2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta
2016-01-01
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759
Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta
2016-01-01
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.
Martin, J G; Duguet, A; Eidelman, D H
2000-08-01
Airway hyperresponsiveness (AHR), the exaggerated response to constrictor agonists in asthmatic subjects, is incompletely understood. Changes in either the quantity or properties of airway smooth muscle (ASM) are possible explanations for AHR. Morphometric analyses demonstrate structural changes in asthmatic airways, including subepithelial fibrosis, gland hyperplasia/hypertrophy, neovascularization and an increase in ASM mass. Mathematical modelling of airway narrowing suggests that, of all the changes in structure, the increase in ASM mass is the most probable cause of AHR. An increase in ASM mass in the large airways is more closely associated with a greater likelihood of dying from asthma than increases in ASM mass in other locations within the airway tree. ASM contraction is opposed by the elastic recoil of the lungs and airways, which appears to limit the degree of bronchoconstriction in vivo. The cyclical nature of tidal breathing applies stresses to the airway wall that enhance the bronchodilating influence of the lung tissues on the contracting ASM, in all probability by disrupting cross-bridges. However, the increase in ASM mass in asthma may overcome the limitation resulting from the impedances to ASM shortening imposed by the lung parenchyma and airway wall tissues. Additionally, ASM with the capacity to shorten rapidly may achieve shorter lengths and cause a greater degree of bronchoconstriction when stimulated to contract than slower ASM. Changes in ASM properties are induced by the process of sensitization and allergen-exposure such as enhancement of phospholipase C activity and inositol phosphate turnover, and increases in myosin light chain kinase activity. Whether changes in ASM mass or biochemical/biomechanical properties form the basis for asthma remains to be determined.
Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E
2015-04-13
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue
2016-06-01
To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.
Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Wang, De Yun
2011-01-31
Nasal airflow is one of the most important determinants for nasal physiology. During the long evolution of human beings, different races have developed their own attributes of nasal morphologies which result in variations of nasal airflow patterns and nasal functions. This study evaluated and compared the effects of differences of nasal morphology among three healthy male subjects from Caucasian, Chinese and Indian ethnic groups on nasal airflow patterns using computational fluid dynamics simulation. By examining the anterior nasal airway, the nasal indices and the nostril shapes of the three subjects were found to be similar to nasal cavities of respective ethnic groups. Computed tomography images of these three subjects were obtained to reconstruct 3-dimensional models of nasal cavities. To retain the flow characteristics around the nasal vestibules, a 40 mm-radius semi sphere was assembled around the human face for the prescription of zero ambient gauge pressure. The results show that more airflow tends to pass through the middle passage of the nasal airway in the Caucasian model, and through the inferior portion in the Indian model. The Indian model was found with extremely low flow flux flowing through the olfactory region. The sizes of vortexes near the anterior cavity were found to be correlated with the angles between the upper nasal valve wall and the anterior head of the nasal cavity. Copyright © 2010 Elsevier B.V. All rights reserved.
Trevisanuto, Daniele; Grazzina, Nicoletta; Doglioni, Nicoletta; Ferrarese, Paola; Marzari, Francesco; Zanardo, Vincenzo
2005-06-01
We compared the effectiveness of a new continuous positive airway pressure (CPAP) device (neonatal helmet CPAP) with a conventional nasal CPAP system in preterm neonates needing continuous distending pressure. Randomized, physiological, cross-over study in a tertiary referral, neonatal intensive care unit in a university teaching hospital. Twenty very low birth weight infants with a postnatal age greater than 24 h who were receiving nasal CPAP for apnea and/or mild respiratory distress were enrolled. CPAP delivered by neonatal helmet CPAP and nasal CPAP in random order for two subsequent 90-min periods. Were continuously measured the Neonatal Infant Pain Scale (NIPS) score, oxygen requirements, respiratory rate, heart rate, oxygen saturation, transcutaneous PO(2) (tcPO(2)) and PCO(2) (tcPCO(2)), blood pressure, and desaturations. NIPS scores were significantly lower when the infants were on the neonatal helmet CPAP than when they were on nasal CPAP (0.26+/-0.07 vs. 0.63+/-0.12). The other studied parameters did not differ between the two CPAP modes. The number of desaturations was reduced during the neonatal helmet CPAP treatment (18 vs. 32), although this difference was not significant. In this short-term physiological study the neonatal helmet CPAP appears to be as good as the golden standard for managing preterm infants needing continuous distending pressure, with enhanced tolerability. Further evaluation in a randomized clinical trial is needed to confirm these findings.
Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.
Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi
2014-07-01
Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01). The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.
Hardwicke, Joseph T; Richards, Helen; Cafferky, Louise; Underwood, Imogen; ter Horst, Britt; Slator, Rona
2016-03-01
Pierre Robin sequence results from a cascade of events that occur during embryologic development and frequently presents with cleft palate. Some studies have shown speech outcomes to be worse in patients with Pierre Robin sequence after cleft palate repair. A cohort of Pierre Robin sequence patients who all required an airway intervention and nasogastric feeding in the neonatal period were identified and speech outcomes assessed at 5 years of age. A cleft- and sex-matched non-Pierre Robin sequence, cleft palate-only comparison group was also identified from the same institution and study period. A total of 24 patients with Pierre Robin sequence that required airway and nutritional support in the neonatal period were matched for age, sex, and cleft type to a group of 24 non-Pierre Robin sequence cleft patients. There was no significant difference in the incidence of oronasal fistula between the groups. Secondary surgery for velopharyngeal incompetence was significantly more (p = 0.017) in the Pierre Robin sequence group, who also had significantly greater nasality (p = 0.031) and cleft speech characteristic (p = 0.023) scores. The authors hypothesize that other factors may exist in Pierre Robin sequence that may lead to poor speech outcomes. The authors would suggest counseling parents of children with Pierre Robin sequence that have required a neonatal airway intervention, that speech development may be poorer than in other children with cleft palate, and that these children will have a significantly higher incidence of secondary speech surgery. Risk, II.
SMRT: A new, modular snow microwave radiative transfer model
NASA Astrophysics Data System (ADS)
Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the community.
NASA Astrophysics Data System (ADS)
Gaytan, S. M.; Murr, L. E.; Martinez, E.; Martinez, J. L.; Machado, B. I.; Ramirez, D. A.; Medina, F.; Collins, S.; Wicker, R. B.
2010-12-01
The microstructures and mechanical behavior of simple, as-fabricated, solid geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed femoral (knee) prototypes, and reticulated mesh components (with a density of 1.5 g/cm3) all produced by additive manufacturing (AM) using electron beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this study. Microstructures and microstructural issues are examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), while mechanical properties included selective specimen tensile testing and Vickers microindentation hardness (HV) and Rockwell C-scale hardness (HRC) measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM produced unique, orthogonal and related Cr23C6 carbide (precipitate) arrays (a controlled microstructural architecture) with dimensions of 2 μm in the build plane perpendicular to the build direction, while connected carbide columns were formed in the vertical plane, parallel to the build direction, with microindentation hardnesses ranging from 4.4 to 5.9 GPa, corresponding to a yield stress and ultimate tensile strength (UTS) of 0.51 and 1.45 GPa with elongations ranging from 1.9 to 5.3 pct. Annealing produced an equiaxed fcc grain structure with some grain boundary carbides, frequent annealing twins, and often a high density of intrinsic {111} stacking faults within the grains. The reticulated mesh strut microstructure consisted of dense carbide arrays producing an average microindentation hardness of 6.2 GPa or roughly 25 pct higher than the fully dense components.
[Epithelial mesenchymal transition in airway remodeling of asthma and its molecular regulation].
Zhu, Xiaohua; Li, Qiugen
2018-05-28
Asthma is a chronic inflammatory disease of the airway. Repeated inflammatory injury and tissue repair can lead to airway remodeling. The airway epithelial mesenchymal transformation (EMT) plays an important role in airway remodeling of asthma. Various cytokines and signaling pathways, such as transforming growth factor β (TGF-β), nuclear factor-kappa B (NF-κB) and bromodomain-containing protein 4 (BRD4), are involved in the molecular regulation of EMT.
Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel
NASA Astrophysics Data System (ADS)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.
Improving the safety of remote site emergency airway management.
Wijesuriya, Julian; Brand, Jonathan
2014-01-01
Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications. We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.
Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.
2012-01-01
Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rancourt, Raymond C., E-mail: raymond.rancourt@ucdenver.edu; Veress, Livia A., E-mail: livia.veress@ucdenver.edu; Ahmad, Aftab, E-mail: aftab.ahmad@ucdenver.edu
Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activatormore » inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI had improved tissue oxygenation, and mortality was prevented.« less
Systemic and airway oxidative stress in competitive swimmers.
Škrgat, Sabina; Marčun, Robert; Kern, Izidor; Šilar, Mira; Šelb, Julij; Fležar, Matjaž; Korošec, Peter
2018-04-01
The environment in swimming pools, which contain chlorine, might interact with the airway epithelium, resulting in oxidative stress and/or inflammation during high intensity training periods. We evaluated pulmonary functional (metacholine challenge test, FEV1 and VC), cellular (eosinophils and neutrophils), inflammatory (FeNo, IL-5, IL-6, IL-8 and TNF-α), oxidative (8-isoprostanes) and angiogenesis factors (VEGF) in induced sputum and peripheral blood of 41 healthy non-asthmatic elite swimmers (median 16 years) during the period of high intensity training before a national championship. The second paired sampling was performed seven months later after training had been stopped for one month. There was a ten-fold increase (median 82-924 pg/ml; P < 0.001) in 8-isoprostanes in induced sputum and five-fold increase (median 82-924 pg/ml; P < 0.001) in sera during training in comparison to the period of rest. However, there was no difference in FEV1 (113 vs 116%), VC (119 vs 118%), FeNo (median 34 vs 38 ppb), eosinophils (2.7 vs 2.9% in sputum; 180 vs 165 cells/μl in blood), neutrophils, different cytokines or VEGF in induced sputum or sera. The only exception was TNF-α, which was moderately increased in sera (median 23 vs 40 pg/ml; P = 0.02) during the peak training period. Almost half (18 of 41) of swimmers showed bronchial hyperresponsiveness during the peak training period (PC20 cutoff was 4 mg/ml). There was no correlation between hyperresponsiveness and the markers of oxidative stress or inflammation. High intensity training in healthy, non-asthmatic competitive swimmers results in marked oxidative stress at the airway and systemic levels, but does not lead to airway inflammation. However, we could not confirm that oxidative stress is associated with bronchial hyperresponsiveness (AHR), which is often observed during the peak exercise training period. Copyright © 2018. Published by Elsevier Ltd.
Kim, Song Soo; Lee, Ho Yun; Nevrekar, Dipti V.; Forssen, Anna V.; Crapo, James D.; Schroeder, Joyce D.; Lynch, David A.
2013-01-01
Purpose: To provide a new detailed visual assessment scheme of computed tomography (CT) for chronic obstructive pulmonary disease (COPD) by using standard reference images and to compare this visual assessment method with quantitative CT and several physiologic parameters. Materials and Methods: This research was approved by the institutional review board of each institution. CT images of 200 participants in the COPDGene study were evaluated. Four thoracic radiologists performed independent, lobar analysis of volumetric CT images for type (centrilobular, panlobular, and mixed) and extent (on a six-point scale) of emphysema, the presence of bronchiectasis, airway wall thickening, and tracheal abnormalities. Standard images for each finding, generated by two radiologists, were used for reference. The extent of emphysema, airway wall thickening, and luminal area were quantified at the lobar level by using commercial software. Spearman rank test and simple and multiple regression analyses were performed to compare the results of visual assessment with physiologic and quantitative parameters. Results: The type of emphysema, determined by four readers, showed good agreement (κ = 0.63). The extent of the emphysema in each lobe showed good agreement (mean weighted κ = 0.70) and correlated with findings at quantitative CT (r = 0.75), forced expiratory volume in 1 second (FEV1) (r = −0.68), FEV1/forced vital capacity (FVC) ratio (r = −0.74) (P < .001). Agreement for airway wall thickening was fair (mean κ = 0.41), and the number of lobes with thickened bronchial walls correlated with FEV1 (r = −0.60) and FEV1/FVC ratio (r = −0.60) (P < .001). Conclusion: Visual assessment of emphysema and airways disease in individuals with COPD can provide reproducible, physiologically substantial information that may complement that provided by quantitative CT assessment. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120385/-/DC1 PMID:23220894
Smith, N; Broadley, K J
2008-09-01
Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.
Rudell, B.; Blomberg, A.; Helleday, R.; Ledin, M. C.; Lundback, B.; Stjernberg, N.; Horstedt, P.; Sandstrom, T.
1999-01-01
OBJECTIVES: Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation. METHODS: The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components. RESULTS: The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle. CONCLUSIONS: The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel exhaust. Further studies are warranted to evaluate more efficient treatment devices to reduce adverse reactions to diesel exhaust in the airways. PMID:10492649
Rudell, B; Blomberg, A; Helleday, R; Ledin, M C; Lundbäck, B; Stjernberg, N; Hörstedt, P; Sandström, T
1999-08-01
Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation. The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components. The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle. The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel exhaust. Further studies are warranted to evaluate more efficient treatment devices to reduce adverse reactions to diesel exhaust in the airways.
Yegïn, Yakup; Çelik, Mustafa; Kaya, Kamïl Hakan; Koç, Arzu Karaman; Kayhan, Fatma Tülin
Knowledge of the site of obstruction and the pattern of airway collapse is essential for determining correct surgical and medical management of patients with Obstructive Sleep Apnea Syndrome (OSAS). To this end, several diagnostic tests and procedures have been developed. To determine whether drug-induced sleep endoscopy (DISE) or Müller's maneuver (MM) would be more successful at identifying the site of obstruction and the pattern of upper airway collapse in patients with OSAS. The study included 63 patients (52 male and 11 female) who were diagnosed with OSAS at our clinic. Ages ranged from 30 to 66 years old and the average age was 48.5 years. All patients underwent DISE and MM and the results of these examinations were characterized according to the region/degree of obstruction as well as the VOTE classification. The results of each test were analyzed per upper airway level and compared using statistical analysis (Cohen's kappa statistic test). There was statistically significant concordance between the results from DISE and MM for procedures involving the anteroposterior (73%), lateral (92.1%), and concentric (74.6%) configuration of the velum. Results from the lateral part of the oropharynx were also in concordance between the tests (58.7%). Results from the lateral configuration of the epiglottis were in concordance between the tests (87.3%). There was no statistically significant concordance between the two examinations for procedures involving the anteroposterior of the tongue (23.8%) and epiglottis (42.9%). We suggest that DISE has several advantages including safety, ease of use, and reliability, which outweigh MM in terms of the ability to diagnose sites of obstruction and the pattern of upper airway collapse. Also, MM can provide some knowledge of the pattern of pharyngeal collapse. Furthermore, we also recommend using the VOTE classification in combination with DISE. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study.
Ullrich, Tim L; Czernik, Christoph; Bührer, Christoph; Schmalisch, Gerd; Fischer, Hendrik S
2017-11-01
Nasal high-frequency oscillatory ventilation (nHFOV) is a novel mode of non-invasive ventilation used in neonates. However, upper airway obstructions due to viscous secretions have been described as specific adverse effects. We hypothesized that high-frequency oscillations reduce air humidity in the oropharynx, resulting in upper airway desiccation. Therefore, we aimed to investigate the effects of nHFOV ventilatory settings on oropharyngeal gas conditions. NHFOV or nasal continuous positive airway pressure (nCPAP) was applied, along with heated humidification, to a previously established neonatal bench model that simulates oropharyngeal gas conditions during spontaneous breathing through an open mouth. A digital thermo-hygro sensor measured oropharyngeal temperature (T) and humidity at various nHFOV frequencies (7, 10, 13 Hz), amplitudes (10, 20, 30 cmH 2 O), and inspiratory-to-expiratory (I:E) ratios (25:75, 33:66, 50:50), and also during nCPAP. Relative humidity was always >99%, but nHFOV resulted in lower mean T and absolute humidity (AH) in comparison to nCPAP (P < 0.001). Specifically, decreasing the nHFOV frequency and increasing nHFOV amplitude caused a decline in T and AH (P < 0.001). Mean T and AH were highest during nCPAP (T 34.8 ± 0.6°C, AH 39.3 ± 1.3 g · m -3 ) and lowest during nHFOV at a frequency of 7 Hz and an amplitude of 30 cmH 2 O (T 32.4 ± 0.3°C, AH 34.7 ± 0.5 g · m -3 ). Increasing the I:E ratio also reduced T and AH (P = 0.03). Intensified nHFOV settings with low frequencies, high amplitudes, and high I:E ratios may place infants at an increased risk of upper airway desiccation. Future studies should investigate strategies to optimize heated humidification during nHFOV. © 2017 Wiley Periodicals, Inc.
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
Sensory nerves within the airways can initiate a variety of protective reflexes. We hypothesized that insults such as exposure to antigen and particulate matter (PM) might dysregulate airway sensory nerve function, thereby contributing to enhanced airway inflammation and hyperre...
NASA Technical Reports Server (NTRS)
Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.
2004-01-01
Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.
Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.
Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W
2002-10-01
Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.
2016-01-01
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease. PMID:27742732
Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice
Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.
2016-01-01
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848
Assessment of upper airway mechanics during sleep.
Farré, Ramon; Montserrat, Josep M; Navajas, Daniel
2008-11-30
Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.
Flow characteristics in the airways of a COPD patient with a saber-sheath trachea
NASA Astrophysics Data System (ADS)
Jin, Dohyun; Choi, Haecheon; Lee, Changhyun; Choi, Jiwoong; Kim, Kwanggi
2016-11-01
The chronic obstructive pulmonary disease (COPD) is a lung disease characterized by the irreversible airflow limitation caused by the damaged small airways and air sacs. Although COPD is not a disease of the trachea, many patients with COPD have saber-sheath tracheas. The effects of this morphological change in the trachea geometry on airflow are investigated in the present study. An unstructured finite volume method is used for the simulations during tidal breathing in normal and COPD airways, respectively. During inspiration, local large pressure drop is observed in the saber-sheath region of the COPD patient. During expiration, vortical structures are observed at the right main bronchus of the COPD airway, while the flow in the normal airway remains nearly laminar. High wall shear stress exists at convex regions of both airways during inspiration and expiration. However, due to the morphological changes in the COPD airway, relatively higher wall shear stress is observed in the patient airways.
Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J
2018-02-06
Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.
Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson
2012-06-01
The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less
Awake Craniotomy: A New Airway Approach.
Sivasankar, Chitra; Schlichter, Rolf A; Baranov, Dimitry; Kofke, W Andrew
2016-02-01
Awake craniotomies have been performed regularly at the University of Pennsylvania since 2004. Varying approaches to airway management are described for this procedure, including intubation with an endotracheal tube and use of a laryngeal mask airway, simple facemask, or nasal cannula. In this case series, we describe the successful use (i.e., no need for endotracheal intubation related to inadequate gas exchange) of bilateral nasopharyngeal airways in 90 patients undergoing awake craniotomies. The use of nasopharyngeal airways can ease the transition between the asleep and awake phases of the craniotomy without the need to stimulate the airway. Our purpose was to describe our experience and report adverse events related to this technique.
Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways
Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.
2013-01-01
The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023
Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients
Araya, Jun; Cambier, Stephanie; Markovics, Jennifer A.; Wolters, Paul; Jablons, David; Hill, Arthur; Finkbeiner, Walter; Jones, Kirk; Broaddus, V. Courtney; Sheppard, Dean; Barzcak, Andrea; Xiao, Yuanyuan; Erle, David J.; Nishimura, Stephen L.
2007-01-01
Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1β, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-β activation in amplifying SM and driving IL-1β–dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin αvβ8, which is the major mediator of airway fibroblast TGF-β activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-β as a potential therapeutic target for COPD. PMID:17965775
Pharyngeal airway changes following maxillary expansion or protraction: A meta-analysis.
Lee, W-C; Tu, Y-K; Huang, C-S; Chen, R; Fu, M-W; Fu, E
2018-02-01
The aim of this meta-analysis was to investigate the changes in airway dimensions after rapid maxillary expansion (RME) and facemask (FM) protraction. Using PubMed, Medline, ScienceDirect and Web of Science, only controlled clinical trials, published up to November 2016, with RME and/or FM as keywords that had ≥6 months follow-up period were included in this meta-analysis. The changes in pharyngeal airway dimension in both two-dimensional and three-dimensional images were included in the analysis. Nine studies met the criteria. There are statically significant changes in upper airway and nasal passage airway in the intervention groups as compared to the control groups, assessed in two-dimensional and three-dimensional images. However , in the lower airway and the airway below the palatal plane, no statistically significant changes are seen in 2D and 3D images. RME/FM treatments might increase the upper airway space in children and young adolescents. However, more RCTs and long-term cohort studies are needed to further clarify the effects on pharyngeal airway changes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Castle, Nick; Owen, Robert; Hann, Mark; Naidoo, Raveen; Reeves, David
2010-11-01
Control of the airway is a priority during cardiopulmonary resuscitation and/or following a failed intubation attempt. Supraglottic airway devices provide more effective airway management than bag-valve-mask-ventilation (BVMV) and can be effectively used by non-anaesthetists. 36 paramedic students were timed to ascertain how long it took them to place an Igel, laryngeal mask airway (LMA) or laryngeal tube airway (LTA) into a manikin. Following insertion, students were interviewed to see which device they preferred and why. The Igel was consistently the fastest airway device, taking a mean of 12.3 s (95% CI 11.5 to 13.1) to insert, the LTA took a mean time of 22.4 s (95% CI 20.3 to 24.5) and the LMA 33.8 s (95% CI 30.9 to 36.7). 63% of students would choose the Igel as their preferred intermediate airway device, stating ease of use and speed of insertion as the primary reasons. The ease and speed at which a supraglottic airway can be inserted means that it is a viable alternative to the use of the BVMV.
Extraglottic airway devices: technology update.
Sharma, Bimla; Sahai, Chand; Sood, Jayashree
2017-01-01
Extraglottic airway devices (EADs) have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS) formed the Airway Device Evaluation Project Team (ADEPT) to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues.
3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model
NASA Astrophysics Data System (ADS)
Hoi, Cory; Raessi, Mehdi
2017-11-01
Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.
Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice.
Mhanna, M J; Ferkol, T; Martin, R J; Dreshaj, I A; van Heeckeren, A M; Kelley, T J; Haxhiu, M A
2001-05-01
The pulmonary disease of cystic fibrosis (CF) is characterized by persistent airway obstruction, which has been attributed to chronic endobronchial infection and inflammation. The levels of exhaled nitric oxide (NO) are reduced in CF patients, which could contribute to bronchial obstruction through dysregulated constriction of airway smooth muscle. Because airway epithelium from CF mice has been shown to have reduced expression of inducible NO synthase, we examined airway responsiveness and relaxation in isolated tracheas of CF mice. Airway relaxation as measured by percent relaxation of precontracted tracheal segments to electrical field stimulation (EFS) and substance P, a nonadrenergic, noncholinergic substance, was significantly impaired in CF mice. The airway relaxation in response to prostaglandin E2 was similar in CF and non-CF animals. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methylester reduced tracheal relaxation induced by EFS in wild-type animals but had virtually no effect in the CF mice. Conversely, exogenous NO and L-arginine, a NO substrate, reversed the relaxation defect in CF airway. We conclude that the relative absence of NO compromises airways relaxation in CF, and may contribute to the bronchial obstruction seen in the disease.
Aviation competition : issues related to the proposed United Airlines-US Airways merger
DOT National Transportation Integrated Search
2000-12-01
In May 2000, two of the nation's largest airlines, United Airlines (United) and US Airways, proposed to merge. As part of the overall agreement, United and US Airways also proposed to divest some of US Airways' assets at Ronald Reagan Washington Nati...
Mechanotransduction, asthma, and airway smooth muscle
Fabry, Ben; Fredberg, Jeffrey J.
2008-01-01
Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522
Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control
Bessac, Bret F.; Jordt, Sven-Eric
2009-01-01
New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743
Airway smooth muscle in airway reactivity and remodeling: what have we learned?
2013-01-01
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517