Science.gov

Sample records for akinesia deformation sequence

  1. Fetal akinesia deformation sequence in previable fetuses.

    PubMed

    Davis, J E; Kalousek, D K

    1988-01-01

    We reviewed the morphologic findings of 948 previable fetuses and identified the fetal akinesia deformation sequence (FADS) in 16 cases. In eight fetuses who had joint contractures, micrognathia, and pulmonary hypoplasia, the cause of fetal akinesia could be attributed to an abnormal intrauterine environment restricting fetal movement. The other eight fetuses had pterygia across the immobilized joints, in addition to main manifestations of FADS. Since most of the fetuses with pterygia were of only 8-9 weeks developmental age, we suggest that embryonic onset of immobility interferes with limb development and results in joint fixation and pterygium formation, in contrast to fetal-onset immobility, which causes joint contractures alone.

  2. [Foetal akinesia-hypokinesia deformation sequence].

    PubMed

    Bayat, Allan; Petersen, Astrid; Møller, Margrethe; Andersen, Graziella; Ebbesen, Finn

    2010-05-10

    Foetal akinesia-hypokinesia deformation sequence (FADS) involves arthrogryposis, facial deformations, pulmonary hypoplasia, intrauterine growth retardation, polyhydramnios and short umbilical cord. FADS is caused by lack of foetal movements, most often due to neuromuscular diseases. FADS is associated with a high mortality rate, and the infants usually die due to pulmonary hypoplasia. Antenatal diagnosis by ultrasound is possible when the condition is pronounced, or by genetic investigation, on suspicion of a specific underlying disease with known genetics.

  3. Fetal akinesia deformation sequence: an animal model.

    PubMed

    Moessinger, A C

    1983-12-01

    Rat fetuses were paralyzed by daily transuterine injections of curare from day 18 of gestation until term (day 21). The following anomalies were noted at the time of delivery: multiple joint contractures, pulmonary hypoplasia, micrognathia, fetal growth retardation, short umbilical cords, and polyhydramnios. Neither sham-operated nor untouched littermate control fetuses had any of these anomalies. The group of anomalies (or deformation sequence) obtained with this animal model is presumed to result from the paralytic effect of curare. This phenotype bears a striking resemblance to the syndrome of ankyloses, facial anomalies, and pulmonary hypoplasia (also known as Pena and Shokeir I), presumably inherited in an autosomal recessive manner. It is suggested that this phenotype is not specific but, rather, represents a deformation sequence which results from fetal immobilization or akinesia. Diagnostic evaluation of patients with this group of anomalies should include the identification of the underlying pathologic process (etiology of the akinesia) to allow for proper classification and genetic counseling.

  4. Pathogenetic mechanisms of fetal akinesia deformation sequence and oligohydramnios sequence.

    PubMed

    Rodríguez, J I; Palacios, J

    1991-09-01

    This article briefly reviews the participation of fetal compression, muscular weakness, and fetal akinesia in the genesis of the anomalies found in fetal akinesia deformation sequence (FADS) and oligohydramnios sequence (OS). Both sequences share phenotypic manifestations, such as arthrogryposis, short umbilical cord, and lung hypoplasia, in relation to decreased intrauterine fetal motility. Other characteristic manifestations found in OS, such as Potter face, and redundant skin, are produced by fetal compression. On the other hand, growth retardation, craniofacial anomalies, micrognathia, long bone hypoplasia, and polyhydramnios found in FADS could be related to intrauterine muscular weakness.

  5. Fetal akinesia deformation sequence in a highly developed acardius twin.

    PubMed

    Konstantinidou, A E; Agapitos, E V; Pavlopoulos, P M; Davaris, P S

    1997-10-01

    We report a case of a holoacardius twin with extremely advanced development of the head, face, upper and lower limbs in the absence of all thoracic and upper abdominal viscera and associated with intestinal and anal atresia. The malformed fetus also had craniofacial abnormalities, hydrops, cystic hygroma of the neck, arthrogryposis and pterygia. The monozygous co-twin was found to be normal. The association of acardia with the typical characteristics of the fetal akinesia deformation sequence has not been previously described in the literature.

  6. Fetal akinesia deformation sequence: expanding the phenotypic spectrum.

    PubMed

    Nayak, Shalini S; Kadavigere, Rajagopal; Mathew, Mary; Kumar, Pratap; Hall, Judith G; Girisha, Katta M

    2014-10-01

    We report on two unrelated fetuses born to nonconsanguineous couples with fetal akinesia deformation sequence (FADS). The fetuses shared facial features, micrognathia, fetal finger pads, bulbous digital tips, pterygia, clubfeet, ventriculomegaly, and cerebellar anomalies. Both had loss/absence of Purkinje cells in cerebellum. The first family had a similarly affected previous pregnancy suggesting an autosomal recessive inheritance. The second fetus, in addition to the findings in the first, had cleft palate and defective lobulation of lungs. These fetuses appear to have the Pena-Shokeir phenotype (PSP) or FADS. These two cases seem to define a newly recognizable subtype of FADS with bulbous digital tips, prominent digit pads and cerebellar anomalies, and highlight the phenotypic diversity of syndromes with multiple congenital contractures manifesting in utero.

  7. Fetal akinesia deformation sequence and neuroaxonal dystrophy without PLA2G6 mutation.

    PubMed

    Rakheja, Dinesh; Uddin, Naseem; Mitui, Midori; Cope-Yokoyama, Sandy; Hogan, Robert N; Burns, Dennis K

    2010-01-01

    We present autopsy findings of a stillborn female infant at 20 to 21 weeks' gestation with neuroaxonal dystrophy. External examination showed features of fetal akinesia deformation sequence. Internal examination showed hypoplasia of the cerebellum, corpus callosum, and optic nerves, as well as nuclear cataracts. Light and electron microscopic examinations showed widespread axonal spheroids in the central and peripheral nervous systems. Gene sequencing failed to reveal PLA2G6 mutations, indicating that fetal neuroaxonal dystrophy presenting as fetal akinesia deformation sequence is genetically distinct from infantile neuroaxonal dystrophy and related disorders. In addition, placental examination showed α-fetoprotein-positive, eosinophilic, globular inclusions in the cytoplasm of a few villous macrophages. The significance of this novel histologic finding is unclear.

  8. Heterogeneity in fetal akinesia deformation sequence (FADS): autopsy confirmation in three 20-21-week fetuses.

    PubMed

    Yfantis, H; Nonaka, D; Castellani, R; Harman, C; Sun, C-C

    2002-01-01

    Fetal akinesia deformation sequence (FADS) is a rare condition characterized by intrauterine growth retardation (IUGR), congenital limb contractures, pulmonary hypoplasia, hydramnios and craniofacial abnormalities. The present report comprises an autopsy study of three fetuses to illustrate the variable clinical manifestations and neuropathological findings. Fetus 1 had arthrogryposis and no movement on fetal ultrasound examination. Aborted at 21 weeks, the fetus showed micrognathia, bilateral joint contracture with pterygia at the elbow and axilla. Growth retardation and pulmonary hypoplasia were not major features. Neuropathologic examination revealed anterior horn cell loss and lateral corticospinal tract degeneration in spinal cord, with marked muscular atrophy. Fetus 2, 20 weeks' gestation, had fetal akinesia, nuchal thickening, left pleural effusion, and Dandy-Walker malformation on ultrasound examination. Autopsy showed low-set ears, ocular hypertelorism, cleft palate, flexion contractures with pterygia over axilla, elbow and groin, pulmonary hypoplasia, Dandy-Walker malformation, unremarkable spinal cord and skeletal muscle. Fetus 3, 21 weeks' gestation, was aborted for fetal akinesia, neck and limb webbing and severe arthrogryposis. At autopsy, similar facial abnormalities, contracture and pterygia in neck and multiple major joints were found. Borderline pulmonary hypoplasia and severe lumbar scoliosis were also present. The brain, spinal cord and muscle were unremarkable. In these three fetuses, the prenatal ultrasound and autopsy findings were characteristic of FADS. Neurogenic spinal muscular atrophy was the basis of fetal akinesia in Case 1. Dandy-Walker malformation was present in Case 2, but the pathogenetic mechanism of fetal akinesia was not clear as spinal cord and muscle histology appeared normal. The etiology of akinesia was undetermined in Case 3; no extrinsic or intrinsic cause was identified.

  9. Fetal akinesia-hypokinesia deformation sequence (FADS) in 2 siblings with congenital myotonic dystrophy.

    PubMed

    Lidang Jensen, M; Rix, M; Schroder, H D; Teglbjaerg, P S; Ebbesen, F

    1995-01-01

    Two premature siblings described herein had clinical features comparable to the fetal akinesia-hypokinesia deformation sequence (Pena-Shokeir syndrome) with polyhydramnios, intrauterine growth retardation, pulmonary hypoplasia, short umbilical cord and lethality. Autopsy revealed no thoracal or abdominal viscera anomalies and examination of the brain, spinal cord and peripheral nerves did not disclose any pathological changes. Light microscopy, immunohistochemistry and electron microscopy of skeletal muscles demonstrated immature muscles with some fibril disorganisation and abnormal immunoreactivity for actin and desmin. Subsequent molecular genetic analysis revealed a maternal diagnosis of myotonic dystrophy. The retarded growth and maturation of skeletal muscle observed in the presented cases correspond with previous findings in neonatal myotonic dystrophy. A well-defined myopathy can thus result in the fetal akinesia-hypokinesia deformation sequence.

  10. Fetal akinesia deformation sequence presenting with increased nuchal translucency in the first trimester of pregnancy.

    PubMed

    Makrydimas, George; Sotiriadis, Alexandros; Papapanagiotou, George; Tsopelas, Antonios; Lolis, Dimitrios

    2004-01-01

    Prenatal sonographic diagnosis of fetal akinesia deformation sequence (FADS) is usually achieved during the second and third trimester of pregnancy and relies on the demonstration of contractures of multiple joints, paucity of fetal movements and nuchal edema or generalized hydrops. We present the early diagnosis of FADS in a 13-week fetus presenting with nuchal translucency thickness (NT) of 5.1 mm, bilateral talipes and fixed flexion deformity of the fingers and wrists. We also review cases of this condition diagnosed during the first trimester and discuss the role of increased NT in the early diagnosis of FADS even in cases without previous history of an affected child.

  11. Familial fetal akinesia deformation sequence with a skeletal muscle maturation defect.

    PubMed

    Vuopala, K; Pedrosa-Domellöf, F; Herva, R; Leisti, J; Thornell, L E

    1995-01-01

    Two female siblings with the fetal akinesia deformation sequence (FADS) are described. Both showed facial anomalies, arthrogrypotic extremities, hypoplastic lungs, and fetal growth retardation. The central nervous system of the second sibling, including the spinal cord, was normal. The skeletal muscle was studied by immunohistochemistry for the expression of several myosin heavy chain isoforms, M-band proteins and intermediate filament proteins. The skeletal muscle was immature and atypical muscle spindles containing up to 31 intrafusal fibers were found. These findings suggest that a lethal FADS phenotype may involve a maturation defect of the skeletal muscle, and, in this family, may be inherited in a recessive fashion.

  12. Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses.

    PubMed

    Witters, Ingrid; Moerman, Philippe; Fryns, Jean-Pierre

    2002-11-15

    The etiology of the fetal akinesia deformation sequence (FADS) is heterogeneous and can be the result of neurogenic and myopathic disorders, restrictive dermopathy, teratogen exposure, and intrauterine constraint. We present the prenatal and fetopathological findings in a consecutive series of 30 affected fetuses with normal chromosomal results. According to the in utero time of onset of the fetal akinesia, the severity of the phenotype varied from a severe, generalized FADS in the early-onset group to milder defects, as isolated distal arthrogryposis in the late-onset group. No more than 10% (3/30) were diagnosed in the first trimester of pregnancy and all presented a severe phenotype. Twenty-seven of the thirty (90%) were diagnosed after the first trimester, with a severe FADS in 15/27 and a milder phenotype of distal arthrogryposis in 12/27. In all 30 patients, extensive neuropathological studies (brain, spinal cord, and muscles) were performed. In 16 patients (53%) a specific diagnosis could be made (central nervous system abnormalities 9/16; spinal cord 1/16; primary myopathy 3/16; syndromic 3/16). In 10 others (33%), pathological neuromuscular findings were present but no definitive diagnosis was established. In 4 patients (13%), neuromuscular findings were normal, and the etiology of the FADS remained unexplained.

  13. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence.

    PubMed

    Tan-Sindhunata, M Brigita; Mathijssen, Inge B; Smit, Margriet; Baas, Frank; de Vries, Johanna I; van der Voorn, J Patrick; Kluijt, Irma; Hagen, Marleen A; Blom, Eveline W; Sistermans, Erik; Meijers-Heijboer, Hanne; Waisfisz, Quinten; Weiss, Marjan M; Groffen, Alexander J

    2015-09-01

    Fetal akinesia deformation sequence (FADS) refers to a clinically and genetically heterogeneous group of disorders with congenital malformations related to impaired fetal movement. FADS can result from mutations in CHRNG, CHRNA1, CHRND, DOK7 and RAPSN; however, these genes only account for a minority of cases. Here we identify MUSK as a novel cause of lethal FADS. Fourteen affected fetuses from a Dutch genetic isolate were traced back to common ancestors 11 generations ago. Homozygosity mapping in two fetuses revealed MUSK as a candidate gene. All tested cases carried an identical homozygous variant c.1724T>C; p.(Ile575Thr) in the intracellular domain of MUSK. The carrier frequency in the genetic isolate was 8%, exclusively found in heterozygous carriers. Consistent with the established role of MUSK as a tyrosine kinase that orchestrates neuromuscular synaptogenesis, the fetal myopathy was accompanied by impaired acetylcholine receptor clustering and reduced tyrosine kinase activity at motor nerve endings. A functional assay in myocytes derived from human fetuses confirmed that the variant blocks MUSK-dependent motor endplate formation. Taken together, the results strongly support a causal role of this founder mutation in MUSK, further expanding the gene set associated with FADS and offering new opportunities for prenatal genetic testing.

  14. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders.

    PubMed

    Michalk, Anne; Stricker, Sigmar; Becker, Jutta; Rupps, Rosemarie; Pantzar, Tapio; Miertus, Jan; Botta, Giovanni; Naretto, Valeria G; Janetzki, Catrin; Yaqoob, Nausheen; Ott, Claus-Eric; Seelow, Dominik; Wieczorek, Dagmar; Fiebig, Britta; Wirth, Brunhilde; Hoopmann, Markus; Walther, Marisa; Körber, Friederike; Blankenburg, Markus; Mundlos, Stefan; Heller, Raoul; Hoffmann, Katrin

    2008-02-01

    Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed gamma subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits alpha1, beta1, and delta (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life.

  15. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence

    PubMed Central

    Tan-Sindhunata, M Brigita; Mathijssen, Inge B; Smit, Margriet; Baas, Frank; de Vries, Johanna I; van der Voorn, J Patrick; Kluijt, Irma; Hagen, Marleen A; Blom, Eveline W; Sistermans, Erik; Meijers-Heijboer, Hanne; Waisfisz, Quinten; Weiss, Marjan M; Groffen, Alexander J

    2015-01-01

    Fetal akinesia deformation sequence (FADS) refers to a clinically and genetically heterogeneous group of disorders with congenital malformations related to impaired fetal movement. FADS can result from mutations in CHRNG, CHRNA1, CHRND, DOK7 and RAPSN; however, these genes only account for a minority of cases. Here we identify MUSK as a novel cause of lethal FADS. Fourteen affected fetuses from a Dutch genetic isolate were traced back to common ancestors 11 generations ago. Homozygosity mapping in two fetuses revealed MUSK as a candidate gene. All tested cases carried an identical homozygous variant c.1724T>C; p.(Ile575Thr) in the intracellular domain of MUSK. The carrier frequency in the genetic isolate was 8%, exclusively found in heterozygous carriers. Consistent with the established role of MUSK as a tyrosine kinase that orchestrates neuromuscular synaptogenesis, the fetal myopathy was accompanied by impaired acetylcholine receptor clustering and reduced tyrosine kinase activity at motor nerve endings. A functional assay in myocytes derived from human fetuses confirmed that the variant blocks MUSK-dependent motor endplate formation. Taken together, the results strongly support a causal role of this founder mutation in MUSK, further expanding the gene set associated with FADS and offering new opportunities for prenatal genetic testing. PMID:25537362

  16. Prenatal diagnosis and genetic analysis of fetal akinesia deformation sequence and multiple pterygium syndrome associated with neuromuscular junction disorders: a review.

    PubMed

    Chen, Chih-Ping

    2012-03-01

    Fetal akinesia deformation sequence is a clinically and genetically heterogeneous disorder characterized by a variable combination of arthrogryposis, fetal akinesia, intrauterine growth restriction, developmental abnormalities such as cystic hygroma, pulmonary hypoplasia, cleft palate, cryptorchidism, cardiac defects and intestinal malrotation, and occasional pterygia of the limbs. Multiple pterygium syndrome is a clinically and genetically heterogeneous disorder characterized by pterygia of the neck, elbows and/or knees, arthrogryposis, and other phenotypic features such as short stature, genital abnormalities, craniofacial abnormalities, clubfoot, kyphoscoliosis, and cardiac abnormalities. Fetal akinesia deformation sequence may phenotypically overlap with the lethal type of multiple pterygium syndrome. This article provides a comprehensive review of prenatal diagnosis and genetic analysis of fetal akinesia deformation sequence and multiple pterygium syndrome associated with neuromuscular junction disorders. Prenatal diagnosis of fetal akinesia along with cystic hygroma, increased nuchal translucency, nuchal edema, hydrops fetalis, arthrogryposis, pterygia, and other structural abnormalities should include a differential diagnosis of neuromuscular junction disorders. Genetic analysis of mutations in the neuromuscular junction genes such as CHRNA1, CHRND, CHRNG, CNTN1, DOK7, RAPSN, and SYNE1 may unveil the pathogenetic cause of fetal akinesia deformation sequence and multiple pterygium syndrome, and the information acquired is helpful for genetic counseling and clinical management.

  17. Early fetal akinesia deformation sequence: a case report with unusual autoptic features.

    PubMed

    Giordano, Giovanna; Gnetti, Letizia; Froio, Elisabetta; Ricci, Roberto

    2005-05-01

    In this paper we report a case of early onset fetal akinesia, with unusual pathological findings. This is a product of medical abortion of young, healthy, unrelated parents. The mother's obstetrical history revealed two previous early miscarriages and a suspicion of FADS in the second previous gestation. At 17 weeks of gestation, an ultrasound examination disclosed absence of fetal movements, fixed extended knees and deformation of the feet. Amniocentesis showed a normal 46, XX karyotype. Hydrops fetalis and multiple skin webs (pterygia), which are usually present in cases of early fetal akinesia, were absent. A diagnosis of arthrogryposis was made and the pregnancy was terminated at 17 weeks of gestation. Postmortem examination was performed according to the necropsy technique suggested by Langley. Thus, body weight and external measurement, including crown-rump, crown-heel, foot lengths, head, thorax and abdominal circumferences were estimated and compared with standard values for assessment of fetal growth. External dysmorphic features were evaluated prior to the evisceration. On internal examination the location and shape of every organ was evaluated. Every organ, skin, muscles from different parts of the body, the brain and spinal cord were sampled and histologically examined. External examination revealed a female fetus with marked muscular hypoplasia of upper and lower extremities with thin arms and legs and multiple joint contractures of lower extremities. The face showed a flattened nose, micrognatia, hypertelorism, cleft palate and low-set ears. There was also a small nuchal fold. The abdomen was distended with a very thin and almost transparent wall. Histologically, muscles were characterized by severe fibrosis with fatty infiltration and by moderate variability in diameter of muscle fibers. The spinal cord disclosed a paucity of anterior horn motor neurons. We suggest multiple pterygium as a diagnosis. Lethal multiple pterygium syndrome (LMPS) is only a

  18. Fetal akinesia deformation sequence due to a congenital disorder of glycosylation.

    PubMed

    Ganetzky, Rebecca; Izumi, Kosuke; Edmondson, Andrew; Muraresku, Colleen Clarke; Zackai, Elaine; Deardorff, Matthew; Ganesh, Jaya

    2015-10-01

    Congenital disorders of Glycosylation (CDG) are increasingly emerging as a major underlying etiology for patients with complex neurogenetic malformations and dysmorphic features. We describe a newborn female with arthrogryposis multiplex due to fetal akinesia secondary to CDG-DPAGT1. Pregnancy was complicated by reduced fetal movements. At birth, the patient was evaluated for intrauterine growth restriction, bilateral cataracts, and multiple joint contractures. She had markedly reduced spontaneous movements, hypotonia, weak cry, and poor suck. She had ventilator-dependent central respiratory depression. Brain MRI showed delayed myelination and an incomplete cerebellar vermis. Transferrin isoelectric focusing was suggestive of a type I congenital disorder of glycosylation. Sequencing revealed a homozygous missense mutation in dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1), exon 3, p.Leu118Val, consistent with DPAGT1-CDG. There have been seventeen previously reported cases of DPAGT1-CDG, including two similar cases with multiple contractures. This case highlights the importance of considering congenital disorders of glycosylation in the differential diagnosis for arthrogryposis.

  19. Fetal akinesia deformation sequence with delayed skeletal muscle maturation and polymicrogyria: evidence for a hypoxic/ischemic pathogenesis.

    PubMed

    Rudzinski, Erin R; Kapur, Raj P; Hevner, Robert F

    2010-01-01

    Multiple congenital contractures, also known as fetal akinesia deformation sequence (FADS) and related terms, result from decreased fetal movement. The underlying etiologies are diverse and include central nervous system (CNS) dysgeneses and primary myopathies. Persistent central nuclei or the presence of myotubes is often regarded as evidence of a primary myopathic etiology; however, these findings are also associated with impaired fetal innervation. We report 7 fetuses, estimated gestational age 20 to 23 weeks, with persistent myotubular morphology, a change that could be (mis)interpreted as a primary myopathy. In 4 of the patients, CNS histology showed hypoxic/ischemic injury, polymicrogyria, mineralized neurons, and microinfarcts with or without loss of anterior horn neurons. FADS cases with polymicrogyria have frequently been interpreted as a consequence of a primary brain malformation. Only a few descriptions of FADS associate polymicrogyria with CNS hypoxic/ischemic injury, however, and do not describe skeletal muscle maturation delay. We hypothesize that this combination of neural and muscular pathology is an under-recognized pattern in FADS, which results from diffuse hypoxic/ischemic injury involving the brain and spinal cord during early to middle gestation.

  20. De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: An unusual presentation of tubulinopathy.

    PubMed

    Laquerriere, Annie; Gonzales, Marie; Saillour, Yoann; Cavallin, Mara; Joyē, Nicole; Quēlin, Chloé; Bidat, Laurent; Dommergues, Marc; Plessis, Ghislaine; Encha-Razavi, Ferechte; Chelly, Jamel; Bahi-Buisson, Nadia; Poirier, Karine

    2016-04-01

    Tubulinopathies are increasingly emerging major causes underlying complex cerebral malformations, particularly in case of microlissencephaly often associated with hypoplastic or absent corticospinal tracts. Fetal akinesia deformation sequence (FADS) refers to a clinically and genetically heterogeneous group of disorders with congenital malformations related to impaired fetal movement. We report on an early foetal case with FADS and microlissencephaly due to TUBB2B mutation. Neuropathological examination disclosed virtually absent cortical lamination, foci of neuronal overmigration into the leptomeningeal spaces, corpus callosum agenesis, cerebellar and brainstem hypoplasia and extremely severe hypoplasia of the spinal cord with no anterior and posterior horns and almost no motoneurons. At the cellular level, the p.Cys239Phe TUBB2B mutant leads to tubulin heterodimerization impairment, decreased ability to incorporate into the cytoskeleton, microtubule dynamics alteration, with an accelerated rate of depolymerization. To our knowledge, this is the first case of microlissencephaly to be reported presenting with a so severe and early form of FADS, highlighting the importance of tubulin mutation screening in the context of FADS with microlissencephaly.

  1. Two siblings with early onset fetal akinesia deformation sequence and hydranencephaly: further evidence for autosomal recessive inheritance of hydranencephaly, fowler type.

    PubMed

    Witters, I; Moerman, Ph; Devriendt, K; Braet, P; Van Schoubroeck, D; Van Assche, F A; Fryns, J P

    2002-02-15

    We report a 13-week-old female fetus with early onset fetal akinesia deformation sequence (FADS) and hydranencephaly. In a previous pregnancy, the same ultrasonographic findings were noted at 13 weeks. Fetopathological examination of both female fetuses confirmed FADS with severe arthogryposis, multiple pterygia, and muscular hypoplasia. Neuropathological examination showed massive cystic dilatation of the cerebral ventricles (hydranencephaly) with calcification of the basal ganglion and brain stem and a proliferative vasculopathy throughout the central nervous system. The findings in the two female siblings document the earliest echographic diagnosis of hydranencephaly, Fowler type, and this observation further supports autosomal recessive inheritance of this distinct type of hydranencephaly.

  2. Fetal akinesia sequence caused by nemaline myopathy.

    PubMed

    Lammens, M; Moerman, P; Fryns, J P; Lemmens, F; van de Kamp, G M; Goemans, N; Dom, R

    1997-04-01

    Nine patients with the characteristic signs of fetal akinesia sequence (polyhydramnion, multiple joint contractures and lung hypoplasia) are described. In 8 of the 9 patients nemaline myopathy could be demonstrated with histology. The ninth patient presented the same phenotype as his 4 affected siblings in whom the nemaline myopathy could be histologically proven. Seven of the patients belonged to 2 families; the other 2 patients were isolated cases. In one fetal case nemaline myopathy was documented at week 22 of gestation. These observations demonstrate that nemaline myopathy can cause the fetal akinesia sequence, with onset of first symptoms as early as the beginning of the second trimester of pregnancy.

  3. Cystic hygroma colli as the first echographic sign of the fetal akinesia sequence.

    PubMed

    Witters, I; Moerman, P H; Van Assche, F A; Fryns, J P

    2001-01-01

    We report first trimester cystic hygroma colli with subsequent resolution and development of a fetal akinesia deformation sequence. Neuropathological examination of the brain showed intra- and extracellular white matter edema while spinal cord, peripheral nerves and muscles were normal. Hygroma colli as the first echographic sign of subsequent severe fetal akinesia sequence without muscular dystrophy as seen in the Lethal Multiple Pterygium syndrome has not been previously reported.

  4. Fetal akinesia.

    PubMed

    Hammond, E; Donnenfeld, A E

    1995-03-01

    Normal fetal growth and development during pregnancy is highly dependent upon adequate fetal movement. Limitation of movement, regardless of the underlying cause, can result in a particular pattern of abnormal fetal morphogenesis. This phenotype is termed the fetal akinesia deformation sequence (FADS). The etiology of fetal akinesia may be generally classified into one of five categories: neuropathy, myopathy, restrictive dermopathy, teratogen exposure, or restricted movement due to intrauterine constraint. In this article, the differential diagnosis of fetal akinesia is systematically reviewed and information regarding prenatal diagnosis, prognosis, perinatal management, and recurrence risks are discussed.

  5. Two cases of fetal akinesia/hypokinesia sequence.

    PubMed

    Itoh, K; Yokoyama, N; Ishihara, A; Kawai, S; Takada, S; Nishino, M; Lee, Y; Negishi, H; Itoh, H

    1991-01-01

    Two cases of fetal akinesia sequence are described. Both showed facial anomalies, arthrogryposis multiplex, bilateral camptodactyly, and pulmonary hypoplasia. One child had degeneration of large motor neurons of the thoracolumbosacral spinal cord and irregular atrophy of diaphragm; the other had left microphthalmia, hemiatrophy of the left temporal lobe with calcification of degenerated neurons, and hypoplasia of the cervothoracic spinal cord with decrease and degeneration of neurons. The iliopsoas and intercostal muscles showed focal myofiber atrophy. These findings suggested that some instances of this fetal akinesia syndrome might be due to neuromuscular dysfunction that occurred in utero and may have various causes.

  6. [Pena-Shokeir phenotype (fetal akinesia/hypokinesia sequence)].

    PubMed

    Dzinović, Amra; Heljić, Suada

    2006-01-01

    Pena-Shokeir syndrome is a rare lethal disorder which clinical phenotype is the result of a deformation sequence caused by fetal akinesia/hypokinesia. In approximately 50 % cases an autosomal recessive mode of inheritance were documented. Main clinical characteristics of Pena-Shokeir syndrome are: multiple ankylosis, pulmonary hypoplasia and facial dysmorphism. We have described female newborn with pulmonary hypoplasia, distal joint contractures and facial characteristics of Pena Shokeir syndrome. Our patient had hip and knee ankyloses, ulnar deviation of the hands, aberrant hand position--similar to that of trisomy 18, absent dermal ridges on the palms, talipes valgus and facial dysmorphism (prominent eyes, micrognathia, poorly folded and posteriorly rotated ears). During pregnancy polyhidramnion was documented. Among CNS abnormalities, agenesis of corpus callosum was found. Because of eventration of right hemidiaphragm, weakness of intercostal muskles and pulmonary hypoplasia, child was artificially ventilated from the birth, and died due to pulmonary complication in the second month of the life. Although the majority of those live-borne with Pena Shokeir syndrome die within the first month of life, postnatal recognition requires genetic counseling of parents and obtaining early prenatal diagnosis in next pregnancy.

  7. Extrinsic fetal akinesia and skeletal development: a study in oligohydramnios sequence.

    PubMed

    Palacios, J; Rodriguez, J I

    1990-07-01

    Long-bone morphometry and cephalometry were performed in 13 newborns with oligohydramnios sequence (OS) in order to establish whether or not skeletal changes existed in extrinsic fetal akinesia similar to those observed in the fetal akinesia deformative sequence (FADS) (i.e., hypoplastic long bones and micrognathia). Oligohydramnios sequence was caused by bilateral renal agenesis in five cases and obstructive uropathy in eight cases. Twenty-one stillborns and newborns who had died from conditions other than renal anomalies or congenital malformations were used as controls. Normal longitudinal and periosteal long-bone growth and absence of micrognathia were found in OS patients. Skeletal differences between FADS and OS may be explained not only by timing, duration, and degree of reduced motility but also, and more importantly, by the normal muscular stress in OS patients.

  8. Fetal akinesia sequence caused by glycogenosis type VII.

    PubMed

    Moerman, P; Lammens, M; Fryns, J P; Lemmens, F; Lauweryns, J M

    1995-01-01

    We report on the autopsy study of a premature boy with multiple joint contractures who died soon after birth of severe lung hypoplasia. Muscle histology showed PAS-positive vacuoles, and electronmicroscopy revealed massive subsarcolemmal and intermyofibrillar accumulation of glycogen. Biochemical analysis of fresh-frozen muscle tissue disclosed increased glycogen content and a complete lack of phosphofructokinase (PFK) activity. The brain showed focal cerebral and diffuse cerebellar white matter gliosis, and patchy loss of internal granular and Purkinje cells in the cerebellar cortex. The spinal cord was normal. This report describes the first case of PFK deficiency, presenting as a lethal fetal akinesia sequence.

  9. Fetal akinesia deformation sequence. Case report.

    PubMed

    Beluffi, G; Ometto, A

    2010-02-01

    A patient with a rare congenital lethal skeletal dysplasia characterised by thin gracile bones and fractures secondary to a neuromuscular disease is reported. This disease has to be differentiated with other thin, gracile bone disorders.

  10. Fetal akinesia/hypokinesia sequence: prenatal diagnosis and intra-familial variability.

    PubMed

    Bacino, C A; Platt, L D; Garber, A; Carlson, D; Pepkowitz, S; Lachman, R S; Sharony, R; Rimoin, D L; Graham, J M

    1993-11-01

    Intrauterine fetal movement plays a key role in normal embryonic and fetal development (Moessinger, 1983). When movement is absent or decreased, abnormal development takes place which can be appreciated in newborns and/or fetuses with the fetal akinesia/hypokinesia sequence. This sequence is caused by a number of heterogeneous entities which result in decreased fetal movements by the action of intrinsic or extrinsic factors. Prenatal diagnosis of the akinesia/hypokinesia sequence may be possible during the second trimester through the use of real-time ultrasonographic evaluation of fetal movement. We report a family with three consecutive affected pregnancies in which the prenatal presentation of this sequence varied. Based on the phenotypic findings of the three affected fetuses, we believe that although they superficially resemble those features found in the New-Laxova syndrome, they are probably affected with a distinctly different lethal form of akinesia/hypokinesia transmitted in an autosomal recessive fashion.

  11. Sibs with the fetal akinesia sequence, fetal edema, and malformations: a new syndrome?

    PubMed

    Toriello, H V; Bauserman, S C; Higgins, J V

    1985-06-01

    Pena and Shokeir [J Pediatr 85:373-375. 1974] first described a syndrome characterized by multiple ankyloses, camptodactyly, facial anomalies, and pulmonary hypoplasia, which was later termed Pena-Shokeir I syndrome. Recent evidence suggests that a more accurate designation for this condition is the fetal akinesia sequence, which is almost certainly a heterogeneous entity. We describe sibs who were diagnosed as having Pena-Shokeir I syndrome but who did not have the muscular or anterior horn cell changes characteristic of other infants with the fetal akinesia sequence. In addition, both sibs had fetal edema, the first sib had coarctation of the aorta, and the second had polydactyly and thyroid hypoplasia. We suggest that this case provides further evidence for heterogeneity in the fetal akinesia sequence and may represent a provisionally unique syndrome.

  12. Lethal familial fetal akinesia sequence (FAS) with distinct neuropathological pattern: type III lissencephaly syndrome.

    PubMed

    Encha Razavi, F; Larroche, J C; Roume, J; Gonzales, M; Kondo, H C; Mulliez, N

    1996-03-01

    We report on a distinct pattern of primary central nervous system (CNS) degeneration affecting neuronal survival in the brain and spinal cord in 5 fetuses with fetal akinesia sequence (FAS). This neuropathological pattern is characteristic of a lethal entity that we propose calling type III lissencephaly syndrome. Parental consanguinity and the recurrence in sibs support a genetic cause. The mechanism of neuronal death is not yet understood; abnormal apoptosis and/or deficiency in neurotropic factors may be considered possible causes.

  13. Lethal arthrogryposis multiplex congenital (fetal akinesia deformation sequence, FADS).

    PubMed

    Porter, H J

    1995-01-01

    Arthrogryposis multiplex congenital (AMC) is the presence at birth of multiple congenital contractures in an intact skeleton. The severity of the condition is highly variable and the possible underlying causes are numerous. Fetal immobility and lesions of the brain, spinal cord, peripheral nerves and muscle, along with mechanical restriction of the fetus in utero are the pathogenic mechanisms that need to be considered. Etiological factors that have been implicated in the development of AMC include genetic conditions, infections, drugs, toxins, maternal hyperthermia, and maternal illness. This review will concentrate on the severe end of the spectrum of AMC that results in disease that is lethal pre- or postnatally, and will discuss the pathology, pathogenesis, etiology, and practical approach to this diversely expressed condition.

  14. Fetal akinesia and multiple perinatal fractures.

    PubMed

    Chen, H; Blackburn, W R; Wertelecki, W

    1995-02-13

    Two newborn infants with fetal akinesia sequence were noted to have multiple perinatal fractures of the long bones. The radiographic manifestations are characterized by gracile ribs, thin long bones, and multiple diaphyseal fractures. Consistent histopathologic changes of bone are irregular with focal areas of extreme diaphyseal thinning, thin and long marrow spicules, and with or without callous formation at fracture sites. Pathogenic mechanisms of bone fractures in fetal akinesia sequence and the differential diagnoses of congenital/perinatal bone fractures are discussed.

  15. Prenatal ultrasound of regional akinesia with Pena-Shokier phenotype.

    PubMed

    Tongsong, T; Chanprapaph, P; Khunamornpong, S

    2000-05-01

    This report describes sonographic features of the Pena-Shokeir phenotype secondary to regional akinesia at 28 weeks of gestation with maternal perception of good fetal movement. The diagnosis was based on the findings of no fetal activity in some parts of the body (upper limbs, a part of the face, and thorax), with deformation sequence of fixed flexion at wrist, elbow, and shoulder joints, fixed open mouth, fetal growth restriction, lung hypoplasia, polyhydramnios and normal chromosome study. Surprisingly, fetal akinesia involved only the upper limbs, a part of the face, and chest, whereas the lower limbs were completely normal in both morphology and activity. With vibroacoustic stimulation, the response of fetal heart rate acceleration, gross body movement including fetal head, spine and lower limb movement were observed, but the movement of the upper limbs and fetal breathing were completely absent. Spontaneous labour and delivery occurred at 29 weeks' gestation. Postnatal autopsy confirmed the prenatal findings. In conclusion, prenatal sonography plays an important role not only in detecting Pena-Shokeir phenotype but also in providing the detailed pattern of fetal akinesia. Finally, this case reaffirms the concept that function is an integral part of normal development.

  16. Discordance in Pena-Shokeir phenotype/fetal akinesia deformation sequence in a monoamniotic twin.

    PubMed

    Mayumi, Miyuki; Obata-Yasuoka, Mana; Ogura, Tsuyoshi; Hamada, Hiromi; Miyazono, Yayoi; Yoshikawa, Hiroyuki

    2013-01-01

    We here report the first case of discordant Pena-Shokeir phenotype observed in monoamniotic twins. A 34-year-old woman, pregnant with twins, was referred at 10 weeks' gestation because one of the twins had increased nuchal translucency. Serial ultrasonographic examinations suggested that twin A may have had several other abnormalities, including pleural effusion at 21 weeks' gestation, decreased movement and contracted limbs at 24 weeks, and fetal growth restriction at 26 weeks. No abnormalities were observed in twin B. At 34 weeks of gestation, the twins were delivered by cesarean section. There were cord entanglements, and although the resuscitation of twin A was attempted, it proved difficult due to lockjaw. Twin A died during the second hour of life, and autopsy findings were consistent with the diagnosis of Pena-Shokeir phenotype. We suggest that cord entanglement during early gestation is a possible cause for the occurrence of Pena-Shokeir phenotype through an anoxic-ischemic mechanism.

  17. Fetal akinesia: review of the genetics of the neuromuscular causes.

    PubMed

    Ravenscroft, Gianina; Sollis, Elliot; Charles, Adrian K; North, Kathryn N; Baynam, Gareth; Laing, Nigel G

    2011-12-01

    Fetal akinesia refers to a broad spectrum of disorders in which the unifying feature is a reduction or lack of fetal movement. Fetal akinesias may be caused by defects at any point along the motor system pathway including the central and peripheral nervous system, the neuromuscular junction and the muscle, as well as by restrictive dermopathy or external restriction of the fetus in utero. The fetal akinesias are clinically and genetically heterogeneous, with causative mutations identified to date in a large number of genes encoding disparate parts of the motor system. However, for most patients, the molecular cause remains unidentified. One reason for this is because the tools are only now becoming available to efficiently and affordably identify mutations in a large panel of disease genes. Next-generation sequencing offers the promise, if sufficient cohorts of patients can be assembled, to identify the majority of the remaining genes on a research basis and facilitate efficient clinical molecular diagnosis. The benefits of identifying the causative mutation(s) for each individual patient or family include accurate genetic counselling and the options of prenatal diagnosis or preimplantation genetic diagnosis. In this review, we summarise known single-gene disorders affecting the spinal cord, peripheral nerves, neuromuscular junction or skeletal muscles that result in fetal akinesia. This audit of these known molecular and pathophysiological mechanisms involved in fetal akinesia provides a basis for improved molecular diagnosis and completing disease gene discovery.

  18. Deficiency of the myogenic factor MyoD causes a perinatally lethal fetal akinesia

    PubMed Central

    Crinnion, Laura A; Murphy, Helen; Newbould, Melanie; Harrison, Sally M; Lascelles, Carolina; Antanaviciute, Agne; Carr, Ian M; Sheridan, Eamonn; Bonthron, David T; Smith, Audrey

    2016-01-01

    Background Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. Methods Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. Results Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. Conclusions We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme. PMID:26733463

  19. Long bone development in extrinsic fetal akinesia: an experimental study in rat fetuses subjected to oligohydramnios.

    PubMed

    Palacios, J; Rodríguez, J I; Ruiz, A; Sanchez, M; Alvarez, I; DeMiguel, E

    1992-07-01

    The transverse growth of long bones during intrauterine development was studied in rat fetuses subjected to experimental oligohydramnios in order to determine whether the skeletal changes, if any, in extrinsic fetal akinesia were similar to those observed in curarized rat fetuses with the fetal akinesia deformation sequence. Oligohydramnios was induced by daily extraction of amniotic fluid from day 17 of gestation until term. Experimental fetuses were compared with a sham-operated control group. The total area and perimeter, the absolute and relative amount of periosteum and bone trabeculae, the major and minor axes, and the elongation factor were measured in histological cross sections of the femoral metaphysis and diaphysis with an IBAS 1 image analysis system. Rat fetuses in the experimental group showed multiple articular contractures, redundant skin, and lung hypoplasia, a phenotype consistent with the oligohydramnios sequence. No alterations in femoral shape and transverse growth of the metaphysis and diaphysis were noted in these fetuses. These results suggest that the main mechanical factor related to fetal bone modeling is muscular strength, while motion would be mainly involved in fetal joint development.

  20. [Diagnosis of fetal akinesia except for oligoamnios].

    PubMed

    Fallet-Bianco, C

    1997-09-01

    The term Fetal Akinesia Sequence (FAS) covers a large spectrum of developmental abnormalities resulting from a lack of intra-uterine fetal movements, which share heterogeneous etiologies. Environmental, "extrinsic" causes are easily ruled out. Various neuromuscular disorders, involving the motor unit at any level, constitute the main part of "intrinsic" fetal pathology. We propose a detailed schedule of prospective investigation of FAS, in order to standardize and gather the most pertinent information and to compare a wide panel of accurate data between fetopathological centers. The objective is to improve the understanding of various pathogenetic processes involved in the emergence of FAS, in order to propose better information and genetic counselling to parents, and potentially, to consider a prenatal prevention.

  1. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients.

    PubMed

    Vogt, Julie; Harrison, Benjamin J; Spearman, Hayley; Cossins, Judy; Vermeer, Sascha; ten Cate, Lambert Naudin; Morgan, Neil V; Beeson, David; Maher, Eamonn R

    2008-01-01

    Multiple pterygium syndromes (MPS) comprise a group of multiple congenital anomaly disorders characterized by webbing (pterygia) of the neck, elbows, and/or knees and joint contractures (arthrogryposis). MPS are phenotypically and genetically heterogeneous but are traditionally divided into prenatally lethal and nonlethal (Escobar) types. Previously, we and others reported that recessive mutations in the embryonal acetylcholine receptor g subunit (CHRNG) can cause both lethal and nonlethal MPS, thus demonstrating that pterygia resulted from fetal akinesia. We hypothesized that mutations in acetylcholine receptor-related genes might also result in a MPS/fetal akinesia phenotype and so we analyzed 15 cases of lethal MPS/fetal akinesia without CHRNG mutations for mutations in the CHRNA1, CHRNB1, CHRND, and rapsyn (RAPSN) genes. No CHRNA1, CHRNB1, or CHRND mutations were detected, but a homozygous RAPSN frameshift mutation, c.1177-1178delAA, was identified in a family with three children affected with lethal fetal akinesia sequence. Previously, RAPSN mutations have been reported in congenital myasthenia. Functional studies were consistent with the hypothesis that whereas incomplete loss of rapsyn function may cause congenital myasthenia, more severe loss of function can result in a lethal fetal akinesia phenotype.

  2. Monozygotic twins with fetal akinesia: the importance of clinicopathological work-up in predicting risks of recurrence.

    PubMed

    Ho, N C

    2000-10-01

    Fetal Akinesia Deformation Sequence (FADS) or Pena-Shokeir Sequence is a heterogeneous group of disorders in which prolonged decrease or absence of fetal movements results in a series of deformational anomalies: multiple contractures, pulmonary hypoplasia, craniofacial anomalies, polyhydramnios, intrauterine growth retardation, and short umbilical cord. Three sets of monozygotic twins, and their affected sibs, are presented. Detailed pathological work-up established that the two pairs of twins concordant for FADS were of myogenic etiology while the set discordant was due to anoxic-ischemic damage. In the myogenic cases, the rate of recurrence was high, in agreement with the findings from the study on arthrogryposis multiplex congenita of myogenic origin. In light of these findings, in sporadic cases of myogenic FADS, counselling, a recurrence risk of 25% seems prudent. In neurogenic cases associated with primary cerebral malformations, there are cases cited in the literature that are clearly recessive as indicated by affected sibs, but many reported are isolated occurrences. Therefore, in this scenario, giving a recurrent risk of 10-15% appears appropriate. In light of autosomal recessive spinal muscular atrophy and reports of familial FADS due to primary anterior horn cell loss, counselling a 25% risk seems prudent. In cases due to anoxic-ischemic damage, offering a low recurrent risk of 1% appears justified.

  3. Mumps encephalitis with akinesia and mutism.

    PubMed

    Suga, Kenichi; Goji, Aya; Shono, Miki; Matsuura, Sato; Inoue, Miki; Toda, Eiko; Miyazaki, Tatsushi; Kawahito, Masami; Mori, Kazuhiro

    2015-08-01

    Measles-rubella-mumps vaccination is routine in many countries, but the mumps vaccine remains voluntary and is not covered by insurance in Japan. A 5-year-old Japanese boy who had not received the mumps vaccine was affected by mumps parotitis. Several days later, he presented with various neurological abnormalities, including akinesia, mutism, dysphagia, and uncontrolled respiratory disorder. Mumps encephalitis was diagnosed. Despite steroid pulse and immunoglobulin treatment, the disease progressed. Magnetic resonance imaging showed necrotic changes in bilateral basal ganglia, midbrain, and hypothalamus. At 1 year follow up, he was bedridden and required enteral feeding through a gastric fistula and tracheostomy. Mumps vaccination should be made routine as soon as possible in Japan, because mumps encephalitis carries the risk of severe sequelae.

  4. Alpers progressive infantile neuronal poliodystrophy: an acute neonatal form with findings of the fetal akinesia syndrome.

    PubMed

    Frydman, M; Jager-Roman, E; de Vries, L; Stoltenburg-Didinger, G; Nussinovitch, M; Sirota, L

    1993-08-01

    We report on 8 patients from two families with Alpers syndrome. The onset in one family was prenatal and in the 4 patients who were examined, severe microcephaly, intrauterine growth retardation, and typical manifestations of fetal akinesia, including retrognathia, joint limitations, and chest deformity were found. The second family presented with an early infantile form. All the affected offspring had micrognathia and one had findings of fetal akinesia, comparable to those seen in the other family. Microcephaly was mild at birth and progressed with age. Refractory neonatal convulsions, swallowing difficulties, and pneumonia complicated the clinical course of patients in both families, and all the patients died before age 20 months. Results of comprehensive biochemical and metabolic studies in both families were normal and the diagnosis was supported by demonstration of extensive progressive brain atrophy on CT and typical histological findings. Patients without a detectable defect in energy metabolism and normal liver histology comprise a distinct subset of Alpers syndrome. Until the metabolic defect(s) is defined, we suggest naming the acute neonatal form of this subset of Alpers syndrome "type 1."

  5. Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia.

    PubMed

    Romero, Norma Beatriz; Monnier, Nicole; Viollet, Louis; Cortey, Anne; Chevallay, Martine; Leroy, Jean Paul; Lunardi, Joël; Fardeau, Michel

    2003-11-01

    We studied seven patients (fetuses/infants) from six unrelated families affected by central core disease (CCD) and presenting with a fetal akinesia syndrome. Two fetuses died before birth (at 31 and 32 weeks) and five infants presented severe symptoms at birth (multiple arthrogryposis, congenital dislocation of the hips, severe hypotonia and hypotrophy, skeletal and feet deformities, kyphoscoliosis, etc.). Histochemical and ultrastructural studies of muscle biopsies confirmed the diagnosis of CCD showing unique large eccentric cores. Molecular genetic investigations led to the identification of mutations in the ryanodine receptor (RYR1) gene in three families, two with autosomal recessive (AR) and one with autosomal dominant (AD) inheritance. RYR1 gene mutations were located in the C-terminal domain in two families (AR and AD) and in the N-terminal domain of the third one (AR). This is the first report of mutations in the RYR1 gene involved in a severe form of CCD presenting as a fetal akinesia syndrome with AD and AR inheritances.

  6. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy?

    PubMed

    Unger, Sheila; Lausch, Ekkehart; Stanzial, Franco; Gillessen-Kaesbach, Gabriele; Stefanova, Irina; Di Stefano, Cristina Maria; Bertini, Enrico; Dionisi-Vici, Carlo; Nilius, Bernd; Zabel, Bernhard; Superti-Furga, Andrea

    2011-11-01

    Dominant mutations in the receptor calcium channel gene TRPV4 have been associated with a family of skeletal dysplasias (metatropic dysplasia, pseudo-Morquio type 2, spondylometaphyseal dysplasia, Kozlowski type, brachyolmia, and familial digital arthropathy) as well as with dominantly inherited neuropathies (hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy). While there is phenotypic overlap between the various members of each group, the two groups were considered to be totally separate with the former being strictly a structural skeletal condition and the latter group being confined to the peripheral nervous system. We report here on fetal akinesia as the presenting feature of severe metatropic dysplasia, suggesting that certain TRPV4 mutations can cause both a skeletal and a neuropathic phenotype. Three cases were detected on prenatal ultrasound because of absent movements in the second trimester. Case 4 presented with multiple joint contractures and absent limb movements at birth and was diagnosed with "fetal akinesia syndrome". Post-interruption and post-natal X-rays showed typical features of metatropic dysplasia in all four. Sequencing of the TRPV4 gene confirmed the presence of de novo heterozygous mutations predicting G78W (Case 1), T740I (Cases 2 and 3), and K276E (Case 4). Although some degree of restriction of movements is not uncommon in fetuses with skeletal dysplasia, akinesia as leading sign is unusual and suggests that certain TRPV4 mutations produce both chondrodysplasia and a peripheral neuropathy resulting in a severe "overlap" phenotype.

  7. Madopar HBS in Parkinson patients with nocturnal akinesia.

    PubMed

    Jansen, E N; Meerwaldt, J D

    1988-01-01

    Madopar Hydrodynamically Balanced System (HBS), a new sustained-release levodopa preparation, was used to control severe nightly disabilities in 15 outpatients suffering from Parkinson's disease in an advanced state and with long-term levodopa therapy. This medication was given ante noctem in addition to an otherwise unchanged daily regimen of levodopa administration. In 13 patients a considerable diminution in nocturnal akinesia and in the frequency of waking up was reached with a mean dosage of 308 mg of Madopar HBS. Early morning akinesia was only slightly alleviated in four patients. The nocturnal off-period pain disappeared in one patient. Adverse effects consisted of nocturnal dyskinesia in two patients and early morning dystonia in another two patients. The regular use of sleeping pills was clearly reduced after Madopar HBS therapy.

  8. The "eye of the tiger" sign in pure akinesia with gait freezing.

    PubMed

    Erro, Roberto; Amboni, Marianna; Vitale, Carmine; Longo, Katia; Rocco, Mariangela; Russo, Carmela; Pappatà, Sabina; Brunetti, Arturo; Barone, Paolo

    2011-08-01

    The "eye of the tiger" is a neuroradiologic sign due to iron deposition in the globus pallidus: it appears as diffuse low signal intensity with a central area of high signal intensity confined to the globus pallidus. The "eye of the tiger" sign has been associated with neurodegeneration with brain iron accumulation type 1 (NBIA1), a condition caused by mutations in the gene encoding pantothenate kinase 2 (PANK2). However, the specificity of this neuroradiologic sign has been already challenged and it has been described in other neurodegenerative diseases. Here, we report the first case of a patient suffering from pure akinesia with gait freezing with the "eye of the tiger" sign in T2-weighted MRI sequences. All clinical, laboratory and radiologic data excluded other diagnosis and genetic testing excluded PANK2 mutations suggesting that the "eye of the tiger" is not specific for NBIA1 and may also occur in other movement disorders.

  9. Glaciotectonic deformation and reinterpretation of the Worth Point stratigraphic sequence: Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica M.; England, John H.; Evans, David J. A.

    2014-05-01

    Hill-hole pairs, comprising an ice-pushed hill and associated source depression, cluster in a belt along the west coast of Banks Island, NT. Ongoing coastal erosion at Worth Point, southwest Banks Island, has exposed a section (6 km long and ˜30 m high) through an ice-pushed hill that was transported ˜ 2 km from a corresponding source depression to the southeast. The exposed stratigraphic sequence is polydeformed and comprises folded and faulted rafts of Early Cretaceous and Late Tertiary bedrock, a prominent organic raft, Quaternary glacial sediments, and buried glacial ice. Three distinct structural domains can be identified within the stratigraphic sequence that represent proximal to distal deformation in an ice-marginal setting. Complex thrust sequences, interfering fold-sets, brecciated bedrock and widespread shear structures superimposed on this ice-marginally deformed sequence record subsequent deformation in a subglacial shear zone. Analysis of cross-cutting relationships within the stratigraphic sequence combined with OSL dating indicate that the Worth Point hill-hole pair was deformed during two separate glaciotectonic events. Firstly, ice sheet advance constructed the hill-hole pair and glaciotectonized the strata ice-marginally, producing a proximal to distal deformation sequence. A glacioisostatically forced marine transgression resulted in extensive reworking of the strata and the deposition of a glaciomarine diamict. A readvance during this initial stage redeformed the strata in a subglacial shear zone, overprinting complex deformation structures and depositing a glaciotectonite ˜20 m thick. Outwash channels that incise the subglacially deformed strata record a deglacial marine regression, whereas aggradation of glaciofluvial sand and gravel infilling the channels record a subsequent marine transgression. Secondly, a later, largely non-erosive ice margin overrode Worth Point, deforming only the most surficial units in the section and depositing a

  10. First detection and complete genome sequence of Deformed wing virus in Chilean honeybees.

    PubMed

    Barriga, Gonzalo P; Cifuentes-Muñoz, Nicolás; Rivera, Paulina A; Gutierrez, Matías; Shmaryahu, Amir; Valenzuela, Pablo D T; Engel, Esteban A

    2012-12-01

    Deformed wing virus (DWV) is one of the most common viruses affecting honey bee specimens. Although the presence of DWV has been reported in many countries, there is no data of the current situation in Chile. In this report, we detected the presence of DWV in apiaries from two different locations in central Chile. Furthermore, the genome of a Chilean DWV isolate was completely sequenced. This is the first report of the presence of a honey bee virus in Chile.

  11. Akinesia, arthrogryposis, craniosynostosis: a presentation of neonatal myasthenia with fetal onset.

    PubMed

    Cantagrel, Sylvain; Maury, Laure; Yamamoto, Anne-Marie; Maheut, Josette; Toutain, Annick; Castelnau, Pierre

    2002-08-01

    Major akinesia with arthrogryposis and craniosynostosis at birth mimics irreversible disorders of the nervous system of pejorative outcome. In this context, the early detection of anti-acetylcholine fetal receptor antibodies in the mother may allow rapid diagnosis of transient neonatal myasthenia of favorable prognosis.

  12. Tracking facial features in video sequences using a deformable-model-based approach

    NASA Astrophysics Data System (ADS)

    Malciu, Marius; Preteux, Francoise J.

    2000-10-01

    This paper addresses the issue of computer vision-based face motion capture as an alternative to physical sensor-based technologies. The proposed method combines a deformable template-based tracking of mouth and eyes in arbitrary video sequences with a single speaking person with a global 3D head pose estimation procedure yielding robust initializations. Mathematical principles underlying deformable template matching together with definition and extraction of salient image features are presented. Specifically, interpolating cubic B-splines between the MPEG-4 Face Animation Parameters (FAPs) associated with the mouth and eyes are used as template parameterization. Modeling the template a network of springs interconnecting with the mouth and eyes FAPs, the internal energy is expressed as a combination of elastic and symmetry local constraints. The external energy function, which allows to enforce interactions with image data, involves contour, texture and topography properties properly combined within robust potential functions. Template matching is achieved by applying the downhill simplex method for minimizing the global energy cost. Stability and accuracy of the results are discussed on a set of 2000 frames corresponding to 5 video sequences of speaking people.

  13. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  14. In-situ monitoring of deformation of clayey and volcanic sequences in the lacustrine plain of Iztapalapa, Mexico City

    NASA Astrophysics Data System (ADS)

    Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.

    2012-12-01

    Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.

  15. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone

    USGS Publications Warehouse

    Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.

    2005-01-01

    We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.

  16. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  17. Cardan angle rotation sequence effects on first-metatarsophalangeal joint kinematics: implications for measuring hallux valgus deformity

    PubMed Central

    2014-01-01

    Background There currently are no recommended standards for reporting kinematics of the first-metatarsophalangeal joint. This study compared 2 different rotation sequences of Cardan angles, with implications for understanding the measurement of hallux valgus deformity. Methods Thirty-one women (19 hallux valgus; 12 controls) participated. All were scanned in an open-upright magnetic resonance scanner, their foot posed to simulate the gait conditions of midstance, heel-off, and terminal stance. Using computer processes, selected tarsals were reconstructed into virtual bone models and embedded with principal-axes coordinate systems, from which the rotation matrix between the hallux and first metatarsal was decomposed into Cardan angles. Joint angles were then compared using a within factors (rotation sequence and gait condition) repeated-measures analysis of variance (ANOVA). Results Only the transverse plane-first sequence consistently output incremental increases of dorsiflexion and abduction across gait events in both groups. There was an interaction (F ≥ 25.1; p < 0.001). Follow-up comparisons revealed angles were different (p < 0.05) at terminal stance. Conclusions Different rotation sequences yield different results. Extracting the first rotation in the transverse plane allows for the resting alignment of the hallux to deviate from the sagittal plane. Therefore, representing first-metatarsophalangeal joint kinematics with the transverse plane-first rotation sequence may be preferred, especially in cases of hallux valgus deformity. PMID:24839465

  18. Impact of deep brain stimulation on upper limb akinesia in Parkinson's disease.

    PubMed

    Brown, R G; Dowsey, P L; Brown, P; Jahanshahi, M; Pollak, P; Benabid, A L; Rodriguez-Oroz, M C; Obeso, J; Rothwell, J C

    1999-04-01

    Recent pathophysiological models of Parkinson's disease have led to new surgical approaches to treatment including deep brain stimulation (DBS) and lesioning of basal ganglia structures. Various measures of upper limb akinesia were assessed in 6 patients with bilateral DBS of the internal pallidum and 6 with DBS of the subthalamic nucleus. Stimulation improved a number of aspects of motor function, and particularly movement time, and force production. Time to initiate movements, and to perform repetitive movements also improved but less dramatically. Processes indicating preparatory motor processes showed no significant change. Few significant differences were found between the internal pallidum and subthalamic nucleus groups. In general, the effects of DBS closely parallel previous reports of the effects of dopaminergic medication. It is suggested that disrupted pallidal output in Parkinson's disease interferes with the rate, level, and coordination of force production but has little effect on preparatory processes. The similarity of the effects of subthalamic nucleus and internal pallidum stimulation suggests this disrupted outflow is the most important determinant of upper limb akinesia in Parkinson's disease. The effects of DBS were similar to the effects of unilateral pallidal lesions reported elsewhere.

  19. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    SciTech Connect

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  20. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.

    PubMed

    Knutsen, Andrew K; Magrath, Elizabeth; McEntee, Julie E; Xing, Fangxu; Prince, Jerry L; Bayly, Philip V; Butman, John A; Pham, Dzung L

    2014-11-07

    In vivo measurements of human brain deformation during mild acceleration are needed to help validate computational models of traumatic brain injury and to understand the factors that govern the mechanical response of the brain. Tagged magnetic resonance imaging is a powerful, noninvasive technique to track tissue motion in vivo which has been used to quantify brain deformation in live human subjects. However, these prior studies required from 72 to 144 head rotations to generate deformation data for a single image slice, precluding its use to investigate the entire brain in a single subject. Here, a novel method is introduced that significantly reduces temporal variability in the acquisition and improves the accuracy of displacement estimates. Optimization of the acquisition parameters in a gelatin phantom and three human subjects leads to a reduction in the number of rotations from 72 to 144 to as few as 8 for a single image slice. The ability to estimate accurate, well-resolved, fields of displacement and strain in far fewer repetitions will enable comprehensive studies of acceleration-induced deformation throughout the human brain in vivo.

  1. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    NASA Technical Reports Server (NTRS)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  2. Tharsis Province of Mars - Geologic sequence, geometry, and a deformation mechanism

    NASA Technical Reports Server (NTRS)

    Wise, D. U.; Golombek, M. P.; Mcgill, G. E.

    1979-01-01

    Tharsis development apparently involved two stages: (1) an initial rapid topographic rise accompanied by the development of a vast radial fault system and (2) an extremely long-lived volcanic stage apparently continuing to the geological present. A deformation model is proposed in which a first-order mantle convection cell caused early subcrustal erosion and foundering of the low third of the planet. Underplating and deep intrusion by the eroded materials beneath Tharsis caused isostatic doming. Minor radial gravity motions of surficial layers off the dome produced the radial fault system. The hot underplate eventually affected the surface to cause the very long-lived volcanic second stage.

  3. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  4. Deformational sequence of a portion of the Michipicoten greenstone belt, Chabanel Township, Ontario

    NASA Technical Reports Server (NTRS)

    Shrady, C. H.; Mcgill, G. E.

    1986-01-01

    Detailed mapping at a scale of one inch = 400 feet is being carried out within a fume kill, having excellent exposure, located in the southwestern portion of the Michipicoten Greenstone Belt near Wawa, Ontario. The rocks are metasediments and metavolcanics of lower greenschist facies. U-Pb geochronology indicates that they are at least 2698 + or - 11 Ma old. The lithologic packages strike northeast to northwest, but the dominant strike is approximately east-west. Sedimentary structures and graded bedding are well preserved, aiding in the structural interpretation of this multiply deformed area. At least six phases of deformation within a relatively small area of the Michipicoten Greenstone Belt have been tentatively identified. These include the following structural features in approximate order of occurrence: (0) soft-sediment structures; (1) regionally overturned rocks, flattened pebbles, bedding parallel cleavage, and early, approximately bedding parallel faults; (2) northwest to north striking cleavage; (3) northeast striking cleavage and associated folds, and at least some late movement on approximately bedding parallel faults; (4) north-northwest and northeast trending faults; and (5) diabase dikes and associated fracture cleavages. Minor displacement of the diabase dikes occurs on faults that appear to be reactivated older structures.

  5. Fetal akinesia caused by a novel actin filament aggregate myopathy skeletal muscle actin gene (ACTA1) mutation.

    PubMed

    Stenzel, Werner; Prokop, Stefan; Kress, Wolfram; Huppmann, Stephanie; Loui, Andrea; Sarioglu, Nanette M E; Laing, Nigel G; Sparrow, John C; Heppner, Frank L; Goebel, Hans H

    2010-08-01

    We report a female newborn, diagnosed with fetal akinesia in utero, who died one hour after birth. Post-mortem muscle biopsy demonstrated actin-filament myopathy based on immunolabelling for sarcomeric actin, and large areas of filaments, without rod formation, ultrastructurally. Analysis of DNA extracted from the muscle disclosed a novel de novo heterozygous c.44G>A, GGC>GAC, 'p.Gly15Asp' mutation in the ACTA1 gene. Analysis of the location of the mutated amino-acid in the actin molecule suggests the mutation most likely causes abnormal nucleotide binding, and consequent pathological actin polymerization. This case emphasizes the association of fetal akinesia with actin-filament myopathy.

  6. Sedimentological evidence for a deforming bed in a late Pleistocene glacial sequence from ANDRILL AND-1B, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Cowan, E. A.; Powell, R. D.

    2009-12-01

    A 1,284.87m-long sediment core (AND-1B) was drilled from beneath the McMurdo Ice Shelf sector of the Ross Ice Shelf as part of the Antarctic geological drilling program, ANDRILL. Snapshots of diamictite depositional processes and paleoenvironmental conditions have been interpreted from a nested set of samples collected at overlapping scales of observation. Data used for detailed sedimentological analyses include cm-scale core logging based on x-radiographs of the archive halves in addition to the original core description, bulk samples, and oriented 45 x 70mm thin sections of diamictites for micromorphology analysis. The 5.8m-thick interval studied contains a complete glacial advance-retreat sequence that is bracketed by glacial surfaces of erosion (GSE) at 41.9 and 47.7mbsf recording glacial advance over the core site. 4.6m of subglacial till is deposited above the lower GSE represented by a sequence of thin muddy conglomerate with diverse pebble lithologies, massive clast-rich muddy diamicite, and stratified diamictite with clast-rich and clast-free beds. The sand size fraction of bulk samples and thin sections from the till are dominated by aggregate grains, termed till pellets following terminology used by sedimentologists in the Ross Sea. The core of the pellet may be a lithic grain or stiff till with additional clay plastered on the outside forming rounded grains from angular ones. Till pellets are rounded, spherical to prolate in form and are associated with turbate structures and aligned grains in till thin sections - evidence of rotational deformation. The area beneath an ice shelf in front of a grounding line is recorded by a thin bed of granular particles that transitions to silty claystone stratified with granules. Granular layers are thought to be from periodic winnowing by strong currents focused near the grounding line. The sub-ice shelf transition from proximal grounding line to distal is recorded by a gradational contact between stratified silty

  7. Studies of sensory and motor cortex physiology: with observations on akinesia in Parkinson's disease.

    PubMed

    Hallett, M; Cohen, L G; Bierner, S M

    1991-01-01

    Magnetic stimulation of the brain can be used to investigate sensory and motor physiology and pathophysiology in intact humans. Although uncommon, it is possible for magnetic stimulation over sensorimotor cortex to produce paresthesis. With magnetic stimulation, it is also possible to block the conscious sensation of an electrical shock delivered to the index finger. The magnetic stimulus must be delivered in the interval from 300 msec before to 200 msec after the cutaneous shock and must be delivered over the contralateral hand region of the sensorimotor cortex. In a reaction time situation, the expected voluntary response may be delayed by a magnetic stimulus delivered over the sensorimotor cortex just before the movement. With the use of a relatively weak magnetic stimulus that does not produce a motor evoked potential (MEP) when the body part is at rest, but that will produce a response when the body part is activated, the reaction time can be divided into two periods. In the first period, there is no MEP and the motor cortex remains 'inexcitable'. In the second period, there is a gradual increase in MEP amplitude even though the voluntary electromyographic activity has not yet appeared. This 'excitable' period indicates the activation of motor cortex before the motor command is delivered. Application of this technique to the analysis of prolonged reaction time (akinesia) in patients with Parkinson's disease shows that the excitable period is prolonged. This describes the mechanism underlying the difficulty in the generation of a motor command in these patients.

  8. Microstructural analysis of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal: Channel Flow and Orogen-parallel deformation.

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Phillips, R. J.; Lloyd, G. E.; Searle, M. P.; Law, R. D.

    2014-12-01

    Knowledge of deformation processes that occur in the lithosphere during orogenesis can be gained from microstructural analysis of exhumed terranes and shear zones. Here, we use Crystallographic Preferred Orientation (CPO) and Anisotropy of Magnetic Susceptibility (AMS) data to reveal the kinematic evolution of the metamorphic core of the Himalayan orogen, the Greater Himalayan Sequence (GHS). The Himalayan orogen is commonly explained with models of channel flow, which describe the GHS as a partially molten, rheologically weak mid crustal channel. Extrusion of the channel was facilitated by coeval reverse- and normal-sense shear zones, at the lower and upper channel margins respectively. Whilst many thermobarometric studies support the occurrence of channel flow, the spatial and temporal distribution of strain within the GHS is one aspect of the model that is yet to be fully resolved. We present a quantified strain proxy profile for the GHS in the Annapurna-Dhaulagiri region of central Nepal and compare our results with the kinematic predictions of the channel flow model. Samples were collected along a NS transect through the Kali Gandaki valley of central Nepal for CPO and AMS analysis. Variations in CPO strength are used as a proxy for relative strain magnitude, whilst AMS data provide a proxy for strain ellipsoid shape. Combining this information with field and microstructural observations and thermobarometric constraints reveals the kinematic evolution of the GHS in this region. Low volumes of leucogranite and sillimanite bearing rocks and evidence of reverse-sense overprinting normal-sense shearing at the top of the GHS suggest that channel flow was not as intense as model predictions. Additionally, observed EW mineral lineations and oblate strain ellipsoid proxies in the Upper GHS, indicative of three dimensional flattening and orogen parallel stretching, cannot be explained by current channel flow models. Whilst the results do not refute the occurrence of

  9. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    NASA Astrophysics Data System (ADS)

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  10. The Emilia 2012 seismic sequence: hints on incipient basement-involved deformation in the foreland of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Argnani, Andrea; Carannante, Simona; Massa, Marco; D'Alema, Ezio; Lovati, Sara

    2015-04-01

    The deformation front of the Northern Apennines is buried under the sediments of the Po Plain and was formed mainly during the Pliocene. The remarkably arcuate shape of the thrust front contrasts with the linear northwestern trend of the pede-Apennines, where recent deformation is documented by both geological and geodetic evidence. This study presents new geological and seismological data that are used to assess the structural style of the Ferrara Arc, a sector of the Northern Apennine front that was hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on a dense grid of commercial seismic profiles and exploration wells, and high-quality relocation of ~5,300 earthquakes (the Emilia sequence). The seismicity was used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. On the basis of these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. Seismicity distribution is elongated in the W-NW to E-SE directions, reaching a depth of 10-12 km. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~45° SSW, and the surface projection indicates an area ~10 km wide and 23 km long. The aftershocks of the May 29 second mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~6 km wide and 33 km long. The analysed multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene, and also show the occurrence of a Mesozoic extensional fault system in the Ferrara arc, which in places has been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were

  11. Food deprivation and nicotine correct akinesia and freezing in Na(+) -leak current channel (NALCN)-deficient strains of Caenorhabditis elegans.

    PubMed

    Bonnett, K; Zweig, R; Aamodt, E J; Dwyer, D S

    2014-09-01

    Mutations in various genes adversely affect locomotion in model organisms, and thus provide valuable clues about the complex processes that control movement. In Caenorhabditis elegans, loss-of-function mutations in the Na(+) leak current channel (NALCN) and associated proteins (UNC-79 and UNC-80) cause akinesia and fainting (abrupt freezing of movement during escape from touch). It is not known how defects in the NALCN induce these phenotypes or if they are chronic and irreversible. Here, we report that akinesia and freezing are state-dependent and reversible in NALCN-deficient mutants (nca-1;nca-2, unc-79 and unc-80) when additional cation channels substitute for this protein. Two main measures of locomotion were evaluated: spontaneous movement (traversal of >2 head lengths during a 5 second observation period) and the touch-freeze response (movement greater than three body bends in response to tail touch). Food deprivation for as little as 3 min stimulated spontaneous movement and corrected the touch-freeze response. Conversely, food-deprived animals that moved normally in the absence of bacteria rapidly reverted to uncoordinated movement when re-exposed to food. The effects of food deprivation were mimicked by nicotine, which suggested that acetylcholine mediated the response. Nicotine appeared to act on interneurons or motor neurons rather than directly at the neuromuscular junction because levamisole, which stimulates muscle contraction, did not correct movement. Neural circuits have been proposed to account for the effects of food deprivation and nicotine on spontaneous movement and freezing. The NALCN may play an unrecognized role in human movement disorders characterized by akinesia and freezing gait.

  12. Deformation of Aztec Sandstone at Valley of Fire of Nevada: failure modes, sequence of deformation, structural products and their interplay with paleo fluids

    NASA Astrophysics Data System (ADS)

    Aydin, A.

    2014-12-01

    The Valley of Fire State Park, 60 km NE of Las Vegas, is a beacon of knowledge for deformation of Aztec Sandstone, a cross-bedded quartz arenite deposited in the Aztec-Navajo-Nugget erg in early Jurassic. It displays great diversity of physical properties, different localization types and micromechanics. The two deformation episodes, the Sevier folding & thrusting and the Basin & Range extension affected the area. The appearance of compaction bands marks the earliest deformation structure and their distribution, orientation, and dimension are controlled by the depositional architecture and loading. The earliest shear structures in the area are the Muddy Mountain, Summit, and Willow Tank thrusts and numerous small-scale bed-parallel faults. They altogether produced several kilometers of E-SE transport and shortening in the late Cretaceous and display numerous shear bands in its damage zone within the Aztec Sandstone. Shear bands also occur along dune boundaries and cross-bed interfaces. These observations indicate that the early deformation of the sandstone was accommodated by strain localization with various kinematics. The younger generation of faults in the area is of mid-Miocene age, and crops out pervasively. It includes a series of small offset normal faults (less than a few ten meters) which can be identified at steep cliff faces. These faults are highly segmented and are surrounded by a dense population of splay fractures. A large number of these splays were later sheared sequentially resulting in a well-defined network of left- and right-lateral strike-slip faults with slip magnitudes up to a few kilometers in the Park. The formation mechanisms of both the normal and strike-slip faults can be characterized as the sliding along planes of initial weaknesses and the accompanying cataclastic deformation. Some of the initial weak planes are associated with the depositional elements such as interdune boundaries and cross-bed interfaces while others are joint

  13. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  14. Centimeter-scale surface deformation caused by the 2011 Mineral, Virginia, earthquake sequence at the Carter farm site—Subsidiary structures with a quaternary history

    USGS Publications Warehouse

    Harrison, Richard W.; Schindler, J. Stephen; Pavich, Milan J.; Horton, J. Wright; Carter, Mark W.

    2016-08-25

    Centimeter-scale ground-surface deformation was produced by the August 23, 2011, magnitude (M) 5.8 earthquake that occurred in Mineral, Virginia. Ground-surface deformation also resulted from the earthquake aftershock sequence. This deformation occurred along a linear northeast-trend near Pendleton, Virginia. It is approximately 10 kilometers (km) northeast of the M5.8 epicenter and near the northeastern periphery of the epicentral area as defined by aftershocks. The ground-surface deformation extends over a distance of approximately 1.4 km and consists of parallel, small-scale (a few centimeters (cm) in amplitude) linear ridges and swales. Individual ridge and swale features are discontinuous and vary in length across a zone that ranges from about 20 meters (m) to less than 5 m in width. At one location, three fence posts and adjoining rails were vertically misaligned. Approximately 5 cm of uplift on one post provides a maximum estimate of vertical change from pre-earthquake conditions along the ridge and swale features. There was no change in the alignment of fence posts, indicating that deformation was entirely vertical. A broad monoclinal flexure with approximately 1 m of relief was identified by transit survey across surface deformation at the Carter farm site. There, surface deformation overlies the Carter farm fault, which is a zone of brittle faulting and fracturing along quartz veins, striking N40°E and dipping approximately 75°SE. Brecciation and shearing along this fault is interpreted as Quaternary in age because it disrupts the modern B-soil horizon. However, deformation is confined to saprolitized schist of the Ordovician Quantico Formation and the lowermost portion of overlying residuum, and is absent in the uppermost residuum and colluvial layer at the ground surface. Because there is a lack of surface shearing and very low relief, landslide processes were not a causative mechanism for the surface deformation. Two possible tectonic models and one

  15. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge: insight from the Changgo culmination, south central Tibet

    NASA Astrophysics Data System (ADS)

    Larson, Kyle P.; Godin, Laurent; Davis, William J.; Davis, Don W.

    2010-08-01

    The Changgo culmination, one of the North Himalayan domes in south central Tibet, consists of a multiphase granite core surrounded by a deformed metasedimentary carapace. The granitic core records general non-coaxial shear with a top-to-the-south sense shear component. The contact between the core and the carapace is a shear zone, characterized by general non-coaxial shear with a top-to-the-north shear sense, interpreted to be the northern continuation of the South Tibetan detachment system (STDS). The shear zone contains lenses of leucogranite dated at 35.4 Ma. This is interpreted to reflect Eocene crustal thickening, coeval with the earliest shortening event recorded in the carapace. The main phase of the Changgo granite crystallized at 23.5 Ma, while undeformed aplite dikes, the youngest phase observed in the granite, were intruded at 22.1 Ma. Aplite dikes crosscut the main deformation fabric within the Changgo granite; therefore, that deformation and associated south directed shearing must have ended between 23.5 Ma and 22.1 Ma. The dikes are strained within the STDS, indicating that final displacement along the STDS must post-date 22 Ma, yet be older than 18.4 Ma, the cooling age of muscovite in the shear zone. It is proposed that the exhumation of the Changgo culmination is related to tectonically driven erosion in response to crustal thickening and rebuilding of the orogenic critical taper wedge. Subsequently, deformation in the wedge migrated toward the foreland, expanding the orogenic wedge laterally and moving the locus of displacement from the Main Central thrust structurally downward to the Main Boundary thrust.

  16. Amelioration of frozen gait by tandospirone, a serotonin 1A agonist, in a patient with pure akinesia developing resistance to L-threo-3,4-dihydroxyphenylserine.

    PubMed

    Miyata, S; Hamamura, T; Yoshinaga, J; Nakamura, Y; Imamura, T; Hikiji, A; Kuroda, S

    2001-01-01

    A 71-year-old woman presented with severe akinesia, frozen gait, and compromised postural reflexes, without rigidity, tremor, or vertical gaze disturbance. With a working diagnosis of pure akinesia, we administered amantadine (150 mg/d) and L-threo-3,4-dihydroxyphenylserine (DOPS) (600 mg/d), which alleviated her symptoms. When frozen gait recurred 2 months later, we increased the dose of L-threo-DOPS to 900 mg/d and added levodopa (300 mg/d) combined with carbidopa, but this failed to improve the patient's symptoms. We then combined administration of tandospirone, a serotonin (5-HT) 1A agonist with L-threo-DOPS (600 mg/d), resulting in marked clinical improvement. Tandospirone is reported to activate noradrenergic neurons via the 5-HT 1A receptor, which could account for such striking improvement in a patient previously responsive to the noradrenergic precursor L-threo-DOPS given alone.

  17. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test.

    PubMed

    Olsson, M; Nikkhah, G; Bentlage, C; Björklund, A

    1995-05-01

    Methods for the assessment of akinesia in the unilateral rat Parkinson model have so far been lacking. The experiments reported here evaluate the usefulness of a new "stepping test" to monitor forelimb akinesia in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesencephalic dopamine (DA) system, and to assess the ability of DA-receptor agonists and fetal DA neuron transplants to reverse these deficits. The 6-OHDA lesion induced marked and long-lasting impairments in the initiation of stepping movements with the contralateral paw. Systemic injections of low doses (chosen to be subthreshold for induction of rotation) of the mixed D1 and D2 receptor agonist apomorphine, the D1-selective agonist SKF 38393, and to a lesser extent also the D2-selective agonist quinpirole were effective in reversing these deficits. Similar effects was seen after a subrotational dose of L-dopa, whereas amphetamine had no effect. Fetal nigral transplants, implanted as multiple deposits in the ipsilateral caudate-putamen and substantia nigra, restored initiation of stepping to a similar degree as the DA agonists. Nigral grafts placed in substantia nigra alone were also effective, although the improvement was less pronounced. Apomorphine, at a dose effective in the lesion-only animals, had no additive effect in the grafted rats, whereas amphetamine appeared to further improve stepping in the rats with intranigral transplants. Identical experiments were performed on skilled forelimb use in the so-called staircase test. Interestingly, neither the DA agonist drugs nor the nigral transplants had any effects on the lesion induced deficits in this more complex task. The results show that forelimb stepping is a highly useful test to monitor lesion-/and transplant-induced changes in forelimb akinesia, a behavioral parameter that may be analogous to limb akinesia and gait problems seen in patients with Parkinson's disease.

  18. The sequence of moderate-size earthquakes at the junction of the Ligurian basin and the Corsica margin (western Mediterranean): The initiation of an active deformation zone revealed?

    NASA Astrophysics Data System (ADS)

    Larroque, Christophe; Delouis, Bertrand; Sage, Françoise; Régnier, Marc; Béthoux, Nicole; Courboulex, Françoise; Deschamps, Anne

    2016-04-01

    A new seismically active zone is found in the southern part of the Ligurian basin, 80-km west of Corsica (western Mediterranean). The activity began in February 2011 with a foreshock (ML 4) and a mainshock (ML 5.3) 5 days later, followed by numerous aftershocks. We first analyze the fore- and mainshock in detail. We compare the results obtained using classical methods (linear location in a 1D medium and focal mechanisms from P and S polarities) and new approaches (non-linear location in a 3D medium and waveform modeling for determining the seismic moment and the focal mechanism). Both methods provided similar results for location, depth (in the range of 6-13 km) and focal mechanisms, which reveal reverse faulting with nodal planes oriented N-S and NE-SW. We then locate 27 of the aftershocks in the 3D model and find a 10-km-long NE-SW alignment with a depth between 7 and 16 km. In 2012 and 2013, three other moderate-size events (ML 3.8, 4 and 4.5) occurred and confirm that this zone is still active. The epicentral area is located in the oceanic domain of the Ligurian Basin. From analysis of the bathymetry and high-resolution multi-channel seismic profiles, no morphologic anomaly at surface and no inherited fault in the shallow ~ 4 km depth were imaged, which suggest that no significant deformation occurred in the area since 5 Ma. Thus, the structure(s) activated during the 2011-2013 sequence remain unknown. In light of these results, we point out a notable difference on both sides of the Ligurian Basin: the northern margin, close to the alpine chain, suffered strong earthquakes and large cumulated deformation since 5 Ma, while the southern margin, close to the Corsica-Sardinia continental block, is poorly deformed since 5 Ma.

  19. Whole genome sequencing identifies ANXA3 and MTHFR mutations in a large family with an unknown equinus deformity associated genetic disorder.

    PubMed

    Zhang, Zhiqun; Kong, Zhuqing; Zhu, Miao; Lu, Wenxiang; Ni, Lei; Bai, Yunfei; Lou, Yue

    2016-10-01

    The aim of this study was to characterize a previously uncharacterized genetic disorder associated with equinus deformity in a large Chinese family at the genetic level. Blood samples were obtained and whole genome sequencing was performed. Differential gene variants were identified and potential impacts on protein structure were predicted. Based on the control sample, several diseases associated variants were identified and selected for further validation. One of the potential variants identified was a ANXA3 gene [chr4, c.C820T(p.R274*)] variant. Further bioinformatic analysis showed that the observed mutation could lead to a three-dimensional conformational change. Moreover, a MTHFR variant that is different from variants associated with clubfoot was also identified. Bioinformatic analysis showed that this mutation could alter the protein binding region. These findings imply that this uncharacterized genetic disorder is not clubfoot, despite sharing some similar symptoms. Furthermore, specific CNV profiles were identified in association with the diseased samples, thus further speaking to the complexity of this multigenerational disorder. This study examined a previously uncharacterized genetic disorder appearing similar to clubfoot and yet having distinct features. Following whole genome sequencing and comparative analysis, several differential gene variants were identified to enable a further distinction from clubfoot. It is hoped that these findings will provide further insight into this disorder and other similar disorders.

  20. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the

  1. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends.

    PubMed Central

    Goodman, S D; Nicholson, S C; Nash, H A

    1992-01-01

    Escherichia coli IHF protein is a prominent component of bacteriophage lambda integration and excision that binds specifically to DNA. We find that the homologous protein HU, a nonspecific DNA binding protein, can substitute for IHF during excisive recombination of a plasmid containing the prophage attachment sites attL and attR but not during integrative recombination between attP and attB. We have examined whether IHF and HU function in excisive recombination is mediated through DNA bending. Our strategy has been to construct chimeric attachment sites in which IHF binding sites are replaced by an alternative source of DNA deformation. Previously, we demonstrated that properly phased bends can substitute for the binding of IHF at one site in attP. Although this result is highly suggestive of a critical role of IHF-promoted bending in lambda integration, its interpretation is obscured by the continued need for IHF binding to the remaining IHF sites of these constructs. In the present work, we engineered a population of sequence-directed bends in the vicinity of the two essential IHF sites found in attR and attL. Even in the absence of IHF or HU, pairs of these attachment sites with properly phased bends are active for both in vitro and in vivo excision. This success, although tempered by the limited efficiency of these systems, reinforces our interpretation that IHF functions primarily as an architectural element. Images PMID:1465417

  2. Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; González-Escobar, Mario; Navarro, Miguel; Valdez, Tito; Mayer, Sergio; Aguirre, Alfredo; Wong, Victor; Luna, Manuel

    2016-10-01

    We analyzed earthquakes of sequences that occurred at different times near San Carlos, a town of approximately 5000 inhabitants. The seismic sequences happened during March-April 1989, October 2000-June 2001, and 5-15 February 2004 at about 200 km west of the Pacific-North America plate boundary. The strong shaking from initial earthquakes of the first two sequences prompted the installation of temporary seismic stations in the area. With data recorded by these stations, we found an earthquake distribution that is consistent with the northwest segment of the Santa Margarita fault. Both the focal depth, that seemed to increase in E-NE direction, and a composite fault-plane solution, obtained from polarity data of the small earthquakes, were also consistent with the main characteristics of that fault. We also found that our normal-faulting mechanism (east side down) was quite similar to centroid moment tensor solutions for earthquakes with M w 5.4 and 5.3 that occurred in the area in February 2004. It is likely, then, that these larger earthquakes also occurred along the Santa Margarita Fault. To get some insight into the regional stress pattern, we compared the above mechanisms with mechanisms reported for other earthquakes of the Pacific margin of Baja California Sur and the Gulf of California regions. We observed that focal mechanisms of the two regions have T axes of stress that plunge sub horizontally in E-NE average direction. The corresponding P axes have N-NW average trend, but for the Pacific earthquakes these axes plunge at angles that are ~35° larger than those for the Gulf earthquakes. These more vertically inclined P axes of compressive stress mean substantial oblique fault motions. The mixture of oblique and strike-slip components of fault motions, as the focal mechanisms show, confirms a transtensional stress regime for the region. Before this research, we knew little about the seismicity and styles of faulting in the area. Now we know that

  3. Postural & striatal deformities in Parkinson's disease: Are these rare?

    PubMed Central

    Pandey, Sanjay; Garg, Hitesh

    2016-01-01

    Parkinson's disease (PD) is the most common neurodegenerative disease and is characterized by tremor, rigidity and akinesia. Diagnosis is clinical in the majority of the patients. Patients with PD may have stooped posture but some of them develop different types of postural and striatal deformities. Usually these deformities are more common in atypical parkinsonian disorders such as progressive supranuclear palsy and multisystem atrophy. But in many studies it has been highlighted that these may also be present in approximately one third of PD patients leading to severe disability. These include antecollis or dropped head, camptocormia, Pisa syndrome, scoliosis, striatal hands and striatal toes. The pathogenesis of these deformities is a complex combination of central and peripheral influences such as rigidity, dystonia and degenerative skeletal changes. Duration of parkinsonism symptoms is an important risk factor and in majority of the patients these deformities are seen in advanced statge of the disease. The patients with such symptoms may initially respond to dopaminergic medications but if not intervened they may become fixed and difficult to treat. Pain and restriction of movement are most common clinical manifestations and these may mimick symptoms of musculoskeletal disorders like rheumatoid arthritis. Early diagnosis is important as the patients may respond to adjustment in dopaminergic medications. Recent advances such as deep brain stimulation (DBS) and ultrasound guided botulinum toxin injection are helpful in management of these deformities in patients with PD. PMID:26997007

  4. Orogen-parallel deformation of the Himalayan midcrust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Ferré, E. C.; Law, R. D.; Lloyd, G. E.; Phillips, R. J.; Searle, M. P.

    2016-11-01

    The metamorphic core of the Himalaya (Greater Himalayan Sequence, GHS), in the Annapurna-Dhaulagiri region, central Nepal, recorded orogen-parallel stretching during midcrustal evolution. Anisotropy of magnetic susceptibility and field-based structural analyses suggest that midcrustal deformation of the amphibolite facies core of the GHS occurred under an oblate/suboblate strain regime with associated formation of low-angle northward dipping foliation. Magnetic and mineral stretching lineations lying within this foliation from the top of the GHS record right-lateral orogen-parallel stretching. We propose that oblate strain within a midcrustal flow accommodated oblique convergence between India and the arcuate orogenic front without the need for strain partitioning in the upper crust. Oblate flattening may have also promoted orogen-parallel melt migration and development of melt-depleted regions between km3 scale leucogranite culminations at 50-100 km intervals along orogen strike. Following the cessation of flow, continued oblique convergence led to upper crustal strain partitioning between orogen-perpendicular convergence on thrust faults and orogen-parallel extension on normal and strike-slip faults. In the Annapurna-Dhaulagiri Himalaya, orogen-parallel stretching lineations are interpreted as a record of transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel stretching. Our findings suggest that midcrustal flow and upper crustal extension could not be maintained simultaneously and support other studies from across the Himalaya, which propose an orogen-wide transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel extension during the mid-Miocene. The 3-D nature of oblate strain and orogen-parallel stretching cannot be replicated by 2-D numerical simulations of the Himalayan orogen.

  5. Acoustic tone or medial geniculate stimulation cue training in the rat is associated with neocortical neuroplasticity and reduced akinesia under haloperidol challenge.

    PubMed

    Brown, Andrew R; Hu, Bin; Kolb, Bryan; Teskey, G Campbell

    2010-12-06

    Sensory cues can improve movement deficits in Parkinson's disease, but little is known about the mechanisms involved. To investigate neuroplastic changes following sensorimotor cue training, rats were shaped to respond to acoustic tone or medial geniculate stimulation cues by retrieving a food reward. Neuroplasticity associated with training was assessed by changes in auditory neocortical evoked field potentials and dendritic morphology. Stimulation cue training was associated with changes in dendritic arbour length and complexity in auditory and motor neocortices, but was without effect on evoked electrophysiological responses. Tone cue training was associated with a significant increase in peak height of the evoked auditory response and then under haloperidol challenge, demonstrated reduced akinesia. Results indicate that cue-training induces neuroplastic changes that may be related to improved sensorimotor function under dopaminergic antagonism.

  6. Deformation of a continental margin sequence under a thrust sheet: complex stress history in a high pressure cell revealed by vein systems in the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; Urai, Janos L.; Grobe, Arne

    2016-04-01

    Seven deformation phases can be mapped in mesozoic carbonates of the Jebel Akhdar mountains in North Oman. These include an early horizontal NE-SW directed extension that produced bedding confined vein sets with evidence for anticlockwise rotation of the stress field over time, interpreted to have developed during the thrust sheet emplacement. It is followed by a phase of top-NE bedding parallel shearing which rotates these veins on the North side of the mountains. The next phase is normal to oblique slip faults followed by at least two phases of strike-slip deformation. A "background" ductile deformation (maximum burial temperatures of 250 °C) is shown bu deformed fossils and diagenetic concretions. Each of these phases is consistently documented by a large number of observations of overprinting in nearly continuous outcrops. Each deformation phase produces vein sets that do not only differ in orientation but also in occurrence and appearance. Early vein sets exhibit a high stratigraphic variability, but are laterally very stable. With the onset of faulting, the stratigraphic variability decreases and the lateral variability becomes more significant. Even though the area offers excellent outcrop conditions with nearly 100% exposure, it is virtually impossible to find two outcrops that exhibit the same vein patterns. This has interesting implications for vein system analysis and is due to two reasons: (1) the stratigraphic and lateral variability of occurrence and orientation of each vein set cause different combination of vein sets do develop in different layers (2) Intersecting vein sets can show very different interaction such as crosscutting and reactivation, depending on the mechanical properties of the host rock and the veins.

  7. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.

  8. Posterior hypothalamic nucleus deep brain stimulation restores locomotion in rats with haloperidol-induced akinesia but not skilled forelimb use in pellet reaching and lever pressing.

    PubMed

    Young, C K; Whishaw, I Q; Bland, B H

    2011-09-29

    Recent studies have shown that electrical stimulation of the posterior hypothalamic nucleus (PH) facilitates locomotion in control rats, and rats were made akinetic by dopaminergic blockade via haloperidol or dopamine depletion by the neurotoxin 6-hydroxydopamine. These findings suggest that PH stimulation might be a promising treatment for akinesia associated with dopamine loss in Parkinson's disease. The present study further examined the positive effects of PH stimulation on behavior by characterizing its potential facilitatory effects on tasks that require skilled movements. Rats were trained to reach for food pellets with a forelimb (skilled reaching) or press a bar in an operant conditioning task for food. PH stimulation in undrugged rats not only facilitated locomotion in each of the tasks, but also impaired performance of the skilled movement components of the tasks. Haloperidol reduced locomotion and skilled movement, and PH stimulation only restored locomotion. The results are discussed in relation to the idea that PH stimulation selectively facilitates locomotor behavior and may have limited use in restoring impairments in skilled movements and consummatory behavior that results from dopaminergic depletion.

  9. Bunionette deformity.

    PubMed

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  10. Winnetka deformation zone: Surface expression of coactive slip on a blind fault during the Northridge earthquake sequence, California. Evidence that coactive faulting occurred in the Canoga Park, Winnetka, and Northridge areas during the 17 January 1994, Northridge, California earthquake

    SciTech Connect

    Cruikshank, K.M.; Johnson, A.M.; Fleming, R.W.; Jones, R.L.

    1996-12-31

    Measurements of normalized length changes of streets over an area of 9 km{sup 2} in San Fernando Valley of Los Angeles, California, define a distinctive strain pattern that may well reflect blind faulting during the 1994 Northridge earthquake. Strain magnitudes are about 3 {times} 10{sup {minus}4}, locally 10{sup {minus}3}. They define a deformation zone trending diagonally from near Canoga Park in the southwest, through Winnetka, to near Northridge in the northeast. The deformation zone is about 4.5 km long and 1 km wide. The northwestern two-thirds of the zone is a belt of extension of streets, and the southeastern one-third is a belt of shortening of streets. On the northwest and southeast sides of the deformation zone the magnitude of the strains is too small to measure, less than 10{sup {minus}4}. Complete states of strain measured in the northeastern half of the deformation zone show that the directions of principal strains are parallel and normal to the walls of the zone, so the zone is not a strike-slip zone. The magnitudes of strains measured in the northeastern part of the Winnetka area were large enough to fracture concrete and soils, and the area of larger strains correlates with the area of greater damage to such roads and sidewalks. All parts of the pattern suggest a blind fault at depth, most likely a reverse fault dipping northwest but possibly a normal fault dipping southeast. The magnitudes of the strains in the Winnetka area are consistent with the strains produced at the ground surface by a blind fault plane extending to depth on the order of 2 km and a net slip on the order of 1 m, within a distance of about 100 to 500 m of the ground surface. The pattern of damage in the San Fernando Valley suggests a fault segment much longer than the 4.5 km defined by survey data in the Winnetka area. The blind fault segment may extend several kilometers in both directions beyond the Winnetka area. This study of the Winnetka area further supports

  11. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.

    PubMed

    Misra, R D K; Nune, C; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2013-04-01

    Metallic biomedical devices with nanometer-sized grains (NGs) provide surfaces that are different from their coarse-grained (CG) (tens of micrometer) counterparts in terms of increased fraction of grain boundaries (NG>50%; CG<2-3%). The novel concept of 'phase-reversion' involving a controlled deformation-annealing sequence is used to obtain a wide range of grain structures, starting from the NG regime to the CG regime, to demonstrate that the grain structure significantly impacts cellular interactions and osteoblast functions. The uniqueness of this concept is the ability to address the critical aspect of cellular activity in nanostructured materials, because a range of grain sizes from NG to CG are obtained in a single material using an identical set of parameters. This is in addition to a high strength/weight ratio and superior wear and corrosion resistance. These multiple attributes are important for the long-term stability of biomedical devices. Experiments on the interplay between grain structure from the NG regime to CG in austenitic stainless steel on osteoblast functions indicated that cell attachment, proliferation, viability, morphology and spread varied with grain size and were favorably modulated on the NG and ultrafine-grain structure. Furthermore, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on the NG surface. The differences in the cellular response with change in grain structure are attributed to grain structure and degree of hydrophilicity. The study lays the foundation for a new branch of nanostructured materials for biomedical applications.

  12. An exome sequencing strategy to diagnose lethal autosomal recessive disorders.

    PubMed

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-03-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0-4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies.

  13. An exome sequencing strategy to diagnose lethal autosomal recessive disorders

    PubMed Central

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-01-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0–4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies. PMID:24961629

  14. A Comparison of Deformed Wing Virus in Deformed and Asymptomatic Honey Bees

    PubMed Central

    Brettell, Laura E.; Mordecai, Gideon J.; Schroeder, Declan C.; Jones, Ian M.; da Silva, Jessica R.; Vicente-Rubiano, Marina; Martin, Stephen J.

    2017-01-01

    Deformed wing virus (DWV) in association with Varroa destructor is currently attributed to being responsible for colony collapse in the western honey bee (Apis mellifera). The appearance of deformed individuals within an infested colony has long been associated with colony losses. However, it is unknown why only a fraction of DWV positive bees develop deformed wings. This study concerns two small studies comparing deformed and non-deformed bees. In Brazil, asymptomatic bees (no wing deformity) that had been parasitised by Varroa as pupae had higher DWV loads than non-parasitised bees. However, we found no greater bilateral asymmetry in wing morphology due to DWV titres or parasitisation. As expected, using RT-qPCR, deformed bees were found to contain the highest viral loads. In a separate study, next generation sequencing (NGS) was applied to compare the entire DWV genomes from paired symptomatic and asymptomatic bees from three colonies on two different Hawaiian islands. This revealed no consistent differences between DWV genomes from deformed or asymptomatic bees, with the greatest variation seen between locations, not phenotypes. All samples, except one, were dominated by DWV type A. This small-scale study suggests that there is no unique genetic variant associated with wing deformity; but that many DWV variants have the potential to cause deformity. PMID:28272333

  15. A Comparison of Deformed Wing Virus in Deformed and Asymptomatic Honey Bees.

    PubMed

    Brettell, Laura E; Mordecai, Gideon J; Schroeder, Declan C; Jones, Ian M; da Silva, Jessica R; Vicente-Rubiano, Marina; Martin, Stephen J

    2017-03-07

    Deformed wing virus (DWV) in association with Varroa destructor is currently attributed to being responsible for colony collapse in the western honey bee (Apis mellifera). The appearance of deformed individuals within an infested colony has long been associated with colony losses. However, it is unknown why only a fraction of DWV positive bees develop deformed wings. This study concerns two small studies comparing deformed and non-deformed bees. In Brazil, asymptomatic bees (no wing deformity) that had been parasitised by Varroa as pupae had higher DWV loads than non-parasitised bees. However, we found no greater bilateral asymmetry in wing morphology due to DWV titres or parasitisation. As expected, using RT-qPCR, deformed bees were found to contain the highest viral loads. In a separate study, next generation sequencing (NGS) was applied to compare the entire DWV genomes from paired symptomatic and asymptomatic bees from three colonies on two different Hawaiian islands. This revealed no consistent differences between DWV genomes from deformed or asymptomatic bees, with the greatest variation seen between locations, not phenotypes. All samples, except one, were dominated by DWV type A. This small-scale study suggests that there is no unique genetic variant associated with wing deformity; but that many DWV variants have the potential to cause deformity.

  16. Abelian Yang-Baxter deformations and TsT transformations

    NASA Astrophysics Data System (ADS)

    Osten, David; van Tongeren, Stijn J.

    2017-02-01

    We prove that abelian Yang-Baxter deformations of superstring coset σ models are equivalent to sequences of commuting TsT transformations, meaning T dualities and coordinate shifts. Our results extend also to fermionic deformations and fermionic T duality, and naturally lead to a TsT subgroup of the superduality group OSp (db ,db | 2df). In cases like AdS5 ×S5, fermionic deformations necessarily lead to complex models. As an illustration of inequivalent deformations, we give all six abelian deformations of AdS3. We comment on the possible dual field theory interpretation of these (super-)TsT models.

  17. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  18. Approach to analyze a deformable moving target by using the shape deformation model and morphological operators

    NASA Astrophysics Data System (ADS)

    Wu, Weiguo; Asai, Take; Akatsuka, Takao

    1995-10-01

    The measurement of the characteristic parameters for a moving object with deformation is often an important problem. Here, an approach to analyze the shape change of a ball, when it is kicked in soccer, is proposed by using a simple shape deformation model to evaluate the shape change from the image sequence. Moreover, to determine the parameters of the model which apply to actual ball deformation, the detection of ball is necessary, and the pattern spectrum based on morphological operators is considered. Here, we assume that the deformation surface of the ball is a circular arc, when it is kicked by foot, and the arc is always convex when it is observed from the kicking side. To obtain the parameters of the arc, the preprocessing of the ball image such as local binarization, the region filling and noisy smoothing with morphological operators, is performed from actual image sequence. In order to detect the ball, the pattern spectrum with morphological operators is measured, and then circumscribed circle of the ball is extracted. So, the center and radius of the ball from circumscribed circle and the arc of the deformation surface of the model are obtained. Finally, the characteristic parameters of a moving ball such as the deformation are measured by using the shape deformation model. To demonstrate the effect of this method, we show an application to extract the deformation of the ball in football for the actual sports skill training.

  19. Deform PF-MT: Particle Filter With Mode Tracker for Tracking Nonaffine Contour Deformations

    PubMed Central

    Vaswani, Namrata; Rathi, Yogesh; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    We propose algorithms for tracking the boundary contour of a deforming object from an image sequence, when the nonaffine (local) deformation over consecutive frames is large and there is overlapping clutter, occlusions, low contrast, or outlier imagery. When the object is arbitrarily deforming, each, or at least most, contour points can move independently. Contour deformation then forms an infinite (in practice, very large), dimensional space. Direct application of particle filters (PF) for large dimensional problems is impractically expensive. However, in most real problems, at any given time, most of the contour deformation occurs in a small number of dimensions (“effective basis space”) while the residual deformation in the rest of the state space (“residual space”) is small. This property enables us to apply the particle filtering with mode tracking (PF-MT) idea that was proposed for such large dimensional problems in recent work. Since most contour deformation is low spatial frequency, we propose to use the space of deformation at a subsampled set of locations as the effective basis space. The resulting algorithm is called deform PF-MT. It requires significant modifications compared to the original PF-MT because the space of contours is a non-Euclidean infinite dimensional space. PMID:19933014

  20. Stress Analysis for Kinematic Hardening in Finite-Deformation Plasticity.

    DTIC Science & Technology

    1981-12-01

    field, straight lines defined by material points remain straight and the square block is deformed into a sequence of parallelograms . The line of...Contract N00014-81-K-0660 DEPARTMENT STRESS ANALYSIS FOR KINEMATIC HARDENING OF IN FINITE- DEFORMATION PLASTICITY MECHANICAL ENGINEERING By E. H. Lee, R, L...Finite- Deformation Plasticity E. H. Lee and R. L. Mallett, Rensselaer Polytechnic Institute and Stanford University, and T. B. Wertheimer, MARC Analysis

  1. Deformations of superconformal theories

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth

    2016-11-01

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  2. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  3. Dominant simple-shear deformation during peak metamorphism for the lower portion of the Greater Himalayan Sequence in West Nepal: New implications for hybrid channel flow-type mechanisms in the Dolpo region

    NASA Astrophysics Data System (ADS)

    Frassi, Chiara

    2015-12-01

    I conducted new vorticity and deformation temperatures studies to test competing models of the exhumation of the mid-crustal rocks exposed in the Dolpo region (West Nepal). My results indicate that the Main Central Thrust is located ∼5 km structurally below the previous mapped locations. Deformation temperature increasing up structural section from ∼450 °C to ∼650 °C and overlap with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. My results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectonometamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.

  4. Calcaneo-valgus deformity.

    PubMed

    Evans, D

    1975-08-01

    A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.

  5. Absent fetal movement response with a blunted cardioacceleratory fetal response to external vibratory acoustic stimulation in a fetus with the Pena-Shokeir syndrome (fetal akinesia and hypokinesia sequence).

    PubMed

    Sherer, D M; Sanko, S R; Metlay, L A; Woods, J R

    1992-01-01

    We present a case that describes a partial fetal response to external vibratory acoustic stimulation in that, although no fetal movements were elicited, a blunted, brief positive cardioacceleratory response was noted. This fetus exhibited features of the Pena-Shokeir syndrome, characterized by skeletal neurogenic atrophy, yet with a normal auditory system at autopsy. This observation may suggest that the prolonged increase in the basal fetal heart noted after fetal vibratory acoustic stimulation is sustained by active fetal movements, absent in this fetus due to joint contractures.

  6. Rock Deformation Meeting

    NASA Astrophysics Data System (ADS)

    Green, Harry

    The Third Rock Deformation Colloquium was held December 4, 1989, at the AGU Fall Meeting in San Francisco. Steve Kirby of the U.S. Geological Survey, Menlo Park, Calif., reported on actions taken by the rock deformation steering committee. Brian Wernicke of Harvard University, Cambridge, Mass., talked on the structural geology of the Great Basin.The steering committee voted for “Committee on Deformation of Earth Materials” as the name for the AGU technical committee on rock deformation, Kirby said. Considerable discussion has occurred in the steering committee over our relationship to the AGU Mineral Physics Committee. Indeed, Kirby will become chairman of that committee in 1990, underlining the overlap of the two groups. It was agreed that we will pursue closer association with Mineral Physics.

  7. Wrist deformities after fracture.

    PubMed

    Vanheest, Ann

    2006-02-01

    Wrist deformities can occur after fracture because of malunion of the fracture or injury to the growth plate leading to imbalance of growth. Prevention of malunion is paramount by early recognition with proper reduction and casting or fixation with casting. If a mal-union occurs, an osteotomy may be necessary if anticipated growth will not correct the deformity. Injury of the growth plate may lead to wrist deformity in two ways: angular growth or growth arrest. Angular growth deformities are corrected most commonly by osteotomy. Growth arrest of the radius or the ulna leads to an ulnar-positive or an ulnar-negative variance at the wrist. If the ulnar variance is symptomatic, treatment is centered on achieving a level joint. Options for joint leveling procedures include epiphysiodesis or physeal stapling of the longer bone, lengthening osteotomy of the shorter bone, or shortening osteotomy of the longer bone.

  8. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  9. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  10. Recognizing Sequences of Sequences

    PubMed Central

    Kiebel, Stefan J.; von Kriegstein, Katharina; Daunizeau, Jean; Friston, Karl J.

    2009-01-01

    The brain's decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents. For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or generative model is a hierarchy of ‘stable heteroclinic channels’. This model describes continuous dynamics in the environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at multiple time scales and are reminiscent of neuronal dynamics seen in the real brain. PMID:19680429

  11. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  12. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  13. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  14. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  15. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  16. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  17. Micromachined, Electrostatically Deformable Reflectors

    NASA Technical Reports Server (NTRS)

    Bartman, Randall K.; Wang, Paul K. C.; Miller, Linda M.; Kenny, Thomas W.; Kaiser, William J.; Hadaegh, Fred Y.; Agronin, Michael L.

    1995-01-01

    Micromachined, closed-loop, electrostatically actuated reflectors (microCLEARs) provide relatively simple and inexpensive alternatives to large, complex, expensive adaptive optics used to control wavefronts of beams of light in astronomy and in experimental laser weapons. Micromachining used to make deformable mirror, supporting structure, and actuation circuitry. Development of microCLEARs may not only overcome some of disadvantages and limitations of older adaptive optics but may also satisfy demands of potential market for small, inexpensive deformable mirrors in electronically controlled film cameras, video cameras, and other commercial optoelectronic instruments.

  18. Deformation and failure mechanisms in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Newaz, G.; Majumdar, B. S.

    1991-01-01

    An investigation was undertaken to determine the key deformation mechanisms and their interaction leading to failure of both 0 degree and 90 degree Ti 15-3/SCS-6 laminae under monotonic loading. The experimental results suggest that inelastic deformation in the 0-degree lamina is dominated by plastic deformation and that in the 90-degree lamina is dominated by both fiber-matrix debonding and plasticity. The loading-unloading response, monitoring of Poisson's ratio and microscopy were utilized to identify the key deformation mechanisms. The sequence of deformation mechanisms leading to failure are identified for both the 0 and the 90-degree specimens. The threshold strains for plasticity or damage which are referred to as 'microdeformation' in the 0 deg and 90 deg laminae are approximately 0.004 and 0.002, respectively, at room temperature. These strain levels may be considered critical in initiation based structural design with these composites.

  19. Pneumatic tyres interacting with deformable terrains

    NASA Astrophysics Data System (ADS)

    Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.

    2016-09-01

    In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.

  20. Nanoscale deformation mechanisms in bone.

    PubMed

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  1. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  2. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  3. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  4. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  5. Osteotomies for bunionette deformity.

    PubMed

    Weil, Lowell; Weil, Lowell Scott

    2011-12-01

    A variety of surgical osteotomy procedures have been described for the bunionette deformity.Metatarsal osteotomies narrow the forefoot, maintain the length of the metatarsal, and preserve function of the metatarsophalangeal joint. Distal metatarsal osteotomies produce less correction and reduce postoperative disability; however, they pose a risk of inadequate correction because of the small width of the fifth metatarsal head and transfer lesions if shortened or dorsiflexed excessively. The sliding oblique metaphyseal osteotomy described by Smith and Weil (without fixation) and later by Steinke (with fixation) is easy to perform and provides good cancellous bone contact. Fixation is sometimes difficult and bone healing can take a few months owing to the unstable construct of this osteotomy. Kitaoka described a distal chevron osteotomy, which provides lateral pressure relief and reduced plantar pressure. This osteotomy is currently the most common procedure used; however, it may prove difficult to perform if the deformity is large and the bone is narrow. Diaphyseal osteotomies are indicated when greater correction is needed; however, they require more dissection and there is greater postoperative convalescence with non–weight bearing for several weeks. Proximal base osteotomies may be used to address significantly increased 4–5 IMAs or when a large degree of sagittal plane correction is required. Approaches that have been described include opening and closing base wedges and basal chevrons. Advantages to this approach are the ability to avoid epiphyseal plates in pediatric patients and maintain function of the MTPJ, while disadvantages include inherent instability of the location of the osteotomy, embarrassment of intraosseous and extraosseus blood supply of the metatarsal, and technical demand. Non–weight bearing is essential for several weeks. The Scarfette procedure is a combination head–shaft procedure, which is indicated to treat mild to moderate

  6. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  7. Advanced Curvature Deformable Mirrors

    DTIC Science & Technology

    2010-09-01

    designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer

  8. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  9. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  10. [Neurogenic foot deformities].

    PubMed

    Senst, S

    2010-01-01

    There is a multitude of neurological diseases which may lead to neuro-orthopaedic problems and subsequently to neurogenic foot deformities. For this reason the diagnostician will be consistently surprised that there is a great multitude of different foot abnormalities and that not only the typical spastic talipes equines dominates. Of particular significance here is that these deformities almost always develop progressively, whereas most diseases persist per se, cerebral palsy being a typical case in point. However, in MMC (myelomeningocele) patients, there is also the danger of a worsening of the basic problem in the case of tethered cord syndrome. Unlike congenital talipes equinovarus, neuro-orthopaedic talipes equinovarus often shows over- or undercorrection postoperatively due to a shift in muscle imbalance. It is important, therefore, that the basis of conservative therapy include regular physiotherapy and orthoses during the day and, if necessary, at night. Botulinum toxin has been established as an additional measure for spasticity; however, this cannot always prevent surgical intervention, but is able to delay this to a better point in the development of the child/patient. The present article describes the diversity of neurological deformities and presents conservative as well as surgical therapeutic approaches.

  11. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  12. Genome Sequencing.

    PubMed

    Verma, Mansi; Kulshrestha, Samarth; Puri, Ayush

    2017-01-01

    Genome sequencing is an important step toward correlating genotypes with phenotypic characters. Sequencing technologies are important in many fields in the life sciences, including functional genomics, transcriptomics, oncology, evolutionary biology, forensic sciences, and many more. The era of sequencing has been divided into three generations. First generation sequencing involved sequencing by synthesis (Sanger sequencing) and sequencing by cleavage (Maxam-Gilbert sequencing). Sanger sequencing led to the completion of various genome sequences (including human) and provided the foundation for development of other sequencing technologies. Since then, various techniques have been developed which can overcome some of the limitations of Sanger sequencing. These techniques are collectively known as "Next-generation sequencing" (NGS), and are further classified into second and third generation technologies. Although NGS methods have many advantages in terms of speed, cost, and parallelism, the accuracy and read length of Sanger sequencing is still superior and has confined the use of NGS mainly to resequencing genomes. Consequently, there is a continuing need to develop improved real time sequencing techniques. This chapter reviews some of the options currently available and provides a generic workflow for sequencing a genome.

  13. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities.

    PubMed

    Genersch, Elke; Yue, Constanze; Fries, Ingemar; de Miranda, Joachim R

    2006-01-01

    Honey bees (Apis mellifera) productively infected with Deformed wing virus (DWV) through Varroa destructor (V. destructor) during pupal stages develop into adults showing wing and other morphological deformities. Here, we report for the first time the occurrence of bumble bees (Bombus terrestris, Bombus pascuorum) exhibiting wing deformities resembling those seen in clinically DWV-infected honey bees. Using specific RT-PCR protocols for the detection of DWV followed by sequencing of the PCR products we could demonstrate that the bumble bees were indeed infected with DWV. Since such deformed bumble bees are not viable DWV infection may pose a serious threat to bumble bee populations.

  14. Sea ice drift and deformation in the coastal boundary zone

    NASA Astrophysics Data System (ADS)

    Oikkonen, Annu; Haapala, Jari; Lensu, Mikko; Karvonen, Juha

    2016-10-01

    Small-scale sea ice deformation was studied in the coastal boundary zone (CBZ). Sequences of coastal radar images from the northern Baltic Sea (13 February to 13 May 2011) were used and trajectories of identifiable objects calculated. Average drift velocities in CBZ are small (<0.01 m/s), and events of high drift speeds are short and local. Deformations follow power law scaling but with an exponent of greater magnitude than in the Arctic. We discovered a connection between air temperature and sea ice deformation on a short time scale. During warm days, the mean deformation rate was significantly higher in all length scales than during cold days. This cannot be explained by changes in ice thickness or concentration, which suggests that the ice pack strength responds to air temperature faster than previously assumed. However, we cannot quantify how much this response is enhanced by lower ice thickness compared to the Arctic.

  15. Smoothly deformed light

    NASA Technical Reports Server (NTRS)

    Stenholm, Stig

    1993-01-01

    A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.

  16. Detail-preserving controllable deformation from sparse examples.

    PubMed

    Huang, Haoda; Yin, KangKang; Zhao, Ling; Qi, Yue; Yu, Yizhou; Tong, Xin

    2012-08-01

    Recent advances in laser scanning technology have made it possible to faithfully scan a real object with tiny geometric details, such as pores and wrinkles. However, a faithful digital model should not only capture static details of the real counterpart but also be able to reproduce the deformed versions of such details. In this paper, we develop a data-driven model that has two components; the first accommodates smooth large-scale deformations and the second captures high-resolution details. Large-scale deformations are based on a nonlinear mapping between sparse control points and bone transformations. A global mapping, however, would fail to synthesize realistic geometries from sparse examples, for highly deformable models with a large range of motion. The key is to train a collection of mappings defined over regions locally in both the geometry and the pose space. Deformable fine-scale details are generated from a second nonlinear mapping between the control points and per-vertex displacements. We apply our modeling scheme to scanned human hand models, scanned face models, face models reconstructed from multiview video sequences, and manually constructed dinosaur models. Experiments show that our deformation models, learned from extremely sparse training data, are effective and robust in synthesizing highly deformable models with rich fine features, for keyframe animation as well as performance-driven animation. We also compare our results with those obtained by alternative techniques.

  17. Time-variable deformation in the New Madrid seismic zone.

    PubMed

    Calais, Eric; Stein, Seth

    2009-03-13

    New geodetic measurements show that the New Madrid is currently deforming too slowly, if at all, to account for large earthquakes in the region over the past 5000 years. This result, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicates that either tectonic loading rates or fault properties vary over a few thousand years.

  18. Algorithmic deformation of matrix factorisations

    NASA Astrophysics Data System (ADS)

    Carqueville, Nils; Dowdy, Laura; Recknagel, Andreas

    2012-04-01

    Branes and defects in topological Landau-Ginzburg models are described by matrix factorisations. We revisit the problem of deforming them and discuss various deformation methods as well as their relations. We have implemented these algorithms and apply them to several examples. Apart from explicit results in concrete cases, this leads to a novel way to generate new matrix factorisations via nilpotent substitutions, and to criteria whether boundary obstructions can be lifted by bulk deformations.

  19. Deformed chiral nucleons

    NASA Astrophysics Data System (ADS)

    Price, C. E.; Shepard, J. R.

    1991-04-01

    We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.

  20. [Rheumatic forefoot deformities].

    PubMed

    Fuhrmann, R

    2014-11-01

    The frequency and extent of rheumatic forefoot deformities have been greatly reduced since the introduction of disease-modifying antirheumatic drugs (DMARD). The accompanying reduction in arthritic destruction of joints opens up new treatment options whereby priority is given to joint preservation. This is true for the first middle foot ray as well as for the small toe rays. Whereas resection arthroplasty of the metatarsophalangeal joints II-V was previously considered the gold standard treatment, joint-preserving operative procedures (e.g. metatarsal osteotomy and periarticular soft tissue interventions) are now being increasingly more propagated. Resection arthroplasty of the first midfoot ray has major biomechanical disadvantages so that it is not surprising that reconstructive procedures are given priority. In patients with severe arthritic destruction of the first metatarsophalangeal joint, arthrodesis has substantial biomechanical advantages compared to resection arthroplasty. Nevertheless, it has not yet been confirmed that fusion leads to superior clinical results.

  1. Electron microscopic investigation of crystal lattice bending-torsion and internal stresses in deformed polycrystalline alloys

    SciTech Connect

    Koneva, N. A. Kozlov, E. V.

    2016-01-15

    Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.

  2. Interface stress development in the Cu/Ag nanostructured multilayered film during the tensile deformation

    SciTech Connect

    Su, R.; Nie, Z. H.; Zhang, Q. H.; Li, X. J.; Li, L. E-mail: ydwang@mail.neu.edu.cn; Zhou, X. T.; Wang, Y. D. E-mail: ydwang@mail.neu.edu.cn; Wu, Y. D.; Hui, X. D.; Wang, M. G.

    2014-12-01

    Cu/Ag nanostructured multilayered films (NMFs) with different stacking sequences were investigated by synchrotron X-ray diffraction during the tensile deformations for interface stress study. The lattice strains were carefully traced and the stress partition, which usually occurs in the multiphase bulk metallic materials during plastic deformations, was first quantitatively analyzed in the NMFs here. The interface stress of the Cu/Ag NMFs was carefully analyzed during the tensile deformation and the results revealed that the interface stress was along the loading direction and exhibited three-stage evolution. This tensile interface stress has a detrimental effect on the deformation, leading to the early fracture of the NMFs.

  3. On the nonlinear deformation geometry of Euler-Bernoulli beams. [rotary wings

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Ormiston, R. A.; Peters, D. A.

    1980-01-01

    Nonlinear expressions are developed to relate the orientation of the deformed beam cross section, torsion, local components of bending curvature, angular velocity, and virtual rotation to deformation variables. The deformed beam kinematic quantities are proven to be equivalent to those derived from various rotation sequences by identifying appropriate changes of variable based on fundamental uniqueness properties of the deformed beam geometry. The torsion variable used is shown to be mathematically analogous to an axial deflection variable commonly used in the literature. Rigorous applicability of Hamilton's principle to systems described by a class of quasi-coordinates that includes these variables is formally established.

  4. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  5. Controls on Dune Deformation Patterns in White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    Lee, D. B.; Ferdowsi, B.; Jerolmack, D. J.

    2015-12-01

    Eolian dune fields exhibit a variety of pattern transitions, including: the ab initio appearance of dunes from no dunes; transverse to barchan and unvegetated barchan to vegetated parabolic. Recent model predictions offer some insight into the mechanisms underlying some of these transitions. However, there are few direct observations, and tests providing empirical verification are sparse. The White Sands dune field exhibits all three of the aforementioned transitions in sequence, from the upwind to downwind margin, and has the potential to be a testing ground for these predictions. Repeat LiDAR data at White Sands provide an excellent opportunity to study not only dune structure, but also dune dynamics, which can provide insight into how dunes destabilize from one dune morphology into another. We employ a recently developed method for decomposing dune migration into two components: "translation" of a dune, and changes in dune shape referred to as "deformation". We find that the fastest moving dunes (i.e. the dunes translating most quickly) have the largest amount of deformation. Patterns of deformation also vary depending on dune type: transverse dunes experience coherent deformation, while parabolic dunes exhibit highly localized and apparently random deformation. Only a fraction of the deformation can be explained by the migration rate. A significant amount of deformation appears to be attributable to dune-dune interactions, which destabilize dune patterns in locations where dune density is high. At the interface between the transverse to barchan dune patterns, we describe how transverse dunes break up into barchans and compare it to published model results. Regarding the barchan to parabolic transition, we find that the onset of vegetation drives a gradual slowdown in migration rates, while the magnitude of deformation drops and becomes localized to dune crests as the arms are stabilized by plants.

  6. Perceptual transparency from image deformation

    PubMed Central

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya

    2015-01-01

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  7. Sequencing technologies and genome sequencing.

    PubMed

    Pareek, Chandra Shekhar; Smoczynski, Rafal; Tretyn, Andrzej

    2011-11-01

    The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.

  8. A simulation study of planar swaging deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Gen; Jen, Gwang-Shen; Su, Gwang-Huei

    1992-08-01

    Planar swaging deformation was studied with a photoplastic method. The domestic polycarbonate was used as a simulation material. The full-field strain distribution for planar swaging deformation was obtained. The average error of the calculated strain was less than 7 percent. The deformation area and the effect of friction on deformation area were studied with the characteristics of photoplasticity. This paper points out the special features of planar swaging deformation and the effect of lubrication on deformation flow.

  9. Femoral deformity planning: intentional placement of the apex of deformity.

    PubMed

    Fabricant, Peter D; Camara, James M; Rozbruch, S Robert

    2013-05-01

    Traditionally, correction of femoral deformity has been performed with osteotomies through the center of rotation of angulation (CORA), but the CORA location is not always practical. If the osteotomy is created at a site adjacent to the CORA, an additional translation must be performed to accurately correct the deformity. However, at times, the ideal osteotomy site may require an unfeasible amount of translation. Multiple osteotomies may also be problematic, and when overcorrection of the mechanical axis is planned, the CORA method is not practical.This article describes a novel method by which the surgeon may choose the location of the osteotomy regardless of the location of the CORA and may consolidate a multiapical deformity into a single corrective osteotomy. Furthermore, intentional mechanical axis overcorrection may be performed to unload knee joint arthritis. Simple, complex, and multiapical deformities may now be corrected via a single familiar surgical procedure, such as a distal femoral osteotomy, and the need for translation is eliminated.

  10. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  11. Control of micromachined deformable mirrors

    NASA Technical Reports Server (NTRS)

    Agronin, M. L.; Bartman, R.; Hadaegh, F. Y.; Kaiser, W.; Wang, P. K. C.

    1993-01-01

    A micromachined deformable mirror with pixelated electrostatic actuators is proposed. The paper begins with a physical description of the proposed mirror. Then a mathematical model in the form of a nonlinear partial differential equation describing the mirror surface deformations is derived. This model is used to derive the required voltages for the actuators to achieve a specified static deformation of the mirror surface. This is followed by the derivation of a static nonlinear feedback controller for achieving noninteracting actuation. Then the structure for a complete control system for wavefront correction is proposed. The paper concludes with a discussion of the physical implementation of the proposed control system.

  12. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  13. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  14. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  15. Deformity of Ears and Kidneys

    PubMed Central

    Taylor, W. C.

    1965-01-01

    Ten children with gross deformity of the external ear were observed. In six the facial bones were underdeveloped on the same side as the deformed ear. In all six there was a congenital abnormality of the kidney or upper urinary tract, usually on the same side as the deformed ear. In addition there were usually other associated congenital defects in each case. In the remaining four children the facial bones appeared normal, and pyelography showed no abnormality of the urinary tract. In these four children there were no other associated defects. These observations emphasize the importance of investigating the urinary tract in children with gross deformity of the external ear, especially where there is an associated underdevelopment of the facial bones. PMID:14317453

  16. Anisotropic ripple deformation in phosphorene

    DOE PAGES

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...

    2015-04-07

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticitymore » theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less

  17. Anisotropic ripple deformation in phosphorene

    SciTech Connect

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; Chen, Changfeng

    2015-04-07

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  18. Anisotropic Ripple Deformation in Phosphorene.

    PubMed

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  19. Plastic Deformation of Granular Materials

    DTIC Science & Technology

    1993-01-25

    discontinuities. These result will be important in our granular flow work, when considering viscoplastic constitutive relations (i.e. relaxation systems...5 CUNDN( NUMRES Plastic Deformation of Granular Materials (U) 61102F 6. AUTHOR(S) 2304/A4 Dr. E. Bruce Pitman 7 PERFORMING ORGANIZATION NA .h • 8...lose hyperbolicity. 98 3 81 061! SUBJECT TERMS 15. NUMBER OF PAGES granular material ; plastic deformation; hyperbolic 12 equations 16. PRICE CODE 17

  20. Cleft Nasal Deformity and Rhinoplasty

    PubMed Central

    Kaufman, Yoav; Buchanan, Edward P.; Wolfswinkel, Erik M.; Weathers, William M.; Stal, Samuel

    2012-01-01

    The cleft nasal deformity is a complex challenge in plastic surgery involving the skin, cartilage, mucosa, and skeletal platform. Ever since Blair and Brown first described the intricacies of the cleft pathology in 1931, the appropriate approach has been extensively debated in the literature with respect to timing, technique, and extent of surgical intervention. In this article, the authors review the literature and summarize the various modalities for achieving a successful rhinoplasty in the patient with a cleft nasal deformity. PMID:24179452

  1. Experimental deformation tests on natural gypsum in simple shear

    NASA Astrophysics Data System (ADS)

    Barberini, V.; Burlini, L.; Rutter, E.; Dapiaggi, M.

    2003-04-01

    Gypsum, together with anhydrite and halite, is the main mineral forming evaporitic rocks. These rocks, interlayered within sedimentary sequences, play an important role in structural development in several ways on accounts of their particular physical properties. Evaporites are more plastic and less permeable compared to sandstones, limestones and shales. Moreover, gypsum starts to dehydrate at less than 100 °C. High plasticity at relatively low temperature, together with the possible presence of pressurised water, imply that, when sedimentary sequences are involved in thrust tectonics, deformation is often localised in evaporitic levels (Apennines, South Alpine region, Zagros, Gulf of Mexico, etc.); in some cases the deformation is accompanied by seismicity as in the Northern Apennines extensional systems. Low permeability of evaporitic rocks allow them to be a good sealing rock for oil reservoirs and a very efficient rock to localise waste disposal. In this framework, a set of experiments was performed on gypsum samples from Volterra (Tuscany, Italy) in order to investigate how gypsum behaves at increasing stress/strain conditions. Experimental deformation tests were performed at confining pressures up to 300 MPa, at different temperatures (20, 70, 90 and 130 °C) and at strain rates ranging between 1*10-4 and 5*10-6 s-1. In order to reach high shear strain values (up to gamma = 4), we used: 1) gypsum cores deformed using the newly developed torsion technique in a Paterson-type apparatus and 2) both gypsum slices and powder in sawcut assembly at 35°, deformed in a Heard-type triaxial apparatus. All the deformed samples have been studied both by optical microscopy, to investigate the evolution of the microstructure with strain, and by XRD analysis, to determine if and to what extent gypsum dehydrated during deformation. A peak in the shear stress value (60-120 MPa) was reached at shear strains between gamma = 0.2 and gamma = 1, followed by strain softening or

  2. Deformation and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.

    We may use tectonic structures to confirm the primary age of a paleomagnetic remanence component but only if we know how to undo the natural strain history. It is normally insufficient to untilt fold limbs, as in the original version of Graham''s Fold Test. One may need to remove also the bulk or local strain and account for strain heterogeneities, achieved by grain-strain and the more elusive intergranular flow. Most important, one must know the sequence of strains and tilts that occurred through geological history because the order of these noncommutative events critically affects the final orientation of the remanence component.In many non-metamorphic rocks, strain-rotation of a remanence component approximates a simple formula, although the actual rotation mechanism is complex. This simple, passive line approximation is confirmed experimentally for strains up to 45% oblate shortening. The passive line hypothesis has permitted successful paleomagnetic restorations in several natural case studies.

  3. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  4. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  5. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  6. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  7. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  8. Thermal deformations and stresses in composite materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1980-01-01

    Residual stresses are induced during curing in angle-ply laminates as a result of anisotropic thermal deformations of the variously oriented plies. Residual strains are measured experimentally using embedded strain gage techniques, and residual stresses are computed using orthotropic stress-strain relations. The results show that, for graphite and Kevlar laminates, residual stresses at room temperature are high enough to cause damage in the plies in the transverse to the fiber direction. It is also shown that residual stresses do not relax appreciably. The ply stacking sequence is found to have no effect on the magnitude of average residual stresses. Residual stresses and susceptibility to cracking during curing depend to a marked extent on ply layup.

  9. Study of muscular deformation based on surface slope estimation

    NASA Astrophysics Data System (ADS)

    Carli, M.; Goffredo, M.; Schmid, M.; Neri, A.

    2006-02-01

    During contraction and stretching, muscles change shape and size, and produce a deformation of skin tissues and a modification of the body segment shape. In human motion analysis, it is very important to take into account these phenomena. The aim of this work is the evaluation of skin and muscular deformation, and the modeling of body segment elastic behavior obtained by analysing video sequences that capture a muscle contraction. The soft tissue modeling is accomplished by using triangular meshes that automatically adapt to the body segment during the execution of a static muscle contraction. The adaptive triangular mesh is built on reference points whose motion is estimated by using non linear operators. Experimental results, obtained by applying the proposed method to several video sequences, where biceps brachial isometric contraction was present, show the effectiveness of this technique.

  10. Finite deformation analysis of geomaterials

    NASA Astrophysics Data System (ADS)

    Jeremi, Boris; Runesson, Kenneth; Sture, Stein

    2001-07-01

    The mathematical structure and numerical analysis of classical small deformation elasto-plasticity is generally well established. However, development of large deformation elastic-plastic numerical formulation for dilatant, pressure sensitive material models is still a research area.In this paper we present development of the finite element formulation and implementation for large deformation, elastic-plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process.The algorithm is tested in conjunction with the novel hyperelasto-plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto-plastic problems in geomechanics.We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS-89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching.

  11. Bilateral cleft lip nasal deformity

    PubMed Central

    Singh, Arun Kumar; Nandini, R.

    2009-01-01

    Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM) too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it's management both at the time of cleft lip repair and also secondarily

  12. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  13. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  14. Chaetal deformities in aquatic oligochaeta

    SciTech Connect

    Brinkhurst, R.O.; Wetzel, M.J.

    1994-12-31

    Gross deformities in the chaetae of specimens of the tubificid Potamothrix hammoniensis were described by Milbrink from Lake Vaenern, Sweden. This lake is one of the most mercury-polluted major lakes of the world. Statistical tests showed a highly significant correlation between the incidence of deformities and the mercury concentration in the sediments. Changes in the pulp and paper mill process led to marked reduction in specimens with deformities. Similarly modified specimens of various species have been observed at a number of sites contaminated with heavy metals or oil residues in North America. Experimental work on chaetal form has demonstrated changes due to conductivity which have also been observed in saline inland waters. These experiments suggest that chaetae may be shed and replaced by worms every few days. EDX observation of chaetae indicated that metals may accumulate in them, and so provide a potential depuration mechanism. Independent physiological studies suggest that worms may be capable of regulating their metal levels.

  15. Finite Deformation of Magnetoelastic Film

    SciTech Connect

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  16. Deformed Richardson-Gaudin model

    NASA Astrophysics Data System (ADS)

    Kulish, P.; Stolin, A.; Johannesson, L. H.

    2014-09-01

    The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows the algebraic construction of its eigenstates. In this work we show that the quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.

  17. Deformation of Unentangled Swollen Gels

    NASA Astrophysics Data System (ADS)

    Sariyer, Ozan; Panyukov, Sergey; Rubinstein, Michael

    2014-03-01

    We study the deformation characteristics (Poisson's ratios and stress-strain relations) of unentangled gels swollen and uniaxially or biaxially deformed in excess solvent by considering the balance of osmotic pressure and elastic stress in unconstrained dimensions. Our scaling theory predicts a crossover from theta solvent behavior to marginal solvent behavior upon stretching gels that are in concentrated regime at swelling equilibrium - a phenomenon that was experimentally observed long ago, but not understood theoretically. For gels that are in the semidilute good solvent regime at swelling equilibrium, we predict a crossover to theta solvent behavior upon compression and a crossover to marginal solvent behavior upon stretching. Our theory reproduces the previously known results for equilibrium swelling degree as well as known deformation characteristics in theta and athermal solvents.

  18. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  19. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  20. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  1. The 2016 Kumamoto earthquake sequence

    PubMed Central

    KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474

  2. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  3. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  4. Ilizarov principles of deformity correction.

    PubMed

    Spiegelberg, B; Parratt, T; Dheerendra, S K; Khan, W S; Jennings, R; Marsh, D R

    2010-03-01

    Ilizarov frames provide a versatile fixation system for the management of bony deformities, fractures and their complications. The frames give stability, soft tissue preservation, adjustability and functionality allowing bone to realise its full osteogenic potential. It is important that we have a clear and concise understanding of the Ilizarov principles of deformity correction to best make use of this fixation system. In this review article, the history of Ilizarov frame, the basic sciences behind it, the mechanical principles governing its use and the clinical use of the fixation system are discussed.

  5. Ilizarov principles of deformity correction

    PubMed Central

    Spiegelberg, B; Parratt, T; Dheerendra, SK; Khan, WS; Jennings, R; Marsh, DR

    2010-01-01

    Ilizarov frames provide a versatile fixation system for the management of bony deformities, fractures and their complications. The frames give stability, soft tissue preservation, adjustability and functionality allowing bone to realise its full osteogenic potential. It is important that we have a clear and concise understanding of the Ilizarov principles of deformity correction to best make use of this fixation system. In this review article, the history of Ilizarov frame, the basic sciences behind it, the mechanical principles governing its use and the clinical use of the fixation system are discussed. PMID:20353638

  6. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  7. Highly deformable nanofilaments in flow

    NASA Astrophysics Data System (ADS)

    Pawłowska, S.

    2016-10-01

    Experimental analysis of hydrogel nanofilaments conveyed by flow is conducted to help in understanding physical phenomena responsible for transport properties and shape deformations of long bio-objects, like DNA or proteins. Investigated hydrogel nanofilaments exhibit typical macromolecules-like behavior, as spontaneous conformational changes and cross-flow migration. Results of the experiments indicate critical role of thermal fluctuations behavior of single filaments.

  8. Quasiequilibrium models for triaxially deformed rotating compact stars

    SciTech Connect

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-12-15

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  9. MSLICE Sequencing

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Norris, Jeffrey S.; Morris, John R.

    2011-01-01

    MSLICE Sequencing is a graphical tool for writing sequences and integrating them into RML files, as well as for producing SCMF files for uplink. When operated in a testbed environment, it also supports uplinking these SCMF files to the testbed via Chill. This software features a free-form textural sequence editor featuring syntax coloring, automatic content assistance (including command and argument completion proposals), complete with types, value ranges, unites, and descriptions from the command dictionary that appear as they are typed. The sequence editor also has a "field mode" that allows tabbing between arguments and displays type/range/units/description for each argument as it is edited. Color-coded error and warning annotations on problematic tokens are included, as well as indications of problems that are not visible in the current scroll range. "Quick Fix" suggestions are made for resolving problems, and all the features afforded by modern source editors are also included such as copy/cut/paste, undo/redo, and a sophisticated find-and-replace system optionally using regular expressions. The software offers a full XML editor for RML files, which features syntax coloring, content assistance and problem annotations as above. There is a form-based, "detail view" that allows structured editing of command arguments and sequence parameters when preferred. The "project view" shows the user s "workspace" as a tree of "resources" (projects, folders, and files) that can subsequently be opened in editors by double-clicking. Files can be added, deleted, dragged-dropped/copied-pasted between folders or projects, and these operations are undoable and redoable. A "problems view" contains a tabular list of all problems in the current workspace. Double-clicking on any row in the table opens an editor for the appropriate sequence, scrolling to the specific line with the problem, and highlighting the problematic characters. From there, one can invoke "quick fix" as described

  10. Insertion Sequences

    PubMed Central

    Mahillon, Jacques; Chandler, Michael

    1998-01-01

    Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available. PMID:9729608

  11. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    DOE PAGES

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; ...

    2014-11-07

    Although the crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation andmore » find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.« less

  12. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2015-04-01

    Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  13. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    PubMed

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics.

  14. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    SciTech Connect

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2014-11-07

    Although the crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  15. Studies of normal deformation in {sup 151}Dy

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Crowell, B.

    1995-08-01

    The wealth of data collected in the study of superdeformation in {sup 151}Dy allowed for new information to be obtained on the normally deformed structures in this nucleus. At high spin several new yrast states have been identified for the first time. They were associated with single-particle excitations. Surprisingly, a sequence was identified with energy spacings characteristic of a rotational band of normal ({beta}2 {approximately} 0.2) deformation. The bandhead spin appears to be 15/2{sup -} and the levels extend up to a spin of 87/2{sup -}. A clear backbend is present at intermediate spins. While a similar band based on a bandhead of 6{sup +} is known in {sup 152}Dy, calculations suggest that this collective prolate band should not be seen in {sup 151}Dy. In the experiment described earlier in this report that is aimed at determining the deformations associated with the SD bands in this nucleus and {sup 152}Dy, the deformation associated with this band will be determined. This will provide further insight into the origin of this band.

  16. Target space supergeometry of η and λ-deformed strings

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2016-10-01

    We study the integrable η and λ-deformations of supercoset string sigma models, the basic example being the deformation of the AdS 5 × S 5 superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the λ-deformation gives rise to a standard (generically type II*) supergravity background; for the η-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so (2, 4). We argue that most of the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  17. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  18. Deformed special relativity and deformed symmetries in a canonical framework

    SciTech Connect

    Ghosh, Subir; Pal, Probir

    2007-05-15

    In this paper we have studied the nature of kinematical and dynamical laws in {kappa}-Minkowski spacetime from a new perspective: the canonical phase space approach. We discuss a particular form of {kappa}-Minkowski phase space algebra that yields the {kappa}-extended finite Lorentz transformations derived in [D. Kimberly, J. Magueijo, and J. Medeiros, Phys. Rev. D 70, 084007 (2004).]. This is a particular form of a deformed special relativity model that admits a modified energy-momentum dispersion law as well as noncommutative {kappa}-Minkowski phase space. We show that this system can be completely mapped to a set of phase space variables that obey canonical (and not {kappa}-Minkowski) phase space algebra and special relativity Lorentz transformation (and not {kappa}-extended Lorentz transformation). The complete set of deformed symmetry generators are constructed that obeys an unmodified closed algebra but induce deformations in the symmetry transformations of the physical {kappa}-Minkowski phase space variables. Furthermore, we demonstrate the usefulness and simplicity of this approach through a number of phenomenological applications both in classical and quantum mechanics. We also construct a Lagrangian for the {kappa}-particle.

  19. Using deformation energy to analyze nucleosome positioning in genomes.

    PubMed

    Chen, Wei; Feng, Pengmian; Ding, Hui; Lin, Hao; Chou, Kuo-Chen

    2016-03-01

    By modulating the accessibility of genomic regions to regulatory proteins, nucleosome positioning plays important roles in cellular processes. Although intensive efforts have been made, the rules for determining nucleosome positioning are far from satisfaction yet. In this study, we developed a biophysical model to predict nucleosomal sequences based on the deformation energy of DNA sequences, and validated it against the experimentally determined nucleosome positions in the Saccharomyces cerevisiae genome, achieving very high success rates. Furthermore, using the deformation energy model, we analyzed the distribution of nucleosomes around the following three types of DNA functional sites: (1) double strand break (DSB), (2) single nucleotide polymorphism (SNP), and (3) origin of replication (ORI). We have found from the analyzed energy spectra that a remarkable "trough" or "valley" occurs around each of these functional sites, implying a depletion of nucleosome density, fully in accordance with experimental observations. These findings indicate that the deformation energy may play a key role for accurately predicting nucleosome positions, and that it can also provide a quantitative physical approach for in-depth understanding the mechanism of nucleosome positioning.

  20. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  1. 4-D facial expression recognition by learning geometric deformations.

    PubMed

    Ben Amor, Boulbaba; Drira, Hassen; Berretti, Stefano; Daoudi, Mohamed; Srivastava, Anuj

    2014-12-01

    In this paper, we present an automatic approach for facial expression recognition from 3-D video sequences. In the proposed solution, the 3-D faces are represented by collections of radial curves and a Riemannian shape analysis is applied to effectively quantify the deformations induced by the facial expressions in a given subsequence of 3-D frames. This is obtained from the dense scalar field, which denotes the shooting directions of the geodesic paths constructed between pairs of corresponding radial curves of two faces. As the resulting dense scalar fields show a high dimensionality, Linear Discriminant Analysis (LDA) transformation is applied to the dense feature space. Two methods are then used for classification: 1) 3-D motion extraction with temporal Hidden Markov model (HMM) and 2) mean deformation capturing with random forest. While a dynamic HMM on the features is trained in the first approach, the second one computes mean deformations under a window and applies multiclass random forest. Both of the proposed classification schemes on the scalar fields showed comparable results and outperformed earlier studies on facial expression recognition from 3-D video sequences.

  2. Stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Hyer, Michael W.; Tompkins, Stephen S.

    1987-01-01

    The stress and deformations in angle-ply composite tubes subjected to axisymmetric thermal loading were investigated both experimentally and analytically. For the theoretical portion a generalized plane strain elasticity analysis was developed. The analysis included mechanical and thermal loading, and temperature-dependent material properties. The elasticity analysis was also used to study the effect of including a thin metallic coating on a graphite-epoxy tube. The stresses in the coatings were found to be quite high, exceeding the yield stress of aluminum. An important finding in the analytical studies was the fact that even tubes with a balanced-symmetric lamination sequence exhibit shear deformation, or twist. For the experimental portion an apparatus was developed to measure torsional and axial response in the temperature range of 140 to 360 K. Eighteen specimens were tested, combining three material systems, eight lamination sequences, and three off-axis ply orientation angles. For the twist response, agreement between analysis and experiment was found to be good. The axial response of the tubes tested was found to be greater than predicted by a factor of three. As a result, it is recommended that the thermally induced axial deformations be investigated, both experimentally and analytically.

  3. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  4. Sequence-dependent nucleosome positioning.

    PubMed

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  5. Deformation of noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan

    2016-09-01

    In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .

  6. Variational approach and deformed derivatives

    NASA Astrophysics Data System (ADS)

    Weberszpil, J.; Helayël-Neto, J. A.

    2016-05-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved ​Noether current is worked out.

  7. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1972-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.

  8. Marine terrace deformation, san diego county, California

    USGS Publications Warehouse

    McCrory, P.A.; Lajoie, K.R.

    1979-01-01

    The NW-SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport-Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego. The broad Linda Vista Mesa (elev. 70-120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio-Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest. Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20-30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical

  9. Graviton resonances on deformed branes

    NASA Astrophysics Data System (ADS)

    Cruz, W. T.; Gomes, A. R.; Almeida, C. A. S.

    2011-11-01

    Plane-wave solutions of Schrödinger-like equations obtained from the metric perturbations in 5D braneworld scenarios can present resonant modes. The search for those structures is important because they can provide us with massive modes with not suppressed couplings with the membrane. We propose in this paper the study of graviton Kaluza-Klein spectrum in a special kind of membrane that possesses internal structure. The interest in the study of these deformed defects is due to the fact that they have a richer internal structure that has implications in the matter energy density along the extra dimensions and this produces a space-time background whose curvature has a splitting, if compared to the usual kink-like models. Such models arise from (4, 1)-branes constructed with one scalar field coupled with gravity where we find two-kink solutions from deformations of a phi4 potential. The main objective of this work is to observe the effects of deformation process in the resonant modes as well as in the coupling between the graviton massive modes and the brane.

  10. Hip arthroscopy for challenging deformities: global pincer femoroacetabular impingement.

    PubMed

    Matsuda, Dean K; Gupta, Nikhil; Hanami, Dylan

    2014-04-01

    Pincer femoroacetabular impingement occurs in focal or global forms, the latter having more generalized and typically more extreme acetabular overcoverage. Severe global deformities are often treated with open surgical dislocation of the hip. Arthroscopic technical challenges relate to difficulties with hip distraction; central-compartment access; and instrument navigation, acetabuloplasty, and chondrolabral surgery of the posterior acetabulum. Techniques addressing these challenges are introduced permitting dual-portal hip arthroscopy with central-compartment access, subtotal acetabuloplasty, and circumferential chondrolabral surgery. The modified midanterior portal in combination with a zone-specific sequence of acetabular rim reduction monitored with fluoroscopic templating enables precision subtotal acetabuloplasty. Guidelines for acetabular rim reduction include the following suggested radiographic endpoints: postoperative center-edge angle of 35°, a neutral posterior wall sign, and an anterior margin ratio of 0.5. Arthroscopic zone-specific chondrophobic rim preparation and circumferential labral reparative and reconstructive techniques and tools permit the arthroscopic treatment of these challenging deformities.

  11. Triaxial strongly deformed bands in {sup 160,161}Tm

    SciTech Connect

    Teal, C.; Lagergren, K.; Aguilar, A.; Riley, M. A.; Hartley, D. J.; Simpson, J.; Joss, D. T.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Garg, U.; Kondev, F. G.; Wang, X.; Ragnarsson, I.

    2008-07-15

    High-spin states in {sup 160,161}Tm were populated using the {sup 128}Te({sup 37}Cl, 5n and 4n) reactions at a beam energy of 170 MeV. Emitted {gamma} rays were detected in the Gammasphere spectrometer. Two rotational bands with high moments of inertia were discovered, one assigned to {sup 160}Tm, while the other tentatively assigned to {sup 161}Tm. These sequences display features similar to bands observed in neighboring Er, Tm, Yb, and Lu nuclei which have been discussed in terms of triaxial strongly deformed structures. Cranked Nilsson Strutinsky calculations have been performed that predict well-deformed triaxial shapes at high spin in {sup 160,161}Tm.

  12. Integrable Deformations of T -Dual σ Models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2016-12-01

    We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We explain the details for deformations of T duals of principal chiral models, and present the corresponding generalization to the case of supercoset models.

  13. Accidental degeneracies in nonlinear quantum deformed systems

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2011-09-01

    We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.

  14. Occurrence of oral deformities in larval anurans

    USGS Publications Warehouse

    Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.

    2007-01-01

    We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.

  15. Mesh deformation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  16. Helium release during shale deformation: Experimental validation

    NASA Astrophysics Data System (ADS)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  17. Deformation and failure mechanisms of 18650 battery cells under axial compression

    NASA Astrophysics Data System (ADS)

    Zhu, Juner; Zhang, Xiaowei; Sahraei, Elham; Wierzbicki, Tomasz

    2016-12-01

    An important deformation mode during ground impacts of battery packs made of cylindrical battery cells is axial compression. This type of loading subjects the cell to a complex deformation pattern and failure mechanism. The design of endcaps plays an important role in such deformations. To explore the sequence of deformation and the underlying failure mechanisms, a combined experimental/numerical study was carried out. Tests were conducted on 18650 cells, and the deformation of each component was carefully investigated and documented. There are four different stages in the force-displacement curve, corresponding with deformation of various components in the endcap assembly. A short circuit happens at a displacement of 4 mm. To clarify these observations, a detailed Finite Element model was set up, covering the geometry and the mechanical property of almost all the components of the cell. Using the simulation results, the sequence of the axial compression was revealed, which was subsequently validated by Micro CT scans as well as analytical solutions. Based on the precise analysis of the mechanical behavior, the cause of the short circuit during axial loading was clarified. Two failure mechanisms in the separator at the top section of the cell explain the possible causes of short circuit.

  18. Identification of genes related to beak deformity of chickens using digital gene expression profiling.

    PubMed

    Bai, Hao; Zhu, Jing; Sun, Yanyan; Liu, Ranran; Liu, Nian; Li, Dongli; Wen, Jie; Chen, Jilan

    2014-01-01

    Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization.

  19. Crystal-plastic deformation and recrystallization of peridotite controlled by the seismic cycle

    NASA Astrophysics Data System (ADS)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2012-03-01

    Deformed peridotites from the Balmuccia complex, Northern Italy, have been investigated by light and electron microscopy (SEM/EBSD, TEM). The peridotites show a heterogeneous and partly recrystallized microfabric associated with cataclastic shear zones. Intracrystalline deformation microstructures (undulatory extinction, crinkly deformation lamellae, deformation bands, kink bands) and recrystallized grains along intragranular zones in large original grains record a sequence with an initial stage of inhomogeneous glide-controlled deformation in the low-temperature plasticity regime associated with brittle deformation and a subsequent stage of recovery and recrystallization. The microstructural evidence of deformation of olivine in the low-temperature field indicates high stresses on the order of several hundred MPa and accordingly high strain rates. Subsequent recovery and recrystallization requires decreasing stresses and strain rates, as there is no evidence for a complex thermal history with increasing temperatures. A locally occurring foam structure in aggregates of recrystallized olivine indicates grain growth at very low differential stresses at a late stage. Such a stress history with transiently high and then decaying stresses is characteristic for coseismic deformation and postseismic creep just below the base of the seismogenic zone. The associated occurrence of pseudotachylytes and microstructures generated by crystal-plastic mechanisms is explained by semi-brittle behavior at transient high stresses and strain rates during coseismic loading at depths, where during postseismic relaxation and in interseismic periods the rocks are behaving by crystal-plastic flow. The consideration of high-stress deformation and subsequent recrystallization processes at decaying stresses in peridotites is especially relevant for earthquake-driven deformation in the mantle.

  20. Identification of Genes Related to Beak Deformity of Chickens Using Digital Gene Expression Profiling

    PubMed Central

    Sun, Yanyan; Liu, Ranran; Liu, Nian; Li, Dongli; Wen, Jie; Chen, Jilan

    2014-01-01

    Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization. PMID:25198128

  1. Deformation and recrystallization mechanisms in naturally deformed sillimanites

    NASA Astrophysics Data System (ADS)

    Lambregts, P. J.; van Roermund, H. L. M.

    1990-07-01

    Prismatic sillimanite (Al 2SiO 5), with a length between 0.3 and 2.5 mm, was obtained from a garnet migmatite. The sillimanite, naturally deformed at a temperature of 750 ° C and a confining pressure of 6 kbar, has been studied using optical and transmission electron microscopy techniques. Optical and universal stage measurements reveal undulatory extinction, "sharp" deformation-induced subgrain boundaries (subparallel to (001) and (010)) and minor recrystallization. Transmission electron microscopy shows free dislocations, dislocation loops, (110) planar defects and tiltwalls parallel to (001). Dislocations have Burgers vectors of [001] and [100]. All isolated dislocations are dissociated. The dominant slip system is (100) [001] with subordinate (001) [100]. The microstructure of sillimanite indicates that recrystallization has occurred by a rotation mechanism (around [010]), where single crystals become polycrystals by the progressive development of numerous internal high-angle boundaries. The latter have been interpreted as originating from low-angle (001) tilt- and (010) twistwalls. Rotation recrystallization was followed by grain boundary migration.

  2. Leukocyte deformability: finite element modeling of large viscoelastic deformation.

    PubMed

    Dong, C; Skalak, R

    1992-09-21

    An axisymmetric deformation of a viscoelastic sphere bounded by a prestressed elastic thin shell in response to external pressure is studied by a finite element method. The research is motivated by the need for understanding the passive behavior of human leukocytes (white blood cells) and interpreting extensive experimental data in terms of the mechanical properties. The cell at rest is modeled as a sphere consisting of a cortical prestressed shell with incompressible Maxwell fluid interior. A large-strain deformation theory is developed based on the proposed model. General non-linear, large strain constitutive relations for the cortical shell are derived by neglecting the bending stiffness. A representation of the constitutive equations in the form of an integral of strain history for the incompressible Maxwell interior is used in the formulation of numerical scheme. A finite element program is developed, in which a sliding boundary condition is imposed on all contact surfaces. The mathematical model developed is applied to evaluate experimental data of pipette tests and observations of blood flow.

  3. Plastic Deformation of Accreted Planetesimals

    NASA Astrophysics Data System (ADS)

    Kadish, J.

    2005-08-01

    The early stages of planetesimal growth follow an accretion model (Weidenschilling, Icarus 2000), which influences the intrinsic strength of a body and may control how its shape evolves after growth. In previous work we have determined the stress field of an accreted planetesimal accounting for possible variation in the object's spin as it accretes (Kadish et al., IJSS In Press) At the end of growth, these objects are subject to transport mechanisms that can distribute them throughout the solar system. As they are transported these objects can be spun-up by tidal forces (Scheeres et al, Icarus 2000), YORP (Bottke et al., Asteroids III 2002), and collisions (Binzel et al., Asteroids II 1989). Such an increase of spin will cause perturbations to the initial stress field and may lead to failure. We are able to show analytically that failure is initiated on the object's surface and a plastic zone propagates inward as the object's spin is increased. If we model an accreted body as a conglomeration of rocks similar to a gravel or sand, the deformation in the region of failure is characterized using a Mohr-Coulomb failure criterion with negligible cohesion and zero hardening(e.g. Holsapple, Icarus 2001). Such a response is highly non-linear and must be solved using finite elements and iterative methods (Simo and Hughes, Computational Inelasticity 1998). Using the commercial finite element code ABAQUS, we present the shape deformation resulting from an elasto-plastic analysis of a spinning, self-gravitating accreted sphere that is spun-up after growth is complete. The methodology can be extended to model plastic deformation due to local failure for more complex planetesimal shapes, such as for the asteroid Kleopatra. This work has implications for the evolution of planetesimal shapes, the creation of binary and contact binary asteroids, and for the maximum spin rate of small planetary bodies.

  4. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  5. Gas release from an E125 zirconium alloy under hydrogenation and deformation conditions

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu. I.; Larionov, V. V.; Nikitenkov, N. N.

    2016-09-01

    The degassing from a hydrogen-saturated E125 zirconium alloy is studied as a function of its deformation. Zirconium alloy samples are subjected to tension at a relative elongation of 2.5, 5, and 10%. Undeformed and deformed samples were saturated with hydrogen by a galvanic method at a current density of 0.5 A/cm2; that is, they are hydrogen saturated and then deformed. As a result, the defects at which hydrogen is trapped in zirconium are identified. The quantity of hydrogen trapped by defects depends on the strain and the sequence of deformation and hydrogen saturation. This is a technical result of the investigations, which can be used to find optimum operation conditions for hydrogen-saturated zirconium articles.

  6. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  7. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  8. Dissipation in deforming chaotic billiards

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander Harvey

    Chaotic billiards (hard-walled cavities) in two or more dimensions are paradigm systems in the fields of classical and quantum chaos. We study the dissipation (irreversible heating) rate in such billiard systems due to general shape deformations which are periodic in time. We are motivated by older studies of one-body nuclear dissipation and by anticipated mesoscopic applications. We review the classical and quantum linear response theories of dissipation rate and demonstrate their correspondence in the semiclassical limit. In both pictures, heating is a result of stochastic energy spreading. The heating rate can be expressed as a frequency-dependent friction coefficient μ(ω), which depends on billiard shape and deformation choice. We show that there is a special class of deformations for which μ vanishes as like a power law in the small- ω limit. Namely, for deformations which cause translations and dilations μ ~ ω4 whereas for those which cause rotations μ ~ ω2. This contrasts the generic case for which μ ~ ω4 We show how a systematic treatment of this special class leads to an improved version of the `wall formula' estimate for μ(0). We show that the special nature of dilation (a new result) is semiclassically equivalent to a quasi- orthogonality relation between the (undeformed) billiard quantum eigenstates on the boundary. This quasi- orthogonality forms the heart of a `scaling method' for the numerical calculation of quantum eigenstates, invented recently by Vergini and Saraceno. The scaling method is orders of magnitude more efficient than any other known billiard quantization method, however an adequate explanation for its success has been lacking until now. We explain the scaling method, its errors, and applications. We also present improvements to Heller's plane wave method. Two smaller projects conclude the thesis. Firstly, we give a new formalism for quantum point contact (QPC) conductance in terms of scattering cross-section in the half

  9. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies

  10. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  11. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  12. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    NASA Astrophysics Data System (ADS)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-10-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of 2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to 2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to 3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  13. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    SciTech Connect

    Fortunati, Valerio; Verhaart, René F.; Angeloni, Francesco; Lugt, Aad van der; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; Walsum, Theo van

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.

  14. Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements.

    PubMed

    Pouet, B; Krishnaswamy, S

    1996-02-10

    A holographic interferometer that uses two-wave mixing in a photorefractive (Bi12SiO20) crystal under an applied ac field is described. The interferometer uses a repetitive sequence of separate record and readout times to obtain quasi real-time holographic interferograms of vibrating objects. It is shown that a good signal-to-noise ratio of the interferometer is obtained by turning off the object illumination and the applied ac field during readout of the hologram. The good signal-to-noise ratio of the resulting holographic interferograms enables phase measurement, which allows for quantitative deformation analysis.

  15. The large deformation elastic response of woven Kevlar fabric

    SciTech Connect

    Warren, W.E.

    1991-01-01

    The large deformation elastic response of a plane woven Kevlar fabric is investigated analytically and experimentally. The analysis assumes the undeformed geometry to be a sequence of interlaced arcs of circles which reverse at each yarn midpoint, ad each yarn is modeled as an extensible elastical subject to certain compatibility conditions. Deflection-force relations for the fabric are determined in terms of the initial weave geometry and the elastic properties of the individual yarns. The theoretical results agree well with the results of experiments performed on a fabric woven from 400 denier Kevlar yarns under conditions of uniaxial loading in both warp and fill directions. 13 refs., 4 figs.

  16. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    SciTech Connect

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  17. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  18. Thermocapillary motion of deformable drops

    NASA Astrophysics Data System (ADS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-08-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  19. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  20. Deformation parameters influencing prepreg tack

    SciTech Connect

    Ahn, K.J.; Seferis, J.C. ); Pelton, T.; Wilhelm, M. )

    1992-01-01

    A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant. Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.

  1. Protein transfer to membranes upon shape deformation

    NASA Astrophysics Data System (ADS)

    Sagis, L. M. C.; Bijl, E.; Antono, L.; de Ruijter, N. C. A.; van Valenberg, H.

    2013-05-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

  2. Deformable mirrors development program at ESO

    NASA Astrophysics Data System (ADS)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  3. The sequence of sequencers: The history of sequencing DNA.

    PubMed

    Heather, James M; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way.

  4. Self-adjointness of deformed unbounded operators

    SciTech Connect

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  5. Regularities of bainitic steel deformation transition

    NASA Astrophysics Data System (ADS)

    Gromov, V. E.; Nikitina, E. N.; Ivanov, Yu F.; Aksenova, K. V.

    2016-09-01

    Quantitative analysis of defect and carbide subsystems evolution in medium-carbon bainitic steel subjected to compressive strain up to 36% was performed by means of transmission electron diffraction microscopy. Dislocation substructure and carbide phase parameters dependence on degree of deformation are identified, possible reasons of staging in their changes are discussed. It is suggested that the reason for bainitic steel softening at high (over 15%) degrees of deformation is activation of deformation microtwinning process.

  6. Learning a hierarchical deformable template for rapid deformable object parsing.

    PubMed

    Zhu, Long Leo; Chen, Yuanhao; Yuille, Alan

    2010-06-01

    In this paper, we address the tasks of detecting, segmenting, parsing, and matching deformable objects. We use a novel probabilistic object model that we call a hierarchical deformable template (HDT). The HDT represents the object by state variables defined over a hierarchy (with typically five levels). The hierarchy is built recursively by composing elementary structures to form more complex structures. A probability distribution--a parameterized exponential model--is defined over the hierarchy to quantify the variability in shape and appearance of the object at multiple scales. To perform inference--to estimate the most probable states of the hierarchy for an input image--we use a bottom-up algorithm called compositional inference. This algorithm is an approximate version of dynamic programming where approximations are made (e.g., pruning) to ensure that the algorithm is fast while maintaining high performance. We adapt the structure-perceptron algorithm to estimate the parameters of the HDT in a discriminative manner (simultaneously estimating the appearance and shape parameters). More precisely, we specify an exponential distribution for the HDT using a dictionary of potentials, which capture the appearance and shape cues. This dictionary can be large and so does not require handcrafting the potentials. Instead, structure-perceptron assigns weights to the potentials so that less important potentials receive small weights (this is like a "soft" form of feature selection). Finally, we provide experimental evaluation of HDTs on different visual tasks, including detection, segmentation, matching (alignment), and parsing. We show that HDTs achieve state-of-the-art performance for these different tasks when evaluated on data sets with groundtruth (and when compared to alternative algorithms, which are typically specialized to each task).

  7. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  8. Consecutive Rosochatius deformations of the Neumann system

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang; Zhou, Ruguang

    2013-10-01

    Consecutive Rosochatius deformations of the Neumann system are investigated. It is first shown that different realizations of a classical sl(2) Gaudin magnet model yield different integrable Hamiltonian systems. Then an algorithm of constructing infinitely many symplectic realizations of sl(2) algebra from a known one is presented and thus the Neumann system can be deformed consecutively. The second Rosochatius deformation of the Neumann system is taken as an illustrative example to show that the deformed systems admit separations of variables and may be linearized on the Jacobi variety.

  9. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  10. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  11. Constraining lithosphere deformation mode evolution for the Iberia-Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto

    2015-04-01

    The deformation of lithosphere and asthenosphere and its evolution during continental rifting leading to breakup and seafloor spreading initiation is poorly understood. The resulting margin architecture and OCT structure is complex and diverse, and observations at magma poor margins includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. A coupled kinematic-dynamic model of lithosphere and asthenosphere deformation has been used to investigate the sequence of lithosphere deformation modes for 2 conjugate margin profiles for the Iberia-Newfoundland rifted margins. We use the observed water-loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation, to test and constrain lithosphere and asthenosphere deformation models. A sequence of lithosphere deformation modes is represented by a succession of flow-fields, which are generated by a 2D finite element viscous flow model (FE-Margin), and is used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (e.g. Braun et al. 2000) is also kinematically included. The methodology of Katz et al., 2003 is used to predict melt generation by decompressional melting. The magnitude of extension used in the modelling is consistent with that proposed by Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  12. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  13. Deformation in the continental lithosphere

    NASA Astrophysics Data System (ADS)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  14. Deformation quantization of fermi fields

    SciTech Connect

    Galaviz, I. Garcia-Compean, H. Przanowski, M. Turrubiates, F.J.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables.

  15. Tectonic deformation zones across the Himalaya of northwest India

    NASA Astrophysics Data System (ADS)

    Thiede, R. C.; Faruhn, J.; Robert, X.; Dey, S.; Nennewitz, M.; Jain, V.; Stübner, K.; Bookhagen, B.; Strecker, M. R.

    2015-12-01

    Although the large-scale tectonic features of the Himalayan wedge are now thought to be understood, e.g. spatio-temporal distribution of deformation across the orogen is still unknown. For instance, it has been favored that crustal shortening dominantly accommodates along the toe of the wedge and that the Main Frontal Thrust (MFT) forms the direct surface expression of the Main Himalayan Thrust (MHT). The oblique convergence of NW-Himalaya, provides a unique opportunity to detect important differences in deformation patter compared to the arc-perpendicular convergence in Nepal and further east. The following observation provide a key for understanding the location of the main decoupling horizon and where strain is accommodated between the under thrusting India and the Himalayan wedge. (a) In the NW-Himalaya segments of the MFT grow arc-parallel in contrast to the strongly undulating trend of the MBT resulting in a strongly curved topographic front. (b) Majority of Holocene shorting is accommodated along the out-of-sequence thrust, e.g. Jwalamukhi-Thrust, that is located in the center of the Sub-Himalaya and probably only minor parts of the total shortening is accommodated along the MFT. (c) We observed top-to-west thrust ramps that are uplifting early tertiary Subathu and Dhramsala formation within the footwall of the here north-south trending segment of the MBT. This pattern of deformation strongly suggest that the Sub-Himalaya is more strongly connected and effected by the under-thrusting of India rather than triggered by deformation of the Himalayan Wedge, behaving here as regit indentor. (d) Low temperature thermochronology transects across the Dhauladar Rangeindicate continuous uplift and fault displacement with rates in the range of 1-2 mm/yr along the MBT-fault zone hanging wall since the late Miocene. In summary these deformation pattern demonstrates that MBT and MFT developed independently from each other and that deformation within Sub-Himalaya is

  16. Deformation and seismicity of Taiwan.

    PubMed

    Vita-Finzi, C

    2000-10-10

    14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.

  17. Visualization of cardiac dynamics using physics-based deformable model

    NASA Astrophysics Data System (ADS)

    Lin, Wei-te; Robb, Richard A.

    2000-04-01

    Modeling of moving anatomic structures is complicated by the complexity of motion intrinsic and extrinsic to the structures. However when motion is cyclical, such as in heart, effective dynamic modeling can be approached using modern fast imaging techniques, which provide 3D structural data. Data may be acquired as a sequence of 3D volume images throughout the cardiac cycle. To model the intricate non- linear motion of the heart, we created a physics-based surface model which can realistically deform between successive time points in the cardiac cycle, yielding a dynamic 4D model of cardiac motion. Sequences of fifteen 3D volume images of intact canine beating hearts were acquired during compete cardiac cycles using the Dynamic Spatial Reconstructor and the Electron Beam CT. The chambers of the heart were segmented at successive time points, typically at 1/15-second intervals. The left ventricle of the first item point was reconstructed as an initial triangular mesh. A mass-spring physics-based deformable model, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, was applied to the initial mesh and allowed the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resultant 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto the anatomic surfaces, producing a 5D mode, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. For acquisition systems that may provide only limited 4D data, the model can provide interpolated anatomic shape between time points. This physics-based deformable model accurately represents dynamic cardiac structural changes throughout the cardiac cycle. Such models provides the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allowing

  18. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  19. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  20. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  1. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation.

    PubMed

    Gerbig, Y B; Michaels, C A; Bradby, J E; Haberl, B; Cook, R F

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  2. Solute transport through a deforming porous medium

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Smith, David W.

    2002-06-01

    Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers.

  3. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  4. Plastic deformation mechanisms in nanocrystalline metallic materials

    NASA Astrophysics Data System (ADS)

    Ovid'ko, Ilya A.

    2013-11-01

    This article discusses the experiments, computer simulations, and theoretical models addressing the conventional and specific mechanisms of plastic deformation in nanocrystalline metallic materials. Particular attention is devoted to the competition between lattice dislocation slip and specific deformation mechanisms mediated by grain boundaries as well as its sensitivity to grain size and other parameters of nanocrystalline metallic structures.

  5. Acquired nasal deformities in fighter pilots.

    PubMed

    Schreinemakers, Joyce R C; van Amerongen, Pieter; Kon, Moshe

    2010-07-01

    Fighter pilots may develop slowly progressive deformities of their noses during their flying careers. The spectrum of deformities that may be acquired ranges from soft tissue to osseous changes. The main cause is the varying pressure exerted by the oxygen mask on the skin and bony pyramid of the nose during flying.

  6. Quantification of abdominal aortic deformation after EVAR

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  7. Umbral Deformations on Discrete SPACE TIME

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    Given a minimum measurable length underlying spacetime, the latter may be effectively regarded as discrete, at scales of order the Planck length. A systematic discretization of continuum physics may be effected most efficiently through the umbral deformation. General functionals yielding such deformations at the level of solutions are furnished and illustrated, and broad features of discrete oscillations and wave propagation are outlined.

  8. Exploiting Adaptive Optics with Deformable Secondary Mirrors

    DTIC Science & Technology

    2007-03-08

    progress in tomographic wavefront sensing and altitude conjugated adaptive correction, and is a critical step forward for adaptive optics for future large...geostationary satellites, captured at the 6.5 m MMT telescope, using the deformable secondary adaptive optics system....new technology to the unique development of deformable secondary mirrors pioneered at the University of Arizona’s Center for Astronomical Adaptive

  9. 7 CFR 51.1013 - Badly deformed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Persian (Tahiti) Limes Definitions § 51.1013 Badly deformed. Badly deformed means that...

  10. Deformation measurements of smart aerodynamic surfaces

    NASA Astrophysics Data System (ADS)

    Fleming, Gary A.; Burner, Alpheus W.

    1999-10-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F platform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flat, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  11. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  12. Nilpotent deformations of N = 2 superspace

    NASA Astrophysics Data System (ADS)

    Ivanov, Evgeny; Zupnik, Boris; Lechtenfeld, Olaf

    2004-02-01

    We investigate deformations of four-dimensional N = (1,1) euclidean superspace induced by nonanticommuting fermionic coordinates. We essentially use the harmonic superspace approach and consider nilpotent bi-differential Poisson operators only. One variant of such deformations (termed chiral nilpotent) directly generalizes the recently studied chiral deformation of N = (1/2,1/2) superspace. It preserves chirality and harmonic analyticity but generically breaks N = (1,1) to N = (1,0) supersymmetry. Yet, for degenerate choices of the constant deformation matrix N = (1,1/2) supersymmetry can be retained, i.e. a fraction of 3/4. An alternative version (termed analytic nilpotent) imposes minimal nonanticommutativity on the analytic coordinates of harmonic superspace. It does not affect the analytic subspace and respects all supersymmetries, at the expense of chirality however. For a chiral nilpotent deformation, we present non(anti)commutative euclidean analogs of N = 2 Maxwell and hypermultiplet off-shell actions.

  13. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    SciTech Connect

    Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  14. Inelastic deformation and dislocation structure of a nickel alloy - Effects of deformation and thermal histories

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Page, R. A.

    1988-01-01

    Inelastic deformation behavior of the cast Ni-base alloy, B1900 + Hf, was investigated using data from step-temperature tensile tests and thermomechanical cyclic tests in the temperature ranges 538-760 C and 760-982 C. The deformation results were correlated with the dislocation structures of deformed specimens, identified by TEM. It was found that, in the 760-982 C temperature range, there are no thermal history effects in the inelastic deformation behavior of B1900 + Hf. In the 538-760 range, anomalous cyclic hardening and, possibly, thermal history effects were observed in thermomechanically deformed alloy, caused by sessile (010) dislocations in the gamma-prime phase.

  15. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  16. Contrasting Sequence Groups by Emerging Sequences

    NASA Astrophysics Data System (ADS)

    Deng, Kang; Zaïane, Osmar R.

    Group comparison per se is a fundamental task in many scientific endeavours but is also the basis of any classifier. Contrast sets and emerging patterns contrast between groups of categorical data. Comparing groups of sequence data is a relevant task in many applications. We define Emerging Sequences (ESs) as subsequences that are frequent in sequences of one group and less frequent in the sequences of another, and thus distinguishing or contrasting sequences of different classes. There are two challenges to distinguish sequence classes: the extraction of ESs is not trivially efficient and only exact matches of sequences are considered. In our work we address those problems by a suffix tree-based framework and a similar matching mechanism. We propose a classifier based on Emerging Sequences. Evaluating against two learning algorithms based on frequent subsequences and exact matching subsequences, the experiments on two datasets show that our model outperforms the baseline approaches by up to 20% in prediction accuracy.

  17. Intraoperative measurement of indenter-induced brain deformation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2014-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain in vivo. In this study, we investigated the feasibility of inducing and detecting cortical surface deformation intraoperatively for patients undergoing open skull neurosurgeries. A custom diskshaped indenter made of high-density tungsten (diameter of 15 mm with a thickness of 6 mm) was used to induce deformation on the brain cortical surface immediately after dural opening. Before and after placing the indenter, sequences (typically 250 frames at 15 frames-per-second, or ~17 seconds) of high-resolution stereo image pairs were acquired to capture the harmonic motion of the exposed cortical surface as due to blood pressure pulsation and respiration. For each sequence with the first left image serving as a baseline, an optical-flow motion-tracking algorithm was used to detect in-sequence cortical surface deformation. The resulting displacements of the exposed features within the craniotomy were spatially averaged to identify the temporal frames corresponding to motion peak magnitudes. Corresponding image pairs were then selected to reconstruct full-field three-dimensional (3D) cortical surfaces before and after indentation, respectively, from which full 3D displacement fields were obtained by registering their projection images. With one clinical patient case, we illustrate the feasibility of the technique in detecting indenter-induced cortical surface deformation in order to allow subsequent processing to determine material properties of the brain in vivo.

  18. Tracking of object deformations in color and depth video: deformation models and applications

    NASA Astrophysics Data System (ADS)

    Jordt, Andreas; Reinhold, Stefan; Koch, Reinhard

    2015-05-01

    The research on deformation tracking based on color image data has continuously gained a wide interest in the last 15 years. In addition, using depth sensors such as the Microsoft Kinect, allows to mitigate the ambiguity problems that arise when trying to solve the deformation tracking tasks on color images only, by adding depth information. However, the fusion of color and depth data is not straight forward, and the deformation tracking task is still ill-posed due to the lack of a general deformation model. The problem is usually circumvented by providing special deformation functions for the task at hand, e.g., skeleton-based for reconstructing people or triangle-based for tracking planar surfaces. In this article we summarize the Analysis by Synthesis (AbS) approach for deformation tracking in depth and color video and show some successful applications of specialized deformation functions. To overcome the issues with NURBS based deformation tracking we propose a new geodesic RBF-based deformation model, which can adapt to any surface topology and shape, while keeping the number of deformation parameters low. Example deformations for objects of different topologies are given, showing the versatility and efficiency of the proposed model.

  19. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  20. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  1. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  2. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  3. Deformity in the "Boxing Boys".

    PubMed

    Ferrence, Susan; Bendersky, Gordon

    2005-01-01

    The late Bronze Age wall painting the Boxing Boys (c. 17th-16th century BCE) was excavated in the ancient town of Akrotiri on the Greek island of Thera. This article considers a medical interpretation for the spinal-pelvic anomaly in the anatomy of one of the boys. The artist has depicted a combination of structural anatomical adjustments diagnostic of spondylolisthesis, a forward slippage of one of the lumbar vertebrae. The accurate portrayal of the surface appearance of this condition suggests that the artist painted directly from a live subject. Thus, the Boxing Boys mural may be the earliest visual record of a sports-induced injury. Although the meaning of the wall paintings is unclear, the wild goats (agrimia) on the adjoining walls simulate swayback as a reflection of the boy's torso deformity and share other features with the boxers, adding to the unifying characteristics of the room. The abnormal morphology appears to be the earliest achievement of transforming disease into aesthetic charm on a monumental scale.

  4. Mathematical textbook of deformable neuroanatomies.

    PubMed

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-12-15

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features.

  5. Mathematical textbook of deformable neuroanatomies.

    PubMed Central

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-01-01

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8265653

  6. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  7. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2012-04-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  8. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2011-11-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  9. Craniofacial neurofibromatosis: treatment of the midface deformity.

    PubMed

    Singhal, Dhruv; Chen, Yi-Chieh; Tsai, Yueh-Ju; Yu, Chung-Chih; Chen, Hung Chang; Chen, Yu-Ray; Chen, Philip Kuo-Ting

    2014-07-01

    Craniofacial Neurofibromatosis is a benign but devastating disease. While the most common location of facial involvement is the orbito-temporal region, patients often present with significant mid-face deformities. We reviewed our experience with Craniofacial Neurofibromatosis from June 1981 to June 2011 and included patients with midface soft tissue deformities defined as gross alteration of nasal or upper lip symmetry. Data reviewed included the medical records and photobank. Over 30 years, 52 patients presented to and underwent surgical management for Craniofacial Neurofibromatosis at the Chang Gung Craniofacial Center. 23 patients (43%) demonstrated gross mid-facial deformities at initial evaluation. 55% of patients with lip deformities and 28% of patients with nasal deformities demonstrated no direct tumour involvement. The respective deformity was solely due to secondary gravitational effects from neurofibromas of the cheek subunit. Primary tumour infiltration of the nasal and/or labial subunits was treated with excision followed by various methods of reconstruction including lower lateral cartilage repositioning, forehead flaps, free flaps, and/or oral commissure suspension. Soft tissue deformities of the midface are very common in patients with Craniofacial Neurofibromatosis and profoundly affect overall aesthetic outcomes. Distinguishing primary from secondary involvement of the midface assists in surgical decision making.

  10. State-variable theories for nonelastic deformation

    SciTech Connect

    Li, C.Y.

    1981-01-01

    The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep without relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.

  11. Simple shear deformation of partially molten aplite

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Tullis, Jan; Berger, Alfons

    2013-04-01

    The tectonic processes which are important for melt distribution and transport in the intermediate and lower crust and which can result in crustal weakening are not yet well understood. Natural migmatites are usually overprinted by annealing and retrogression during uplift and exhumation, largely obliterating the deformation structures and microstructures of their partially molten history. Deformation experiments on partially molten crustal rocks have so far been conducted in pure shear geometry and mostly under low confining pressures in the brittle deformation field, both of which are not representative of nature. We carried out deformation experiments in simple shear that predominates in the crust and especially crustal shear zones. Undrained experiments were carried out on Enfield aplite at ~1.5 GPa, 900° -1000° C, and ˜ 5*10-6 s-1, conditions which favor crystal plastic deformation of quartz and feldspar (Dell'Angelo and Tullis, 1988). Sample slices 1.0-1.5 mm thick were placed between the shear pistons with the shear plane at a 45° -angle to the compression direction. Maximum shear strain in the experiments is ? ?2.8. Despite difficulties in controlling the melt content by varying the amount of added water, we were able to achieve the full range of brittle to crystal plastic deformation mechanisms. With decreasing melt content Enfield aplite displays a transition from discrete fracturing at a high angle (~70-90° ) to the shear plane (>20 vol.% melt), to cataclastic shearing (10-20 vol.% melt) and to crystal plastic deformation (

  12. Ultrasound evaluation of foot deformities in infants.

    PubMed

    Miron, Marie-Claude; Grimard, Guy

    2016-02-01

    Foot deformity in infants is the most common congenital musculoskeletal condition. A precise diagnosis can sometimes be impossible to establish clinically. Radiologic imaging plays a major role in the evaluation of musculoskeletal abnormalities. However conventional imaging techniques, such as plain radiographs of the foot, are of very little help in this age group because of the lack of ossification of the tarsal bones. US presents a significant advantage because it permits the visualization of cartilaginous structures. This leads to the detailed assessment of foot deformities in infants. Furthermore, US can also be used as a dynamic imaging modality. Different scanning views are beneficial to evaluate the complete anatomy of the foot; depending on the suspected clinical diagnosis, some planes are more informative to display the pathological features of a specific deformity. We describe the US findings of five of the most common foot deformities referred to our pediatric orthopedic clinic (clubfoot, simple metatarsus adductus, skewfoot, and oblique and vertical talus). For each deformity we propose a specific imaging protocol based on US to provide an accurate diagnosis. US is a complementary tool to the clinical examination for determining the diagnosis and the severity of the deformity and also for monitoring the efficacy of treatment. Radiologists investigating foot deformities in infants should consider using US for the detailed assessment of the foot in this age group.

  13. Multimodal sequence learning.

    PubMed

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.

  14. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  15. Isothermal deformation of gamma titanium aluminide

    SciTech Connect

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-04-15

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material.

  16. Cubic Wavefunction Deformation of Compressed Atoms

    NASA Astrophysics Data System (ADS)

    Portela, Pedro Calvo; Llanes-Estrada, Felipe J.

    2015-05-01

    We hypothesize that in a non-metallic crystalline structure under extreme pressures, atomic wavefunctions deform to adopt a reduced rotational symmetry consistent with minimizing interstitial space in the crystal. We exemplify with a simple numeric variational calculation that yields the energy cost of this deformation for Helium to 25 %. Balancing this with the free energy gained by tighter packing we obtain the pressures required to effect such deformation. The consequent modification of the structure suggests a decrease in the resistance to tangential stress, and an associated decrease of the crystal's shear modulus. The atomic form factor is also modified. We also compare with neutron matter in the interior of compact stars.

  17. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  18. Liquid Droplets on a Highly Deformable Membrane

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Dalnoki-Veress, Kari

    2015-11-01

    We present measurements of the deformation produced by micro-droplets atop thin elastomeric and glassy free-standing films. Due to the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, there are two angles that define the droplet/membrane geometry: the angle the liquid surface makes with the film and the angle the deformed bulge makes with the film. The contact line geometry is well captured by a Neumann construction which includes contributions from interfacial and mechanical tensions. Finally, we show that a droplet atop a film with biaxial tension assumes an equilibrium shape which is elongated along the axis of high tension.

  19. Dynamic grain growth during superplastic deformation

    SciTech Connect

    Rabinovich, M.Kh.; Trifonov, V.G.

    1996-05-01

    Superplastic deformation (SPD) causes the accelerated anisotropic grain growth. This process results in the formation of structure which is quasistable during superplastic deformation and unstable after deformation. The degree of instability is determined by the size of grains, their shape coefficient which depends on the nature of an alloy and is equal to 1.1--1.5 after SPD, and by the unbalance of triple junctions at boundaries. Alloying of metals can affect the thermodynamic force and mechanism of dynamic anisotropic grain growth and correspondingly influence the parameters of superplasticity in alloys.

  20. Atomistic deformation mechanisms in twinned copper nanospheres.

    PubMed

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  1. Deformation mechanisms of plasticized starch materials.

    PubMed

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  2. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  3. Deformable Mirror Materials Issue Assessment

    SciTech Connect

    Rudd, R E

    2008-05-27

    It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems. I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of any

  4. The effect of aspect ratio on the compressive high rate deformation of three metallic alloys

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Radford, D. D.; Chapman, D. J.

    2006-08-01

    Metallic cylinders of rolled homogeneous armour (RHA) steel, Ti6Al4V, and FNC tungsten alloy of four different length l to diameter d ratios (dimensions in mm): 8/4, 4/8, 10/8, 8/10) were deformed at high rates of deformation using a direct impact Hopkinson pressure bar. Highspeed photographic sequences of the deformation were taken using a Hadland Imacon 790 imageconverter camera working at either 1 or 2 x 104 frames/s. It was found that titanium alloy cylinders of all four aspect ratios shear-banded and fractured, but that cylinders made from RHA steel and FNC tungsten behaved in a ductile manner when l/d < 1 but in a brittle manner when l/d > 1. We conclude that adiabatic shear banding is not just an inherent material property but that in some materials size effects/geometry can trigger this phenomenon.

  5. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  6. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  7. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    PubMed

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt.

  8. Probing deformed commutators with macroscopic harmonic oscillators

    PubMed Central

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  9. Deformation stages of technical aluminum at reverse

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Durnovtseva, A. N.; Shvagrukova, E. V.

    2016-02-01

    Durability and reliability of machines and mechanisms are determined, mainly, by their fatigue resistance as far as, in the most cases, variable load impacts on machine components. Accordingly, the problem of fatigue failure is extremely topical, still. Its complexity is connected with a wide range of factors. First of all, at cyclic load the compatibility relations of a material surface layer, which is loaded over the yield point and the elastic-loaded substrate layer, play a very important role. This fact determines involvement into plastic flow and failure of all the scale hierarchy of deformation structural levels. Reverse loading under the condition of the elastic-loaded substrate layer causes strong localization of plastic deformation in the surface layers. In the deformation localization areas the material reaches its limit state, when fatigue cracks arise and expand. The paper presents the mechanisms of fatigue deformation for technical aluminum at various fatigue stages.

  10. On Isospectral Deformations of an Inhomogeneous String

    NASA Astrophysics Data System (ADS)

    Colville, Kale; Gomez, Daniel; Szmigielski, Jacek

    2016-12-01

    In this paper we consider a class of isospectral deformations of the inhomogeneous string boundary value problem. The deformations considered are generalizations of the isospectral deformation that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is proved that these new isospectral deformations result in evolution equations on the mass density whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the evolution equations in this class linearize on the spectral side and hence can be solved by the inverse spectral method. In particular, the problem involving a mass density given by a discrete finite measure and arbitrary boundary conditions is shown to be solvable by Stieltjes' continued fractions.

  11. Nuclear Deformation Effects in the Cluster Radioactivity

    NASA Astrophysics Data System (ADS)

    Misicu, Serban; Protopopescu, Dan

    1999-01-01

    We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus--nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process.

  12. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  13. Simplified solution for stresses and deformation

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Brewe, D. E.

    1981-01-01

    Conventional contact deformation analysis for ball bearings, gears, and cams involves tedious iterative procedures or the use of design charts. A simplified approach that makes the elastic deformation at the center of contact easy to calculate was previously reported. The range of validity in which these equations can be used is extended. A simplified approach to the calculation of the location and magnitude of subsurface stresses developed in machine element applications is included.

  14. Nanoscale Deformation and Toughening Mechanisms of Nacre

    DTIC Science & Technology

    2011-03-31

    graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant...design principle down to atomic scale with a purpose to fight against foreign attacks, which has opened up a new opportunity to unravel the...deformation mechanism of unique mechanical performance at the atomic scale . Technology Transfer 1 Nanoscale Deformation and Toughening Mechanisms of Nacre

  15. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  16. Deformed proximity potential for heavy ion reactions

    SciTech Connect

    Baltz, A.J.

    1989-09-01

    The proximity potential is discussed for the inelastic scattering of a spherical nucleus on a deformed nucleus or the mutual interaction of two deformed nuclei. It is shown that the proximity potential is, in general, geometrically more correct than the usual centerline prescription used in inelastic scattering analyses. For the cases where the proximity potential is inadequate a folding model approach is advocated. Techniques to facilitate the coupled channels analysis are presented. 11 refs., 6 figs.

  17. Deformability curve for K18 steel

    SciTech Connect

    Pospiech, J.

    1999-12-01

    The problem of the best utilization of plasticity in plastic working processes of metals, at low resistance to deformation and maximum utilization of capacity of installations has gained great importance, especially in recent years. Determination of plasticity of materials by the method of Kolmogorow is described. Variation of the stress factor for several plastic working processes is also described. Tests to plot the deformability curve (also referred to as reserve of plasticity curve) were selected and proved.

  18. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  19. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  20. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  1. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  2. Study of the deformation in Central Afar using InSAR NSBAS chain

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.

    2013-12-01

    The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both In

  3. Large-scale deformational systems in the South Polar Layered Deposits (Promethei Lingula, Mars): "Soft-sediment" and Deep-Seated Gravitational Slope Deformations Mechanisms

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Brozzetti, Francesco; Marinangeli, Lucia

    2012-08-01

    deformational systems in the SPLD necessarily implies that a large-scale dynamics of the ice-sheet occurred in the past. The relatively fast internal creep and basal/internal sliding, inferable from the structure assemblage, can be due to partial melting of the ice possibly caused by climatic changes in the Promethei Lingula region. In this manner, we believe that climate heating (which, according to the literature, is likely caused by orbital variations) softened some of the SPLD layers, triggering or accelerating the ice sheet's outward movement. The evidence of a marked disharmonic deformational style through the SPLD succession suggests the possibility of local periodic compositional variations in the sequence.

  4. Quantum deformations of the flat space superstring

    NASA Astrophysics Data System (ADS)

    Pachoł, Anna; van Tongeren, Stijn J.

    2016-01-01

    We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.

  5. Osteogenesis imperfecta: a case with hand deformities.

    PubMed

    Oz, Bengi; Olmez, Nese; Memis, Asuman

    2005-09-01

    In a 51-year-old woman with a history of fractures and dislocations after low intensity trauma in childhood, intensive blue sclera, short stature, and hearing loss, the diagnosis of osteogenesis imperfecta (OI) was suspected. She was referred to our clinic with hand deformities and left knee pain and stiffness. She had difficulty in walking and reported a history of immobilization for 6 months because of knee pain. She had bilateral flexion contracture of the elbows which occurred following dislocations of the elbows in childhood. She had Z deformity of the first phalanges, reducible swan-neck deformity of the third finger of the left and the second finger of the right hand, flexion contracture of the proximal interphalangeal joint of the fifth finger of the left hand, and syndactyly of the third and fourth fingers of the right hand. Flexion contractures of both knees were observed. Pes planus and short toes were the deformities of the feet. Acute phase reactants of the patient were normal. She had no history of arthritis or morning stiffness. Bone mineral density evaluated by dual-energy X-ray absorptiometry (DEXA) showed severe osteoporosis of the femur and lumbar vertebrae. She had radiographic evidence of healed fractures of the left fibula, the third metacarpal, and the fourth and fifth middle phalanges of the right hand. OI, affecting the type I collagen tissue of the sclera, skin, ligaments, and skeleton, presenting with ligament laxity resulting in subluxations and hand deformities may be misdiagnosed as hand deformities of rheumatoid arthritis.

  6. Bialgebra cohomology, deformations, and quantum groups.

    PubMed Central

    Gerstenhaber, M; Schack, S D

    1990-01-01

    We introduce cohomology and deformation theories for a bialgebra A (over a commutative unital ring k) such that the second cohomology group is the space of infinitesimal deformations. Our theory gives a natural identification between the underlying k-modules of the original and the deformed bialgebra. Certain explicit deformation formulas are given for the construction of quantum groups--i.e., Hopf algebras that are neither commutative nor cocommutative (whether or not they arise from quantum Yang-Baxter operators). These formulas yield, in particular, all GLq(n) and SLq(n) as deformations of GL(n) and SL(n). Using a Hodge decomposition of the underlying cochain complex, we compute our cohomology for GL(n). With this, we show that every deformation of GL(n) is equivalent to one in which the comultiplication is unchanged, not merely on elements of degree one but on all elements (settling in the strongest way a decade-old conjecture) and in which the quantum determinant, as an element of the underlying k-module, is identical with the usual one. PMID:11607053

  7. Probing Cell Deformability via Acoustically Actuated Bubbles

    PubMed Central

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-01-01

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  8. Rheumatoid Hand Deformities: Pathophysiology and Treatment

    PubMed Central

    Apfelberg, David B.; Maser, Morton R.; Lash, Harvey; Kaye, Ronald L.; Britton, Melvin C.; Bobrove, Arthur

    1978-01-01

    Rheumatoid disease, as it affects the hand, is a disease of the synovium lining the joints and sheaths of the tendon. The proliferating synovium destroys the articular surfaces of the joint, interferes with the gliding mechanism of the tendons and weakens the supporting ligaments of the joints. The degree and variety of deformities is multifold. Treatment of the rheumatoid hand is aimed at conservation and restoration of hand function, as well as prevention of future deformities. Rheumatologists, physical therapists and hand surgeons carry out important functions in the well-planned, integrated regimen. Surgical treatment of the rheumatoid hand deformity may alleviate pain, lessen deformity and improve function in selected cases. It should be integrated in the general medical management of a patient. Treatment of tendon ruptures includes tenorrhaphy, tendon grafting and arthrodesis in the case of mallet finger deformity. The wrist joint is improved by synovectomy and carpal tunnel release is accomplished by median nerve decompression. Metacarpal phalangeal joint deformities may be treated by synovectomy or silastic joint replacement when there is destruction of the articular joint surface, severe subluxation, or persistent painful motion. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:716388

  9. Volcan de Colima, Mexico Deformation Analysys of Recent Dome Extrusion 2009-2014 Using Tilt Meter Surveys Confronted with Deformations Registered during Period 1998-2007

    NASA Astrophysics Data System (ADS)

    Ramirez-Ruiz, J. J.

    2014-12-01

    Volcán de Colima, Mexico is considered one of the most active Volcano in Mexico and it is located between the states of Colima and Jalisco in the Central West part of the Country. During the period of 2009-2014 occurred one extrusion inside the dome that was growth in 2007 originating deformations that will be analysed and compared with deformations measured before during the period of 1998-2007. Four dome extrusions have occurred during the recent activity stage from 1998-2014. During period of domes growth we show deformation of the Volcano edifice with sequences of inflation- deflation registered with a Tiltmeter net composed of 5 sensors deployed around the edifice. Measurements of deformation tilt changes during the period 2004-2014 at Volcán de Colima were characterized by a sequence of effusive-explosive episodes. These sequences occurred on October 2004, February 2007 and January 2014 were registered by sequences of inflation-deflation principally. The tiltmeter net used in this study is composed of 5 sensors installed around the volcano edifice at altitudes of 3060 masl (COIA), 3200 masl (PCJ1), 2590 masl (PC02), 2200 masl (EHJ1) and 2070 masl (PC01). The activity of Volcán de Colima during this period 1998-2014 can be summarized by the occurrence of four lava domes formed in November 1998, October 2004, February 2007, and January 2014. During this activity phase explosive sequences occurred in years 2005, 2012 and 2014. After the extrusion on February 2007 a deflation phase is registered with the tilt sensors until 2012 which explain the low activity that characterize the behavior of the volcano during these periods of time. Here we show the analysis of the activity during the 2009-2014 and compare the deformations surveys during these period with the occurred during the complete recent period of activity 1998-2014. This comparison is important to forecast the developing of the activity and help to prevent the volcanic Risk of the Population located

  10. Variations in deformation styles within the central Maine terrane: An example from the Presidential Range, NH

    SciTech Connect

    Eusden, J.D. Jr.; Garesche, J.; Johnson, A.; Maconochie, J.M. . Dept. of Geology)

    1993-03-01

    The Silurian and Devonian cover rocks of the Central Maine Terrane in the northern Appalachians are a complex, highly metamorphosed, stratigraphy that has been equally, if not more complexly, deformed. Correlations of regional deformation sequences (be they Acadian and/or Alleghanian) have been difficult, controversial, and elusive. This stems from the common observation that across-strike and strike-parallel variations in deformation sequences appear to be the norm rather than the exception in this belt. Enormous variations in structural style have been routinely observed in a detailed, five-year study of the well-exposed outcrops above treeline in the Presidential Range. Domains of different structural styles have been mapped in the northern, central and southern portions of the range. The northern domain, including Mts. Madison, Adams, and Jefferson, is composed of various members of the Devonian Littleton Formation. The map pattern is dominated by three macroscopic F1 synclines that face and are interpreted to verge northeasterly. The central domain, which includes Mt. Clay and much of Great Gulf, is interpreted to be a klippe of presumably Silurian gneisses probably correlative to the Rangeley, Smalls Falls, and Madrid Formations. A stratigraphic discontinuity, interpreted as the Greenough Spring thrust fault, separates this domain from the others and truncates the early fold structures of all domains. Within the Klippe there is evidence for an early phase of deformation but no folds related to it have been mapped. The map pattern is dominated by second phase folds that deform the early schistosity. The Greenough Spring thrust fault, and the second phase folds within it are refolded by a late phase of deformation which is characterized by a macroscopic, overturned synform.

  11. Failure and deformation analyses of smart laminated composites

    NASA Astrophysics Data System (ADS)

    Hasan, Z.; Muliana, A.

    2012-09-01

    The present study focuses on the failure analysis and shape control of smart composite laminates under coupled thermal (hygro), electric, and mechanical stimuli. A linear thermo(hygro)electroelastic constitutive model for transversely isotropic materials is used for each ply in the composite laminate and for the piezoelectric materials that are integrated with laminates of the composite. Piezoelectric materials, such as lead zirconate titanate, and piezoelectric fiber composites, such as an active fiber composite or a microfiber composite, are considered as actuators for controlling unwanted bending deformations to avoid failure in such composite laminates. Due to the high stress concentrations at the interfaces between an active layer and the host structure, which may cause debonding, embedded actuators in which the active material is placed as part of the plies to form geometrically continuous plies are considered in order to minimize the stress concentration while improving the actuation capability. The first-ply failure and the ultimate laminate failure criteria of composite laminates are used to predict the failure stress and mode of the smart composite laminates, where commonly known macroscopic failure criteria, such as the Tsai-Hill, Tsai-Wu, and maximum stress criteria, are employed for each lamina. Piezoelectric materials can be used to prevent the failure from hygrothermal and mechanical loadings by applying an electric voltage in order to counteract laminate deformations. Based on the deformation and failure analyzes of smart composite laminates having various stacking sequences, fiber and matrix constituents, and piezoelectric materials, we could estimate the overall properties and failure envelopes of the laminates, which is useful in the preliminary design of smart composite structures.

  12. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  13. MRO Sequence Checking Tool

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    The MRO Sequence Checking Tool program, mro_check, automates significant portions of the MRO (Mars Reconnaissance Orbiter) sequence checking procedure. Though MRO has similar checks to the ODY s (Mars Odyssey) Mega Check tool, the checks needed for MRO are unique to the MRO spacecraft. The MRO sequence checking tool automates the majority of the sequence validation procedure and check lists that are used to validate the sequences generated by MRO MPST (mission planning and sequencing team). The tool performs more than 50 different checks on the sequence. The automation varies from summarizing data about the sequence needed for visual verification of the sequence, to performing automated checks on the sequence and providing a report for each step. To allow for the addition of new checks as needed, this tool is built in a modular fashion.

  14. Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.

    1977-01-01

    Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.

  15. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  16. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  17. Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zohar; Reshef, Moshe; Buch-Leviatan, Orna; Ben-Avraham, Zvi

    2014-05-01

    While numerous studies have shown that salt related deformation in the Levant Basin began in the Late Pliocene or Early Pleistocene, here we show that the first salt related deformation event occurred 3-4 myr earlier, in the middle of the Messinian Salinity Crisis. Considering that the entire crisis lasted only about 650 kyr and that halite deposition in the deep basin may have lasted only ~50 kyr, this deformation event must have been very short. At some point after deposition of nearly half of the evaporitic sequence, the upper 200 m thick clastic-rich layer glided downdip and formed a series of steep contractional ridges on the deep basin floor. However, unlike the recent salt motion, which is derived from northwestward tilting of the Levant continental margin towards the Cyprus Arc and by basinward progradation of the Nile-derived overburden, the short intra-Messinian deformation event is enigmatic. It predates the Nile-derived overburden and its direction does not match northwestward tilting. We postulate that it may reflect the uplift of the Carmel block northeast of the study area and possibly the entire north Levant coast. In a wider view, intra-Messinian deformation is a circum-Mediterranean phenomenon, possibly reflecting reorganization of the Africa-Euroasia boundary.

  18. Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zohar; Reshef, Moshe; Buch-Leviatan, Orna; Ben-Avraham, Zvi

    2013-10-01

    While numerous studies have shown that salt related deformation in the Levant Basin began in the Late Pliocene or Early Pleistocene, here we show that the first salt related deformation event occurred 3-4 myr earlier, in the middle of the Messinian Salinity Crisis. Considering that the entire crisis lasted only about 650 kyr and that halite deposition in the deep basin may have lasted only ∼50 kyr, this deformation event must have been very short. At some point after deposition of nearly half of the evaporitic sequence, the upper 200 m thick clastic-rich layer glided downdip and formed a series of steep contractional ridges on the deep basin floor. However, unlike the recent salt motion, which is derived from northwestward tilting of the Levant continental margin towards the Cyprus Arc and by basinward progradation of the Nile-derived overburden, the short intra-Messinian deformation event is enigmatic. It predates the Nile-derived overburden and its direction does not match northwestward tilting. We postulate that it may reflect the uplift of the Carmel block northeast of the study area and possibly the entire north Levant coast. In a wider view, intra-Messinian deformation is a circum-Mediterranean phenomenon, possibly reflecting reorganization of the Africa-Eurasia boundary.

  19. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  20. Multiscale Combination of Physically-Based Registration and Deformation Modeling

    SciTech Connect

    Tsap, L.; Goldgof, D.B.; Sarkar, S.

    1999-11-08

    In this paper the authors present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of the approach is that a finite element (FEM) model can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed, accuracy, and noise sensitivity. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown that the new method does not require a grid and can adapt the model to available object features.

  1. Elevated and Low Temperature Deformation of Cast Depleted Uranium

    SciTech Connect

    Vogel, Sven C.

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during high and low temperature deformation of uranium, in particular texture, and develop constitutive micro-structure based model for uranium deformation. Deliverables achieved: Completed texture measures for 11 pre- and post-dU compression samples, quantified texture pre- and post-deformation, and provided data to constrain deformation models.

  2. Extensional Elastica in large deformation as $Gamma $ Γ -limit of a discrete 1D mechanical system

    NASA Astrophysics Data System (ADS)

    Alibert, Jean-Jacques; Della Corte, Alessandro; Giorgio, Ivan; Battista, Antonio

    2017-04-01

    The present paper deals with the rigorous homogenization of a discrete system consisting of extensible rods linked by rotational springs. Specifically, a Γ -convergence result is proven for a sequence of discrete measure functionals En, describing the energy of the discrete system, toward the continuous energy functional for the extensible Euler beam model ( Elastica) in large deformation regime. A relative compactness result for the sequence En is also proven. Moreover, numerical results are shown on the deformed shape and on the total energy of the system when the number of elements of the discrete system increases. The numerical convergence of the energy to a definite value is shown in two cases. The results provide rigorous justification of a very commonly used algorithm for the discretization of the extensible Euler beam, namely Hencky-type beam model.

  3. Evaluation of skin and muscular deformations in a non-rigid motion analysis

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Carli, Marco; Conforto, Silvia; Bibbo, Daniele; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    During contraction and stretching, muscles change shape and size, and produce a deformation of skin tissues and a modification of the body segment shape. In human motion analysis, it is indispensable to take into account this phenomenon and thus approximating body limbs to rigid structures appears as restrictive. The present work aims at evaluating skin and muscular deformation, and at modeling body segment elastic behavior by analysing video sequences that capture a sport gesture. The soft tissue modeling is accomplished by using triangular meshes that automatically adapt to the body segment during the execution of a static muscle contraction. The adaptive triangular mesh is built on reference points whose motion is estimated by using the technique based on Gauss Laguerre Expansion. Promising results have been obtained by applying the proposed method to a video sequence, where an upper arm isometric contraction was present.

  4. Mantle exhumation and OCT architecture dependency on lithosphere deformation modes during continental breakup: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Cowie, Leanne

    2013-04-01

    components parameterised by the ratio Vz/Vx and the upper crustal pure-shear width W. Using numerical experiments, we explore temperature and material advection, decompression melt generation and subsidence for a sequence of 3 polyphase lithosphere deformation modes leading to continental breakup. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation. Buoyant upwelling, while not changing the timing of crustal rupture, speeds up continental lithosphere thinning and melt initiation. The lateral migration of the deformation flow axis also has an important control on the rupture of continental crust and lithosphere, and melt initiation; rapid migration generates a broad region of thinned continental crust, with no melt initiation or rupture of the continental lithosphere. We believe lithosphere deformation leading to breakup is polyphase. The new FeMargin model, described above, is applied and tested to the Iberia-Newfoundland conjugate margin profiles as shown by Sutra et al. (2013).

  5. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals

  6. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  7. Measurement of ship deformation based on ARX model

    NASA Astrophysics Data System (ADS)

    Ma, Xianglu; Qin, Shiqiao; Wang, Xingshu; Hu, Feng; Wu, Wei; Zheng, JiaXing

    2016-01-01

    Ship deformation is the main error source of partial reference. Such deformation can be estimated by laser gyro units and Kalman filter technology. For Kalman filter, deformation was divide into two parts, dynamic deformation, and static deformation. Traditionally, dynamic deformation is treated as AR2 model .In this paper, dynamic deformation is taken as a kind of ARX model. Based on actual data measured by Yuanwang-3 Space Survey Ship, simulation experiments are studied. Results show that the novel model can improve the measurement precision.

  8. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    SciTech Connect

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  9. Deformation Timescales of Porous Volcanic Materials

    NASA Astrophysics Data System (ADS)

    Quane, S.; Friedlander, B.; Robert, G.; Lynn, H.

    2007-12-01

    We describe results from 20 high-temperature, constant strain rate and constant load deformation experiments on natural pyroclastic materials. Experiments were run unconfined and under variable H2O confining pressures at temperatures between 650 and 900 C. Starting materials comprised 4.3 cm diameter, 6 cm length cores of sintered Rattlesnake Tuff rhyolite ash with starting porosities of 70 percent. Experimental displacement was controlled to achieve total strain values between 10 and 90 percent. In thin section, the deformed experimental end products exhibit striking similarities to all facies of natural welded pyroclastic rocks including variably flattened pumice fiamme and systematically deformed bubble wall shards. To quantify the amount of strain accumulation, we placed three manually rounded 1 cm diameter pumice lapilli at different heights in each experimental product. Axial ratios (x-axis dimension/y-axis dimension) of the deformed lapilli (fiamme) show a systematic increase with increased deformation. To further quantify strain, we measured flattening ratios of originally spherical bubble wall shards. These analyses are compared to similar measurements on natural samples to evaluate current methods of quantifying deformation in welded pyroclastic facies. Stress-strain and strain-time experimental results indicate that the glassy, porous aggregates have a strain- dependent rheology; the effective viscosity of the mixture increases non-linearly with decreasing porosity. Temperature, rather than stress is the dominant factor controlling the rheology of these materials. Results also indicate that the presence of moderate H2O pressure allows for viscous deformation (e.g., welding) to occur at significantly lower temperatures than in anhydrous conditions. Results from these experiments are used to develop a constitutive relationship in which the effective viscosity of the experimental cores is predicted using melt viscosity, sample porosity and an empirically

  10. Surface Deformation in Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  11. Deformation Bands in Subglacially Erupted Hyaloclastite Ridges, Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Barnes, J.; Kattenhorn, S. A.

    2010-12-01

    Pleistocene glaciation across the Reykjanes Peninsula, where the mid-Atlantic spreading ridge comes onshore in SW Iceland, created an environment for subglacial fissure eruptions along the plate boundary. The addition of meltwater to the eruption process resulted in fragmentation of magma and the creation of hyaloclastites and hyalotuff: subaqueous hydroclastic deposits, which are inherently weak and poorly consolidated. The resultant hyaloclastite ridges (also called mobergs or tindar) form linear hills (generally <300 m high) oriented NE-SW in response to sinistral-oblique spreading across the ENE-WSW plate boundary. Faults, fissures, and joints within Holocene lavas in low-lying areas around the hyaloclastite ridges show consistent patterns that can be related to theoretical stress fields associated with oblique spreading. However, deformation features within the hyaloclastite ridges show fracture orientations commonly inconsistent with those in the intervening lava plains, suggesting a more complex deformation history. We focus on prevalent deformation bands (DBs), which are strain localization features (tabular bands of cataclasis and porosity reduction) predominately studied in porous siliciclastic rocks. We advocate that DBs in the hyaloclastite and hyalotuff sequences of these mobergs play a critical role in their deformation in response to tectonic, magmatic, and gravitational influences. DBs forming in hyaloclastite and hyalotuff are unique in character compared to analogous features in porous granular sedimentary rock. For example, DBs in sandstone generally result in at most a few millimeters of offset along a single DB. However, offsets of up to several meters occur along DBs of comparable thickness (<1 cm) within the hyaloclastite and hyalotuff. This distinct characteristic of these bands indicates a fundamentally different evolutionary process than occurs in sedimentary rock, likely in response to the breakdown of weak glassy fragments (sideromelane

  12. Deformation field heterogeneity in punch indentation

    PubMed Central

    Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid

    2014-01-01

    Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521

  13. Isothermal deformation of gamma titanium aluminide

    SciTech Connect

    Singh, J.P.; Tuval, E.; Weiss, I.; Srinivasan, R.

    1995-12-31

    Gamma titanium aluminide alloys are under consideration for automotive applications. In order to develop cost effective deformation processing technologies, limits of formability under different processing conditions need to be established. Alloys with compositions of Ti-(46.5-48)Al-2Nb-2Cr (a/o) prepared by different processing routes were used in this study. The grain sizes in these materials were in the range of 3 to 10,000 {micro}m. Isothermal processing parameters such as strain rate, temperature, and total strain were varied in order to establish processing windows for uniform deformation of the different alloys. During isothermal forming, there exists a critical strain rate of 1{sup {minus}1} below which deformation occurred without the formation of macroscopic cracks. The lowest temperature for uniform deformation is influenced by the grain size and the final strain. The flow behavior of the different materials tested were typical of a material undergoing dynamic recrystallization. Microscopic examination revealed no micro-cracks and fine recrystallized grains in the deformed specimens.

  14. Clinical Implications of Nasal Septal Deformities

    PubMed Central

    Mladina, Ranko; Skitarelić, Neven; Poje, Gorazd; Šubarić, Marin

    2015-01-01

    The first attempts to systematize septal distortions have been given by Cottle who defined four groups of septal deformities: subluxation, large spurs, caudal deflection and tension septum. Fortunately, the variations of the septal deformities show a certain order, thus enabling more precise classification. Mladina was the first to make user-friendly classification of septal deformities in six basic types. He also described the seventh type, named “Passali deformity”, which presents individually, but is always a well-defined combination between some of the previous six types. Mladina types of septal deformities (SD) are divided in two main groups: so called “vertical” deformities (types 1, 2, 3 and 4), and “horizontal” ones (types 5 and 6). This classification was immediately well accepted by rhinologists worldwide and started to be cited from the very beginning. Since then it has been continuously cited increasingly more often, thus making Mladina classification a gold standard whenever clinical researches on nasal septum are concerned. More than forty clinical studies based on this classification have been performed to date. It is extremely important to make a strict distinction between the types of SD since all of them play some specific role in the nasal and general physiology in man. PMID:26167337

  15. An algorithmic approach to crustal deformation analysis

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin Baki

    1987-01-01

    In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.

  16. Deformation Mechanisms during Hot Working of Titanium

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Bieler, T. R.; Miller, J. D.; Glavicic, M. G.

    2004-06-01

    Computer models of metal flow and texture evolution during hot working require accurate descriptions of deformation mechanisms and constitutive behavior. Such descriptions for titanium alloys can be very complex because of the variety of slip systems in the hexagonal (alpha) phase, let alone the complications associated with the deformation of two-phase (alpha/beta) microstructures in commercial alloys. Methods to elucidate the deformation behavior of unalloyed alpha titanium and two-phase Ti-6Al-4V will be described. First, the analysis of the hot deformation of heavily textured bar and plate materials will be described. In these instances, the anisotropy in flow stress and in sample deformation pattern have been used in conjunction with a crystal plasticity code to deduce the relative values of the critical resolved shear stresses for basal , prism , and pyramidal slip. Analysis of the flow curves has also provided insight into the micromechanism of flow softening in two-phase alloys with colony-alpha microstructures. To complement this work, an x-ray line broadening technique was developed to deduce the relative slip activity at large strains in unalloyed titanium and Ti-6Al-4V. These measurements also provided estimates of the dislocation density as a function of temperature and the competition between slip and twinning at cold-working temperatures.

  17. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  18. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  19. Interfacial diffusion aided deformation during nanoindentation

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; E, Weinan

    2016-07-01

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material's ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.

  20. Survey of Reflection-Asymmetric Nuclear Deformations

    NASA Astrophysics Data System (ADS)

    Olsen, Erik; Birge, Noah; Erler, Jochen; Nazarewicz, Witek; Perhac, Alex; Schunck, Nicolas; Stoitsov, Mario; Nuclei Collaboration

    2015-10-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. Overall, 140 even-even nuclei (near and among the lantanides and actinides and in the superheavy region near N = 184) were predicted by all 6 EDFs to have a pear-like deformation. The case of 112Xe also proved curious as it was predicted by 5 EDFs to have a pear-like deformation despite its proximity to the two-proton drip line. Deceased.

  1. Feature-driven deformation for dense correspondence

    NASA Astrophysics Data System (ADS)

    Ghosh, Deboshmita; Sharf, Andrei; Amenta, Nina

    2009-02-01

    Establishing reliable correspondences between object surfaces is a fundamental operation, required in many contexts such as cleaning up and completing imperfect captured data, texture and deformation trans- fer, shape-space analysis and exploration, and the automatic generation of realistic distributions of objects. We present a method for matching a template to a collection of possibly target meshes. Our method uses a very small number of user-placed landmarks, which we augment with automatically detected feature correspondences, found using spin images. We deform the template onto the data using an ICP-like framework, smoothing the noisy correspondences at each step so as to produce an averaged motion. The deformation uses a dierential representation of the mesh, with which the deformation can be computed at each iteration by solving a sparse linear system. We have applied our algorithm to a variety of data sets. Using only 11 landmarks between a template and one of the scans from the CEASAR data set, we are able to deform the template, and correctly identify and transfer distinctive features, which are not identied by user-supplied landmarks. We have also successfully established correspondences between several scans of monkey skulls, which have dangling triangles, non-manifold vertices, and self intersections. Our algorithm does not require a clean target mesh, and can even generate correspondence without trimming our extraneous pieces from the target mesh, such as scans of teeth.

  2. The Connell Sum Sequence

    NASA Astrophysics Data System (ADS)

    Bullington, Grady D.

    2007-01-01

    The Connell sum sequence refers to the partial sums of the Connell sequence. In this paper, the Connell sequence, Connell sum sequence and generalizations from Iannucci and Mills-Taylor are interpreted as sums of elements of triangles, relating them to polygonal number-stuttered arithmetic progressions. The n-th element of the Connell sum sequence is established as a sharp upper bound for the value of a gamma-labeling of a graph of size n. The limiting behavior and a explicit formula for the Connell (m,r)-sum sequence are also given.

  3. Isotopic age constraints on middle Paleozoic deformation in the northern Sierra Nevada, California

    SciTech Connect

    Saleeby, J.; Hannah, J.L.; Varga, R.J.

    1987-08-01

    Allochthons of the lower Paleozoic Shoo Fly Complex in the northern Sierra Nevada were assembled and internally deformed prior to formation of a Devonian-Permian island-arc sequence. U/Pb data on zircons indicate ages of 423 +5/-15 Ma for a submarine tuff within the uppermost thrust slice of the Shoo Fly Complex and 378 +5/-10 Ma for a granitic intrusion that may be cogenetic with the lower part of the arc sequence. These data indicate late Early Silurian Shoo Fly deposition and proximity to active volcanism, as well as late Middle Devonian initiation of arc-related magmatism.

  4. Genome Sequence Databases (Overview): Sequencing and Assembly

    SciTech Connect

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  5. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.).

    PubMed

    Lanzi, Gaetana; de Miranda, Joachim R; Boniotti, Maria Beatrice; Cameron, Craig E; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M; Rossi, Cesare

    2006-05-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5' nontranslated leader sequence and a 317-nucleotide 3' nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus.

  6. Molecular and Biological Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.)

    PubMed Central

    Lanzi, Gaetana; de Miranda, Joachim R.; Boniotti, Maria Beatrice; Cameron, Craig E.; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M.; Rossi, Cesare

    2006-01-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5′ nontranslated leader sequence and a 317-nucleotide 3′ nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus. PMID:16641291

  7. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  8. Transplacental infection of Coxsackievirus B3 pathological findings in the fetus.

    PubMed

    Konstantinidou, Anastasia; Anninos, Hector; Spanakis, Nikolaos; Kotsiakis, Xenophon; Syridou, Garyfallia; Tsakris, Athanassios; Patsouris, Efstratios

    2007-06-01

    Coxsackievirus intrauterine infection has been documented mostly on the basis of indirect evidence of transplacental transmission, with neonatal manifestations ranging from asymptomatic infection to meningoencephalitis, myocarditis, and generalized sepsis. This is the first report of prenatal findings and fetoplacental pathology in a third trimester fetus with coxsackie B3 transplacental infection confirmed by molecular techniques. Prenatal ultrasound detected severe reduction of fetal movements at the 27th week. Late onset fetal akinesia deformation sequence with mild arthrogryposis, necrotic meningoencephalitis with vascular calcifications, interstitial pneumonitis, mild myocardial hypertrophy, and chronic monocytic placental villitis were the cardinal findings at fetal autopsy following interruption of the pregnancy.

  9. Odd-odd deformed proton emitters.

    PubMed

    Ferreira, L S; Maglione, E

    2001-02-26

    Proton decay from odd-odd deformed nuclei is a long-standing unsolved problem. We present for the first time an exact solution using single particle Nilsson resonances. The lifetime is found to depend strongly on the single particle level occupied by the unpaired neutron, allowing a clear assignment of its Nilsson level. The emitters 112Cs, 140Ho, 150Lu, and 150Lu(m) are considered. The agreement with the experimental data is very good with deformations 0.1deformation 0.16

  10. Passive deformation analysis of human leukocytes.

    PubMed

    Dong, C; Skalak, R; Sung, K L; Schmid-Schönbein, G W; Chien, S

    1988-02-01

    The following analysis presents an experimental and theoretical study of the passive viscoelastic behavior of human leukocytes. Individual neutrophils in EDTA were observed both during their partial aspiration into a small micropipette and after expulsion from a large micropipette where the cell had been totally aspirated and deformed into a sausage shape. To analyze the data, a passive model of leukocyte rheology has been developed consisting of a cortical shell containing a Maxwell fluid which describes the average properties of the cell cytoplasm. The cortical shell represents a crosslinked actin layer near the surface of the cell and is assumed to be under pre-stressed tension. This model can reproduce the results of experiments using micropipette for both short-time small deformation and slow recovery data after large deformation. In addition, a finite element scheme has been established for the same model which shows close agreement with the analytical solution.

  11. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  12. Decoherence of spin-deformed bosonic model

    SciTech Connect

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  13. Shape Determination for Deformed Electromagnetic Cavities

    SciTech Connect

    Akcelik, Volkan; Ko, Kwok; Lee, Lie-Quan; Li, Zhenghai; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2007-12-10

    The measured physical parameters of a superconducting cavity differ from those of the designed ideal cavity. This is due to shape deviations caused by both loose machine tolerances during fabrication and by the tuning process for the accelerating mode. We present a shape determination algorithm to solve for the unknown deviations from the ideal cavity using experimentally measured cavity data. The objective is to match the results of the deformed cavity model to experimental data through least-squares minimization. The inversion variables are unknown shape deformation parameters that describe perturbations of the ideal cavity. The constraint is the Maxwell eigenvalue problem. We solve the nonlinear optimization problem using a line-search based reduced space Gauss-Newton method where we compute shape sensitivities with a discrete adjoint approach. We present two shape determination examples, one from synthetic and the other from experimental data. The results demonstrate that the proposed algorithm is very effective in determining the deformed cavity shape.

  14. Finite deformation of elasto-plastic solids

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1973-01-01

    A theoretical basis is established for analysis of finite deformation of metals. The observation that finite deformation of such elastoplastic materials may be viewed as a process rather than an event leads to derivation of a complete initial and boundary value problem distinguished by its quasilinear nature. This feature of the formulation motivates adoption of an incremental approach to numerical problem solving. Numerical solution capability is established for problems of plane stress and plane strain. The validity of the theory and numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation for which analytic solutions are available. Subsequently the analysis is employed for the investigation of necking in flat metal tensile bars. The results of this investigation provide the first full numerical solutions for tensile necking in plane stress and plane strain. In addition a basis is provided for assessment of the validity of stress-strain relations inferred from tensile test data.

  15. Hamiltonian deformations of Gabor frames: First steps

    PubMed Central

    de Gosson, Maurice A.

    2015-01-01

    Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903

  16. Deformed Kac Moody and Virasoro algebras

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; Queiroz, A. R.; Marques, A. M.; Teotonio-Sobrinho, P.

    2007-07-01

    Whenever the group {\\bb R}^n acts on an algebra {\\cal A} , there is a method to twist \\cal A to a new algebra {\\cal A}_\\theta which depends on an antisymmetric matrix θ (θμν = -θνμ = constant). The Groenewold-Moyal plane {\\cal A}_\\theta({\\bb R}^{d+1}) is an example of such a twisted algebra. We give a general construction to realize this twist in terms of {\\cal A} itself and certain 'charge' operators Qμ. For {\\cal A}_\\theta({\\bb R}^{d+1}), Q_\\mu are translation generators. This construction is then applied to twist the oscillators realizing the Kac-Moody (KM) algebra as well as the KM currents. They give different deformations of the KM algebra. From one of the deformations of the KM algebra, we construct, via the Sugawara construction, the Virasoro algebra. These deformations have an implication for statistics as well.

  17. Hamiltonian deformations of Gabor frames: First steps.

    PubMed

    de Gosson, Maurice A

    2015-03-01

    Gabor frames can advantageously be redefined using the Heisenberg-Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed - as the title suggests - as the very first steps towards a general deformation theory for Gabor frames.

  18. Yang-Baxter deformations of Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Sakamoto

    2016-01-01

    We discuss Yang-Baxter sigma deformations of 4D Minkowski spacetime proposed recently. To avoid the degeneracy of the standard bilinear form associated with the familiar coset ISO(1,3)/SO(1,3), we consider a slice of AdS5 in Poincaré coordinates by embedding the 4D Poincaré group into the 4D conformal group SO(2,4). With this procedure we present the metrics and B-fields as Yang-Baxter deformations which correspond to well-known backgrounds such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field.

  19. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  20. A Geometric Classification of Jaw Deformities

    PubMed Central

    Gateno, Jaime; Alfi, David; Xia, James J.; Teichgraeber, John F.

    2015-01-01

    In the United States, the most widely used classification system for jaw deformities is the one provided by the International Classification of Diseases, Clinical Modification (ICD-CM), a taxonomy scheme that is based on the World Health Organization's International Classification of Diseases (ICD). The last iteration of ICD-CM, version 10, sorts jaw deformities according to geometry, into 3 groups: anomalies of jaw size, anomalies of jaw-cranial base relationship, or unspecified. Yet these deformities can affect 6 different geometric attributes: size, position, orientation, shape, symmetry, and completeness. In clinical practice and in teaching we have found the ICD-CM classification to be incomplete and disjointed. With this in mind, we have developed a better classification system. The purpose of this paper is to present it. PMID:26608152

  1. Exactly isochoric deformations of soft solids

    NASA Astrophysics Data System (ADS)

    Biggins, John S.; Wei, Z.; Mahadevan, L.

    2014-12-01

    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in two-dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid.

  2. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  3. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  4. Sequence information signal processor

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  5. Nonparametric Combinatorial Sequence Models

    NASA Astrophysics Data System (ADS)

    Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.

  6. Roles of repetitive sequences

    SciTech Connect

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  7. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  8. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  9. Deformation of square objects and boudins

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Lan, Labao

    2004-08-01

    Some geological objects, such as clasts and boudins, may have had original shapes close to square, that have been modified by ductile deformation. We demonstrate through finite element models presented here and in earlier papers that square objects in a matrix with contrasting viscosity can deform to a variety of curved shapes. The maximum shape change is where the square edges are parallel to the principal bulk strains. Competent objects with viscosity ratio to matrix ( m) of 2-20 become barrel shaped, showing concave 'fish mouth' shortened edges. Incompetent objects ( m<1) show a narrower variety of shapes with m, all becoming smoothed to bone, dumb-bell or lobate shapes, and losing the original corners. We compare the results for square objects with linear and non-linear rheology (power law, stress exponent n=1, 3 or 10), and with previous modelling with different object-matrix proportions. Competent objects with higher n values deform slightly less, and more irregularly, than linearly viscous ( n=1) objects, but the distinctions between n=3 and 10 are only slight. The differences are even slighter (in the opposite sense) for incompetent objects. The proportion of object to matrix is as important, if not more, in controlling the deformation and shape of these objects. The results are compared via graphs of object strain and concavity versus bulk strain. The concavity graph for competent square objects with linear viscosity up to very high strain can be compared with examples of ductile boudins with barrel or fish mouth shapes. Subject to a number of assumptions, this provides a method of estimating boudin-matrix viscosity ratios and post-boudinage ductile strain, of potential use in highly deformed rocks lacking other strain markers. The approach may also be suitable for deformed porphyroblasts, but is more difficult to apply to single clasts in breccias and conglomerates.

  10. Schur monotone decreasing sequences

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Rasul; Saburov, Mansoor; Saburov, Khikmat

    2013-09-01

    In this paper, we introduce Schur monotone decreasing sequences in an n-dimensional space by considering a majorization pre-order. By means of down arrow mappings, we study omega limiting points of bounded Schur monotone decreasing sequences. We provide convergence criteria for such kinds of sequences. We prove that a Cesaro mean (or an arithmetic mean) of any bounded Schur monotone decreasing sequences converges to a unique limiting point.

  11. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  12. Strain accommodation in inelastic deformation of glasses

    SciTech Connect

    Murali, P.; Ramamurty, U.; Shenoy, Vijay B.

    2007-01-01

    Motivated by recent experiments on metallic glasses, we examine the micromechanisms of strain accommodation including crystallization and void formation during inelastic deformation of glasses by employing molecular statics simulations. Our atomistic simulations with Lennard-Jones-like potentials suggests that a softer short range interaction between atoms favors crystallization. Compressive hydrostatic strain in the presence of a shear strain promotes crystallization whereas a tensile hydrostatic strain is found to induce voids. The deformation subsequent to the onset of crystallization includes partial reamorphization and recrystallization, suggesting important atomistic mechanisms of plastic dissipation in glasses.

  13. Metabolic dependence of red cell deformability

    PubMed Central

    Weed, Robert I.; LaCelle, Paul L.; Merrill, Edward W.

    1969-01-01

    The contribution of the metabolic state of human erythrocytes to maintenance of cellular deformability was studied during and after in vitro incubation in serum for periods up to 28 hr. An initial loss of membrane deformability became apparent between 4 and 6 hr when cellular adenosine triphosphate (ATP) levels were approximately 70% of initial values. Membrane deformability then remained stable between 6 and 10 hr. After 10 hr, when cellular ATP had decreased to < 15% of initial values, progressive parallel changes occurred in red cell calcium which increased 400% by 24 hr and in the viscosity of red cell suspensions which had risen 500-750% at 24 hr. A further progressive decrease in membrane deformability also occurred and was reflected by a 1000% increase in negative pressure required to deform the membrane. Red cell filterability decreased to zero as the disc-sphere shape transformation ensued. These changes were accompanied by an increase in ghost residual hemoglobin and nonhemoglobin protein. Regeneration of ATP in depleted cells by incubation with adenosine produced significant reversal of these changes, even in the presence of ouabain. Introduction of calcium into reconstituted ghosts prepared from fresh red cells mimicked the depleted state, and introduction of ATP, ethylenediamine tetraacetate (EDTA), and magnesium into depleted cells mimicked the adenosine effects in intact depleted cells. ATP added externally to 24-hr depleted cells was without effect. Simultaneous introduction of EDTA, ATP, or magnesium along with calcium into reconstituted ghosts prevented the marked decrease in deformability produced by calcium alone. Incorporation of adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), NADP, reduced form (NADPH), glutatione, reduced form (GSH), inosine triphosphate (ITP), guanosine triphosphate (GTP), and uridine triphosphate (UTP) was without effect. These data suggest that a major role of ATP in maintenance

  14. The crossover toe and valgus toe deformity.

    PubMed

    Sferra, James; Arndt, Steven

    2011-12-01

    Second toe problems are among the most common of all forefoot complaints. Its proximity to the hallux combined with limited motion at the second tarsometatarsal joint likely contributes to the second MTP joint being the most common to experience both pain and deformity. Many causes have been linked to this problem, which has lead to many surgical techniques to correct this deformity. Although many techniques have been described, a systematic approach relying first on soft tissue releases and plication followed by osteotomies as necessary has lead to satisfactory outcomes in the treatment of this difficult problem.

  15. Spiderweb deformation induced by electrostatically charged insects

    NASA Astrophysics Data System (ADS)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-07-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture.

  16. Stresses and deformations in elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Topics presented deal with defining conformal and nonconformal surfaces, curvature sum and difference, and surface and subsurface stresses in elliptical contacts. Load-deflection relationships for nonconformal contacts are developed. The deformation within the contact is, among other things, a function of the ellipticity parameter and elliptic integrals of the first and second kinds. Simplified expressions that allow quick calculations of the deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented.

  17. Thermal conductivity of deformed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Rong; Zhang, Mao-Ping; Zheng, Dong-Qin; Ai, Bao-Quan

    2011-04-01

    We investigate the thermal conductivity of four types of deformed carbon nanotubes by using the nonequilibrium molecular dynamics method. It is reported that various deformations have different influences on the thermal properties of carbon nanotubes. For bending carbon nanotubes, the thermal conductivity is independent of the bending angle. However, the thermal conductivity increases lightly with xy-distortion and decreases rapidly with z-distortion. The thermal conductivity does not change with the screw ratio before the breaking of carbon nanotubes, but it decreases sharply after the critical screw ratio.

  18. A grading system for nasal dorsal deformities.

    PubMed

    Kienstra, Matthew A; Gassner, Holger G; Sherris, David A; Kern, Eugene B

    2003-01-01

    There is no uniform grading system for nasal dorsal deformities currently in general use among surgeons who perform rhinoplasty. Given the popularity of this procedure among both the general public and surgeons, it is time that there was a uniform system describing dorsal deformities. Such a system has value in the education of students of rhinology and cosmetic nasal surgery. We have developed one such system, and applied it to 100 cases. In all cases it accurately describes the major pathological conditions of the dorsum, if present, as noted on physical examination. We have found application of this system to be facile.

  19. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  20. Structure and Deformation Characteristics of Rheocast Metals.

    DTIC Science & Technology

    1980-03-01

    7 A-AO86 469 ILLINOIS UNIV AT URBANA-CHAMPAIGN DEPT OF METALLURGY --ETC FGL/ STRUCTURE AND DEFORMATION CHARACTERISTICS OF RHEOCAST METALS.(U) MAR 80...lhEEIll/ EEllEEEEEElllE I *%LS AD I AMMRC TR 80-5 I ~ STRUCTURE AND DEFORMATION I ~ CHARACTERISTICS OF RHEOCAST METALS 1 March, 1980 R. Mebrabian, F.M...a number of Rheocast alloys, (2) a comparison of the DD ,0N 1473 EDITION OF I NOV 695 OBSOLETE UCASFE ~~, ~ T~/U CLASSIFICATION OF TNIS PAGE (When

  1. Deformed Carroll particle from 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Trześniewski, Tomasz

    2014-10-01

    We consider a point particle coupled to 2 + 1 gravity, with de Sitter gauge group SO (3 , 1). We observe that there are two contraction limits of the gauge group: one resulting in the Poincaré group, and the second with the gauge group having the form AN (2) ⋉ an (2) *. The former case was thoroughly discussed in the literature, while the latter leads to the deformed particle action with de Sitter momentum space, like in the case of κ-Poincaré particle. However, the construction forces the mass shell constraint to have the form p02 =m2, so that the effective particle action describes the deformed Carroll particle.

  2. Carroll-type deformations in nonlinear elastodynamics

    NASA Astrophysics Data System (ADS)

    Rogers, C.; Saccomandi, G.; Vergori, L.

    2014-05-01

    Classes of deformations in nonlinear elastodynamics with origins in the pioneering work of Carroll are investigated for a Mooney-Rivlin material subject to body forces corresponding to a nonlinear substrate potential. Exact representations are obtained which, inter alia, are descriptive of the propagation of circularly polarized waves and motions with oscillatory spatial dependence. It is shown that a description of slowly modulated waves leads to a novel class of generalized nonlinear Schrödinger equations. The latter class, in general, is not integrable. However, a procedure is presented whereby integrable Hamiltonian subsystems may be isolated for a broad class of deformations.

  3. Vertex finding with deformable templates at LHC

    NASA Astrophysics Data System (ADS)

    Stepanov, Nikita; Khanov, Alexandre

    1997-02-01

    We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, "elastic hedgehogs" rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance.

  4. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  5. Uncovering deformation processes from surface displacements

    NASA Astrophysics Data System (ADS)

    Stramondo, Salvatore; Trasatti, Elisa; Albano, Matteo; Moro, Marco; Chini, Marco; Bignami, Christian; Polcari, Marco; Saroli, Michele

    2016-12-01

    Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic Aperture Radar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamic processes occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mapping topography and deformation at the Earth's surface. These maps are widely used in tectonics, seismology, geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting, the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures, and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.

  6. Optical Detection Of Deformations Of An Antenna

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1990-01-01

    Proposed control subsystem generates small aiming-bias signals to correct for deviations of 70-m-diameter reflector of microwave antenna from its ideal shape. Takes optical measurements to determine deformations produced by such environmental factors as wind, gravity, and thermal differentials. Using these measurements, subsystem estimates misalignment of radiation pattern caused by deformations. Signals to correct for estimated misalignment added to angle-command signals of main antenna-aiming system. To measure deviations laser ranging devices placed at base of feed on rigid intermediate reference structure, white retroreflectors placed on parts that deviate from assigned positions relative to intermediate reference structure.

  7. Bulk Metallic Glasses Deform via Slip Avalanches

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; Wright, Wendelin J.; Gu, Xiaojun; Byer, Rachel R.; Hufnagel, Todd C.; LeBlanc, Michael; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-04-01

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  8. Nasal Soft-Tissue Triangle Deformities.

    PubMed

    Foda, Hossam M T

    2016-08-01

    The soft-tissue triangle is one of the least areas attended to in rhinoplasty. Any postoperative retraction, notching, or asymmetries of soft triangles can seriously affect the rhinoplasty outcome. A good understanding of the risk factors predisposing to soft triangle deformities is necessary to prevent such problems. The commonest risk factors in our study were the wide vertical domal angle between the lateral and intermediate crura, and the increased length of intermediate crus. Two types of soft triangle grafts were described to prevent and treat soft triangle deformities. The used soft triangle grafts resulted in an excellent long-term aesthetic and functional improvement.

  9. Postural deformities in congenital nephrotic syndrome.

    PubMed Central

    Morgan, G; Postlethwaite, R J; Lendon, M; Houston, I B; Savage, J M

    1981-01-01

    Six successive cases of congenital nephrotic syndrome are described. Each one showed flexion deformities of the knees and hips, widely open anterior and posterior fontanelles, and wide separation of the skull sutures. These abnormalities were present not only in cases in which the renal histology was of the microcystic Finnish type of congenital nephrotic syndrome, but also in those in which the histological picture was one of the variants associated with congenital nephrotic syndrome. It is suggested that such abnormalities are postural deformities, possibly produced by the large placenta. Images Fig. 1 Fig. 2 PMID:7332344

  10. Creep deformation of B2 aluminides

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1992-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  11. Career Academy Course Sequences.

    ERIC Educational Resources Information Center

    Markham, Thom; Lenz, Robert

    This career academy course sequence guide is designed to give teachers a quick overview of the course sequences of well-known career academy and career pathway programs from across the country. The guide presents a variety of sample course sequences for the following academy themes: (1) arts and communication; (2) business and finance; (3)…

  12. Single Image Super-resolution using Deformable Patches

    PubMed Central

    Zhu, Yu; Zhang, Yanning; Yuille, Alan L.

    2014-01-01

    We proposed a deformable patches based method for single image super-resolution. By the concept of deformation, a patch is not regarded as a fixed vector but a flexible deformation flow. Via deformable patches, the dictionary can cover more patterns that do not appear, thus becoming more expressive. We present the energy function with slow, smooth and flexible prior for deformation model. During example-based super-resolution, we develop the deformation similarity based on the minimized energy function for basic patch matching. For robustness, we utilize multiple deformed patches combination for the final reconstruction. Experiments evaluate the deformation effectiveness and super-resolution performance, showing that the deformable patches help improve the representation accuracy and perform better than the state-of-art methods. PMID:25473254

  13. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  14. Effect of Purity Levels on the High-Temperature Deformation Characteristics of Severely Deformed Titanium

    NASA Astrophysics Data System (ADS)

    Sajadifar, Seyed Vahid; Yapici, Guney Guven

    2017-01-01

    In the present investigation, high-temperature compression tests were conducted at strain rates of 0.001 to 0.1 s-1 and at temperatures of 873 K to 1173 K (600 °C to 900 °C) in order to study the hot deformation characteristics and dynamic softening mechanisms of two different grades of commercial purity titanium after severe plastic deformation. It was observed that the effects of deformation rate and temperature are significant on obtained flow stress curves of both grades. Higher compressive strength exhibited by grade 2 titanium at relatively lower deformation temperatures was attributed to the grain boundary characteristics in relation with its lower processing temperature. However, severely deformed grade 4 titanium demonstrated higher compressive strength at relatively higher deformation temperatures (above 800 °C) due to suppressed grain growth via oxygen segregation limiting grain boundary motion. Constitutive equations were established to model the flow behavior, and the validity of the predictions was demonstrated with decent agreement accompanied by average error levels less than 5 pct for all the deformation conditions.

  15. Effect of Purity Levels on the High-Temperature Deformation Characteristics of Severely Deformed Titanium

    NASA Astrophysics Data System (ADS)

    Sajadifar, Seyed Vahid; Yapici, Guney Guven

    2017-03-01

    In the present investigation, high-temperature compression tests were conducted at strain rates of 0.001 to 0.1 s-1 and at temperatures of 873 K to 1173 K (600 °C to 900 °C) in order to study the hot deformation characteristics and dynamic softening mechanisms of two different grades of commercial purity titanium after severe plastic deformation. It was observed that the effects of deformation rate and temperature are significant on obtained flow stress curves of both grades. Higher compressive strength exhibited by grade 2 titanium at relatively lower deformation temperatures was attributed to the grain boundary characteristics in relation with its lower processing temperature. However, severely deformed grade 4 titanium demonstrated higher compressive strength at relatively higher deformation temperatures (above 800 °C) due to suppressed grain growth via oxygen segregation limiting grain boundary motion. Constitutive equations were established to model the flow behavior, and the validity of the predictions was demonstrated with decent agreement accompanied by average error levels less than 5 pct for all the deformation conditions.

  16. Importance of Mantle Viscosity in Interseismic Deformation

    NASA Astrophysics Data System (ADS)

    Wang, K.; He, J.; Hu, Y.

    2012-12-01

    The role of mantle viscosity in subduction earthquake cycles was postulated when the plate tectonics theory had just gained wide acceptance. The process was described using Elsasser's 1-D model for diffusion of stress from the subduction boundary to the plate interior. Main features of interseismic surface deformation predicted by this elegantly simple model were later verified by GPS observations following giant subduction earthquakes. However, and intriguingly, the vast majority of interseismic deformation models developed in the era of space geodesy assume an elastic Earth, incorrectly regarding interseismic deformation as a subdued mirror image of coseismic deformation. The reason is four-fold. (1) The 1-D model and subsequent 2-D viscoelastic models failed to recognize the role of rupture length in the strike direction and could not self-consistently explain deformation following medium and small earthquakes. (2) Based on global mantle viscosity models derived from glacial isostatic adjustment studies, the viscoelastic mantle should indeed behave elastically in earthquake cycles of a few hundred years. (3) The effect of viscous mantle deformation can often be equivalently described by deep fault creep in a purely elastic Earth. (4) The use of an elastic model provides convenience in inverting geodetic data to determine fault locking and creep. Here we use 3D finite element models to show that the main characteristics of surface deformation following subduction earthquakes of all sizes can be explained with a viscoelastic Earth in which the mantle wedge is less viscous than global upper-mantle average of 1020 - 1021 Pa s by one to two orders of magnitude. Following giant earthquakes, such as 1700 Cascadia, 1960 Chile, 1964 Alaska, 2004 Sumatra, and 2011 Japan, upper-plate land deformation undergoes phases of wholesale seaward motion, opposing motion of coastal and inland areas, and wholesale landward motion. The "speed" of the evolution scales inversely with

  17. Non-rigid registration of medical images based on estimation of deformation states

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Capson, David W.

    2014-11-01

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  18. Non-rigid registration of medical images based on estimation of deformation states.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2014-11-21

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  19. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  20. HIV Sequence Databases

    PubMed Central

    Kuiken, Carla; Korber, Bette; Shafer, Robert W.

    2008-01-01

    Two important databases are often used in HIV genetic research, the HIV Sequence Database in Los Alamos, which collects all sequences and focuses on annotation and data analysis, and the HIV RT/Protease Sequence Database in Stanford, which collects sequences associated with the development of viral resistance against anti-retroviral drugs and focuses on analysis of those sequences. The types of data and services these two databases offer, the tools they provide, and the way they are set up and operated are described in detail. PMID:12875108

  1. Structure and deformation behavior of Armco iron subjected to severe plastic deformation

    SciTech Connect

    Valiev, R.Z. |; Rauch, E.F.; Baudelet, B.; Ivanisenko, Yu.V.

    1996-12-01

    Structural evolutions in an Armco iron subjected to severe plastic deformation by torsion under high pressure are analyzed with conventional and high resolution electron microscopes. The substructure observed at low strains appears to shrink with increasing deformation and transforms at very high strains into grain boundaries. The resulting grain size decreases down to a constant submicrometric value. Meanwhile, the material strength, as revealed by micro hardness measurements, levels out. Dislocation densities and internal stress levels are used to discuss the structural transformations. Hydrostatic pressure and deformation temperature are believed to modify the steady-state stress level and structural size by impeding the recovery processes involving diffusion.

  2. Late Tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin

    NASA Astrophysics Data System (ADS)

    Liu, Shanpin; Li, Jijun; Stockli, Daniel F.; Song, Chunhui; Nie, Junsheng; Peng, Tingjiang; Wang, Xiuxi; He, Kuang; Hui, Zhengchuang; Zhang, Jun

    2015-08-01

    The deformation of the Tibetan Plateau is central to unraveling the process and mechanism of continental tectonics. Although most agree that crust shortening and plateau growth were protracted throughout the Cenozoic Indo-Asian collision, particular deformation histories relating to tectonic kinematics and dynamics are still incomplete due to sparseness of diagnostic geological information from plateau margin. Here we present combined investigation of stratigraphy, magnetostratigraphy, and provenance for the eastern margin of Longzhong Basin to show two reorganizations of basin formation and tectonic regime during the late Tertiary. First, the depocenter migrated from the dispersed Paleogene sequences to the Wushan-Tianshui foreland sequence during the earliest Miocene (circa 22 Ma), accompanied by shift of sedimentary provenance from double sources including the eastern Qilian block and eastern West Qinling terrain to single source within the West Qinling. It suggests reorganization of deformation from NW-SE extension to NE-SW contraction and initial uplift of the eastern West Qinling. Second, massive coarse-grained fluvial beds were revived in the Wushan Basin during the late Miocene (circa 10 Ma), associated by eastward depositional expansion and another shift of sedimentary provenance toward northeast. It reflects thrusting up of the northern edge of the West Qinling and Liupan Shan Mountains linked with relocation of crust shortening from NE-SW direction to ENE-WSW direction and accelerated deformation of northeastern Tibet. These transitions of deformation regimes imply variation of geodynamic mechanisms during the process of plateau growth.

  3. Deformations of Geometric Structures in Topological Sigma Models

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.

    2010-11-01

    We study a Lie algebra of formal vector fields Wn with it application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are described by a Hochschild cohomology of the DG-algebra A = (A,Q), Q = ∂¯+∂deform, which is defined to be the cohomology of (-1)nQ+dHoch. Here ∂¯ is the initial non-deformed BRST operator while ∂deform is the deformed part whose algebra is a Lie algebra of linear vector fields gln.

  4. Insect wing deformation measurements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Mendoza Santoyo, Fernando; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian; Gutierrez Hernandez, David Asael

    2010-03-15

    An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps.

  5. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  6. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    PubMed Central

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  7. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    PubMed

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests.

  8. Deforming Etna's Basement: Implications for Edifice stability.

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2013-04-01

    At over 3 kilometers in height, Mt. Etna (Italy) is the largest volcano of continental Europe. The volcano formed on top of the alpine fold and thrust belt, with basaltic outflows lying unconformably on top of an alternation between sandstones, limestones and clays. Presently Etna's eastern flank is moving with speeds up to 2cm/yr to the east [Tibaldi and Groppelli, 2002]. It is the sequence of layers below the volcano that is thought to provide a complex, structurally controlled, mechanism to the volcano deformation as a whole. This is due to the interplay of gravitational forces, volcanic pressurization, and regional tectonics, which combine to play a complex role that remains poorly understood, especially when the physical and mechanical properties of the rocks are considered. In this study, we concentrate on the rock mechanical component, and in particular the formation known as Comiso Limestone. This limestone forms of one of the key lithologies of Etna's basement. The formation has been suggested to be affected by thermal weakening [Heap et al., 2013]. Previous work on Comiso Limestone suggests brittle behavior for the range of temperatures (up to 760 ˚C) and a significant reduction in strength with higher temperatures. [Mollo et al., 2011]. Chiodini et al [2011], speculate carbonate assimilation. This implies that the Carbondioxide created by decarbonatization, is able to escape. Using an internally heated "Paterson" type pressure vessel, we recreated conditions at 2-4 km depth (50-100 MPa) and using an anomalously high geotherm, as expected in volcanic settings (ranging from room to 600 ˚C). With the addition of confining pressure, we show a brittle to ductile transition occurs at a relatively low temperature of 300 ˚C. A significant decrease in strength occurs when the rock is exposed to temperatures exceeding 400 ˚C. In addition, we observe a significant difference in mechanical behavior between vented and unvented situations when decarbonatization is

  9. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  10. Aspirin treatment reduces platelet resistance to deformation.

    PubMed

    Burris, S M; Smith, C M; Rao, G H; White, J G

    1987-01-01

    The present investigation has evaluated the influence of aspirin, its constituents, and other nonsteroidal anti-inflammatory agents on the resistance of human platelets to aspiration into micropipettes. Aspirin increased the length of platelet extensions into the micropipette over the entire negative tension range of 0.04 to 0.40 dynes/cm after exposure to the drug in vitro or after ingestion of the agent. Other cyclooxygenase inhibitors, ibuprofen and indomethacin, did not increase platelet deformability. The influence of aspirin was mimicked to some degree by high concentrations of salicylic acid, but acetylation of platelets with acetic anhydride had little influence on platelet deformability. Incubation of platelets with both salicylic acid and acetic anhydride had no more effect than salicylic acid alone. Benzoic acid, chemically similar to salicylic acid, had a minimal effect. The studies demonstrate that aspirin makes platelets more deformable, while components of the drug or other nonsteroidal antiinflammatory agents and cyclooxygenase inhibitors do not have the same influence on resistance to deformation.

  11. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  12. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  13. Cathodoluminescence of natural, plastically deformed pink diamonds.

    PubMed

    Gaillou, E; Post, J E; Rose, T; Butler, J E

    2012-12-01

    The 49 type I natural pink diamonds examined exhibit color restricted to lamellae or bands oriented along {111} that are created by plastic deformation. Pink diamonds fall into two groups: (1) diamonds from Argyle in Australia and Santa Elena in Venezuela are heavily strained throughout and exhibit pink bands alternating with colorless areas, and (2) diamonds from other localities have strain localized near the discrete pink lamellae. Growth zones are highlighted by a blue cathodoluminescence (CL) and crosscut by the pink lamellae that emit yellowish-green CL that originates from the H3 center. This center probably forms by the recombination of nitrogen-related centers (A-aggregates) and vacancies mobilized by natural annealing in the Earth's mantle. Twinning is the most likely mechanism through which plastic deformation is accommodated for the two groups of diamonds. The plastic deformation creates new centers visible through spectroscopic methods, including the one responsible for the pink color, which remains unidentified. The differences in the plastic deformation features, and resulting CL properties, for the two groups might correlate to the particular geologic conditions under which the diamonds formed; those from Argyle and Santa Elena are deposits located within Proterozoic cratons, whereas most diamonds originate from Archean cratons.

  14. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  15. The Superluminal Neutrinos from Deformed Lorentz Invariance

    NASA Astrophysics Data System (ADS)

    Huo, Yunjie; Li, Tianjun; Liao, Yi; Nanopoulos, Dimitri V.; Qi, Yonghui; Wang, Fei

    2012-10-01

    We study two superluminal neutrino scenarios where δ v≡ (v-c)/(c) is a constant. To be consistent with the OPERA, Borexino and ICARUS experiments and with the SN1987a observations, we assume that δvν on the Earth is about three-order larger than that on the interstellar scale. To explain the theoretical challenges from the Bremsstrahlung effects and pion decays, we consider the deformed Lorentz invariance, and show that the superluminal neutrino dispersion relations can be realized properly while the modifications to the dispersion relations of the other Standard Model particles can be negligible. In addition, we propose the deformed energy and momentum conservation laws for a generic physical process. In Scenario I the momentum conservation law is preserved while the energy conservation law is deformed. In Scenario II the energy conservation law is preserved while the momentum conservation law is deformed. We present the energy and momentum conservation laws in terms of neutrino momentum in Scenario I and in terms of neutrino energy in Scenario II. In such formats, the energy and momentum conservation laws are exactly the same as those in the traditional quantum field theory with Lorentz symmetry. Thus, all the above theoretical challenges can be automatically solved. We show explicitly that the Bremsstrahlung processes are forbidden and there is no problem for pion decays.

  16. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  17. Canny edge-based deformable image registration

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  18. Deformation and Forming of Joined Materials

    SciTech Connect

    Carsley, John; Hovanski, Yuri; Clarke, Kester D.; Krajewski, Paul E.

    2014-09-23

    Introductory article to a set of invited papers from the TMS committee on shaping and forming. This paper introduces a set of papers that were prepared to discussing the deformation and forming of joined materials, and to announce an upcoming symposium at the 2015 MS&T meeting in Columbus Ohio.

  19. Deformation analysis of a lightweight metal mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Jianwei; Lin, Wumei; Liu, Guoqing; Xing, Tingwen

    2005-02-01

    The weight of the optical elements of a system used in the aviation and aerospace industry must be as light as possible, on condition that the imaging performance of the system satisfies user"s demand. However, optical elements will deform easily under internal or external pressure if it becomes thinner, and then influences the imaging performance of the whole optical system. In this paper, the main mirror of the Cassegrain system is studied with finite-element analysis (FEA) to predict its surface deformation through simulating its working conditions. The surface deformation is also tested and analyzed after machining and mounting. The obtained interferometric data, Zernike coefficients, is written into CODE V, an excellent software for designing optical systems, to analyze the imaging performance of the designed optical system. Through analyzing the deformation of the metal mirror it can be found that the maxima RMS change of the whole optical system is 0.0059λ, which is only 1.52 percent of the designed value. In the full field of view, the RMS error is less than 0.07λ, that means the imaging performance of the whole optical system is close to the diffraction limit.

  20. On Lorentz Transformations in Symplectic Deformations

    SciTech Connect

    Cuesta, R.; Sabido, M.; Guzman, W.

    2010-07-12

    In this paper we study noncommutative Lorentz transformations using symplectic deformations. In this framework we define an infinitesimal line element that is invariant under this noncommutative Lorentz transformations. Using the symplectic geometry formalism, we find that noncommutative Lorentz transformations intertwine the canonical momentums with canonical position coordinates.

  1. Reports on crustal movements and deformations. [bibliography

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  2. Is microrheometry affected by channel deformation?

    PubMed Central

    Greco, Francesco; Netti, Paolo Antonio

    2016-01-01

    Microrheometry is very important for exploring rheological behaviours of several systems when conventional techniques fail. Microrheometrical measurements are usually carried out in microfluidic devices made of Poly(dimethylsiloxane) (PDMS). Although PDMS is a very cheap material, it is also very easy to deform. In particular, a liquid flowing in a PDMS device, in some circumstances, can effectively deform the microchannel, thus altering the flow conditions. The measure of the fluid relaxation time might be performed through viscoelasticity induced particle migration in microfluidics devices. If the channel walls are deformed by the flow, the resulting measured value of the relaxation time could be not reliable. In this work, we study the effect of channel deformation on particle migration in square-shaped microchannel. Experiments are carried out in several PolyEthylene Oxyde solutions flowing in two devices made of PDMS and Poly(methylmethacrylate) (PMMA). The relevance of wall rigidity on particle migration is investigated, and the corresponding importance of wall rigidity on the determination of the relaxation time of the suspending liquid is examined. PMID:27098237

  3. Recent plate motions and crustal deformation

    SciTech Connect

    Lisowski, M. )

    1991-01-01

    Reports by U.S. workers on geodetic measurements of recent plate motions or crustal deformation published in 1987-1990 are reviewed. The review begins with global plate motions, proceeds through plate boundaries in California, Alaska, and the Pacific Northwest, and finishes with volcanic phenomena, monument stability and longevity, and GPS relative position measurements. 184 refs.

  4. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  5. Obelionic cranial deformation in the Puebloan Southwest.

    PubMed

    Nelson, Greg C; Madimenos, Felicia C

    2010-11-01

    As a form of cranial deformation, obelionic flattening is rare. Originally named and described by Stewart (J Wash Acad Sci 29 (1939) 460-465), based on a small sample from Florida, it has been little noted since. Previously [Nelson and Madimenos, Paper presented at the Paleopathology Association annual meeting (2007)], we reported the discovery of two individuals from the Pueblo III Gallina site of Cañada Simon I who exhibit flattening of this type. Although technically undescribed in the Southwest before now, there are tantalizing clues in the literature that it occurred in low frequencies throughout the Ancestral Pueblo world. To determine whether the obelionic flattening found at Cañada Simon I was isolated or an indication of a more widespread phenomenon, we undertook a survey of crania from other Gallina sites, Chaco Canyon, and the literature (type of deformation can be determined on lateral photographs of crania properly positioned along the Frankfort Horizontal). We examined 146 crania (78 firsthand) of which seven exhibit obelionic flattening. Our results indicate that obelionic flattening should be added to the suite of cranial deformations that occur in the Southwest. Here, we propose parameters by which obelionic flattening can be described and differentiated from the more common lambdoidal and occipital forms and suggest that the three types of flattening form a continuum of cradleboard induced deformation, although the exact mechanism for obelionic flattening remains elusive. Am J Phys Anthropol, 2010. © 2010 Wiley-Liss, Inc.

  6. Shear deformation in thick auxetic plates

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2013-08-01

    This paper aims to understand the effect of auxeticity on shear deformation in thick plates. Three models for the shear correction factor of plates as a function of Poisson’s ratio were proposed: an analytical model, a cubic fit model and a modified model. Of these three, the cubic fit model exhibits the best accuracy over the entire range of Poisson’s ratio from -1 to 0.5. The extent of shear deformation is herein investigated using the example of uniformly loaded circular plates. It was found that the maximum deformation of such plates based on Mindlin theory approximates to those according to Kirchhoff theory when the Poisson’s ratio of the plate material is highly negative. When the Poisson’s ratio of the plate material is -1 and the edge of the plate is simply supported, the calculation of the maximum deflection by Mindlin theory simplifies into that by Kirchhoff theory. These results suggest that auxeticity reduces shear deformation in thick plates, permitting the use of classical plate theory for thick plates only if the plate material is highly auxetic.

  7. Large Actuator Count MEMS Deformable Mirror Development

    DTIC Science & Technology

    2010-06-07

    Large-actuator-count deformable mirrors (DM) are essential for high-contrast imaging systems NASA is developing for exoplanet detection. These same...applications: Nulling coronagraphs for exoplanet imaging, Atmospheric turbulence compensation for free-space laser communication, laser guide star

  8. A microfluidic technique to probe cell deformability.

    PubMed

    Hoelzle, David J; Varghese, Bino A; Chan, Clara K; Rowat, Amy C

    2014-09-03

    Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~10(2) cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior.

  9. Deformation of a micro-torque swimmer

    PubMed Central

    Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki

    2016-01-01

    The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893

  10. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  11. Habit tic deformity secondary to guitar playing.

    PubMed

    Wu, Jashin J

    2009-03-15

    A 29-year-old man exhibited linear ridges of the right thumbnail that had been present for ten years. After he stopped playing the guitar for three months, the proximal portion of the abnormality cleared. Nail changes similar to the habit tic deformity may be produced by guitar playing.

  12. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  13. Measuring High Speed Deformation for Space Applications

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2014-01-01

    PDV (Photonic Doppler Velocimetry) has proven to be a reliable and versatile technique to observe rapid deformation of frangible joints. It will be a valuable technique in order to understand the physics of two-stage light gas guns and the material response to hypervelocity impact.

  14. Vesicle deformation by microtubules: A phase diagram

    NASA Astrophysics Data System (ADS)

    Emsellem, Virginie; Cardoso, Olivier; Tabeling, Patrick

    1998-10-01

    The experimental investigation of vesicles deformed by the growth of encapsulated microtubules shows that the axisymmetric morphologies can be classified into ovals, lemons, φ, cherries, dumbbells, and pearls. A geometrical phase diagram is established. Numerical minimization of the elastic energy of the membrane reproduces satisfactorily well the observed morphologies and the corresponding phase diagram.

  15. Application of high resolution geophysical prospecting to assess the risk related to subsurface deformation in Mexico City

    NASA Astrophysics Data System (ADS)

    Centeno-Salas, F. A.; Carreón-Freyre, D.; Flores-García, W. A.; Gutiérrez-Calderón, R. I.

    2015-11-01

    In the eastern sector of Mexico City the sub soil consists of high contrasting sequences (lacustrine and volcanic inter bedded deposits) that favor the development of erratic fracturing in the surface causing damage to the urban infrastructure. The high-resolution geophysical prospecting are useful tools for the assessment of ground deformation and fracturing associated with land subsidence phenomena. The GPR method allowed to evaluate the fracture propagation and deformation of vulcano-sedimentary sequences at different depths, the main electrical parameters are directly related with the gravimetric and volumetric water content and therefore with the plasticity of the near surface prospected sequences. The active seismology prospection consisted in a combination of Seismic Refraction (SR) and Multichannel Analysis of Surface Waves (MASW) for the estimation of the velocity of the mechanical compressive (P) and the shear (S) waves. The integration of both methods allowed to estimate the geomechanical parameters characterizing the studied sequence, the Poisson Ratio and the volumetric compressibility. The obtained mechanical parameters were correlated with laboratory measured parameters such as plasticity index, density, shear strength and compressibility and, GPR and seismic profiles were correlated with the mapped fracture systems in the study area. Once calibrated, the profiles allowed to identify the lithological contact between lacustrine and volcanic sequences, their variations of thicknesses in depth and to assess the deformation area in the surface. An accurate determination of the geometry of fracturing was of the most importance for the assessment of the geological risk in the study area.

  16. Spinal deformity in children treated for neuroblastoma

    SciTech Connect

    Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.; Nehme, M.E.

    1981-02-01

    Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis with a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.

  17. Offshore Deformation Front in Miaoli Area

    NASA Astrophysics Data System (ADS)

    Chiang, P.; Gwo-shyn, S.

    2015-12-01

    Taiwan is located at the junction of the Eurasian Plate and the Philippine Sea Plate. It's because arc-continent collision occurs in the western Taiwan, resulting in the orogeny has formed a fold-and-thrust belt, developing a series of thrusts aligned in north-south direction. The thrust faults, locating in the central island, are the oldest and have almost inactive. Westward to the island, the faults become younger, dipping angles are smaller, and motions were stronger. On the west side, the foot of the Taiwan Western Foothill is considered the youngest thrust faults located along west Taiwan. Scholars recognized them as so-called the deformation front, and they also believed that the deformation front is located in between the compressive terrain uplifted area and the extensional subsidence area. Therefore, this front line is on the boundary of two different tectonic zones. This study investigates the trace of the deformation front in Miaoli area. Previous studies suggested that the west side of Miaoli collision zone should be fault-bounded, and is located in the seabed. However, in the geological map, there is no geologic evidence that appears on land and so-called active faults related with this deformation front. In the near coast seafloor, according to the reflection earthquakes data from the Institute of Oceanography of NTU, we can only see the offshore strata have been uplifted, and the data also shows that seabed is only covered by thin layer of sediments. This study indicates that in offshore place within three kilometers, shallow formations show a special layer of slime which was extruded to be corrugated transversely. Accordingly, we believe that this slime layer should be pressurized and filled with muddy water. Such features should be further investigated with other geological and geophysical survey data to check if they belong to the structural product of the deformation front.

  18. Crustal deformation measurements in Guerrero, Mexico

    USGS Publications Warehouse

    Larson, K.M.; Lowry, A.R.; Kostoglodov, V.; Hutton, W.; Sanchez, O.; Hudnut, K.; Suarez, G.

    2004-01-01

    GPS measurements of crustal deformation in Guerrero, southern Mexico, include surveys collected between 1992 and 2001 as well as continuous GPS measurements at a few sites. These geodetic observations are used to calculate interseismic deformation rates and assess the presence and possible location of transient deformation during the period encompassing 1992.25 to 2001.75. The data are used to examine transient deformation in 1998 previously described from data at a single site by Lowry et al. [2001]. Survey measurements and continuous data from a site near Popocate??petl volcano confirm the 1998 transient, and survey data also suggest another transient occurred following the 14 September 1995 (Mw = 7.3) Copala earthquake. All of the available GPS position estimates have been inverted for a combined model of slip during each event plus the steady state slip on the plate interface. Modeling of the steady state deformation rates confirms that the Guerrero seismic gap is partially frictionally locked at depths shallower than about 25 km and accumulating strain that may eventually be released in a great earthquake. The data also suggest that there is frictional coupling to much greater (>40 km) depths, which releases more frequently in aseismic slip events. The locations and sizes of the transient events are only partially constrained by the available data. However, the transient models which best fit the GPS coordinate time series suggest that aseismic slip was centered downdip of the seismogenic portion of the plate-bounding thrust in both events, and the moment release had equivalent magnitudes Mw = 7.1 + 1.3/-1.0 in 1995-1996 and 7.1 + 0.4/-0.1 in 1998. Copyright 2004 by the American Geophysical Union.

  19. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  20. Asymmetric deformation of contracting human gastrocnemius muscle.

    PubMed

    Kinugasa, Ryuta; Hodgson, John A; Edgerton, V Reggie; Sinha, Shantanu

    2012-02-01

    Muscle fiber deformation is related to its cellular structure, as well as its architectural arrangement within the musculoskeletal system. While playing an important role in aponeurosis displacement, and efficiency of force transmission to the tendon, such deformation also provides important clues about the underlying mechanical structure of the muscle. We hypothesized that muscle fiber cross section would deform asymmetrically to satisfy the observed constant volume of muscle during a contraction. Velocity-encoded, phase-contrast, and morphological magnetic resonance imaging techniques were used to measure changes in fascicle length, pinnation angle, and aponeurosis separation of the human gastrocnemius muscle during passive and active eccentric ankle joint movements. These parameters were then used to subsequently calculate the in-plane muscle area subtended by the two aponeuroses and fascicles and to calculate the in-plane (dividing area by fascicle length), and through-plane (dividing muscle volume by area) thicknesses. Constant-volume considerations of the whole-muscle geometry require that, as fascicle length increases, the muscle fiber cross-sectional area must decrease in proportion to the length change. Our empirical findings confirm the definition of a constant-volume rule that dictates that changes in the dimension perpendicular to the plane, i.e., through-plane thickness, (-6.0% for passive, -3.3% for eccentric) equate to the reciprocal of the changes in area (6.8% for passive, 3.7% for eccentric) for both exercise paradigms. The asymmetry in fascicle cross-section deformation for both passive and active muscle fibers is established in this study with a ∼22% in-plane and ∼6% through-plane fascicle thickness change. These fiber deformations have functional relevance, not only because they affect the force production of the muscle itself, but also because they affect the characteristics of adjacent muscles by deflecting their line of pull.

  1. Dynamic deformability of sickle red blood cells in microphysiological flow.

    PubMed

    Alapan, Y; Matsuyama, Y; Little, J A; Gurkan, U A

    2016-06-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell's aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events.

  2. Deformation heterogeneity and texture in surface severe plastic deformation of copper

    PubMed Central

    Wang, Zhiyu; Saldana, Christopher

    2016-01-01

    Comprehensive understanding of thermomechanical response and microstructure evolution during surface severe plastic deformation (S2PD) is important towards establishing controllable processing frameworks. In this study, the evolution of crystallographic textures during directional surface mechanical attrition treatment on copper was studied and modelled using the visco-plastic self-consistent framework. In situ high-speed imaging and digital image correlation of surface deformation in circular indentation were employed to elucidate mechanics occurring in a unit process deformation and to calibrate texture model parameters. Material response during directional surface mechanical attrition was simulated using a finite-element model coupled with the calibrated texture model. The crystallographic textures developed during S2PD were observed to be similar to those resultant from uniaxial compression. The implications of these results towards facilitating a processing-based framework to predict deformation mechanics and resulting crystallographic texture in S2PD configurations are briefly discussed. PMID:27118907

  3. Deformation and recrystallization texture development in Fe-4%Si subjected to large shear deformation

    NASA Astrophysics Data System (ADS)

    Kustas, A. B.; Sagapuram, D.; Chandrasekar, S.; Trumble, K. P.

    2015-04-01

    Machining is used as a deformation technique to impose large shear strains (γ ˜ 2) in a commercial Fe-4%Si alloy. The partial <111> and {110} - fiber texture components are generated throughout the as-deformed microstructure, which is expected of BCC metals deformed in simple shear. Using an annealing schedule similar to that in the commercial rolling process, samples retain the deformation texture, consistent with a continuous-type recrystallization mechanism. Fine-grained annealed samples reveal two different partial fiber orientations, one of which becomes the dominate texture, following the high-temperature growth treatment. The mechanisms of texture evolution and implications for texture control in the machining-based process are discussed.

  4. Intraplate deformation due to continental collisions: A numerical study of deformation in a thin viscous sheet

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Morgan, R. C.

    1985-01-01

    A model of crustal deformation from continental collision that involves the penetration of a rigid punch into a deformable sheet is investigated. A linear viscous flow law is used to compute the magnitude and rate of change of crustal thickness, the velocity of mass points, strain rates and their principal axes, modes of deformation, areal changes, and stress. In general, a free lateral boundary reduces the magnitude of changes in crustal thickening by allowing material to more readily escape the advancing punch. The shearing that occurs diagonally in front of the punch terminates in compression or extension depending on whether the lateral boundary is fixed or free. When the ratio of the diameter of the punch to that of the sheet exceeds one-third, the deformation is insenstive to the choice of lateral boundary conditions. When the punch is rigid with sharply defined edges, deformation is concentrated near the punch corners. With non-rigid punches, shearing results in deformation being concentrated near the center of the punch. Variations with respect to linearity and nonlinearity of flow are discussed.

  5. Interfacial segregation and deformation of superplastically deformed Al-Mg-Mn alloys

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Bruemmer, S.M.

    1995-03-01

    Microstructural and microchemical studies have been carried out on superplastically deformed Al-Mg-Mn (AA5083-type) alloys. Grain boundary composition was measured using a Scanning Auger Microprobe (SAM) and an Analytical Transmission Electron Microscope (ATEM), while conventional TEM was used for microstructural evaluation. Non-equilibrium segregation of Si to grain boundaries following deformation was measured by both techniques. Significant interfacial Si enrichment was only detected in gage sections of tensile specimens after uniaxial strains from 50 to 200%. Grip regions which experience identical thermal histories, but without plastic deformation, did not reveal Si segregation. Selected samples also showed a slight depletion of Mg at grain boundaries after deformation. The only reproducible observation of equilibrium segregation was in Zr-modified alloys, where Sn was detected by SAM in both the deformed and undeformed sections of the sample. Microstructural analysis documented subgrain formation and subgrain-precipitate interactions during superplastic deformation. In addition, many grain boundaries and precipitate interfaces contained small (5 to 20 nm) voids. Compositional analysis of these nano-voids revealed that they were enriched in Mg with the adjacent boundary regions correspondingly depleted.

  6. Minor Groove Deformability of DNA: A Molecular Dynamics Free Energy Simulation Study

    PubMed Central

    Zacharias, Martin

    2006-01-01

    The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was ∼4–6 kcal mol−1 in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly (∼2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case. PMID:16698780

  7. The behavior of a convergent plate boundary - Crustal deformation in the South Kanto district, Japan

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Kato, T.

    1978-01-01

    The northwesternmost part of the Sagami trough, a part of the Philippine Sea-Eurasian plate boundary, was ruptured during the great South Kanto earthquake in 1923. Very extensive and frequent geodetic measurements of crustal deformation have been made in the South Kanto district since the 1890's, and these constitute the most complete data set on crustal movements in the world. These data were reanalyzed and interpreted and according to our interpretation indicate the following sequence of events. The coseismic movements were due to oblique thrust and right lateral slip of about 8 m on a fault outcropping at the base of the Sagami trough. This was followed by postseismic deformation resulting from reversed afterslip of 20-60 cm that occurred at an exponentially decaying rate in time. The interseismic deformation is produced by steady subduction at a rate of about 1.8 cm/yr. During subduction the top 10-15 km of the plate boundary is apparently locked, while deeper parts slip aseismically at an irregular rate. No significant precursory deformation was observed. The recurrence time for 1923 type earthquakes is 200-300 years. The Boso and Miura peninsulas are broken into a series of fault-bound blocks that move semi-independently of the surrounding region. The subduction zone itself, where it is exposed on land, is shown to be a wide zone encompassing several faults that are active at different times.

  8. Characterization of cell deformation and migration using a parametric estimation of image motion.

    PubMed

    Germain, F; Doisy, A; Ronot, X; Tracqui, P

    1999-05-01

    This paper deals with the spatio-temporal analysis of two-dimensional deformation and motion of cells from time series of digitized video images. A parametric motion approach based on an affine model has been proposed for the quantitative characterization of cellular movements in different experimental areas of cellular biology including spontaneous cell deformation, cell mitosis, individual cell migration and collective migration of cell populations as cell monolayer. The accuracy and robustness of the affine model parameter estimation, which is based on a multiresolution algorithm, has been established from synthesized image sequences. A major interest of our approach is to follow with time the evolution of a few number of parameters characteristic of cellular motion and deformation. From the time-varying eigenvalues of the affine model square matrix, a precise quantification of the cell pseudopodial activity, as well as of cell division has been performed. For migrating cells, the motion quantification confirms that cell body deformation has a leading role in controlling nucleus displacement, the nucleus itself undergoing a larger rotational motion. At the cell population level, image motion analysis of in vitro wound healing experiments quantifies the heterogeneous cell populations dynamics.

  9. Ongoing deformation of Antarctica following recent Great Earthquakes

    NASA Astrophysics Data System (ADS)

    King, Matt; Santamaría-Gómez, Alvaro

    2016-04-01

    The secular motion of Antarctica is thought to be almost everywhere governed by horizontal rigid plate rotation plus three-dimensional deformations due to past and present changes in ice-ocean loading, known as glacial isostatic adjustment (GIA). We use geodetic data to investigate deformation following the 1998 magnitude ~8.1 Antarctic intra-plate Earthquake, and show sustained three-dimensional deformation along East Antarctica's coastline, 600 km from the rupture location. Using a model of viscoelastic deformation we are able to match observed northward velocity changes, and either east or height, but not all three directions simultaneously, apparently partly due to lateral variations in mantle rheology. Our modeling predicts much of Antarctica may still be deforming, with further deformation possible from the 2004 Macquarie Ridge Earthquake. This previously unconsidered mode of Antarctic deformation affects geodetic estimates of plate motion and GIA; its viscous nature raises the prospect of further present-day deformation due to earlier Great Earthquakes.

  10. Ongoing deformation of Antarctica following recent Great Earthquakes

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Santamaría-Gómez, Alvaro

    2016-03-01

    Antarctica's secular motion is thought to be almost everywhere governed by horizontal rigid plate rotation plus three-dimensional deformations due to past and present changes in ice ocean loading, known as glacial isostatic adjustment (GIA). We use geodetic data to investigate deformation following the 1998 M ~8.2 Antarctic intraplate Earthquake and show sustained three-dimensional deformation along East Antarctica's coastline, 600 km from the rupture location. Using a model of viscoelastic deformation, we are able to match observed northward velocity changes, and either east or height, but not all three directions simultaneously, apparently partly due to lateral variations in mantle rheology. Our modeling predicts that much of Antarctica may still be deforming, with further deformation possible from the 2004 M 8 Macquarie Ridge Earthquake. This previously unconsidered mode of Antarctic deformation affects geodetic estimates of plate motion and GIA; its viscous nature raises the prospect of further present-day deformation due to earlier Great Earthquakes.

  11. Gravity driven and tectonic post-seismic deformation of the April 6 2009 L'Aquila Earthquake detected by Cosmo-SkyMed DInSAR

    NASA Astrophysics Data System (ADS)

    Moro, M.; Albano, M.; Bignami, C.; Malvarosa, F.; Costantini, M.; Saroli, M.; Barba, S.; Falco, S.; Stramondo, S.

    2014-12-01

    The present work focuses on the analysis of post-seismic surface deformation detected in the area of L'Aquila, Central Italy, after the strong earthquake that hit the city and the surrounding villages on April 6th, 2009. The analysis has been carried out thanks to a new dataset of SAR COSMO-SkyMed images covering a time span of 480 days after the mainshock, with the adoption of the Persistent Scatterer Pairs (PSP) approach. This method allows the estimation of surface deformations by exploiting the SAR images at full resolution. In the investigated area two patterns of subsidence have been identified reaching a maximum value of 45 mm in the northeast area of the L'Aquila town. Here the subsidence is mainly ascribable to the post seismic slip release of the Paganica fault and it does not coincide with the maximum measured coseismic subsidence. The time series of the ground deformations also reveal that a large amount of deformation is released in the first three months after the main shock. The second pattern of deformation is centered on the Mt. Ocre ridge, where a detailed photogeological analysis allowed us to identify widespread evidence of morphological elements associated with Deep-seated gravitational slope deformation (DGSD). In particular geomorphologic analyses show evidences of lateral spread DGSD-type features, characterized by the tectonic superimposition of carbonatic sequences and transitional pelagic deposits. In this sector, the observed deformation is ascribable not only to the afterslip of the Paganica fault, but also to a gravitative cause. In order to confirm or reject such hypothesis a 2D numerical finite element models considering two cross sections over the Mt. Ocre ridge has been performed. The coseismic and postseimic deformations have been simulated numerically, considering an elastic-perfectly plastic rheology for the constituent rocks. First results show that most of the postseismic deformation is ascribable to the plastic deformation

  12. Microstructural Analysis of Welding: Deformation and Strain

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, K.

    2003-12-01

    Welding in pyroclastic deposits involves the sintering, compaction and flattening of hot glassy particles and is attended by systematic changes in physical properties. Welded materials contain implicit information regarding the total accumulated strain as well as the mechanisms of deformation. Here, we use detailed microstructural analysis of synthetic and natural welded materials to make quantitative estimates of strain and constrain the rheology of these materials during the welding process. Part one of our study comprises microstructural analysis of end products from unconfined high temperature deformation experiments on sintered cores of soda-lime silica glass spheres. This analogue material has relatively simple and well-characterized starting properties. Furthermore, the initially spherical shapes of particles provide excellent strain markers. Experiments were run at a variety of temperatures, strain rates and stresses resulting in end products with varying degrees of total strain. The nature of strain partitioning and accumulation are evaluated using image analysis techniques on scanned images and photomicrographs of thin sections cut perpendicular to the loading direction of each experimental product. Shapes of the individual deformed particles (e.g., oblate spheroids) were determined and the Scion image analysis program was used to create a best-fit ellipse for each particle. Statistics collected on each particle include: axial dimension (a), vertical dimension (c) and angle from the horizontal. The data are used to calculate the oblateness of each particle (1-c/a) and the angle of deformation induced foliation. Furthermore, the relative proportions of visible blue epoxy in the sample scans determine bulk porosity. The average oblateness of the particles is a direct, independent measure of the accumulated strain in each sample. Results indicate that these measured values are equal to calculated theoretical values of oblateness for spheroids undergoing the

  13. Deformation-induced magma degassing (Invited)

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Pommier, A.; Pistone, M.; Castro, J. M.; Burgisser, A.

    2009-12-01

    The style and rate of magma degassing during its rise in volcanic conduits controls the eruptive behavior of volcanoes. For example, the transition from extremely explosive to an effusive eruption of lava, as observed recently at Chaitén volcano, Chile, may be the consequence of efficient degassing of highly viscous magmas through a permeable bubble network. Magma experiences extensive shear deformation along conduit walls during its rise to the surface, which could enhance gas bubble coalescence and favor degassing of magma at depth. We performed a series of simple shear deformation experiments using an internally heated Paterson-type apparatus, on bubbly magmas at 100 MPa confining pressure and temperatures between 823 and 873K. Crystal free silicate-melt of tephri-phonolitic composition containing about 15 vol.% H2O-pressurized bubbles was used for the experiments. The experimental products were analyzed both in two and three-dimensions using an optical microscope and a X-ray nanotomographer respectively. The water content of the starting material and the deformed samples was measured by infrared spectroscopy (FTIR). The analyses of the samples after deformation show that simple shear enhances bubble coalescence and degassing, especially at high strain (gamma~10, about 2.5 rotations). The water content of the deformed glasses is equal to the starting material at relatively low gamma (~2) while it decreases dramatically at high strain, to a value (~0.1 wt.%) much lower than the H2O-saturation limit at 100 MPa (~4.2 wt.%). An additional static experiment was performed for the same duration as the high strain experiment to check if the samples were degassing with time. The FTIR analyses confirmed that the bulk water content of the sample remains constant in the absence of shear and over the timescale of the high strain experiments. The observation that the residual water content is lower than 100 MPa-saturation value, indicates that the degassing process is not

  14. Deformation initiation and localization around inclusions

    NASA Astrophysics Data System (ADS)

    Morales, Luiz F. G.; Rybacki, Erik; Dresen, Georg

    2013-04-01

    Deformation localization along narrow zones of variable scales is a common feature in orogenic belts. Although there are a number of studies that focus on the evolution of brittle fault zones, little is known about the initiation and localization of ductile shear zones. To study the nucleation and evolution of high temperature shear zones, we performed shear experiments in marbles containing structural heterogeneities and analyzed the deformation microstructures and the resulting crystallographic orientation. Cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone were deformed in a Paterson-type gas deformation apparatus at 900 ° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4s-1to shear strains between 0.01 and 3.74. At low strains, intense twinning of calcite is observed in the calcite grains of Carrara marble near the inclusion. The distance from the tip of the inclusion in which twinning is observed increases with increasing strain. Orientation of the twin planes may vary from parallel to normal to the tip of the inclusion, and with increasing strain there is a tendency of development of "twin conjugates". Together with twinning, subgrain boundaries are observed in this region, possibly followed by initial grain size reduction. In these experiments, strain is localized into narrow bands, as revealed by misorientation maps showing the degree of internal lattice distortion of individual calcite crystals around the tip of the inclusion, reaching values from 3 to 10° , depending on the strain. Internal misorientation of grains increases with decreasing distance to the inclusion. Strain is localized into narrow, long bands extending several mm into the matrix. The

  15. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1986-01-01

    This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.

  16. Large-scale rheomorphic shear deformation in Miocene peralkaline ignimbrite E, Gran Canaria

    NASA Astrophysics Data System (ADS)

    Leat, Philip T.; Schmincke, Hans-Ulrich

    1993-02-01

    the single ignimbrite cooling unit E (average thickness, 28 m; volume, ca. 30 km3) forms the uppermost member of the Miocene Upper Mogán Formation on Gran Canaria. It is strongly chemically zoned from basal, first-erupted comendite (peralkaline rhyolite) to late-erupted trachyte, and, apart from an upper trachytic zone, it is densely welded. E was emplaced onto a surface inclined ca. 2 5° from the source caldera. Detailed mapping of key sections, up to 300 m long, exposed in barranco walls, ca. 10 km from the caldera margin, reveals structures that are interpreted to have been produced by rheomorphic deformation of the ignimbrite along shear zones. The shear zones formed within the lower-viscosity comenditic tuff. Extensional structures include mega-boudinage and ‘decapitated sequences’ and compression resulted in sequence repitition by overthrusting. Mechanisms traditionally thought to be important during rheomorphic deformation of welded tuffs (compaction, lateral creep, folding, vertical density-driven diapirism) cannot account for these features, which reflect lateral (post-compactional) rheomorphic movement locally in excess of 800 m. We suggest the following sequence of events: emplacement of the several flow units; compaction, with little lateral movement; rheomorphic deformation. During and after compaction, layers of secondary porosity developed within the comenditic tuff, possibly where upward escape of gas was prevented by overlying, relatively impermeable layers of densely compacted ignimbrite. These structurally weak layers of high porosity subsequently acted as shear zones.

  17. Incidence of Deformation and Fracture of Twisted File Adaptive Instruments after Repeated Clinical Use

    PubMed Central

    Gambarini, Gianluca; Piasecki, Lucila; Miccoli, Gabriele; Di Giorgio, Gianni; Carneiro, Everdan; Al-Sudani, Dina; Testarelli, Luca

    2016-01-01

    ABSTRACT Objectives The aim of the present study was to investigate the incidence of deformation and fracture of twisted file adaptive nickel-titanium instruments after repeated clinical use and to identify and check whether the three instruments within the small/medium sequence showed similar or different visible signs of metal fatigue. Material and Methods One-hundred twenty twisted file adaptive (TFA) packs were collected after clinically used to prepare three molars and were inspected for deformations and fracture. Results The overall incidence of deformation was 22.2%, which was not evenly distributed within the instruments: 15% for small/medium (SM)1 (n = 18), 38.33% for SM2 (n = 46) and 13.33% for the SM3 instruments (n = 16). The defect rate of SM2 instruments was statistically higher than the other two (P < 0.001). The fracture rate was 0.83% (n = 3), being two SM2 instruments and one SM3. Conclusions It was observed a very low defect rate after clinical use of twisted file adaptive rotary instruments. The untwisting of flutes was significantly more frequent than fracture, which might act as prevention for breakage. The results highlight the fact that clinicians should be aware that instruments within a sequence might be differently subjected to intracanal stress. PMID:28154749

  18. Evolution of microseismicity parameters depending on geomaterial deformation stages

    NASA Astrophysics Data System (ADS)

    Vostrikov, VI; Usoltseva, OM; Tsoi, PA; Semenov, VN

    2017-02-01

    The paper describes the laboratory tests on deformation of specimens made of artificial geomaterials simulating rock mass composed of two alternating beds of different hardness and different bedding angles. In the course of loading, stresses, strains and microseismic emission signals are continuously and concurrently recorded. The analysis of the time–deformation curve is reflective of the step-wise behavior of deformation and allows determining features of change in parameters of microseismic signals at various deformation stages.

  19. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  20. Some electronic properties of metals through q-deformed algebras

    NASA Astrophysics Data System (ADS)

    Tristant, Damien; Brito, Francisco A.

    2014-08-01

    We study the thermodynamics of metals by applying q-deformed algebras. We shall mainly focus our attention on q-deformed Sommerfeld parameter as a function of q-deformed electronic specific heat. The results revealed that q-deformation acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure and thereby controlling the number of electrons per unit volume.

  1. Computer assisted multiplex sequencing

    SciTech Connect

    Church, G.M.

    1992-08-01

    The objectives of this project are automation and optimization of multiplex sequencing. This year we have integrated direct transfer electrophoresis, automated multiplex hybridizations and automated film reading and applied this toward sequencing of three contiguous E. coli cosmids. Primers for the directed dideoxy sequence walking and sequence confirmation steps were synthesized with a 15 base tag complimentary to an alkaline phosphatase conjugate. A higher throughput synthesis device is well along in testing as are new automated hybridization devices. We have developed software for automatically annotating ORFs and databases of precise termini of proteis and RNA.

  2. Timescales of ductility in an extensional shear zone recorded as diffusion profiles in deformed quartz

    NASA Astrophysics Data System (ADS)

    Nachlas, William; Teyssier, Christian; Whitney, Donna

    2015-04-01

    We document rutile needles that were in the process of exsolving from quartz during ductile shearing, and we apply the Arrhenius parameters for Ti diffusion in quartz to extract the timescales over which diffusion transpired. By constraining temperature conditions of deformation using multiple independent thermometers in the same rocks (Ti-in-quartz, Zr-in-rutile, quartz fabrics and microstructures), we estimate the longevity of a ductile shear zone that accommodated extensional collapse in the North American Cordillera. Eocene exhumation of the Pioneer core complex, Idaho, USA, was accommodated by the brittle-ductile Wildhorse detachment system that localized in a zone of sheared metasediments and juxtaposes lower crustal migmatite gneisses with upper crustal Paleozoic sedimentary units. Deformation in the Wildhorse detachment was partly accommodated within a continuous sequence (~200 m) of quartzite mylonites, wherein quartz grains are densely rutilated with microscopic rutile needles that are pervasively oriented into the lineation direction. We apply high-resolution spectroscopic CL analysis to map the Ti concentration field in quartz surrounding rutile needles, revealing depletion halos that indicate exsolution as Ti unmixes from quartz. Linear transects through depletion halos show that concentration profiles exhibit a characteristic diffusion geometry. We apply an error-function diffusion model to fit the measured profiles to extract the temperature or time recorded in the profile. Assuming modest temperature estimates from our combined thermometry analysis, results of diffusion modeling suggest that the quartzite shear zone was deforming over an integrated 0.8 - 3.1 Myr. If samples are permitted to have deformed in discrete intervals, our results suggest deformation of individual samples for timescales as short as 100 kyr. By comparing samples from different levels of the shear zone, we find that deformation was sustained in higher levels of the shear zone

  3. Integrated Approach for the Assessment of Land Deformation in the Jazan City and Surroundings, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pankratz, H. G.; Sultan, M.; Elkadiri, R.; AlMogren, S. M.; Gebremichael, E.; Ahmed, M.; Emil, M.; Othman, A.

    2015-12-01

    Jazan City is a growing (in size and population) industrial city in the Jazan Province and an important port on the Red Sea coastline of Saudi Arabia. Parts of the city are built on sabkha deposits and others on a salt plateau (diaper) that intrudes overlying sedimentary sequences. Both areas are reported to experience various degrees of ground deformation, causing severe damages to buildings and infrastructure. An integrated study involving remote sensing (i.e. optical, multispectral, and radar) and geophysical (gravity) was applied to address the following objectives: (1) identification of the spatial distribution and areal extent of lithologic units in the study area, (2) assessment of the factors controlling the deformation, (3) locating the areas that are most susceptible to present and future deformation, and (4) quantifying the relative deformation rates in various parts of the city. The following methodology was adopted: (1) deformation rates were extracted applying both Persistent Scatterer (PS) and Small BAseline Subset (SBAS) radar interferometric techniques using seven Envisat scenes over a time span of six years (from 2003 to 2009), (2) the extracted deformation rates were correlated spatially in a GIS platform with relevant datasets (e.g. lithology, soil type, geologic structures, subsurface data) to identify the factors controlling land deformation, and (3) temporal datasets (e.g. Tropical Rainfall Measuring Mission; TRMM) were used to investigate whether deformation rates are affected by rainfall intensity. Our preliminary findings indicate a spatial correspondence between the PS results: (1) subsidence rates (-1.4 mm/yr) correlates with the distribution of the mapped sabkha units and uplift rates (0.95 mm/yr) with the mapped distribution of salt dome plateau outcrops. The sabkha subsidence could be associated with agricultural activities, poor waste management practices, and large rainfall events that induce salt removal from the sabkha soil

  4. Congruence analysis of point clouds from unstable stereo image sequences

    NASA Astrophysics Data System (ADS)

    Jepping, C.; Bethmann, F.; Luhmann, T.

    2014-06-01

    This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

  5. A Digital Video Model Deformation System

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Childers, B. A.

    1986-01-01

    The use of slid-state array cameras and a PC controlled image acquisition system to measure model deformation in a wind tunnel is discussed. This digital system is an improvement to an earlier video model deformation system used at the National Transonic Facility (NTF) which employed high-resolution tube cameras and required the manual measurement of targets on video hardcopy images. The new system eliminates both the vibration-induced distortion associated with tube cameras and the manual readup of video images necessary in the earlier version. Camera calibration and data reduction procedures necessary to convert pixel image plane data from two cameras into wing deflections are presented. Laboratory tests to establish the uncertainty of the new system with the geometry to be used at the NTF are described.

  6. A digital video model deformation system

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Childers, B. A.

    The use of solid-state array cameras and a PC-controlled image acquisition system to measure model deformation in a wind tunnel is discussed. This digital system improves an earlier video model deformation system that used high-resolution tube cameras and required the manual measurement of targets on video hardcopy images. The new system eliminates both the vibration-induced distortion associated with tube cameras and the manual readup of video images necessary in the earlier version. Camera calibration and data reduction procedures necessary to convert pixel image plane data from two cameras into wing deflections are presented. Laboratory tests to establish the uncertainty of the system with the geometry to be used are described.

  7. Dynamic Recrystallization: The Dynamic Deformation Regime

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Pizaña, C.

    2007-11-01

    Severe plastic deformation (PD), especially involving high strain rates (>103 s 1), occurs through solid-state flow, which is accommodated by dynamic recrystallization (DRX), either in a continuous or discontinuous mode. This flow can be localized in shear instability zones (or adiabatic shear bands (ASBs)) with dimensions smaller than 5 μ, or can include large volumes with flow zone dimensions exceeding centimeters. This article illustrates these microstructural features using optical and electron metallography to examine a host of dynamic deformation examples: shaped charge jet formation, high-velocity and hypervelocity impact crater formation, rod penetration into thick targets (which includes rod and target DRX flow and mixing), large projectile-induced target plug formation and failure, explosive welding, and friction-stir welding and processing. The DRX is shown to be a universal mechanism that accommodates solid-state flow in extreme (or severe) PD regimes.

  8. New strongly deformed proton emitter: 117La

    NASA Astrophysics Data System (ADS)

    Soramel, F.; Guglielmetti, A.; Stroe, L.; Müller, L.; Bonetti, R.; Poli, G. L.; Malerba, F.; Bianchi, E.; Andrighetto, A.; Guo, J. Y.; Li, Z. C.; Maglione, E.; Scarlassara, F.; Signorini, C.; Liu, Z. H.; Ruan, M.; Ivaşcu, M.; Broude, C.; Bednarczyk, P.; Ferreira, L. S.

    2001-03-01

    The decay by proton emission of the 117La nucleus has been studied via the 310 MeV 58Ni+64Zn reaction. The nucleus has two levels that decay to the ground state of 116Ba with Ep=783(6) keV (T1/2=22(5) ms] and Ep=933(10) keV [T1/2=10(5) ms]. Calculations performed for a deformed proton emitter reproduce quite well the experimental results confirming that 117La is strongly deformed (β2~0.3). Spin and parity of the two p-decaying levels have been determined as well: 3/2+ for the ground state and 9/2+ for the Ex=151(12) keV excited state.

  9. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  10. Shell deformation studies using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Parmerter, R. R.

    1974-01-01

    The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.

  11. Grain boundary engineering of highly deformable ceramics

    SciTech Connect

    Mecartney, M.L.

    2000-07-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature.

  12. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  13. Nonlinear Elasticity in a Deforming Ambient Space

    NASA Astrophysics Data System (ADS)

    Yavari, Arash; Ozakin, Arkadas; Sadik, Souhayl

    2016-12-01

    In this paper, we formulate a nonlinear elasticity theory in which the ambient space is evolving. For a continuum moving in an evolving ambient space, we model time dependency of the metric by a time-dependent embedding of the ambient space in a larger manifold with a fixed background metric. We derive both the tangential and the normal governing equations. We then reduce the standard energy balance written in the larger ambient space to that in the evolving ambient space. We consider quasi-static deformations of the ambient space and show that a quasi-static deformation of the ambient space results in stresses, in general. We linearize the nonlinear theory about a reference motion and show that variation of the spatial metric corresponds to an effective field of body forces.

  14. Deformation of Polar Cap Patches During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Ridley, A. J.; Nicolls, M. J.; Coster, A. J.; Thomas, E. G.; Ruohoniemi, J. M.; Hampton, D.

    2015-12-01

    Polar cap patches refer to the islands of high F-region plasma density within the polar cap. Their formation on the dayside and deformation on the nightside are not well understood. The F-layer ionosphere density is strongly influenced by electric field, thermospheric wind as well as soft particle precipitation. This study combines observations from multiple instruments, including Poker Flat incoherent scatter radar, GPS TEC and optical instruments, as well as the Global Ionosphere and Thermosphere Model (GITM), to investigate the effects of highly structured electric fields and winds on the deformation of polar cap patches during substorms. We will also discuss variations of the auroral emissions associated with the patch evolution.

  15. Deformation mechanisms of irradiated metallic nanofoams

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, L. A.; Martinez, E.; Caro, M.; Fu, E. G.; Caro, A.

    2013-07-01

    It was recently proposed that within a particular window in the parameter space of temperature, ion energy, dose rate, and filament diameter, nanoscale metallic foams could show radiation tolerance [Bringa et al., Nano Lett. 12, 3351 (2012)]. Outside this window, damage appears in the form of vacancy-related stacking fault tetrahedra (SFT), with no effects due to interstitials [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. These SFT could be natural sources of dislocations within the ligaments composing the foam and determine their mechanical response. We employ molecular dynamics simulations of cylindrical ligaments containing an SFT to obtain an atomic-level picture of their deformation behavior under compression. We find that plastic deformation originates at the edges of the SFT, at lower stress than needed to create dislocations at the surface. Our results predict that nanoscale foams soften under irradiation, a prediction not yet tested experimentally.

  16. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  17. Regional Deformation Studies with GRACE and GPS

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Elosequi, P.; Tamisiea, M.; Mitrovica, J. X.

    2005-01-01

    GRACE data indicate large seasonal variations in gravity that have been shown to be to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass deforms the Earth, and our previous study using GRACE data demonstrate that annual radial deformations of +/-13 mm in the region of Amazon River Basin were observed by both GRACE and ten GPS sites in the region. For the GRACE determinations, we estimate in a least-squares solution for each Stokes coefficient parameters that represent the amplitudes of the annual variation. We then filter these parameters based on a statistical test that uses the scatter of the postfit residuals. We demonstrate by comparison to the GPS amplitudes that this method is more accurate, for this region, than Gaussian smoothing. Our model for the temporal behavior of the gravity coefficients includes a rate term, and although the time series are noisy, the glacial isostatic adjustment signal over Hudson s Bay can be observed. .

  18. Acoustoelasticity model of inhomogeneously deformed bodies

    NASA Astrophysics Data System (ADS)

    Kravchishin, O. Z.; Chekurin, V. F.

    2009-10-01

    We consider a mathematical model of dynamics of small elastic perturbations in an inhomogeneously deformed rigid body, where for the determining parameters of a local state we take the tensor characteristics of a given actual (strained) configuration (the Cauchy stress tensor and the Hencky or Almansi or Figner strain measure). An iteration algorithm is developed to solve the Cauchy problem stated in the framework of this model for a system of hyperbolic equations with variable coefficients that describes the propagation of elastic pulses in an inhomogeneous deformed continuum. In the case of two-dimensional stress fields, we obtain acoustoelasticity integral relations between the probing pulse parameters and the initial strain (stress) distribution in the direction of pulse propagation in the strained body. We also consider an example of application of the obtained integral relations in the inverse acoustic tomography problem for residual strains in a strip.

  19. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  20. Perturbation theory for asymmetric deformed microdisk cavities

    NASA Astrophysics Data System (ADS)

    Kullig, Julius; Wiersig, Jan

    2016-10-01

    In an article by Dubertrand et al. [Phys. Rev. A 77, 013804 (2008), 10.1103/PhysRevA.77.013804] the perturbation theory for slightly deformed optical microcavities with a mirror-reflection symmetry was developed. However, in real experiments such a mirror-reflection symmetry is often not present either intended or unintended via production tolerances. In this paper we therefore extended the perturbation theory to asymmetric boundary deformations. Consequently, we are able to describe interesting non-Hermitian phenomena like copropagation of optical modes in the (counter-)clockwise direction inside the cavity. The derived analytic formulas are demonstrated at two generic boundary shapes, the spiral and the double-notched circle where a good agreement to the numerical boundary element method is observed.