Science.gov

Sample records for airy stress function

  1. The structure of Airy's stress function in multiply connected regions

    NASA Technical Reports Server (NTRS)

    Grioli, Giusippe

    1951-01-01

    In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.

  2. Efficient and accurate computation of the incomplete Airy functions

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high-frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals with such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. In this paper a convergent series solution for the incomplete Airy functions is derived. Asymptotic expansions involving several terms are also developed and serve as large argument approximations. The combination of the series solution with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.

  3. On the asymptotic evolution of finite energy Airy wave functions.

    PubMed

    Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S

    2015-06-15

    In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.

  4. Generalized Airy functions for use in one-dimensional quantum mechanical problems

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.

    1972-01-01

    The solution of the one dimensional, time independent, Schroedinger equation in which the energy minus the potential varies as the nth power of the distance is obtained from proper linear combinations of Bessel functions. The linear combinations called generalized Airy functions, reduce to the usual Airy functions Ai(x) and Bi(x) when n equals 1 and have the same type of simple asymptotic behavior. Expressions for the generalized Airy functions which can be evaluated by the method of generalized Gaussian quadrature are obtained.

  5. Numerical evaluation of the incomplete airy functions and their application to high frequency scattering and diffraction

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1992-01-01

    The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals of such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. Here, a convergent series solution form for the incomplete Airy functions is derived. Asymptotic expansions involving several terms were also developed and serve as large argument approximations. The combination of the series solution form with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.

  6. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  7. Integral representations for products of Airy functions Part 2. Cubic products

    NASA Astrophysics Data System (ADS)

    Reid, W. H.

    Integral representations are obtained for some cubic products of the Airy functions Ai(z) and Bi(z). These integral representations are of the Laplace contour type but they involve the modified Bessel functions of order 16. From these results it is then possible to evaluate a number of definite integrals involving such cubic products.

  8. Computation of the modified Bessel function of the third kind of imaginary orders: uniform Airy-type asymptotic expansion

    NASA Astrophysics Data System (ADS)

    Gil, Amparo; Segura, Javier; Temme, Nico M.

    2003-04-01

    The use of a uniform Airy-type asymptotic expansion for the computation of the modified Bessel functions of the third kind of imaginary orders (Kia(x)) near the transition point x=a, is discussed. In A. Gil et al., Evaluation of the modified Bessel functions of the third kind of imaginary orders, J. Comput. Phys. 17 (2002) 398-411, an algorithm for the evaluation of Kia(x) was presented, which made use of series, a continued fraction method and nonoscillating integral representations. The range of validity of the algorithm was limited by the singularity of the steepest descent paths near the transition point. We show how uniform Airy-type asymptotic expansions fill the gap left by the steepest descent method.

  9. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x) = Ax2α + Bx2

    NASA Astrophysics Data System (ADS)

    Al Sdran, N.; Maiz, F.

    2016-06-01

    The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax2α + Bx2, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It's found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  10. Acoustic non-diffracting Airy beam

    SciTech Connect

    Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  11. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  12. Creating Airy beams employing a transmissive spatial light modulator.

    PubMed

    Latychevskaia, Tatiana; Schachtler, Daniel; Fink, Hans-Werner

    2016-08-01

    We present a detailed study of two novel methods for shaping the light optical wavefront by employing a transmissive spatial light modulator (SLM). Conventionally, optical Airy beams are created by employing SLMs in the so-called all-phase mode. In the first method, a numerically simulated lens phase distribution is loaded directly onto the SLM, together with the cubic phase distribution. An Airy beam is generated at the focal plane of the numerical lens. We provide for the first time, to the best of our knowledge, quantitative properties of the formed Airy beam. We derive the formula for deflection of the intensity maximum of the so-formed Airy beam, which is different from the quadratic deflection typical of Airy beams. We cross-validate the derived formula by both simulations and experiment. The second method is based on the fact that a system consisting of a transmissive SLM sandwiched between two polarizers can create a transmission function with negative values. This observation alone has the potential for various other wavefront modulations where the transmission function requires negative values. As an example for this method, we demonstrate that a wavefront can be modulated by passing the SLM system with transmission function with negative values by loading an Airy function distribution directly onto the SLM. Since the Airy function is a real-valued function but also with negative values, an Airy beam can be generated by direct transfer of the Airy function distribution onto such an SLM system. In this way, an Airy beam is generated immediately behind the SLM. As both new methods do not employ a physical lens, the two setups are more compact than conventional setups for creating Airy beams. We compare the performance of the two novel methods and the properties of the created Airy beams.

  13. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    NASA Astrophysics Data System (ADS)

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Kurniasih, Neny; Khairurrijal

    2014-03-01

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.

  14. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    SciTech Connect

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-03-24

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.

  15. Airy structure in 16O+14C nuclear rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2015-08-01

    The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.

  16. Accelerating Airy beams in the presence of inhomogeneities

    NASA Astrophysics Data System (ADS)

    Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel

    2016-06-01

    Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.

  17. Controllable Airy-like beams induced by tunable phase patterns

    NASA Astrophysics Data System (ADS)

    Li, D.; Qian, Y.

    2016-01-01

    We propose and experimentally observe a novel family of Airy-like beams. First, we theoretically investigate the physical generation of our proposed controllable Airy-like beams by introducing a rotation angle factor into the phase function, which can regulate and flexibly control the beam wavefront. Meanwhile we can also readily control the main lobes of these beams to follow appointed parabolic trajectories using the rotation angle factor. We also demonstrate that the controllable Airy-like beams lack the properties of being diffraction-free and self-healing. The experiments are performed and the results are in accord with the theoretical simulations. We believe that the intriguing characteristics of our proposed Airy-like beams could provide more degrees of freedom, and are likely to give rise to new applications and lend versatility to the emerging field.

  18. Bohmian trajectories of Airy packets

    SciTech Connect

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  19. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  20. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  1. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  2. Hybrid Airy plasmons with dynamically steerable trajectories.

    PubMed

    Li, Rujiang; Imran, Muhammad; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2017-01-26

    With their intriguing diffraction-free, self-accelerating, and self-healing properties, Airy plasmons show promise for use in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, high dissipative loss and lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to coupling between optical modes and plasmonic modes, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of the hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting beams along with the emerging developments of optical tweezers and tractor beams.

  3. Continuum Statistics of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Quastel, Jeremy; Remenik, Daniel

    2013-01-01

    We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that {sup({A}2(x)-x^2)} is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson's (Commun. Math. Phys. 242(1-2):277-329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.

  4. Multi-focus of modulated polarized Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyang; Lin, Jie; Tan, Jiubin; Jin, Peng

    2016-07-01

    The focusing performance of a modulated polarized Airy beam is explored by using the Richards and Wolf vectorial diffraction model in a high numerical aperture system. The multiple foca appeared on the focal plane or along the optical axis when a complex amplitude modulating function was introduced. Two focusing spots with long-focal-depth were additionally observed due to the Airy beam and complex amplitude modulation. The distance between the focuses were changed from 1.15λ to 3.56λ with FWHM of 0.9λ for one-dimensional linear polarized incident beam and from 1.15λ to 3.64λ for two-dimensional beam. The multiple focusing spots are expected to apply in the field of optical trapping and particle acceleration.

  5. Spatiotemporal dynamics of counterpropagating Airy beams

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-01-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing. PMID:26315530

  6. Airy pattern approximation of a phased microphone array response to a rotating point source.

    PubMed

    Debrouwere, Maarten; Angland, David

    2017-02-01

    Deconvolution of phased microphone array source maps is a commonly applied technique in order to improve the dynamic range and resolution of beamforming. Most deconvolution algorithms require a point spread function (PSF). In this work, it is shown that the conventional definition of the PSF, based on steering vectors, is changed when the source is rotating. The effect of rotation results in an increase in the resolution and aperture of the array. The concept of virtual array positions created by source rotation is used to derive an approximation of the PSF based on an Airy pattern. The Airy pattern approximation is suitable for use in deconvolution of rotating source maps as it is more accurate and computationally less expensive than the conventional PSF definition. The proposed Airy pattern approximation was tested with both CLEAN and DAMAS deconvolution algorithms. On the same hardware, it was significantly faster when compared to the conventional definition. The limitations of the Airy pattern approximation are shown in a synthesized broadband test case with a high dynamic range. However, in most practical beamforming applications, the proposed Airy pattern approximated PSF for deconvolution is a suitable option considering its accuracy and speed.

  7. Higher-Order Airy Scaling in Deformed Dyck Paths

    NASA Astrophysics Data System (ADS)

    Haug, Nils; Olde Daalhuis, Adri; Prellberg, Thomas

    2017-03-01

    We introduce a deformed version of Dyck paths (DDP), where additional to the steps allowed for Dyck paths, `jumps' orthogonal to the preferred direction of the path are permitted. We consider the generating function of DDP, weighted with respect to their half-length, area and number of jumps. This represents the first example of an exactly solvable two-dimensional lattice vesicle model showing a higher-order multicritical point. Applying the generalized method of steepest descents, we see that the associated two-variable scaling function is given by the logarithmic derivative of a generalized (higher-order) Airy integral.

  8. Ultrafast Airy beam optical parametric oscillator.

    PubMed

    Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M

    2016-08-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  9. Ultrafast Airy beam optical parametric oscillator

    PubMed Central

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  10. Ultrafast Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-08-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  11. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  12. Airy, Sir George Biddell (1801-92)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A brilliant Cambridge mathematician (Senior Wrangler 1823, i.e. leader of the graduating mathematics class), Airy became the seventh Astronomer Royal in 1835 after a brief period as Lucasian Professor at Cambridge. His output was prodigious, and he published nearly 400 scientific papers and 150 reports on various scientific issues, such as the gauge of railways, spectacles to correct astigmatism,...

  13. Generation of attenuation-compensating Airy beams.

    PubMed

    Preciado, Miguel A; Dholakia, Kishan; Mazilu, Michael

    2014-08-15

    We present an attenuation-corrected "nondiffracting" Airy beam. The correction factor can be adjusted to deliver a beam that exhibits an adjustable exponential intensity increase or decrease over a finite distance. A digital micromirror device that shapes both amplitude and phase is used to experimentally verify the propagation of these beams through air and partially absorbing media.

  14. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  15. Norm Estimations of the Modified Teodorescu Transform with Application to a Multidimensional Equation of Airy Type

    SciTech Connect

    Schlichting, A.; Sproessig, W.

    2008-09-01

    We study versions of a generalized Teodorescu transform. In the 2-dimensional case we can describe the asymptotic behaviour by the help of modified Bessel functions. In 3-dimensional case we only have an upper estimate. Such estimates are necessary to prove the convergence of a semi-discretization method for a higher-dimensional analogue of an equation of Airy's type.

  16. Airy beam self-focusing in a photorefractive medium

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-01-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356

  17. Airy beam self-focusing in a photorefractive medium

    NASA Astrophysics Data System (ADS)

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-10-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination.

  18. Autobiography of Sir George Biddell Airy

    NASA Astrophysics Data System (ADS)

    Airy, George Biddell; Airy, Wilfred

    2010-06-01

    Preface; 1. Personal sketch of George Biddell Airy; 2. From his birth to his taking his B.A. degree; 3. At Trinity College, Cambridge; 4. At Cambridge Observatory; 5. At Greenwich Observatory, 1836-1846; 6. At Greenwich Observatory, 1846-1856; 7. At Greenwich Observatory, 1856-1866; 8. At Greenwich Observatory, 1866-1876; 9. At Greenwich Observatory to his resignation in 1881; 10. At the White House, Greewich, to his death; Appendix: List of printed papers; Index.

  19. Adding stress plot function to NASTRAN

    NASA Technical Reports Server (NTRS)

    Katoh, S.

    1978-01-01

    Stress plot function was developed and added to the NASTRAN level 15.5. Computed stress distribution can be displayed by this function, with vectors showing the principal stresses of the finite elements over the specified portions of the structure. NASTRAN is reviewed in the aspect of plotting capabilities. Stress tensor field is examined in preparation of stress display. Then the stress plot function as added to the NASTRAN is described. A sample plotout by this function is shown.

  20. Evaluation of the AIRIS Standoff Hyperspectral Imaging System

    DTIC Science & Technology

    2011-01-01

    6,600 3. DESCRIPTION OF THE AIRIS SENSOR The AIRIS-WAD technical concept is based on the insertion of a tunable Fabry - Perot interferometer (etalon...CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT UL 18. NUMBER OF PAGES 2 A 19a. NAME OF RESPONSIBLE PERSON

  1. The software package AIRY 7.0: new efficient deconvolution methods for post-adaptive optics data

    NASA Astrophysics Data System (ADS)

    La Camera, Andrea; Carbillet, Marcel; Prato, Marco; Boccacci, Patrizia; Bertero, Mario

    2016-07-01

    The Software Package AIRY (acronym of Astronomical Image Restoration in interferometrY) is a complete tool for the simulation and the deconvolution of astronomical images. The data can be a post-adaptive-optics image of a single dish telescope or a set of multiple images of a Fizeau interferometer. Written in IDL and freely downloadable, AIRY is a package of the CAOS Problem-Solving Environment. It is made of different modules, each one performing a specific task, e.g. simulation, deconvolution, and analysis of the data. In this paper we present the last version of AIRY containing a new optimized method for the deconvolution problem based on the scaled-gradient projection (SGP) algorithm extended with different regularization functions. Moreover a new module based on our multi-component method is added to AIRY. Finally we provide a few example projects describing our multi-step method recently developed for deblurring of high dynamic range images. By using AIRY v.7.0, users have a powerful tool for simulating the observations and for reconstructing their real data.

  2. Stress, fighting and neuroendocrine function.

    NASA Technical Reports Server (NTRS)

    Conner, R. L.; Levine, S.; Vernikos-Danellis, J.

    1971-01-01

    Plasma concentrations of pituitary adrenocorticotrophic hormone (ACTH) and adrenocortical steroids in rats after testing in the shock-induced fighting paradigm were examined. The investigations provide data consistent with the view that psychological aspects of the stressful situation are important in determining the effects of shock on physiological function. The data indicate that the pituitary-adrenal response can be attenuated by the expression of an organized pattern of behavior.

  3. Plasmonic Airy beam generated by in-plane diffraction.

    PubMed

    Li, L; Li, T; Wang, S M; Zhang, C; Zhu, S N

    2011-09-16

    We report an experimental realization of a plasmonic Airy beam, which is generated thoroughly on a silver surface. With a carefully designed nanoarray structure, such Airy beams come into being from an in-plane propagating surface plasmon polariton wave, exhibiting nonspreading, self-bending, and self-healing properties. Besides, a new phase-tuning method based on nonperfectly matched diffraction processes is proposed to generate and modulate the beam almost at will. This unique plasmonic Airy beam as well as the generation method would significantly promote the evolutions in in-plane surface plasmon polariton manipulations and indicate potential applications in lab-on-chip photonic integrations.

  4. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity.

    PubMed

    Ismail, Nur; Kores, Cristine Calil; Geskus, Dimitri; Pollnau, Markus

    2016-07-25

    We systematically characterize the Fabry-Pérot resonator. We derive the generic Airy distribution of a Fabry-Pérot resonator, which equals the internal resonance enhancement factor, and show that all related Airy distributions are obtained by simple scaling factors. We analyze the textbook approaches to the Fabry-Pérot resonator and point out various misconceptions. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function that characterizes the Fabry-Pérot resonator and generates the Airy distribution. Consequently, the resonator losses are quantified by the linewidths of the underlying Lorentzian lines and not by the measured Airy linewidth. Therefore, we introduce the Lorentzian finesse which provides the spectral resolution of the Lorentzian lines, whereas the usually considered Airy finesse only quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer. We also point out that the concepts of linewidth and finesse of the Airy distribution of a Fabry-Pérot resonator break down at low reflectivity. Furthermore, we show that a Fabry-Pérot resonator has no cut-off resonance wavelength. Finally, we investigate the influence of frequency-dependent mirror reflectivities, allowing for the direct calculation of its deformed mode profiles.

  5. AiryÕs Greenwich Staff

    NASA Astrophysics Data System (ADS)

    Chapman, A.

    2012-01-01

    One major research development in the history of astronomy, pioneered in particular by the SHA, is a shift from the concern with what the ÔgiantsÕ, such as Galileo or Newton, achieved to an examination of the wider spectrum of astronomical personnel. And one rich field of inquiry here is that body of men, and later of women, who earned their livings as assistant astronomers. It is, in fact, an abundantly documented area, including figures employed in Grand Amateur, university, and civic observatories, though without doubt the richest and longest-running body of data pertaining to what might be called the ÔAstronomersÕ GentlemenÕ comes from the archives of the Royal Observatory, Greenwich, especially for the years 1835 to 1881, when Sir George Biddell Airy was Astronomer Royal.

  6. Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    NASA Astrophysics Data System (ADS)

    Akemann, G.; Bender, M.

    2010-10-01

    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.

  7. Vessel extraction using the Buckmaster-Airy filter

    NASA Astrophysics Data System (ADS)

    Sanchez, Valentina

    2016-05-01

    A new and powerful technique for vessel extraction from biomedical images using the so called Buckmaster- Airy Filter is designed, prototyped and tested. The design, the prototyping and the testing were performed using computer algebra software, specifically the Maple package ImageTools. Some preliminary experiments were performed ant the results were excellent. Our new technique is based on partial differential equations.. Specifically two dimensional Airy diffusion equation and the two dimensional Buckmaster equation were used for designing the new Buckmaster-Airy Filter. Such new filter is able to enhance the quality of an image, producing simultaneously noise elimination, but without altering the edges of the image. The new Bukmaster-Airy filter is applied to the target image via discrete convolution. The results of some experiments of vessel extraction will be presented; and some lines for future research such as the possible implementation of the Buckmaster-Airy Filter as a new plugging for the program ImageJ, will be proposed.

  8. Propagation of an Airy beam through the atmosphere.

    PubMed

    Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong

    2013-01-28

    In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.

  9. Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto

    2015-02-01

    We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.

  10. Generation of fiber-based plasmonic Airy beam

    NASA Astrophysics Data System (ADS)

    Guan, Chunying; Ding, Ming; Shi, Jinhui; Wang, Pengfei; Hua, Ping; Brambilla, Gilberto; Yuan, Libo

    2014-05-01

    Compact all-fiber plasmonic Airy-like beam generator is demonstrated. A single slit and a 1D groove array were fabricated by focused ion beam (FIB) milling on the end facet of a single mode optical fiber. The single slit excites the surface plasmonic polaritons (SPPs), which are decoupled into free space by the groove array. The phase of decoupling SPPs is adjusted by the grooves position. Experimental generation of the single Airy-like beam has good consistency with theoretical predictions. The transverse acceleration and nondiffraction properties are observed. The presented plasmonic Airy-like beam generator is of importance to realize all-fiber optical trapping, beam shaping, and fiber integrated devices.

  11. Nonparaxial diffraction analysis of Airy and SAiry beams.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador; García, Celia; Fimia, Antonio; Madrigal, Roque; Murciano, Angel

    2009-12-07

    We theoretically analyze Airy beams by solving the exact vectorial Helmholtz equation using boundary conditions at a diffraction aperture. As result, the diffracted beams are obtained in the whole space; thus, we demonstrate that the parabolic trajectories are larger than those previously reported, showing that the Airy beams start to form before the Fourier plane. We also demonstrate the possibility of using a new type of Airy beams (SAiry beams) with finite energy that can be generated at the focal plane of the lens due to diffraction by a circular aperture of a spherical wave modified by a cubic phase. The finite energy ensured by the principle of conservation of energy of a diffracted beam.

  12. Optimal control of the ballistic motion of Airy beams.

    PubMed

    Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang

    2010-07-01

    We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.

  13. On the joint distribution of the maximum and its position of the Airy2 process minus a parabola

    NASA Astrophysics Data System (ADS)

    Baik, Jinho; Liechty, Karl; Schehr, Grégory

    2012-08-01

    The maximal point of the Airy2 process minus a parabola is believed to describe the scaling limit of the end-point of the directed polymer in a random medium. This was proved to be true for a few specific cases. Recently, two different formulas for the joint distribution of the location and the height of this maximal point were obtained, one by Moreno Flores, Quastel, and Remenik, and the other by Schehr. The first formula is given in terms of the Airy function and an associated operator, and the second formula is expressed in terms of the Lax pair equations of the Painlevé II equation. We give a direct proof that these two formulas are the same.

  14. Thyroid function and stress hormones in children with stress hyperglycemia.

    PubMed

    Bordbar, Mohammad Reza; Taj-Aldini, Reza; Karamizadeh, Zohre; Haghpanah, Sezaneh; Karimi, Mehran; Omrani, Gholam Hossein

    2012-12-01

    The purpose of the study is to determine the prevalence of stress hyperglycemia and to investigate how thyroid and stress hormones alter during stress hyperglycemia in children admitted to pediatric emergency wards. A prospective cross-sectional study was conducted in children, less than 19 years old, who were admitted to pediatric emergency wards of Nemazee and Dastgheib Hospitals, Shiraz, Southern Iran. Those patients taking steroids, beta-agonists or intravenously administered glucose before venipuncture, and patients with diabetes mellitus (DM) or thyroid diseases were excluded. Children with blood glucose ≥ 150 mg/dL during admission were regarded as cases. The controls were age- and- sex- matched, euglycemic children. Stress hormones including cortisol, insulin, growth hormone, and prolactin were measured, and thyroid function was tested with a radioimmunoassay (RIA) method in all cases and controls. The results showed that among 1,054 screened children, 39 cases (3.7 %) had stress hyperglycemia and 89 controls were included in the study. The occurrence of hyperglycemia was independent of sex, but it occurred mostly in children under 6 years old. Hyperglycemia occurred more frequently in patients with a positive family history of DM (odds ratio = 3.2, 95 % CI = 1.3-7.9, and P = 0.009). There were no significant differences between cases and controls regarding any hormones except higher cortisol, and lower total T3 and T4 in cases compared with controls. Neither of cases developed diabetes in the 24-month follow-up period. These findings led us to the conclusion that stress hyperglycemia is occasionally seen in critically ill patients. Among the stress hormones measured, only cortisol increased during hyperglycemia. It seems that hyperglycemia is not an important risk factor for future diabetes.

  15. Quantitative study on propagation and healing of Airy beams under experimental conditions.

    PubMed

    Zhuang, Fei; Zhu, Ziyi; Margiewicz, Jessica; Shi, Zhimin

    2015-03-01

    We investigate the propagation and healing of Airy beams in two dimensions that are obtainable under practical experimental conditions. We introduce an intensity similarity factor to quantitatively describe how an Airy beam retains its original shape. Based on such a figure of merit, we define a shape-retaining distance to quantify how far an Airy beam can keep the shape of its main lobe upon propagation and a healing distance to quantify how soon an initially partially blocked Airy beam can restore its main lobe profile. We perform an analysis on how these two distances scale with experimental parameters. We further use an interference picture to interpret the healing phenomenon of an Airy beam. Our work can serve as a guideline for quantitative performance analysis for applications of Airy beams and can be extended to other special beams in a straightforward fashion.

  16. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  17. Propagation of an Airy beam with a spiral phase.

    PubMed

    Chu, Xiuxiang

    2012-12-15

    The propagation of an Airy beam with a spiral phase is studied. The centroid position and spread of the beam are investigated analytically for different topological charges. Study shows that the centroid position of the Airy beam with a spiral phase keeps moving during propagation. The motion with positive topological charge is in the direction opposite to that with negative topological charge. The speed of the motion of the centroid position is proportional to the topological charge and the normalized distance. From the variation of the second moment of the beam, we can also see that the beam spread is speeded up by the spiral phase during propagation. The speed of the beam spread is proportional to the square of the topological charge.

  18. Production of accelerating quad Airy beams and their optical characteristics.

    PubMed

    Ren, Zhijun; Wu, Qiong; Shi, Yile; Chen, Chen; Wu, Jiangmiao; Wang, Hui

    2014-06-16

    Based on a geometric caustic argument and diffraction catastrophe theory, we generate a novel form of accelerating beams using a symmetric 3/2 phase-only pattern. Such beams can be called accelerating quad Airy beams (AQABs) because they look very much like four face-to-face combined Airy beams. Optical characteristics of AQABs are subsequently investigated. The research results show that the beams have axial-symmetrical and centrosymmetrical transverse intensity patterns and quasi-diffraction-free propagation features for their four main lobes while undergoing transverse shift along parabolic trajectories. Moreover, we also demonstrate that AQABs possess self-construction ability when local areas are blocked. The unique optical properties of these beams will make them useful tools for future scientific applications.

  19. Interaction of Airy-Gaussian beams in saturable media

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei

    2016-08-01

    Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.

  20. Detection of stress concentrations around a defect by magnetic Barkhausen noise measurements

    SciTech Connect

    Mandal, K.; Dufour, D.; Sabet-Sharghi, R.; Sijgers, B.; Micke, D.; Krause, T.W.; Clapham, L.; Atherton, D.L.

    1996-12-01

    The stress distribution around a 50{percent} blind-hole pit in a steel pipe with a 9 mm wall has been studied using high-resolution magnetic Barkhausen noise (MBN) measurements. A magnetic disk read-head is used as the pick up coil in the MBN probe. The study shows a stress concentration factor of {approximately}2 at the defect edge perpendicular to the direction of applied stress and {approximately}{minus}0.6 at the edge parallel to the same. The experimental results are consistent with the analytical solutions obtained by the Airy{close_quote}s stress function approach. {copyright} {ital 1996 American Institute of Physics.}

  1. Generation of vortex circular Airy beam through binary amplitude digital hologram

    NASA Astrophysics Data System (ADS)

    Fang, Zhao-Xiang; Ren, Yu-Xuan; Lu, Rong-De

    2016-02-01

    Airy beam is a kind of wavepacket existing in the form of photons, electrons, and plasmonics. Well known as diffraction-free beam, optical Airy beam tends to accelerate in transverse space with a parabolic trajectory, and exhibits self-healing property when partially blocked. Those properties have attracted a great deal of research interests and applications. Circular Airy beam, exhibiting cylindrically symmetric intensity pattern and abruptly autofocusing characteristics in the linear media, is a variant of Airy-like wave. Optical vortex, on the other hand, is a kind of phase singularity. We present to shape the autofocusing Airy beam with a vortex phase structure, which was realized through the binary amplitude modulation with a digital micromirror device (DMD). Each mirror on the DMD could be electronically addressed to situate at either of the two solid positional states corresponding to on and off. Shaping the light into a specific mode requires the calculation of the amplitude pattern for display on the DMD. By reshaping individual DMD pixels into giant pixels, the complex field of the vortex Airy beam could be encoded with a super-pixel method. The propagation property of the vortex Airy beam was investigated through numerical simulation for different topological charges. Furthermore, the propagation characteristics of this beam in free space were verified and discussed through the experiments. We anticipate that the proposed vortex Airy beam in particle trapping, biological field and optical communications. This method with DMD can also be used to generate other beams with different characteristics.

  2. Impacts of cross-phase modulation on modulation instability of Airy pulses

    NASA Astrophysics Data System (ADS)

    Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng

    2016-10-01

    The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.

  3. >From alexander of aphrodisias to young and airy

    NASA Astrophysics Data System (ADS)

    Jackson, J. D.

    1999-10-01

    A didactic discussion of the physics of rainbows is presented, with some emphasis on the history, especially the contributions of Thomas Young nearly 200 years ago. We begin with the simple geometrical optics of Descartes and Newton, including the reasons for Alexander's dark band between the main and secondary bows. We then show how dispersion produces the familiar colorful spectacle. Interference between waves emerging at the same angle, but traveling different optical paths within the water drops, accounts for the existence of distinct supernumerary rainbows under the right conditions (small drops, uniform in size). Young's and Airy's contributions are given their due.

  4. Fractional calculus transmutation for the Airy WKB solutions and Stokes phenomenon

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2016-12-01

    We apply the transmutation method to give a new explanation of the Stokes phenomenon for the Airy differential equation and of the change of the coeffcients in its asymptotic solutions for large values of argument in different parts of the complex plane. As a transmutation operator, a Weyl type fractional order integral is used. But this scheme is a special case of the so-called Poisson- Sonine-Dimovski transmutation operators related to the hyper-Bessel differential equations of arbitrary integer order, and of the generalized fractional calculus operators related to differential equations of fractional multi-order and their solutions, including a number of special functions. We analyze also the previous results of other authors and suggest some perspectives to use the same method in more general cases.

  5. Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Mattsson, Ann E.; Armiento, Rickard

    2014-03-01

    We show how one can systematically derive exact quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of the Airy gas (AG). The resulting expression is of second order in the density variation and we demonstrate how it applies universally to a certain class of model systems in the slowly varying regime, for which the accuracy of the gradient corrections of the extended Thomas-Fermi (ETF) model is limited. In particular we study two kinds of related electronic edges, the Hermite gas (HG) and the Mathieu gas (MG), which are both relevant for discussing periodic systems. We also consider two systems with finite integer particle number, namely non-interacting electrons subject to harmonic confinement as well as the hydrogenic potential. Finally we discuss possible implications of our findings mainly related to the field of functional development of the local kinetic energy contribution.

  6. Cortisol stress responses and children's behavioral functioning at school

    PubMed Central

    Cillessen, Antonius H.N.; de Weerth, Carolina

    2016-01-01

    The present study investigated whether cortisol stress responses of 6‐year‐olds were associated with their behavioral functioning at school. Additionally, the moderating role of stress in the family environment was examined. To this end, 149 healthy children (M age = 6.09 years; 70 girls) participated in an age‐appropriate innovative social evaluative stress test. Saliva cortisol samples were collected six times during the stress test to calculate two indices of the cortisol stress response: cortisol stress reactivity and total stress cortisol. Teachers assessed children's internalizing, externalizing, and prosocial behaviors. Stress in the family environment was operationalized as maternally reported parenting stress. Results indicated a significant increase in cortisol concentrations in response to the stressor. No significant associations were found between cortisol stress responses and behavioral functioning at school and there was no evidence for moderation by maternal parenting stress. Potential theoretical and methodological explanations for these results are discussed. PMID:27774583

  7. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.

  8. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  9. Stress, age, and immune function: toward a lifespan approach.

    PubMed

    Graham, Jennifer E; Christian, Lisa M; Kiecolt-Glaser, Janice K

    2006-08-01

    Both aging processes and psychological stress affect the immune system: Each can dysregulate immune function with a potentially substantial impact on physical health. Worse, the effects of stress and age are interactive. Psychological stress can both mimic and exacerbate the effects of aging, with older adults often showing greater immunological impairment to stress than younger adults. In addition, stressful experiences very early in life can alter the responsiveness of the nervous system and immune system. We review the unique impact of aging and stress on immune function, followed by evidence of interactions between age and stress. Further, we suggest that prenatal or early life stress may increase the likelihood of maladaptive immune responses to stress in late life. An understanding of the interactive effects of stress and age is critical to efforts to determine underlying mechanisms, clarify the directionality of effects, and develop effective interventions in early and late life.

  10. Stress, Age, and Immune Function: Toward a Lifespan Approach

    PubMed Central

    Graham, Jennifer E.; Christian, Lisa M.; Kiecolt-Glaser, Janice K.

    2009-01-01

    Both aging processes and psychological stress affect the immune system: Each can dysregulate immune function with a potentially substantial impact on physical health. Worse, the effects of stress and age are interactive. Psychological stress can both mimic and exacerbate the effects of aging, with older adults often showing greater immunological impairment to stress than younger adults. In addition, stressful experiences very early in life can alter the responsiveness of the nervous system and immune system. We review the unique impact of aging and stress on immune function, followed by evidence of interactions between age and stress. Further, we suggest that prenatal or early life stress may increase the likelihood of maladaptive immune responses to stress in late life. An understanding of the interactive effects of stress and age is critical to efforts to determine underlying mechanisms, clarify the directionality of effects, and develop effective interventions in early and late life. PMID:16715331

  11. Racism-Related Stress, General Life Stress, and Psychological Functioning among Black American Women

    ERIC Educational Resources Information Center

    Pieterse, Alex L.; Carter, Robert T.; Ray, Kilynda V.

    2013-01-01

    The relationship between general life stress, perceived racism, and psychological functioning was explored in a sample of 118 Black American women. Findings indicate that racism-related stress was not a significant predictor of psychological functioning when controlling for general life stress. Perceived racism was positively associated with…

  12. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    SciTech Connect

    Wen, Wei; Chu, Xiuxiang

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  13. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  14. Functional profile coatings and film stress

    NASA Astrophysics Data System (ADS)

    Liu, Chian; Conley, R.; Macrander, A. T.

    2004-07-01

    In recent years, we have developed a profile-coating technique to obtain functional thickness-profiled thin films and multilayers. This technique uses linear motion of the substrate in a dc magnetron sputter system and a contoured mask to obtain the desired profile perpendicular to the substrate-moving direction. The shape of the contour is determined according to the desired profile and knowledge of the film-thickness distribution at the substrate level. Applications of this technique include laterally graded multilayers and elliptical x-ray Kirkpatrick-Baez (KB) mirrors. An elliptical shape is essential for aberration-free optics. The use of profile coating to make x-ray-quality elliptical KB mirrors overcomes the obstacle of polishing asymmetrical mirror surfaces and provides the x-ray community with a practical way to obtain monolithic KB mirrors for microfocusing. Previously, we have used gold as a coating material and cylindrical Si mirrors as substrates to obtain elliptical KB mirrors. More recently, we have used flat Si substrates to fabricate elliptical KB mirrors. Substantially thicker and steeper gradients of Au films are needed to obtain an elliptical profile from a flat substrate. The Au films may relax to droplets when the stress in the film is too large. The challenges and solutions for this problem will be discussed. .

  15. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    PubMed Central

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  16. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng

    2015-04-20

    We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

  17. Stress induced changes in testis function.

    PubMed

    López-Calderón, A; Ariznavarreta, C; González-Quijano, M I; Tresguerres, J A; Calderón, M D

    1991-01-01

    The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.

  18. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  19. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  20. Effects of work stress and home stress on autonomic nervous function in Japanese male workers

    PubMed Central

    MAEDA, Eri; IWATA, Toyoto; MURATA, Katsuyuki

    2014-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance. PMID:25382383

  1. Dynamic enhancement of autofocusing property for symmetric Airy beam with exponential amplitude modulation

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Lu, Yao; Gong, Lei; Chu, Xiuxiang; Xue, Guosheng; Ren, Yuxuan; Zhong, Mincheng; Wang, Ziqiang; Zhou, Jinhua; Li, Yinmei

    2016-07-01

    A symmetric Airy beam (SAB) autofocuses during free space propagation. Such autofocusing SAB is useful in optical manipulation and biomedical imaging. However, its inherently limited autofocusing property may degrade the performance of the SAB in those applications. To enhance the autofocus, a symmetric apodization mask was proposed to regulate the SAB. In combination with the even cubic phase that shapes the SAB, this even exponential function mask with an adjustable parameter regulates the contribution of different frequency spectral components to the SAB. The propagation properties of this new amplitude modulated SAB (AMSAB) were investigated both theoretically and experimentally. Simulation shows that the energy distribution and autofocusing property of an AMSAB can be adjusted by the exponential amplitude modulation. Especially, the beam energy will be more concentrated in the central lobe once the even cubic phase is modulated by the mask with a higher proportion of high-frequency spectral components. Consequently, the autofocusing property and axial gradient force of AMSABs are efficiently enhanced. The experimental generation and characterization for AMSABs were implemented by modulating the collimated beam with a phase-only spatial light modulator. The experimental results well supported the theoretical predictions. With the ability to enhance the autofocus, the proposed exponential apodization modulation will make SAB more powerful in various applications, including optical trapping, fluorescence imaging and particle acceleration.

  2. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these

  3. Neighborhood functions alter unbalanced facilitation on a stress gradient.

    PubMed

    Malanson, George P; Resler, Lynn M

    2015-01-21

    The stress-gradient hypothesis states that individual and species competitive and facilitative effects change in relative importance or intensity along environmental gradients of stress. The importance of the number of facilitators in the neighborhood of a potential beneficiary has not been explored. Evenly distributed and stress-correlated facilitation and the increase in the intensity of facilitation with neighbors as linear, logarithmic, and unimodal functions is simulated for two hypothetical species, both of which improve the local environment. The mutualism is unbalanced in that the establishment of one species is enhanced by neighbors more than the other. Compared to no facilitation or evenly distributed facilitation, the stress gradient produces more edges in the spatially advancing population, more overall intensity of facilitation, and more individuals further advanced into the area of higher stress; the more enhanced species has increased population relative to the other - to the point where they are equal. Among three neighborhood functions, little difference exists in outcomes between the linear and logarithmic functions, but the unimodal function, which shifts peak facilitation intensity to fewer neighbors, increases the above state variables more than the differences between the even and stress gradient facilitation scenarios; the population of the beneficiary species exceeds that of the other. Different neighborhood functions change the effects of spatial pattern on the biological outcome. The unbalanced mutualism may be important where additional species alter the basic interaction in the high stress area of the environmental gradient, such as ecotones where the spatial pattern becomes central to facilitation.

  4. Effects of Acute Laboratory Stress on Executive Functions

    PubMed Central

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning. PMID:27065926

  5. Effects of Acute Laboratory Stress on Executive Functions.

    PubMed

    Starcke, Katrin; Wiesen, Carina; Trotzke, Patrick; Brand, Matthias

    2016-01-01

    Recent research indicates that stress can affect executive functioning. However, previous results are mixed with respect to the direction and size of effects, especially when considering different subcomponents of executive functions. The current study systematically investigates the effects of stress on the five components of executive functions proposed by Smith and Jonides (1999): attention and inhibition; task management; planning; monitoring; and coding. Healthy participants (N = 40) were either exposed to the computerized version of the Paced Auditory Serial Addition Test as a stressor (N = 20), or to a rest condition (N = 20). Stress reactions were assessed with heart rate and subjective measures. After the experimental manipulation, all participants performed tasks that measure the different executive functions. The manipulation check indicates that stress induction was successful (i.e., the stress group showed a higher heart rate and higher subjective responses than the control group). The main results demonstrate that stressed participants show a poorer performance compared with unstressed participants in all executive subcomponents, with the exception of monitoring. Effect sizes for the tasks that reveal differences between stressed and unstressed participants are high. We conclude that the laboratory stressor used here overall reduced executive functioning.

  6. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    PubMed Central

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  7. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  8. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.

    PubMed

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-19

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  9. Microstructural stress relaxation mechanics in functionally different tendons.

    PubMed

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs.

  10. Computer program for Bessel and Hankel functions

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Saule, Arthur V.; Rice, Edward J.; Clark, Bruce J.

    1991-01-01

    A set of FORTRAN subroutines for calculating Bessel and Hankel functions is presented. The routines calculate Bessel and Hankel functions of the first and second kinds, as well as their derivatives, for wide ranges of integer order and real or complex argument in single or double precision. Depending on the order and argument, one of three evaluation methods is used: the power series definition, an Airy function expansion, or an asymptotic expansion. Routines to calculate Airy functions and their derivatives are also included.

  11. Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia

    2014-08-01

    We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.

  12. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength.

    PubMed

    Morris, J E; Mazilu, M; Baumgartl, J; Cizmár, T; Dholakia, K

    2009-07-20

    We generate a broadband "white light" Airy beam and characterize the dependence of the beam properties on wavelength. Experimental results are presented showing that the beam's deflection coefficient and its characteristic length are wavelength dependent. In contrast the aperture coefficient is not wavelength dependent. However, this coefficient depends on the spatial coherence of the beam. We model this behaviour theoretically by extending the Gaussian-Schell model to describe the effect of spatial coherence on the propagation of Airy beams. The experimental results are compared to the model and good agreement is observed.

  13. Nonparaxial scalar Airy light-sheets and their higher-order spatial derivatives

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-02-01

    Based on the angular spectrum decomposition method in plane waves, a generalized nonparaxial analytical solution for the electric field of a transverse electric Airy light-sheet including its spatial derivatives is formulated and presented. The beam-shape coefficients are expressed by an improper integral, which includes the generation of evanescent waves. The radiated component of the field is computed, and the cross-sectional plots display unique features of the nonparaxial Airy light-sheet and its higher-order derivatives. The results find important applications in predicting/computing the optical scattering, radiation force, and torque on an object using the multipole expansion method in cylindrical coordinates and particle dynamics.

  14. Widely varying giant Goos-Hänchen shifts from Airy beams at nonlinear interfaces.

    PubMed

    Chamorro-Posada, Pedro; Sánchez-Curto, Julio; Aceves, Alejandro B; McDonald, Graham S

    2014-03-15

    We present a numerical study of the giant Goos-Hänchen shifts (GHSs) obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the nonlinear Helmholtz equation. We report the existence of nonstandard nonlinear GHSs displaying an extreme sensitivity to the input intensity and the existence of multiple critical values. These intermittent and oscillatory regimes can be explained in terms of competition between critical coupling to a surface mode and soliton emission from the refracted beam component and how this interplay varies with localization of the initial Airy beam.

  15. Regulation of the Adrenal Cortex Function During Stress

    NASA Technical Reports Server (NTRS)

    Soliman, K. F. A.

    1978-01-01

    A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.

  16. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2007-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  17. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2004-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  18. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  19. Cytokines and macrophage function in humans - role of stress

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald (Principal Investigator)

    1996-01-01

    We have begun this study to commence the determination of the role of mild chronic stress in the effects of space flight on macrophage/monocyte function, a component of the immune response. Medical students undergoing regular periods of stress and relaxation have been shown to be an excellent model for determining the effects of stress on immune responses. We have begun using this model using the macrophage/monocyte as model leukocyte. The monocyte/macrophage plays a central role in immunoregulation. The studies to be included in this three year project are the effects of stress on: (1) interactions of monocytes with microbes, (2) monocyte production of cytokines, (3) monocyte phagocytosis and activity, and (4) monocyte expression of cell surface antigens important in immune responses. Stress hormone levels will also be carried out to determine if there is a correlation between stress effects on immune responses and hormonal levels. Psychological testing to insure subjects are actually stressed or relaxed at the time of testing will also be carried out. The results obtained from the proposed studies should be comparable with space flight studies with whole animals and isolated cell cultures. When complete this study should allow the commencement of the establishment of the role of stress as one compartment of the induction of immune alterations by space flight.

  20. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  1. Polyamines function in stress tolerance: from synthesis to regulation

    PubMed Central

    Liu, Ji-Hong; Wang, Wei; Wu, Hao; Gong, Xiaoqing; Moriguchi, Takaya

    2015-01-01

    Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity, and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine, spermidine, and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS) due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested. PMID:26528300

  2. Propagation of an Airy-Gaussian-Vortex beam in a chiral medium

    NASA Astrophysics Data System (ADS)

    Hua, Sen; Liu, Youwen; Zhang, Huijie; Tang, Liangzun; Feng, Yunxcai

    2017-04-01

    Based on the Huygens diffraction integral, the analytical expressions of electric field distribution of the Airy-Gaussian-Vortex (AiGV) beam in a chiral medium are derived, and its propagation properties are investigated. With increasing the value of chiral parameter γ, the parabolic deflection of the LCP light increases and the RCP light decreases respectively. For the first-order AiGV beam with only one positive or negative optical vortex (OV), a half-moon-shaped intensity profile can be observed because of overlap of the OV and the Airy main lobe, and then the main lobe will be reconstructed and the vortex could be recovered after the overlap position. The intensity distribution of AiGV beam, the deflection trajectories of central positions of Airy beam and OV under different competing parameters between Gaussian and Airy terms have been studied. Furthermore, for the second-order counterrotating AiGV beam with positive and negative vortexes, it could be considered the superposition of two first-order AiGV beams with respective positive and negative vortexes. Two vortexes can regenerate during propagation and the intensity distribution the AiGV beam in the far zone can be controlled by adjusting the coordinates of two vortexes.

  3. Reflection and refraction of an Airy beam at a dielectric interface.

    PubMed

    Chremmos, Ioannis D; Efremidis, Nikolaos K

    2012-06-01

    Reflection and refraction of a finite-power Airy beam at the interface between two dielectric media are investigated analytically and numerically. The formulation takes into account the paraxial nature of the optical beams to derive convenient field evolution equations in coordinate frames moving along Snell's refraction and reflection axes. Through numerical simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are observed. Of special interest are the cases of critical incidence at Brewster and total-internal-reflection (TIR) angles. In the former case, we find that the reflected beam achieves self-healing, despite the severe suppression of a part of its spectrum, while, in the latter case, the beam remains nearly unaffected except for the Goos-Hänchen shift. The self-accelerating quality persists even if the beam is trapped by multiple TIRs inside a dielectric film. The grazing incidence of an Airy beam at the interface between two media with close refractive indices is also investigated, revealing that the interface can act as a filter depending on the beam scale and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a left-handed medium.

  4. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  5. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.

    2017-03-01

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.

  6. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz.

    PubMed

    Aadhi, A; Sharma, Varun; Chaitanya, N Apurv; Samanta, G K

    2017-03-06

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.

  7. Anomalous change of Airy disk with changing size of spherical particles

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen

    2016-02-01

    Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.

  8. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz

    PubMed Central

    Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.

    2017-01-01

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823

  9. Altered locus coeruleus-norepinephrine function following single prolonged stress.

    PubMed

    George, Sophie A; Knox, Dayan; Curtis, Andre L; Aldridge, J Wayne; Valentino, Rita J; Liberzon, Israel

    2013-03-01

    Data from preclinical and clinical studies have implicated the norepinephrine system in the development and maintenance of post-traumatic stress disorder. The primary source of norepinephrine in the forebrain is the locus coeruleus (LC); however, LC activity cannot be directly measured in humans, and previous research has often relied upon peripheral measures of norepinephrine to infer changes in central LC-norepinephrine function. To directly assess LC-norepinephrine function, we measured single-unit activity of LC neurons in a validated rat model of post-traumatic stress disorder - single prolonged stress (SPS). We also examined tyrosine hydroxylase mRNA levels in the LC of SPS and control rats as an index of norepinephrine utilisation. For electrophysiological recordings, 92 LC neurons were identified from 19 rats (SPS, 12; control, 7), and spontaneous and evoked responses to a noxious event (paw compression) were recorded. Baseline and restraint stress-evoked tyrosine hydroxylase mRNA expression levels were measured in SPS and control rats (n = 16 per group) in a separate experiment. SPS rats showed lower spontaneous activity but higher evoked responses, leading to an enhanced signal-to-noise ratio of LC neurons, accompanied by impaired recovery from post-stimulus inhibition. In concert, tyrosine hydroxylase mRNA expression in the LC of SPS rats tended to be lower at baseline, but was exaggerated following restraint stress. These data demonstrate persistent changes in LC function following stress/trauma in a rat model of post-traumatic stress, as measured by differences in both the electrophysiological properties of LC neurons and tyrosine hydroxylase mRNA transcription.

  10. Learning Under Stress: The Inverted-U-Shape Function Revisited

    ERIC Educational Resources Information Center

    Salehi, Basira; Cordero, M. Isabel; Sandi, Carmen

    2010-01-01

    Although the relationship between stress intensity and memory function is generally believed to follow an inverted-U-shaped curve, strikingly this phenomenon has not been demonstrated under the same experimental conditions. We investigated this phenomenon for rats' performance in a hippocampus-dependent learning task, the radial arm water maze…

  11. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  12. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    PubMed Central

    Baert, Jan M.; Janssen, Colin R.; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity–ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity–productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity–productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  13. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    PubMed

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-08-18

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions.

  14. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    PubMed

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group.

  15. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  16. Effect of Desiccating Stress on Mouse Meibomian Gland Function

    PubMed Central

    Suhalim, Jeffrey L.; Parfitt, Geraint J.; Xie, Yilu; De Pavia, Cintia S.; Pflugfelder, Stephen C.; Shah, Tejas N.; Potma, Eric O.; Brown, Donald J.; Jester, James V.

    2013-01-01

    Purpose Mice exposed to standardized desiccating environmental stress to induce dry eye-like symptoms have been used as a model to study the underlying mechanisms of evaporative dry eye. While studies have shown marked inflammatory and immune changes, the effect of such stress on meibomian gland function remains largely unknown. We sought to evaluate the effects of desiccating stress on meibocyte proliferation and meibum quality. Methods Ten mice were treated with scopolamine and subjected to a drafty low humidity environment (30–35%). Five and ten days after treatment, eyelids were harvested and cryosections stained with Ki67 antibody to identify cycling cells. Sections were also imaged using stimulated Raman scattering (SRS) microscopy to characterize the gland compositional changes by detecting the vibrational signatures of methylene (lipid) and amide-I (protein). Results Desiccating stress caused a 3-fold increase in basal acinar cell proliferation from 18.3 ± 11.1% in untreated mice to 64.4 ± 19.9% and 66.6 ± 13.4% after 5 and 10 days exposure, respectively (P < .001). In addition, SRS analysis showed a wider variation in the protein-to-lipid ratio throughout the gland, suggesting alterations in meibocyte differentiation and lipid synthesis. Conclusions These data are consistent with a model that a desiccating environment may have a direct effect on meibomian gland function, leading to a significant increase in basal acinar cell proliferation, abnormal meibocyte differentiation, and altered lipid production. PMID:24439047

  17. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  18. Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this paper a simple and easy to implement method that uses the Airy disk generated from a Fraunhofer diffraction pattern due to a circular aperture will be used to estimate the wavelength of the illuminating laser source. This estimation is based on the measurement of the Airy disk diameter, whose approximation is directly proportional to the wavelength of the light source and to the distance between the aperture and the image plane; and inversely proportional to the diameter of the aperture. Due to the characteristics and versatility of the present proposal, this is perfectly suitable for use in graduate or undergraduate physics laboratories, or even in classrooms for educational and/or demonstrative purposes.

  19. Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.

    2017-03-01

    In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices.

  20. Better executive function under stress mitigates the effects of recent life stress exposure on health in young adults.

    PubMed

    Shields, Grant S; Moons, Wesley G; Slavich, George M

    2017-01-01

    Executive function is a neuropsychological construct that enables controlled cognitive processing, which has been hypothesized to enhance individuals' resilience to stress. However, little empirical work has directly examined how executive function under different conditions mitigates the negative effects of stress exposure on health. To address this issue, we recruited 110 healthy young adults and assessed their recent life stress exposure, executive function in either a stressful or non-stressful context, and current health complaints. Based on existing research, we hypothesized that individuals exhibiting better executive function following a laboratory-based stressor (but not a control task) would demonstrate weaker associations between recent stress exposure and health because they perceived recent life stressors as being less severe. Consistent with this hypothesis, better executive function during acute stress, but not in the absence of stress, was associated with an attenuated link between participants' recent life stress exposure and their current health complaints. Moreover, this attenuating effect was mediated by lesser perceptions of stressor severity. Based on these data, we conclude that better executive function under stress is associated with fewer health complaints and that these effects may occur by reducing individuals' perceptions of stressor severity. The data thus suggest the possibility of reducing stress-related health problems by enhancing executive function.

  1. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    SciTech Connect

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  2. Learning under stress: the inverted-U-shape function revisited.

    PubMed

    Salehi, Basira; Cordero, M Isabel; Sandi, Carmen

    2010-10-01

    Although the relationship between stress intensity and memory function is generally believed to follow an inverted-U-shaped curve, strikingly this phenomenon has not been demonstrated under the same experimental conditions. We investigated this phenomenon for rats' performance in a hippocampus-dependent learning task, the radial arm water maze (RAWM). Variations in stress intensity were induced using different water temperatures (25°C, 19°C, and 16°C), which elicited increased plasma corticosterone levels. During spatial training over three consecutive days, an inverted-U shape was found, with animals trained at 19°C making fewer errors than animals trained at either higher (16°C) or lower (25°C) stress conditions. Interestingly, this function was already observed by the last trial of day 1 and maintained on the first day trial of day 2. A long-term recall probe test administered under equal temperature conditions (20°C) revealed differences in performance according to the animals' former training conditions; i.e., platform searching for rats trained at 25°C was less accurate than for rats trained at either 16°C or 19°C. In reversal learning, groups trained at both 19°C and 25°C showed better performance than the 16°C group. We also found an interaction between anxiety and exploration traits on how individuals were affected by stressors during spatial learning. In summary, our findings confirm, for the first time, the existence of an inverted-U-shape memory function according to stressor intensity during the early learning and memory phases in a hippocampus-dependent task, and indicate the existence of individual differences related to personality-like profiles for performance at either high or low stress conditions.

  3. Circadian control of β-cell function and stress responses.

    PubMed

    Lee, J; Liu, R; de Jesus, D; Kim, B S; Ma, K; Moulik, M; Yechoor, V

    2015-09-01

    Circadian disruption is the bane of modern existence and its deleterious effects on health; in particular, diabetes and metabolic syndrome have been well recognized in shift workers. Recent human studies strongly implicate a 'dose-dependent' relationship between circadian disruption and diabetes. Genetic and environmental disruption of the circadian clock in rodents leads to diabetes secondary to β-cell failure. Deletion of Bmal1, a non-redundant core clock gene, leads to defects in β-cell stimulus-secretion coupling, decreased glucose-stimulated ATP production, uncoupling of OXPHOS and impaired glucose-stimulated insulin secretion. Both genetic and environmental circadian disruptions are sufficient to induce oxidative stress and this is mediated by a disruption of the direct transcriptional control of the core molecular clock and Bmal1 on Nrf2, the master antioxidant transcription factor in the β-cell. In addition, circadian disruption also leads to a dysregulation of the unfolded protein response and leads to endoplasmic reticulum stress in β-cells. Both the oxidative and endoplasmic reticulum (ER) stress contribute to an impairment of mitochondrial function and β-cell failure. Understanding the basis of the circadian control of these adaptive stress responses offers hope to target them for pharmacological modulation to prevent and mitigate the deleterious metabolic consequences of circadian disruption.

  4. Stress hormones and vascular function in firefighters during concurrent challenges.

    PubMed

    Webb, Heather E; Garten, Ryan S; McMinn, David R; Beckman, Jamie L; Kamimori, Gary H; Acevedo, Edmund O

    2011-04-01

    The purpose of this study was to examine the effects of concurrent physical and mental challenge on stress hormones and indicators of vascular function in firefighters. Twelve professional firefighters exercised at 60% VO(2max) while participating in a computerized Fire Strategies and Tactics Drill (FSTD-fire strategies condition [FSC]), and again at the same intensity without the mental challenge (EAC). No differences in the amount of work performed between conditions existed, although the FSC resulted in greater perceptions of overall workload. Epinephrine and norepinephrine demonstrated significant interaction effects with elevated levels during the FSC. Cortisol responses were significantly elevated across time and for the FSC. Positive correlations were found between cortisol and interleukin-6, endothelin-1, and thromboxane-B(2), and a negative correlation between interleukin-6 and thromboxane-B(2). These results suggest that concurrent challenges results in exacerbated responses of stress hormones and suggests mechanisms that could contribute to the prevalence of cardiovascular events among firefighters.

  5. Stress inversion method and analysis of GPS array data

    NASA Astrophysics Data System (ADS)

    Hori, Muneo; Iinuma, Takeshi; Kato, Teruyuki

    2008-01-01

    The stress inversion method is developed to find a stress field which satisfies the equation of equilibrium for a body in a state of plane stress. When one stress-strain relation is known and data on the strain distribution on the body and traction along the boundary are provided, the method solves a well-posed problem, which is a linear boundary value problem for Airy's stress function, with the governing equation being the Poisson equation and the boundary conditions being of the Neumann type. The stress inversion method is applied to the Global Positioning System (GPS) array data of the Japanese Islands. The stress increment distribution, which is associated with the displacement increment measured by the GPS array, is computed, and it is found that the distribution is not uniform over the islands and that some regions have a relatively large increment. The elasticity inversion method is developed as an alternative to the stress inversion method; it is based on the assumption of linear elastic deformation with unknown elastic moduli and does not need boundary traction data, which are usually difficult to measure. This method is applied to the GPS array data of a small region in Japan to which the stress inversion method is not applicable. To cite this article: M. Hori et al., C. R. Mecanique 336 (2008).

  6. Ecosystem functions and densities of contributing functional groups respond in a different way to chemical stress.

    PubMed

    De Laender, Frederik; Taub, Frieda B; Janssen, Colin R

    2011-12-01

    Understanding whether and to what extent ecosystem functions respond to chemicals is a major challenge in environmental toxicology. The available data gathered by ecosystem-level experiments (micro- and mesocosms) often describe the responses of taxa densities to stress. However, whether these responses are proportional to the responses of associated ecosystem functions to stress is unclear. By combining a carbon budget modeling technique with data from a standardized microcosm experiment with a known community composition, we quantified three ecosystem functions (net primary production [NPP], net mesozooplankton production [NZP], and net bacterial production [NBP]) at three Cu concentrations, with a control. Changes of these ecosystem functions with increasing chemical concentrations were not always proportional to the Cu effects on the densities of the contributing functional groups. For example, Cu treatments decreased mesozooplankton density by 100-fold and increased phytoplankton density 10- to 100-fold while increasing NZP and leaving NPP unaltered. However, in contrast, Cu affected microzooplankton and the associated function (NBP) in a comparable way. We illustrate that differences in the response of phytoplankton/mesozooplankton densities and the associated ecosystem functions to stress occur because functional rates (e.g., photosynthesis rates/ingestion rates) vary among Cu treatments and in time. These variations could be explained by food web ecology but not by direct Cu effects, indicating that ecology may be a useful basis for understanding environmental effects of stressors.

  7. Sexual function following surgery for urodynamic stress incontinence.

    PubMed

    Jha, Swati; Moran, Paul; Greenham, Helen; Ford, Caroline

    2007-08-01

    The objective of this study was to compare sexual function in women before and after surgery for urodynamic stress incontinence in the absence of pelvic organ prolapse. This was a prospective questionnaire survey. Fifty-four women undergoing surgery (tension-free vaginal tape/tension-free vaginal tape-obturator) for urodynamic stress incontinence with no evidence of detrusor overactivity or concomitant prolapse were assessed preoperatively and 6 months post operatively. Assessment was based on the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ), the International Consultation on Incontinence Questionnaire (ICIQ) and the Patient Global Impression of Improvement. Paired t-tests were used for comparing pre- and post-op scores and unpaired t-tests for comparing observations between groups. Spearman's rank correlation was used for testing whether two numerically scored items were related, and McNemar test was used to compare pre- and postoperative responses to individual questions. ICIQ scores showed significant improvement after surgery (p < 0.001). Women completing PISQ were significantly younger (mean = 54) than those who did not (mean = 65; p < 0.001). The total PISQ score was better postoperatively (preoperative = 87.2, postoperative = 92.7; p < 0.001), with improvements in both the physical (preoperative = 31.0, postoperative = 35.2; p < 0.001) and partner-related domains (preoperative = 18.8, postoperative = 19.9; p = 0.002) but no improvement in behaviour emotive domains (preoperative = 37.3, postoperative = 37.6; p = 0.70). There was a reduction in episodes of coital incontinence postoperatively (preoperatively = 16/54, postoperatively = 39/54; p < 0.002). Previous vaginal surgery, oestrogen status of respondents and hysterectomy status did not affect the PISQ. Surgical correction of stress incontinence is associated with an improvement in sexual function.

  8. A new algebraic transition model based on stress length function

    NASA Astrophysics Data System (ADS)

    Xiao, Meng-Juan; She, Zhen-Su

    2016-11-01

    Transition, as one of the two biggest challenges in turbulence research, is of critical importance for engineering application. For decades, the fundamental research seems to be unable to capture the quantitative details in real transition process. On the other hand, numerous empirical parameters in engineering transition models provide no unified description of the transition under varying physical conditions. Recently, we proposed a symmetry-based approach to canonical wall turbulence based on stress length function, which is here extended to describe the transition via a new algebraic transition model. With a multi-layer analytic form of the stress length function in both the streamwise and wall normal directions, the new model gives rise to accurate description of the mean field and friction coefficient, comparing with both the experimental and DNS results at different inlet conditions. Different types of transition process, such as the transition with varying incoming turbulence intensities or that with blow and suck disturbance, are described by only two or three model parameters, each of which has their own specific physical interpretation. Thus, the model enables one to extract physical information from both experimental and DNS data to reproduce the transition process, which may prelude to a new class of generalized transition model for engineering applications.

  9. Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue

    PubMed Central

    Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan

    2016-01-01

    We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 μm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet. PMID:27867712

  10. Analysis of the propagation dynamics and Gouy phase of Airy beams using the fast Fresnel transform algorithm.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Berg, Cassidy A; Freeman, Christopher Li

    2014-04-01

    There is great interest in Airy beams because they appear to propagate in a curved path. These beams are usually generated by inserting a cubic phase mask onto the input plane of a Fourier transform system. Here, we utilize a fast Fresnel diffraction algorithm to easily derive both the propagation dynamics and the Gouy phase shift for these beams. The trajectories of these beams can be modified by adding additional linear and quadratic phase terms onto the cubic phase mask. Finally, we have rewritten the equations regarding the propagating Airy beams completely in laboratory coordinates for use by experimentalists. Experimental results are included. We expect that these results will be of great importance in applications of Airy beams.

  11. Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions

    NASA Astrophysics Data System (ADS)

    Wittmer, J. P.; Xu, H.; Baschnagel, J.

    2015-02-01

    We revisit the relation between the shear-stress relaxation modulus G (t ) , computed at finite shear strain 0 <γ ≪1 , and the shear-stress autocorrelation functions C(t ) | γ and C(t ) | τ computed, respectively, at imposed strain γ and mean stress τ . Focusing on permanent isotropic spring networks it is shown theoretically and computationally that in general G(t ) =C (t ) | τ=C(t ) | γ+Geq for t >0 with Geq being the static equilibrium shear modulus. G (t ) and C(t ) | γ thus must become different for solids and it is impossible to obtain Geq alone from C(t ) | γ as often assumed. We comment briefly on self-assembled transient networks where Geq(f ) must vanish for a finite scission-recombination frequency f . We argue that G(t ) =C (t ) | τ=C(t ) | γ should reveal an intermediate plateau set by the shear modulus Geq(f =0 ) of the quenched network.

  12. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  13. Epigenetic and immune function profiles associated with posttraumatic stress disorder

    PubMed Central

    Uddin, Monica; Aiello, Allison E.; Wildman, Derek E.; Koenen, Karestan C.; Pawelec, Graham; de los Santos, Regina; Goldmann, Emily; Galea, Sandro

    2010-01-01

    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV—a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes. PMID:20439746

  14. Results of the Pronghorn field test using passive infrared spectroradiometers: CATSI and AIRIS

    NASA Astrophysics Data System (ADS)

    Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.

    2002-08-01

    The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact Atmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the US (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.

  15. Results from the Pronghorn field test using passive infrared spectroradiometers-CATSI and AIRIS

    NASA Astrophysics Data System (ADS)

    Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.

    2002-02-01

    The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact ATmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the U.S (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.

  16. Proposal and design of Airy-based rocket pulses for invariant propagation in lossy dispersive media.

    PubMed

    Preciado, Miguel A; Sugden, Kate

    2012-12-01

    A novel (to our knowledge) kind of Airy-based pulse with an invariant propagation in lossy dispersive media is proposed. The basic principle is based on an optical energy trade-off between different parts of the pulse caused by the chromatic dispersion, which is used to compensate the attenuation losses of the propagation medium. Although the ideal concept of the proposed pulses implies infinite pulse energy, the numerical simulations show that practical finite energy pulses can be designed to obtain a partially invariant propagation over a finite distance of propagation.

  17. Test drilling and aquifer test in the Marburg schist near Mount Airy, Frederick County, Maryland

    USGS Publications Warehouse

    Meyer, Gerald

    1955-01-01

    This memorandum summarizes briefly the data obtained by test drilling and in an aquifer test at Mount Airy, Md. The tests were a part of the State - Federal cooperative study of the ground-water resources of Frederick County, and it is intended that a more complete analysis of the test data will be included in a future report describing the ground-water resource of Frederick County. The purpose of this memorandum is to make the test data immediately available to the general public. Mount Airy is located along the Carroll-Frederick County boundary bout 2 miles north of the intersection of U.S. Highway 40 with the county boundary. Its population is approximately 1,000. The municipal well field, consisting of two drilled wells (fig. 1) is in a valley about one-half mile west of the center of Mount Airy, within about 400 feet of a small stream, and north of Prospect Road. Well 1, about 40 feet north of Prospect Road, is 125 feet deep, 8 inches in diameter, and reportedly yielded 265 gallons per minute (gpm) in 1947 and 201 gpm in a half hour test in March 1955. The writer determined during the tests described in this memorandum that the well has about 34 feet of casing. Well 2, 85 feet north of well 1, is 96 feet deep, 8 inches in diameter, and reportedly yielded 120 gpm in 1947 and 127 gpm in a half hour test in March 1955. The wells are equipped with deep-well turbine pumps powered by electric motors. Cenorally only well 1 is used, and it is pumped for only a few short intervals each day to meet the water requirements of the town (about 75,000 - 80,000 gallons daily). The reported yields of these wells are considerably higher than the average for crystalline-rock wells in the Piedmont of Maryland. The test drilling was done under contract with Edward I. Brown, well driller, between May 3 and May 12, 1955. Water-supply facilities of the town of Mount Airy were kindly made available for the aquifer tests from May 22 to May 30, 1955. The pumping tests consisted of a

  18. Anxiety, stress, depression, and psychosocial functioning of Indian adolescents

    PubMed Central

    Singh, Kamlesh; Junnarkar, Mohita; Sharma, Soumya

    2015-01-01

    Background: Lifetime prevalence of depression and anxiety increases from 1% of the population under age 12 years to ~17%-25% of the population by the end of adolescence. The greatest increase in new cases occurs between 15-18 years. Indian empirical studies have reported a prevalence of psychiatric morbidity in the range between 14.4% and 31.7%; thus, affecting psychosocial functioning. Aims: The objectives of the current study were to (i) examine the psychometric properties of the DASS and SDQ on Indian adolescents, (ii) explore the role of socio- demographic variablesand (iii) examine if there was any difference between school going and school dropouts. Methodology: Data from 1812 students, aged 12-19 years was collected with mean age = 15.67 years (SD =1.41 years). The participants were administered a booklet containing demographic questionnaire and psychometric scales such as DASS-21 (Henry & Crawford, 2005; Lovibond & Lovibond, 1999) and Strengths and Difficulties Questionnaire (Goodman, 1997). Statistical Analysis: Structure validation, correlational analysis and multivariate analysis. Results and Conclusions: The results of validation indicated that English and Hindi version of 3 factor model of DASS and 2 factor model of SDQ was an acceptable model fit. It was noted that early adolescents were high on prosocial behaviour whereas late adolescents were high on difficulties score. Females were higher than males on prosocial behaviour. Adolescents residing in rural areas differed from their urban counterparts on prosocial behaviour and anxiety. Government school going adolescents differed from private school going adolescents on prosocial behaviour, stress and anxiety. Negative perception of relationship with family affected adolescents difficulties score, depression and stress. Similarly, negative perception of self-concept leads to higher difficulties score and lower prosocial behaviour score. The school going adolescents differed from non-school going

  19. Does caregiving stress affect cognitive function in older women?

    PubMed

    Lee, Sunmin; Kawachi, Ichiro; Grodstein, Francine

    2004-01-01

    Increasing numbers of women provide care to their ill spouses; however, no studies have examined possible effects of caregiving stress on cognitive function. We administered 6 tests of cognitive function to 13740 Nurses' Health Study participants aged 70-79 years. We collected information on caregiving and numerous potential confounding variables via biennial mailed questionnaires. After adjustment for potential confounders (age, education, mental health index, vitality index, use of antidepressants, and history of high blood pressure, diabetes, and heart disease), we found modest but significantly increased risks of low cognitive function on three of the cognitive tests among women who provided care to a disabled or ill spouse compared with women who did not provide any care. For example, on the TICS, a test of general cognition, the risk of a low score was 31% higher in women who provided care compared with women who did not (RR = 1.31, 95% CI 1.10, 1.56). We found a moderately increased risk of poor performance on several cognitive tests among women who provided care to their disabled or ill husbands.

  20. Chirped Airy-Gaussian beam in a medium with a parabolic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Deng, Fu; Peng, Yulian; Chen, Bo; Peng, Xi; Li, Dongdong; Deng, Dongmei

    2017-01-01

    By solving the normalized dimensionless linear parabolic (Schrödinger-like) equations in the paraxial approximation, we can obtain the analytic solutions of the chirped Airy-Gaussian (CAiG) beam in a medium with a parabolic potential. We study the propagation properties of the finite energy CAiG beam in a parabolic potential and the influence of the distribution factor and the chirped factor on the CAiG beam. The propagation of the CAiG beam changes drastically with the distribution factor increasing: the CAiG beam tends to the chirped Airy beam when the distribution factor is very small; while as the distribution factor increases further, the CAiG beam tends to the chirped Gaussian beam. At the same time, the CAiG beam with a chirp has big changes when the chirped factor is increasing: the multi-peak structure is not obvious, the accelerated velocity and the peak intensity are larger, but the period does not change; when the CAiG beam has a quadratic chirp, the maximum intensity of the CAiG beam becomes smaller and the envelope is gradually smoother with the increasing of the chirped factor.

  1. The Impact of Stress Incontinence Surgery of Female Sexual Function

    PubMed Central

    BRUBAKER, Linda; CHIANG, Seing; ZYCZYNSKI, Halina; NORTON, Peggy; KALINOSKI, D. Lynn; STODDARD, Anne; KUSEK, John W.; STEERS, William

    2009-01-01

    Objective To describe change in sexual function 2 years after surgery to treat stress urinary incontinence. Methods This analysis included 655 women randomized to Burch colposuspension or sling surgery. Sexual activity was assessed by the PISQ-12 among those sexually active at baseline and two years after surgery. Results Mean PISQ-12 total score improved from baseline 32.23±6.85 to 36.85± 5.89. After surgery, fewer subjects reported incontinence (9% vs. 53%, p<0.0001), restriction of sexual activity due to fear of incontinence (10% vs. 52%, p<0.0001), avoidance of intercourse because of vaginal bulging (3% vs. 24%, p<0.0001) or negative emotional reactions during sex (9% vs. 35%, p<0.0001). Women with successful surgery had greater improvement PISQ-12 scores (5.77 vs. 3.79), p<0.006. Sexually active women were younger, thinner, and had lower MESA scores (total and urge subscale) than sexually inactive women. Conclusion Sexual function improves following successful surgery and did not differ between Burch or sling. PMID:19286143

  2. Three-dimensional few-cycle optical Airy pulses in the array of carbon nanotubes with multilevel impurities

    NASA Astrophysics Data System (ADS)

    Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2017-01-01

    Propagation of few-cycle optical Airy pulse through the array of semiconductor carbon nanotubes (CNTs) is considered. CNTs are supposed to contain multilevel impurities. In our study, we have neglected transitions between the valence and the conduction bands. As a result, we have revealed the dependence of the pulse form on the parameters of energy.

  3. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress

    SciTech Connect

    Rolo, Anabela P.; Palmeira, Carlos M. . E-mail: palmeira@ci.uc.pt

    2006-04-15

    Hyperglycemia resulting from uncontrolled glucose regulation is widely recognized as the causal link between diabetes and diabetic complications. Four major molecular mechanisms have been implicated in hyperglycemia-induced tissue damage: activation of protein kinase C (PKC) isoforms via de novo synthesis of the lipid second messenger diacylglycerol (DAG), increased hexosamine pathway flux, increased advanced glycation end product (AGE) formation, and increased polyol pathway flux. Hyperglycemia-induced overproduction of superoxide is the causal link between high glucose and the pathways responsible for hyperglycemic damage. In fact, diabetes is typically accompanied by increased production of free radicals and/or impaired antioxidant defense capabilities, indicating a central contribution for reactive oxygen species (ROS) in the onset, progression, and pathological consequences of diabetes. Besides oxidative stress, a growing body of evidence has demonstrated a link between various disturbances in mitochondrial functioning and type 2 diabetes. Mutations in mitochondrial DNA (mtDNA) and decreases in mtDNA copy number have been linked to the pathogenesis of type 2 diabetes. The study of the relationship of mtDNA to type 2 diabetes has revealed the influence of the mitochondria on nuclear-encoded glucose transporters, glucose-stimulated insulin secretion, and nuclear-encoded uncoupling proteins (UCPs) in {beta}-cell glucose toxicity. This review focuses on a range of mitochondrial factors important in the pathogenesis of diabetes. We review the published literature regarding the direct effects of hyperglycemia on mitochondrial function and suggest the possibility of regulation of mitochondrial function at a transcriptional level in response to hyperglycemia. The main goal of this review is to include a fresh consideration of pathways involved in hyperglycemia-induced diabetic complications.

  4. Plane stress yield function described by 3rd-degree spline curve and its application

    NASA Astrophysics Data System (ADS)

    Aamaishi, Toshiro; Tsutamori, Hideo; Iizuka, Eiji; Sato, Kentaro; Ogihara, Yuki; Matsui, Yohei

    2016-08-01

    In this study, a plane stress yield function which is described by 3rd-degree spline curve is proposed. This yield function can predict a material anisotropy with flexibility and consider evolution of anisotropy in terms of both r values and stresses. As an application, hole expanding simulation results are shown to discuss accuracy of the proposed yield function.

  5. Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection versus Immunopathology

    PubMed Central

    2008-01-01

    It is widely believed that stress suppresses immune function and increases susceptibility to infections and cancer. Paradoxically, stress is also known to exacerbate allergic, autoimmune, and inflammatory diseases. These observations suggest that stress may have bidirectional effects on immune function, being immunosuppressive in some instances and immunoenhancing in others. It has recently been shown that in contrast to chronic stress that suppresses or dysregulates immune function, acute stress can be immunoenhancing. Acute stress enhances dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function and has been shown to augment innate and adaptive immune responses. Acute stress experienced prior to novel antigen exposure enhances innate immunity and memory T-cell formation and results in a significant and long-lasting immunoenhancement. Acute stress experienced during antigen reexposure enhances secondary/adaptive immune responses. Therefore, depending on the conditions of immune activation and the immunizing antigen, acute stress may enhance the acquisition and expression of immunoprotection or immunopathology. In contrast, chronic stress dysregulates innate and adaptive immune responses by changing the type 1-type 2 cytokine balance and suppresses immunity by decreasing leukocyte numbers, trafficking, and function. Chronic stress also increases susceptibility to skin cancer by suppressing type 1 cytokines and protective T cells while increasing suppressor T-cell function. We have suggested that the adaptive purpose of a physiologic stress response may be to promote survival, with stress hormones and neurotransmitters serving as beacons that prepare the immune system for potential challenges (eg, wounding or infection) perceived by the brain (eg, detection of an attacker). However, this system may exacerbate immunopathology if the enhanced immune response is directed against innocuous or self-antigens or dysregulated following

  6. Aberrations in lymphocyte subpopulations and function during psychological stress.

    PubMed Central

    Dorian, B; Garfinkel, P; Brown, G; Shore, A; Gladman, D; Keystone, E

    1982-01-01

    Eight trainees in psychiatry taking their final oral fellowship examinations were compared with 16 controls to determine the effect of stress on their immune system. Two measures of stress were utilized to distinguish the highly stressed subjects from those minimally stressed. T cell subpopulations, B cell numbers, mitogen reactivity, natural killer cell activity, plaque forming cell responsiveness, antigen specific T suppressor cell activity, and hormone levels were studied 2 weeks before and 2 weeks after the exam. The results demonstrated transiently elevated numbers of T and B lymphocytes but impaired plaque forming cell and mitogen responsiveness in the highly stressed group prior to their exam which normalized later. The results support the concept that stress may significantly alter the immune response in man. PMID:6756726

  7. Improvement in cerebral function with treatment of posttraumatic stress disorder.

    PubMed

    Roy, Michael J; Francis, Jennifer; Friedlander, Joshua; Banks-Williams, Lisa; Lande, Raymond G; Taylor, Patricia; Blair, James; McLellan, Jennifer; Law, Wendy; Tarpley, Vanita; Patt, Ivy; Yu, Henry; Mallinger, Alan; Difede, Joann; Rizzo, Albert; Rothbaum, Barbara

    2010-10-01

    Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are signature illnesses of the Iraq and Afghanistan wars, but current diagnostic and therapeutic measures for these conditions are suboptimal. In our study, functional magnetic resonance imaging (fMRI) is used to try to differentiate military service members with: PTSD and mTBI, PTSD alone, mTBI alone, and neither PTSD nor mTBI. Those with PTSD are then randomized to virtual reality exposure therapy or imaginal exposure. fMRI is repeated after treatment and along with the Clinician-Administered PTSD Scale (CAPS) and Clinical Global Impression (CGI) scores to compare with baseline. Twenty subjects have completed baseline fMRI scans, including four controls and one mTBI only; of 15 treated for PTSD, eight completed posttreatment scans. Most subjects have been male (93%) and Caucasian (83%), with a mean age of 34. Significant improvements are evident on fMRI scans, and corroborated by CGI scores, but CAPS scores improvements are modest. In conclusion, CGI scores and fMRI scans indicate significant improvement in PTSD in both treatment arms, though CAPS score improvements are less robust.

  8. Functional network topology associated with posttraumatic stress disorder in veterans

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; van den Heuvel, M.P.; Kahn, R.S.; Geuze, E.

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a disabling disorder associated with resting state functional connectivity alterations. However, whether specific brain regions are altered in PTSD or whether the whole brain network organization differs remains unclear. PTSD can be treated with trauma-focused therapy, although only half of the patients recover after treatment. In order to better understand PTSD psychopathology our aim was to study resting state networks in PTSD before and after treatment. Resting state functional magnetic resonance images were obtained from veterans with PTSD (n = 50) and controls (combat and civilian controls; n = 54) to explore which network topology properties (degree and clustering coefficient) of which brain regions are associated with PTSD. Then, PTSD-associated brain regions were investigated before and after treatment. PTSD patients were subdivided in persistent (n = 22) and remitted PTSD patients (n = 17), and compared with combat controls (n = 22), who were also reassessed. Prior to treatment associations with PTSD were found for the degree of orbitofrontal, and temporoparietal brain regions, and for the clustering coefficient of the anterior cingulate cortex. No significant effects were found over the course of treatment. Our results are in line with previous resting state studies, showing resting state connectivity alterations in the salience network and default mode network in PTSD, and also highlight the importance of other brain regions. However, network metrics do not seem to change over the course of treatment. This study contributes to a better understanding of the psychopathology of PTSD. PMID:26900570

  9. Perspectives on stress resilience and adolescent neurobehavioral function.

    PubMed

    Romeo, Russell D

    2015-01-01

    Interest in adolescence as a crucial stage of neurobehavioral maturation is growing, as is the concern of how stress may perturb this critical period of development. Though it is well recognized that stress-related vulnerabilities increase during adolescence, not all adolescent individuals are uniformly affected by stress nor do stressful experiences inevitability lead to negative outcomes. Indeed, many adolescents show resilience to stress-induced dysfunctions. However, relatively little is known regarding the mechanisms that may mediate resilience to stress in adolescence. The goal of this brief review is to bring together a few separate, yet related lines of research that highlight specific variables that may influence stress resilience during adolescence, including early life programming of the hypothalamic-pituitary-adrenal (HPA) axis, stress inoculation, and genetic predisposition. Though we are far from a clear understanding of the factors that mediate resistance to stress-induced dysfunctions, it is imperative that we identify and delineate these aspects of resilience to help adolescents reach their full potential, even in the face of adversity.

  10. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  11. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  12. Latino parent acculturation stress: Longitudinal effects on family functioning and youth emotional and behavioral health.

    PubMed

    Lorenzo-Blanco, Elma I; Meca, Alan; Unger, Jennifer B; Romero, Andrea; Gonzales-Backen, Melinda; Piña-Watson, Brandy; Cano, Miguel Ángel; Zamboanga, Byron L; Des Rosiers, Sabrina E; Soto, Daniel W; Villamar, Juan A; Lizzi, Karina M; Pattarroyo, Monica; Schwartz, Seth J

    2016-12-01

    Latino parents can experience acculturation stressors, and according to the Family Stress Model (FSM), parent stress can influence youth mental health and substance use by negatively affecting family functioning. To understand how acculturation stressors come together and unfold over time to influence youth mental health and substance use outcomes, the current study investigated the trajectory of a latent parent acculturation stress factor and its influence on youth mental health and substance use via parent-and youth-reported family functioning. Data came from a 6-wave, school-based survey with 302 recent (<5 years) immigrant Latino parents (74% mothers, Mage = 41.09 years) and their adolescents (47% female, Mage = 14.51 years). Parents' reports of discrimination, negative context of reception, and acculturative stress loaded onto a latent factor of acculturation stress at each of the first 4 time points. Earlier levels of and increases in parent acculturation stress predicted worse youth-reported family functioning. Additionally, earlier levels of parent acculturation stress predicted worse parent-reported family functioning and increases in parent acculturation stress predicted better parent-reported family functioning. While youth-reported positive family functioning predicted higher self-esteem, lower symptoms of depression, and lower aggressive and rule-breaking behavior in youth, parent-reported family positive functioning predicted lower youth alcohol and cigarette use. Findings highlight the need for Latino youth preventive interventions to target parent acculturation stress and family functioning. (PsycINFO Database Record

  13. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  14. Review: Interactions between temperament, stress, and immune function in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stressors encountered by animals can pose economic problems for the livestock industry due to increased costs to the producer as well as the consumer. Stress can also adversely affect many physiological systems, including the reproductive and immune systems. In recent years, stress has been associat...

  15. Stress signalling pathways that impair prefrontal cortex structure and function

    PubMed Central

    2010-01-01

    The prefrontal cortex (PFC)—the most evolved brain region—subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness. PMID:19455173

  16. Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.

    PubMed

    Stanley, Matthew

    2012-06-01

    Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion.

  17. Hippocampal neuroplasticity induced by early-life stress: Functional and molecular aspects

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Baram, Tallie Z.

    2010-01-01

    Whereas genetic factors contribute crucially to brain function, early-life events, including stress, exert long-lasting influence on neuronal function. Here, we focus on the hippocampus as the target of these early-life events because of its crucial role in learning and memory. Using a novel immature-rodent model, we describe the deleterious consequences of chronic early-life ‘psychological’ stress on hippocampus-dependent cognitive tasks. We review the cellular mechanisms involved and discuss the roles of stress-mediating molecules, including corticotropin releasing hormone, in the process by which stress impacts the structure and function of hippocampal neurons. PMID:16603235

  18. Sexual dimorphism in the effect of sound stress on neutrophil function.

    PubMed

    Brown, Adrienne S; Levine, Jon D; Green, Paul G

    2008-12-15

    It has been hypothesized that stress contributes to the severity of inflammatory diseases. However, the mechanisms underlying this effect are incompletely understood. In this study we investigated the effects of sound stress on function of the polymorphonuclear neutrophil-immune cells that play key roles in both the acute and chronic inflammatory response. Specifically, we examined the effect of stress on the production of reactive oxygen species (ROS) and phagocytosis by rat neutrophils, and the role of sympathoadrenal stress axis in these effects. Since many inflammatory diseases exhibit sexual dimorphism, we also investigated the contribution of sex and gonadal hormones to the effects of stress on neutrophil function. Peripheral blood neutrophils were harvested from male and female rats exposed to intermittent sound stress (over 4 days). Stress suppressed ROS production in males (but not females) an effect that was eliminated in adrenal medullectomized males. Stress also suppressed neutrophil phagocytosis in males and females. Again, this effect was absent following adrenal medullectomy. To investigate the role of sex hormones in these sexual dimorphic responses to stress, rats were gonadectomized prepubertally and exposed to stress as adults. In gonadectomized males, stress produced an even larger decrease in ROS production, but had no effect on the stress-induced inhibition of phagocytosis. Gonadectomy prevented the stress-induced inhibition of neutrophil phagocytosis in females. These data indicate that the adrenal medulla, perhaps via release of epinephrine, suppresses neutrophil ROS production in males and phagocytosis in males and females.

  19. Effect of citrocard on functional reserves of the heart under conditions of chronic stress.

    PubMed

    Perfilova, V N; Tyurenkov, I N; Lebedeva, S A; Volotova, E V; Berestovitskaya, V M; Vasil'eva, O S

    2007-07-01

    Chronic stress exposure produces a damaging effect on the myocardium and reduces its functional (inotropic) reserves. Citrocard (50 mg/kg) and fenibut (50 mg/kg) prevent stress effects: animals receiving these preparations demonstrate higher contraction and relaxation rates and higher left-ventricular pressure during functional tests (volume load and maximum isometric load).

  20. Life stress vs. traumatic stress: The impact of life events on psychological functioning in children with and without serious illness

    PubMed Central

    Willard, Victoria W.; Long, Alanna; Phipps, Sean

    2014-01-01

    Objective To determine the differential impact of potentially traumatic events (PTEs) and other stressful life events on psychological functioning in two groups of children: those with cancer, and those without history of serious illness. Methods Children with cancer aged 8–17 (n=254) and age-, sex-, and race/ethnicity-matched controls (n=142) completed self-report measures of stressful life events, and psychological functioning. Stressful life events included those that may meet DSM-IV A1 criteria (PTEs; 9 events) and others that would likely not (other events; 21 events). Results Children with cancer endorsed significantly more PTEs than control children. There were no differences between groups in number of other events experienced. Hierarchical regression analyses revealed that number of other events accounted for significant variance in psychological functioning, above and beyond group status, demographic factors (age and SES) and number of PTEs. Discussion The number of cumulative other events experienced is a significant predictor of psychological functioning in both youth with serious illness and controls. In contrast, cumulative PTEs appear to have a minor (albeit significant) impact on children’s psychological functioning. Assessment of psychological functioning would benefit from a thorough history of stressful life events, regardless of their potential traumatic impact. PMID:26766295

  1. Regulation and Function of Proline Oxidase under Nutrient Stress

    PubMed Central

    Pandhare, Jui; Cooper, Sandra K.; Donald, Steven P.; Phang, James M.

    2009-01-01

    Under conditions of nutrient stress, cells switch to a survival mode catabolizing cellular and tissue constituents for energy. Proline metabolism is especially important in nutrient stress because proline is readily available from the breakdown of extracellular matrix (ECM), and the degradation of proline through the proline cycle initiated by proline oxidase (POX), a mitochondrial inner membrane enzyme, can generate ATP. This degradative pathway generates glutamate and α-ketoglutarate, products that can play an anaplerotic role for the TCA cycle. In addition the proline cycle is in a metabolic interlock with the pentose phosphate pathway providing another bioenergetic mechanism. Herein we have investigated the role of proline metabolism in conditions of nutrient stress in the RKO colorectal cancer cell line. The induction of stress either by glucose withdrawal or by treatment with rapamycin, stimulated degradation of proline and increased POX catalytic activity. Under these conditions POX was responsible, at least in part, for maintenance of ATP levels. Activation of AMP-activated protein kinase (AMPK), the cellular energy sensor, by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), also markedly upregulated POX and increased POX-dependent ATP levels, further supporting its role during stress. Glucose deprivation increased intracellular proline levels, and expression of POX activated the pentose phosphate pathway. Together, these results suggest that the induction of proline cycle under conditions of nutrient stress may be a mechanism by which cells switch to a catabolic mode for maintaining cellular energy levels. PMID:19415679

  2. The Role of Stress Exposure and Family Functioning in Internalizing Outcomes of Urban Families

    PubMed Central

    Henry, David B.; Tolan, Patrick H.; Strachan, Martha K.

    2013-01-01

    Although research suggests that stress exposure and family functioning are associated with internalizing problems in adolescents and caregivers, surprisingly few studies have investigated the mechanisms that underlie this association. To determine whether family functioning buffers the development of internalizing problems in stress-exposed families, we assessed the relation between stress exposure, family functioning, and internalizing symptoms among a large sample of inner-city male youth and their caregivers living in poverty across five waves of data collection. We hypothesized that stress exposure and family functioning would predict development of subsequent youth and caregiver internalizing problems and that family functioning would moderate this relation, with higher functioning families demonstrating greater resiliency to stress exposure. We used a longitudinal, prospective design to evaluate whether family functioning (assessed at waves one through four) activated or buffered the effects of stress exposure (assessed at wave one) on subsequent internalizing symptoms (assessed at waves four and five). Stress from Developmental Transitions and family functioning were significant predictors of depressive symptoms and anxiety in youth; however, family functioning did not moderate the relation. Family functioning mediated the relation between stress from Daily Hassles and internalizing outcomes suggesting that poor parenting practices, low structure, and low emotional cohesion activate depression and anxiety in youth exposed to chronic and frequent everyday stressors. Surprisingly, only family functioning predicted depressive symptoms in caregivers. Results validate the use of a comprehensive, multi-informant assessment of stress when investigating internalizing outcomes in youth and support using family-based interventions in the treatment and prevention of internalizing. PMID:25601821

  3. Evaluation of a functional medicine approach to treating fatigue, stress, and digestive issues in women.

    PubMed

    Cutshall, Susanne M; Bergstrom, Larry R; Kalish, Daniel J

    2016-05-01

    Fatigue, stress, and digestive disorders are common among adults, especially women. We conducted a 28-week pilot study to assess the efficacy of a functional medicine approach to improving stress, energy, fatigue, digestive issues, and quality of life in middle-aged women. Findings showed significant improvements in many stress, fatigue, and quality-of-life measures. The treatment program increased mean salivary dehydroepiandrosterone levels and the cortisol-dehydroepiandrosterone ratio. Stool sample analyses suggested that these treatments reduced Helicobacter pylori infections. This study suggests that functional medicine may be an effective approach to managing stress and gastrointestinal symptoms.

  4. Effects of soybean oil emulsion and eicosapentaenoic acid on stress response and immune function after a severely stressful operation.

    PubMed Central

    Furukawa, K; Tashiro, T; Yamamori, H; Takagi, K; Morishima, Y; Sugiura, T; Otsubo, Y; Hayashi, N; Itabashi, T; Sano, W; Toyoda, Y; Nitta, H; Nakajima, N

    1999-01-01

    OBJECTIVE: To investigate the effects of soybean oil emulsion and oral or enteral administration of eicosapentaenoic acid (EPA) on stress response, cytokine production, protein metabolism, and immune function after surgery for esophageal cancer. SUMMARY BACKGROUND DATA: It has been reported that safflower oil, rich in n-6 polyunsaturated fatty acid (n-6 PUFA), affects the survival rate of septic animals and decreases the immune function. It has also been reported that the administration of fish oil, in contrast, reduces these stress responses and stress-induced immunosuppression. In humans, the effects of soybean oil emulsion and the administration of EPA on stress response and immune function after surgery have not been established. METHODS: Patients who underwent esophagectomy with thoracotomy were divided into three groups. Seven patients were fed by total parenteral nutrition (TPN) with soybean oil emulsion, which accounted for 20% of total calories. Seven patients were given oral or enteral administration of 1.8 g/day EPA, in addition to TPN with soybean oil emulsion. Nine patients served as the control group; these patients received fat-free TPN. Serum interleukin-6 (IL-6), C-reactive protein, concanavalin A (con A)- or phytohemagglutinin (PHA)-stimulated lymphocyte proliferation, natural killer cell activity, and stress hormones were measured. RESULTS: The postoperative level of serum IL-6 was significantly higher in the group receiving soybean oil emulsion than in the fat-free group. Oral or enteral supplementation of EPA with soybean oil emulsion significantly reduced the level of serum IL-6 compared with the patients receiving soybean oil emulsion. Con A- or PHA-stimulated lymphocyte proliferation decreased significantly on postoperative day 7 in all groups of patients. The supplementation of EPA with soybean oil emulsion significantly improved the lymphocyte proliferation and natural killer cell activity on postoperative day 21 compared with the group

  5. Coronary flow and left ventricular function during environmental stress.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Adams, J. D.; Stone, H. L.; Sandler, H.

    1972-01-01

    A canine model was used to study the effects of different environmental stresses on the heart and coronary circulation. The heart was surgically instrumented to measure coronary blood flow, left ventricular pressure, and other cardiovascular variables. Coronary flow was recorded by telemetry. Physiologic data were processed and analyzed by analog and digital computers. By these methods the physiologic response to altitude hypoxia, carbon monoxide, hypercapnia, acceleration, exercise, and the interaction of altitude hypoxia and carbon monoxide were described. The effects of some of these stresses on the heart and coronary circulation are discussed.

  6. Maternal and early life stress effects on immune function: relevance to immunotoxicology.

    PubMed

    Bellinger, Denise L; Lubahn, Cheri; Lorton, Dianne

    2008-10-01

    Stress is triggered by a variety of unexpected environmental stimuli, such as aggressive behavior, fear, forced physical activity, sudden environmental changes, social isolation or pathological conditions. Stressful experiences during very early life (particularly, maternal stress during fetal ontogeny) can permanently alter the responsiveness of the nervous system, an effect called programming or imprinting. Programming affects the hypothalamic-pituitary-adrenocortical (HPA) axis, brain neurotransmitter systems, sympathetic nervous system (SNS), and the cognitive abilities of the offspring, which can alter neural regulation of immune function. Prenatal or early life stress may contribute to the maladaptive immune responses to stress that occur later in life. This review focuses on the effect of maternal and early life stress on immune function in the offspring across life span. It highlights potential mechanisms by which prenatal stress impacts immune functions over life span. The literature discussed in this review suggests that psychosocial stress during pre- and early postnatal life may increase the vulnerability of infants to the effects of immunotoxicants or immune-mediated diseases, with long-term consequences. Neural-immune interactions may provide an indirect route through which immunotoxicants affect the developing immune system. A developmental approach to understanding how immunotoxicants interact with maternal and early life stress-induced changes in immunity is needed, because as the body changes physiologically across life span so do the effects of stress and immunotoxicants. In early and late life, the immune system is more vulnerable to the effects of stress. Stress can mimic the effects of aging and exacerbate age-related changes in immune function. This is important because immune dysregulation in the elderly is more frequently and seriously associated with clinical impairment and death. Aging, exposure to teratogens, and psychological stress

  7. Central circulatory hemodynamics as a function of gravitational stress

    NASA Technical Reports Server (NTRS)

    Latham, Rick D.; White, C. D.; Fanton, J. W.; Owens, R. W.; Barber, J. F.; Lewkowski, B. E.; Goff, O. T.

    1991-01-01

    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity.

  8. Functional genomics of abiotic stress responses in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable crop production in the U.S., as well as in other areas of the world, will rely upon the crop’s ability to yield under progressively limiting conditions: marginal soils, decreased water availability, and oftentimes critical temperature stress. Enhanced understanding of the physiological...

  9. Production of Functional Proteins: Balance of Shear Stress and Gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)

    2005-01-01

    The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.

  10. Effects of the Cognitive-Behavioral Therapy for Stress Management on Executive Function Components.

    PubMed

    Santos-Ruiz, Ana; Robles-Ortega, Humbelina; Pérez-García, Miguel; Peralta-Ramírez, María Isabel

    2017-02-13

    This study aims to determine whether it is possible to modify executive function in stressed individuals by means of cognitive-behavioral therapy for stress management. Thirty-one people with high levels of perceived stress were recruited into the study (treatment group = 18; wait-list group = 13). The treatment group received 14 weeks of stress management program. Psychological and executive function variables were evaluated in both groups pre and post-intervention. The treatment group showed improved psychological variables of perceived stress (t = 5.492; p = .001), vulnerability to stress (t = 4.061; p = .001) and superstitious thinking (t = 2.961; p = .009). Likewise, the results showed statistically significant differences in personality variables related to executive function, positive urgency (t = 3.585; p = .002) and sensitivity to reward (t = -2.201; p = .042), which improved after the therapy. These variables showed a moderate to high effect size (oscillates between 1.30 for perceived stress and .566 for sensitivity to reward). The cognitive-behavioral therapy for stress management may be an appropriate strategy for improving personality construct components related to executive function, however effects of the therapy are not showed on performance on the tests of executive function applied, as presented studies previous.

  11. Protective function of nitric oxide on marine phytoplankton under abiotic stresses.

    PubMed

    Li, Peifeng; Liu, Chun-Ying; Liu, Huanhuan; Zhang, Qiang; Wang, Lili

    2013-09-01

    As an important signaling molecule, nitric oxide (NO) plays diverse physiological functions in plants, which has gained particular attention in recent years. We investigated the roles of NO in the growth of marine phytoplankton Platymonas subcordiforms and Skeletonema costatum under abiotic stresses. The growth of these two microalgae was obviously inhibited under non-metal stress (sodium selenium, Na2SeO3), heavy metal stress (lead nitrate, Pb(NO3)2), pesticide stress (methomyl) and UV radiation stress. After the addition of different low concentrations of exogenous NO (10(-10)-10(-8) mol L(-1)) twice each day during cultivation, the growth of these two microalgae was obviously promoted. Results showed that NO could relieve the oxidative stresses to protect the growth of the two microalgae. For different environmental stress, there is a different optimum NO concentration for marine phytoplankton. It is speculated that the protective effect of NO is related to its antioxidant ability.

  12. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    PubMed Central

    Entringer, Sonja; Buss, Claudia; Swanson, James M.; Cooper, Dan M.; Wing, Deborah A.; Waffarn, Feizal; Wadhwa, Pathik D.

    2012-01-01

    Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice. PMID:22655178

  13. Possible involvement of stress hormones and hyperglycaemia in chronic mild stress-induced impairment of immune functions in diabetic mice.

    PubMed

    Rubinstein, M R; Cremaschi, G A; Oliveri, L M; Gerez, E N; Wald, M R; Genaro, A M

    2010-09-01

    Stress, an important aspect of modern life, has long been associated with an altered homeostatic state. Little is known about the effect of the life stress on the outcome of diabetes mellitus, especially related to the higher risk of infections. Here, we evaluate the effects of chronic mild stress (CMS) exposure on the evolution of type I diabetes induced by streptozotocin administration in BALB/c mice. Exposure of diabetic mice to CMS resulted in a significant reduction of survival and a sustained increase in blood glucose values. Concerning the immune response, chronic stress had a differential effect in mice with diabetes with respect to controls, showing a marked decrease in both T- and B-cell proliferation. No correlation was found between splenic catecholamine or circulating corticosterone levels and the proliferative response. However, a significant negative correlation was found between glucose levels and concanavalin A- and lipopolysaccharide-stimulated proliferative responses of T and B cells. A positive correlation between blood glucose and splenic catecholamine concentrations was found in diabetic mice but not in controls subjected to CMS. Hence, the present report shows that diabetic mice show a worse performance in immune function after stress exposure, pointing to the importance of considering life stress as a risk factor for patients with diabetes.

  14. Function of isoprenoid quinones and chromanols during oxidative stress in plants.

    PubMed

    Kruk, Jerzy; Szymańska, Renata; Nowicka, Beatrycze; Dłużewska, Jolanta

    2016-09-25

    Isoprenoid quinones and chromanols in plants fulfill both signaling and antioxidant functions under oxidative stress. The redox state of the plastoquinol pool (PQ-pool), which is modulated by interaction with reactive oxygen species (ROS) during oxidative stress, has a major regulatory function in both short- and long-term acclimatory responses. By contrast, the scavenging of ROS by prenyllipids affects signaling pathways where ROS play a role as signaling molecules. As the primary antioxidants, isoprenoid quinones and chromanols are synthesized under high-light stress in response to any increased production of ROS. During photo-oxidative stress, these prenyllipids are continuously synthesized and oxidized to other compounds. In turn, their oxidation products (hydroxy-plastochromanol, plastoquinol-C, plastoquinone-B) can still have an antioxidant function. The oxidation products of isoprenoid quinones and chromanols formed specifically in the face of singlet oxygen, can be indicators of singlet oxygen stress.

  15. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  16. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  17. Serotonin and pituitary-adrenal function. [in rat under stress

    NASA Technical Reports Server (NTRS)

    Berger, P. A.; Barchas, J. D.; Vernikos-Danellis, J.

    1974-01-01

    An investigation is conducted to evaluate the response of the pituitary-adrenal system to a stress stimulus in the rat. In the investigation brain serotonin synthesis was inhibited with p-chlorophenylalanine. In other tests the concentration of serotonin was enhanced with precursors such as tryptophan or 5-hydroxytryptophan. On the basis of the results obtained in the study it is speculated that in some disease states there is a defect in serotonergic neuronal processes which impairs pituitary-adrenal feedback mechanisms.

  18. Parental Family Stress during Pregnancy and Cognitive Functioning in Early Childhood: The Generation R Study

    ERIC Educational Resources Information Center

    Henrichs, Jens; Schenk, Jacqueline J.; Kok, Rianne; Ftitache, Bouchra; Schmidt, Henk G.; Hofman, Albert; Jaddoe, Vincent W. V.; Verhulst, Frank C.; Tiemeier, Henning

    2011-01-01

    We investigated whether parental family stress during pregnancy is associated with cognitive functioning in early childhood in a population-based cohort (n = 3139). Family stress was assessed using the Family Assessment Device at the 20th week of pregnancy and was reported by mothers and fathers. Mothers completed the MacArthur Communicative…

  19. Functional Play at 2 Years of Age: Effects of Prenatal Maternal Stress

    ERIC Educational Resources Information Center

    Laplante, David P.; Zelazo, Philip R.; Brunet, Alain; King, Suzanne

    2007-01-01

    Toddler toy play evolves in a predictable manner and provides a valid, nonverbal measure of cognitive function unbiased by social behaviors. Research on prenatal maternal stress (PNMS) indicates that exposure to stress in utero results in developmental deficits. We hypothesized that children exposed to high objective PNMS from a natural disaster…

  20. The Reduction of Occupational Stress among Elderly Lawyers: The Creation of a Functional Niche.

    ERIC Educational Resources Information Center

    Meltzer, Michael W.

    1981-01-01

    Examined how older lawyers function in a high stress occupation using data from a random stratified sample of (N=130) lawyers. Results indicated that elderly lawyers are able to reduce work stress by control over the quantity of work, focus, and client selection. (Author/RC)

  1. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-04-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  2. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    PubMed Central

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-01-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413

  3. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    PubMed

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory.

  4. The Relationship between Stress, Fatigue, and Cognitive Functioning

    ERIC Educational Resources Information Center

    Palmer, Laura K.

    2013-01-01

    There is a plethora of research suggesting that daily stressors and fatigue can have a significant effect on learning and various cognitive functions in young adults. Little is known, however, about how these effects impact learning and other neurocognitive functions in students with learning challenges when compared to their counterparts without…

  5. The Relationship between Stress, Fatigue, and Cognitive Functioning

    ERIC Educational Resources Information Center

    Palmer, Laura K.; Economou, Peter; Cruz, Daniel; Abraham-Cook, Shannon; Huntington, Jodi S.; Maris, Marika; Makhija, Nita; Welsh, Toni; Maley, Larissa

    2014-01-01

    There is a plethora of research suggesting that daily stressors and fatigue can have a significant effect on learning and various cognitive functions in young adults. Little is known, however, about how these effects impact learning and other neurocognitive functions in students with learning challenges when compared to their counterparts without…

  6. STRESS REGULATION AS A LINK BETWEEN EXECUTIVE FUNCTION AND PRE-FRAILTY IN OLDER ADULTS

    PubMed Central

    Roiland, R.A.; Lin, F.; Phelan, C.; Chapman, B.P.

    2017-01-01

    Objectives Both pre-frailty and frailty are linked with impaired executive function (EF) but the mechanism underlying this relationship is not known. Williams and colleagues’ model posits EF affects health outcomes via stress regulation. This model was utlized to test indicators of stress regulation as mediators of the relationship between EF and pre-frailty in older adults. Design Cross-sectional. Setting Academic general clinical research centers. Participants 690 community-dwelling older adults ≥ 50 years of age. Measurements Pre-frailty was measured using a modified form of the Fried Frailty measure. EF was assessed via telephone-based neurocognitive assessments. Indicators of stress regulation included: stress exposure (measured by perceived stress), reactivity and recovery (measured by heart rate) and restoration (measured by serum interleukin-6 and sleep quality). Results 396 individuals were classified as non-frail, 277 as pre-frail, and 17 as frail. Pre-frail and non-frail individuals were included in data analyses. Compared to non-frail individuals, prefrail were older and exhibited poorer EF, higher levels of stress exposure and poorer stress restoration. Poorer EF was associated with greater stress exposure, less stress reactivity, longer stress recovery and poorer stress restoration. The total effect of the relationship between EF and pre-frailty was significant with significant indirect effects supporting stress exposure and restoration as mediators of the relationship. Conclusion Stress exposure and restoration appear to mediate the relationship between EF and pre-frailty. Longitudinal studies are needed to clarify the direction of causality and determine whether stress regulation processes are appropriate targets for interventions aiming to prevent declines in EF and the development of pre-frailty. PMID:26412287

  7. Psychological stress as a modulator of functional recovery following spinal cord injury.

    PubMed

    Maldonado Bouchard, Sioui; Hook, Michelle A

    2014-01-01

    There is strong evidence indicating that the social environment triggers changes to the psychological stress response and glucocorticoid receptor function. Considerable literature links the subsequent changes in stress resiliency to physical health. Here, converging evidence for the modulatory role of chronic psychological stress in the recovery process following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI research, we are still unable to identify the causes of variability in patients' recovery following injury. We propose that individuals' past and present life experiences (in the form of stress exposure) may significantly modulate patients' outcome post-SCI. We propose a theoretical model to explain the negative impact of chronic psychological stress on physical and psychological recovery. The stress experienced in life prior to SCI and also as a result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and function, and contribute to high levels of inflammation and apoptosis post-SCI, decreasing the tissue remaining at the injury site and undermining recovery of function. Both stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to the theoretical understanding of the recovery process following injury, but also provides concrete testable hypotheses for future studies.

  8. [Influence of fungi-feeding nematodes on soil functional stability under heat or copper stress].

    PubMed

    Chen, Shi; Chen, Xiao-Yun; Li, Hui-Xin; Hu, Feng; Liu, Man-Qiang

    2009-02-01

    In a microcosm experiment, the effects of the interaction between soil fungi-feeding nematodes and microorganisms on the soil functional stability under persistent stress of CuSO4 or transient stress of heating to 40 degrees C for 18 h were studied, with the short-term decomposition of barley leaf powder as a representative of soil function. The results showed that whether the stress existed or not, inoculation of fungi-feeding nematodes could enhance soil basal respiration, an overall indicator of soil microbial activity. Under copper stress, the soil basal respiration after the inoculation increased significantly during the period from the 8th day to the end of the experiment (P < 0.05); while under heat stress, the promotion effect of the inoculation was only significant at the 8th day of the experiment, suggesting that the influence of fungi-feeding nematodes on soil microorganisms varied with stress type. Under the two stresses, inoculation of fungi-feeding nematodes had no influence on the resistance of soil function but could promote its recovery, and the soil fungal biomass in the late period of the experiment was lower in the treatment of inoculation than in CK, indicating that under stress condition, fungi-feeding nematodes depressed the growth and development of soil fungi, and possibly, indirectly promoted bacterial development.

  9. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Zhi, Dong; Tao, Rumao; Zhou, Pu; Ma, Yanxing; Wu, Wuming; Wang, Xiaolin; Si, Lei

    2017-03-01

    A new ring Airy Gaussian (RAiG) vortex beam generation method by coherent combination of Gaussian beam array has been proposed. To validate the feasibility of this method, the propagation properties of the RAiG vortex beam and the coherent combining beam in vacuum have been studied and analyzed. From the comparisons of the intensity distributions and phase patterns along the propagation path, we can conclude that the coherent combining beam has the same properties as those of the ideal RAiG vortex beam. So this method can be used to obtain RAiG vortex beam in practice. Then the general analytical expression of the root-mean-square (RMS) beam width of the RAiG vortex beam, which is appropriately generated by coherent combining method, through anisotropic non-Kolmogorov turbulence has been derived. The influence of anisotropic turbulence on RMS beam width of the generated RAiG vortex beam has been numerically calculated. This generation method has good appropriation to the ideal RAiG vortex beam and is very useful for deriving the analytical expression of propagation properties through a random media. The conclusions are useful in practical applications, such as laser communication and remote sensing systems.

  10. The effect of reagents mimicking oxidative stress on fibrinogen function.

    PubMed

    Štikarová, Jana; Kotlín, Roman; Riedel, Tomáš; Suttnar, Jiří; Pimková, Kristýna; Chrastinová, Leona; Dyr, Jan E

    2013-01-01

    Fibrinogen is one of the plasma proteins most susceptible to oxidative modification. It has been suggested that modification of fibrinogen may cause thrombotic/bleeding complications associated with many pathophysiological states of organism. We exposed fibrinogen molecules to three different modification reagents-malondialdehyde, sodium hypochlorite, and peroxynitrite-that are presented to various degrees in different stages of oxidative stress. We studied the changes in fibrin network formation and platelet interactions with modified fibrinogens under flow conditions. The fastest modification of fibrinogen was caused by hypochlorite. Fibers from fibrinogen modified with either reagent were thinner in comparison with control fibers. We found that platelet dynamic adhesion was significantly lower on fibrinogen modified with malondialdehyde and significantly higher on fibrinogen modified either with hypochlorite or peroxynitrite reflecting different prothrombotic/antithrombotic properties of oxidatively modified fibrinogens. It seems that, in the complex reactions ongoing in living organisms at conditions of oxidation stress, hypochlorite modifies proteins (e.g., fibrinogen) faster and more preferentially than malondialdehyde. It suggests that the prothrombotic effects of prior fibrinogen modifications may outweigh the antithrombotic effect of malondialdehyde-modified fibrinogen in real living systems.

  11. FHL2 regulates hematopoietic stem cell functions under stress conditions

    PubMed Central

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  12. Stress, cortisol, and B lymphocytes: a novel approach to understanding academic stress and immune function.

    PubMed

    McGregor, Bonnie A; Murphy, Karly M; Albano, Denise L; Ceballos, Rachel M

    2016-01-01

    Animal and human in vitro models suggest that stress-related B lymphocyte decrements are due to high levels of glucocorticoids which cause apoptosis of pre-B-cells as they emerge from the bone marrow. The present study sought to explore the relationships among distress, salivary cortisol, and human B lymphocytes in vivo. Distress (perceived stress, negative affect, depressive symptoms), lymphocyte phenotype, and salivary cortisol were assessed among first-year graduate students (n = 22) and a community control sample (n = 30) at the start of classes in the fall and the week immediately before spring preliminary exams. Compared to controls, students reported greater distress on all measures at each time point except baseline perceived stress. Hierarchical linear regression with necessary control variables was used to assess the effect of student status on the three measures of distress, the four measures of lymphocyte phenotype, and cortisol AUC and CAR over time (T1-T2). Student status was associated with a significant decrease in CD19 + B lymphocytes and flattened cortisol awakening response (CAR). Change in CAR was associated with the decrease in CD19 + B lymphocytes. Results indicated that there are significant associations among student status, flattening of CAR, and decrements in CD19 + lymphocytes.

  13. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress.

    PubMed

    Musazzi, Laura; Treccani, Giulia; Popoli, Maurizio

    2015-01-01

    Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles, but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress. Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes - including those consequent to chronic stress - induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  14. Functional and Structural Remodeling of Glutamate Synapses in Prefrontal and Frontal Cortex Induced by Behavioral Stress

    PubMed Central

    Musazzi, Laura; Treccani, Giulia; Popoli, Maurizio

    2015-01-01

    Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles, but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress. Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes – including those consequent to chronic stress – induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches. PMID

  15. Effect of Mindfulness Meditation on Perceived Stress Scores and Autonomic Function Tests of Pregnant Indian Women

    PubMed Central

    Jain, Reena; Kohli, Sangeeta; Batra, Swaraj

    2016-01-01

    Introduction Various pregnancy complications like hypertension, preeclampsia have been strongly correlated with maternal stress. One of the connecting links between pregnancy complications and maternal stress is mind-body intervention which can be part of Complementary and Alternative Medicine (CAM). Biologic measures of stress during pregnancy may get reduced by such interventions. Aim To evaluate the effect of Mindfulness meditation on perceived stress scores and autonomic function tests of pregnant Indian women. Materials and Methods Pregnant Indian women of 12 weeks gestation were randomised to two treatment groups: Test group with Mindfulness meditation and control group with their usual obstetric care. The effect of Mindfulness meditation on perceived stress scores and cardiac sympathetic functions and parasympathetic functions (Heart rate variation with respiration, lying to standing ratio, standing to lying ratio and respiratory rate) were evaluated on pregnant Indian women. Results There was a significant decrease in perceived stress scores, a significant decrease of blood pressure response to cold pressor test and a significant increase in heart rate variability in the test group (p< 0.05, significant) which indicates that mindfulness meditation is a powerful modulator of the sympathetic nervous system and can thereby reduce the day-to-day perceived stress in pregnant women. Conclusion The results of this study suggest that mindfulness meditation improves parasympathetic functions in pregnant women and is a powerful modulator of the sympathetic nervous system during pregnancy. PMID:27190795

  16. Chronic psychological stress impairs recovery of muscular function and somatic sensations over a 96-hour period.

    PubMed

    Stults-Kolehmainen, Matthew A; Bartholomew, John B; Sinha, Rajita

    2014-07-01

    The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function and somatic sensations: perceived energy, fatigue, and soreness, in a 4-day period after a bout of strenuous resistance exercise. Undergraduate resistance training students (n = 31; age, 20.26 ± 1.34 years) completed the Perceived Stress Scale and the Undergraduate Stress Questionnaire, a measure of life event stress. At a later visit, they performed an acute heavy-resistance exercise protocol (10 repetition maximum [RM] leg press test plus 6 sets: 80-100% of 10RM). Maximal isometric force (MIF), perceived energy, fatigue, and soreness were assessed in approximately 24-hour intervals after exercise. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (p = 0.027) and squared (p = 0.031) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Perceived energy (p = 0.038), fatigue (p = 0.040), and soreness (p = 0.027) all were moderated by life stress. Mean perceived stress modulated linear and squared recovery of MIF (p < 0.001) and energy (p = 0.004) but not fatigue or soreness. In all analyses, higher stress was associated with worse recovery. Stress, whether assessed as life event stress or perceived stress, moderated the recovery trajectories of muscular function and somatic sensations in a 96-hour period after strenuous resistance exercise. Therefore, under conditions of inordinate stress, individuals may need to be more mindful about observing an appropriate length of recovery.

  17. [Psychological stress, immune function and disease development. The psychoneuroimmunologic perspective].

    PubMed

    Schulz, K-H; Gold, S

    2006-08-01

    Interdisciplinary psychoneuroimmunological (PNI) research increasingly demonstrates clinically relevant interrelations between psychological stressors and the onset or progression of chronic diseases. Disturbances of the bi-directional interaction between the nervous system, the immune system and the endocrine system have been hypothesized to be implicated in several diseases. Here, we review evidence from psychoneuroimmunology within the theoretical framework of allostatic load to conceptualize some of these associations. Interdisciplinary PNI research investigating the importance of psychological stress for the higher incidence of infections, decreased responses to vaccinations and delayed wound healing is reviewed. Furthermore, the literature supporting similar associations with regard to progression of oncological diseases and autoimmune disorders is reviewed with a focus on breast cancer and multiple sclerosis. The accumulating evidence regarding the importance of neuroendocrine-immune interaction in these diseases may thus lead to novel insights into pathogenetic mechanisms and could contribute to the development of novel preventive and therapeutic strategies.

  18. Cardiovascular function during sustained +G/z/ stress

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Sandler, H.; Stone, H. L.

    1976-01-01

    The development of aerospace systems capable of very high levels of positive vertical accelerators stress has created a need for a better understanding of the cardiovascular responses to acceleration. Using a canine model, the heart and cardiovascular system were instrumented to continuously measure coronary blood flow, cardiac output, left ventricular and aortic root pressure, and oxygen saturation in the aorta, coronary sinus, and right ventricle. The animals were exposed to acceleration profiles up to +6 G, 120 s at peak G; a seatback angle of 45 deg was simulated in some experiments. Radiopaque contrast medium was injected to visualize the left ventricular chamber, coronary vasculature, aorta, and branches of the aorta. The results suggest mechanisms responsible for arrhythmias which may occur, and subendocardial hemorrhage which has been reported in other animals.

  19. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    PubMed

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects.

  20. Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress.

    PubMed

    Ryan, Karen K; Mul, Joram D; Clemmensen, Christoffer; Egan, Ann E; Begg, Denovan P; Halcomb, Kristen; Seeley, Randy J; Herman, James P; Ulrich-Lai, Yvonne M

    2014-04-01

    The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were placed into 3 groups (n=15/group) according to genotype [wild-type (WT); heterozygous mutant (HET); and homozygous mutant (HOM)]. Basal (pre-stress) plasma adrenocorticotropic hormone (ACTH) and corticosterone were measured in the AM and PM, and the HPA axis response to restraint was assessed in the AM. Rats were perfused at 2h after restraint to assess the effect of loss of MC4R on stress-induced c-Fos immunolabeling in stress-regulatory brain regions. We find that basal (non-stress) AM and PM plasma ACTH and corticosterone showed a normal diurnal rhythm that was not altered according to genotype. Consistent with this, adrenal and thymus weights were unaffected by genotype. However, the plasma ACTH and corticosterone responses to restraint were significantly reduced by loss of MC4R function. Likewise, stress-induced c-Fos immunolabeling in both PVH and MeA was significantly reduced by loss of Mc4r function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic and stress systems.

  1. LOSS OF MELANOCORTIN-4 RECEPTOR FUNCTION ATTENUATES HPA RESPONSES TO PSYCHOLOGICAL STRESS

    PubMed Central

    Ryan, Karen K.; Mul, Joram D.; Clemmensen, Christoffer; Egan, Ann E.; Begg, Denovan P.; Halcomb, Kristen; Seeley, Randy J.; Herman, James P.; Ulrich-Lai, Yvonne M.

    2014-01-01

    SUMMARY The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were placed into 3 groups (n=15/group) according to genotype [wild-type (WT); heterozygous mutant (HET); and homozygous mutant (HOM)]. Basal (pre-stress) plasma adrenocorticotropic hormone (ACTH) and corticosterone were measured in the AM and PM, and the HPA axis response to restraint was assessed in the AM. Rats were perfused at 2 hours after restraint to assess the effect of loss of MC4R on stress-induced c-Fos immunolabeling in stress-regulatory brain regions. We find that basal (non-stress) AM and PM plasma ACTH and corticosterone showed a normal diurnal rhythm that was not altered according to genotype. Consistent with this, adrenal and thymus weights were unaffected by genotype. However, the plasma ACTH and corticosterone responses to restraint were significantly reduced by loss of MC4R function. Likewise, stress-induced c-Fos immunolabeling in both PVH and MeA was significantly reduced by loss of Mc4r function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic and stress systems. PMID:24636506

  2. "Extraneous government business": the Astronomer Royal as government scientist: George Airy and his work on the commissions of state and other bodies, 1838-1880

    NASA Astrophysics Data System (ADS)

    Perkins, Adam

    2001-12-01

    In the absence of a scientific civil service the governments of Victoria's reign had few public servants to consult when it came to the requirement for specialist scientific and technological advice - and this was at the height of the industrial revolution when the enormous changes wrought were affecting the whole population of Britain. So governments turned to one man of cast-iron probity and unparalleled credentials: George Airy. Though his formal scientific training was in mathematics and astronomy, not the engineering and thermodynamics that the industrial age might have called for, Airy gave of his time and energy to the full. But what were the purposes of the commissions? When did they sit? Who ran the Royal Observatory in Airy's absence? Only recently have the original papers in the RGO Archives been plumbed in any depth and the answers to these questions make an intriguing story.

  3. Neighborhood functions alter unbalanced facilitation on a stress gradient in an alpine treeline simulation

    NASA Astrophysics Data System (ADS)

    Malanson, G. P.; Resler, L. M.

    2014-12-01

    The stress-gradient hypothesis states that individual and species competitive and facilitative effects change in relative importance or intensity along environmental gradients of stress. The importance of the number of facilitators in the neighborhood of a potential beneficiary has not been explored. Evenly distributed and stress-correlated facilitation and the increase in the intensity of facilitation with neighbors as linear, logarithmic, and unimodal functions is simulated for two species such as Pinus albicaulis and Abies lasiocarpa. The mutualism is unbalanced in that the establishment of one species is enhanced by neighbors more than the other. Compared to no facilitation or evenly distributed facilitation, the stress gradient produces more edges in the spatially advancing population, more overall intensity of facilitation, and more individuals further advanced into the area of higher stress; the more enhanced species has increased population relative to the other - to the point where they are equal. Among three neighborhood functions, little difference exists in outcomes between the linear and logarithmic functions, but the unimodal function, which shifts peak facilitation intensity to fewer neighbors, increases the above state variables more than the differences between the even and stress gradient facilitation scenarios. The unbalanced mutualism may be important at treeline ecotones where the spatial pattern becomes central to facilitation.

  4. Circadian Clocks and the Interaction between Stress Axis and Adipose Function.

    PubMed

    Kolbe, Isa; Dumbell, Rebecca; Oster, Henrik

    2015-01-01

    Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.

  5. Circadian Clocks and the Interaction between Stress Axis and Adipose Function

    PubMed Central

    Kolbe, Isa; Dumbell, Rebecca

    2015-01-01

    Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed. PMID:26000016

  6. Analytical modeling for bridging stress function involving grain size distribution in a polycrystalline alumina

    NASA Astrophysics Data System (ADS)

    Sohn, Kee-Sun; Lee, Sunghak; Baik, Sunggi

    1995-05-01

    In order to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina, an analytical model has been proposed based on the relationship between bridging stress and crack opening displacement. The crack opening displacement was measured using an in situ SEM fracture method, and then used for a fitting procedure to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation, and that the grain size distribution was closely related to the bridging stress. Thus, the current model explained well the correlation between the bridging stress distribution and the local-fracture-controlling microstructural parameter to interpret the microfracture mechanism, including the R-curve behavior.

  7. The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions.

    PubMed

    Datta, Pratik; Ravi, Janani; Guerrini, Valentina; Chauhan, Rinki; Neiditch, Matthew B; Shell, Scarlet S; Fortune, Sarah M; Hancioglu, Baris; Igoshin, Oleg A; Gennaro, Maria Laura

    2015-08-01

    The bacterial envelope integrates essential stress-sensing and adaptive functions; thus, envelope-preserving functions are important for survival. In Gram-negative bacteria, envelope integrity during stress is maintained by the multi-gene Psp response. Mycobacterium tuberculosis was thought to lack the Psp system since it encodes only pspA and no other psp ortholog. Intriguingly, pspA maps downstream from clgR, which encodes a transcription factor regulated by the MprAB-σ(E) envelope-stress-signaling system. clgR inactivation lowered ATP concentration during stress and protonophore treatment-induced clgR-pspA expression, suggesting that these genes express Psp-like functions. We identified a four-gene set - clgR, pspA (rv2744c), rv2743c, rv2742c - that is regulated by clgR and in turn regulates ClgR activity. Regulatory and protein-protein interactions within the set and a requirement of the four genes for functions associated with envelope integrity and surface-stress tolerance indicate that a Psp-like system has evolved in mycobacteria. Among Actinobacteria, the four-gene module occurred only in tuberculous mycobacteria and was required for intramacrophage growth, suggesting links between its function and mycobacterial virulence. Additionally, the four-gene module was required for MprAB-σ(E) stress-signaling activity. The positive feedback between envelope-stress-sensing and envelope-preserving functions allows sustained responses to multiple, envelope-perturbing signals during chronic infection, making the system uniquely suited to tuberculosis pathogenesis.

  8. Quantum Electronic Stress: Density-Functional-Theory Formulation and Physical Manifestation

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Liu, Miao; Wang, Z. F.; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-01

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σQE) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σQE=ΞΔn as a quantum analog of classical Hooke’s law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  9. The effect of surgical and psychological stress on learning and memory function in aged C57BL/6 mice.

    PubMed

    Zhang, C; Li, C; Xu, Z; Zhao, S; Li, P; Cao, J; Mi, W

    2016-04-21

    Postoperative cognitive dysfunction (POCD) is an important complication following major surgery and general anesthesia in older patients. However, the etiology of POCD remains largely to be determined. It is unknown how surgical stress and psychological stress affect the postoperative learning and memory function in geriatric patients. We therefore established a pre-clinical model in aged C57BL/6 mice and aimed to investigate the effects of surgical stress and psychological stress on learning and memory function and the possible roles of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway. The surgical stress was induced by abdominal surgery under local anesthesia, and the psychological stress was induced by a communication box. Cognitive functions and markers of the AKT/mTOR pathway were assessed at 1, 3 and 7 days following the stress. The impairments of learning and memory function existed for up to 7 days following surgical stress and surgical stress plus psychological stress, whereas the psychological stress did not affect the cognitive function alone or combined with surgical stress. Analysis of brain tissue revealed a significant involvement of the AKT/mTOR pathway in the impairment of cognition. These data suggested that surgical stress could induce cognitive impairment in aged mice and perioperative psychological stress is not a constitutive factor of POCD. The AKT/mTOR pathway is likely involved as one of the underlying mechanisms of the development of POCD.

  10. Stress-induced martensitic transformation in Ni-Ti(-Cu) interlayers controlling stress distribution in functional coatings during sliding

    NASA Astrophysics Data System (ADS)

    Callisti, M.; Polcar, T.

    2015-01-01

    The stress-induced martensitic transformation occurring in sputter-deposited Ni48.1Ti51.9 and Ni43.4Ti49.6Cu7 interlayers, integrated in a W-S-C/Ni-Ti(-Cu) bilayer design, was investigated by transmission electron microscopy, after these bilayers were subjected to different sliding conditions. Martensitic bands across the interlayers were formed depending on the sliding direction with their shape and distribution a function primarily of both applied normal load and grain size. The Ni48.1Ti51.9 interlayer (lateral grain size of ∼3 μm) showed well oriented and ordered martensitic bands extended through the interlayer thickness under low load (5 N). At a higher load (18 N) the growth of these bands was limited by the stabilised martensite formed as a consequence of the high compressive stress, at the interface with the substrate. The Ni43.4Ti49.6Cu7 interlayer (lateral grain size of ∼650 nm) exhibited no significant evidence of stabilised martensite under different loading conditions. The martensitic transformation was limited by the smaller grain size and most of the stress was relaxed by elastic and, to some extent, pseudo-elastic deformation of the austenitic phase. Grain boundaries were found to stop the growth of martensitic bands, thus limiting the activation of the martensitic transformation into the neighbouring grains during sliding. The grain refinement caused a change in the capability of the interlayer to relax shear and compressive stresses. Such a change was found to affect the formation of the WS2-rich tribolayer on the W-S-C sliding surface, and consequently the shear stress transmitted down throughout the bilayers thickness. Accordingly, different levels of deformation were observed on the top layer.

  11. Model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon

    SciTech Connect

    Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.

    2009-02-15

    We present the results of the model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon. The analysis has been performed with help of a procedure based on the application of the evolutionary algorithm, which enables us to extract the nuclear part of the scattering matrix S{sub N}(l) as a complex function of angular momentum directly from the scattering data. Contrary to the commonly used model approaches, our procedure gives the better fits and leads to the S{sub N}(l) representations defined by the moduli and the nuclear phases exhibiting smooth monotonic dependencies on l.

  12. [Asymmetric function of the pes hippocampi in experimental stress-induced arterial hypertension of albino rats].

    PubMed

    Ljowschina, I P; Hecht, K

    1976-01-01

    Relations between a unilateral lesion of circumscribed structures of the Pes hippocampi on the one hand, and stress-induced blood-pressure and learning behaviour, on the other, were studied. An asymmetric functioning of the CNS was analyzed, in which unilateral exclusion of right-hand hippocampal structures stimulates processes of excitation, while lesion of left-hand structures causes prevalence of inhibitory processes. The resulting impairment of the emotional equilibrium potentiates the stress action's contribution to the development of arterial hypertension.

  13. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury.

    PubMed

    Varley, Ian; Greeves, Julie P; Sale, Craig; Friedman, Eitan; Moran, Daniel S; Yanovich, Ran; Wilson, Peter J; Gartland, Alison; Hughes, David C; Stellingwerff, Trent; Ranson, Craig; Fraser, William D; Gallagher, James A

    2016-03-01

    Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. The aim of this study is to evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. In 210 Israeli Defense Forces (IDF) military conscripts, stress fracture injury was diagnosed (n = 43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n = 125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson's chi-squared (χ (2)) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. The variant allele of P2X7R SNP rs3751143 (Glu496Ala-loss of function) was associated with stress fracture injury, whilst the variant allele of rs1718119 (Ala348Thr-gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P < 0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P < 0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P < 0.05). The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury.

  14. Density functional theory calculation of edge stresses in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Cao, Penghui; Park, Harold S.

    2013-10-01

    We utilize density functional theory to calculate the edge energy and edge stress for monolayer MoS2 nanoribbons. In contrast to previous reports for graphene, for both armchair and zigzag chiralities, the edge stresses for MoS2 nanoribbons are found to be tensile, indicating that their lowest energy configuration is one of compression in which Mo-S bond lengths are shorter than those in a bulk, periodic MoS2 monolayer. The edge energy and edge stress is found to converge for both chiralities for nanoribbon widths larger than about 1 nm.

  15. Similarity in the difference: changes in community functional features along natural and anthropogenic stress gradients.

    PubMed

    Gutiérrez-Cánovas, Cayetano; Sánchez-Fernández, David; Velasco, Josefa; Millan, Andrés; Bonada, Núria

    2015-09-01

    The effect of stressors on biodiversity can vary in relation to the degree to which biological communities have adapted over evolutionary time. We compared the responses of functional features of stream insect communities along chronic stress gradients with contrasting time persistence. Water salinity and land use intensification were used as examples of natural (long-term persistent) and anthropogenic (short-term persistent) stressors, respectively. A new trait-based approach was applied to quantify functional diversity components and functional redundancy within the same multidimensional space, using metrics at the taxon and community levels. We found similar functional responses along natural and anthropogenic stress gradients. In both cases, the mean taxon functional richness and functional similarity between taxa increased with stress, whereas community functional richness and functional redundancy decreased. Despite the differences in evolutionary persistence, both chronic stressors act as strong nonrandom environmental filters, producing convergent functional responses. These results can improve our ability to predict functional effects of novel stressors at ecoloiical and evolutionary scales.

  16. The functional role of individual-alpha based frontal asymmetry in stress responding.

    PubMed

    Quaedflieg, C W E M; Meyer, T; Smulders, F T Y; Smeets, T

    2015-01-01

    Asymmetry in frontal electrical activity has been suggested to index tendencies in affective responding and thus may be associated with hormonal stress responses. To assess the functional role of frontal asymmetry (FA) in stress, we measured FA at rest and following exposure to acute stress induced with the Maastricht Acute Stress Task (MAST; N=70) in the standard 8-13Hz band as well as based on individual alpha frequency (IAF) band. IAF-based resting FAF4-F3 was associated with the stress-induced neuroendocrine response, such that left individual frontal activity predicted smaller total cortisol increases in response to the MAST. Like previous studies, we found resting left-sided FAF8-F7 to predict trait behavioural activation measured with the BIS/BAS scales. FA remained unaffected by stress-induced cortisol response. These findings suggest that individual FA might reflect a trait-like characteristic that moderates the stress response. Our results underscore the utility of IAF in studying individual differences in stress responding.

  17. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    PubMed Central

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants. PMID:26583023

  18. Maternal metabolic stress may affect oviduct gatekeeper function.

    PubMed

    Jordaens, Lies; Van Hoeck, Veerle; Maillo, Veronica; Gutierrez-Adan, Alfonso; Marei, Waleed Fawzy A; Vlaeminck, Bruno; Thys, Sofie; Sturmey, Roger G S; Bols, Peter; Leroy, Jo

    2017-03-03

    We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24h-treatments at day 9: 1) CONTROL (0µM NEFA + 0%EtOH), 2) SOLVENT CONTROL (0µM NEFA + 0.45%EtOH), 3) BASAL NEFA (720µM NEFA + 0.45%EtOH in the basal compartment), 4) APICAL NEFA (720µM NEFA + 0.45%EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment, and related to Transepithelial Electric Resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA-uptake were studied using Bodipy 493/503 and immunolabelling of FA-transporters (FAT/CD36, FABP3 and caveolin1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that APICAL NEFA reduced relative TER-increase (46.85%) during treatment, and increased FITC-albumin flux (27.59%) compared to other treatments. In BASAL NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased, respectively 56.0 % and 33.5% of initial FA-concentrations. APICAL NEFA allowed no FA-transfer, but induced LD-accumulation and upregulated FA-transporter expression (↑CD36, ↑FABP3, ↑CAV1-protein-expression). Gene expression in APICAL NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA), and FA-uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function specific gene expression (=OVGP1, ESR1, FOXJ1). Overall, elevated NEFAs affected BOEC-metabolism and barrier function differently depending on NEFA-exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.

  19. Stress hormones and human memory function across the lifespan.

    PubMed

    Lupien, Sonia J; Fiocco, Alexandra; Wan, Nathalie; Maheu, Francoise; Lord, Catherine; Schramek, Tania; Tu, Mai Thanh

    2005-04-01

    In this paper, we summarize the data obtained in our laboratory showing the effects of glucocorticoids on human cognitive function in older adults, young adults and children. We first present data obtained in the aged human population which showed that long-term exposure to high endogenous levels of glucocorticoids is associated with both memory impairments and a 14% smaller volume of the hippocampus. We then report on studies showing that in older adults with moderate levels of glucocorticoids, memory performance can be acutely modulated by pharmacological manipulations of glucocorticoids. In young adults, we present data obtained in our laboratory showing that cognitive processing sustained by the frontal lobes is also sensitive to acute increases of glucocorticoids. We also summarize studies showing that just as in older adults, memory performance in young adults can be acutely modulated by pharmacological manipulations of glucocorticoids. We then present a study in which we showed a differential involvement of adrenergic and glucocorticoid hormones for short- and long-term memory of neutral and emotional information. In the last section of the paper, we present data obtained in a population of young children and teenagers from low and high socioeconomic status (SES), where we showed that children from low SES present significantly higher levels of basal cortisol when compared to children from high SES. We then present new data obtained in this population showing that children and teenagers from low and high SES do not process the plausibility of positive and negative attributes in the same way. Children from low SES tended to process positive and negative attributes on a more negative note than children from high SES, and this type of processing was significantly related to basal cortisol at age 10, 12 and 14. Altogether, the results of these studies show that both bottom-up (effects of glucocorticoids on cognitive function), and top-down (effects of cognitive

  20. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications.

    PubMed

    Nianiou-Obeidat, Irini; Madesis, Panagiotis; Kissoudis, Christos; Voulgari, Georgia; Chronopoulou, Evangelia; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2017-04-08

    Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.

  1. Stress differentially impacts reserve pools and root exudation: implications for ecosystem functioning and carbon balance

    NASA Astrophysics Data System (ADS)

    Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob

    2016-04-01

    Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.

  2. Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress.

    PubMed

    Santana, M L; Bignardi, A B; Eler, J P; Ferraz, J B S

    2016-04-01

    The objective of this study was to identify the genetic variation in the weaning weight (WW) of beef cattle as a function of heat stress. The WWs were recorded at approximately 205 days of age in three Brazilian beef cattle populations: Nelore (93,616), Brangus (18,906) and Tropical Composite (62,679). In view of the cumulative nature of WW, the effect of heat stress was considered as the accumulation of temperature and humidity index units (ACTHI) from the animal's birth to weaning. A reaction norm model was used to estimate the (co)variance components of WW across the ACTHI scale. The accumulation of THI units from birth to weaning negatively affected the WW. The definition of accumulated THI units as an environmental descriptor permitted to identify important genetic variation in the WW as a function of heat stress. As evidence of genotype by environment interaction, substantial heterogeneity was observed in the (co)variance components for WW across the environmental gradient. In this respect, the best animals in less stressful environments are not necessarily the best animals in more stressful environments. Furthermore, the response to selection for WW is expected to be lower in more stressful environments.

  3. Association Between Parenting Stress and Functional Impairment Among Children Diagnosed with Neurodevelopmental Disorders.

    PubMed

    Almogbel, Yasser S; Goyal, Rohit; Sansgiry, Sujit S

    2017-02-08

    The objective of this study was to examine the association between parenting stress and functional impairment among children with Neurodevelopmental Disorder (NDD). A sample of 150 parents of children diagnosed with NDD were recruited from schools that offer special education services. Parents completed a self-administered survey containing the parenting stress index-short form (PSI-SF) scale and the Columbia Impairment Scale. The multiple logistic regression conducted to compare those with clinically significant PSI-SF scores indicated that the risk of parents with clinically significant scores of parenting stress increased 5.5 times with functionally impaired children with NDD. Further the risk of stress increased 4.6 times when these parents reported having their own disorder/disease. The risk of stress was reduced by 57% for those who had higher than a college level education compared to those with a college level education or below. These findings might help health care providers to initiate early intervention strategies such as peer support and education that can prevent parenting stress and reduce the risk of potential incidence of depression.

  4. Functionalized Stress Component onto Bio-template as a Pathway of Cytocompatibility

    NASA Astrophysics Data System (ADS)

    Keshavarz, Meysam; Tan, Bo; Venkatakrishnan, Krishnan

    2016-10-01

    This in-vitro study introduces residual stress as a third dimension of cell stimulus to modulate the interaction between cells and bio-template, without the addition of either chemical or physical stimuli onto the bio-template surface. Ultrashort Pulsed Laser (USPL) irradiation of silicon-based bio-template causes recrystallization of silicon, which mismatches the original crystal orientation of the virgin silicon. Consequently, subsurface Induced Residual Stress (IRS) is generated. The IRS components demonstrated a strong cytocompatibility, whereas the peripheral of IRS, which is the interface between the IRS component and the virgin silicon surface, a significant directional cell alignment was observed. Fibroblast cells shown to be more sensitive to the stress component than Hela cancer cells. It revealed that cytocompatibility in terms of cell migration and directional cell alignment is directly proportional to the level of the IRS component. Higher stress level results in more cell alignment and border migration width. There is a stress threshold below which the stress component completely loses the functionality. These results pointed to a functionalized bio-template with tunable cytocompatibility. This study may lead to a new tool for the designing and engineering of bio-template.

  5. [Bruxism--a function of the masticatory organ to cope with stress].

    PubMed

    Slavicek, Rudolf; Sato, Sadao

    2004-12-01

    Bruxism is generally defined as a parafunctional clenching and grinding action between the upper and lower teeth. During this activity, extremely strong forces can be applied for time periods exceeding those of functional mastication. These biomechanical loads create many dental problems, such as abfractions, hypersensitivity, periodontal distraction, and temporo-mandibular dysfunction. Researchers studying Bruxism have long discussed psychic stress and emotional tension. It has also been indicated that an aggressive biting is associated with a significant attenuation of the stress-induced increase of nor-adrenalin turnover in the brain, of the striatal DOPAC contents and with the prevention of stomach ulcer formation in experimental animals. The concept of stress management based on the psychological background of Bruxism and the benefits attributable to masticatory muscle activity in attenuating stress-related symptoms such as stomach ulcer. The clenching and bruxing function of the masticatory organ is an emergency exit during periods of psychic overloading. Therefore, occlusion of the masticatory organ contributes significantly to an individual's ability to manage stress. Bruxism in proper dentition can be recognized as a valid system prophylaxis for all stress related diseases.

  6. Functionalized Stress Component onto Bio-template as a Pathway of Cytocompatibility

    PubMed Central

    Keshavarz, Meysam; Tan, Bo; Venkatakrishnan, Krishnan

    2016-01-01

    This in-vitro study introduces residual stress as a third dimension of cell stimulus to modulate the interaction between cells and bio-template, without the addition of either chemical or physical stimuli onto the bio-template surface. Ultrashort Pulsed Laser (USPL) irradiation of silicon-based bio-template causes recrystallization of silicon, which mismatches the original crystal orientation of the virgin silicon. Consequently, subsurface Induced Residual Stress (IRS) is generated. The IRS components demonstrated a strong cytocompatibility, whereas the peripheral of IRS, which is the interface between the IRS component and the virgin silicon surface, a significant directional cell alignment was observed. Fibroblast cells shown to be more sensitive to the stress component than Hela cancer cells. It revealed that cytocompatibility in terms of cell migration and directional cell alignment is directly proportional to the level of the IRS component. Higher stress level results in more cell alignment and border migration width. There is a stress threshold below which the stress component completely loses the functionality. These results pointed to a functionalized bio-template with tunable cytocompatibility. This study may lead to a new tool for the designing and engineering of bio-template. PMID:27759054

  7. The Development of Depressive Symptoms During Medical Internship Stress Predicts Worsening Vascular Function

    PubMed Central

    Fiedorowicz, Jess G.; Ellingrod, Vicki L.; Kaplan, Mariana J.; Sen, Srijan

    2015-01-01

    Objective We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease Methods We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Results Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4 cells/ml blood; p=0.01). Conclusion Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. PMID:26115588

  8. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.

  9. The Effect of Perceived Stress and Family Functioning on People with Type 2 Diabetes Mellitus

    PubMed Central

    Bhandary, Bhagyashree; Rao, Satheesh; T.S., Sanal

    2013-01-01

    Background: Various studies have suggested that support from a patient’s family can facilitate his/her recovery from a physical illness and improve the ability of the patient to deal with consequences of Type 2 Diabetes. Stress is considered to play a major role in influencing Type 2 Diabetes Mellitus. Aim: To determine the roles of Perceived Stress and Family functioning on behaviours of individuals with Type 2 Diabetes Mellitus. Material and Methods: The present study included 250 Diabetics as per the WHO criteria and 250 Non-Diabetics. Questionnaires were given to them to obtain data. Results: Stress was found to be high among Diabetics (22.17%) as compared to that in non-Diabetics (16.92%). Family assessment showed a significant difference among its subscales when it was compared between Diabetics and Non-Diabetics. Conclusion: Perceived stress influences Type 2 Diabetes Mellitus. Role played by the Family is significant in managing Diabetes. PMID:24551677

  10. Impact of breast cancer recurrence and cancer-specific stress on spouse health and immune function.

    PubMed

    Gregorio, Sharla Wells-Di; Carpenter, Kristen M; Dorfman, Caroline S; Yang, Hae-Chung; Simonelli, Laura E; Carson, William E

    2012-02-01

    Spouses of cancer patients are at-risk for poor psychological and physical health as they cope with the complex nature of the disease and fears of losing their partner. Moreover, spouses often serve as patients' primary informal caregivers, a group that evidences poor outcomes across a variety of domains. The present study examines the relative contributions of cancer recurrence - a cancer-specific stressful event - and the subjective experience of cancer-specific stress (IES) in a sample of male spouses of breast cancer survivors. We hypothesized that stress would contribute to poorer physical health and compromised immune function. Spouses (recurrence; n=16) of patients who were coping with their first recurrence were matched to spouses of patients with no evidence of disease (disease-free; n=16). Self-reported physical health (physical symptoms and fatigue) and immune function [T-cell blastogenic response to the mitogens Concanavalin A (ConA) and phytohemagglutanin (PHA) and T3 monoclonal antibody (T3 Mab)] were included as outcomes. Results indicated that patient recurrence status was not a significant unique predictor of physical health or immune function; rather, among all spouses, cancer-specific stress symptoms were associated with increased physical symptoms and altered T-cell blastogenesis. These data suggest that the health implications of caregiving for spouses of cancer survivors is more strongly linked to their subjective experience of cancer as stressful, rather than simply the patients' disease status.

  11. Life stress in adolescence predicts early adult reward-related brain function and alcohol dependence.

    PubMed

    Casement, Melynda D; Shaw, Daniel S; Sitnick, Stephanie L; Musselman, Samuel C; Forbes, Erika E

    2015-03-01

    Stressful life events increase vulnerability to problematic alcohol use, and they may do this by disrupting reward-related neural circuitry. This is particularly relevant for adolescents because alcohol use rises sharply after mid-adolescence and alcohol abuse peaks at age 20. Adolescents also report more stressors compared with children, and neural reward circuitry may be especially vulnerable to stressors during adolescence because of prefrontal cortex remodeling. Using a large sample of male participants in a longitudinal functional magnetic resonance imaging study (N = 157), we evaluated whether cumulative stressful life events between the ages of 15 and 18 were associated with reward-related brain function and problematic alcohol use at age 20 years. Higher cumulative stressful life events during adolescence were associated with decreased response in the medial prefrontal cortex (mPFC) during monetary reward anticipation and following the receipt of monetary rewards. Stress-related decreases in mPFC response during reward anticipation and following rewarding outcomes were associated with the severity of alcohol dependence. Furthermore, mPFC response mediated the association between stressful life events and later symptoms of alcohol dependence. These data are consistent with neurobiological models of addiction that propose that stressors during adolescence increase risk for problematic alcohol use by disrupting reward circuit function.

  12. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  13. Transactional relations between caregiving stress, executive functioning, and problem behavior from early childhood to early adolescence

    PubMed Central

    LaGasse, Linda L.; Conradt, Elisabeth; Karalunas, Sarah L.; Dansereau, Lynne M.; Butner, Jonathan E.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles R.; Whitaker, Toni M.; Lester, Barry M.

    2016-01-01

    Developmental psychopathologists face the difficult task of identifying the environmental conditions that may contribute to early childhood behavior problems. Highly stressed caregivers can exacerbate behavior problems, while children with behavior problems may make parenting more difficult and increase caregiver stress. Unknown is: (1) how these transactions originate, (2) whether they persist over time to contribute to the development of problem behavior and (3) what role resilience factors, such as child executive functioning, may play in mitigating the development of problem behavior. In the present study, transactional relations between caregiving stress, executive functioning, and behavior problems were examined in a sample of 1,388 children with prenatal drug exposures at three developmental time points: early childhood (birth-age 5), middle childhood (ages 6 to 9), and early adolescence (ages 10 to 13). Transactional relations differed between caregiving stress and internalizing versus externalizing behavior. Targeting executive functioning in evidence-based interventions for children with prenatal substance exposure who present with internalizing problems and treating caregiving psychopathology, depression, and parenting stress in early childhood may be particularly important for children presenting with internalizing behavior. PMID:27427803

  14. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast.

    PubMed

    Pastor, Mar Martínez; Proft, Markus; Pascual-Ahuir, Amparo

    2009-10-30

    Hyperosmotic stress triggers a great variety of adaptive responses in eukaryotic cells that affect many different physiological functions. Here we investigate the role of the mitochondria during osmostress adaptation in budding yeast. Mitochondrial function is generally required for proper salt and osmotic stress adaptation because mutants with defects in many different mitochondrial components show hypersensitivity to increased NaCl and KCl concentrations. Mitochondrial protein abundance rapidly increases upon osmoshock in a selective manner, because it affects Calvin cycle enzymes (Sdh2 and Cit1) and components of the electron transport chain (Cox6) but not the ATP synthase complex (Atp5). Transcription of the SDH2, CIT1, and COX6 genes is severalfold induced within the first minutes of osmotic shock, dependent to various degree on the Hog1 and Snf1 protein kinases. Mitochondrial succinate dehydrogenase enzyme activity is stimulated upon osmostress in a Snf1-dependent manner. The osmosensitivity of mitochondrial mutants is not caused by impaired stress-activated transcription or by a general depletion of the cellular ATP pool during osmostress. We finally show that the growth defect of mitochondrial mutants in high salt medium can be partially rescued by supplementation of glutathione. Additionally, mitochondrial defects cause the hyperaccumulation of reactive oxygen species during salt stress. Our results indicate that the antioxidant function of the mitochondria might play an important role in adaptation to hyperosmotic stress.

  15. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery

    PubMed Central

    Goldwater, Deena S.; Pavlides, Constantine; Hunter, Richard G.; Bloss, Erik B.; Hof, Patrick R.; McEwen, Bruce S.; Morrison, John H.

    2009-01-01

    Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of layer V IL pyramidal neurons from animals subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over-extension of proximal dendritic neuroarchitecture and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry

  16. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    PubMed

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  17. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti.

    PubMed

    Sauviac, Laurent; Philippe, Heinui; Phok, Kounthéa; Bruand, Claude

    2007-06-01

    Sinorhizobium meliloti genes transcriptionally up-regulated after heat stress, as well as upon entry into stationary phase, were identified by microarray analyses. Sixty stress response genes were thus found to be up-regulated under both conditions. One of them, rpoE2 (smc01506), encodes a putative extracytoplasmic function (ECF) sigma factor. We showed that this sigma factor controls its own transcription and is activated by various stress conditions, including heat and salt, as well as entry into stationary phase after either carbon or nitrogen starvation. We also present evidence that the product of the gene cotranscribed with rpoE2 negatively regulates RpoE2 activity, and we therefore propose that it plays the function of anti-sigma factor. By combining transcriptomic, bioinformatic, and quantitative reverse transcription-PCR analyses, we identified 44 RpoE2-controlled genes and predicted the number of RpoE2 targets to be higher. Strikingly, more than one-third of the 60 stress response genes identified in this study are RpoE2 targets. Interestingly, two genes encoding proteins with known functions in stress responses, namely, katC and rpoH2, as well as a second ECF-encoding gene, rpoE5, were found to be RpoE2 regulated. Altogether, these data suggest that RpoE2 is a major global regulator of the general stress response in S. meliloti. Despite these observations, and although this sigma factor is well conserved among alphaproteobacteria, no in vitro nor in planta phenotypic difference from the wild-type strain could be detected for rpoE2 mutants. This therefore suggests that other important actors in the general stress response have still to be identified in S. meliloti.

  18. Determination of the effect of residual curing stresses on an interface crack by means of the weight function method

    NASA Astrophysics Data System (ADS)

    Banks-Sills, L.; Ashkenazi, D.; Eliasi, R.

    A numerical procedure is presented for employing a weight function of a crack along the interface of two bonded linearly elastic, homogeneous solids. In this investigation, the numerical weight function is determined for a bimaterial infinite body composed of glass and epoxy. Stress intensity factors are obtained for mechanical loading and compared to closed form solutions. The stress intensity factors resulting from residual curing stresses are obtained by means of the weight function and superposed with those from a particular mechanical loading.

  19. Stem cell function and stress response are controlled by protein synthesis

    PubMed Central

    Blanco, Sandra; Bandiera, Roberto; Popis, Martyna; Hussain, Shobbir; Lombard, Patrick; Aleksic, Jelena; Sajini, Abdulrahim; Tanna, Hinal; Cortés-Garrido, Rosana; Gkatza, Nikoletta; Dietmann, Sabine; Frye, Michaela

    2016-01-01

    Summary Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here, we show that skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumourigenesis. Mechanistically we show that inhibition of post-transcriptional cytosine-5 methylation locks stem cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour. PMID:27306184

  20. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  1. Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients.

    PubMed

    Zhong, L; Su, Y; Gobeawan, L; Sola, S; Tan, R-S; Navia, J L; Ghista, D N; Chua, T; Guccione, J; Kassab, G S

    2011-05-01

    Surgical ventricular restoration (SVR) was designed to treat patients with aneurysms or large akinetic walls and dilated ventricles. Yet, crucial aspects essential to the efficacy of this procedure like optimal shape and size of the left ventricle (LV) are still debatable. The objective of this study is to quantify the efficacy of SVR based on LV regional shape in terms of curvedness, wall stress, and ventricular systolic function. A total of 40 patients underwent magnetic resonance imaging (MRI) before and after SVR. Both short-axis and long-axis MRI were used to reconstruct end-diastolic and end-systolic three-dimensional LV geometry. The regional shape in terms of surface curvedness, wall thickness, and wall stress indexes were determined for the entire LV. The infarct, border, and remote zones were defined in terms of end-diastolic wall thickness. The LV global systolic function in terms of global ejection fraction, the ratio between stroke work (SW) and end-diastolic volume (SW/EDV), the maximal rate of change of pressure-normalized stress (dσ*/dt(max)), and the regional function in terms of surface area change were examined. The LV end-diastolic and end-systolic volumes were significantly reduced, and global systolic function was improved in ejection fraction, SW/EDV, and dσ*/dt(max). In addition, the end-diastolic and end-systolic stresses in all zones were reduced. Although there was a slight increase in regional curvedness and surface area change in each zone, the change was not significant. Also, while SVR reduced LV wall stress with increased global LV systolic function, regional LV shape and function did not significantly improve.

  2. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  3. Family Functioning and Posttraumatic Stress Disorder in Adolescent Survivors of Childhood Cancer

    PubMed Central

    Alderfer, Melissa A.; Navsaria, Neha; Kazak, Anne E.

    2009-01-01

    The purpose of this study was to investigate family functioning and relationships between family functioning and posttraumatic stress disorder in adolescent survivors of childhood cancer. To assess family functioning, 144 adolescent cancer survivors 1 to 12 years post-cancer treatment (M=5.3 years) and their parents completed the Family Assessment Device (FAD). To assess Posttraumatic Stress Disorder (PTSD), adolescents were administered a structured diagnostic interview. Nearly half (47%) of the adolescents, one-fourth (25%) of mothers, and one-third (30%) of fathers reported poor family functioning, exceeding the clinical cut-off on four or more FAD subscales. Families in which the cancer survivor had PTSD (8% of the sample) had poorer functioning than other families in the areas of problem-solving, affective responsiveness and affective involvement. Three-fourths of the adolescents with PTSD arose from families with categorically poor family functioning. A surprisingly high rate of poor family functioning was reported in these families of adolescent cancer survivors. Adolescents with PTSD were over five times as likely to emerge from a poorly functioning family compared to a well-functioning one. This study provides evidence that family functioning is related to cancer-related posttraumatic reactions in adolescent survivors. PMID:19803607

  4. Emotional-volitional components of operator reliability. [sensorimotor function testing under stress

    NASA Technical Reports Server (NTRS)

    Mileryan, Y. A.

    1975-01-01

    Sensorimotor function testing in a tracking task under stressfull working conditions established a psychological characterization for a successful aviation pilot: Motivation significantly increased the reliability and effectiveness of their work. Their acitivities were aimed at suppressing weariness and the feeling of fear caused by the stress factors; they showed patience, endurance, persistence, and a capacity for lengthy volitional efforts.

  5. Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress.

    PubMed

    Fernandes, Isabel; Pascoal, Cláudia; Cássio, Fernanda

    2011-08-01

    Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass accumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.

  6. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    ERIC Educational Resources Information Center

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be associated with…

  7. Latent Classes of Adolescent Posttraumatic Stress Disorder Predict Functioning and Disorder after 1 Year

    ERIC Educational Resources Information Center

    Ayer, Lynsay; Danielson, Carla Kmett; Amstadter, Ananda B.; Ruggiero, Ken; Saunders, Ben; Kilpatrick, Dean

    2011-01-01

    Objective: To identify latent classes of posttraumatic stress disorder (PTSD) symptoms in a national sample of adolescents, and to test their associations with PTSD and functional impairment 1 year later. Method: A total of 1,119 trauma-exposed youth aged 12 through 17 years (mean = 14.99 years, 51% female and 49% male) participating in the…

  8. Stress and Family Functioning in Parents of Girls with Rett Syndrome.

    ERIC Educational Resources Information Center

    Perry, Adrienne; And Others

    1992-01-01

    This survey of parents of 29 girls with Rett syndrome found that subjects reported more stress, lower marital satisfaction, and certain adaptations in family functioning compared to norms. However, most parents scored in the normal range. Scores were not related to socioeconomic status or characteristics of the affected child. (DB)

  9. Child Behavior Problems, Teacher Executive Functions, and Teacher Stress in Head Start Classrooms

    ERIC Educational Resources Information Center

    Friedman-Krauss, Allison H.; Raver, C. Cybele; Neuspiel, Juliana M.; Kinsel, John

    2014-01-01

    Research Findings: The current article explores the relationship between teachers' perceptions of child behavior problems and preschool teacher job stress, as well as the possibility that teachers' executive functions moderate this relationship. Data came from 69 preschool teachers in 31 early childhood classrooms in 4 Head Start centers and were…

  10. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  11. Local ζ -functions, stress-energy tensor, field fluctuations, and all that, in curved static spacetime

    NASA Astrophysics Data System (ADS)

    Moretti, Valter

    This is a quick review on some technology concerning the local zeta function applied to Quantum Field Theory in curved static (thermal) spacetime to regularize the stress energy tensor and the field fluctuations. Dedicated to Prof. Emilio Elizalde on the occasion of his 60th birthday.

  12. Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice.

    PubMed

    Mingin, Gerald C; Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T; Vizzard, Margaret A

    2014-10-01

    Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function.

  13. Alerted default mode: functional connectivity changes in the aftermath of social stress

    PubMed Central

    Clemens, Benjamin; Wagels, Lisa; Bauchmüller, Magdalena; Bergs, Rene; Habel, Ute; Kohn, Nils

    2017-01-01

    Stress affects the brain at a network level: the salience network is supposedly upregulated, while at the same time the executive control network is downregulated. While theoretically described, the effects in the aftermath of stress have thus far not been tested empirically. Here, we compared for the first time resting-state functional connectivity in a large sample of healthy volunteers before and after a mild social stressor. Following the theoretical prediction, we focused on connectivity of the salience network (SN), the executive control network (ECN) and the default mode network (DMN). The DMN exhibited increased resting-state functional connectivity following the cyberball task to the key nodes of the SN, namely the dorsal anterior cingulate cortex (dACC) and the anterior insula, as well as sensorimotor regions and higher-order visual areas. We conclude that this increased connectivity of the DMN with key nodes of the SN and regions responsible for preparatory motor activity and visual motion processing indicates a shift towards an ‘alerted default mode’ in the aftermath of stress. This brain response may be triggered or aggravated by (social) stress induced by the cyberball task, enabling individuals to better reorient attention, detect salient external stimuli, and deal with the emotional and affective consequences of stress. PMID:28054651

  14. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.

    PubMed

    Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A

    2016-09-15

    Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.

  15. Stress assessment based on EEG univariate features and functional connectivity measures.

    PubMed

    Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A

    2015-07-01

    The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.

  16. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis.

    PubMed

    Pedroza-García, José-Antonio; Mazubert, Christelle; Del Olmo, Ivan; Bourge, Mickael; Domenichini, Séverine; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Piñeiro, Manuel; Jarillo, José A; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2017-03-01

    Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote.

  17. Structure, function and networks of transcription factors involved in abiotic stress responses.

    PubMed

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh; Skriver, Karen

    2013-03-13

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic disorder (ID), referring to their lack of fixed tertiary structures. ID is now an emerging topic in plant science. Furthermore, the importance of the ubiquitin-proteasome protein degradation systems and modification by sumoylation is also apparent from the interactomes. Therefore; TF interaction partners such as E3 ubiquitin ligases and TF regions with ID represent future targets for engineering improved abiotic stress tolerance in crops.

  18. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    PubMed

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'.

  19. Health functioning impairments associated with posttraumatic stress disorder, anxiety disorders, and depression.

    PubMed

    Zayfert, Claudia; Dums, Aricca R; Ferguson, Robert J; Hegel, Mark T

    2002-04-01

    Although anxiety disorders have been associated with impairments in self-reported health functioning, the relative effect of various anxiety disorders has not been studied. We compared health functioning of patients with a principal diagnosis of posttraumatic stress disorder (PTSD), panic disorder (PD), generalized anxiety disorder (GAD), and major depressive disorder (MDD). Patients with PTSD and MDD were equally impaired on overall mental health functioning, and both were significantly worse than patients with PD and GAD. PTSD was associated with significantly worse physical health functioning relative to PD, GAD, and MDD. Hierarchical regression showed that the association of PTSD with physical health functioning was unique and was not caused by the effects of age, depression, or comorbid anxiety disorders. Both PTSD and comorbid anxiety accounted for unique variance in mental functioning. These results highlight the association of PTSD with impaired physical and mental functioning and suggest that effective treatment of PTSD may affect overall health.

  20. Stress during pregnancy affects general intellectual and language functioning in human toddlers.

    PubMed

    Laplante, David P; Barr, Ronald G; Brunet, Alain; Galbaud du Fort, Guillaume; Meaney, Michael L; Saucier, Jean-Francois; Zelazo, Philip R; King, Suzanne

    2004-09-01

    Prenatal maternal stress has been shown to impair functioning in nonhuman primate offspring. Little is known about the effects of prenatal stress on intellectual and language development in humans because it is difficult to identify sufficiently large samples of pregnant women who have been exposed to an independent stressor. We took advantage of a natural disaster (January 1998 ice storm in Québec, Canada) to determine the effect of the objective severity of pregnant women's stress exposure on general intellectual and language development of their children. Bayley Mental Development Index (MDI) scores and parent-reported language abilities of 58 toddlers of mothers who were exposed to varying levels of prenatal stress were obtained at 2 y of age. The hierarchical multiple regression analyses indicated that the toddlers' birth weight and age at testing accounted for 12.0% and 14.8% of the variance in the Bayley MDI scores and in productive language abilities, respectively. More importantly, the level of prenatal stress exposure accounted for an additional 11.4% and 12.1% of the variance in the toddlers' Bayley MDI and productive language abilities and uniquely accounted for 17.3% of the variance of their receptive language abilities. The more severe the level of prenatal stress exposure, the poorer the toddlers' abilities. The level of prenatal stress exposure accounted for a significant proportion of the variance in the three dependent variables above and beyond that already accounted for by non-ice storm-related factors. We suspect that high levels of prenatal stress exposure, particularly early in the pregnancy, may negatively affect the brain development of the fetus, reflected in the lower general intellectual and language abilities in the toddlers.

  1. The Functional Anatomy of the Female Pelvic Floor and Stress Continence Control System

    PubMed Central

    Ashton-Miller, James A.; Howard, Denise; DeLancey, John O. L.

    2005-01-01

    This paper provides an overview of the functional anatomy of the structures responsible for controlling urinary continence under stress. The stress continence control system can be divided into two parts: the system responsible for bladder neck support, and the system responsible for sphincteric closure. Age- and injury-related changes in each of these systems are discussed. Understanding the pathophysiology of incontinence on the anatomical level will help to lead to identification of specific defects, thereby allowing better individualized treatment for the incontinent patient. PMID:11409608

  2. The functional anatomy of the female pelvic floor and stress continence control system.

    PubMed

    Ashton-Miller, J A; Howard, D; DeLancey, J O

    2001-01-01

    This paper provides an overview of the functional anatomy of the structures responsible for controlling urinary continence under stress. The stress continence control system can be divided into two parts: the system responsible for bladder neck support, and the system responsible for sphincteric closure. Age- and injury-related changes in each of these systems are discussed. Understanding the pathophysiology of incontinence on the anatomical level will help to lead to identification of specific defects, thereby allowing better individualized treatment for the incontinent patient.

  3. Density functional theory calculations of the stress of oxidised (1 1 0) silicon surfaces

    NASA Astrophysics Data System (ADS)

    Melis, C.; Giordano, S.; Colombo, L.; Mana, G.

    2016-12-01

    The measurement of the lattice-parameter of silicon by x-ray interferometry assumes the use of strain-free crystals. This might not be the case because surface relaxation, reconstruction, and oxidation cause strains without the application of any external force. In a previous work, this intrinsic strain was estimated by a finite element analysis, where the surface stress was modeled by an elastic membrane having a 1 N m-1 tensile strength. The present paper quantifies the surface stress by a density functional theory calculation. We found a value exceeding the nominal value used, which potentially affects the measurement accuracy.

  4. The aftermath of terrorism: posttraumatic stress and functional impairment after the 2011 Oslo bombing

    PubMed Central

    Solberg, Øivind; Blix, Ines; Heir, Trond

    2015-01-01

    Objective: In the present study we wanted to investigate the link between exposure, posttraumatic stress symptomatology, and functional impairment in the aftermath of terrorism. Method: Posttraumatic stress symptomatology and functional impairment related to the Oslo bombing 22nd of July, 2011, in directly and indirectly exposed individuals (N = 1927) were assessed together with demographics, exposure, peri-traumatic reactions, and event centrality approximately 1 year after the attack. Results: Directly and indirectly exposed individuals qualifying for posttraumatic stress disorder (PTSD) reported similar peri-traumatic reactions, event centrality, and functional impairment. However, clusters within the PTSD symptomatology were differentially associated with impairment as a function of their exposure. In the directly exposed group, all clusters within the PTSD symptomatology were associated with impairment in function, while only emotional numbing was associated with impairment within the indirectly exposed group. Conclusion: Considering that terror attacks frequently involve directly exposed individuals and a larger population of indirectly exposed individuals, this finding is of importance, especially in the design of intervention programs and the development of treatment policies. PMID:26300833

  5. Stress and Immune Function during Pregnancy: An Emerging Focus in Mind-Body Medicine

    PubMed Central

    Christian, Lisa M.

    2014-01-01

    Maternal psychosocial stress during pregnancy is associated with risks to maternal health, birth outcomes, as well as adverse health and behavioral outcomes in offspring. Maternal immune dysregulation, particularly disruption of inflammatory processes, is also implicated in adverse perinatal health outcomes, with the greatest evidence in relation to preterm birth. Increasingly, the extent to which psychosocial stress induces dysregulation of inflammatory processes during pregnancy is being considered. In this article, I describe studies linking stress to immune function during pregnancy, with an emphasis on studies from our group on inflammation. As will be reviewed, research utilizing psychoneuroimmunology models in pregnancy is a rapidly developing area with abundant opportunities to address questions of clinical relevance for both maternal and child health. PMID:25745279

  6. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress.

    PubMed

    Klatt, P; Lamas, S

    2000-08-01

    Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.

  7. Effects of inbreeding and temperature stress on life history and immune function in a butterfly.

    PubMed

    Franke, K; Fischer, K

    2013-03-01

    Theory predicts that inbreeding depression should be more pronounced under environmental stress due to an increase in the expression of recessive deleterious alleles. If so, inbred populations may be especially vulnerable to environmental change. Against this background, we here investigate effects of inbreeding, temperature stress and its interactions with inbreeding in the tropical butterfly Bicyclus anynana. We use a full-factorial design with three levels of inbreeding (F = 0/0.25/0.38) and three temperature treatments (2 h exposure to 1, 27 or 39 °C). Despite using relatively low levels of inbreeding significant inbreeding depression was found in pupal mass, pupal time, thorax mass, abdomen fat content, egg hatching success and fecundity. However, stress resistance traits (heat tolerance, immune function) were not affected by inbreeding and interactions with temperature treatments were virtually absent. We thus found no support for an increased sensitivity of inbred individuals to environmental stress, and suspect that such patterns are restricted to harsher conditions. Our temperature treatments evidently imposed stress, significantly reducing longevity, fecundity, egg hatching success and haemocyte numbers, while fat content, protein content and lysozyme activity remained unaffected. Males and females differed in all traits measured except pupal time, protein content and phenoloxidase (PO) activity. Correlation analyses revealed, among others, a trade-off between PO and lysozyme activity, and negative correlations between fat content and several other traits. We stress that more data are needed on the effects of inbreeding, temperature variation and sexual differences on insect immune function before more general conclusions can be drawn.

  8. The conserved SKN-1/Nrf2 stress response pathway regulates synaptic function in Caenorhabditis elegans.

    PubMed

    Staab, Trisha A; Griffen, Trevor C; Corcoran, Connor; Evgrafov, Oleg; Knowles, James A; Sieburth, Derek

    2013-03-01

    The Nrf family of transcription factors plays a critical role in mediating adaptive responses to cellular stress and defends against neurodegeneration, aging, and cancer. Here, we report a novel role for the Caenorhabditis elegans Nrf homolog SKN-1 in regulating synaptic transmission at neuromuscular junctions (NMJs). Activation of SKN-1, either by acute pharmacological treatment with the mitochondrial toxin sodium arsenite or by mutations that cause constitutive SKN-1 activation, results in defects in neuromuscular function. Additionally, elimination of the conserved WD40 repeat protein WDR-23, a principal negative regulator of SKN-1, results in impaired locomotion and synaptic vesicle and neuropeptide release from cholinergic motor axons. Mutations that abolish skn-1 activity restore normal neuromuscular function to wdr-23 mutants and animals treated with toxin. We show that negative regulation of SKN-1 by WDR-23 in the intestine, but not at neuromuscular junctions, is necessary and sufficient for proper neuromuscular function. WDR-23 isoforms differentially localize to the outer membranes of mitochondria and to nuclei, and the effects of WDR-23 on neuromuscular function are dependent on its interaction with cullin E3 ubiquitin ligase. Finally, whole-transcriptome RNA sequencing of wdr-23 mutants reveals an increase in the expression of known SKN-1/Nrf2-regulated stress-response genes, as well as neurotransmission genes not previously implicated in SKN-1/Nrf2 responses. Together, our results indicate that SKN-1/Nrf2 activation may be a mechanism through which cellular stress, detected in one tissue, affects cellular function of a distal tissue through endocrine signaling. These results provide insight into how SKN-1/Nrf2 might protect the nervous system from damage in response to oxidative stress.

  9. Postprandial endothelial function, inflammation, and oxidative stress in obese children and adolescents.

    PubMed

    Metzig, Andrea M; Schwarzenberg, Sarah J; Fox, Claudia K; Deering, Mary M; Nathan, Brandon M; Kelly, Aaron S

    2011-06-01

    Most studies in adults suggest that acute glucose consumption induces a transient impairment in endothelial function. We hypothesized that obese youth would demonstrate reduced endothelial function and increased inflammation and oxidative stress following acute glucose ingestion and that transient elevations in plasma glucose would correlate with endothelial dysfunction, inflammation, and oxidative stress. Thirty-four obese (BMI ≥ 95th percentile) children and adolescents (age 12.4 ± 2.6 years; BMI = 37.9 ± 6.7 kg/m2; 50% females) underwent measurement of endothelial function (reactive hyperemic index (RHI)), glucose, insulin, C-reactive protein (CRP), interleukin-6 (IL-6), circulating oxidized low-density lipoprotein (oxLDL), and myeloperoxidase (MPO) in a fasting state and at 1- and 2-h following glucose ingestion. Repeated measures ANOVA with Tukey post-tests and Pearson correlations were performed. Glucose and insulin levels significantly increased at 1- and 2-h (all P values < 0.001). Compared to baseline, there were no statistically significant differences in 1- and 2-h RHI, CRP, IL-6, and oxLDL. However, MPO significantly decreased at the 1- (P < 0.05) and 2-h (P < 0.001) time points. At the 1-h time point, glucose level was significantly inversely correlated with RHI (r = -0.40, P < 0.05) and at the 2-h time point, glucose level was positively correlated with MPO (r = 0.40, P < 0.05). An acute oral glucose load does not reduce endothelial function or increase levels of inflammation or oxidative stress in obese youth. However, associations of postprandial hyperglycemia with endothelial function and oxidative stress may have implications for individuals with impaired glucose tolerance or frank type 2 diabetes.

  10. Development of accumulated heat stress index based on time-weighted function

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Sun; Byun, Hi-Ryong; Kim, Do-Woo

    2016-05-01

    Heat stress accumulates in the human body when a person is exposed to a thermal condition for a long time. Considering this fact, we have defined the accumulated heat stress (AH) and have developed the accumulated heat stress index (AHI) to quantify the strength of heat stress. AH represents the heat stress accumulated in a 72-h period calculated by the use of a time-weighted function, and the AHI is a standardized index developed by the use of an equiprobability transformation (from a fitted Weibull distribution to the standard normal distribution). To verify the advantage offered by the AHI, it was compared with four thermal indices the humidex, the heat index, the wet-bulb globe temperature, and the perceived temperature used by national governments. AH and the AHI were found to provide better detection of thermal danger and were more useful than other indices. In particular, AH and the AHI detect deaths that were caused not only by extremely hot and humid weather, but also by the persistence of moderately hot and humid weather (for example, consecutive daily maximum temperatures of 28-32 °C), which the other indices fail to detect.

  11. [Correlations between hippocampus function and stressed learning and their effect on cerebro-visceral regulation processes].

    PubMed

    Hecht, K; Hai, N V; Hecht, T; Moritz, V; Woossmann, H

    1976-01-01

    43 male albino rats were investigated to find out what are the effects of bilateral exclusion of pes hippocampus structures upon the development of arterial hypertension released by learning stress exposure. The following results were obtained: 5 weeks of stress exposure (learning load and heavy learning load) caused disturbances of information-processing events of the central nervous system in all the animals with hippocampal lesions. Systolic blood pressure values, fasting blood sugar values, and adrenal weights fall within the physiological range. The B-cells of the pancreatic islets show hypergranulation. Functional tests of the blood pressure under exercise load, and of blood sugar under glucose load revealed normal reactions in animals with hippocampal lesions. In animals with intact brains the same stress exposure caused pathologic malfunctioning (under learning stress) or even premorbid states. The results being considered in relation to the pathogenesis of arterial hypertension show that the exclusion of circumscribed areas of the hippocampus prevents the development of permanent, stress-induced emotional excitations spreading into the viscerum.

  12. A Rhesus Monkey Model of Self Injury: Effects of Relocation Stress on Behavior and Neuroendocrine Function

    PubMed Central

    Davenport, Matthew D.; Lutz, Corrine K.; Tiefenbacher, Stefan; Novak, Melinda A.; Meyer, Jerrold S.

    2008-01-01

    Background Self-injurious behavior (SIB), a disorder that afflicts many individuals within both clinical and non-clinical populations, has been linked to states of heightened stress and arousal. However, there are no published longitudinal data on the relationship between increases in stress and changes in the incidence of SIB. The present study investigated the short- and long-term behavioral and neuroendocrine responses of SIB and control monkeys to the stress of relocation. Methods Twenty adult male rhesus macaques were exposed to the stress of relocation to a new housing arrangement in a newly constructed facility. Daytime behavior, sleep, and multiple measures of hypothalamic-pituitary-adrenocortical (HPA) axis function were investigated before and after the move. Results Relocation induced a complex pattern of short- and long-term effects in the animals. The SIB animals showed a long-lasting increase in self-biting behavior as well as evidence of sleep disturbance. Both groups exhibited elevated cortisol levels in saliva, serum, and hair, and also an unexpected delayed increase in circulating concentrations of corticosteroid binding globulin (CBG). Conclusions Our results indicate that relocation is a significant stressor for rhesus macaques, and that this stressor triggers an increase in self-biting behavior as well as sleep disturbance in monkeys previously identified as suffering from SIB. These findings suggest that life stresses may similarly exacerbate SIB in humans with this disorder. The HPA axis results underscore the potential role of CBG in regulating long-term neuroendocrine responses to major stressors. PMID:18164279

  13. Prenatal drug exposure moderates the association between stress reactivity and cognitive function in adolescence.

    PubMed

    Buckingham-Howes, Stacy; Bento, Samantha P; Scaletti, Laura A; Koenig, James I; Granger, Douglas A; Black, Maureen M

    2014-01-01

    Prenatal drug exposure (PDE) can undermine subsequent health and development. In a prospective longitudinal study we examine whether PDE moderates the link between stress reactivity and cognitive functioning in adolescence. Participants were 76 prenatally drug-exposed and 61 nonexposed (NE) community comparison African American youth (50% male, mean age 14.17 years) living in an urban setting. All participants completed neuropsychological and academic achievement tests (Children's Memory Scales, the California Verbal Learning Test - Children's version and the Wide Range Achievement Test 4) over the course of 1 day in a laboratory setting. Two mild stressors (Balloon Analog Risk Task - Youth and Behavioral Indicator of Resilience to Distress) were administered, with saliva samples (assayed for cortisol) collected pre- and poststress task. A higher percentage in the NE group, compared to the PDE group (26% vs. 12%, χ(2) = 4.70, d.f. = 1, n = 137, p = 0.03), exhibited task-related increases in salivary cortisol. PDE moderated the association between stress reactivity and 11 of 15 cognitive performance scales. In each case, the NE stress reactive group had better cognitive performance than either the NE lower cortisol reactive group or the PDE group regardless of stress reactivity status. Stress-related reactivity and regulation of the hypothalamic-pituitary-adrenal axis in adolescence may be disrupted by PDE, and the disruption may be linked to lower cognitive performance.

  14. Dynamics of self-similar waves in asymmetric twin-core fibers with Airy-Bessel modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Soloman Raju, Thokala

    2015-07-01

    We explore the exact optical similaritons of a generalized nonlinear Schrödinger equation (GNLSE) with space-time modulated dispersion, nonlinearity, external potential and inhomogeneous source. It is shown here that this equation appertains to the description of wave propagation through asymmetric twin-core fibers in which we control the dynamics of the pulse propagating through passive fiber by controlling the dynamics of the self-similar wave propagating through the active fiber, due to the linear coupling between them. By utilizing multivariate similarity transformation, we map the nonautonomous GNLSE to standard NLSE with a homogeneous external source. Furthermore, by using Möbius transformation, we find periodic waves, solitary waves, and pure cnoidal and pure snoidal solutions as exact solutions. As an application, we explicate the mechanism to control the dynamical behaviors of these similaritons for a spatial Airy and Bessel modulated nonlinearity.

  15. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

    NASA Astrophysics Data System (ADS)

    Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza

    2015-12-01

    One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

  16. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    PubMed Central

    Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  17. Genomewide Expression and Functional Interactions of Genes under Drought Stress in Maize

    PubMed Central

    Sharma, Rinku; Singh, Nidhi; Mohan, Sweta; Mittal, Swati; Mittal, Shikha; Mallikarjuna, Mallana Gowdra; Rao, Atmakuri Ramakrishna; Dash, Prasanta Kumar; Hossain, Firoz; Gupta, Hari Shanker

    2017-01-01

    A genomewide transcriptome assay of two subtropical genotypes of maize was used to observe the expression of genes at seedling stage of drought stress. The number of genes expressed differentially was greater in HKI1532 (a drought tolerant genotype) than in PC3 (a drought sensitive genotype), indicating primary differences at the transcriptional level in stress tolerance. The global coexpression networks of the two genotypes differed significantly with respect to the number of modules and the coexpression pattern within the modules. A total of 174 drought-responsive genes were selected from HKI1532, and their coexpression network revealed key correlations between different adaptive pathways, each cluster of the network representing a specific biological function. Transcription factors related to ABA-dependent stomatal closure, signalling, and phosphoprotein cascades work in concert to compensate for reduced photosynthesis. Under stress, water balance was maintained by coexpression of the genes involved in osmotic adjustments and transporter proteins. Metabolism was maintained by the coexpression of genes involved in cell wall modification and protein and lipid metabolism. The interaction of genes involved in crucial biological functions during stress was identified and the results will be useful in targeting important gene interactions to understand drought tolerance in greater detail. PMID:28326315

  18. Sodium Thiosulfate Ameliorates Oxidative Stress and Preserves Renal Function in Hyperoxaluric Rats

    PubMed Central

    Bijarnia, Rakesh K.; Bachtler, Matthias; Chandak, Prakash G.; van Goor, Harry; Pasch, Andreas

    2015-01-01

    Background Hyperoxaluria causes crystal deposition in the kidney, which leads to oxidative stress and to injury and damage of the renal epithelium. Sodium thiosulfate (STS, Na2S2O3) is an anti-oxidant, which has been used in human medicine for decades. The effect of STS on hyperoxaluria-induced renal damage is not known. Methods Hyperoxaluria and renal injury were induced in healthy male Wistar rats by chronic exposure to ethylene glycol (EG, 0.75%) in the drinking water for 4 weeks. The treatment effects of STS, NaCl or Na2SO4 were compared. Furthermore, the effects of STS on oxalate-induced oxidative stress were investigated in vitro in renal LLC-PK1 cells. Results Chronic EG exposure led to hyperoxaluria, oxidative stress, calcium oxalate crystalluria and crystal deposition in the kidneys. Whereas all tested compounds significantly reduced crystal load, only STS-treatment maintained tissue superoxide dismutase activity and urine 8-isoprostaglandin levels in vivo and preserved renal function. In in vitro studies, STS showed the ability to scavenge oxalate-induced ROS accumulation dose dependently, reduced cell-released hydrogen peroxide and preserved superoxide dismutase activity. As a mechanism explaining this finding, STS was able to directly inactivate hydrogen peroxide in cell-free experiments. Conclusions STS is an antioxidant, which preserves renal function in a chronic EG rat model. Its therapeutic use in oxidative-stress induced renal-failure should be considered. PMID:25928142

  19. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    PubMed

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  20. Mindfulness-Based Stress Reduction for Older Adults: Effects on Executive Function, Frontal Alpha Asymmetry and Immune Function

    PubMed Central

    Moynihan, Jan A.; Chapman, Benjamin P.; Klorman, Rafael; Krasner, Michael S.; Duberstein, Paul R.; Brown, Kirk Warren; Talbot, Nancy L.

    2013-01-01

    Background/Aims Mindfulness-based stress reduction (MBSR) has enhanced cognition, positive emotion, and immunity in younger and middle-aged samples; its benefits are less well known for older persons. Here we report on a randomized controlled trial of MBSR for older adults and its effects on executive function, left frontal asymmetry of the EEG alpha band, and antibody response. Methods Older adults (n = 201) were randomized to MBSR or waiting list control. The outcome measures were: the Trail Making Test part B/A (Trails B/A) ratio, a measure of executive function; changes in left frontal alpha asymmetry, an indicator of positive emotions or approach motivation; depression, mindfulness, and perceived stress scores, and the immunoglobulin G response to a protein antigen, a measure of adaptive immunity. Results MBSR participants had a lower Trails B/A ratio immediately after intervention (p <0.05); reduced shift to rightward frontal alpha activation after intervention (p = 0.03); higher baseline antibody levels after intervention (p <0.01), but lower antibody responses 24 weeks after antigen challenge (p <0.04), and improved mindfulness after intervention (p = 0.023) and at 21 weeks of follow-up (p = 0.006). Conclusions MBSR produced small but significant changes in executive function, mindfulness, and sustained left frontal alpha asymmetry. The antibody findings at follow-up were unexpected. Further study of the effects of MBSR on immune function should assess changes in antibody responses in comparison to T-cell-mediated effector functions, which decline as a function of age. PMID:23774986

  1. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  2. Children's predisaster functioning as a predictor of posttraumatic stress following Hurricane Andrew.

    PubMed

    La Greca, A M; Silverman, W K; Wasserstein, S B

    1998-12-01

    This study examined (a) children's predisaster behavioral and academic functioning as a predictor of posttraumatic stress (PTS) following Hurricane Andrew and (b) whether children who were exposed to the disaster would display a worsening of prior functioning. Fifteen months before the disaster, 92 4th through 6th graders provided self-reports of anxiety; peers and teachers rated behavior problems (anxiety, inattention, and conduct) and academic skills. Measures were repeated 3 months postdisaster; children also reported PTS symptoms and hurricane-related experiences (i.e., exposure). PTS symptoms were again assessed 7 months postdisaster. At 3 months postdisaster, children's exposure to the disaster, as well as predisaster ratings of anxiety, inattention, and academic skills, predicted PTS symptoms. By 7 months, only exposure, African American ethnicity, and predisaster anxiety predicted PTS. Prior anxiety levels also worsened as a result of exposure to the disaster. The findings have implications for identifying and treating children at risk for stress reactions following a catastrophic disaster.

  3. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    PubMed Central

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  4. Global functions in global-local finite-element analysis of localized stresses in prismatic structures

    NASA Technical Reports Server (NTRS)

    Dong, Stanley B.

    1989-01-01

    An important consideration in the global local finite-element method (GLFEM) is the availability of global functions for the given problem. The role and mathematical requirements of these global functions in a GLFEM analysis of localized stress states in prismatic structures are discussed. A method is described for determining these global functions. Underlying this method are theorems due to Toupin and Knowles on strain energy decay rates, which are related to a quantitative expression of Saint-Venant's principle. It is mentioned that a mathematically complete set of global functions can be generated, so that any arbitrary interface condition between the finite element and global subregions can be represented. Convergence to the true behavior can be achieved with increasing global functions and finite-element degrees of freedom. Specific attention is devoted to mathematically two-dimensional and three-dimensional prismatic structures. Comments are offered on the GLFEM analysis of NASA flat panel with a discontinuous stiffener. Methods for determining global functions for other effects are also indicated, such as steady-state dynamics and bodies under initial stress.

  5. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    PubMed

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  6. Hibernation, stress, intestinal functions, and catecholoamine turnover rate in hamsters and gerbils

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1973-01-01

    Bioenergetic studies on hamsters during depressed metabolic states are reported. External support of blood glucose extended the survival times of hibernating animals. Radioresistance increased in hibernating as well as in hypothermic hamsters. Marked changes in hamster catecholamine turnover rates were observed during acclimatization to high temperature stress. High radioresistance levels of the gerbil gastrointestinal system were attributed in part to the ability of the gut to maintain functional integrity.

  7. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress.

    PubMed

    León, José; Castillo, Mari Cruz; Coego, Alberto; Lozano-Juste, Jorge; Mir, Ricardo

    2014-03-01

    The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.

  8. Family stress and adolescents' cognitive functioning: sleep as a protective factor.

    PubMed

    El-Sheikh, Mona; Tu, Kelly M; Erath, Stephen A; Buckhalt, Joseph A

    2014-12-01

    We examined 2 sleep-wake parameters as moderators of the associations between exposure to family stressors and adolescent cognitive functioning. Participants were 252 school-recruited adolescents (M = 15.79 years; 66% European American, 34% African American). Youths reported on 3 dimensions of family stress: marital conflict, harsh parenting, and parental psychological control. Cognitive functioning was indexed through performance on the Woodcock-Johnson III Tests of Cognitive Abilities. Sleep minutes and efficiency were measured objectively using actigraphy. Toward identifying unique effects, path models controlled for 2 family stress variables while estimating the third. Analyses revealed that sleep efficiency moderated the associations between negative parenting (harsh parenting and parental psychological control) and adolescents' cognitive functioning. The highest level of cognitive performance was predicted for adolescents with higher levels of sleep efficiency in conjunction with lower levels of either harsh parenting or psychological control. The effects of sleep were more pronounced at lower levels of negative parenting, in which adolescents with higher sleep efficiency performed better than their counterparts with poorer sleep. At higher levels of either harsh parenting or psychological control, similar levels of cognitive performance were observed regardless of sleep. Results are discussed in comparison with other recent studies on interrelations among family stress, sleep, and cognitive performance in childhood and adolescence.

  9. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress

    PubMed Central

    Jung, Young Jun; Melencion, Sarah Mae Boyles; Lee, Eun Seon; Park, Joung Hun; Alinapon, Cresilda Vergara; Oh, Hun Taek; Yun, Dae-Jin; Chi, Yong Hun; Lee, Sang Yeol

    2015-01-01

    Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function. PMID:26734042

  10. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  11. Prenatal stress, moderate fetal alcohol, and dopamine system function in rhesus monkeys.

    PubMed

    Roberts, A D; Moore, C F; DeJesus, O T; Barnhart, T E; Larson, J A; Mukherjee, J; Nickles, R J; Schueller, M J; Shelton, S E; Schneider, M L

    2004-01-01

    This study examined the striatal dopamine system integrity and associated behavior in 5- to 7-year-old rhesus monkeys born from mothers that experienced stress and/or consumed moderate levels of alcohol during pregnancy. Thirty-one young adult rhesus monkeys were derived from females randomly assigned to one of four groups: (1) control group that consumed isocaloric sucrose solution throughout gestation; (2) stress group that experienced prenatal stress (10-min removal from home cage and exposure to three random loud noise bursts, gestational days 90 through 145); (3) alcohol group that consumed alcohol (0.6 g/kg/day) throughout gestation; or (4) combined alcohol plus stress group that received both treatments. The subjects were assessed for striatal dopamine system function using positron emission tomography (PET), in which the dopamine (DA)-rich striatum was evaluated in separate scans for the trapping of [(18)F]-Fallypride (FAL) and 6-[(18)F]fluoro-m-tyrosine (FMT) to assess dopamine D2 receptor binding potential (BP) and DA synthesis via dopa decarboxylase activity, respectively. Subjects were previously assessed for non-matching-to-sample (NMS) task acquisition, with ratings of behavioral inhibition, stereotypies, and activity made after each NMS testing session. Subjects from prenatal stress conditions (Groups 2 and 4) showed an increase in the ratio of striatal dopamine D2 receptor BP and DA synthesis compared to controls (Group 1). An increase in the radiotracer distribution volume ratios (DVRs), which is used to evaluate the balance between striatal DA synthesis and receptor availability, respectively, was significantly correlated with less behavioral inhibition. The latter supports a hypothesis linking striatal function to behavioral inhibitory control.

  12. Oxidative Stress Function in Women over 40 Years of Age, Considering Their Lifestyle

    PubMed Central

    Gonçalves Mota, Maria Paula; Santos, Zirlene; Soares, Jorge; Pereira, Ana; Fonseca, Sandra; Peixoto, Francisco; Gaivão, Isabel; Oliveira, Maria

    2017-01-01

    Aging is dependent on biological processes that determine the aging of the organism at the cellular level. The Oxidative Stress Theory of Aging might explain some of the age-related changes in cell macromolecules. Moreover, exposome and lifestyle may also induce changes in cell damage induced by oxidative stress. The aim of the present study was to analyze the related redox changes in lymphocyte function of healthy women over 40 years old. Three groups: younger (YG: 40–49 years), middle aged (MAG: 50–59 years), and older (OG: ≥60 years) were evaluated on anthropometric variables, blood pressure, cardiovascular fitness, lifestyle habits, perceived stress, DNA damage, malondialdehyde, catalase activity, and total antioxidant capacity. Physical activity and cardiovascular fitness were significantly higher in YG and MAG as compared to the OG. Systolic blood pressure increased significantly with group age. Frequency and total amount of alcohol intake were lower in the OG and higher in the MAG. No significant differences were observed between the three groups in oxidative stress parameters. Only alcohol consumption was associated with the higher DNA FPG-sensitive sites, and only in the YG (p < 0.05). Healthy lifestyle is critical to avoiding major ailments associated with aging. This may be inferred from the lack of significant differences in the various oxidative stress parameters measured in the healthy women over the age of 40 who took part in the study. Conscious lifestyle behaviors (decrease in alcohol and smoking habits) could have impaired the expected age-related oxidative stress increase. PMID:28360887

  13. The influence of shift work on cognitive functions and oxidative stress.

    PubMed

    Özdemir, Pınar Güzel; Selvi, Yavuz; Özkol, Halil; Aydın, Adem; Tülüce, Yasin; Boysan, Murat; Beşiroğlu, Lütfullah

    2013-12-30

    Shift work influences health, performance, activity, and social relationships, and it causes impairment in cognitive functions. In this study, we investigated the effects of shift work on participants' cognitive functions in terms of memory, attention, and learning, and we measured the effects on oxidative stress. Additionally, we investigated whether there were significant relationships between cognitive functions and whole blood oxidant/antioxidant status of participants. A total of 90 health care workers participated in the study, of whom 45 subjects were night-shift workers. Neuropsychological tests were administered to the participants to assess cognitive function, and blood samples were taken to detect total antioxidant capacity and total oxidant status at 08:00. Differences in anxiety, depression, and chronotype characteristics between shift work groups were not significant. Shift workers achieved significantly lower scores on verbal memory, attention-concentration, and the digit span forward sub-scales of the Wechsler Memory Scale-Revised (WMS-R), as well as on the immediate memory and total learning sub-scales of the Auditory Verbal Learning Test (AVLT). Oxidative stress parameters were significantly associated with some types of cognitive function, including attention-concentration, recognition, and long-term memory. These findings suggest that night shift work may result in significantly poorer cognitive performance, particularly working memory.

  14. Impact of real-world stress on cardiorespiratory resting function during sleep in daily life.

    PubMed

    Sakakibara, Masahito; Kanematsu, Takayoshi; Yasuma, Fumihiko; Hayano, Junichiro

    2008-07-01

    To examine if real-world stress affects the restorative function of sleep in daily life, we studied the impact of college examinations on cardiorespiratory resting function during sleep. In healthy college students, at 1 week before, the day before, and the first day of semester-end examinations pulse wave signal during sleep at their own residences was measured continuously with a wristband-shaped wireless transdermal photoelectric sensor. The cardiorespiratory resting function was assessed quantitatively as the power of a high-frequency component of pulse rate variability, a surrogate measure of respiratory sinus arrhythmia. Changes in anxiety were also evaluated with a state anxiety questionnaire. On the day before the examinations, compared with 1 week before, the score of state anxiety increased and the HF component of pulse rate variability decreased. Among college students, anxiety about college examinations may be accompanied by suppression of the cardiorespiratory resting function during sleep.

  15. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses.

    PubMed

    Zhu, Di; Wang, Haichang; Zhang, Jinglong; Zhang, Xiaotian; Xin, Chao; Zhang, Fuyang; Lee, Yan; Zhang, Ling; Lian, Kun; Yan, Wenjun; Ma, Xinliang; Liu, Yi; Tao, Ling

    2015-10-01

    Vascular complications are the major causes of death in patients with diabetes, and endothelial dysfunction is the earliest event in vascular complications of diabetes. It has been reported that plasma irisin level is significantly reduced in patients with type 2 diabetic patients. The present study aimed to investigate whether irisin improved endothelial function in type 2 diabetes as well as the underlying mechanisms. The type 2 diabetes model was established by feeding C57BL/6 mice with high-fat diet. The type 2 diabetic mice exhibited reduced serum irisin level and impaired endothelial function. Irisin treatment (0.5 mg/kg/d) for two weeks improved vascular function based on the evaluation of endothelium-dependent vasorelaxation and p-VASP levels. To investigate the direct endothelial protective effects of irisin, diabetic aortic segments were incubated with irisin (1 μg/ml) ex vivo. Exposure to irisin improved endothelium-dependent vasorelaxation of diabetic aortas. Mechanically, the diabetic aortic segments exhibited increased oxidative/nitrative stresses. Irisin reduced the diabetes-induced oxidative/nitrative stresses evidenced by reducing overproduction of superoxide and peroxynitrite, and down-regulation of iNOS and gp91(phox). To further investigate the protective effects of irisin on endothelial cells and the underlying mechanisms, human umbilical vein endothelial cells (HUVECs) cultured in high-glucose/high-fat (HG/HF) medium were pre-incubated with irisin. Irisin (1 μg/ml) reduced the oxidative/nitrative stresses and apoptosis induced by HG/HF in HUVECs probably via inhibiting activation of PKC-β/NADPH oxidase and NF-κB/iNOS pathways. Taken together, irisin alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses through inhibiting signaling pathways implicating PKC-β/NADPH oxidase and NF-κB/iNOS, suggesting that irisin may be a promising molecule for the treatment of vascular complications of

  16. Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress.

    PubMed

    Tai-Nagara, Ikue; Matsuoka, Sahoko; Ariga, Hiroyoshi; Suda, Toshio

    2014-01-02

    Hematopoietic stem cells (HSCs) maintain stemness through various mechanisms that protect against stressful conditions. Heat shock proteins (HSPs) preserve cell homeostasis during stress responses through protein quality control, suggesting that HSPs may safeguard HSCs against numerous traumas. Here, we show that mortalin, a mitochondrial HSP, plays an essential role in maintaining HSC properties by regulating oxidative stress. Mortalin is primarily localized in hematopoietic stem and progenitor cell (HSPC) compartments. In this study, the inhibition of mortalin function caused abnormal reactive oxygen species (ROS) elevation in HSCs and reduced HSC numbers. Knockdown (KD) of mortalin in HSPCs impaired their ability to repopulate and form colonies. Moreover, mortalin-KD HSCs could not maintain quiescence and showed severe downregulation of cyclin-dependent kinase inhibitor- and antioxidant-related genes. Conversely, HSCs that overexpressed mortalin maintained a high reconstitution capacity and low ROS levels. Furthermore, DJ-1, one of the genes responsible for Parkinson's disease, directly bound to mortalin and acted as a negative ROS regulator. Using DJ-1-deficient mice, we demonstrated that mortalin and DJ-1 coordinately maintain normal ROS levels and HSC numbers. Collectively, these results indicate that the mortalin/DJ-1 complex guards against mitochondrial oxidative stress and is indispensable for the maintenance of HSCs.

  17. Structural and Functional Characterization of Noncoding Repetitive RNAs Transcribed in Stressed Human CellsD⃞

    PubMed Central

    Valgardsdottir, Rut; Chiodi, Ilaria; Giordano, Manuela; Cobianchi, Fabio; Riva, Silvano; Biamonti, Giuseppe

    2005-01-01

    Thermal and chemical stresses induce the formation in human cells of novel and transient nuclear structures called nuclear stress bodies (nSBs). These contain heat shock factor 1 (HSF-1) and a specific subset of pre-mRNA processing factors. Nuclear stress bodies are assembled on specific pericentromeric heterochromatic domains containing satellite III (SatIII) DNA. In response to stress, these domains change their epigenetic status from heterochromatin to euchromatin and are transcribed in poly-adenylated RNAs that remain associated with nSBs. In this article, we describe the cloning, sequencing, and functional characterization of these transcripts. They are composed of SatIII repeats and originate from the transcription of multiple sites within the SatIII arrays. Interestingly, the level of SatIII RNAs can be down-regulated both by antisense oligonucleotides and small interfering RNAs (siRNA). Knockdown of SatIII RNA by siRNAs requires the activity of Argonaute 2, a component of the RNA-induced silencing complex. Down-regulation of satellite III RNAs significantly affects the recruitment of RNA processing factors to nSBs without altering the association of HSF-1 with these structures nor the presence of acetylated histones within nSBs. Thus, satellite III RNAs have a major role in the formation of nSBs. PMID:15788562

  18. Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli.

    PubMed

    Jovanovic, Goran; Lloyd, Louise J; Stumpf, Michael P H; Mayhew, Antony J; Buck, Martin

    2006-07-28

    The phage shock protein (Psp) F regulon response in Escherichia coli is thought to be induced by impaired inner membrane integrity and an associated decrease in proton motive force (pmf). Mechanisms by which the Psp system detects the stress signal and responds have so far remained undetermined. Here we demonstrate that PspA and PspG directly confront a variety of inducing stimuli by switching the cell to anaerobic respiration and fermentation and by down-regulating motility, thereby subtly adjusting and maintaining energy usage and pmf. Additionally, PspG controls iron usage. We show that the Psp-inducing protein IV secretin stress, in the absence of Psp proteins, decreases the pmf in an ArcB-dependent manner and that ArcB is required for amplifying and transducing the stress signal to the PspF regulon. The requirement of the ArcB signal transduction protein for induction of psp provides clear evidence for a direct link between the physiological redox state of the cell, the electron transport chain, and induction of the Psp response. Under normal growth conditions PspA and PspD control the level of activity of ArcB/ArcA system that senses the redox/metabolic state of the cell, whereas under stress conditions PspA, PspD, and PspG deliver their effector functions at least in part by activating ArcB/ArcA through positive feedback.

  19. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    PubMed Central

    Shelden, Megan C.; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance. PMID:23717314

  20. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

  1. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells

    PubMed Central

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-01-01

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506

  2. Effects of mechanical stresses on sperm function and fertilization rate in mice.

    PubMed

    Shi, Xiao; Wang, Ting; Qiu, Zhuo Lin; Li, Ke; Li, Liu; Chan, Carol Pui Shan; Chan, Si Mei; Li, Tian-Chiu; Quan, Song

    2016-01-01

    In this study, we investigated whether any of the observed changes in mouse sperm function tests secondary to mechanical stresses (centrifugation and pipetting) correlate with sperm fertilization ability. Chinese Kunming mice were used as sperm and oocyte donors. Sperm samples were allocated evenly into centrifugation, pipette, and control groups. Sperm plasma membrane integrity (PMI), mitochondrial membrane permeability (MMP), baseline and stimulated intracellular ROS, and sperm fertilization ability were measured by hypo-osmotic swelling, flow cytometry, and fertilization tests. Parallel studies were conducted and all tests were repeated six times. Our results showed that after centrifugation, the progressive motility, average path velocity, and overall sperm motility and PMI decreased significantly (p < 0.05). In addition, the MMP level decreased significantly in viable sperm when the centrifugation condition reached 1,400 g × 15 minutes (p < 0.05). When pipetting was performed two or more times, progressive motility, average path velocity, and overall sperm motility decreased significantly (p < 0.05); when it was performed four or more times, sperm membrane integrity and intracellular basal ROS level of viable sperm was also significantly decreased (p < 0.05). In conclusion, various mechanical stresses seem to affect sperm function, however this does not appear to alter fertilization rate. Laboratory handling steps should be minimized to avoid unnecessary mechanical stresses being applied to sperm samples.

  3. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  4. Maternal stress alters endocrine function of the feto-placental unit in rats.

    PubMed

    Mairesse, Jérôme; Lesage, Jean; Breton, Christophe; Bréant, Bernadette; Hahn, Tom; Darnaudéry, Muriel; Dickson, Suzanne L; Seckl, Jonathan; Blondeau, Bertrand; Vieau, Didier; Maccari, Stefania; Viltart, Odile

    2007-06-01

    Prenatal stress (PS) can cause early and long-term developmental effects resulting in part from altered maternal and/or fetal glucocorticoid exposure. The aim of the present study was to assess the impact of chronic restraint stress during late gestation on feto-placental unit physiology and function in embryonic (E) day 21 male rat fetuses. Chronic stress decreased body weight gain and food intake of the dams and increased their adrenal weight. In the placenta of PS rats, the expression of glucose transporter type 1 (GLUT1) was decreased, whereas GLUT3 and GLUT4 were slightly increased. Moreover, placental expression and activity of the glucocorticoid "barrier" enzyme 11beta-hydroxysteroid dehydrogenase type 2 was strongly reduced. At E21, PS fetuses exhibited decreased body, adrenal pancreas, and testis weights. These alterations were associated with reduced pancreatic beta-cell mass, plasma levels of glucose, growth hormone, and ACTH, whereas corticosterone, insulin, IGF-1, and CBG levels were unaffected. These data emphasize the impact of PS on both fetal growth and endocrine function as well as on placental physiology, suggesting that PS could program processes implied in adult biology and pathophysiology.

  5. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    SciTech Connect

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-04-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H{sub 2}O{sub 2}, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  6. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder

    PubMed Central

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-01-01

    Abstract Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD. PMID:27399097

  7. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-07-01

    Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD.

  8. The effects of heat stress on physical functioning in persons with multiple sclerosis.

    PubMed

    Romberg, Anders; Ikonen, Anna; Ruutiainen, Juhani; Virtanen, Arja; Hämäläinen, Päivi

    2012-08-15

    Heat sensitivity is a well-recognised feature in multiple sclerosis (MS). However, little is known about how heat affects physical performance in persons with MS. The objective of the study was to evaluate the effects of short-term heat stress on physical functioning in persons with MS. Twenty-three heat-sensitive MS subjects and 19 healthy controls participated. Moderate heat exposure took place in a dry Finnish sauna. Measures of upper and lower extremity function, static and dynamic balance, and walking capacity were applied. Core body temperature was measured by a telemetric physiological monitoring system. Assessments were conducted before, immediately, 1 hour, and 1 day after the heat exposure. Subjects with MS showed a significantly (P=0.002) higher core body temperature than the controls following the heat stress. Performances in walking (P<0.001), chair rise (P=0.005) and functional reach (P=0.04) were poorer in MS subjects than in controls immediately after the heat. No prolonged heat effects were observed. An increase in ambient temperature causes a higher core body temperature rise in MS subjects than in healthy controls. This rise in temperature is associated with acute, but not prolonged detrimental effects on physical functioning.

  9. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-06-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis - based on cellular components and biological process GO terms - was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1].

  10. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress.

  11. The plant heat stress transcription factor (Hsf) family: structure, function and evolution.

    PubMed

    Scharf, Klaus-Dieter; Berberich, Thomas; Ebersberger, Ingo; Nover, Lutz

    2012-02-01

    Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  12. Stress-Related Cognitive Interference Predicts Cognitive Function in Old Age

    PubMed Central

    Stawski, Robert S.; Sliwinski, Martin J.; Smyth, Joshua M.; University, Syracuse

    2010-01-01

    Both subjective distress and cognitive interference have been proposed as mechanisms underlying the negative effects of stress on cognition. Studies of aging have shown that distress is associated with lower cognitive performance, but none have examined the effects of cognitive interference. One hundred eleven older adults (Mage = 80) completed measures of working memory, processing speed, and episodic memory as well as self-report measures of subjective distress and cognitive interference. Cognitive interference was strongly associated with poorer performance on all 3 cognitive constructs, whereas distress was only modestly associated with lower working memory. The results suggest that cognitive process related to stress is an important predictor of cognitive function in advanced age. PMID:16953715

  13. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.

    PubMed

    Essemine, Jemâa; Govindachary, Sridharan; Ammar, Saïda; Bouzid, Sadok; Carpentier, Robert

    2011-09-01

    Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5min) mild (40°C) or strong (44°C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress.

  14. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses

    PubMed Central

    Raikwar, Shailendra; Srivastava, Vineet K.; Gill, Sarvajeet S.; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression. PMID:26734018

  15. Functional capacities of blood neurtrophils are influenced by both acute and chronic dexamethasone stress models in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of acute and chronic stress models on the functional capacity of blood neutrophils in beef steers. Steers (N=32; 209 +/- 8 kg) were blocked by BW and assigned to 1 of 3 treatments: 1) Control (CON), no dexamethasone (DEX); 2) Chronic stress (CHR), 0.5 mg/kg BW DEX...

  16. An Indirect Effects Model of the Association between Poverty and Child Functioning: The Role of Children's Poverty-Related Stress

    ERIC Educational Resources Information Center

    Wadsworth, Martha E.; Raviv, Tali; Reinhard, Christine; Wolff, Brian; Santiago, Catherine DeCarlo; Einhorn, Lindsey

    2008-01-01

    The authors tested a theoretical model positing that poverty has an indirect effect on child and adolescent functioning through children's poverty-related stress. Path analyses with a multiethnic sample of 164 children aged 6 to 18 revealed that the stress associated with poverty, such as economic strain, family conflict, violence/trauma, and…

  17. Relief of Oxidative Stress Using Curcumin and Glutathione Functionalized ZnO Nanoparticles in HEK-293 Cell Line.

    PubMed

    Kumar, Amit; Zafaryab, Md; Umar, Ahmad; Rizvi, M M A; Fouad, H; Ansari, Z A; Ansari, S G

    2015-11-01

    To elucidate the effect of zinc oxide nanoparticles (ZnO-NPs) with different surface modifications in relieving the oxidative stress in cultured human embryonic kidney cells (HEK-293) following investigation was performed. Oxidative stress was artificially induced by hydrogen peroxide in HEK-293 cell culture and its management was studied. Alkyl amines modified ZnO-NPs with curcumin and reduced glutathione (GSH) functionalization was used in managing oxidative stress and had shown promising results. ZnO-NPs used in this study were synthesized via non-aqueous sol-gel method and FESEM characterisation showed them of spherical shape of about 20-50 nm size with amine, curcumin and GSH functionalization. UV-visible and FTIR spectroscopic characterizations confirmed functionalization of ZnO-NPs. Decrease in oxidative stress was found with the dose-dependent culture of HEK-293 cells with these functionalized ZnO-NPs. Cell viability and morphology, as observed using AFM and inverted microscope, was retained with the prescribed dosages of the functionalized nanoparticles while at higher dosages they caused cytotoxicity and death. Diethylamine (DEA) modified ZnO-NPs and their functionalization with GSH and curcumin were found more effective in managing oxidative stress in cells. Present study could help in designing economical and bio-compatible functionalized non-toxic nanoparticles designed for managing oxidative stress leading to possible therapeutical and medicinal uses.

  18. Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators.

    PubMed

    Yang, Jing; Cao, Qian; Hu, Wei-Liang; Ye, Rui-Rong; He, Liang; Ji, Liang-Nian; Qin, Peter Z; Mao, Zong-Wan

    2017-01-03

    New TEMPO-functionalized Ru(ii) polypyridyl complexes were synthesized as efficient theranostic photosensitizers for cancer treatment. Interestingly, due to the presence of a redox sensitive TEMPO moiety, an enhancement in the intracellular fluorescence of TEMPO-functionalized Ru(ii) complexes was observed during photodynamic treatment in both confocal microscopy and flow cytometry. This can be explained by the conversion of the TEMPO radical moiety to diamagnetic non-radical species in cells upon PDT-induced oxidative stress. To the best of our knowledge this is the first ruthenium complex capable of simultaneously inducing and monitoring the oxidative stress. The tethered TEMPO moiety decreased the inherent dark-cytotoxicity and increased the photo-toxicity simultaneously, both of which contributed to the greatly improved photodynamic therapy (PDT) efficacy, ultimately resulting in cancer cell apoptosis. The phototoxicity index value for TEMPO-functionalized Ru(ii) complexes was selective towards cancer cell lines (280.5 for HeLa cells vs. 30.2 for LO2 cells) and ca. 40-fold higher than that for TEMPO-free Ru(ii) analogues (6.7 for HeLa cells). The main contributor for such a greatly enhanced PDT efficacy was the effect of the TEMPO moiety on the cellular uptake and intracellular ROS levels. We therefore demonstrate that the combination of TEMPO with the photosensitizers may be an emerging strategy to develop novel photosensitizer-based theranostic platforms, which can induce and monitor the PDT response simultaneously.

  19. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol.

    PubMed

    Shields, Grant S; Sazma, Matthew A; Yonelinas, Andrew P

    2016-09-01

    Core executive functions such as working memory, inhibition, and cognitive flexibility are integral to daily life. A growing body of research has suggested that acute stress may impair core executive functions. However, there are a number of inconsistencies in the literature, leading to uncertainty about how or even if acute stress influences core executive functions. We addressed this by conducting a meta-analysis of acute stress effects on working memory, inhibition, and cognitive flexibility. We found that stress impaired working memory and cognitive flexibility, whereas it had nuanced effects on inhibition. Many of these effects were moderated by other variables, such as sex. In addition, we compared effects of acute stress on core executive functions to effects of cortisol administration and found some striking differences. Our findings indicate that stress works through mechanisms aside from or in addition to cortisol to produce a state characterized by more reactive processing of salient stimuli but greater control over actions. We conclude by highlighting some important future directions for stress and executive function research.

  20. Catecholamine responses to virtual combat: implications for post-traumatic stress and dimensions of functioning

    PubMed Central

    Highland, Krista B.; Costanzo, Michelle E.; Jovanovic, Tanja; Norrholm, Seth D.; Ndiongue, Rochelle B.; Reinhardt, Brian J.; Rothbaum, Barbara; Rizzo, Albert A.; Roy, Michael J.

    2015-01-01

    Posttraumatic stress disorder (PTSD) symptoms can result in functional impairment among service members (SMs), even in those without a clinical diagnosis. The variability in outcomes may be related to underlying catecholamine mechanisms. Individuals with PTSD tend to have elevated basal catecholamine levels, though less is known regarding catecholamine responses to trauma-related stimuli. We assessed whether catecholamine responses to a virtual combat environment impact the relationship between PTSD symptom clusters and elements of functioning. Eighty-seven clinically healthy SMs, within 2 months after deployment to Iraq or Afghanistan, completed self-report measures, viewed virtual-reality (VR) combat sequences, and had sequential blood draws. Norepinephrine responses to VR combat exposure moderated the relationship between avoidance symptoms and scales of functioning including physical functioning, physical-role functioning, and vitality. Among those with high levels of avoidance, norepinephrine change was inversely associated with functional status, whereas a positive correlation was observed for those with low levels of avoidance. Our findings represent a novel use of a virtual environment to display combat-related stimuli to returning SMs to elucidate mind-body connections inherent in their responses. The insight gained improves our understanding of post-deployment symptoms and quality of life in SMs and may facilitate enhancements in treatment. Further research is needed to validate these findings in other populations and to define the implications for treatment effectiveness. PMID:25852586

  1. Rumination and self-reflection in stress narratives and relations to psychological functioning.

    PubMed

    Marin, Kelly A; Rotondo, Elena K

    2017-01-01

    The longitudinal study aims to expand what is known about the costs and benefits of narrating stressful experiences by exploring changes in rumination within the narrative process and comparing it to changes in self-reflection. Rumination (e.g., brooding, self-criticism, and negative emotions) and self-reflection were measured in stress narratives of 56 college students. There were several goals: (1) examine changes in narrative rumination and narrative self-reflection over 3 days of writing, (2) examine the relations among the changes in narrative rumination variables and narrative self-reflection and (3) examine how changes in narrative rumination and narrative self-reflection relate to multiple measures of psychological functioning. Overall, individuals increased self-reflection over the 3-day writing task. Individuals who increased ruminative brooding across the 3 days of writing showed lower ego identity development (short term and long term) and self-esteem (short term), while increased self-criticism was positively correlated with identity distress (short term). Implications of the different aspects of narrative rumination, specifically in the context of stressful experiences, are discussed.

  2. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management.

    PubMed

    Singh, Amarjeet; Pandey, Amita; Srivastava, Ashish K; Tran, Lam-Son Phan; Pandey, Girdhar K

    2016-12-01

    Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. Type 2C PPs (PP2Cs) represent the major group of PPs in plants, and recent discovery of novel abscisic acid (ABA) receptors (ABARs) has placed the PP2Cs at the center stage of the major signaling pathway regulating plant responses to stresses and plant development. Several studies have provided deep insight into vital roles of the PP2Cs in various plant processes. Global analyses of the PP2C gene family in model plants have contributed to our understanding of their genomic diversity and conservation, across plant species. In this review, we discuss the genomic and structural accounts of PP2Cs in plants. Recent advancements in their interaction paradigm with ABARs and sucrose nonfermenting related kinases 2 (SnRK2s) in ABA signaling are also highlighted. In addition, expression analyses and important roles of PP2Cs in the regulation of biotic and abiotic stress responses, potassium (K(+)) deficiency signaling, plant immunity and development are elaborated. Knowledge of functional roles of specific PP2Cs could be exploited for the genetic manipulation of crop plants. Genetic engineering using PP2C genes could provide great impetus in the agricultural biotechnology sector in terms of imparting desired traits, including a higher degree of stress tolerance and productivity without a yield penalty.

  3. Transcriptomic and functional analysis of NaCl-induced stress in Enterococcus faecalis.

    PubMed

    Solheim, Margrete; La Rosa, Sabina Leanti; Mathisen, Thomas; Snipen, Lars G; Nes, Ingolf F; Brede, Dag Anders

    2014-01-01

    The robust physiology of Enterococcus faecalis facilitates tolerance to various stresses. We here report the transcriptional response of E. faecalis V583 to growth in the presence of 6.5% NaCl. Among the early responses observed was an immediate down-regulation of mscL, accompanied by an up-regulation of genes predicted to be involved in uptake of extracellular potassium and glycine betaine. The high NaCl concentration also induced expression of chaperons and cell envelope related traits, such as the enterococcal polysaccharide antigen (epa) locus. Functional genetic analysis revealed reduced salt stress resistance in both epaB and epaE mutants. The reduced salt resistance phenotype associated with the epaB mutant was restored by complementation, hence demonstrating a role of Epa in the physiological robustness of E. faecalis. Furthermore, we demonstrate that Epa confers increased resistance towards multiple cell envelope stress-inducing factors. Accordingly, these findings delineate a potential link between the robust nature of E. faecalis and its ability to perform as a human pathogen, and provide a new perspective on the mechanisms by which Epa contributes to virulence. Notably, the high NaCl concentration also resulted in strict repression of the gelE-sprE operon and impaired gelatinase activity. We demonstrate that NaCl antagonize the GBAP-pheromone dependent induction in a concentration dependent manner.

  4. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria.

    PubMed

    Amund, O D

    2016-09-01

    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.

  5. Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk.

    PubMed

    Gathmann, Bettina; Schulte, Frank P; Maderwald, Stefan; Pawlikowski, Mirko; Starcke, Katrin; Schäfer, Lena C; Schöler, Tobias; Wolf, Oliver T; Brand, Matthias

    2014-03-01

    Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.

  6. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  7. Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism.

    PubMed

    Lau, Yeh Siang; Tian, Xiao Yu; Huang, Yu; Murugan, Dharmani; Achike, Francis I; Mustafa, Mohd Rais

    2013-02-01

    Increased oxidative stress is involved in the pathogenesis and progression of diabetes. Antioxidants are therapeutically beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1,10-dimethoxyaporphine) is a major alkaloid present in the leaves and bark of the boldo tree (Peumus boldus Molina), with known an antioxidant activity. This study examined the protective effects of boldine against high glucose-induced oxidative stress in rat aortic endothelial cells (RAEC) and its mechanisms of vasoprotection related to diabetic endothelial dysfunction. In RAEC exposed to high glucose (30 mM) for 48 h, pre-treatment with boldine reduced the elevated ROS and nitrotyrosine formation, and preserved nitric oxide (NO) production. Pre-incubation with β-NAPDH reduced the acetylcholine-induced endothelium-dependent relaxation; this attenuation was reversed by boldine. Compared with control, endothelium-dependent relaxation in the aortas of streptozotocin (STZ)-treated diabetic rats was significantly improved by both acute (1 μM, 30 min) and chronic (20mg/kg/daily, i.p., 7 days) treatment with boldine. Intracellular superoxide and peroxynitrite formation measured by DHE fluorescence or chemiluminescence assay were higher in sections of aortic rings from diabetic rats compared with control. Chronic boldine treatment normalized ROS over-production in the diabetic group and this correlated with reduction of NAD(P)H oxidase subunits, NOX2 and p47(phox). The present study shows that boldine reversed the increased ROS formation in high glucose-treated endothelial cells and restored endothelial function in STZ-induced diabetes by inhibiting oxidative stress and thus increasing NO bioavailability.

  8. The effects of osmotic stress on the structure and function of the cell nucleus.

    PubMed

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.

  9. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions

    PubMed Central

    Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants. PMID:27135326

  10. Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system.

    PubMed

    Saito, Atsushi

    2014-01-01

    Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a basic leucine zipper (bZIP) domain. These membrane-bound bZIP transcription factors include OASIS, BBF2H7 CREBH, CREB4 and Luman, and are collectively referred to as OASIS family members. Despite their structural similarities with ATF6, differences in activating stimuli and tissue distribution indicate specialized functions of each member on regulating UPR signaling in specific organs and tissues. One of them, OASIS, is expressed preferentially in astrocytes in the central nervous system (CNS). OASIS temporally regulates the differentiation from neural precursor cells into astrocytes to promote the expression of Glial Cell Missing 1 through dynamic interactions among OASIS family members followed by accelerating demethylation of the Gfap promoter. This review is a summary of our current understanding of the physiological functions of OASIS in the CNS.

  11. Myocardial function improved by electromagnetic field induction of stress protein hsp70.

    PubMed

    George, Isaac; Geddis, Matthew S; Lill, Zachary; Lin, Hana; Gomez, Teodoro; Blank, Martin; Oz, Mehmet C; Goodman, Reba

    2008-09-01

    Studies on myocardial function have shown that hsp70, stimulated by an increase in temperature, leads to improved survival following ischemia-reperfusion (I-R). Low frequency electromagnetic fields (EMFs) also induce the stress protein hsp70, but without elevating temperature. We have examined the hemodynamic changes in concert with EMF pre-conditioning and the induction of hsp70 to determine whether improved myocardial function occurs following I-R injury in Sprague-Dawley rats. Animals were exposed to EMF (60 Hz, 8 microT) for 30 min prior to I-R. Ischemia was then induced by ligation of left anterior descending coronary artery (LAD) for 30 min, followed by 30 min of reperfusion. Blood and heart tissue levels for hsp70 were determined by Western blot and RNA transcription by rtPCR. Significant upregulation of the HSP70 gene and increased hsp70 levels were measured in response to EMF pre-exposures. Invasive hemodynamics, as measured using a volume conductance catheter, demonstrated significant recovery of systolic contractile function after 30 min of reperfusion following EMF exposure. Additionally, isovolemic relaxation, a measure of ventricular diastolic function, was markedly improved in EMF-treated animals. In conclusion, non-invasive EMF induction of hsp70 preserved myocardial function and has the potential to improve tolerance to ischemic injury.

  12. Israeli adolescents with ongoing exposure to terrorism: suicidal ideation, posttraumatic stress disorder, and functional impairment.

    PubMed

    Chemtob, Claude M; Pat-Horenczyk, Ruth; Madan, Anita; Pitman, Seth R; Wang, Yanping; Doppelt, Osnat; Burns, Kelly Dugan; Abramovitz, Robert; Brom, Daniel

    2011-12-01

    In this study, we examined the relationships among terrorism exposure, functional impairment, suicidal ideation, and probable partial or full posttraumatic stress disorder (PTSD) from exposure to terrorism in adolescents continuously exposed to this threat in Israel. A convenience sample of 2,094 students, aged 12 to 18, was drawn from 10 Israeli secondary schools. In terms of demographic factors, older age was associated with increased risk for suicidal ideation, OR = 1.33, 95% CI [1.09, 1.62], p < .01, but was protective against probable partial or full PTSD, OR = 0.72, 95% CI [0.54, 0.95], p < .05; female gender was associated with greater likelihood of probable partial or full PTSD, OR = 1.57, 95% CI [1.02, 2.40], p < .05. Exposure to trauma due to terrorism was associated with increased risk for each of the measured outcomes including probable partial or full PTSD, functional impairment, and suicidal ideation. When age, gender, level of exposure to terrorism, probable partial or full PTSD, and functional impairment were examined together, only terrorism exposure and functional impairment were associated with suicidal ideation. This study underscores the importance and feasibility of examining exposure to terrorism and functional impairment as risk factors for suicidal ideation.

  13. Sexual function before and after non-surgical treatment for stress urinary incontinence

    PubMed Central

    Handa, Victoria L.; Whitcomb, Emily; Weidner, Alison C.; Nygaard, Ingrid; Brubaker, Linda; Bradley, Catherine S.; Paraiso, Marie Fidela R.; Schaffer, Joseph; Zyczynski, Halina M.; Zhang, Min; Richter, Holly E.

    2011-01-01

    Objectives (1) to describe sexual function in women seeking treatment of stress urinary incontinence (SUI); (2) to compare the impact on sexual function of three SUI treatments; and (3) to investigate whether non-surgical treatment of SUI is associated with improved sexual function. Methods Women with SUI were randomized to continence pessary, behavioral therapy (pelvic floor muscle training and continence strategies), or combination therapy. Sexual function was assessed at baseline and 3-months using short forms of the Pelvic Organ Prolapse-Urinary Incontinence Sexual Function Questionnaire (PISQ-12) and the Personal Experiences Questionnaire (SPEQ). Successful treatment of SUI was assessed with a patient global impression of improvement. ANOVA was used to compare scores between groups. Results At baseline, sexual function was worse among women with mixed incontinence compared to those with pure SUI. After therapy, successful treatment of SUI was associated with greater improvement in PISQ-12 score (2.26 ± 3.24 versus 0.48 ± 3.76, p=0.0007), greater improvement in incontinence with sexual activity (0.45 ± 0.84 versus 0.01 ± 0.71, p=0.0002), and greater reduction in restriction in sexual activity related to fear of incontinence (0.32 ± 0.76 versus −0.06 ± 0.78, p=0.0008). Among those successfully treated for SUI, improvement in continence during sexual activity was greater in both the combined therapy group (p=0.019) and the behavioral group (p=0.02) compared to the pessary group. Conclusions Successful non-surgical treatment of SUI is associated with improvements in incontinence-specific measures of sexual function. Behavioral therapy may be preferred to pessary for treatment of SUI among women whose incontinence interferes with sexual function. PMID:21572534

  14. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  15. Evaluation of effective-stress-function algorithm for nuclear fuel simulation

    SciTech Connect

    Kim, H. C.; Yang, Y. S.; Koo, Y. H.

    2013-07-01

    In a pressurized water reactor (PWR), the mechanical integrity of nuclear fuel is the most critical issue as it is an important barrier for fission products released into the environment. The integrity of zirconium cladding that surrounds uranium oxide can be threatened during off-normal operation owing to a pellet-cladding mechanical interaction (PCMI). To analyze the fuel and cladding behavior during off-operation, the fuel performance code should calculate an inelastic analysis in two - or three-dimensional calculations. In this paper, the effective stress function (ESF) algorithm based on a two-dimensional FE module has been implemented to simulate the inelastic behavior of the cladding with stability and accuracy. The ESF algorithm solves the governing equations of the inelastic constitutive behavior by calculating the zero of the appropriate effective-stress-function. To verify the accuracy of the ESF algorithm for an inelastic analysis, a code-to-code benchmark was performed using the commercial FE code, ANSYS 13.0. To demonstrate the stability and convergence of the implemented algorithm, the number of iterations in the ESF algorithm was compared with that in a sequential algorithm in the case of an inelastic problem. Consequently, the evaluation results demonstrate that the implemented ESF algorithm improves the efficiency of the computation without a loss of accuracy for an inelastic analysis. (authors)

  16. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function

    PubMed Central

    Charvat, Robert A.; Arrizabalaga, Gustavo

    2016-01-01

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites. PMID:26976749

  17. Leukocytes and oxidative stress: dilemma for sperm function and male fertility

    PubMed Central

    Henkel, Ralf R

    2011-01-01

    Spermatozoa are constantly exposed to the interphase between oxidation through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions as being the only cells with such high polarization and exerting their functions outside the body, even in a different individual, the female genital tract, the membranes of these cells are chemically composed of an extraordinary high amount of polyunsaturated fatty acids. This in turn, renders them very susceptible to oxidative stress, which is defined as an imbalance between oxidation and reduction towards the oxidative status. As a result, ROS deriving from both leukocytes and the male germ cells themselves cause a process called ‘lipid peroxidation' and other damages to the sperm cell. On the other hand, a certain limited amount of ROS is essential in order to trigger vital physiological reactions in cells, including capacitation or the acrosome reaction in sperm. The treatment of patients with antioxidants to compensate the oxidative status caused by oxidative stress is highly debated as uncontrolled antioxidative treatment might derail the system towards the reduced status, which is also unphysiological and can even induce cancer. This paradox is called the ‘antioxidant paradox'. Therefore, a proper andrological diagnostic work-up, including the evaluation of ROS levels and the antioxidant capacity of the semen, has to be carried out beforehand, aimed at keeping the fine balance between oxidation and scavenging of vital amounts of ROS. PMID:21076433

  18. Chemically induced oxidative stress affects ASH neuronal function and behavior in C. elegans

    PubMed Central

    Gourgou, Eleni; Chronis, Nikos

    2016-01-01

    Oxidative stress (OS) impact on a single neuron’s function in vivo remains obscure. Using C. elegans as a model organism, we report the effect of paraquat (PQ)-induced OS on wild type worms on the function of the ASH polymodal neuron. By calcium (Ca2+) imaging, we quantified ASH activation upon stimulus delivery. PQ-treated worms displayed higher maximum depolarization (peak of the Ca2+ transients) compared to untreated animals. PQ had a similar effect on the ASH neuron response time (rising slope of the Ca2+ transients), except in very young worms. OS effect on ASH was partially abolished in vitamin C-treated worms. We performed octanol and osmotic avoidance tests, to investigate the OS effect on ASH-dependent behaviors. PQ-treated worms have enhanced avoidance behavior compared to untreated ones, suggesting that elevated ASH Ca2+ transients result in enhanced ASH-mediated behavior. The above findings suggest a possible hormetic effect of PQ, as a factor inducing mild oxidative stress. We also quantified locomotion parameters (velocity, bending amplitude), which are not mediated by ASH activation. Bending amplitude did not differ significantly between treated and untreated worms; velocity in older adults decreased. The differential effect of OS on behavioral patterns may mirror a selective impact on the organism’s neurons. PMID:27922032

  19. Epigenetics, Stress, and Their Potential Impact on Brain Network Function: A Focus on the Schizophrenia Diatheses

    PubMed Central

    Diwadkar, Vaibhav A.; Bustamante, Angela; Rai, Harinder; Uddin, Monica

    2014-01-01

    The recent sociodevelopmental cognitive model of schizophrenia/psychosis is a highly influential and compelling compendium of research findings. Here, we present logical extensions to this model incorporating ideas drawn from epigenetic mediation of psychiatric disease, and the plausible effects of epigenetics on the emergence of brain network function and dysfunction in adolescence. We discuss how gene–environment interactions, effected by epigenetic mechanisms, might in particular mediate the stress response (itself heavily implicated in the emergence of schizophrenia). Next, we discuss the plausible relevance of this framework for adolescent genetic risk populations, a risk group characterized by vexing and difficult-to-explain heterogeneity. We then discuss how exploring relationships between epigenetics and brain network dysfunction (a strongly validated finding in risk populations) can enhance understanding of the relationship between stress, epigenetics, and functional neurobiology, and the relevance of this relationship for the eventual emergence of schizophrenia/psychosis. We suggest that these considerations can expand the impact of models such as the sociodevelopmental cognitive model, increasing their explanatory reach. Ultimately, integration of these lines of research may enhance efforts of early identification, intervention, and treatment in adolescents at-risk for schizophrenia. PMID:25002852

  20. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function.

    PubMed

    Charvat, Robert A; Arrizabalaga, Gustavo

    2016-03-15

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites.

  1. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses.

    PubMed

    Robles, Pedro; Micol, José Luis; Quesada, Víctor

    2012-01-01

    Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.

  2. Correlation of echocardiographic wall stress and left ventricular pressure and function in aortic stenosis.

    PubMed

    DePace, N L; Ren, J F; Iskandrian, A S; Kotler, M N; Hakki, A H; Segal, B L

    1983-04-01

    Previous studies have suggested that left ventricular pressure (P) can be predicted in patients with aortic stenosis by the equation P = 235 h/r, where 235 is a constant peak wall stress (sigma), h is end-systolic wall thickness, and r is end-systolic dimension/2; h and r are measured by M-mode echocardiography. In 73 patients with aortic stenosis (valve area less than 0.7 cm2), measured and predicted left ventricular pressure correlated poorly (r = 0.17). The measured wall stress in our patients varied from 120 to 250 mm Hg in patients with normal left ventricular function and from 250 to 550 mm Hg in patients with abnormal function. The correlation between sigma and h was only fair (r = 0.53), because many patients had inappropriate left ventricular hypertrophy. There was a statistically significant correlation between ejection fraction and sigma (r = 0.62) and between ejection fraction and end-systolic dimension (r = -0.70), but there was considerable scatter of ejection fractions for any given end-systolic dimension. We conclude that sigma is not constant in aortic stenosis, and the use of a constant sigma to predict left ventricular pressure is unreliable; inappropriate left ventricular hypertrophy may explain why sigma is not constant. M-mode echocardiography is not reliable in assessing the severity of aortic stenosis in adults; such assessment requires precise measurements of pressure gradients and flow by cardiac catheterization.

  3. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    PubMed Central

    McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.

    2015-01-01

    Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061

  4. Chronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats

    PubMed Central

    Ferrari, Carlos K B; França, Eduardo L; Monteiro, Luciane A; Santos, Bruno L; Pereira-Junior, Alfredo; Honorio-França, Adenilda C

    2017-01-01

    Objective(s): To investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Materials and Methods: Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu, Zn-SOD), and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. Results: The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Conclusion: Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy. PMID:28133519

  5. Functional value of elytra under various stresses in the red flour beetle, Tribolium castaneum

    PubMed Central

    Linz, David M.; Hu, Alan W.; Sitvarin, Michael I.; Tomoyasu, Yoshinori

    2016-01-01

    Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation. PMID:27708390

  6. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions.

  7. The Multiple Functions of TRBP, at the Hub of Cell Responses to Viruses, Stress, and Cancer

    PubMed Central

    Daniels, Sylvanne M.

    2012-01-01

    Summary: The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections. PMID:22933564

  8. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  9. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1

    PubMed Central

    Burbulla, L F; Fitzgerald, J C; Stegen, K; Westermeier, J; Thost, A-K; Kato, H; Mokranjac, D; Sauerwald, J; Martins, L M; Woitalla, D; Rapaport, D; Riess, O; Proikas-Cezanne, T; Rasse, T M; Krüger, R

    2014-01-01

    The mitochondrial chaperone mortalin was implicated in Parkinson's disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes. PMID:24743735

  10. The effects of early-life stress on dopamine system function in adolescent female rats.

    PubMed

    Majcher-Maślanka, Iwona; Solarz, Anna; Wędzony, Krzysztof; Chocyk, Agnieszka

    2017-04-01

    During adolescence, many neural systems, including the dopamine system, undergo essential remodeling and maturation. It is well known that early-life stress (ELS) increases the risk for many psychopathologies during adolescence and adulthood. It is hypothesized that ELS interferes with the maturation of the dopamine system. There is a sex bias in the prevalence of stress-related mental disorders. Information regarding the effects of ELS on brain functioning in females is very limited. In the current study, maternal separation (MS) procedures were carried out to study the effects of ELS on dopamine system functioning in adolescent female rats. Our study showed that MS increased the density of tyrosine hydroxylase immunoreactive fibers in the prelimbic cortex (PLC) and nucleus accumbens (Acb). These changes were accompanied by a decrease in the level of D5 receptor mRNA and an increase in D2 receptor mRNA expression in the PLC of MS females. Conversely, D1 and D5 receptor mRNA levels were augmented in the caudate putamen (CPu), while the expression of the D3 dopamine receptor transcript was reduced in MS females. Additionally, in the Acb, MS elicited a decrease in D2 receptor mRNA expression. At the behavioral level, MS increased apomorphine-induced locomotion; however, it did not change locomotor responses to selective D1/D5 receptor agonist and attenuated D2/D3 receptor agonist-triggered locomotion. Moreover, MS decreased D1/D5 receptor agonist-induced grooming behavior. These results indicate that ELS disrupts dopamine receptor function in the PLC and basal ganglia during adolescence in females and may predispose them to psychopathologies during adolescence and adulthood.

  11. Inhibition of GADD34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord injury.

    PubMed

    Ohri, Sujata Saraswat; Mullins, Ashley; Hetman, Michal; Whittemore, Scott R

    2014-01-01

    Activation of the endoplasmic reticulum stress response (ERSR) is a hallmark of various pathological diseases and/or traumatic injuries. Restoration of ER homeostasis can contribute to improvement in the functional outcome of these diseases. Using genetic and pharmacological inhibition of the PERK-CHOP arm of the ERSR, we recently demonstrated improvements in hindlimb locomotion after spinal cord injury (SCI) and implicated oligodendrocyte survival as a potential mechanism. Here, we investigated the contribution of stress-inducible PPP1R15A/GADD34, an ERSR signaling effector downstream of CHOP that dephosphorylates eIF2α, in the pathogenesis of SCI. We show that although genetic ablation of GADD34 protects oligodendrocyte precursor cells (OPCs) against ER stress-mediated cell death in vitro and results in differential ERSR attenuation in vivo after SCI, there is no improvement in hindlimb locomotor function. Guanabenz, a FDA approved antihypertensive drug, was recently shown to reduce the burden of misfolded proteins in the ER by directly targeting GADD34. Guanabenz protected OPCs from ER stress-mediated cell death in vitro and attenuated the ERSR in vivo after SCI. However, guanabenz administration failed to rescue the locomotor deficits after SCI. These data suggest that deletion of GADD34 alone is not sufficient to improve functional recovery after SCI.

  12. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress.

    PubMed

    Tront, Jennifer S; Huang, Yajue; Fornace, Albert J; Fornace, Albert A; Hoffman, Barbara; Liebermann, Dan A

    2010-12-01

    Gadd45a plays a pivotal role as a stress sensor that modulates cellular responses to various stress stimuli including oncogenic stress. We reported that the stress sensor Gadd45a gene functions as a tumor suppressor in Ras-driven breast tumorigenesis via increasing JNK-mediated apoptosis and p38-mediated senescence. In contrast, here, we show that Gadd45a promotes Myc-driven breast cancer by negatively regulating MMP10 via GSK3 β/β-catenin signaling, resulting in increased tumor vascularization and growth. These novel findings indicate that Gadd45a functions as either tumor promoter or suppressor, is dependent on the oncogenic stress, and is mediated via distinct signaling pathways. Collectively, these novel findings highlight the significance of the type of oncogenic alteration on how stress response genes function during initiation and progression of tumorigenesis. Because Gadd45a is a target for BRCA1 and p53, these findings have implications regarding BRCA1/p53 tumor suppressor functions.

  13. Effects of Temperament, Symptom Severity and Level of Functioning on Maternal Stress in Greek Children and Youth with ASD

    ERIC Educational Resources Information Center

    Konstantareas, M. Mary; Papageorgiou, Vaya

    2006-01-01

    This study examined the effect of child temperament, symptom severity, verbal ability and level of functioning on maternal stress in 43 Greek mothers of children and young people with autism spectrum disorder. Symptom severity was assessed by the CARS, level of functioning by the PEP, temperament by the Dimensions of Temperament Scale (DOTS-R) and…

  14. The immune-pineal axis: stress as a modulator of pineal gland function.

    PubMed

    Couto-Moraes, Renato; Palermo-Neto, João; Markus, Regina Pekelmann

    2009-02-01

    The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

  15. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain.

    PubMed

    Gong, Yu; Chai, Yi; Ding, Jian-Hua; Sun, Xiu-Lan; Hu, Gang

    2011-01-13

    Increasing evidence implicates mitochondrial failure as a crucial factor in the pathogenesis of mental disorders, such as depression. The aim of the present study was to investigate the effects of exposure to chronic mild stress (CMS), a paradigm developed in the late 1980s as an animal model of depression, on the mitochondrial function and mitochondrial ultrastructure in the mouse brain. The results showed that the CMS regime induced depressive-like symptoms in mice characterized by reduced sucrose preference and body weight. Moreover, CMS exposure was associated with a significant increase in immobility time in the tail suspension test. Exposure to the CMS paradigm inhibited mitochondrial respiration rates and dissipated mitochondrial membrane potential in hippocampus, cortex and hypothalamus of mice. In addition, we found a damaged mitochondrial ultrastructure in brains of mice exposed to CMS. These findings provide evidence for brain mitochondrial dysfunction and ultrastructural damage in a mouse model of depression. Moreover, these findings suggest that mitochondrial malfunction-induced oxidative injury could play a role in stress-related disorders such as depression.

  16. Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    PubMed Central

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-01-01

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond. PMID:22832392

  17. Relationship of radionuclide indexes of cardiac function during interventions: volume loading, afterload stress, exercise, and pacing

    SciTech Connect

    Slutsky, R.A.

    1983-04-01

    We compared three radionuclide index of cardiac function: 1) the ejection fraction (EF), 2) the mean ejection rate (ER), and 3) the mean velocity of circumferential fiber shortening (MVCF) during volume loading, phenylephrine hydrochloride stress, exercise, and atrial pacing. All behaved in a similar (linear) fashion, allowing appropriate hemodynamic conclusions to be drawn using either index. During atrial pacing, the ejection fraction declined when velocity indexes increased, suggesting that the ejection fraction may not be a suitable index to characterize alterations in inotropic state during rapid alterations in heart rate, particular in the absence of angina pectoris. This may result from the reductions in cardiac volume for the duration of pacing, where the velocity index is preserved. In most circumstances excluding atrial pacing, ejection fraction during interventions is an adequate index of the change of myocardial contractile state. Overall, radionuclide angiography is an excellent technique to characterize acute hemodynamic interventions, with ejection fraction, in general, the simplest and most reliable of cardiac indexes during stress interventions.

  18. Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress

    PubMed Central

    Leirós, Marta; Sánchez, Jon A.; Alonso, Eva; Rateb, Mostafa E.; Houssen, Wael E.; Ebel, Rainer; Jaspars, Marcel; Alfonso, Amparo; Botana, Luis M.

    2014-01-01

    The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L) and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases. PMID:24473170

  19. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    PubMed

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  20. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders.

    PubMed

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V; Balsevich, Georgia; Schmidt, Mathias V; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E; Conley, Emily Drabant; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R; Binder, Elisabeth B

    2015-06-03

    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain.

  1. An Analysis of Inhibitory Functioning in Individuals with Chronic Posttraumatic Stress Disorder

    PubMed Central

    Echiverri-Cohen, Aileen M.; Zoellner, Lori A.; Ho, William; Husain, Jawad

    2016-01-01

    Cognitive abnormalities in posttraumatic stress disorder (PTSD) may be a function of underlying inhibitory deficits. Prepulse inhibition (PPI) and attentional blink (AB) are paradigms thought to assess inhibition. Using a sample of 28 individuals with PTSD compared to 20 trauma-exposed and 19 healthy individuals, PPI was examined using white noise that was preceded by a tone, and AB was examined using a presentation of letters in a stream of numbers. Relative to the control group, the PTSD and trauma-exposed groups did not follow the u-shaped pattern in AB, suggesting trauma-exposure and subsequent PTSD are associated with similar impairment in attention. Individuals with PTSD showed reduced PPI compared to trauma-exposed and healthy individuals, suggesting individuals with PTSD exhibit faulty automatic processing. For individuals with PTSD, PTSD severity was associated with a decline in PPI. These findings suggest a general faulty inhibitory mechanism associated with trauma exposure and PTSD. PMID:26745516

  2. Viewing nature scenes positively affects recovery of autonomic function following acute-mental stress.

    PubMed

    Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F

    2013-06-04

    A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.

  3. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis.

    PubMed

    Chow, Ari M; Steel, Rohan; Anderson, Robin L

    2009-05-01

    In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity.

  4. Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis

    PubMed Central

    Wang, Ting; Liu, Jia; Zhang, Junran; Zhan, Wang; Li, Lei; Wu, Min; Huang, Hua; Zhu, Hongyan; Kemp, Graham J.; Gong, Qiyong

    2016-01-01

    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl’s gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC). PMID:27251865

  5. Assessing impact of differential symptom functioning on post-traumatic stress disorder (PTSD) diagnosis.

    PubMed

    He, Qiwei; Glas, Cees A W; Veldkamp, Bernard P

    2014-06-01

    This article explores the generalizability of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) diagnostic criteria for post-traumatic stress disorder (PTSD) to various subpopulations. Besides identifying the differential symptom functioning (also referred to as differential item functioning [DIF]) related to various background variables such as gender, marital status and educational level, this study emphasizes the importance of evaluating the impact of DIF on population inferences as made in health surveys and clinical trials, and on the diagnosis of individual patients. Using a sample from the National Comorbidity Study-Replication (NCS-R), four symptoms for gender, one symptom for marital status, and three symptoms for educational level were significantly flagged as DIF, but their impact on diagnosis was fairly small. We conclude that the DSM-IV diagnostic criteria for PTSD do not produce substantially biased results in the investigated subpopulations, and there should be few reservations regarding their use. Further, although the impact of DIF (i.e. the influence of differential symptom functioning on diagnostic results) was found to be quite small in the current study, we recommend that diagnosticians always perform a DIF analysis of various subpopulations using the methodology presented here to ensure the diagnostic criteria is valid in their own studies.

  6. Functions of health fatalism: fatalistic talk as face saving, uncertainty management, stress relief and sense making.

    PubMed

    Keeley, Bethany; Wright, Lanelle; Condit, Celeste M

    2009-07-01

    Much research on fatalism assumes that fatalistic statements represent a global outlook that conflicts with belief in the efficacy of health behaviours. Other scholars have suggested a more contextual approach, suggesting that fatalism fulfils personal and social functions. This study analyses 96 in-depth lay interviews in the US, most with low-income members of the general public, about four diseases: heart disease, lung cancer, diabetes and depression. Within these interviews, fatalistic statements always occurred alongside statements endorsing the utility of behaviours for protecting health. This usage pattern suggests that these statements may have useful functions, rather than being simply a repudiation of the utility of health choices. We examine four functions that are suggested by previous researchers or by the participants' comments: stress relief, uncertainty management, sense making and (less strongly) face saving. As these themes indicate, individuals often make fatalistic statements to express an understanding of locally or broadly limiting factors for health efficacy, including genes, spiritual agents, prior behaviours, personality, and other factors.

  7. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  8. Structural evolution of amino acid crystals under stress from a non-empirical density functional

    NASA Astrophysics Data System (ADS)

    Sabatini, Riccardo; Küçükbenli, Emine; Kolb, Brian; Thonhauser, T.; de Gironcoli, Stefano

    2012-10-01

    Use of the non-local correlation functional vdW-DF (from ‘van der Waals density functional’ Dion M et al 2004 Phys. Rev. Lett. 92 246401) has become a popular approach for including van der Waals interactions within density functional theory. In this work, we extend the vdW-DF theory and derive the corresponding stress tensor in a fashion similar to the LDA and GGA approach, which allows for a straightforward implementation in any electronic structure code. We then apply our methodology to investigate the structural evolution of amino acid crystals of glycine and l-alanine under pressure up to 10 GPa—with and without van der Waals interactions—and find that for an accurate description of intermolecular interactions and phase transitions in these systems, the inclusion of van der Waals interactions is crucial. For glycine, calculations including the vdW-DF (vdW-DF-c09x) functional are found to systematically overestimate (underestimate) the crystal lattice parameters, yet the stability ordering of the different polymorphs is determined accurately, at variance with the GGA case. In the case of l-alanine, our vdW-DF results agree with recent experiments that question the phase transition reported for this crystal at 2.3 GPa, as the a and c cell parameters happen to become equal but no phase transition is observed.

  9. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis

    PubMed Central

    Chow, Ari M.; Steel, Rohan

    2008-01-01

    In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity. PMID:18819021

  10. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence

    PubMed Central

    Simmons, Alan; Paulus, Martin P.; Thorp, Steven R.; Matthews, Scott C.; Norman, Sonya B.; Stein, Murray B.

    2008-01-01

    Background Intimate partner violence (IPV) is one of the most common causes of posttraumatic stress disorder (PTSD) in women. Victims of IPV are often preoccupied by the anticipation of impending harm. This investigation tested the hypothesis that IPV-related PTSD individuals show exaggerated insula reactivity to the anticipation of aversive stimuli. Methods Fifteen women with a history of IPV and consequent PTSD (IPV-PTSD) and 15 non-traumatized control (NTC) women performed a task involving cued anticipation to images of positive and negative events during functional magnetic resonance imaging. Results Both groups showed increased activation of bilateral anterior insula during anticipation of negative images minus anticipation of positive images. Activation in right anterior/middle insula was significantly greater in the IPV-PTSD relative to the NTC group. Functional connectivity analysis revealed that changes in activation in right middle insula and bilateral anterior insula were more strongly associated with amygdala activation changes in NTC than in IPV-PTSD subjects. Conclusions Increased activation in the anterior/middle insula during negative anticipation in women with IPV-related PTSD. These findings in women with IPV could be a consequence of the IPV exposure, reflect pre-existing differences in insular function, or due to the development of PTSD. Thus, future longitudinal studi4s need to examine these possibilities. PMID:18639236

  11. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses.

    PubMed

    Gallé, Ágnes; Csiszár, Jolán; Benyó, Dániel; Laskay, Gábor; Leviczky, Tünde; Erdei, László; Tari, Irma

    2013-11-01

    Changes in water potential (ψw), stomatal conductance, abscisic acid (ABA) accumulation, expression of the major genes involved in ABA biosynthesis, activities of abscisic aldehyde oxidase (AO, EC 1.2.3.1) and antioxidant enzymes were studied in two wheat cultivars with contrasting acclimation strategies subjected to medium strength osmotic stress (-0.976MPa) induced by polyethylene glycol (PEG 6000). Because the biosynthetic pathway of ABA involves multiple gene products, the aim of this study was to unravel how these genes are regulated in isohydric and anisohydric wheat genotypes. In the root tissues of the isohydric cultivar, Triticum aestivum cv. Kobomugi, osmotic stress increased the transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED) gene, controlling the rate limiting step of ABA biosynthesis. Moreover, this cultivar exhibited a higher basal activity and a higher induction of aldehyde oxidase isoenzymes (AAO2-AAO3), responsible for converting ABAldehyde to ABA. It was found that the fast activation of the ABA biosynthesis in the roots generated an enhanced ABA pool in the shoot, which brought about a faster closure of the stomata upon increasing osmotic stress and, as a result, the plants could maintain ψw in the tissues close to the control level. In contrast, the anisohydric genotype, cv. GK Öthalom, exhibited a moderate induction of ABA biosynthesis in the roots, leading to the maintenance but no increase in the concentration of ABA on the basis of tissue water content in the leaves. Due to the slower response of their stomata to water deficit, the tissues of cv. GK Öthalom have to acclimate to much more negative water potentials during increasing osmotic stress. A decreased activity of superoxide dismutase (SOD) was found in the leaves and roots of both cultivars exposed to osmotic stress, but in the roots elevated activities of catalase (CAT), peroxidase (POX), glutathione reductase (GR) and glutathione transferase (GST) were detected in

  12. Effect of fluoxetine and resveratrol on testicular functions and oxidative stress in a rat model of chronic mild stress-induced depression.

    PubMed

    Sakr, H F; Abbas, A M; Elsamanoudy, A Z; Ghoneim, F M

    2015-08-01

    Our objective was to investigate the effects of chronic unpredictable mild stress (CUMS) with or without selective serotonin reuptake inhibitor (fluoxetine) and anti-oxidant (resveratrol) on testicular functions and oxidative stress in rats. Fifty male rats were divided into 2 groups; control and CUMS. CUMS group was further subdivided into 4 subgroups administered water, fluoxetine, resveratrol and both. Sucrose intake, body weight gain, serum corticosterone, serotonin and testosterone levels, sperm count and motility, testicular malondialdehyde, superoxide dismutase (SOD), catalase, glutathione (GSH), and gene expression of steroidogenic acute-regulatory (StAR) protein and cytochrome P450 side chain cleavage (P450scc) enzyme were evaluated. CUMS decreased sucrose intake, weight gain, anti-oxidants (SOD, catalase, GSH), testosterone, serotonin, StAR and cytochrome P450scc gene expression, sperm count and motility and increased malondialdehyde and corticosterone. Fluoxetine increased malondialdehyde, sucrose intake, weight gain, serotonin and decreased anti-oxidants, StAR and cytochrome P450scc gene expression, sperm count and motility, testosterone, corticosterone in stressed rats. Administration of resveratrol increased anti-oxidants, sucrose intake, weight gain, serotonin, StAR and cytochrome P450scc gene expression, testosterone, sperm count and motility, and decreased malondialdehyde and corticosterone in stressed rats with or without fluoxetine. In conclusion, CUMS induces testicular dysfunctions and oxidative stress. While treatment of CUMS rats with fluoxetine decreases the depressive behavior, it causes further worsening of testicular dysfunctions and oxidative stress. Administration of resveratrol improves testicular dysfunctions and oxidative stress that are caused by CUMS and further worsened by fluoxetine treatment.

  13. Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum

    PubMed Central

    You, Qi; Zhang, Liwei; Yi, Xin; Zhang, Kang; Yao, Dongxia; Zhang, Xueyan; Wang, Qianhua; Zhao, Xinhua; Ling, Yi; Xu, Wenying; Li, Fuguang; Su, Zhen

    2016-01-01

    Cotton is an economically important crop, essential for the agriculture and textile industries. Through integrating transcriptomic data, we discovered that multi-dimensional co-expression network analysis was powerful for predicting cotton gene functions and functional modules. Here, the recently available transcriptomic data on Gossypium arboreum, including data on multiple growth stages of tissues and stress treatment samples were applied to construct a co-expression network exploring multi-dimensional expression (development and stress) through multi-layered approaches. Based on differential gene expression and network analysis, a fibre development regulatory module of the gene GaKNL1 was found to regulate the second cell wall through repressing the activity of REVOLUTA, and a tissue-selective module of GaJAZ1a was examined in response to water stress. Moreover, comparative genomics analysis of the JAZ1-related regulatory module revealed high conservation across plant species. In addition, 1155 functional modules were identified through integrating the co-expression network, module classification and function enrichment tools, which cover functions such as metabolism, stress responses, and transcriptional regulation. In the end, an online platform was built for network analysis (http://structuralbiology.cau.edu.cn/arboreum), which could help to refine the annotation of cotton gene function and establish a data mining system to identify functional genes or modules with important agronomic traits. PMID:27922095

  14. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain

    PubMed Central

    Dedovic, Katarina; Renwick, Robert; Mahani, Najmeh Khalili; Engert, Veronika; Lupien, Sonia J.; Pruessner, Jens C.

    2005-01-01

    Objective We developed a protocol for inducing moderate psychologic stress in a functional imaging setting and evaluated the effects of stress on physiology and brain activation. Methods The Montreal Imaging Stress Task (MIST), derived from the Trier Mental Challenge Test, consists of a series of computerized mental arithmetic challenges, along with social evaluative threat components that are built into the program or presented by the investigator. To allow the effects of stress and mental arithmetic to be investigated separately, the MIST has 3 test conditions (rest, control and experimental), which can be presented in either a block or an event-related design, for use with functional magnetic resonance imaging (fMRI) or positron emission tomography (PET). In the rest condition, subjects look at a static computer screen on which no tasks are shown. In the control condition, a series of mental arithmetic tasks are displayed on the computer screen, and subjects submit their answers by means of a response interface. In the experimental condition, the difficulty and time limit of the tasks are manipulated to be just beyond the individual's mental capacity. In addition, in this condition the presentation of the mental arithmetic tasks is supplemented by a display of information on individual and average performance, as well as expected performance. Upon completion of each task, the program presents a performance evaluation to further increase the social evaluative threat of the situation. Results In 2 independent studies using PET and a third independent study using fMRI, with a total of 42 subjects, levels of salivary free cortisol for the whole group were significantly increased under the experimental condition, relative to the control and rest conditions. Performing mental arithmetic was linked to activation of motor and visual association cortices, as well as brain structures involved in the performance of these tasks (e.g., the angular gyrus). Conclusions We

  15. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves.

    PubMed

    Tao, S; Monteiro, A P A; Thompson, I M; Hayen, M J; Dahl, G E

    2012-12-01

    Heat stress during the dry period affects the cow's mammary gland development, metabolism, and immunity during the transition period. However, the effect of late-gestation heat stress on calf performance and immune status is unknown. Our objective was to evaluate the effect of heat stress during the final ~45 d of gestation on growth and immune function of calves. Calves (17/treatment) were born to cows that were exposed to cooling (CL) or heat stress (HT) during the dry period. Only heifer calves (CL, n=12; HT, n=9) were used in measurements of growth and immune status after birth. Heifer calves were managed under identical conditions. All were fed 3.78 L of colostrum from their respective dams within 4 h of birth and were weaned at 2 mo of age (MOA). Body weight (BW) was obtained at weaning and then monthly until 7 MOA. Withers height (WH) was measured monthly from 3 to 7 MOA. Hematocrit and plasma total protein were assessed at birth, 1, 4, 7, 11, 14, 18, 21, 25, and 28 d of age. Total serum IgG was evaluated at 1, 4, 7, 11, 14, 18, 21, 25, and 28 d of age, and apparent efficiency of absorption was calculated. Peripheral blood mononuclear cells were isolated at 7, 28, 42, and 56 d of age, and proliferation rate was measured by (3)H-thymidine incorporation in vitro. Blood cortisol concentration was measured in the dams during the dry period and in calves in the preweaning period. Gestation length was 4d shorter for HT cows compared with CL cows. Calves from CL cows had greater BW than calves from HT cows at birth (42.5 vs. 36.5 kg). Compared with CL heifers, HT heifers had decreased weaning BW (78.5 vs. 65.9 kg) but similar BW (154.6 vs. 146.4 kg) and WH (104.8 vs. 103.4 cm) from 3 to 7 MOA. Compared with CL, heifers from HT cows had less total plasma protein (6.3 vs. 5.9 g/dL), total serum IgG (1,577.3 vs. 1,057.8 mg/dL), and apparent efficiency of absorption (33.6 vs. 19.2%), and tended to have decreased hematocrit (33 vs. 30%). Additionally, CL heifers had

  16. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing.

    PubMed

    Makthal, Nishanth; Rastegari, Sheila; Sanson, Misu; Ma, Zhen; Olsen, Randall J; Helmann, John D; Musser, James M; Kumaraswami, Muthiah

    2013-06-21

    Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR.

  17. Crystal Structure of Peroxide Stress Regulator from Streptococcus pyogenes Provides Functional Insights into the Mechanism of Oxidative Stress Sensing*

    PubMed Central

    Makthal, Nishanth; Rastegari, Sheila; Sanson, Misu; Ma, Zhen; Olsen, Randall J.; Helmann, John D.; Musser, James M.; Kumaraswami, Muthiah

    2013-01-01

    Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR. PMID:23645680

  18. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed

    Robinson, Oliver J; Bond, Rebecca L; Roiser, Jonathan P

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making.

  19. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed Central

    Robinson, Oliver J.; Bond, Rebecca L.; Roiser, Jonathan P.

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making. PMID:26441705

  20. The relationship between recent stressful life events, personality traits, perceived family functioning and internet addiction among college students.

    PubMed

    Yan, Wansen; Li, Yonghui; Sui, Nan

    2014-02-01

    Internet addiction (IA) is an emerging social and mental health issue among youths. Analysis of risk factors, as well as their interactions, is crucial for understanding the development of IA. This study investigated the relationship between recent stressful life events, personality traits, perceived family functioning and IA in 892 college students. Subjects were classified into categories (non-addicted, mild IA or severe IA) using the Chen Internet Addiction Scale. Stressful life events, personality traits and family functioning were assessed using the Adolescent Self-Rating Life Events Checklist, the Eysenck Personality Questionnaire, and the Family Adaptability and Cohesion Scale, respectively. The results indicated that compared with non-addicted subjects, subjects with severe IA (9.98%) had lower family functioning, lower extraversion, higher neuroticism and psychoticism, and more stressful life events, and subjects with mild IA (11.21%) had higher neuroticism and more health and adaptation problems. Neuroticism and health and adaptation problems were potential predictors of IA. An interaction effect between psychoticism and total life stress on IA was also found. These findings highlight the role of personality traits and life stress and their interactions in college students' IA. Further research should explore the mechanisms underlying the interaction effect of psychoticism with life stress on IA.

  1. [Effects of nitrogen fertilization and straw amendment on soil microbial biomass and soil functions after heat stress].

    PubMed

    Chen, Xiao-Yun; Chen, Shi; Liu, Man-Qiang; Jiao, Jia-Guo; Li, Hui-Xin; Hu, Feng

    2013-02-01

    A 60-day incubation experiment was conducted to study the effects of nitrogen fertilization (N), rice straw amendment (R), and their combination (RN) on the changes of soil microbial biomass and soil functions (basal respiration, substrate-induced respiration, and straw decomposition) after heat stress (40 degrees C for 18 h). Heat stress tended to promote the soil microbial biomass and soil functions, but the effects were weak and transient. Either with or without heating, treatment R and especially RN could greatly stimulate soil microbial biomass, basal respiration, substrate-induced respiration and straw decomposition, as compared to no straw amendment and with nitrogen fertilization alone, but the parameters in treatment N had less change, and even, presented a decreasing trend. It was suggested that straw amendment and its combination with nitrogen fertilization could improve soil functions in natural conditions or after environmental stress.

  2. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    EPA Science Inventory

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  3. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response

    PubMed Central

    Nishiyama, Rie; Watanabe, Yasuko; Leyva-Gonzalez, Marco A.; Van Ha, Chien; Fujita, Yasunari; Tanaka, Maho; Seki, Motoaki; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Herrera-Estrella, Luis; Tran, Lam-Son Phan

    2013-01-01

    Cytokinin is an essential phytohormone controlling various biological processes, including environmental stress responses. In Arabidopsis, although the cytokinin (CK)-related phosphorelay—consisting of three histidine kinases, five histidine phosphotransfer proteins (AHPs), and a number of response regulators—has been known to be important for stress responses, the AHPs required for CK signaling during drought stress remain elusive. Here, we report that three Arabidopsis AHPs, namely AHP2, AHP3, and AHP5, control responses to drought stress in negative and redundant manner. Loss of function of these three AHP genes resulted in a strong drought-tolerant phenotype that was associated with the stimulation of protective mechanisms. Specifically, cell membrane integrity was improved as well as an increased sensitivity to abscisic acid (ABA) was observed rather than an alteration in ABA-mediated stomatal closure and density. Consistent with their negative regulatory functions, all three AHP genes’ expression was down-regulated by dehydration, which most likely resulted from a stress-induced reduction of endogenous CK levels. Furthermore, global transcriptional analysis of ahp2,3,5 leaves revealed down-regulation of many well-known stress- and/or ABA-responsive genes, suggesting that these three AHPs may control drought response in both ABA-dependent and ABA-independent manners. The discovery of mechanisms of activation and the targets of the downstream components of CK signaling involved in stress responses is an important and challenging goal for the study of plant stress regulatory network responses and plant growth. The knowledge gained from this study also has broad potential for biotechnological applications to increase abiotic stress tolerance in plants. PMID:23487796

  4. Active Hexose Correlated Compound Activates Immune Function to Decrease Chlamydia trachomatis Shedding in a Murine Stress Model

    PubMed Central

    Belay, Tesfaye; Fu, Chih-lung; Woart, Anthony

    2016-01-01

    A cold-induced stress mouse model for investigating chlamydia genital infection and immune response analysis was established in our laboratory. Previous results showed that cold-induced stress results in suppression of the immune response and increased intensity of chlamydia genital infection in the mouse model. The purpose of the present study was to evaluate the potential therapeutic value of active hexose correlated compound (AHCC) against chlamydia genital infection in mice. AHCC is an extract of mushroom commonly used as a dietary supplement is known to boost the immune system. Mice were infected intravaginally with Chlamydia trachomatis after a 24-day cold-stress application. Oral administration of AHCC to stressed or non-stressed mice was carried out seven days before infection and during the course of infection along with cervicovaginal swabbing. Cytokine production by peritoneal and splenic T cells isolated from AHCC-fed stressed mice and non-stressed mice was measured ELISA. Splenic T cells from both animal groups were co-cultured with mouse monocyte J774.2 cell line or cultured by addition of supernatants of AHCC-treated J774.2 cell line for 24 hours. Infection studies showed that AHCC-feeding compared to phosphate buffered saline (PBS)-feeding to stressed mice resulted in reduced Chlamydia trachomatis shedding from the genital tract. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in stressed mice receiving AHCC compared to stressed mice receiving PBS. Production of interferon gamma (IFN-γ) and interleukin 2 (IL-2) in the AHCC group was significantly high compared to production in PBS-fed group. Splenic T cells from stressed and non-stressed cultured with supernatants of AHCC-treated J774.2 cell line resulted in significantly increased TNF-α or IFN-γ production. Results obtained in this study show that AHCC improves the function of immune cells as indicated by the restoration of levels of cytokines

  5. Laguerre-Gaussian, Hermite-Gaussian, Bessel-Gaussian, and Finite-Energy Airy Beams Carrying Orbital Angular Momentum in Strongly Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Gu, Yuzong

    2016-12-01

    The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.

  6. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress

    NASA Astrophysics Data System (ADS)

    Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.

    2005-12-01

    Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex

  7. Interactive Contributions of Cumulative Peer Stress and Executive Function Deficits to Depression in Early Adolescence

    ERIC Educational Resources Information Center

    Agoston, Anna M.; Rudolph, Karen D.

    2016-01-01

    Exposure to peer stress contributes to adolescent depression, yet not all youth experience these effects. Thus, it is important to identify individual differences that shape the consequences of peer stress. This research investigated the interactive contribution of cumulative peer stress during childhood (second-fifth grades) and executive…

  8. Leptin Attenuates the Contractile Function of Adult Rat Cardiomyocytes Involved in Oxidative Stress and Autophagy

    PubMed Central

    Luo, Liu-Jin; Liu, Ying-Ping; Yuan, Xun; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Background Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. Methods Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. Results The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. Conclusions Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy. PMID:27899860

  9. How emotional abilities modulate the influence of early life stress on hippocampal functioning.

    PubMed

    Aust, Sabine; Alkan Härtwig, Elif; Koelsch, Stefan; Heekeren, Hauke R; Heuser, Isabella; Bajbouj, Malek

    2014-07-01

    Early life stress (ELS) is known to have considerable influence on brain development, mental health and affective functioning. Previous investigations have shown that alexithymia, a prevalent personality trait associated with difficulties experiencing and verbalizing emotions, is particularly related to ELS. The aim of the present study was to investigate how neural correlates of emotional experiences in alexithymia are altered in the presence and absence of ELS. Therefore, 50 healthy individuals with different levels of alexithymia were matched regarding ELS and investigated with respect to neural correlates of audio-visually induced emotional experiences via functional magnetic resonance imaging. The main finding was that ELS modulated hippocampal responses to pleasant (>neutral) stimuli in high-alexithymic individuals, whereas there was no such modulation in low-alexithymic individuals matched for ELS. Behavioral and psychophysiological results followed a similar pattern. When considered independent of ELS, alexithymia was associated with decreased responses in insula (pleasant > neutral) and temporal pole (unpleasant > neutral). Our results show that the influence of ELS on emotional brain responses seems to be modulated by an individual's degree of alexithymia. Potentially, protective and adverse effects of emotional abilities on brain responses to emotional experiences are discussed.

  10. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  11. How emotional abilities modulate the influence of early life stress on hippocampal functioning

    PubMed Central

    Alkan Härtwig, Elif; Koelsch, Stefan; Heekeren, Hauke R.; Heuser, Isabella; Bajbouj, Malek

    2014-01-01

    Early life stress (ELS) is known to have considerable influence on brain development, mental health and affective functioning. Previous investigations have shown that alexithymia, a prevalent personality trait associated with difficulties experiencing and verbalizing emotions, is particularly related to ELS. The aim of the present study was to investigate how neural correlates of emotional experiences in alexithymia are altered in the presence and absence of ELS. Therefore, 50 healthy individuals with different levels of alexithymia were matched regarding ELS and investigated with respect to neural correlates of audio-visually induced emotional experiences via functional magnetic resonance imaging. The main finding was that ELS modulated hippocampal responses to pleasant (>neutral) stimuli in high-alexithymic individuals, whereas there was no such modulation in low-alexithymic individuals matched for ELS. Behavioral and psychophysiological results followed a similar pattern. When considered independent of ELS, alexithymia was associated with decreased responses in insula (pleasant > neutral) and temporal pole (unpleasant > neutral). Our results show that the influence of ELS on emotional brain responses seems to be modulated by an individual’s degree of alexithymia. Potentially, protective and adverse effects of emotional abilities on brain responses to emotional experiences are discussed. PMID:23685776

  12. Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses.

    PubMed

    Gutsche, Nora; Thurow, Corinna; Zachgo, Sabine; Gatz, Christiane

    2015-05-01

    Glutaredoxins (GRXs) are small oxidoreductases of the thioredoxin family proteins that can either regulate the thiol redox state of proteins or are linked to iron metabolism because of their ability to incorporate iron-sulfur [2Fe-2S] clusters. Here we review recent research on a land plant-specific class of GRX-like proteins, which are characterized by the conserved CC motif in the active centre. Loss-of-function mutants of CC-type GRXs in Arabidopsis (also named ROXYs), maize, and rice have unraveled a role in floral development, including regulation of organ primordia initiation, control of organ identity gene expression, and progression into meiosis in the male germ line. Other CC-type GRXs play a role in stress responses, most likely through their capacity to regulate nuclear gene expression. Consistently, CC-type GRXs, physically and genetically interact with individual members of the TGA transcription factor family. One of the challenges in the future is to unravel whether ROXYs control the redox state of TGA factors or other yet unknown target proteins or whether they regulate gene expression through other processes. Other intriguing questions concern the original function of the first CC-type GRXs in basal land plants and their potential contribution to the extremely successful radiation of angiosperms.

  13. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation.

    PubMed

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2009-05-01

    Salinity stress is one of the major factors which reduce crop plants growth and productivity resulting in significant economic losses worldwide. Therefore, it would be fruitful to isolate and functionally identify new salinity stress-induced genes for understanding the mechanism and developing salinity stress tolerant plants. Based on functional gene screening assay, we have isolated few salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs. Sequence analysis of three of these genes revealed homology to Ribosomal-L30E (RPL30E), Chlorophyll-a/b-binding protein (Chla/bBP) and FIDDLEHEAD (FDH). The salinity tolerance of these genes in bacteria was further confirmed by using another strain of E. coli (DH5alpha) transformants. The homology based computational modeling of these proteins suggested the high degree of conservation with the conserved domains of their homologous partners. The reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression of these cDNAs (except the FDH) was upregulated in pea plants in response to NaCl stress. We observed that there was no significant effect of Li(+) ion on the expression level of these genes, while an increase in response to K(+) ion was observed. Overall, this study provides an evidence for a novel function of these genes in high salinity stress tolerance. The PsFDH showed constitutive expression in planta suggesting that it can be used as constitutively expressed marker gene for salinity stress tolerance in plants. This study brings new direction in identifying novel function of unidentified genes in abiotic stress tolerance without previous knowledge of the genome sequence.

  14. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function

    PubMed Central

    2012-01-01

    Background Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure. Methods In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia. Results The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles. Conclusions Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects. PMID:22452928

  15. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    PubMed

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation.

  16. Prenatal Stress Produces Persistence of Remote Memory and Disrupts Functional Connectivity in the Hippocampal-Prefrontal Cortex Axis.

    PubMed

    Negrón-Oyarzo, Ignacio; Neira, David; Espinosa, Nelson; Fuentealba, Pablo; Aboitiz, Francisco

    2015-09-01

    Prenatal stress is a risk factor for the development of neuropsychiatric disorders, many of which are commonly characterized by an increased persistence of aversive remote memory. Here, we addressed the effect of prenatal stress on both memory consolidation and functional connectivity in the hippocampal-prefrontal cortex axis, a dynamical interplay that is critical for mnemonic processing. Pregnant mice of the C57BL6 strain were subjected to restraint stressed during the last week of pregnancy, and male offspring were behaviorally tested at adulthood for recent and remote spatial memory performance in the Barnes Maze test under an aversive context. Prenatal stress did not affect the acquisition or recall of recent memory. In contrast, it produced the persistence of remote spatial memory. Memory persistence was not associated with alterations in major network rhythms, such as hippocampal sharp-wave ripples (SWRs) or neocortical spindles. Instead, it was associated with a large decrease in the basal discharge activity of identified principal neurons in the medial prefrontal cortex (mPFC) as measured in urethane anesthetized mice. Furthermore, functional connectivity was disrupted, as the temporal coupling between neuronal discharge in the mPFC and hippocampal SWRs was decreased by prenatal stress. These results could be relevant to understand the biological basis of the persistence of aversive remote memories in stress-related disorders.

  17. [Role of brain 5-HT7 receptors as a functional molecule involved in the development of stress adaptation].

    PubMed

    Tsuji, Minoru; Takeuchi, Tomoko; Miyagawa, Kazuya; Takeda, Hiroshi

    2012-08-01

    A growing body of evidence suggests that the brain serotonin (5-HT) nervous system is an important component related to the etiology as well as the treatment of stress-related psychiatric disorders. Molecular cloning studies have revealed the existence of 14 different genes, each encoding a distinct 5-HT receptor subtype. The 5-HT7 receptor is the most recently identified member of the 5-HT receptor subtypes, and the physiological role of this receptor is still unknown. Recently, either selective agonists or antagonists for 5-HT7 receptors, as well as 5-HT7 receptor knockout mice, have been developed, and these have recently been used as the experimental tools for determining the actual function of 5-HT7 receptors. The first half of the present article introduces the reports that have examined the role of the 5-HT7 receptor on emotional regulation. On the other hand, it has been indicated that the ability to adapt to stress is an important defensive function of a living body, and impairment of this ability may contribute to some stress-related disorders. Thus, the examination of brain mechanisms involved in stress adaptation could help to pave the way for new therapeutic strategies for stress-related psychiatric disorders. The second half of the present article introduces our recent studies focusing on the relationship between brain 5-HT7 receptors and the mechanisms of stress adaptation.

  18. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    were complex and suggested continuous remodeling of the brain for up to 6 months. Thus we demonstrated a suite of CNS structural and functional changes after proton and iron ion exposure in the low dose regime. Based on these findings we will now test whether oxidative stress mediates the reactions of CNS to radiation exposure and what role radiation quality and dose rate play in the responses. We will use cultured neural precursor cells (mouse human) to detect changes in oxidative status and differentiation as functions of charged particle charge and velocity. These results will inform the selection of particles for many in vivo measurements that will compare wild type mice to a transgenic strain that over-expresses a human catalase gene (which inactivates hydrogen peroxide) in the mitochondrial compartment. This will explicitly test the role of reactive oxygen species in mediating the mechanisms underlying the CNS endpoints that we will measure. We will extend the electrophysiological measurements on individual nerves in hippocampal slices to characterize both inhibitory and excitatory synapses. Further, multi-electrode arrays will be used to follow correlated electrical activity in different hippocampal regions in order to understand network-level function as well as synaptic efficacy and plasticity. Controlled oxidative stress on irradiated samples will explore whether response mechanisms are shared. To link alterations in neurogenesis to performance we will explore behavioral changes mediated by the hippocampus simultaneously with measures of expression of the Arc gene in newly-born neurons. This will test whether decrements in performance correlate with loss of new cells and whether behavior properly stimulates functional integration of the new cells; the behavioral paradigm will be contextual fear conditioning. We will develop mathematical frameworks for CNS responses to radiation in order to inform risk estimates. Finally, we will couple a high

  19. Testing the stress-gradient hypothesis with aquatic detritivorous invertebrates: insights for biodiversity-ecosystem functioning research.

    PubMed

    Fugère, V; Andino, P; Espinosa, R; Anthelme, F; Jacobsen, D; Dangles, O

    2012-11-01

    1. The stress-gradient hypothesis (SGH) states that environmental stress modulates species interactions, causing a shift from negative interactions to net positive interactions with increasing stress. 2. Potentially, this modulation of species interactions could in turn influence biodiversity-ecosystem function (B-EF) relationships along stress gradients. Although the SGH has been extensively discussed in plant community ecology in the past two decades, it has received little attention from animal ecologists. 3. To explore whether the SGH could be applied to animal communities, we conducted a litter decomposition experiment with aquatic detritivorous invertebrates in which we manipulated litter quality and measured species interactions along this resource quality gradient. Litter quality was manipulated by presenting detritivores with leaves of plant species varying in specific leaf area and decomposition rate in streams. 4. We found a switch from negative to neutral interactions with increasing resource quality stress, in line with the SGH. However, by re-examining other published results with aquatic detritivores from the perspective of the SGH, we found that a diversity of patterns seem to characterize detritivore interactions along stress gradients. 5. Although the basic pattern proposed by the SGH may not apply to animal systems in general, we show that aquatic detritivore interactions do change along stress gradients, which underlines the importance of incorporating environmental stressors more explicitly in B-EF research.

  20. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.

  1. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  2. Elucidating Dimensions of Posttraumatic Stress Symptoms and their Functional Correlates in Disaster-Exposed Adolescents

    PubMed Central

    Sumner, Jennifer A.; Pietrzak, Robert H.; Danielson, Carla Kmett; Adams, Zachary W.; Ruggiero, Kenneth J.

    2014-01-01

    The aim of this study was to elucidate the dimensional structure of posttraumatic stress disorder (PTSD) and potential moderators and functional correlates of this structure in disaster-affected adolescents. A population-based sample of 2,000 adolescents aged 12–17 years (M=14.5 years; 51% female) completed interviews on post-tornado PTSD symptoms, substance use, and parent-adolescent conflict between 4 and 13 months (M=8.8, SD=2.6) after tornado exposure. Confirmatory factor analyses revealed that all models fit well but a 5-factor dysphoric arousal model provided a statistically significantly better representation of adolescent PTSD symptoms compared to 4-factor dysphoria and emotional numbing models. There was evidence of measurement invariance of the dysphoric arousal model across gender and age, although girls and older adolescents aged 15–17 years had higher mean scores than boys and younger adolescents aged 12–14 years, respectively, on some PTSD dimensions. Differential magnitudes of association between PTSD symptom dimensions and functional correlates were observed, with emotional numbing symptoms most strongly positively associated with problematic substance use since the tornado, and dysphoric arousal symptoms most strongly positively associated with parent-adolescent conflict; both correlations were significantly larger than the corresponding correlations with anxious arousal. Taken together, these results suggest that the dimensional structure of tornado-related PTSD symptomatology in adolescents is optimally characterized by five separate clusters of re-experiencing, avoidance, numbing, dysphoric arousal, and anxious arousal symptoms, which showed unique associations with functional correlates. Findings emphasize that PTSD in disaster-exposed adolescents is not best conceptualized as a homogeneous construct and highlight potential differential targets for post-disaster assessment and intervention. PMID:25248557

  3. Elucidating dimensions of posttraumatic stress symptoms and their functional correlates in disaster-exposed adolescents.

    PubMed

    Sumner, Jennifer A; Pietrzak, Robert H; Danielson, Carla Kmett; Adams, Zachary W; Ruggiero, Kenneth J

    2014-12-01

    The aim of this study was to elucidate the dimensional structure of posttraumatic stress disorder (PTSD) and potential moderators and functional correlates of this structure in disaster-affected adolescents. A population-based sample of 2000 adolescents aged 12-17 years (M = 14.5 years; 51% female) completed interviews on post-tornado PTSD symptoms, substance use, and parent-adolescent conflict between 4 and 13 months (M = 8.8, SD = 2.6) after tornado exposure. Confirmatory factor analyses revealed that all models fit well but a 5-factor dysphoric arousal model provided a statistically significantly better representation of adolescent PTSD symptoms compared to 4-factor dysphoria and emotional numbing models. There was evidence of measurement invariance of the dysphoric arousal model across gender and age, although girls and older adolescents aged 15-17 years had higher mean scores than boys and younger adolescents aged 12-14 years, respectively, on some PTSD dimensions. Differential magnitudes of association between PTSD symptom dimensions and functional correlates were observed, with emotional numbing symptoms most strongly positively associated with problematic substance use since the tornado, and dysphoric arousal symptoms most strongly positively associated with parent-adolescent conflict; both correlations were significantly larger than the corresponding correlations with anxious arousal. Taken together, these results suggest that the dimensional structure of tornado-related PTSD symptomatology in adolescents is optimally characterized by five separate clusters of re-experiencing, avoidance, numbing, dysphoric arousal, and anxious arousal symptoms, which showed unique associations with functional correlates. Findings emphasize that PTSD in disaster-exposed adolescents is not best conceptualized as a homogenous construct and highlight potential differential targets for post-disaster assessment and intervention.

  4. Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning.

    PubMed

    Zubedat, Salman; Aga-Mizrachi, Shlomit; Cymerblit-Sabba, Adi; Ritter, Ami; Nachmani, Maayan; Avital, Avi

    2015-01-01

    Either pre- or post-natal environmental factors seem to play a key role in brain and behavioral development and to exert long-term effects. Increasing evidence suggests that exposure to prenatal stress (PS) leads to motor and learning deficits and elevated anxiety, while enriched environment (EE) shows protective effects. The dopaminergic system is also sensitive to environmental life circumstances and affects attention functioning, which serves as the preliminary gate to cognitive processes. However, the effects of methylphenidate (MPH) on the dopaminergic system and attentional functioning, in the context of these life experiences, remain unclear. Therefore, we aimed to examine the effects of EE or PS on distinct types of attention, along with possible effects of MPH exposure. We found that PS impaired selective attention as well as partial sustained attention, while EE had beneficial effects. Both EE and MPH ameliorated the deleterious effects of PS on attention functioning. Considering the possible psychostimulant effect of MPH, we examined both anxiety-like behavior as well as motor learning. We found that PS had a clear anxiogenic effect, whereas EE had an anxiolytic effect. Nevertheless, the treatment with both MPH and/or EE recovered the deleterious effects of PS. In the motor-learning task, the PS group showed superior performance while MPH led to impaired motor learning. Performance decrements were prevented in both the PS + MPH and EE + MPH groups. This study provides evidence that peripubertal exposure to EE (by providing enhanced sensory, motor, and social opportunities) or MPH treatments might be an optional therapeutic intervention in preventing the PS long-term adverse consequences.

  5. A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder

    PubMed Central

    Scott, J. Cobb; Matt, Georg E.; Wrocklage, Kristen M.; Crnich, Cassandra; Jordan, Jessica; Southwick, Steven M.; Krystal, John H.; Schweinsburg, Brian C.

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with regional alterations in brain structure and function that are hypothesized to contribute to symptoms and cognitive deficits associated with the disorder. We present here the first systematic meta-analysis of neurocognitive outcomes associated with PTSD to examine a broad range of cognitive domains and describe the profile of cognitive deficits, as well as modifying clinical factors and study characteristics. This report is based on data from 60 studies totaling 4,108 participants, including 1,779with PTSD, 1,446 trauma-exposed comparison participants, and 895 healthy comparison participants without trauma exposure. Effect size estimates were calculated using a mixed-effects meta-analysis for nine cognitive domains: attention/working memory, executive functions, verbal learning, verbal memory, visual learning, visual memory, language, speed of information processing, and visuospatial abilities. Analyses revealed significant neurocognitive effects associated with PTSD, although these ranged widely in magnitude, with the largest effect sizes in verbal learning (d =−.62), speed of information processing (d =−.59), attention/working memory (d =−.50), and verbal memory (d =−.46). Effect size estimates were significantly larger in treatment-seeking than community samples and in studies that did not exclude participants with attention-deficit hyperactivity disorder, and effect sizes were affected by between-group IQ discrepancies and the gender composition of the PTSD groups. Our findings indicate that consideration of neuropsychological functioning in attention, verbal memory, and speed of information processing may have important implications for the effective clinical management of persons with PTSD. Results are further discussed in the context of cognitive models of PTSD and the limitations of this literature. PMID:25365762

  6. Hypoxia-induced and stress-specific changes in chromatin structure and function

    PubMed Central

    Johnson, Amber Buescher; Barton, Michelle Craig

    2007-01-01

    Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses. PMID:17292925

  7. The Relationship of Metabolic Syndrome with Stress, Coronary Heart Disease and Pulmonary Function - An Occupational Cohort-Based Study

    PubMed Central

    Nowobilski, Roman; Dropinski, Jerzy; Kotula-Horowitz, Katarzyna; Laskowicz, Bartosz; Stanisz, Andrzej; Lelakowski, Jacek

    2015-01-01

    Background and Aims Higher levels of stress impact the prevalence of metabolic syndrome (MetS) and coronary heart disease. The association between MetS, impaired pulmonary function and low level of physical activity is still pending assessment in the subjects exposed to stress. The study aimed to examine whether higher levels of stress might be related to MetS and the plaque presence, as well as whether MetS might affect pulmonary function. Design and Methods The study embraced 235 police officers (mean age 40.97 years) from the south of Poland. The anthropometrics and biochemical variables were measured; MetS was diagnosed using the International Diabetes Federation criteria. Computed tomography coronary angiography of coronary arteries, exercise ECG, measurements of brachial flow-mediated dilation, and carotid artery intima-media thickness were completed. In order to measure the self-perception of stress, 10-item Perceived Stress Scale (PSS-10) was applied. Pulmonary function and physical activity levels were also addressed. Multivariate logistic regression analyses were applied to determine the relationships between: 1/ incidence of coronary plaque and MetS per se, MetS components and the number of classical cardiovascular risk factors, 2/ perceived stress and MetS, 3/ MetS and pulmonary function parameters. Results Coronary artery atherosclerosis was less associated with MetS (OR = 2.62, 95%CI 1.24–5.52; p = 0.011) than with a co-existence of classical cardiovascular risk factors (OR = 5.67, 95% CI 1.07–29.85, p = 0.03; for 3 risk factors and OR = 9.05; 95% CI 1.24–66.23, p = 0.02; for 6 risk factors, respectively). Perceived stress increased MetS prevalence (OR = 1.07, 95% CI 1.03–1.13; p = 0.03), and impacted coronary plaque prevalence (OR = 1.05, 95% CI 1.001–1.10; p = 0.04). Leisure-time physical activity reduced the chances of developing MetS (OR = 0.98 95% CI 0.96–0.99; p = 0.02). MetS subjects had significantly lower values of certain

  8. Effects of stress and tranylcypromine on amphetamine-induced locomotor activity and GABA(B) receptor function in rat brain.

    PubMed

    Sands, S A; Reisman, S A; Enna, S J

    2003-01-17

    Modification in gamma-aminobutyric acid-B (GABA(B)) receptors may contribute to the symptoms of some neurological and psychiatric disorders and to the clinical response to psychotherapeutics. The present study was undertaken to determine whether chronic administration of tranylcypromine (TCP), an antidepressant, and chronic stress influence GABA(B) receptor function in rat brain. The results indicate that TCP treatment, but not stress, increases GABA(B) receptor activity in the cerebral cortex, as measured by baclofen-stimulated GTPgammaS binding. In addition, chronic administration of TCP enhances significantly the locomotor response to a single dose of amphetamine, an effect that is abolished by restraint stress. These results indicate that although TCP administration modifies brain GABA(B) receptor activity, which may contribute to the antidepressant response to this agent, this effect is unrelated to the interaction of stress and TCP treatment on the locomotor response to amphetamine.

  9. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    PubMed

    Huang, Qiuyuan; Briggs, Brandon R; Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  10. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities

    PubMed Central

    Maestre, Fernando T.; Bowker, Matthew A.; Escolar, Cristina; Puche, María D.; Soliveres, Santiago; Maltez-Mouro, Sara; García-Palacios, Pablo; Castillo-Monroy, Andrea P.; Martínez, Isabel; Escudero, Adrián

    2010-01-01

    Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions. PMID:20513714

  11. Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China

    PubMed Central

    Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change. PMID:25365331

  12. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    PubMed

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health.

  13. Mechanisms of change: Testing how preventative interventions impact psychological and physiological stress functioning in mothers in neglectful families.

    PubMed

    Toth, Sheree L; Sturge-Apple, Melissa L; Rogosch, Fred A; Cicchetti, Dante

    2015-11-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventive interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either child-parent psychotherapy (CPP) or psychoeducational parenting intervention (PPI) was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services as well as a demographic comparison group of nonmaltreating mothers. The resulting group sizes in the current investigation were 44 for CPP, 34 for PPI, 27 for community services, and 52 for nonmaltreating mothers. Mothers and their 13-month-old infants were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and postintervention. Basal cortisol was sampled at postintervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress, while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year postintervention. The results highlight the value of delineating how participation in preventive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multilevel assessments of intervention process and outcome.

  14. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava

    PubMed Central

    2014-01-01

    Background Stress acclimation is an effective mechanism that plants acquired for adaption to dynamic environment. Even though generally considered to be sensitive to low temperature, Cassava, a major tropical crop, can be tolerant to much lower temperature after chilling acclimation. Improvement to chilling resistance could be beneficial to breeding. However, the underlying mechanism and the effects of chilling acclimation on chilling tolerance remain largely unexplored. Results In order to understand the mechanism of chilling acclimation, we profiled and analyzed the transcriptome and microRNAome of Cassava, using high-throughput deep sequencing, across the normal condition, a moderate chilling stress (14°C), a harsh stress (4°C) after chilling acclimation (14°C), and a chilling shock from 24°C to 4°C. The results revealed that moderate stress and chilling shock triggered comparable degrees of transcriptional perturbation, and more importantly, about two thirds of differentially expressed genes reversed their expression from up-regulation to down-regulation or vice versa in response to hash stress after experiencing moderate stress. In addition, microRNAs played important roles in the process of this massive genetic circuitry rewiring. Furthermore, function analysis revealed that chilling acclimation helped the plant develop immunity to further harsh stress by exclusively inducing genes with function for nutrient reservation therefore providing protection, whereas chilling shock induced genes with function for viral reproduction therefore causing damage. Conclusions Our study revealed, for the first time, the molecular basis of chilling acclimation, and showed potential regulation role of microRNA in chilling response and acclimation in Euphorbia. PMID:25090992

  15. Mechanisms of Change: Testing how Preventative Interventions Impact Psychological and Physiological Stress Functioning in Mothers in Neglectful Families

    PubMed Central

    Toth, Sheree L.; Sturge-Apple, Melissa L.; Rogosch, Fred A.; Cicchetti, Dante

    2015-01-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventative interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either Child-Parent Psychotherapy (CPP) or Psychoeducational Parenting (PPI) interventions was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services (CS) as well as a demographic comparison group of nonmaltreating mothers (NC). The resulting group sizes in the current investigation were: CPP (n = 44), PPI (n = 34), CS (n = 27), and NC (n = 52). Mothers and infants who were 13-months of age were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and post-intervention. Basal cortisol was sampled at post-intervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year post-intervention. Results highlight the value of delineating how participation in preventtive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multi-level assessments of intervention process and outcome. PMID:26535951

  16. Stress during simulated emergency transportation in a rescue helicopter: cross-correlation between stress hormones, vital functions and subjective well-being.

    PubMed

    Witzel, K; Elzer, M; Koch, Horst J

    2009-06-01

    Vital functions and stress hormone levels during simulated emergency helicopter transport in healthy volunteers. Twenty-three volunteers were subjected to a simulated 15 minute rescue helicopter transport. We determined vital functions, ACTH, cortisol and prolactin during the flight and filled in a standardized questionnaire before and after the flight. Data were analysed descriptively, by means of cross tabulation, Spearman rank correlation and cross-correlation technique. During take-off we recorded a significant increase of vital parameters such as heart rate. Prolactin concentration rose slightly after the start. Maximum cortisol and ACTH levels were found before take-off and then they decreased gradually. As expected, ACTH and cortisol cross-correlated significantly without any relevant time lag. Test items showed a feeling of fear and concern before take off. After the flight the volunteers reported having less stress than expected. Particularly, diastolic blood pressure and prolactin levels were markedly associated with questionnaire items such as behaviour of the staff or nausea. Heart rate significantly correlated with anxiety scores. Helicopter transportation induced a marked stress reaction in healthy volunteers, which speaks in favour of smooth transports in modern helicopters and adequate behaviour towards the patient of the staff.

  17. Family Functioning and Children's Post-Traumatic Stress Symptoms in a Referred Sample Exposed to Interparental Violence.

    PubMed

    Telman, Machteld D; Overbeek, Mathilde M; de Schipper, J Clasien; Lamers-Winkelman, Francien; Finkenauer, Catrin; Schuengel, Carlo

    This study examined the association between interparental violence (IPV), child abuse and neglect, other traumatic experiences, and children's post-traumatic stress (PTS) symptoms and explored the moderating role of family functioning in the aftermath of IPV. One hundred and twenty IPV-exposed children (53.3 % male, M age = 9.85) and parents who were referred to community mental health centers participated in the study. Combined, IPV, child abuse and neglect, and other traumatic experiences were associated with PTS symptoms. For family functioning, higher levels of parenting stress were associated with higher levels of PTS symptoms. No moderating effects were found. To understand the variability in PTS symptoms among children exposed to IPV, other traumatic and stressful experiences need to be taken into account.

  18. Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels

    PubMed Central

    Guérineau, Nathalie C.; Desarménien, Michel G.; Carabelli, Valentina; Carbone, Emilio

    2012-01-01

    An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca2+ signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress. This review focuses on three chromaffin cell incontrovertible actors, the cholinergic nicotinic receptors and the voltage-dependent T-type Ca2+ channels that are directly involved in Ca2+-dependent events controlling catecholamine secretion and electrical activity, and the gap junctional communication involved in the modulation of catecholamine secretion. We show here that these three actors react differently to various stressors, sometimes independently, sometimes in concert or in opposition. PMID:22252244

  19. Neural correlates of stress and favorite-food cue exposure in adolescents: a functional magnetic resonance imaging study.

    PubMed

    Hommer, Rebecca E; Seo, Dongju; Lacadie, Cheryl M; Chaplin, Tara M; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N

    2013-10-01

    Adolescence is a critical period of neurodevelopment for stress and appetitive processing, as well as a time of increased vulnerability to stress and engagement in risky behaviors. This study was conducted to examine brain activation patterns during stress and favorite-food-cue experiences relative to a neutral-relaxing condition in adolescents. Functional magnetic resonance imaging was employed using individualized script-driven guided imagery to compare brain responses with such experiences in 43 adolescents. Main effects of condition and gender were found, without a significant gender-by-condition interaction. Stress imagery, relative to neutral, was associated with activation in the caudate, thalamus, left hippocampus/parahippocampal gyrus, midbrain, left superior/middle temporal gyrus, and right posterior cerebellum. Appetitive imagery of favorite food was associated with caudate, thalamus, and midbrain activation compared with the neutral-relaxing condition. To understand neural correlates of anxiety and craving, subjective (self-reported) measures of stress-induced anxiety and favorite-food-cue-induced craving were correlated with brain activity during stress and appetitive food-cue conditions, respectively. High self-reported stress-induced anxiety was associated with hypoactivity in the striatum, thalamus, hippocampus, and midbrain. Self-reported favorite-food-cue-induced craving was associated with blunted activity in cortical-striatal regions, including the right dorsal and ventral striatum, medial prefrontal cortex, motor cortex, and left anterior cingulate cortex. These findings in adolescents indicate the activation of predominantly subcortical-striatal regions in the processing of stressful and appetitive experiences and link hypoactive striatal circuits to self-reported stress-induced anxiety and cue-induced favorite-food craving.

  20. Induction of oxidative stress causes functional alterations in mouse urothelium via a TRPM8-mediated mechanism: implications for aging.

    PubMed

    Nocchi, Linda; Daly, Donna M; Chapple, Christopher; Grundy, David

    2014-06-01

    The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a 'sensory network' with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2 , used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2 -induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging.

  1. Exercise, Diet, and Stress Management as Mediators between Functional Disability and Health-Related Quality of Life in Multiple Sclerosis

    ERIC Educational Resources Information Center

    Sung, Connie; Chiu, Chung-Yi; Lee, Eun-Jeong; Bezyak, Jill; Chan, Fong; Muller, Veronica

    2013-01-01

    The main objective of this study was to examine the mediational and moderational effect of exercise, diet, and stress management on the relationship between functional disability and health-related quality of life. Quantitative descriptive research design using multiple regression and correlation techniques was used. Participants were 215…

  2. Posttraumatic Stress Disorder Symptom Structure in Injured Children: Functional Impairment and Depression Symptoms in a Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Kassam-Adams, Nancy; Marsac, Meghan L.; Cirilli, Carla

    2010-01-01

    Objective: To examine the factor structure of posttraumatic stress disorder (PTSD) symptoms in children and adolescents who have experienced an acute single-incident trauma, associations between PTSD symptom clusters and functional impairment, and the specificity of PTSD symptoms in relation to depression and general distress. Method: Examined…

  3. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells.

    PubMed

    Ramirez, Servio H; Potula, Raghava; Fan, Shongshan; Eidem, Tess; Papugani, Anil; Reichenbach, Nancy; Dykstra, Holly; Weksler, Babette B; Romero, Ignacio A; Couraud, Pierre O; Persidsky, Yuri

    2009-12-01

    Methamphetamine (METH), a potent stimulant with strong euphoric properties, has a high abuse liability and long-lasting neurotoxic effects. Recent studies in animal models have indicated that METH can induce impairment of the blood-brain barrier (BBB), thus suggesting that some of the neurotoxic effects resulting from METH abuse could be the outcome of barrier disruption. In this study, we provide evidence that METH alters BBB function through direct effects on endothelial cells and explore possible underlying mechanisms leading to endothelial injury. We report that METH increases BBB permeability in vivo, and exposure of primary human brain microvascular endothelial cells (BMVEC) to METH diminishes the tightness of BMVEC monolayers in a dose- and time-dependent manner by decreasing the expression of cell membrane-associated tight junction (TJ) proteins. These changes were accompanied by the enhanced production of reactive oxygen species, increased monocyte migration across METH-treated endothelial monolayers, and activation of myosin light chain kinase (MLCK) in BMVEC. Antioxidant treatment attenuated or completely reversed all tested aspects of METH-induced BBB dysfunction. Our data suggest that BBB injury is caused by METH-mediated oxidative stress, which activates MLCK and negatively affects the TJ complex. These observations provide a basis for antioxidant protection against brain endothelial injury caused by METH exposure.

  4. Acute effect of brisk walking with graduated compression stockings on vascular endothelial function and oxidative stress.

    PubMed

    Okamoto, Takanobu; Sakamaki-Sunaga, Mikako; Min, Seokki; Miura, Takashi; Iwasaki, Tetsuji

    2013-11-01

    The purpose of this study was to investigate the acute effect of brisk walking with and without graduated compression stockings (GCSs) on vascular endothelial function and oxidative stress. Ten young healthy subjects walked briskly for 30 min with (GCS trial) and without (CON trial) GCSs in a randomized crossover trial. Brachial artery flow-mediated dilation (FMD) was measured as the per cent rise in the peak diameter from the baseline value at prior occlusion at each FMD measurement using B-mode ultrasonography before and 30 min after walking in the two trials. Derivatives of reactive oxygen metabolites (d-ROM), as an index of products of reactive oxygen species, and biological anti-oxidant potential (BAP), as an index of anti-oxidant potential, were also measured using a free radical elective evaluator before and 30 min after walking in both trials. FMD significantly decreased after brisk walking in both trials (P<0·05). However, FMD after brisk walking in the GCS trial was significantly higher than that in the CON trial (P<0·05). The d-ROM did not change before and after both trials, whereas the BAP significantly increased after walking in the GCS trial (P<0·05). These findings demonstrate that brisk walking while wearing GCSs suppresses the decrease in FMD and increases BAP.

  5. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    PubMed Central

    Héricourt, François; Chefdor, Françoise; Djeghdir, Inès; Larcher, Mélanie; Lafontaine, Florent; Courdavault, Vincent; Auguin, Daniel; Coste, Franck; Depierreux, Christiane; Tanigawa, Mirai; Maeda, Tatsuya; Glévarec, Gaëlle; Carpin, Sabine

    2016-01-01

    Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress. PMID:27941652

  6. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress.

    PubMed

    Héricourt, François; Chefdor, Françoise; Djeghdir, Inès; Larcher, Mélanie; Lafontaine, Florent; Courdavault, Vincent; Auguin, Daniel; Coste, Franck; Depierreux, Christiane; Tanigawa, Mirai; Maeda, Tatsuya; Glévarec, Gaëlle; Carpin, Sabine

    2016-12-08

    Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  7. Interconnection of tectonic stresses in the Earth's crust and dynamics of the groundwater basin functioning

    NASA Astrophysics Data System (ADS)

    Koneshov, Vycheslav; Trifonova, Tatiana; Trifonov, Dmitriy; Arakelian, Sergey

    2016-04-01

    1. Possible influence of tectonic stresses on the occurrence of catastrophic floods by the mechanism of modification of the 3D-cracknet of the rock formations and the transit of the groundwater in this natural transport system in the conditions of functioning of the river catchment basin is discussed. Several floods (not freshets) took place in 2013-2014, which probably could be associated with corresponding seismic processes in the Earth's crust, are considered. 2. A river basin formation in the mountain slope can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. The controlling parameter is the process of the crack spreading out. Crack development up the slope but downward substance transit, stipulates a feedback within the unified 3D-river basin system. 3. We have briefly described and rendered the mechanism of the influence of seismic activity on the occurrence of concrete floods with the use of combined maps of groundwater resources and the boundaries of lithospheric plates on the territory and the revealed regularities in seismic waves propagation and interaction with groundwater. 4. In the practical aspect a proposed hypothesis can be useful during the definition of potentially dangerous areas for catastrophic water events taking into account the interference of the state of the underground hydrosphere and the tectonic structure of the rheological section of bowels of the earth on the concrete territories under some adjustable (seismic) conditions.

  8. A First Line of Stress Defense: Small Heat Shock Proteins and their function in protein homeostasis

    PubMed Central

    Haslbeck, Martin; Vierling, Elizabeth

    2015-01-01

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. To maintain protein homeostasis, sHsps complex with a variety of nonnative proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation. In vertebrates they act to maintain the clarity of the eye lens, and in humans sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42 kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or coassembly between different sHsps in the same cellular compartment adds an underexplored level of complexity to sHsp structure and function. PMID:25681016

  9. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.

    PubMed

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries.

  10. A first line of stress defense: small heat shock proteins and their function in protein homeostasis.

    PubMed

    Haslbeck, Martin; Vierling, Elizabeth

    2015-04-10

    Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.

  11. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    PubMed Central

    Lages, Yury M.; Nascimento, Juliana M.; Lemos, Gabriela A.; Galina, Antonio; Castilho, Leda R.

    2015-01-01

    Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs) derived from pluripotent stem cells grown in 3% oxygen (v/v) were compared with NPCs cultured in 21% (v/v) oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS). NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening. PMID:26713239

  12. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models.

    PubMed

    Mhamdi, Amna; Queval, Guillaume; Chaouch, Sejir; Vanderauwera, Sandy; Van Breusegem, Frank; Noctor, Graham

    2010-10-01

    Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.

  13. Residual stress and fracture characteristics of zirconia/metal(Ni, SUS304) functionally gradient materials

    SciTech Connect

    Jung, Yeon-Gil; Choi, Sung-Churl; Paik, Un-Gyu

    1995-09-01

    To analyze the residual stress and the fracture behavior of FGMs. disc-type TZP/Ni- and TZP/SUS304-FGM were hot passed, and compared with MM& The continuous interface and the microstructure of FGMs were characterized with EPMA, optical microscopy and SEM. The defect-like cracks in the FGMs induced by the preferential shear stress have been shown to cause fracture. This fact has well corresponded to the analysis of the residual stress distribution by FEM.

  14. Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns.

    PubMed

    Barkhausen, Tanja; van Griensven, Martijn; Zeichen, Johannes; Bosch, Ulrich

    2003-09-01

    Mechanical stress is a factor that is thought to play an essential role in tissue generation and reparation processes. The aim of the present study was to investigate the influence of different repetitive cyclic longitudinal stress patterns on proliferation, apoptosis and expression of heat shock protein (HSP) 72. To perform this study, human tendon fibroblasts were seeded on flexible silicone dishes. After adherence to the dish, cells were longitudinally stressed with three different repetitive stress patterns having a frequency of 1 Hz and an amplitude of 5%. The proliferation and apoptosis rates were investigated 0, 6, 12 and 24 hours after application of cyclic mechanical longitudinal strain. Expression of HSP 72 was tested after 0, 2, 4 and 8 hours. Control cells were also grown on silicone dishes, but did not receive any stress. Stress patterns applied during one day resulted in a significant increase in proliferation and a slight increase in apoptosis. HSP 72 expression was rather unchanged. A stress pattern applied during two days resulted in a reduced proliferation and apoptosis rate whereas the expression of HSP 72 showed a significant increase. This study shows that different stress patterns result in different cellular reactions dependent on the strength of applied stress. Repetitive stress applied during one day stimulated proliferation and apoptosis in contrast to an extended stress duration. The latter induced an inhibition of proliferation and apoptosis probably through an increased HSP 72 activity. This may be related to an excess of applied stress. Our results may implicate future modulation techniques for tissue reparation and tissue engineering.

  15. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion.

    PubMed

    Kubli, Dieter A; Quinsay, Melissa N; Huang, Chengqun; Lee, Youngil; Gustafsson, Asa B

    2008-11-01

    Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) is a member of the Bcl-2 homology domain 3-only subfamily of proapoptotic Bcl-2 proteins and is associated with cell death in the myocardium. In this study, we investigated the potential mechanism(s) by which Bnip3 activity is regulated. We found that Bnip3 forms a DTT-sensitive homodimer that increased after myocardial ischemia-reperfusion (I/R). The presence of the antioxidant N-acetylcysteine reduced I/R-induced homodimerization of Bnip3. Overexpression of Bnip3 in cells revealed that most of exogenous Bnip3 exists as a DTT-sensitive homodimer that correlated with increased cell death. In contrast, endogenous Bnip3 existed mainly as a monomer under normal conditions in the heart. Screening of the Bnip3 protein sequence revealed a single conserved cysteine residue at position 64. Mutation of this cysteine to alanine (Bnip3C64A) or deletion of the NH2-terminus (amino acids 1-64) resulted in reduced cell death activity of Bnip3. Moreover, mutation of a histidine residue in the COOH-terminal transmembrane domain to alanine (Bnip3H173A) almost completely inhibited the cell death activity of Bnip3. Bnip3C64A had a reduced ability to interact with Bnip3, whereas Bnip3H173A was completely unable to interact with Bnip3, suggesting that homodimerization is important for Bnip3 function. A consequence of I/R is the production of reactive oxygen species and oxidation of proteins, which promotes the formation of disulfide bonds between proteins. Thus, these experiments suggest that Bnip3 functions as a redox sensor where increased oxidative stress induces homodimerization and activation of Bnip3 via cooperation of the NH2-terminal cysteine residue and the COOH-terminal transmembrane domain.

  16. Comparative study of pulmonary functions and oxidative stress in smokers and non-smokers.

    PubMed

    Waseem, Shah Mohammad Abbas; Mobarak, Mohd Hossain; Islam, Najmul; Ahmad, Zuber

    2012-01-01

    Chronic Obstructive Pulmonary Disorder (COPD) is projected to rank third leading cause of deaths by 2030 as per WHO. COPD is a multi-etiological disease. The airflow dysfunction is usually progressive, associated with an abnormal inflammatory response of the lungs to noxious particles or gasses. As the lung is exposed to high levels of oxygen, it is more susceptible to oxidants mediated injury. Gender based differences are identifiable risk factors. Smoking is found to be a major risk factor in the causation of COPD resulting in oxidative stress . The aim of the present study is to evaluate the oxidant antioxidant imbalance in healthy non smoker controls and smokers with COPD. A total of 60 control (healthy non smokers) and 121 smokers having COPD were studied. The mean age is more in smoker group as compared to healthy controls, which identifies advancing age as a risk factor for COPD. The mean BMI and weight of smoker group is reduced as compared to control group. GOLD 2008 criteria was used to assess lung functions. Lung functions namely FEV1, FVC, FEV1/FVC% and FEV1% Predicted showed significant reduction in smoker group as compared to healthy non smoker controls. MDA in control and smoker group (1.09 +/- 0.09 and 1.41 +/- 0.23 nmol/ml respectively) showed significant changes (P < 0.001). Our results also demonstrate significant reduction in anti oxidant enzymes namely SOD (units/mg of serum protein), Catalase (units/mg of serum protein) and GPX (nmol of NADPH oxidized/ min/mg of serum protein) in smoker group as compared to healthy controls. On the basis of study it is concluded that smoking, gender and oxidant antioxidant imbalance are identifiable risk factors in COPD.

  17. Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages.

    PubMed

    Kohno, Shohei; Yamashita, Yui; Abe, Tomoki; Hirasaka, Katsuya; Oarada, Motoko; Ohno, Ayako; Teshima-Kondo, Shigetada; Higashibata, Akira; Choi, Inho; Mills, Edward M; Okumura, Yuushi; Terao, Junji; Nikawa, Takeshi

    2012-05-01

    Skeletal muscle is one of the most sensitive tissues to mechanical loading, and unloading inhibits the regeneration potential of skeletal muscle after injury. This study was designed to elucidate the specific effects of unloading stress on the function of immunocytes during muscle regeneration after injury. We examined immunocyte infiltration and muscle regeneration in cardiotoxin (CTX)-injected soleus muscles of tail-suspended (TS) mice. In CTX-injected TS mice, the cross-sectional area of regenerating myofibers was smaller than that of weight-bearing (WB) mice, indicating that unloading delays muscle regeneration following CTX-induced skeletal muscle damage. Delayed infiltration of macrophages into the injured skeletal muscle was observed in CTX-injected TS mice. Neutrophils and macrophages in CTX-injected TS muscle were presented over a longer period at the injury sites compared with those in CTX-injected WB muscle. Disturbance of activation and differentiation of satellite cells was also observed in CTX-injected TS mice. Further analysis showed that the macrophages in soleus muscles were mainly Ly-6C-positive proinflammatory macrophages, with high expression of tumor necrosis factor-α and interleukin-1β, indicating that unloading causes preferential accumulation and persistence of proinflammatory macrophages in the injured muscle. The phagocytic and myotube formation properties of macrophages from CTX-injected TS skeletal muscle were suppressed compared with those from CTX-injected WB skeletal muscle. We concluded that the disturbed muscle regeneration under unloading is due to impaired macrophage function, inhibition of satellite cell activation, and their cooperation.

  18. Gender differences in the associations of self esteem, stress and social support with functional health status among older adults with heart disease.

    PubMed

    Forthofer, M S; Janz, N K; Dodge, J A; Clark, N M

    2001-01-01

    This study explored and compared the role of self esteem, stress and social support in maintenance or improvement in physical and psychosocial functioning over 12 months in older men and women with cardiovascular disease. Data from 502 adults over 60 years of age showed that self esteem and stress were both significantly associated with functioning when demographic and clinical factors were controlled. Men were significantly more likely than women to maintain or improve in functioning. Self esteem, stress, compliance with medication regimens, and marital status were significantly associated with maintenance or improvement of functioning among women. Only age and stress were significantly associated with maintenance or improvement in functioning among men. Findings indicated that: (1) stress and self esteem were stronger predictors of functioning, especially among women, than demographic and clinical factors; and (2) women in the highest quartile of the self esteem distribution were approximately five times as likely to maintain or improve their functioning as women in the lowest quartile.

  19. Influence of a stressing constraint on stiffness and damping functions of a ski simulator's platform motion.

    PubMed

    Deschamps, Thibault; Nourrit, Déborah; Caillou, Nicolas; Delignières, Didier

    2004-09-01

    The aim of this study was to assess the effect of stress on a previously acquired motor coordination. Following a longitudinal learning experiment, four participants performed oscillations on a ski simulator, either in normal or stressful conditions. The results showed that the amplitude of the oscillations decreased under stress, but no significant effect was seen regarding coordination, suggesting the strong resistance to stress of overlearned behaviour. Nevertheless, for one participant, a transient regression towards a former stage of learning was observed. This result was consistent with the regression hypothesis formulated by Fuchs (1962).

  20. Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals.

    PubMed

    Fuchs, Eberhard; Flügge, Gabriele

    2002-08-01

    Social stress is known to be involved in the etiology of central nervous disorders such as depression. In recent years, animal models have been developed that use chronic stress to induce neuroendocrine and central nervous changes that might be similar to those occurring in the course of the development of depressive disorders. The present review gives a summary of observations made in the tree shrew chronic social stress model. During periods of daily social stress, male tree shrews develop symptoms that are known from many depressed patients such as persistent hyperactivities of both the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system, disturbances in sleeping patterns, and reduced motor activity. Moreover, various physiological parameters indicate an acceleration of the over all metabolic rate in socially stressed tree shrews. Some of these parameters can be renormalized by antidepressants thus supporting the view of the tree shrew social stress paradigm as model for major depression. In the brains of socially stressed animals, monoamine receptors show dynamic changes that reflect adaptation to the persistent monoaminergic hyperactivity during periods of chronic stress. In addition to the changes in neurotransmitter systems, there are structural changes in neurons, e.g., retraction of the dendrites of hippocampal pyramidal neurons. Together, these processes are suggested as a cause of behavioral alterations that can be counteracted by antidepressants in this naturalistic social stress model.

  1. CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress

    PubMed Central

    Wang, Wei; Liu, Ji-Hong

    2016-01-01

    Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance. PMID:27535697

  2. Identification and functional analysis of microRNAs and their targets in Platanus acerifolia under lead (Pb) stress.

    PubMed

    Wang, Yuanlong; Zhao, Zhenli; Deng, Minjie; Liu, Rongning; Niu, Suyan; Fan, Guoqiang

    2015-03-30

    MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To identify miRNAs and predict their target genes under Pb stress, two small RNA and two degradome libraries were constructed from Pb-treated and Pb-free leaves of P. acerifolia seedlings. After sequencing, 55 known miRNAs and 129 novel miRNAs were obtained, and 104 target genes for the miRNAs were identified by degradome sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the targets. The expressions of eight differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report about P. acerifolia miRNAs and their target genes under Pb stress. This study has provided data for further research into molecular mechanisms involved in resistance of P. acerifolia to Pb stress.

  3. Psychological resilience is associated with more intact social functioning in veterans with post-traumatic stress disorder and depression.

    PubMed

    Wingo, Aliza P; Briscione, Maria; Norrholm, Seth D; Jovanovic, Tanja; McCullough, S Ashley; Skelton, Kelly; Bradley, Bekh

    2017-03-01

    Patients with depression or post-traumatic stress disorder (PTSD), common sequelae among individuals exposed to stressful or traumatic events, often report impairment in social functioning. Resilience is a multidimensional construct that enables adaptive coping with life adversity. Relationship between resilience and social functioning among veterans with depression and PTSD is not entirely clear and is the focus of this report. Resilience was assessed in 264 veterans using the Connor-Davidson Resilience Scale, PTSD with the PTSD Symptom Scale, depression with the Beck Depression Inventory, and social functioning with the Short Form Health Survey. Higher resilience was associated with more intact social functioning after PTSD and depression severity, childhood maltreatment, physical health, gender, education, marital status, and employment were simultaneously adjusted for. Childhood maltreatment, gender, marital status, education, and employment did not predict social functioning; however, greater severity of PTSD, depression, or physical health problems was each significantly associated with more impaired social functioning. Our findings suggest that higher resilience was associated with more intact social functioning regardless of the severity of PTSD and depression. Given the importance of social functioning in depression and/or PTSD recovery, studies are needed to examine if enhancing resilience presents a complementary approach to alleviating impaired social functioning.

  4. Neurocognitive function and state cognitive stress appraisal predict cortisol reactivity to an acute psychosocial stressor in adolescents.

    PubMed

    Slattery, Marcia J; Grieve, Adam J; Ames, Michelle E; Armstrong, Jeffrey M; Essex, Marilyn J

    2013-08-01

    Stress and associated alterations in hypothalamic-pituitary-adrenal (HPA) function have deleterious influence on the development of multiple mental and physical health problems. Prior research has aimed to identify individuals most at risk for the development of these stress-related maladies by examining factors that may contribute to inter-individual differences in HPA responses to acute stress. The objectives of this study were to investigate, in adolescents, (1) whether differences in neurocognitive abilities influenced cortisol reactivity to an acute stressor, (2) whether internalizing psychiatric disorders influenced this relationship, and (3) whether acute cognitive stress-appraisal mechanisms mediated an association between neurocognitive function and cortisol reactivity. Subjects were 70 adolescents from a community sample who underwent standardized neurocognitive assessments of IQ, achievement, and declarative memory measures at mean age 14 and whose physiological and behavioral responses to a standardized psychosocial stress paradigm (Trier Social Stress Test, TSST) were assessed at mean age 18. Results showed that, among all adolescents, lower nonverbal memory performance predicted lower cortisol reactivity. In addition, internalizing disorders interacted with verbal memory such that the association with cortisol reactivity was strongest for adolescents with internalizing disorders. Finally, lower secondary cognitive appraisal of coping in anticipation of the TSST independently predicted lower cortisol reactivity but did not mediate the neurocognitive-cortisol relationship. Findings suggest that declarative memory may contribute to inter-individual differences in acute cortisol reactivity in adolescents, internalizing disorders may influence this relationship, and cognitive stress appraisal also predicts cortisol reactivity. Developmental, research, and clinical implications are discussed.

  5. Stress Sensitivity in Metastatic Breast Cancer: Analysis of Hypothalamic-Pituitary-Adrenal Axis Function

    PubMed Central

    Spiegel, David; Giese-Davis, Janine; Taylor, C. Barr; Kraemer, Helena

    2006-01-01

    The normal diurnal cortisol cycle has a peak in the morning, decreasing rapidly over the day, with low levels during the night, then rising rapidly again to the morning peak. A pattern of flatter daytime slopes has been associated with more rapid cancer progression in both animals and humans. We studied the relationship between the daytime slopes and other daytime cortisol responses to both pharmacological and psychosocial challenges of hypothalamic-pituitary-adrenal (HPA) axis function as well as DHEA in a sample of 99 women with metastatic breast cancer, in hopes of elucidating the dysregulatory process. We found that the different components of HPA regulation: the daytime cortisol slope, the rise in cortisol from waking to 30 minutes later, and cortisol response to various challenges, including dexamethasone (DEX) suppression, corticotrophin releasing factor (CRF) activation, and the Trier Social Stress Task, were at best modestly associated. Escape from suppression stimulated by 1 mg of dexamethasone administered the night before was moderately but significantly associated with flatter daytime cortisol slopes (r=0..28 to .30 at different times of the post dexamethasone administration day, all p<.01) . Daytime cortisol slopes were also moderately but significant associated with the rise in cortisol from waking to 30 minutes after awakening (r=.29, p=.004, N=96), but not with waking cortisol level (r=−0.13, p=.19). However, we could not detect any association between daytime cortisol slope and activation of cortisol secretion by either CRF infusion or the Trier Social Stress Task. The CRF activation test (following 1.5 mg of dexamethasone to assure that the effect was due to exogenous CRF) produced ACTH levels that were correlated (r=0.66 p<.0001, N = 74) with serum cortisol levels, indicating adrenal responsiveness to ACTH stimulation. Daytime cortisol slopes were significantly correlated with the slope of DHEA (r=.21, p=.04, N=95). Our general findings

  6. Processing of syllable stress is functionally different from phoneme processing and does not profit from literacy acquisition

    PubMed Central

    Schild, Ulrike; Becker, Angelika B. C.; Friedrich, Claudia K.

    2014-01-01

    Speech is characterized by phonemes and prosody. Neurocognitive evidence supports the separate processing of each type of information. Therefore, one might suggest individual development of both pathways. In this study, we examine literacy acquisition in middle childhood. Children become aware of the phonemes in speech at that time and refine phoneme processing when they acquire an alphabetic writing system. We test whether an enhanced sensitivity to phonemes in middle childhood extends to other aspects of the speech signal, such as prosody. To investigate prosodic processing, we used stress priming. Spoken stressed and unstressed syllables (primes) preceded spoken German words with stress on the first syllable (targets). We orthogonally varied stress overlap and phoneme overlap between the primes and onsets of the targets. Lexical decisions and Event-Related Potentials (ERPs) for the targets were obtained for pre-reading preschoolers, reading pupils and adults. The behavioral and ERP results were largely comparable across all groups. The fastest responses were observed when the first syllable of the target word shared stress and phonemes with the preceding prime. ERP stress priming and ERP phoneme priming started 200 ms after the target word onset. Bilateral ERP stress priming was characterized by enhanced ERP amplitudes for stress overlap. Left-lateralized ERP phoneme priming replicates previously observed reduced ERP amplitudes for phoneme overlap. Groups differed in the strength of the behavioral phoneme priming and in the late ERP phoneme priming effect. The present results show that enhanced phonological processing in middle childhood is restricted to phonemes and does not extend to prosody. These results are indicative of two parallel processing systems for phonemes and prosody that might follow different developmental trajectories in middle childhood as a function of alphabetic literacy. PMID:24917838

  7. A transient assay system for the assessment of cell-autonomous gene function in dehydration-stressed barley

    PubMed Central

    Marzin, Stephan; Mihaly, Robert; Pauk, Janos; Schweizer, Patrick

    2008-01-01

    Drought is a serious, worldwide problem for crop production and also affects yields of barley and wheat, together with other stressors such as frost, viral diseases, or fungal pathogens. Although a number of candidate genes have been identified by transcriptome approaches in recent years, only very few have been tested in functional assays for a beneficial effect on drought tolerance. Here, a transient assay system in microprojectile-bombarded barley leaves is described that allows the functional testing of dehydration stress-related candidate genes by RNA interference (RNAi) or overexpression. Cellular stress or damage in dedydrated leaves is reported by a reduced accumulation of slowly maturing, native red-fluorescing protein DsRed that is known to be sensitive to denaturing conditions. After a dehydration-stress period of 4 d during which the relative fresh weight of leaves was kept at 60–66% of initial fresh weight, a reproducible reduction of normalized DsRed fluorescence was observed. In order to obtain proof of concept, a number of barley mRNAs homologous to drought response genes were selected and targeted by transient induced gene silencing (TIGS). TIGS of four tested genes resulted in a significantly stronger decrease of normalized DsRed fluorescence in dehydration-stressed leaves, whereas they had no effect in fully turgescent control leaves. These genes encode barley drought-responsive factor HvDRF1 (DREB2-like), dehydrin 6, late embryogenesis-abundant protein HVA1, and the vacuolar sodium/proton antiporter HvHNX1. The four targeted transcripts were also found to accumulate rapidly in dehydration-stressed barley leaf segments. The results suggest a value of the TIGS system for functional pre-screening of larger numbers of drought or dehydration stress-related candidate genes in barley. PMID:18641397

  8. Stress and Eating Disorder Behavior in Anorexia Nervosa as a Function of Menstrual Cycle Status

    PubMed Central

    Jappe, Leah M.; Cao, Li; Crosby, Ross D.; Crow, Scott J.; Peterson, Carol B.; Le Grange, Daniel; Engel, Scott G.; Wonderlich, Stephen A.

    2013-01-01

    Objective Fluctuations in ovarian hormones during the menstrual cycle and psychosocial stress contribute to eating disorder (ED) behavior. Methods Using ecological momentary assessment techniques, this study examined relationships between stress and binge eating, self-induced vomiting, and dietary restriction based on menstrual cycle status in anorexia nervosa (AN). 109 females with full and subthreshold AN (17–45 years old) recorded ED behavior and stress ratings over two weeks. Using hierarchical linear modeling, individuals with eumenorrhea and those with amenorrhea or oligomenorrhea were compared. Results Following episodes of meal skipping, momentary stress decreased in individuals with normal menstrual cycles and increased in those with irregular menstrual cycles. Discussion Results suggest that changes in stress severity in response to food restriction may differ based on ovarian hormonal status and may be a mechanism by which AN is maintained in individuals without menstrual disturbance. PMID:24222529

  9. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  10. Influence of the mechanical stress and heat parameters into the transmittance function of the integrals of the diffraction phenomena

    NASA Astrophysics Data System (ADS)

    Andrés-Zárate, Esteban; Cornejo-Rodríguez, Alejandro

    2011-09-01

    For the diffraction equations for the exact and convolutions Fourier's integrals, the parameters related with mechanical stress and heat are introduced into the mathematical function of the transmittance t0(x0,y0). Taking into account the new transmittance equation, a new set of equations for the exact and convolution Fourier's integrals have been derived. The only restriction for the analysis done is that for the apertures under study, they are only on a plane. An example af an experiment where a diffraction aperture suffers of a mechanical stress is shown.

  11. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5.

    PubMed

    Aramburu, José; Drews-Elger, Katherine; Estrada-Gelonch, Anaïs; Minguillón, Jordi; Morancho, Beatriz; Santiago, Verónica; López-Rodríguez, Cristina

    2006-11-30

    Stress, be it from environmental factors or intrinsic to the cell as result of growth and metabolism, can be harmful to cells. Mammalian cells have developed numerous mechanisms to respond to diverse forms of stress. These mechanisms combine signaling cascades and activation of gene expression programs to orchestrate an adaptive response that will allow the cell to survive and resume its normal functioning. In this review we will focus on the transcription factor NFAT5, a fundamental regulator of the response to osmotic stress in mammalian cells. Identified in 1999, NFAT5 is the latest addition to the Rel family, which comprises the NF-kappaB and NFATc proteins. Though in some of its structural and functional features NFAT5 is a hybrid between these two major groups of Rel proteins, it has unique characteristics that make it stand on its own as a third type of Rel transcription factor. Since its discovery, NFAT5 has been studied mostly in the context of the hypertonicity stress response. The advent of mouse models deficient in NFAT5 and other recent advances have confirmed a fundamental osmoprotective role for this factor in mammals, but also revealed features that suggest it may have a wider range of functions.

  12. Morphological and functional manifestations of rat adrenal-cortex response to sodium bromide administration under hypodynamic stress

    NASA Technical Reports Server (NTRS)

    Kirichek, L. T.; Zholudeva, V. I.

    1979-01-01

    Functional and morphological manifestations of adrenal cortex response to hypodynamia (2-hr immobilization on an operating table) under the influence of bromine preparations were studied. The sodium bromide was administered intraperitoneally in 100, 250, and 500 mg/kg doses once and repeatedly during ten days. The adrenal gland was evaluated functionally by ascorbic acid and cholesterol content and morphologically by coloring it with hematoxylin-eosin and Sudans for lipid revealing at freezing. Results are displayed in two tables and microphotographs. They are summarized as follows: the bromine weakens the functional state of the adrenal cortex in intact rats, causing changes similar to those under stress. During immobilization combined with preliminary bromine administration, a less pronounced stress reaction is noticeable.

  13. Role of fluid shear stress in regulating VWF structure, function and related blood disorders

    PubMed Central

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα–VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure–function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries. PMID:26600266

  14. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    PubMed Central

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana. PMID:27695390

  15. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats

    PubMed Central

    Choi, Soo-Kyoung; Lim, Mihwa; Byeon, Seon-Hee; Lee, Young-Ho

    2016-01-01

    Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of cardiovascular complications. However, the role and mechanisms of ER stress in hypertension remain unclear. Thus, we hypothesized that enhanced ER stress contributes to the maintenance of hypertension in spontaneously hypertensive rats (SHRs). Sixteen-week old male SHRs and Wistar Kyoto Rats (WKYs) were used in this study. The SHRs were treated with ER stress inhibitor (Tauroursodeoxycholic acid; TUDCA, 100 mg/kg/day) for two weeks. There was a decrease in systolic blood pressure in SHR treated with TUDCA. The pressure-induced myogenic tone was significantly increased, whereas endothelium-dependent relaxation was significantly attenuated in SHR compared with WHY. Interestingly, treatment of ER stress inhibitor normalized myogenic responses and endothelium-dependent relaxation in SHR. These data were associated with an increase in expression or phosphorylation of ER stress markers (Bip, ATF6, CHOP, IRE1, XBP1, PERK, and eIF2α) in SHRs, which were reduced by TUDCA treatment. Furthermore, phosphorylation of MLC20 was increased in SHRs, which was reduced by the treatment of TUDCA. Therefore, our results suggest that ER stress could be a potential target for hypertension. PMID:27550383

  16. Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice.

    PubMed

    Hutton, C P; Déry, N; Rosa, E; Lemon, J A; Rollo, C D; Boreham, D R; Fahnestock, M; deCatanzaro, D; Wojtowicz, J M; Becker, S

    2015-11-12

    Severe chronic stress can have a profoundly negative impact on the brain, affecting plasticity, neurogenesis, memory and mood. On the other hand, there are factors that upregulate neurogenesis, which include dietary antioxidants and physical activity. These factors are associated with biochemical processes that are also altered in age-related cognitive decline and dementia, such as neurotrophin expression, oxidative stress and inflammation. We exposed mice to an unpredictable series of stressors or left them undisturbed (controls). Subsets of stressed and control mice were concurrently given (1) no additional treatment, (2) a complex dietary supplement (CDS) designed to ameliorate inflammation, oxidative stress, mitochondrial dysfunction, insulin resistance and membrane integrity, (3) a running wheel in each of their home cages that permitted them to exercise, or (4) both the CDS and the running wheel for exercise. Four weeks of unpredictable stress reduced the animals' preference for saccharin, increased their adrenal weights and abolished the exercise-induced upregulation of neurogenesis that was observed in non-stressed animals. Unexpectedly, stress did not reduce hippocampal size, brain-derived neurotrophic factor (BDNF), or neurogenesis. The combination of dietary supplementation and exercise had multiple beneficial effects, as reflected in the number of doublecortin (DCX)-positive immature neurons in the dentate gyrus (DG), the sectional area of the DG and hippocampal CA1, as well as increased hippocampal BDNF messenger ribonucleic acid (mRNA) and serum vascular endothelial growth factor (VEGF) levels. In contrast, these benefits were not observed in chronically stressed animals exposed to either dietary supplementation or exercise alone. These findings could have important clinical implications for those suffering from chronic stress-related disorders such as major depression.

  17. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress

    PubMed Central

    Sorrell, Melanie; Berman, Zachary

    2014-01-01

    To maintain genome stability, cells have evolved various DNA repair pathways to deal with oxidative DNA damage. DNA damage response (DDR) pathways, including ATM-Chk2 and ATR-Chk1 checkpoints, are also activated in oxidative stress to coordinate DNA repair, cell cycle progression, transcription, apoptosis, and senescence. Several studies demonstrate that DDR pathways can regulate DNA repair pathways. On the other hand, accumulating evidence suggests that DNA repair pathways may modulate DDR pathway activation as well. In this review, we summarize our current understanding of how various DNA repair and DDR pathways are activated in response to oxidative DNA damage primarily from studies in eukaryotes. In particular, we analyze the functional interplay between DNA repair and DDR pathways in oxidative stress. A better understanding of cellular response to oxidative stress may provide novel avenues of treating human diseases, such as cancer and neurodegenerative disorders. PMID:24947324

  18. A model for the Barkhausen frequency spectrum as a function of applied stress

    NASA Astrophysics Data System (ADS)

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.

    2014-02-01

    We derive a two parameter multi-exponential model to describe the frequency spectrum of Barkhausen noise in bulk steel under high excitation rates and applied tensile stress. We show how the amplitude and shape of the frequency spectrum depend on two directly measurable quantities, Barkhausen voltage and effective magnetic permeability, respectively, and how these change with stress. By incorporating frequency and depth dependence components into our model, we provide a framework for identifying stress variations along depth, which can be used for the purposes of non-destructive characterization.

  19. The diversity of nitric oxide function in plant responses to metal stress.

    PubMed

    He, Huyi; He, Longfei; Gu, Minghua

    2014-04-01

    Nitric oxide (NO) emerges as signalling molecule, which is involved in diverse physiological processes in plants. High mobility metal interferes with NO signaling. The exogenous NO alleviates metal stress, whereas endogenous NO contributes to metal toxicity in plants. Owing to different cellular localization and concentration, NO may act as multifunctional regulator in plant responses to metal stress. It not only plays a crucial role in the regulation of gene expression, but serves as a long-distance signal. Through tight modulation of redox signaling, the integration among NO, reactive oxygen species and stress-related hormones in plants determines whether plants stimulate death pathway or activate survival signaling.

  20. Oxidative stress, endothelial function, carotid artery intimal thickness and their correlates among chronic peritoneal dialysis patients

    PubMed Central

    Khaira, A.; Mahajan, S.; Kumar, A.; Prakash, S.; Saraya, A.; Singh, B.; Bora, M.; Tiwari, S. C.; Agarwal, S. K.; Bhowmik, D.

    2011-01-01

    We evaluated important nontraditional cardiovascular risk factors, endothelial function and oxidative stress (OS) among stable peritoneal dialysis (PD) patients. Their association with carotid intimal medial thickness (CIMT) was also assessed. Thirty-eight adult patients (13 diabetics, 20 males) on PD for >6 months and 15 age and sex-matched controls were studied. Duration of dialysis (DOD), residual urine output (UO), weekly Kt/V urea, detailed biochemical and lipid profile were noted. OS was measured by serum concentration of antioxidants; vitamin C and ferric reducing ability of plasma (FRAP) and pro-oxidant; thiobarbituric acid-reactive substances (TBARS). High-resolution ultrasonography was used to determine CIMT and flow-mediated dilatation of brachial artery [endothelium-dependent dilatation (EDD)] and dilatation subsequent to nitrate spray [endothelium-independent dilatation (EID)]. Mean age, DOD, UO and Kt/V of study population were 49.3 ± 11.6 years, 19.4 ± 11.8 months, 508.2 ± 422.9 ml/day and 1.73 ± 0.24, respectively. As compared to controls PD patients had higher CIMT (0.46 ± 0.05 vs 0.50 ± 0.07 mm, P = 0.003) and TBARS (1.5 ± 0.4 vs 5.1 ± 2.3 nM/ml, P < 0.001) but lower Vitamin C (1.7 ± 0.3 vs 0.6 ± 0.2 mg%, P < 0.001), FRAP (990.8 ± 78.1 vs 328.7 ± 183.5 μM/L, P < 0.001) and EDD (26.2 ± 5.4 vs 9.8 ± 4.6 %, P < 0.001). TBARS correlated positively with DOD and negatively with hemoglobin. Vitamin C and FRAP correlated positively with serum albumin. EDD correlated positively with UO, Kt/V and hemoglobin. CIMT correlated negatively with Kt/V and hemoglobin. Among themselves CIMT correlated negatively with EDD and vitamin C. EDD correlated positively with vitamin C, while FRAP correlated positively with vitamin C and negatively with TBARS. PD patients have higher OS, poorer endothelial function and higher structural atherosclerosis. These parameters are closely linked to each other, hemoglobin, DOD, residual UO, serum albumin and small

  1. Interactions of chronic lead exposure and intermittent stress: consequences for brain catecholamine systems and associated behaviors and HPA axis function.

    PubMed

    Virgolini, Miriam B; Chen, Kevin; Weston, Doug D; Bauter, Mark R; Cory-Slechta, Deborah A

    2005-10-01

    Elevated lead (Pb) burden and high stress levels are co-occurring risk factors in low socioeconomic status (SES) children. Our previous work demonstrated that maternal Pb exposure can permanently alter hypothalamic-pituitary-adrenal (HPA) axis function and responsivity to stress challenges in offspring. The current study sought to determine the consequences of chronic Pb exposures initiated later in development combined with variable intermittent stress challenges. Male rats were exposed chronically from weaning to 0, 50, or 150 ppm Pb acetate drinking solutions (producing blood Pb levels of <5, 9-15, and 23-27 mug/dl, respectively). Pb itself decreased basal plasma corticosterone, with greater effects at 50 than 150 ppm; 150 ppm reduced both cytosolic and nuclear glucocorticoid receptor binding. Responsivity to stress challenges including novelty, cold, and restraint, was measured as changes in Fixed Interval (FI) schedule-controlled behavior in a subset of rats within each group. FI performance was modified by novelty stress only in Pb-treated rats, whereas cold and restraint stress effects were comparable across groups. Novelty elevated corticosterone equivalently across groups, but cold stress markedly increased corticosterone only in Pb-treated groups. The pattern of Pb-induced changes in serotonin (5-HT) or its metabolite 5-HIAA in frontal cortex, nucleus accumbens, striatum, and hypothalamus resembled that observed for basal corticosterone levels indicating a relationship between these variables. In addition to suggesting the potential for HPA axis-mediated effects of Pb on the central nervous system, these findings also raise questions about whether single chemicals studied in isolation from other relevant risk factors can adequately identify neurotoxic hazards.

  2. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance

    PubMed Central

    Li, Hui; Wei, Jiang-Chun

    2016-01-01

    Endocarpon pusillum is a lichen-forming fungus with an outstanding stress resistance property closely related to its antioxidant system. In this study, thioredoxin (Trx), one of the main components of antioxidant defense systems in E. pusillum (EpTrx), was characterized and analyzed both in transgenic yeasts and in vitro. Our analyses identified that the heterologous expression of EpTrx in the yeast Pichia pastoris significantly enhanced its resistance to osmotic and oxidative stresses. Assays in vitro showed EpTrx acted as a disulfide reductase as well as a molecular chaperone by assembling into various polymeric structures. Upon exposure to heat-shock stress, EpTrx exhibited weaker disulfide reductase activity but stronger chaperone activity, which coincided with the switching of the protein complexes from low molecular weight forms to high molecular weight complexes. Specifically, we found that Cys31 near but not at the active site was crucial in promoting the structural and functional transitions, most likely by accelerating the formation of intermolecular disulfide bond. Transgenic Saccharomyces cerevisiae harboring the native EpTrx exhibited stronger tolerance to oxidative, osmotic and high temperature stresses than the corresponding yeast strain containing the mutant EpTrx (C31S). Our results provide the first molecular evidence on how Trx influences stress response in lichen-forming fungi. PMID:27251605

  3. Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula.

    PubMed

    Long, Ruicai; Zhang, Fan; Li, Zhenyi; Li, Mingna; Cong, Lili; Kang, Junmei; Zhang, Tiejun; Zhao, Zhongxiang; Sun, Yan; Yang, Qingchuan

    2015-07-01

    Salt stress is one of the most significant adverse abiotic factors, causing crop failure worldwide. So far, a number of salt stress-induced genes, and genes improving salt tolerance have been characterized in a range of plants. Here, we report the isolation and characterization of a salt stress-induced Medicago sativa (alfalfa) gene (MsRCI2A), which showed a high similarity to the yeast plasma membrane protein 3 gene (PMP3) and Arabidopsis RCI2A. The sequence comparisons revealed that five genes of MtRCI2(A-E) showed a high similarity to MsRCI2A in the Medicago truncatula genome. MsRCI2A and MtRCI2(A-E) encode small, highly hydrophobic proteins containing two putative transmembrane domains, predominantly localized in the plasma membrane. The transcript analysis results suggest that MsRCI2A and MtRCI2(A-D) genes are highly induced by salt stress. The expression of MsRCI2A and MtRCI2(A-C) in yeast mutants lacking the PMP3 gene can functionally complement the salt sensitivity phenotype resulting from PMP3 deletion. Overexpression of MsRCI2A in Arabidopsis plants showed improved salt tolerance suggesting the important role of MsRCI2A in salt stress tolerance in alfalfa.

  4. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    PubMed Central

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  5. Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics.

    PubMed

    Lucassen, Paul J; Naninck, Eva F G; van Goudoever, Johannes B; Fitzsimons, Carlos; Joels, Marian; Korosi, Aniko

    2013-11-01

    Early-life stress lastingly affects adult cognition and increases vulnerability to psychopathology, but the underlying mechanisms remain elusive. In this Opinion article, we propose that early nutritional input together with stress hormones and sensory stimuli from the mother during the perinatal period act synergistically to program the adult brain, possibly via epigenetic mechanisms. We hypothesize that stress during gestation or lactation affects the intake of macro- and micronutrients, including dietary methyl donors, and/or impairs the dam's metabolism, thereby altering nutrient composition and intake by the offspring. In turn, this may persistently modulate gene expression via epigenetic programming, thus altering hippocampal structure and cognition. Understanding how the combination of stress, nutrition, and epigenetics shapes the adult brain is essential for effective therapies.

  6. Morinda citrifolia fruit reduces stress-induced impairment of cognitive function accompanied by vasculature improvement in mice.

    PubMed

    Muto, Junko; Hosung, Lee; Uwaya, Akemi; Isami, Fumiyuki; Ohno, Makoto; Mikami, Toshio

    2010-09-01

    The purpose of this study was to investigate effects of Morinda citrifolia fruit juice, which is locally called Noni, on stress-induced impairment of cognitive function. Male ICR mice were divided into four groups: Control (C mice), Restraint stress (RS mice), Restraint+Noni (Noni mice), and Restraint+vitamin E (VE mice). The RS, Noni, and VE mice were subjected to 8h of chronic restraint stress (CRS) 6days a week for 6weeks. During this period, the Noni and VE mice were given a diet supplemented with either Noni or vitamin E, respectively. At Week 5, the mice were subjected to the Morris water maze (MWM) test to measure cognitive function. At Week 7, mouse brains were isolated for immunohistochemical analysis with BrdU or CD31 antibody to assess the proliferation of new cells and blood vessel density in the dentate gyrus of the hippocampus. The time taken to reach the platform in the MWM test was shorter in the Noni mice than in the RS mice on Day 16. Malondialdehyde (MDA ) level of the Noni mice was significantly higher than that of the C mice; however no difference was found in MDA levels between the VE and C mice. Blood vessel area was significantly lower in the R and VE mice than in the C mice; no difference was found between the C and Noni mice. These findings suggest that the administration of Noni fruit juice protects brains from stress-induced impairment of cognitive function and that this protective effect may be related to improvement in stress-induced decreases in blood vessel density in the hippocampal dentate gyrus.

  7. Transducer technology transfer to bio-engineering applications. [aerospace stress transducer for heart function analysis

    NASA Technical Reports Server (NTRS)

    Duran, E. N.; Lewis, G. W.; Feldstein, C.; Corday, E.; Meerbaum, S.; Lang, T.

    1973-01-01

    The results of a technology transfer of a miniature unidirectional stress transducer, developed for experimental stress analysis in the aerospace field, to applications in bioengineering are reported. By modification of the basic design and innovations in attachment techniques, the transducer was successfully used in vivo on the myocardium of large dogs to record the change in contractile force due to coronary occlusion, reperfusion, and intervention.

  8. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses

    PubMed Central

    Low, Lucie A.; Bauer, Lucy C.; Pitcher, Mark H.; Bushnell, M. Catherine

    2016-01-01

    Abstract With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the “nociceptive” central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli. PMID:27058679

  9. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

    PubMed Central

    Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko

    2015-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909

  10. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    PubMed Central

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and