Science.gov

Sample records for akinesia deformation sequence

  1. Deficiency of the myogenic factor MyoD causes a perinatally lethal fetal akinesia

    PubMed Central

    Crinnion, Laura A; Murphy, Helen; Newbould, Melanie; Harrison, Sally M; Lascelles, Carolina; Antanaviciute, Agne; Carr, Ian M; Sheridan, Eamonn; Bonthron, David T; Smith, Audrey

    2016-01-01

    Background Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. Methods Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. Results Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. Conclusions We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme. PMID:26733463

  2. Deformation of slopes damaged during the 2015 Nepal earthquake sequence

    NASA Astrophysics Data System (ADS)

    Rosser, N. J.; Brain, M.; Densmore, A.; Jordan, C.; Williams, J.; Kincey, M.; Oven, K.

    2015-12-01

    The 2015 Nepal Earthquake Sequence (EQS; the Gorkha EQ (eqG), Mw 7.8 [25/04/15]; the Kodari EQ (eqK), Mw 6.7 [26/05/15]; and Dolakha EQ (eqD), Mw 7.3 [12/05/15], plus associated aftershocks) triggered widespread landsliding, strongly evident in satellite imagery. In addition to the observed failures, pervasive ground cracking has been widely reported in Nepal. This is indicative of hillslope 'damage' (weakening) and, hence, the onset of shear surface development in as-yet unfailed slopes - a phenomenon previously observed in areas subjected to high-magnitude earthquake ground shaking and subsequent ongoing landsliding. Recent work on the efficacy of earthquakes in triggering landslides has proposed that the occurrence of failures is a function of damage accumulated in the slope. We present a unique field monitoring dataset on continuing slope deformation from hillslopes damaged during the 2015 Nepal EQS, in response to precipitation and continuing seismicity. Our study site is the Upper Bhote Koshi (UBK), with sites chosen from a chronology of landslide inventories captured from remotely sensed imagery since the Gorkha earthquake. Instruments were deployed during the monsoon on new and pre-existing landslides, and across cracked ground to monitoring precipitation inputs, slope-scale (micro-)seismicity, and slope displacements. Using our dataset, we draw preliminary conclusions on how the spatially-variable legacy of damage accumulated during high-magnitude earthquake-induced ground shaking events is manifest in patterns, rates and styles of post-seismic slope deformation.

  3. Parkinson's disease-like forelimb akinesia induced by BmK I, a sodium channel modulator.

    PubMed

    Zhu, Hongyan; Wang, Ziyi; Jin, Jiahui; Pei, Xiao; Zhao, Yuxiao; Wu, Hao; Lin, Weide; Tao, Jie; Ji, Yonghua

    2016-07-15

    Parkinson's disease (PD) is a neurodegenerative disorder and characterized by motor disabilities which are mostly linked with high levels of synchronous oscillations in the basal ganglia neurons. Voltage-gated sodium channels (VGSCs) play a vital role in the abnormal electrical activity of neurons in the globus pallidus (GP) and the subthalamic nucleus (STN) in PD. BmK I, a α-like toxin purified from the Chinese scorpion Buthus martensi Karsch, has been identified a site-3-specific modulator of VGSCs. The present study shows that forelimb akinesia can be induced by the injection of BmK I into the globus pallidus (GP) in rats. In addition, BmK I cannot produce neuronal damage in vivo and in vitro at 24h after treatment, indicating that the forelimb akinesia does not result from neuronal damage. Electrophysiological studies further revealed that the inactivated Na(+) currents were showed to be more vulnerably modulated by BmK I than the activated Na(+) currents in human neuron-like SHSY5Y cells. Furthermore, the modulation of BmK I on inactivation was preferentially attributed to fast inactivation rather than slow inactivation. Therefore, the PD-like forelimb akinesia may result from the modulation of sodium channels in neuron by BmK I. These findings not only suggest that BmK I may be an effective and novel molecule for the study of pathogenesis in PD but also support the idea that VGSCs play a crucial role in the motor disabilities in PD. PMID:27108049

  4. Sequence and timing of deformation in the footwall of the Funeral Mountains metamorphic core complex, California

    SciTech Connect

    Applegate, J.D.R.; Hodges, K.V. ); Walker, J.D. . Dept. of Geology)

    1992-01-01

    The metamorphic infrastructure of the Funeral Mountains has undergone a polygenetic sequence of deformation associated with Mesozoic-Tertiary burial and unroofing. The first two episodes of deformation are displayed as isoclinal, recumbent folds (F1 and F2) that have been highly attenuated by subsequent deformation, and as associated axial planar schistosities. The minimum age of D1-2 deformational features is constrained as 72 Ma by U-Pb zircon data for cross-cutting granitic pegmatites. Attenuation of older structures occurred during D3, a deformation episode that produced the dominant foliation (S3) and well-defined, WNW-ESE stretching and mineral lineations (L3). D3 deformation has been dated at 70--72 Ma. The next episode of deformation (D4) is represented by NW-vergent, tight to isoclinal folds (F4) which fold the S3 foliation. The age of this folding is bracketed between 72 Ma and 65Ma. Southwest-vergent, tight folds that involve S3 and F4 are the dominant structures of D5 deformation. These folds, which range in size from mm-scale to hundreds of meters in amplitude, are associated with a regionally developed, NW-SE crenulation lineation (L5). The age of D5 is not tightly constrained but is considered to be Tertiary. They associate D1--2 deformation with Mesozoic thrust faulting which buried the core rocks. D3 and D4 deformation are clearly Late Cretaceous and represent initial unroofing of the core. They ascribe subsequent deformational events to episodic Tertiary unroofing. D5 deformation in particular may represent an isostatic response to unroofing on the core-bounding Boundary Canyon Detachment, while D6--7 deformation may be related to late-stage doming of the core.

  5. Glaciotectonic deformation and reinterpretation of the Worth Point stratigraphic sequence: Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica M.; England, John H.; Evans, David J. A.

    2014-05-01

    Hill-hole pairs, comprising an ice-pushed hill and associated source depression, cluster in a belt along the west coast of Banks Island, NT. Ongoing coastal erosion at Worth Point, southwest Banks Island, has exposed a section (6 km long and ˜30 m high) through an ice-pushed hill that was transported ˜ 2 km from a corresponding source depression to the southeast. The exposed stratigraphic sequence is polydeformed and comprises folded and faulted rafts of Early Cretaceous and Late Tertiary bedrock, a prominent organic raft, Quaternary glacial sediments, and buried glacial ice. Three distinct structural domains can be identified within the stratigraphic sequence that represent proximal to distal deformation in an ice-marginal setting. Complex thrust sequences, interfering fold-sets, brecciated bedrock and widespread shear structures superimposed on this ice-marginally deformed sequence record subsequent deformation in a subglacial shear zone. Analysis of cross-cutting relationships within the stratigraphic sequence combined with OSL dating indicate that the Worth Point hill-hole pair was deformed during two separate glaciotectonic events. Firstly, ice sheet advance constructed the hill-hole pair and glaciotectonized the strata ice-marginally, producing a proximal to distal deformation sequence. A glacioisostatically forced marine transgression resulted in extensive reworking of the strata and the deposition of a glaciomarine diamict. A readvance during this initial stage redeformed the strata in a subglacial shear zone, overprinting complex deformation structures and depositing a glaciotectonite ˜20 m thick. Outwash channels that incise the subglacially deformed strata record a deglacial marine regression, whereas aggradation of glaciofluvial sand and gravel infilling the channels record a subsequent marine transgression. Secondly, a later, largely non-erosive ice margin overrode Worth Point, deforming only the most surficial units in the section and depositing a

  6. Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence.

    PubMed

    Fu, Yu; Groves, Roger M; Pedrini, Giancarlo; Osten, Wolfgang

    2007-12-20

    In recent years, optical interferometry has been applied to the whole-field, noncontact measurement of vibrating or continuously deforming objects. In many cases, a high resolution measurement of kinematic (displacement, velocity, and acceleration, etc.) and deformation parameters (strain, curvature, and twist, etc.) can give useful information on the dynamic response of the objects concerned. Different signal processing algorithms are applied to two types of interferogram sequences, which were captured by a high-speed camera using different interferometric setups: (1) a speckle or fringe pattern sequence with a temporal carrier and (2) a wrapped phase map sequence. These algorithms include Fourier transform, windowed Fourier transform, wavelet transform, and even a combination of two of these techniques. We will compare these algorithms using the example of a 1D temporal evaluation of interferogram sequences and extend these algorithms to 2D and 3D processing, so that accurate kinematic and deformation parameters of moving objects can be evaluated with different types of optical interferometry. PMID:18091976

  7. The 1997 Umbria-Marche (Italy) earthquake sequence: Relationship between ground deformation and seismogenic structure

    NASA Astrophysics Data System (ADS)

    Cinti, F. R.; Cucci, L.; Marra, F.; Montone, P.

    A field survey performed during the 1997 Umbria-Marche earthquake sequence led us to recognize ground and pavement ruptures associated with the three largest shocks (Mw ≥ 5.7). The ruptures are concentrated in narrow bands that, in part, are on and near previously mapped high-angle normal faults. The geometry of the ground deformation is consistent with the NE-trending extension indicated by CMT focal solutions of the mainshocks. The distribution of aftershocks suggests that the three mainshocks occurred on ∼40° SW-dipping normal faults. Geological investigations, modelling of expected coseismic elevation changes, and seismic data, suggest that the surface deformation is not the direct result of primary rupture of faults at depth.

  8. Transient Deformation Preceding and Following the June 2000 Earthquake Sequence in Southwest Iceland

    NASA Astrophysics Data System (ADS)

    Arnadottir, T.; Miyazaki, S.; Geirsson, H.

    2005-12-01

    Two Mw=6.5 earthquakes and several M~5 triggered earthquakes occurred in south Iceland over a period of 4 days in June 2000. The first main shock on June 17, triggered increased seismicity over a large area and significant slip on at least three distinct faults on the Reykjanes Peninsula, up to 90 km to the west of the main shock epicenter. Crustal deformation signals due to the earthquake sequence were observed with campaign and continuous GPS and InSAR. Seismic and geodetic data confirm that the faults that ruptured in the June 2000 sequence are oriented N-S, almost perpendicular to the trend of the plate boundary, with primarily right-lateral strike slip motion. The geodetic data from the Reykjanes Peninsula suggest that the event near Kleifarvatn had a significantly larger moment than seismic estimates, indicating a component of aseismic slip on the fault lasting no more than several hours. Kinematic GPS analysis of 30 second data from the two closest continuous GPS station in Iceland is used to constrain the timing of the aseismic component of the deformation. Transient deformation in the area of the two main shocks was observed with InSAR and GPS. A short term transient observed by InSAR has been explained by poro-elastic rebound due to post-earthquake pore-pressure changes. The longer term deformation signal can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The June 2000 earthquake sequence was preceded by intrusive and intense seismic activity at the Hengill triple junction and an eruption at Hekla volcano, located at the western and eastern ends of the south Iceland seismic zone, respectively. Coulomb stress change calculations indicate that the Hengill intrusion decreased the stress at the western end of the SISZ. These events illustrate the importance of increasing the spatial and temporal resolution of continuous monitoring of crustal

  9. Food deprivation and nicotine correct akinesia and freezing in Na(+) -leak current channel (NALCN)-deficient strains of Caenorhabditis elegans.

    PubMed

    Bonnett, K; Zweig, R; Aamodt, E J; Dwyer, D S

    2014-09-01

    Mutations in various genes adversely affect locomotion in model organisms, and thus provide valuable clues about the complex processes that control movement. In Caenorhabditis elegans, loss-of-function mutations in the Na(+) leak current channel (NALCN) and associated proteins (UNC-79 and UNC-80) cause akinesia and fainting (abrupt freezing of movement during escape from touch). It is not known how defects in the NALCN induce these phenotypes or if they are chronic and irreversible. Here, we report that akinesia and freezing are state-dependent and reversible in NALCN-deficient mutants (nca-1;nca-2, unc-79 and unc-80) when additional cation channels substitute for this protein. Two main measures of locomotion were evaluated: spontaneous movement (traversal of >2 head lengths during a 5 second observation period) and the touch-freeze response (movement greater than three body bends in response to tail touch). Food deprivation for as little as 3 min stimulated spontaneous movement and corrected the touch-freeze response. Conversely, food-deprived animals that moved normally in the absence of bacteria rapidly reverted to uncoordinated movement when re-exposed to food. The effects of food deprivation were mimicked by nicotine, which suggested that acetylcholine mediated the response. Nicotine appeared to act on interneurons or motor neurons rather than directly at the neuromuscular junction because levamisole, which stimulates muscle contraction, did not correct movement. Neural circuits have been proposed to account for the effects of food deprivation and nicotine on spontaneous movement and freezing. The NALCN may play an unrecognized role in human movement disorders characterized by akinesia and freezing gait.

  10. Pharmacologically distinct pramipexole-mediated akinesia vs. risk-taking in a rat model of Parkinson's disease.

    PubMed

    Holtz, Nathan A; Tedford, Stephanie E; Persons, Amanda L; Grasso, Salvatore A; Napier, T Celeste

    2016-10-01

    Pramipexole and ropinirole are dopamine agonists that are efficacious in treating motor disturbances of neuropathologies, e.g., Parkinson's disease and restless legs syndrome. A significant portion of treated patients develop impulsive/compulsive behaviors. Current treatment is dose reduction or switching to an alternative dopamine replacement, both of which can undermine the motor benefits. Needed is a preclinical model that can assist in identifying adjunct treatments to dopamine agonist therapy that reduce impulsive/compulsive behaviors without interfering with motor benefits of the dopamine agonist. Toward that objective, the current study implemented a rat model of Parkinson's disease to behaviorally profile chronically administered pramipexole. This was accomplished with male Sprague-Dawley rats wherein (i) 6-hydroxydopamine-induced lesions of the dorsolateral striatum produced Parkinson's disease-like akinesia, measured in the forelimbs, (ii) intracranial self-stimulation-mediated probability discounting indicated impulsivity/risk-taking, and (iii) two doses of pramipexole were continuously administered for 14-28days via osmotic minipumps to mirror the chronic, stable exposure achieved with extended release formulations. The atypical antidepressant, mirtazapine, is known to reduce behaviors associated with drug addiction in rats; thus, we demonstrated model utility here by determining the effects of mirtazapine on pramipexole-induced motor improvements versus probability discounting. We observed that forelimb akinesia subsequent to striatal lesions was attenuated by both pramipexole doses tested (0.3 and 1.2mg/kg/day) within 4h of pump implant dispensing 0.3mg/kg/day and 1h by 1.2mg/kg/day. By contrast, 12-14days of infusion with 0.3mg/kg/day did not alter discounting, but increases were obtained with 1.2mg/kg/day pramipexole, with 67% of 1.2mg/kg/day-treated rats meeting categorical criteria for 'high risk-taking'. Insertion of a second minipump delivering

  11. Geomorphic and paleoseismic evidence for late Quaternary deformation in the southwest Kashmir Valley, India: Out-of-sequence thrusting, or deformation above a structural ramp?

    NASA Astrophysics Data System (ADS)

    Madden, C.; Ahmad, S.; Meigs, A.

    2011-12-01

    In the northwest Himalaya, partitioning of Indian-Eurasian convergence across multiple active structures, including a fold at the deformation front, and the Riasi thrust 60 km to the north, suggests that strain is partially accommodated by out-of-sequence thrusting. Deformation of the Plio-Pleistocene Karawa deposits (KD) and latest Pleistocene fluvial terraces on the southwest side of the Kashmir Valley (KV) indicate that deformation also occurs 100 km north of the deformation front. A historical record of 13 earthquakes in the valley over the last millennium, including damaging earthquakes in 1555 and 1885, further suggests that the KV is a locus of active deformation. We use geomorphic mapping, terrace profiling, paleoseismic trenching, and radiometric dating to constrain the extent, timing, rate and style of deformation in the KV. Tectonic geomorphic mapping on high-resolution satellite imagery reveals a series of discontinuous scarps, which we call the Balapora fault (BF), cutting the KD and younger terraces over 45-60 km south of the Jehlum River. Near the north end of the BF, only the highest three of six strath terraces that cross the fault along the Shaliganaga River are deformed, and optically stimulated luminescence (OSL) ages on the highest undeformed terrace show that the fault has not moved there in 50 +/-3 ka. To the south, a flight of five strath terraces along the Sasara River have been uplifted by the BF. Correlating soil and loess stratigraphy from the youngest deformed terrace dated terraces in nearby drainages suggests that deformation has occurred since ~50 ka. Further south, along the Rembiara River (RR), the BF deforms two regionally extensive terraces. Using an OSL age of 51 +/-11 ka collected from fluvial deposits a few meters above the lower strath, and a measured strath elevation above the river of 19 +/- 1 m at the fault, we calculate an average incision rate of 0.3-0.5 mm/yr. An exposure on the left bank of the RR reveals that the BF

  12. Deformations and cyclic fatigue resistance of nickel-titanium instruments inside a sequence

    PubMed Central

    Gambarini, Gianluca; Plotino, Gianluca; Piasecki, Lucila; Al-Sudani, Dina; Testarelli, Luca; Sannino, Gianpaolo

    2015-01-01

    Summary Aim To compare the effect of brushing motion on torsional and cyclic fatigue resistance of TF Adaptive instruments after clinical use. Methods 20 packs of TFA small sequence (SybronEndo, Orange, CA, USA) were used for this study and divided into two groups. Each instrument prepared one resin tooth, consisting in 4 canals with a complex anatomy. In group A, no brushing motion was performed. In group B, after the green instrument reached the working length, brushing motion with circumferential filing was performed for 15 seconds in each canal (overall 1 minute). All the instruments were then subjected to cyclic fatigue test and mean values and standard deviation for time to fracture were evaluated. Data were subjected to one-way analysis of variance and Bonferroni t-test procedure with a significance set at P < 0.05. Results No instruments were broken during preparation of root canals. Two TF Adaptive green and 5 yellow showed unwinding after intracanal clinical use. No statistically significant differences were found between green instruments of both groups (P > 0.05), while a statistically significant difference was found between the yellow instruments (P < 0.05), with group B showing an higher resistance to cyclic fatigue. Conclusions A prolonged passive brushing motion did not adversely affected mechanical resistance of the instrument used for this purpose. Resistance to both deformations and cyclic fatigue of the second instrument within the TFA small sequence was enhanced by the coronal flaring provided by the brushing action of the first instrument used. PMID:26161246

  13. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera).

    PubMed

    Wang, Hui; Xie, Jiazheng; Shreeve, Tim G; Ma, Jinmin; Pallett, Denise W; King, Linda A; Possee, Robert D

    2013-01-01

    We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  14. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone

    USGS Publications Warehouse

    Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.

    2005-01-01

    We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.

  15. The role of mechanical heterogeneities in evaporite sequence during deformation initiated by basement fault activity

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin; Burliga, Stanisław

    2016-04-01

    Kłodawa Salt Structure (KSS) situated in the centre of the Polish Zechstein Basin started to rise above a basement fault in the Early Triassic. Geological studies of the KSS revealed significant differences in the deformation patterns between the PZ1-PZ2 (intensely deformed) and PZ3-PZ4 (less deformed) cycle evaporites. These two older and two younger cycle evaporite complexes are separated by the thick Main Anhydrite (A3) bed. We use numerical simulations to assess the impact of a thick anhydrite bed on intrasalt deformation. In our models, the overburden consists of clastic sediments. A normal fault located in the rigid basement beneath the salt is activated due to model extension. At the same time, the sedimentation process takes place. The evaporites consist of a salt bed intercalated with a thick anhydrite layer of varying position and geometry. To understand the role of anhydrite layer, we run comparative simulations, in which no anhydrite layer is present. In the study, we use our own numerical codes implemented in MATLAB combined with the MILAMIN and MUTILS numerical packages. Our investigations revealed a significant influence of the anhydrite on deformation style in the evaporate series. The supra-anhydrite domain is characterized by weaker deformation and lower rates of salt flow in comparison to the sub-anhydrite domain. The highest contrast in the rate of salt flow between the two domains is observed in the case of the anhydrite layer situated close to the bottom of the salt complex. The thick anhydrite layer additionally diminishes the deformation rate in the supra-anhydrite domain and can lead to detachment of the basement deformation from its overlay. Our numerical simulations showed that the presence of the A3 Main Anhydrite bed could be the dominant factor responsible for the decoupling of deformation in the KSS salt complex.

  16. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson's syndrome

    PubMed Central

    Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu

    2015-01-01

    Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680

  17. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    SciTech Connect

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  18. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  19. Pedogenic slickensides, indicators of strain and deformation processes in red bed sequences of the Appalachian foreland

    SciTech Connect

    Gray, M.B. ); Nickelsen, R.P. )

    1989-01-01

    Pedogenic slickensides are convex-concave slip surfaces that form during expansion/contraction in expansive clay soils such as Vertisols. In the central Appalachians, they occur near the tops of fining-upward cycles in Paleozoic red beds such as the Bloomsburg, Catskill, and Mauch Chunk Formations. Pedogenic slickensides are found in association with other pedogenic (or paleosol) features such as clay-skinned peds, in situ calcareous nodules, and root impressions. Repeated movements along these shear planes during pedogenesis produce strongly aligned clay particles adjacent to pedogenic slickensides; as a result, they are preserved as discrete fractures throughout diagenesis, compaction, and superimposed tectonic deformation. During whole-rock deformation, pedogenic slickensides segregate penetratively deformed rocks into independent, foliate packets and serve as discontinuities that are followed by later structural features. Because the original morphology of pedogenic slickensides is known, they can be used as crude strain markers.

  20. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.

    PubMed

    Knutsen, Andrew K; Magrath, Elizabeth; McEntee, Julie E; Xing, Fangxu; Prince, Jerry L; Bayly, Philip V; Butman, John A; Pham, Dzung L

    2014-11-01

    In vivo measurements of human brain deformation during mild acceleration are needed to help validate computational models of traumatic brain injury and to understand the factors that govern the mechanical response of the brain. Tagged magnetic resonance imaging is a powerful, noninvasive technique to track tissue motion in vivo which has been used to quantify brain deformation in live human subjects. However, these prior studies required from 72 to 144 head rotations to generate deformation data for a single image slice, precluding its use to investigate the entire brain in a single subject. Here, a novel method is introduced that significantly reduces temporal variability in the acquisition and improves the accuracy of displacement estimates. Optimization of the acquisition parameters in a gelatin phantom and three human subjects leads to a reduction in the number of rotations from 72 to 144 to as few as 8 for a single image slice. The ability to estimate accurate, well-resolved, fields of displacement and strain in far fewer repetitions will enable comprehensive studies of acceleration-induced deformation throughout the human brain in vivo.

  1. Sequence of deformations recorded in joints and faults, Arches National Park, Utah

    NASA Astrophysics Data System (ADS)

    Zhao, Guozhu; Johnson, Arvid M.

    1992-02-01

    Faults and joints in an area of essentially undeformed rocks on a limb of a salt anticline in Utah record a surprisingly complex deformational history. Most of the faults started as widely-spaced zones of deformation bands accommodating a few cm of strike-slip. Some were subsequently opened as joints, then were sheared with a sense opposite that of the original faults. Other faults in the Garden Area are fractures that started as joints, then were subsequently sheared. The sense of shear changes across the area, however, and the pattern of shearing is the pattern that would be produced by bending of joint-bounded slabs about a vertical axis. Slip on the faults and joints produced a total regional strain of about 0.15%. Examination of relations among the structures indicates the following deformational history: first were conjugate, strike-slip faults oriented N30°E or N60°E, reflecting zero vertical strain (and presumably vertical intermediate compression), maximum compression in the NE direction (normal to the axis of Salt Valley), and maximum extension in the SE direction. The faults are of the deformation-band variety and so, presumably formed when the rocks were several kilometers deep. Deformation bands never again formed in these rocks. Subsequent fracturing was mode I, tension cracking. Second, tension in the SE direction (or minimum compression in the SE direction and pore-water pressure exceeding the minimum compression), parallel to the long axis of the Salt Valley anticline, opened joints along some of the weak deformation-band faults, causing them to become jointed faults. The orientation of minimum compression was unchanged, but the orientations of the maximum and intermediate principal stresses are unknown and may have changed. Third, systematic zones of joints formed, cutting across the band faults without deviating in trend throughout most of the Garden Area, but interacting with the open jointed faults locally. The direction of tension (or

  2. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda; Agnew, Duncan C.; Fang, Peng; Genrich, Joachim F.; Hager, Bradford H.; Herring, Thomas A.; Hudnut, Kenneth W.; King, Robert W.; Larsen, Shawn; Minster, J.-B.

    1993-01-01

    The first measurements are reported for a major earthquake by a continuously operating GPS network, the permanent GPS Genetic ARRY (PGGA) in southern California. The Landers and Big Bear earthquakes of June 28, 1992 were monitored by daily observations. Ten weeks of measurements indicate significant coseismic motion at all PGGA sites, significant postseismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  3. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    USGS Publications Warehouse

    Bock, Y.; Agnew, D.C.; Fang, P.; Genrich, J.F.; Hager, B.H.; Herring, T.A.; Hudnut, K.W.; King, R.W.; Larsen, S.; Minster, J.-B.; Stark, K.; Wdowinski, S.; Wyatt, F.K.

    1993-01-01

    The measurement of crustal motions in technically active regions is being performed increasingly by the satellite-based Global Positioning System (GPS)1,2, which offers considerable advantages over conventional geodetic techniques3,4. Continuously operating GPS arrays with ground-based receivers spaced tens of kilometres apart have been established in central Japan5,6 and southern California to monitor the spatial and temporal details of crustal deformation. Here we report the first measurements for a major earthquake by a continuously operating GPS network, the Permanent GPS Geodetic Array (PGGA)7,9 in southern California. The Landers (magnitude Mw of 7.3) and Big Bear (Mw 6.2) earthquakes of 28 June 1992 were monitored by daily observations. Ten weeks of measurements, centred on the earthquake events, indicate significant coseismic motion at all PGGA sites, significant post-seismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  4. Deformational sequence of a portion of the Michipicoten greenstone belt, Chabanel Township, Ontario

    NASA Technical Reports Server (NTRS)

    Shrady, C. H.; Mcgill, G. E.

    1986-01-01

    Detailed mapping at a scale of one inch = 400 feet is being carried out within a fume kill, having excellent exposure, located in the southwestern portion of the Michipicoten Greenstone Belt near Wawa, Ontario. The rocks are metasediments and metavolcanics of lower greenschist facies. U-Pb geochronology indicates that they are at least 2698 + or - 11 Ma old. The lithologic packages strike northeast to northwest, but the dominant strike is approximately east-west. Sedimentary structures and graded bedding are well preserved, aiding in the structural interpretation of this multiply deformed area. At least six phases of deformation within a relatively small area of the Michipicoten Greenstone Belt have been tentatively identified. These include the following structural features in approximate order of occurrence: (0) soft-sediment structures; (1) regionally overturned rocks, flattened pebbles, bedding parallel cleavage, and early, approximately bedding parallel faults; (2) northwest to north striking cleavage; (3) northeast striking cleavage and associated folds, and at least some late movement on approximately bedding parallel faults; (4) north-northwest and northeast trending faults; and (5) diabase dikes and associated fracture cleavages. Minor displacement of the diabase dikes occurs on faults that appear to be reactivated older structures.

  5. Crustal deformation and stress transfer during a propagating earthquake sequence: The 2013 Cook Strait sequence, central New Zealand

    NASA Astrophysics Data System (ADS)

    Hamling, I. J.; D'Anastasio, E.; Wallace, L. M.; Ellis, S.; Motagh, M.; Samsonov, S.; Palmer, N.; Hreinsdóttir, S.

    2014-07-01

    The 2013 Cook Strait earthquake sequence began on 18 July 2013 with two foreshocks of Mw 5.7 and Mw 5.8 and culminated in the Mw 6.6 Cook Strait and Lake Grassmere events on 21 July and 16 August, respectively. Located ˜50 km south of New Zealand's capital, Wellington, the earthquakes generated the most significant ground shaking in the Wellington and Marlborough regions in recent decades. During the first event, located under Cook Strait, continuously recording GPS instruments across central New Zealand recorded up to 5 cm of horizontal displacement. Modeling suggests that the rupture was 25 km long with up to 90 cm of dextral strike slip. The second event, located 20 km to the southwest, caused displacements of up to 25 cm at GPS sites located around the Clifford bay area. In addition, two interferograms from RADARSAT-2 and TerraSAR-X showed up to 30 cm of line-of-sight displacement in the vicinity of Lake Grassmere. Modeling indicates predominantly dextral strike slip of up to 2.1 m. Coulomb Stress changes induced by the earlier foreshocks suggest that the Cook Strait event was triggered by the preceding events and that the Lake Grassmere event was subsequently triggered by the Cook Strait earthquake.

  6. Coeval brittle and ductile structures associated with extreme deformation partitioning in a multilayer sequence

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Alsop, G. Ian; Carreras, Jordi

    2009-05-01

    An investigation on the effects of a strong rheological contrast in the deformation of layered anisotropic rocks is presented. The study focuses on the geometric and kinematic analysis of complex structures developed within and adjacent to a thin marble-metapsammite multilayer unit from the Cap de Creus tectonometamorphic belt (NE Spain). Zones of high ductile strain localise in the marble layers, which exhibit complex folds, whereas metapsammites show mostly brittle (boudinage) structures. These structures strongly contrast with coeval retrogressive discrete shear zones developed in the surrounding migmatitic schists. The extreme strain partitioning is due to the rheological contrast between different lithological layers. In addition, the specific orientation of this multilayer unit induces a reversal of local kinematics with regard to bulk kinematics. Consequently, caution should be exercised when interpreting regional tectonics in highly partitioned domains associated with rheological heterogeneities.

  7. Sedimentological evidence for a deforming bed in a late Pleistocene glacial sequence from ANDRILL AND-1B, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Cowan, E. A.; Powell, R. D.

    2009-12-01

    A 1,284.87m-long sediment core (AND-1B) was drilled from beneath the McMurdo Ice Shelf sector of the Ross Ice Shelf as part of the Antarctic geological drilling program, ANDRILL. Snapshots of diamictite depositional processes and paleoenvironmental conditions have been interpreted from a nested set of samples collected at overlapping scales of observation. Data used for detailed sedimentological analyses include cm-scale core logging based on x-radiographs of the archive halves in addition to the original core description, bulk samples, and oriented 45 x 70mm thin sections of diamictites for micromorphology analysis. The 5.8m-thick interval studied contains a complete glacial advance-retreat sequence that is bracketed by glacial surfaces of erosion (GSE) at 41.9 and 47.7mbsf recording glacial advance over the core site. 4.6m of subglacial till is deposited above the lower GSE represented by a sequence of thin muddy conglomerate with diverse pebble lithologies, massive clast-rich muddy diamicite, and stratified diamictite with clast-rich and clast-free beds. The sand size fraction of bulk samples and thin sections from the till are dominated by aggregate grains, termed till pellets following terminology used by sedimentologists in the Ross Sea. The core of the pellet may be a lithic grain or stiff till with additional clay plastered on the outside forming rounded grains from angular ones. Till pellets are rounded, spherical to prolate in form and are associated with turbate structures and aligned grains in till thin sections - evidence of rotational deformation. The area beneath an ice shelf in front of a grounding line is recorded by a thin bed of granular particles that transitions to silty claystone stratified with granules. Granular layers are thought to be from periodic winnowing by strong currents focused near the grounding line. The sub-ice shelf transition from proximal grounding line to distal is recorded by a gradational contact between stratified silty

  8. The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation.

    USGS Publications Warehouse

    Stein, R.S.; Lisowski, M.

    1983-01-01

    The coseismic slip and geometry of the March 15, 1979, Homestead Valley, California, earthquake sequence are well constrained by precise horizontal and vertical geodetic observations and by data from a dense local seismic network. These observations indicate 0.52 + or - 0.10 m of right-lateral slip and 0.17 + or - 0.04 m of reverse slip on a buried vertical 6-km-long and 5-km-deep fault and yield a mean static stress drop of 7.2 + or -1.3 MPa. The largest shock had Ms = 5.6. Observations of the ground rupture revealed up to 0.1 m of right-lateral slip on two mapped faults that are subparallel to the modeled seismic slip plane. In the 1.9 years since the earthquakes, geodetic network displacements indicate that an additional 60+ or -10 mm of postseismic creep took place. The rate of postseismic shear strain (0.53 + or - 0.13 mu rad/yr) measured within a 30 X 30-km network centered on the principal events was anomalously high compared to its preearthquake value and the postseismic rate in the adjacent network. This transient cannot be explained by postseismic slip on the seismic fault but rather indicates that broadside release of strain followed the earthquake sequence. -Authors

  9. Surface deformation and stress interactions during the 2007-2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania

    NASA Astrophysics Data System (ADS)

    Biggs, Juliet; Chivers, Michael; Hutchinson, Michael C.

    2013-10-01

    Magma movement and fault slip alter the magnitude and orientation of the stress in the surrounding crust. Observations of a sequence of events clustered in space and time provide information about the triggering mechanism and stress interactions between magma intrusion, earthquakes and eruptions. We investigate the syn- and post-intrusion stress changes associated with the 2007 Gelei dyke intrusion episode and subsequent eruption of nearby Oldonyo Lengai. Previous studies produced a kinematic model of the 2007 June-August sequence involving ˜1 m slip on a normal fault followed by the intrusion of the 7-10-km long Gelei dyke, collapse of a shallow graben and the deflation of the Gelei magma chamber. Immediately following this, the volcano Oldoinyo Lengai (<10 km away) experienced a new phase of explosive activity lasting for several months. Here, we present new geodetic observations covering Gelei and Oldoinyo Lengai in 2008 September-2010. We show continued slip on graben-bounding faults above the Gelei dyke. The eruption of Oldoinyo Lengai was accompanied by the intrusion of a 4 km-long E-W-trending dyke followed by deflation of a shallow source directly below the summit of the volcano. Next, we use stress calculations to investigate a number of hypotheses linking these events. (1) Before the onset of surface deformation, a dyke sufficiently deep and narrow to be geodetically undetectable could still have produced sufficient stress changes to trigger slip on the normal fault (i.e. the sequence could have been magmatically driven). (2) Stresses at the dyke tip would have been sufficient to overcome the effect of continued slip on the normal fault, allowing the dyke to propagate upwards into a region of clamping. (3) The Gelei sequence would have produced a significant stress change on the chamber beneath Oldoinyo Lengai. These static stress calculations allow us to discuss the roles played by dynamic stress, deeper magmatic changes and background stresses

  10. Microstructural analysis of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal: Channel Flow and Orogen-parallel deformation.

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Phillips, R. J.; Lloyd, G. E.; Searle, M. P.; Law, R. D.

    2014-12-01

    Knowledge of deformation processes that occur in the lithosphere during orogenesis can be gained from microstructural analysis of exhumed terranes and shear zones. Here, we use Crystallographic Preferred Orientation (CPO) and Anisotropy of Magnetic Susceptibility (AMS) data to reveal the kinematic evolution of the metamorphic core of the Himalayan orogen, the Greater Himalayan Sequence (GHS). The Himalayan orogen is commonly explained with models of channel flow, which describe the GHS as a partially molten, rheologically weak mid crustal channel. Extrusion of the channel was facilitated by coeval reverse- and normal-sense shear zones, at the lower and upper channel margins respectively. Whilst many thermobarometric studies support the occurrence of channel flow, the spatial and temporal distribution of strain within the GHS is one aspect of the model that is yet to be fully resolved. We present a quantified strain proxy profile for the GHS in the Annapurna-Dhaulagiri region of central Nepal and compare our results with the kinematic predictions of the channel flow model. Samples were collected along a NS transect through the Kali Gandaki valley of central Nepal for CPO and AMS analysis. Variations in CPO strength are used as a proxy for relative strain magnitude, whilst AMS data provide a proxy for strain ellipsoid shape. Combining this information with field and microstructural observations and thermobarometric constraints reveals the kinematic evolution of the GHS in this region. Low volumes of leucogranite and sillimanite bearing rocks and evidence of reverse-sense overprinting normal-sense shearing at the top of the GHS suggest that channel flow was not as intense as model predictions. Additionally, observed EW mineral lineations and oblate strain ellipsoid proxies in the Upper GHS, indicative of three dimensional flattening and orogen parallel stretching, cannot be explained by current channel flow models. Whilst the results do not refute the occurrence of

  11. Deformation of Aztec Sandstone at Valley of Fire of Nevada: failure modes, sequence of deformation, structural products and their interplay with paleo fluids

    NASA Astrophysics Data System (ADS)

    Aydin, A.

    2014-12-01

    The Valley of Fire State Park, 60 km NE of Las Vegas, is a beacon of knowledge for deformation of Aztec Sandstone, a cross-bedded quartz arenite deposited in the Aztec-Navajo-Nugget erg in early Jurassic. It displays great diversity of physical properties, different localization types and micromechanics. The two deformation episodes, the Sevier folding & thrusting and the Basin & Range extension affected the area. The appearance of compaction bands marks the earliest deformation structure and their distribution, orientation, and dimension are controlled by the depositional architecture and loading. The earliest shear structures in the area are the Muddy Mountain, Summit, and Willow Tank thrusts and numerous small-scale bed-parallel faults. They altogether produced several kilometers of E-SE transport and shortening in the late Cretaceous and display numerous shear bands in its damage zone within the Aztec Sandstone. Shear bands also occur along dune boundaries and cross-bed interfaces. These observations indicate that the early deformation of the sandstone was accommodated by strain localization with various kinematics. The younger generation of faults in the area is of mid-Miocene age, and crops out pervasively. It includes a series of small offset normal faults (less than a few ten meters) which can be identified at steep cliff faces. These faults are highly segmented and are surrounded by a dense population of splay fractures. A large number of these splays were later sheared sequentially resulting in a well-defined network of left- and right-lateral strike-slip faults with slip magnitudes up to a few kilometers in the Park. The formation mechanisms of both the normal and strike-slip faults can be characterized as the sliding along planes of initial weaknesses and the accompanying cataclastic deformation. Some of the initial weak planes are associated with the depositional elements such as interdune boundaries and cross-bed interfaces while others are joint

  12. deducing the sequence of deformations during chain building from the analysis of minor structures: the case of the Sicily Belt (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Renda, Pietro; Favara, Rocco

    2010-05-01

    the structural evolution of the Sicily chain using overprinting mesoscopic fabrics and their relationships to larger structures. The geometric differences existing between some types of structures within the belt and their overprinting relationships allow delineating the timing of deformations during chain building and post-collision tectonic history. The overall structural setting of the mountain chain reflects therefore the deformation and the progressive thrusting migration forelandwards, with extensional faulting overprinting and inverting formed thrusts. Most of the data available for this work come from detailed analysis in a few key areas, ranging along the Northern Sicily, where minor structures are overprinted to form a single sequence. Our study of outcrops throughout the region has recognised that the progression of deformation is represented by four regionally-significant structural stages (layer-parallel shortening, folding-and-thrusting, extension and renewed thrusting). The first stage of deformation includes several sub-stages (layer-parallel shortening, bed-parallel simple shear and fold nucleation). Deformation continued in a second stage, where thrusting was coupled by fold amplification and tightening. Kinematic evolution is provided by a third stage, where dominantly negative inversion of previous weakened zones and mechanical discontinuities occurred, coupled by normal faults activation. Out-of-sequence thrusting follows the chain thinning phase, as the late orogenic deformation phase of the contractional tectonics which affected Sicily. Each stage is defined as a discrete phase of deformation, characterised by the development of a characteristic set of structures, such as cleavage, folds, faults and veins. Each deformative step may be sequentially framed in a kinematic history, where a continuous shortening process, halted by an extension episode due to chain overthickening, in a tectonic setting dominated by collisional tectonics.

  13. Continuous dopaminergic stimulation by pramipexole is effective to treat early morning akinesia in animal models of Parkinson's disease: A pharmacokinetic-pharmacodynamic study using in vivo microdialysis in rats.

    PubMed

    Ferger, Boris; Buck, Kerstin; Shimasaki, Makoto; Koros, Eliza; Voehringer, Patrizia; Buerger, Erich

    2010-07-01

    Short-acting dopamine (DA) agonists are usually administered several times a day resulting in fluctuating plasma and brain levels. DA agonists providing continuous dopaminergic stimulation may achieve higher therapeutic benefit for example by alleviating nocturnal disturbances as well as early morning akinesia. In the present study continuous release (CR) of pramipexole (PPX) was maintained by subcutaneous implantation of Alzet minipumps, whereas subcutaneous PPX injections were used to mimic PPX immediate release (IR) in male Wistar rats. In the catalepsy bar test, PPX-CR (1 mg/kg/day) reversed the haloperidol-induced motor impairment in the morning and over the whole observation period of 12h. In contrast, PPX-IR (tid 1 mg/kg, pre-treatment the day before) was not effective in the morning but catalepsy was reduced for 6 h after PPX-IR (1 mg/kg) injection. In the reserpine model, early morning akinesia indicated by the first motor activity measurement in the morning was significantly reversed by PPX-CR (2 mg/kg/day). Again, PPX-IR (tid 0.3 mg/kg, pre-treatment the day before) was not able to antagonise early morning akinesia. These results are in agreement with in vivo microdialysis measurements showing a continuous decrease of extracellular DA levels and a continuous PPX exposure in the PPX-CR (1 mg/kg/day) group. In contrast, PPX-IR (0.3 mg/kg) produced a transient decrease of extracellular DA levels over 6 h and showed maximum PPX levels 2 h after dosing which decreased over the following 6-8 h. The present study demonstrates that PPX-CR may offer a higher therapeutic benefit than PPX-IR on early morning akinesia and confirms earlier reports that PPX-IR reverses motor impairment for several hours. PMID:20196139

  14. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  15. Centimeter-scale surface deformation caused by the 2011 Mineral, Virginia, earthquake sequence at the Carter farm site—Subsidiary structures with a quaternary history

    USGS Publications Warehouse

    Harrison, Richard W.; Schindler, J. Stephen; Pavich, Milan J.; Horton, J. Wright; Carter, Mark W.

    2016-01-01

    Centimeter-scale ground-surface deformation was produced by the August 23, 2011, magnitude (M) 5.8 earthquake that occurred in Mineral, Virginia. Ground-surface deformation also resulted from the earthquake aftershock sequence. This deformation occurred along a linear northeast-trend near Pendleton, Virginia. It is approximately 10 kilometers (km) northeast of the M5.8 epicenter and near the northeastern periphery of the epicentral area as defined by aftershocks. The ground-surface deformation extends over a distance of approximately 1.4 km and consists of parallel, small-scale (a few centimeters (cm) in amplitude) linear ridges and swales. Individual ridge and swale features are discontinuous and vary in length across a zone that ranges from about 20 meters (m) to less than 5 m in width. At one location, three fence posts and adjoining rails were vertically misaligned. Approximately 5 cm of uplift on one post provides a maximum estimate of vertical change from pre-earthquake conditions along the ridge and swale features. There was no change in the alignment of fence posts, indicating that deformation was entirely vertical. A broad monoclinal flexure with approximately 1 m of relief was identified by transit survey across surface deformation at the Carter farm site. There, surface deformation overlies the Carter farm fault, which is a zone of brittle faulting and fracturing along quartz veins, striking N40°E and dipping approximately 75°SE. Brecciation and shearing along this fault is interpreted as Quaternary in age because it disrupts the modern B-soil horizon. However, deformation is confined to saprolitized schist of the Ordovician Quantico Formation and the lowermost portion of overlying residuum, and is absent in the uppermost residuum and colluvial layer at the ground surface. Because there is a lack of surface shearing and very low relief, landslide processes were not a causative mechanism for the surface deformation. Two possible tectonic models and one

  16. Centimeter-scale surface deformation caused by the 2011 Mineral, Virginia, earthquake sequence at the Carter farm site—Subsidiary structures with a quaternary history

    USGS Publications Warehouse

    Harrison, Richard W.; Schindler, J. Stephen; Pavich, Milan J.; Horton, J. Wright; Carter, Mark W.

    2016-08-25

    Centimeter-scale ground-surface deformation was produced by the August 23, 2011, magnitude (M) 5.8 earthquake that occurred in Mineral, Virginia. Ground-surface deformation also resulted from the earthquake aftershock sequence. This deformation occurred along a linear northeast-trend near Pendleton, Virginia. It is approximately 10 kilometers (km) northeast of the M5.8 epicenter and near the northeastern periphery of the epicentral area as defined by aftershocks. The ground-surface deformation extends over a distance of approximately 1.4 km and consists of parallel, small-scale (a few centimeters (cm) in amplitude) linear ridges and swales. Individual ridge and swale features are discontinuous and vary in length across a zone that ranges from about 20 meters (m) to less than 5 m in width. At one location, three fence posts and adjoining rails were vertically misaligned. Approximately 5 cm of uplift on one post provides a maximum estimate of vertical change from pre-earthquake conditions along the ridge and swale features. There was no change in the alignment of fence posts, indicating that deformation was entirely vertical. A broad monoclinal flexure with approximately 1 m of relief was identified by transit survey across surface deformation at the Carter farm site. There, surface deformation overlies the Carter farm fault, which is a zone of brittle faulting and fracturing along quartz veins, striking N40°E and dipping approximately 75°SE. Brecciation and shearing along this fault is interpreted as Quaternary in age because it disrupts the modern B-soil horizon. However, deformation is confined to saprolitized schist of the Ordovician Quantico Formation and the lowermost portion of overlying residuum, and is absent in the uppermost residuum and colluvial layer at the ground surface. Because there is a lack of surface shearing and very low relief, landslide processes were not a causative mechanism for the surface deformation. Two possible tectonic models and one

  17. Deformation along the western Indian plate boundary: new constraints from differential and multi-aperture InSAR data inversion for the 2008, Baluchistan (Western Pakistan) seismic sequence.

    NASA Astrophysics Data System (ADS)

    Pezzo, Giuseppe; Merryman Boncori, John Peter; Atzori, Simone; Antonioli, Andrea; Salvi, Stefano

    2014-05-01

    We use Synthetic Aperture Radar Differential Interferometry (DInSAR) and Multi-Aperture Interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hours apart and an Mw 5.7event occurred 40 days later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan block of the Eurasian Plate. Elastic dislocation modelling of the surface displacements, derived from ascending and descending ENVISAT ASAR acquisitions, yields slip distributions with peak values of 80 cm and 70 cm for the two main events on a pair of strike-slip near-vertical faults, and values up to 50 cm for the largest aftershock on a NE-SW strike-slip fault. The MAI measurements, with their high sensitivity to the north-south motion component, are crucial in this area to resolve the fault plane ambiguity of moment tensors. We also studied the relationships between the largest earthquakes of the sequence by means of the Coulomb Failure Function to verify the agreement of our source modelling with the stress variations induced by the October 28 earthquake on the October 29 fault plane, and the stress variations induced by the two mainshocks on the December 09 fault plane. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at intermediate depths on large NW fault planes is compatible with contemporaneous left-lateral activation on NE-SW minor faults at shallower depths, in agreement with a bookshelf deformation mechanism.

  18. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Schwedt, Alexander; Lexa, Ondrej; Urai, Janos L.

    2012-04-01

    Microstructural study revealed that the ductile flow of intensely folded fine-grained salt exposed in an underground mine (Zechstein-Werra salt sequence, Neuhof mine, Germany) was accommodated by coupled activity of solution-precipitation (SP) creep and microcracking of the halite grains. The grain cores of the halite aggregates contain remnants of sedimentary microstructures with straight and chevron shaped fluid inclusion trails (FITs) and are surrounded by two concentric mantles reflecting different events of salt precipitation. Numerous intra-granular or transgranular microcracks originate at the tips of FITs and propagate preferentially along the interface between sedimentary cores and the surrounding mantle of reprecipitated halite. These microcracks are interpreted as tensional Griffith cracks. Microcracks starting at grain boundary triple junctions or grain boundary ledges form due to stress concentrations generated by grain boundary sliding (GBS). Solid or fluid inclusions frequently alter the course of the propagating microcracks or the cracks terminate at these inclusions. Because the inner mantle containing the microcracks is corroded and is surrounded by microcrack-free outer mantle, microcracking is interpreted to reflect transient failure of the aggregate. Microcracking is argued to play a fundamental role in the continuation and enhancement of the SP-GBS creep during halokinesis of the Werra salt, because the transgranular cracks (1) provide the ingress of additional fluid in the grain boundary network when cross-cutting the FITs and (2) decrease grain size by splitting the grains. More over, the ingress of additional fluids into grain boundaries is also provided by non-conservative grain boundary migration that advanced into FITs bearing cores of grains. Described readjustments of the microstructure and mechanical and chemical feedbacks for the grain boundary diffusion flow in halite-brine system are proposed to be comparable to other rock-fluid or

  19. Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Kondo, Hideki; Kimura, Gaku; Masago, Hideki; Ohmori-Ikehara, Kotoe; Kitamura, Yujin; Ikesawa, Eisei; Sakaguchi, Arito; Yamaguchi, Asuka; Okamoto, Shin'ya

    2005-12-01

    Nobeoka Thrust in Kyushu, southwest Japan, was investigated to understand the relationship between the seismogenic out-of-sequence thrust (OST) and fluid flow in accretionary prisms. The Nobeoka Thrust is a fossilized OST, being active at seismogenic depth. The hanging wall exhibits a penetrative plastic deformation, while a brittle, cataclastic mélange-like occurrence characterizes the footwall, although both of them have same shale and sandstone-dominant protolith. Vitrinite reflectance analyses indicate that the maximum temperatures of the hanging wall and footwall are approximately 320 and 250°C, respectively. This thermal gap across the thrust corresponds to 8.6-14.4 km of displacement assuming a 28-47°C/km geothermal gradient. The brittle damage zone of the thrust is asymmetric: only 2 m for hanging wall side and 100 m for footwall. Three types of mineral veins, quartz, and carbonate are well developed, especially in the damaged footwall: the tension crack-filling vein, the fault-filling vein, and postmélange one. The first is harmonious with fabric, perpendicular to the P surface. Fluid inclusion geothermobarometry indicates the P-T of fluid in the intensively damaged zone of the footwall is ˜300°C, 230-250 MPa, higher than that from vitrinite reflectance, which suggests that hydrothermal fluid flow is associated with deformation. The same type vein in the lowest portion of the footwall-damaged zone includes a much lower P-T fluid. This difference suggests that continuous underplating caused the damaged zone to propagate downward with cooling and shallowing, which differs from faults characterized by shear localization and might be unique to aquiferous OST in accretionary complexes.

  20. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the

  1. Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; González-Escobar, Mario; Navarro, Miguel; Valdez, Tito; Mayer, Sergio; Aguirre, Alfredo; Wong, Victor; Luna, Manuel

    2015-12-01

    We analyzed earthquakes of sequences that occurred at different times near San Carlos, a town of approximately 5000 inhabitants. The seismic sequences happened during March-April 1989, October 2000-June 2001, and 5-15 February 2004 at about 200 km west of the Pacific-North America plate boundary. The strong shaking from initial earthquakes of the first two sequences prompted the installation of temporary seismic stations in the area. With data recorded by these stations, we found an earthquake distribution that is consistent with the northwest segment of the Santa Margarita fault. Both the focal depth, that seemed to increase in E-NE direction, and a composite fault-plane solution, obtained from polarity data of the small earthquakes, were also consistent with the main characteristics of that fault. We also found that our normal-faulting mechanism (east side down) was quite similar to centroid moment tensor solutions for earthquakes with M w 5.4 and 5.3 that occurred in the area in February 2004. It is likely, then, that these larger earthquakes also occurred along the Santa Margarita Fault. To get some insight into the regional stress pattern, we compared the above mechanisms with mechanisms reported for other earthquakes of the Pacific margin of Baja California Sur and the Gulf of California regions. We observed that focal mechanisms of the two regions have T axes of stress that plunge sub horizontally in E-NE average direction. The corresponding P axes have N-NW average trend, but for the Pacific earthquakes these axes plunge at angles that are ~35° larger than those for the Gulf earthquakes. These more vertically inclined P axes of compressive stress mean substantial oblique fault motions. The mixture of oblique and strike-slip components of fault motions, as the focal mechanisms show, confirms a transtensional stress regime for the region. Before this research, we knew little about the seismicity and styles of faulting in the area. Now we know that

  2. Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; González-Escobar, Mario; Navarro, Miguel; Valdez, Tito; Mayer, Sergio; Aguirre, Alfredo; Wong, Victor; Luna, Manuel

    2016-10-01

    We analyzed earthquakes of sequences that occurred at different times near San Carlos, a town of approximately 5000 inhabitants. The seismic sequences happened during March-April 1989, October 2000-June 2001, and 5-15 February 2004 at about 200 km west of the Pacific-North America plate boundary. The strong shaking from initial earthquakes of the first two sequences prompted the installation of temporary seismic stations in the area. With data recorded by these stations, we found an earthquake distribution that is consistent with the northwest segment of the Santa Margarita fault. Both the focal depth, that seemed to increase in E-NE direction, and a composite fault-plane solution, obtained from polarity data of the small earthquakes, were also consistent with the main characteristics of that fault. We also found that our normal-faulting mechanism (east side down) was quite similar to centroid moment tensor solutions for earthquakes with M w 5.4 and 5.3 that occurred in the area in February 2004. It is likely, then, that these larger earthquakes also occurred along the Santa Margarita Fault. To get some insight into the regional stress pattern, we compared the above mechanisms with mechanisms reported for other earthquakes of the Pacific margin of Baja California Sur and the Gulf of California regions. We observed that focal mechanisms of the two regions have T axes of stress that plunge sub horizontally in E-NE average direction. The corresponding P axes have N-NW average trend, but for the Pacific earthquakes these axes plunge at angles that are ~35° larger than those for the Gulf earthquakes. These more vertically inclined P axes of compressive stress mean substantial oblique fault motions. The mixture of oblique and strike-slip components of fault motions, as the focal mechanisms show, confirms a transtensional stress regime for the region. Before this research, we knew little about the seismicity and styles of faulting in the area. Now we know that

  3. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  4. Deformation of a continental margin sequence under a thrust sheet: complex stress history in a high pressure cell revealed by vein systems in the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Virgo, Simon; Urai, Janos L.; Grobe, Arne

    2016-04-01

    Seven deformation phases can be mapped in mesozoic carbonates of the Jebel Akhdar mountains in North Oman. These include an early horizontal NE-SW directed extension that produced bedding confined vein sets with evidence for anticlockwise rotation of the stress field over time, interpreted to have developed during the thrust sheet emplacement. It is followed by a phase of top-NE bedding parallel shearing which rotates these veins on the North side of the mountains. The next phase is normal to oblique slip faults followed by at least two phases of strike-slip deformation. A "background" ductile deformation (maximum burial temperatures of 250 °C) is shown bu deformed fossils and diagenetic concretions. Each of these phases is consistently documented by a large number of observations of overprinting in nearly continuous outcrops. Each deformation phase produces vein sets that do not only differ in orientation but also in occurrence and appearance. Early vein sets exhibit a high stratigraphic variability, but are laterally very stable. With the onset of faulting, the stratigraphic variability decreases and the lateral variability becomes more significant. Even though the area offers excellent outcrop conditions with nearly 100% exposure, it is virtually impossible to find two outcrops that exhibit the same vein patterns. This has interesting implications for vein system analysis and is due to two reasons: (1) the stratigraphic and lateral variability of occurrence and orientation of each vein set cause different combination of vein sets do develop in different layers (2) Intersecting vein sets can show very different interaction such as crosscutting and reactivation, depending on the mechanical properties of the host rock and the veins.

  5. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  6. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  7. Recent Crustal Deformations In Kii Peninsula, Southwest Japan Derived From Dense GPS Observations: Interplate Coupling And 2004 Earthquake Sequence SE Off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Onoue, K.; Ohya, F.; Hoso, Y.; Sato, K.; Segawa, K.; Fujita, Y.

    2004-12-01

    Kii peninsula, southwest Japan is located close to the Nankai trough and suffers from the subduction of the Philippine Sea plate. Deeper part of the source region of interplate earthquakes, such as 1946 Nankai is beneath this peninsula. Therefore it is important to reveal detailed crustal deformations in this area for the purpose of understanding of generation process of interplate earthquakes and long-term forecast of their occurrence. We established 10 GPS observation sites filling the gaps of the GEONET operated by GSI along two lines nearly parallel to the relative motion between the Philippine Sea and Amurian plates. Resultant average spacing is 5~10km. We have repeated the campaign survey of this traverse using dual-frequency receivers since March 2001. So far, we have collected data from 4 campaigns done every March and can discuss displacement/velocity field during the recent 3 years. We calculate coordinates of our campaign sites with GSI_fs permanent sites in ITRF2000. We use the GIPSY/OASIS II software with JPL precise ephemeredes in the analysis. Velocity of each site is calculated referring to the first campaign and converted to the relative velocity to the Amurian plate using the Euler vector by Heki et al. (1999). Velocities derived from 2001 and 2002 campaigns are about 20mm/yr in the middle part of Kii peninsula and 35mm/yr at its southern tip, respectively, relative to the Amurian plate. Their directions are WNW. The gradient is almost linear up to 33.8N and there is no significant change in gradient in northern part. Velocities along the eastern line are a little smaller than those on the western line. We apply a model with multiple fault segments to this velocity field and estimate their slip deficit rates. We adopt the 9 segments around Kii peninsula from the fault model of Sagiya and Thatcher (1999). Estimated slip deficit rates are as large as 70 mm/yr that is slightly larger than the relative plate motion. If we add deeper extension to the

  8. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  9. From nappe stacking to out-of-sequence postcollisional deformations: Cretaceous to Quaternary exhumation history of the SE Carpathians assessed by low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Merten, S.; Matenco, L.; Foeken, J. P. T.; Stuart, F. M.; Andriessen, P. A. M.

    2010-06-01

    Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology have been combined to constrain the exhumation history of the SE Carpathians. Cooling ages generally decrease from Cretaceous for the internal basement nappes (AFT ages), to Miocene-Quaternary (AFT and AHe, respectively) for the external sedimentary wedge. The AFT and AHe data show a Paleogene age cluster, which confirms a suspected but never demonstrated tectonic event. The new data furthermore suggest that the SE Carpathians have been affected by a middle Miocene exhumation phase related to continental collision, which occurred at rates of ˜0.8 mm/yr, similar to the one previously inferred for the East Carpathians. The SE Carpathian tectonic evolution, however, is overprinted by two younger exhumation events in the Pliocene-Pleistocene. The first exhumation phase (latest Miocene-early Pliocene) occurred at high exhumation rates (˜1.7 mm/yr) and is interpreted as a tectonic event and/or associated with a sea level drop in the Paratethys basins during the Messinian low stand. The youngest recorded tectonic phase suggests rapid Pleistocene exhumation (˜1.6 mm/yr) and is interpreted to represent crustal-scale shortening different in mechanics from collisional processes. The data suggest that the SE Carpathians did not develop as a typical double-vergent orogenic wedge; instead, exhumation was related to a foreland-vergent sequence of nappe stacking during collision and was subsequently followed by a large out-of-sequence shortening event truncating the already locked collisional boundary.

  10. Winnetka deformation zone: Surface expression of coactive slip on a blind fault during the Northridge earthquake sequence, California. Evidence that coactive faulting occurred in the Canoga Park, Winnetka, and Northridge areas during the 17 January 1994, Northridge, California earthquake

    SciTech Connect

    Cruikshank, K.M.; Johnson, A.M.; Fleming, R.W.; Jones, R.L.

    1996-12-31

    Measurements of normalized length changes of streets over an area of 9 km{sup 2} in San Fernando Valley of Los Angeles, California, define a distinctive strain pattern that may well reflect blind faulting during the 1994 Northridge earthquake. Strain magnitudes are about 3 {times} 10{sup {minus}4}, locally 10{sup {minus}3}. They define a deformation zone trending diagonally from near Canoga Park in the southwest, through Winnetka, to near Northridge in the northeast. The deformation zone is about 4.5 km long and 1 km wide. The northwestern two-thirds of the zone is a belt of extension of streets, and the southeastern one-third is a belt of shortening of streets. On the northwest and southeast sides of the deformation zone the magnitude of the strains is too small to measure, less than 10{sup {minus}4}. Complete states of strain measured in the northeastern half of the deformation zone show that the directions of principal strains are parallel and normal to the walls of the zone, so the zone is not a strike-slip zone. The magnitudes of strains measured in the northeastern part of the Winnetka area were large enough to fracture concrete and soils, and the area of larger strains correlates with the area of greater damage to such roads and sidewalks. All parts of the pattern suggest a blind fault at depth, most likely a reverse fault dipping northwest but possibly a normal fault dipping southeast. The magnitudes of the strains in the Winnetka area are consistent with the strains produced at the ground surface by a blind fault plane extending to depth on the order of 2 km and a net slip on the order of 1 m, within a distance of about 100 to 500 m of the ground surface. The pattern of damage in the San Fernando Valley suggests a fault segment much longer than the 4.5 km defined by survey data in the Winnetka area. The blind fault segment may extend several kilometers in both directions beyond the Winnetka area. This study of the Winnetka area further supports

  11. An exome sequencing strategy to diagnose lethal autosomal recessive disorders.

    PubMed

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-03-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0-4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies.

  12. An exome sequencing strategy to diagnose lethal autosomal recessive disorders

    PubMed Central

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-01-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0–4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies. PMID:24961629

  13. Recursively minimally-deformed oscillators

    NASA Astrophysics Data System (ADS)

    Katriel, J.; Quesne, C.

    1996-04-01

    A recursive deformation of the boson commutation relation is introduced. Each step consists of a minimal deformation of a commutator [a,a°]=fk(... ;n̂) into [a,a°]qk+1=fk(... ;n̂), where ... stands for the set of deformation parameters that fk depends on, followed by a transformation into the commutator [a,a°]=fk+1(...,qk+1;n̂) to which the deformed commutator is equivalent within the Fock space. Starting from the harmonic oscillator commutation relation [a,a°]=1 we obtain the Arik-Coon and Macfarlane-Biedenharn oscillators at the first and second steps, respectively, followed by a sequence of multiparameter generalizations. Several other types of deformed commutation relations related to the treatment of integrable models and to parastatistics are also obtained. The ``generic'' form consists of a linear combination of exponentials of the number operator, and the various recursive families can be classified according to the number of free linear parameters involved, that depends on the form of the initial commutator.

  14. Recessive RYR1 mutations in a patient with severe congenital nemaline myopathy with ophthalomoplegia identified through massively parallel sequencing.

    PubMed

    Kondo, Eri; Nishimura, Takafumi; Kosho, Tomoki; Inaba, Yuji; Mitsuhashi, Satomi; Ishida, Takefumi; Baba, Atsushi; Koike, Kenichi; Nishino, Ichizo; Nonaka, Ikuya; Furukawa, Toru; Saito, Kayoko

    2012-04-01

    Nemaline myopathy (NM) is a group of congenital myopathies, characterized by the presence of distinct rod-like inclusions "nemaline bodies" in the sarcoplasm of skeletal muscle fibers. To date, ACTA1, NEB, TPM3, TPM2, TNNT1, and CFL2 have been found to cause NM. We have identified recessive RYR1 mutations in a patient with severe congenital NM, through high-throughput screening of congenital myopathy/muscular dystrophy-related genes using massively parallel sequencing with target gene capture. The patient manifested fetal akinesia, neonatal severe hypotonia with muscle weakness, respiratory insufficiency, swallowing disturbance, and ophthalomoplegia. Skeletal muscle histology demonstrated nemaline bodies and small type 1 fibers, but without central cores or minicores. Congenital myopathies, a molecularly, histopathologically, and clinically heterogeneous group of disorders are considered to be a good candidate for massively parallel sequencing. PMID:22407809

  15. Cardiac deformation recovery via incompressible transformation decomposition

    NASA Astrophysics Data System (ADS)

    Skrinjar, Oskar; Bistoque, Arnaud

    2005-04-01

    This paper presents a method for automated deformation recovery of the left and right ventricular wall from a time sequence of anatomical images of the heart. The deformation is recovered within the heart wall, i.e. it is not limited only to the epicardium and endocardium. Most of the suggested methods either ignore or approximately model incompressibility of the heart wall. This physical property of the cardiac muscle is mathematically guaranteed to be satisfied by the proposed method. A scheme for decomposition of a complex incompressible geometric transformation into simpler components and its application to cardiac deformation recovery is presented. A general case as well as an application specific solution is discussed. Furthermore, the manipulation of the constructed incompressible transformations, including the computation of the inverse transformation, is computationally inexpensive. The presented method is mathematically guaranteed to generate incompressible transformations which are experimentally shown to be a very good approximation of actual cardiac deformations. The transformation representation has a relatively small number of parameters which leads to a fast deformation recovery. The approach was tested on six sequences of two-dimensional short-axis cardiac MR images. The cardiac deformation was recovered with an average error of 1.1 pixel. The method is directly extendable to three dimensions and to the entire heart.

  16. Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation.

    PubMed

    Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2016-05-01

    Multigenerational graphene oxide architectures can be programmed by specific sequences of mechanical deformations. Each new deformation results in a progressively larger set of features decorated by smaller preexisting patterns, indicating a structural "memory." It is shown that these multiscale architectures are superhydrophobic and display excellent functionality as electrochemical electrodes. PMID:26996525

  17. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  18. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  19. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  20. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  1. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  2. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  3. Dominant simple-shear deformation during peak metamorphism for the lower portion of the Greater Himalayan Sequence in West Nepal: New implications for hybrid channel flow-type mechanisms in the Dolpo region

    NASA Astrophysics Data System (ADS)

    Frassi, Chiara

    2015-12-01

    I conducted new vorticity and deformation temperatures studies to test competing models of the exhumation of the mid-crustal rocks exposed in the Dolpo region (West Nepal). My results indicate that the Main Central Thrust is located ∼5 km structurally below the previous mapped locations. Deformation temperature increasing up structural section from ∼450 °C to ∼650 °C and overlap with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. My results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectonometamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.

  4. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  5. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  6. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  7. Reverse Kirner's deformity: case report.

    PubMed

    Lau, Yeong J; Tonkin, Michael A

    2009-03-01

    Kirner's deformity is a rare congenital deformity, usually of the little finger, with volar and radial bowing of the distal phalanx. The etiology of this deformity is unclear. We describe a case of a 9-year-old girl with radiographic changes classic for Kirner's deformity but with the curvature and nail changes in the dorsal direction.

  8. Uncertainty estimation in reconstructed deformable models

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; McKee, R.

    1996-12-31

    One of the hallmarks of the Bayesian approach to modeling is the posterior probability, which summarizes all uncertainties regarding the analysis. Using a Markov Chain Monte Carlo (MCMC) technique, it is possible to generate a sequence of objects that represent random samples drawn from the posterior distribution. We demonstrate this technique for reconstructions of two-dimensional objects from noisy projections taken from two directions. The reconstructed object is modeled in terms of a deformable geometrically-defined boundary with a constant interior density yielding a nonlinear reconstruction problem. We show how an MCMC sequence can be used to estimate uncertainties in the location of the edge of the reconstructed object.

  9. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  10. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  11. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  12. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  13. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  14. Deformed Quantum Statistics

    NASA Astrophysics Data System (ADS)

    Inomata, Akira

    1997-03-01

    To understand possible physical consequences of quantum deformation, we investigate statistical behaviors of a quon gas. The quon is an object which obeys the minimally deformed commutator (or q-mutator): a a† - q a†a=1 with -1≤ q≤ 1. Although q=1 and q=-1 appear to correspond respectively to boson and fermion statistics, it is not easy to create a gas which unifies the boson gas and the fermion gas. We present a model which is able to interpolates between the two limits. The quon gas shows the Bose-Einstein condensation near the Boson limit in two dimensions.

  15. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient.

  16. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  17. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  18. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  19. q-Deformed and c-Deformed Harmonic Oscillators

    NASA Astrophysics Data System (ADS)

    Sogami, I. S.; Koizumi, K.; Mir-Kasimov, R. M.

    2003-10-01

    Hamilton functions of classical deformed oscillators (c-deformed oscillators) are derived from Hamiltonians of q-deformed oscillators of the Macfarlane and Dubna types. A new scale parameter, lq, with the dimension of length, is introduced to relate a dimensionless parameter characterizing the deformation with the natural length of the harmonic oscillator. Contraction from q-deformed oscillators to c-deformed oscillators is accomplished by keeping lq finite while taking the limit hbar → 0. The c-deformed Hamilton functions for both types of oscillators are found to be invariant under discrete translations: the step of the translation for the Dubna oscillator is half of that for the Macfarlane oscillator. The c-deformed oscillator of the Macfarlane type has propagating solutions in addition to localized ones. Reinvestigation of the q-deformed oscillator carried out in the light of these findings for the c-deformed systems proves that the q-deformed systems are invariant under the same translation symmetries as the c-deformed systems and have propagating waves of the Bloch type.

  20. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  1. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  2. Deformed wing virus.

    PubMed

    de Miranda, Joachim R; Genersch, Elke

    2010-01-01

    Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.

  3. Congenital idiopathic clubfoot deformities.

    PubMed

    Kyzer, S P; Stark, S L

    1995-03-01

    Clubfoot is a birth defect that is marked primarily by a deformed talus (ie, ankle) and calcaneous (ie, heel) that give the foot a characteristic "club-like" appearance. In congenital idiopathic clubfoot (ie, talipes equinovarus), the infant's foot points downward (ie, equinus) and turns inward (ie, varus), while the forefoot curls toward the heel (ie, adduction). This congenital disorder has an incidence of 1 in 400 live births, with boys affected twice as often as girls. Unilateral clubfoot is somewhat more common than bilateral clubfoot and may occur as an isolated defect or in association with other disorders (eg, chromosomal aberrations, cerebral palsy, spina bifida, arthrogryposis). Infantile clubfoot deformity is painless and is correctable with early diagnosis and prompt treatment. PMID:7778903

  4. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  5. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  6. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  7. Postlaminectomy cervical deformity.

    PubMed

    Deutsch, Harel; Haid, Regis W; Rodts, Gerald E; Mummaneni, Praveen V

    2003-09-15

    Postlaminectomy cervical kyphosis is an important consideration when performing surgery. Identifying factors predisposing to postoperative deformity is essential. The goal is to prevent postlaminectomy cervical kyphosis while exposing the patient to minimal additional morbidity. When postlaminectomy kyphosis does occur, surgical correction is often required and performed via an anterior, posterior, or combined approach. The authors discuss the indications for surgical approaches as well as clinical results. PMID:15347223

  8. Deformation of wrinkled graphene.

    PubMed

    Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Anagnostopoulos, George; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos; Lu, Ching-Yu; Britnell, Liam

    2015-04-28

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  9. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  10. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  11. Treatment of Madelung's deformity.

    PubMed

    Saffar, P; Badina, A

    2015-12-01

    Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609

  12. Deformation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Kruglov, Sergey I.

    2016-10-01

    In this paper, we will first clarify the physical meaning of having a minimum measurable time. Then we will combine the deformation of the Dirac equation due to the existence of minimum measurable length and time scales with its deformation due to the doubly special relativity. We will also analyze this deformed Dirac equation in curved spacetime, and observe that this deformation of the Dirac equation also leads to a nontrivial modification of general relativity. Finally, we will analyze the stochastic quantization of this deformed Dirac equation on curved spacetime.

  13. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  14. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities.

    PubMed

    Genersch, Elke; Yue, Constanze; Fries, Ingemar; de Miranda, Joachim R

    2006-01-01

    Honey bees (Apis mellifera) productively infected with Deformed wing virus (DWV) through Varroa destructor (V. destructor) during pupal stages develop into adults showing wing and other morphological deformities. Here, we report for the first time the occurrence of bumble bees (Bombus terrestris, Bombus pascuorum) exhibiting wing deformities resembling those seen in clinically DWV-infected honey bees. Using specific RT-PCR protocols for the detection of DWV followed by sequencing of the PCR products we could demonstrate that the bumble bees were indeed infected with DWV. Since such deformed bumble bees are not viable DWV infection may pose a serious threat to bumble bee populations.

  15. Deformed soft matter under constraints

    NASA Astrophysics Data System (ADS)

    Bertrand, Martin

    In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

  16. Distributed deformation measurement of large space deployable mechanism based on FBG sensors

    NASA Astrophysics Data System (ADS)

    Dong, Yanfang; Zhou, Zude; Liu, Yi; Liu, Mingyao; Li, Ruiya; Li, Tianliang

    2015-10-01

    Space deployable mechanisms are widely used, important and multi-purpose components in aerospace fields. In order to ensure the mechanism in normal situation after unfolded, detecting the deformation caused by huge temperature difference in real-time is necessary. This paper designed a deployable mechanism setup, completed its distributed deformation measurement by means of fiber Bragg grating (FBG) sensors and BP neural network, proved the mechanism distributed strain takes place sequence and FBG sensor is capable for space deployable mechanisms deformation measuring.

  17. High-resolution dynamic speech imaging with deformation estimation.

    PubMed

    Maojing Fu; Barlaz, Marissa S; Shosted, Ryan K; Zhi-Pei Liang; Sutton, Bradley P

    2015-08-01

    Dynamic speech magnetic resonance imaging (DSMRI) is a promising technique for visualizing articulatory motion in real time. However, many existing applications of DSMRI have been limited by slow imaging speed and the lack of quantitative motion analysis. In this paper, we present a novel DS-MRI technique to simultaneously estimate dynamic image sequence of speech and the associated deformation field. Extending on our previous Partial Separability (PS) model-based methods, the proposed technique visualizes both speech motion and deformation with a spatial resolution of 2.2 × 2.2 mm(2) and a nominal frame rate of 100 fps. Also, the technique enables direct analysis of articulatory motion through the deformation fields. Effectiveness of the method is systematically examined via in vivo experiments. Utilizing the obtained high-resolution images and deformation fields, we also performed a phonetics study on Brazilian Portuguese to show the method's practical utility. PMID:26736572

  18. A deformation apparatus for three-dimensional coaxial deformation and its application to rheologically stratified analogue material

    NASA Astrophysics Data System (ADS)

    Zulauf, G.; Zulauf, J.; Hastreiter, P.; Tomandl, B.

    2003-03-01

    A new apparatus is described that supports all types of three-dimensional coaxial deformation from pure constriction to pure flattening. Up to 78% shortening is possible at strain rates ranging from 4×10 -6 to 1×10 -2 s -1. The apparatus has been used to study the influence of the deformation regime on the geometry of a deforming stiff layer embedded in a weak matrix. Layer and matrix consist of plasticine, the apparent viscosity η and stress exponent n of which vary from 2×10 6 to 2×10 7 Pa s and 6-9, respectively. First results suggest a considerable influence of the deformation regime on the geometry of the deformed layer including its thickness. If the viscosity ratio between layer and matrix is small ( η2/ η1≅5), folding is restricted to the flattening and plane strain regime, the latter if the layer is initially oriented perpendicular to the long axis X of the finite strain ellipsoid. If the layer is oriented perpendicular to the intermediate Y axis under plane and constrictional strain, low viscosity ratios result in boudinage, but folding is hardly developed. However, simultaneous growth of folds and boudins is possible under pure constriction at a viscosity ratio of 10. Three-dimensional images, based on computer tomography, suggest a strong interaction between such coeval folds and boudins, resulting in characteristic deformation patterns that should not occur if both structures form in sequence during polyphase deformation.

  19. Ultrasoft, highly deformable microgels.

    PubMed

    Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew

    2015-03-14

    Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine.

  20. Shape Determination for Deformed Cavities

    SciTech Connect

    Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho; Xiao, Liling; Ko, Kwok; Ghattas, Omar; /Texas U.

    2006-10-04

    A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.

  1. Graphene Topographies: Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation (Adv. Mater. 18/2016).

    PubMed

    Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2016-05-01

    P.-Y. Chen, R. H. Hurt, I. Y. Wong and co-workers demonstrate a hierarchical graphene surface architecture generated by using various sequences and combinations of extreme mechanical deformation, as shown in the false-colored SEM image. As described on page 3564, the sequential patterning approach enables the design of feature sizes and orientations across multiple length scales which are retained during mechanical deformations of similar extent. This results in sequence-dependent surface topographies with structural memory. PMID:27151628

  2. Experimental deformation of rocksalt

    NASA Astrophysics Data System (ADS)

    Handin, J.; Russell, J. E.; Carter, N. L.

    Using newly designed apparatus for triaxial-compression testing of 10 by 20-cm cores of Avery Island rocksalt at constant strain-rates between 10-4 and 10-6/s, temperatures between 100° and 200°C, and confining pressures of 3.4 and 20 MPa, comparing our data with those of other workers on the same material, and observing natural deformations of rocksalt, we find that (1) constant-strain-rate and quasi-constant stress-rate tests (both often called quasi-static compression tests) yield essentially similar stress-strain relations, and these depend strongly on strain rate and temperature, but not confining pressure; (2) fracture excluded, the deformation mechanisms observed for differential stresses between 0.5 and 20 MPa are intracrystal-line slip (dislocation glide and cross-slip) and polygonization (dislocation glide and climb by ion-vacancy pipe diffusion); (3) the same steady-state strain rate ɛ., and flow stress are reached at the same temperature in both constant-strain-rate and constant-stress (creep) tests, but the strain-time data from transient creep tests do not match the strain-hardening data unless the initial strain, ɛ0 (time-dependent in rocksalt) is accounted for; in creep tests the clock is not started until the desired constant stress is reached; (4) because the stress-strain curve contains the entire history of the deformation, the constant-strain-rate test rather than the creep test may well be preferred as the source of constitutive data; (5) furthermore, if the stress or temperature of the creep test is too low to achieve the steady state in laboratory time, one cannot predict the steady-state flow stress or strain rate from the transient response alone, whereas we can estimate them rather well from constant-strain-rate data even when strain rates are too high or temperatures too low to reach the steady state within a few hours; (6) the so-called "baseline creep law", giving creep strain, ɛ = ea[1-exp(-ξt)]+ɛ. ss t, where ea, ξ, and

  3. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  4. On the nonlinear deformation geometry of Euler-Bernoulli beams. [rotary wings

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Ormiston, R. A.; Peters, D. A.

    1980-01-01

    Nonlinear expressions are developed to relate the orientation of the deformed beam cross section, torsion, local components of bending curvature, angular velocity, and virtual rotation to deformation variables. The deformed beam kinematic quantities are proven to be equivalent to those derived from various rotation sequences by identifying appropriate changes of variable based on fundamental uniqueness properties of the deformed beam geometry. The torsion variable used is shown to be mathematically analogous to an axial deflection variable commonly used in the literature. Rigorous applicability of Hamilton's principle to systems described by a class of quasi-coordinates that includes these variables is formally established.

  5. Interface stress development in the Cu/Ag nanostructured multilayered film during the tensile deformation

    SciTech Connect

    Su, R.; Nie, Z. H.; Zhang, Q. H.; Li, X. J.; Li, L. E-mail: ydwang@mail.neu.edu.cn; Zhou, X. T.; Wang, Y. D. E-mail: ydwang@mail.neu.edu.cn; Wu, Y. D.; Hui, X. D.; Wang, M. G.

    2014-12-01

    Cu/Ag nanostructured multilayered films (NMFs) with different stacking sequences were investigated by synchrotron X-ray diffraction during the tensile deformations for interface stress study. The lattice strains were carefully traced and the stress partition, which usually occurs in the multiphase bulk metallic materials during plastic deformations, was first quantitatively analyzed in the NMFs here. The interface stress of the Cu/Ag NMFs was carefully analyzed during the tensile deformation and the results revealed that the interface stress was along the loading direction and exhibited three-stage evolution. This tensile interface stress has a detrimental effect on the deformation, leading to the early fracture of the NMFs.

  6. DNA Architecture, Deformability, and Nucleosome Positioning†

    PubMed Central

    Xu, Fei; Olson, Wilma K.

    2010-01-01

    The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway — the minor-groove width and the deformations of successive base pairs — determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic ‘601’ sequence on DNA. We ‘thread’ these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflects the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes. PMID:20232929

  7. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.

  8. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  9. Deformable target tracking method based on Lie algebra

    NASA Astrophysics Data System (ADS)

    Liu, Yunpeng; Shi, Zelin; Li, Guangwei

    2007-11-01

    Conventional approaches to object tracking use area correlation, but they are difficult to solve the problem of deformation of object region during tracking. A novel target tracking method based on Lie algebra is presented. We use Gabor feature as target token, model deformation using affine Lie group, and optimize parameters directly on manifold, which can be solved by exponential mapping between Lie Group and its Lie algebra. We analyze the essence of our method and test the algorithm using real image sequences. The experimental results demonstrate that Lie algebra method outperforms other traditional algorithms in efficiency, stabilization and accuracy.

  10. Controls on Dune Deformation Patterns in White Sands, New Mexico

    NASA Astrophysics Data System (ADS)

    Lee, D. B.; Ferdowsi, B.; Jerolmack, D. J.

    2015-12-01

    Eolian dune fields exhibit a variety of pattern transitions, including: the ab initio appearance of dunes from no dunes; transverse to barchan and unvegetated barchan to vegetated parabolic. Recent model predictions offer some insight into the mechanisms underlying some of these transitions. However, there are few direct observations, and tests providing empirical verification are sparse. The White Sands dune field exhibits all three of the aforementioned transitions in sequence, from the upwind to downwind margin, and has the potential to be a testing ground for these predictions. Repeat LiDAR data at White Sands provide an excellent opportunity to study not only dune structure, but also dune dynamics, which can provide insight into how dunes destabilize from one dune morphology into another. We employ a recently developed method for decomposing dune migration into two components: "translation" of a dune, and changes in dune shape referred to as "deformation". We find that the fastest moving dunes (i.e. the dunes translating most quickly) have the largest amount of deformation. Patterns of deformation also vary depending on dune type: transverse dunes experience coherent deformation, while parabolic dunes exhibit highly localized and apparently random deformation. Only a fraction of the deformation can be explained by the migration rate. A significant amount of deformation appears to be attributable to dune-dune interactions, which destabilize dune patterns in locations where dune density is high. At the interface between the transverse to barchan dune patterns, we describe how transverse dunes break up into barchans and compare it to published model results. Regarding the barchan to parabolic transition, we find that the onset of vegetation drives a gradual slowdown in migration rates, while the magnitude of deformation drops and becomes localized to dune crests as the arms are stabilized by plants.

  11. Deforming the hippocampal map.

    PubMed

    Touretzky, David S; Weisman, Wendy E; Fuhs, Mark C; Skaggs, William E; Fenton, Andre A; Muller, Robert U

    2005-01-01

    To investigate conjoint stimulus control over place cells, Fenton et al. (J Gen Physiol 116:191-209, 2000a) recorded while rats foraged in a cylinder with 45 degrees black and white cue cards on the wall. Card centers were 135 degrees apart. In probe trials, the cards were rotated together or apart by 25 degrees . Firing field centers shifted during these trials, stretching and shrinking the cognitive map. Fenton et al. (2000b) described this deformation with an ad hoc vector field equation. We consider what sorts of neural network mechanisms might be capable of accounting for their observations. In an abstract, maximum likelihood formulation, the rat's location is estimated by a conjoint probability density function of landmark positions. In an attractor neural network model, recurrent connections produce a bump of activity over a two-dimensional array of cells; the bump's position is influenced by landmark features such as distances or bearings. If features are chosen with appropriate care, the attractor network and maximum likelihood models yield similar results, in accord with previous demonstrations that recurrent neural networks can efficiently implement maximum likelihood computations (Pouget et al. Neural Comput 10:373-401, 1998; Deneve et al. Nat Neurosci 4:826-831, 2001). PMID:15390166

  12. Supersymmetric q-deformed quantum mechanics

    SciTech Connect

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  13. Involvement of valgus hindfoot deformity in hallux valgus deformity in rheumatoid arthritis.

    PubMed

    Yamada, Shutaro; Hirao, Makoto; Tsuboi, Hideki; Akita, Shosuke; Matsushita, Masato; Ohshima, Shiro; Saeki, Yukihiko; Hashimoto, Jun

    2014-09-01

    The involvement of valgus hindfoot deformity in hallux valgus deformity was confirmed in a rheumatoid arthritis case with a destructive valgus hindfoot deformity. Correction of severe valgus, calcaneal lateral offset, and pronated foot deformity instantly normalized hallux valgus deformities postoperatively. Thus, careful hindfoot status evaluation is important when assessing forefoot deformity, including hallux valgus, in rheumatoid arthritis cases.

  14. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  15. Inelastic deformation in crystalline rocks

    NASA Astrophysics Data System (ADS)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  16. Tracking of deformable objects

    NASA Astrophysics Data System (ADS)

    Aswani, Parimal; Wong, K. K.; Chong, Man N.

    2000-12-01

    Tracking of moving-objects in image sequences is needed for several video processing applications such as content-based coding, object oriented compression, object recognition and more recently for video object plane extraction in MPEG-4 coding. Tracking is a natural follow-up of motion-based segmentation. It is a fast and efficient method to achieve coherent motion segments along the temporal axis. Segmenting out moving objects for each and every frame in a video sequence is a computationally expensive approach. Thus, for better performance, semi-automatic segmentation is an acceptable compromise as automatic segmentation approaches rely heavily on prior assumptions. In semi-automatic segmentation approaches, motion-segmentation is performed only on the initial frame and the moving object is tracked in subsequent frames using tracking algorithms. In this paper, a new model for object tracking is proposed, where the image features -- edges, intensity pattern, object motion and initial keyed-in contour (by the user) form the prior and likelihood model of a Markov Random Field (MRF) model. Iterated Conditional Mode (ICM) is used for the minimization of the global energy for the MRF model. The motion segment for each frame is initialized using the segment information from the previous frame. For the initial frame, the motion segment is obtained by manually keying in the object contour. The motion-segments obtained using the proposed model are coherent and accurate. Experimental results on tracking using the proposed algorithm for different sequences -- Bream, Alexis and Claire are presented in this paper. The results obtained are accurate and can be used for a variety of applications including MPEG-4 Video Object Plane (VOP) extraction.

  17. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  18. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  19. Anisotropic Ripple Deformation in Phosphorene.

    PubMed

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-01

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  20. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  2. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  3. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  4. Symmetries in Connection Preserving Deformations

    NASA Astrophysics Data System (ADS)

    Ormerod, Christopher M.

    2011-05-01

    We wish to show that the root lattice of Bäcklund transformations of the q-analogue of the third and fourth Painlevé equations, which is of type (A2+A1)(1), may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable transformations. These transformations correspond to the Dynkin diagram automorphisms.

  5. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  6. Mixing of discontinuously deforming media.

    PubMed

    Smith, L D; Rudman, M; Lester, D R; Metcalfe, G

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems. PMID:26931594

  7. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  8. Large Deformation Diffeomorphic Metric Curve Mapping

    PubMed Central

    Glaunès, Joan; Miller, Michael I.; Younes, Laurent

    2010-01-01

    We present a matching criterion for curves and integrate it into the large deformation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal transformation between two curves embedded in Euclidean space ℝd. Curves are first represented as vector-valued measures, which incorporate both location and the first order geometric structure of the curves. Then, a Hilbert space structure is imposed on the measures to build the norm for quantifying the closeness between two curves. We describe a discretized version of this, in which discrete sequences of points along the curve are represented by vector-valued functionals. This gives a convenient and practical way to define a matching functional for curves. We derive and implement the curve matching in the large deformation framework and demonstrate mapping results of curves in ℝ2 and ℝ3. Behaviors of the curve mapping are discussed using 2D curves. The applications to shape classification is shown and experiments with 3D curves extracted from brain cortical surfaces are presented. PMID:20419045

  9. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  10. Study of muscular deformation based on surface slope estimation

    NASA Astrophysics Data System (ADS)

    Carli, M.; Goffredo, M.; Schmid, M.; Neri, A.

    2006-02-01

    During contraction and stretching, muscles change shape and size, and produce a deformation of skin tissues and a modification of the body segment shape. In human motion analysis, it is very important to take into account these phenomena. The aim of this work is the evaluation of skin and muscular deformation, and the modeling of body segment elastic behavior obtained by analysing video sequences that capture a muscle contraction. The soft tissue modeling is accomplished by using triangular meshes that automatically adapt to the body segment during the execution of a static muscle contraction. The adaptive triangular mesh is built on reference points whose motion is estimated by using non linear operators. Experimental results, obtained by applying the proposed method to several video sequences, where biceps brachial isometric contraction was present, show the effectiveness of this technique.

  11. Thermal deformations and stresses in composite materials

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1980-01-01

    Residual stresses are induced during curing in angle-ply laminates as a result of anisotropic thermal deformations of the variously oriented plies. Residual strains are measured experimentally using embedded strain gage techniques, and residual stresses are computed using orthotropic stress-strain relations. The results show that, for graphite and Kevlar laminates, residual stresses at room temperature are high enough to cause damage in the plies in the transverse to the fiber direction. It is also shown that residual stresses do not relax appreciably. The ply stacking sequence is found to have no effect on the magnitude of average residual stresses. Residual stresses and susceptibility to cracking during curing depend to a marked extent on ply layup.

  12. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  13. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  14. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  15. Mixing of discontinuously deforming media

    NASA Astrophysics Data System (ADS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  16. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  17. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  18. Quartz c-axis evidence for deformation characteristics in the Sanandaj-Sirjan metamorphic belt, Iran

    NASA Astrophysics Data System (ADS)

    Samani, Babak

    2013-05-01

    Quartz c-axis fabric, finite strain, and kinematic vorticity analyses were carried out in well-exposed quartz mylonites to investigate the heterogeneous nature of ductile deformation within the Eghlid deformed area in the High Pressure-Low Temperature (HP-LT) Sanandaj-Sirjan metamorphic belt (Zagros Mountains, Iran). This belt belongs to a sequence of tectonometamorphic complexes with low- to high-grade metamorphic rocks affected by a polyphase deformation history. Asymmetric quartz c-axis fabrics (type I) confirm a localized top-to-the-southeast sense of shear. Quantitative finite strain analysis in the XZ, XY and YZ principal planes of the finite strain ellipsoid demonstrate that the strain ratio increases towards the thrust planes of the Zagros Thrust System. Kinematic vorticity analysis of deformed quartz grains showed sequential variation in the kinematic vorticity number from ˜0.5 to ˜0.8 between the thrust sheets. Such vorticity numbers show that both simple and pure shear components contribute to the deformation. Our results show that simple shear dominated deformation near the thrust faults, and pure shear dominated deformation far from them. Quartz c-axis opening angles suggest deformation temperatures range between 450° ± 50 °C and 600° ± 50 °C, which yield greenschist to amphibolite facies conditions during ductile deformation.

  19. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  20. Finite Deformation of Magnetoelastic Film

    SciTech Connect

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  1. Chaetal deformities in aquatic oligochaeta

    SciTech Connect

    Brinkhurst, R.O.; Wetzel, M.J.

    1994-12-31

    Gross deformities in the chaetae of specimens of the tubificid Potamothrix hammoniensis were described by Milbrink from Lake Vaenern, Sweden. This lake is one of the most mercury-polluted major lakes of the world. Statistical tests showed a highly significant correlation between the incidence of deformities and the mercury concentration in the sediments. Changes in the pulp and paper mill process led to marked reduction in specimens with deformities. Similarly modified specimens of various species have been observed at a number of sites contaminated with heavy metals or oil residues in North America. Experimental work on chaetal form has demonstrated changes due to conductivity which have also been observed in saline inland waters. These experiments suggest that chaetae may be shed and replaced by worms every few days. EDX observation of chaetae indicated that metals may accumulate in them, and so provide a potential depuration mechanism. Independent physiological studies suggest that worms may be capable of regulating their metal levels.

  2. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  3. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  4. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  5. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  6. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  7. Space-based monitoring of ground deformation

    NASA Astrophysics Data System (ADS)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  8. Quasiequilibrium models for triaxially deformed rotating compact stars

    SciTech Connect

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-12-15

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  9. Coseismic topography deformation at Sumatra

    NASA Astrophysics Data System (ADS)

    Tong, Xinyue; Lavier, Luc; Tan, Eh

    2016-04-01

    Subduction zones produce the largest earthquakes. However, our understanding of earthquakes' spatial-temporal occurrence and tectonic deformation at convergent margin is limited. Traditional view for subduction earthquake cycle contain three stages: Interseismic - superposition of steady elastic strain accumulation and occasional short-duration aseismic strain release, Coseismic - rapid opposite-direction release of accumulated elastic strain, and Postseismic - superposition of afterslips and viscoelastic flow in mantle wedge and lower crust. However, the way strain accumulated interseismically which is related to the generation of long-term deformation and uplift in the forearc region is still a matter of debate. Moreover, when integrated over time, coseismic uplift poorly matches the longer-term vertical deformation. To better understand these relationships, we investigate numerically how coseismic slip and long-term deformation (vertical uplift) accumulate and interact at subduction zones by using a robust, adaptive, multi-dimensional, finite element method solver, Dynearthsol3D, on a 2D continuum viscoelastoplastic model. We set the conditions in this model to a realistic convergent margin setting that resembles Sumatra region. By introducing bathymetric features, this research also explore mechanisms that could explain how strain accumulation in space and time is modified by the presence of large asperities at the subduction interface.

  10. Coseismic Topography Deformation at Sumatra

    NASA Astrophysics Data System (ADS)

    Tong, X.; Lavier, L. L.; Tan, E.

    2015-12-01

    Subduction zones produce the largest earthquakes. However, our understanding of earthquakes' spatial-temporal occurrence and tectonic deformation at convergent margin is limited. Traditional view for subduction earthquake cycle contain three stages: Interseismic - superposition of steady elastic strain accumulation and occasional short-duration aseismic strain release, Coseismic - rapid opposite-direction release of accumulated elastic strain, and Postseismic - superposition of afterslips and viscoelastic flow in mantle wedge and lower crust. However, the way strain accumulated interseismically which is related to the generation of long-term deformation and uplift in the forearc region is still a matter of debate. Moreover, when integrated over time, coseismic uplift poorly matches the longer-term vertical deformation. To better understand these relationships, we investigate numerically how coseismic slip and long-term deformation (vertical uplift) accumulate and interact at subduction zones by using a robust, adaptive, multi-dimensional, finite element method solver, Dynearthsol3D, on a 2D continuum viscoelastoplastic model. We set the conditions in this model to a realistic convergent margin setting that resembles Sumatra region. By introducing bathymetric features, this research also explore mechanisms that could explain how strain accumulation in space and time is modified by the presence of large asperities at the subduction interface.

  11. Electrostatics of deformable lipid membranes.

    PubMed

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W

    2010-06-16

    It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (approximately 0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation.

  12. MSLICE Sequencing

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Norris, Jeffrey S.; Morris, John R.

    2011-01-01

    MSLICE Sequencing is a graphical tool for writing sequences and integrating them into RML files, as well as for producing SCMF files for uplink. When operated in a testbed environment, it also supports uplinking these SCMF files to the testbed via Chill. This software features a free-form textural sequence editor featuring syntax coloring, automatic content assistance (including command and argument completion proposals), complete with types, value ranges, unites, and descriptions from the command dictionary that appear as they are typed. The sequence editor also has a "field mode" that allows tabbing between arguments and displays type/range/units/description for each argument as it is edited. Color-coded error and warning annotations on problematic tokens are included, as well as indications of problems that are not visible in the current scroll range. "Quick Fix" suggestions are made for resolving problems, and all the features afforded by modern source editors are also included such as copy/cut/paste, undo/redo, and a sophisticated find-and-replace system optionally using regular expressions. The software offers a full XML editor for RML files, which features syntax coloring, content assistance and problem annotations as above. There is a form-based, "detail view" that allows structured editing of command arguments and sequence parameters when preferred. The "project view" shows the user s "workspace" as a tree of "resources" (projects, folders, and files) that can subsequently be opened in editors by double-clicking. Files can be added, deleted, dragged-dropped/copied-pasted between folders or projects, and these operations are undoable and redoable. A "problems view" contains a tabular list of all problems in the current workspace. Double-clicking on any row in the table opens an editor for the appropriate sequence, scrolling to the specific line with the problem, and highlighting the problematic characters. From there, one can invoke "quick fix" as described

  13. Insertion Sequences

    PubMed Central

    Mahillon, Jacques; Chandler, Michael

    1998-01-01

    Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available. PMID:9729608

  14. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    PubMed

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics.

  15. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2015-04-01

    Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  16. Ishtar deformed belts: Evidence for deformation from below?

    NASA Technical Reports Server (NTRS)

    Hansen, V. L.; Phillips, R. J.

    1993-01-01

    The mountain belts of Ishtar Terra are unique on Venus. Models for their formation include mantle upwelling, mantle downwelling, and horizontal convergence. The present forms of these models are too simple to predict surface strain, topography, or gravity. More detailed models will require specific constraints as imposed by geologic relations. In order to develop specific constraints for geodynamic models, we examine the geology of Ishtar Terra as viewed in Magellan SAR imagery in an attempt to interpret regional surface strain patterns. In this paper, we present geologic and structural relations that leads us to postulate that Ishtar deformed belts result from shear forces within the mantle acting on the lithosphere, and not by horizontal forces from colliding plates. We propose that the surface strains result from differential strain and displacement of domains within the upper mantle, and that further analysis of Ishtar deformation may allow us to identify individual domains within the mantle, and to constrain displacement trajectories between domains.

  17. Studies of normal deformation in {sup 151}Dy

    SciTech Connect

    Nisius, D.; Janssens, R.V.F.; Crowell, B.

    1995-08-01

    The wealth of data collected in the study of superdeformation in {sup 151}Dy allowed for new information to be obtained on the normally deformed structures in this nucleus. At high spin several new yrast states have been identified for the first time. They were associated with single-particle excitations. Surprisingly, a sequence was identified with energy spacings characteristic of a rotational band of normal ({beta}2 {approximately} 0.2) deformation. The bandhead spin appears to be 15/2{sup -} and the levels extend up to a spin of 87/2{sup -}. A clear backbend is present at intermediate spins. While a similar band based on a bandhead of 6{sup +} is known in {sup 152}Dy, calculations suggest that this collective prolate band should not be seen in {sup 151}Dy. In the experiment described earlier in this report that is aimed at determining the deformations associated with the SD bands in this nucleus and {sup 152}Dy, the deformation associated with this band will be determined. This will provide further insight into the origin of this band.

  18. Target space supergeometry of η and λ-deformed strings

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2016-10-01

    We study the integrable η and λ-deformations of supercoset string sigma models, the basic example being the deformation of the AdS 5 × S 5 superstring. We prove that the kappa symmetry variations for these models are of the standard Green-Schwarz form, and we determine the target space supergeometry by computing the superspace torsion. We check that the λ-deformation gives rise to a standard (generically type II*) supergravity background; for the η-model the requirement that the target space is a supergravity solution translates into a simple condition on the R-matrix which enters the definition of the deformation. We further construct all such non-abelian R-matrices of rank four which solve the homogeneous classical Yang-Baxter equation for the algebra so (2, 4). We argue that most of the corresponding backgrounds are equivalent to sequences of non-commuting TsT-transformations, and verify this explicitly for some of the examples.

  19. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  20. Application of Quaternions for Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2002-01-01

    A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.

  1. Stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Hyer, Michael W.; Tompkins, Stephen S.

    1987-01-01

    The stress and deformations in angle-ply composite tubes subjected to axisymmetric thermal loading were investigated both experimentally and analytically. For the theoretical portion a generalized plane strain elasticity analysis was developed. The analysis included mechanical and thermal loading, and temperature-dependent material properties. The elasticity analysis was also used to study the effect of including a thin metallic coating on a graphite-epoxy tube. The stresses in the coatings were found to be quite high, exceeding the yield stress of aluminum. An important finding in the analytical studies was the fact that even tubes with a balanced-symmetric lamination sequence exhibit shear deformation, or twist. For the experimental portion an apparatus was developed to measure torsional and axial response in the temperature range of 140 to 360 K. Eighteen specimens were tested, combining three material systems, eight lamination sequences, and three off-axis ply orientation angles. For the twist response, agreement between analysis and experiment was found to be good. The axial response of the tubes tested was found to be greater than predicted by a factor of three. As a result, it is recommended that the thermally induced axial deformations be investigated, both experimentally and analytically.

  2. 4-D facial expression recognition by learning geometric deformations.

    PubMed

    Ben Amor, Boulbaba; Drira, Hassen; Berretti, Stefano; Daoudi, Mohamed; Srivastava, Anuj

    2014-12-01

    In this paper, we present an automatic approach for facial expression recognition from 3-D video sequences. In the proposed solution, the 3-D faces are represented by collections of radial curves and a Riemannian shape analysis is applied to effectively quantify the deformations induced by the facial expressions in a given subsequence of 3-D frames. This is obtained from the dense scalar field, which denotes the shooting directions of the geodesic paths constructed between pairs of corresponding radial curves of two faces. As the resulting dense scalar fields show a high dimensionality, Linear Discriminant Analysis (LDA) transformation is applied to the dense feature space. Two methods are then used for classification: 1) 3-D motion extraction with temporal Hidden Markov model (HMM) and 2) mean deformation capturing with random forest. While a dynamic HMM on the features is trained in the first approach, the second one computes mean deformations under a window and applies multiclass random forest. Both of the proposed classification schemes on the scalar fields showed comparable results and outperformed earlier studies on facial expression recognition from 3-D video sequences.

  3. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  4. Deformation of rock: A pressure-sensitive, dilatant material

    NASA Astrophysics Data System (ADS)

    Ord, A.

    1991-12-01

    Permanent (plastic) deformation of rock materials in the brittle regime (cataclastic flow) is modelled here in terms of Mohr-Coulomb behaviour in which all three of the parameters cohesion, friction angle and dilation angle follow hardening (or softening) evolution laws with both plastic straining and increases in confining pressure. The physical basis for such behaviour is provided by a sequence of uniaxial shortening experiments performed by Edmond and Paterson (1972) at confining pressures up to 800 MPa on a variety of materials including Gosford sandstone and Carrara marble. These triaxial compression experiments are important for the large range of confining pressures covered, and for the careful recording of data during deformation, particularly volume change of the specimens. Both materials are pressure-sensitive and dilatant. It is therefore possible to derive from these experiments a set of material parameters which allow a preliminary description of the deformation behaviour in terms of a non-associated, Mohr-Coulomb constitutive model, thus providing the first constitutive modelling of geological materials in the brittle-ductile regime. These parameters are used as input to a finite difference, numerical code (FLAC) with the aim of investigating how closely this numerical model simulates real material behaviour upon breakdown of homogeneous deformation. The mechanical and macrostructural behaviour exhibited by the numerical model is in close agreement with the physical results in that the stress-strain curves are duplicated together with localization behaviour. The results of the modelling illustrate how the strength of the upper-crust may be described by two different but still pressure-dependent models: the linear shear stress/normal stress relationship of Amontons (that is, Byerlee's Law), and a non-linear, Mohr-Coulomb constitutive model. Both include parameters of friction and both describe brittle deformation behaviour. Consideration of the non

  5. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  6. Pinocchio nasal deformity secondary to lymphangioma circumscriptum.

    PubMed

    Uysal, Afşin; Yildiz, Kaya; Kankaya, Yüksel; Oruç, Melike; Sungur, Nezih; Koçer, Uğur; Ozer, Elif

    2007-11-01

    Pinocchio or Cyrano nasal tip deformity is a rare situation that develops secondary to the soft tissue tumors underneath. In literature, there is only one case reported with Pinocchio nasal deformity secondary to cavernous lymphangioma. In this study, we present a Pinocchio or Cyrano nasal deformity with skin involvement secondary to lymphangioma circumscriptum.

  7. Deformation of noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan

    2016-09-01

    In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .

  8. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  9. Variational approach and deformed derivatives

    NASA Astrophysics Data System (ADS)

    Weberszpil, J.; Helayël-Neto, J. A.

    2016-05-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved ​Noether current is worked out.

  10. Thermal deformation of helical gears

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Fei, Ye-tai; Liu, Shan-lin

    2010-08-01

    The analytical equation for the thermal field of a helical gear under normal working condition in a stable thermal field is established using mathematical physics, and the thermal deformation of the gear can be computed using this equation. The variations of gear geometric parameters, such as radial dimension, tooth depth, spiral angle, pressure angle, flank clearance and etc., are investigated with respect to the temperature change. According to the analytical and computational results obtained using the equation, the thermal deformation of the gear is strongly dependent on the choice of parameters, which is also confirmed using simulation software (COMSOL Multiphysic software). This is significant for the improvement of the rotation precision and working efficiency of screw gears.

  11. Marine terrace deformation, san diego county, California

    USGS Publications Warehouse

    McCrory, P.A.; Lajoie, K.R.

    1979-01-01

    The NW-SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport-Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego. The broad Linda Vista Mesa (elev. 70-120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio-Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest. Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20-30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical

  12. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  13. Plastic Deformations in Complex Plasmas

    SciTech Connect

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  14. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  15. Triaxial strongly deformed bands in {sup 160,161}Tm

    SciTech Connect

    Teal, C.; Lagergren, K.; Aguilar, A.; Riley, M. A.; Hartley, D. J.; Simpson, J.; Joss, D. T.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Garg, U.; Kondev, F. G.; Wang, X.; Ragnarsson, I.

    2008-07-15

    High-spin states in {sup 160,161}Tm were populated using the {sup 128}Te({sup 37}Cl, 5n and 4n) reactions at a beam energy of 170 MeV. Emitted {gamma} rays were detected in the Gammasphere spectrometer. Two rotational bands with high moments of inertia were discovered, one assigned to {sup 160}Tm, while the other tentatively assigned to {sup 161}Tm. These sequences display features similar to bands observed in neighboring Er, Tm, Yb, and Lu nuclei which have been discussed in terms of triaxial strongly deformed structures. Cranked Nilsson Strutinsky calculations have been performed that predict well-deformed triaxial shapes at high spin in {sup 160,161}Tm.

  16. Accidental degeneracies in nonlinear quantum deformed systems

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2011-09-01

    We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.

  17. Stochastic deformation of a thermodynamic symplectic structure.

    PubMed

    Kazinski, P O

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  18. Stochastic deformation of a thermodynamic symplectic structure

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  19. Distribution of the Late-Quaternary deformation in Northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Vassallo, R.; Mugnier, J.-L.; Vignon, V.; Malik, M. A.; Jayangondaperumal, R.; Srivastava, P.; Jouanne, F.; Carcaillet, J.

    2015-02-01

    Three main Cenozoic thrusts at the front of Northwestern Himalaya have accommodated most of the India-Eurasia convergence across the belt over the last million years and produced the present relief. Their recent tectonic activity is poorly known because of the long period of inaccessibility of the Jammu and Kashmir state, and because the latest and only large earthquake recorded in the region occurred in 1555 AD. We show where the deformation is localized during the Late-Quaternary, and determine shortening rates across the structures by analyzing the geometry and chronology of geomorphic markers. The Main Boundary Thrust in this region ceased moving at least ∼30 ka ago. On the contrary, the more external Medlicott-Wadia Thrust and Main Frontal Thrust, both merging at depth on the sub-flat detachment of the Main Himalayan Thrust, exhibit hectometric-scale deformations accumulated during the last thousands of years. The total shortening rate absorbed by these faults over the last 14-24 ka is between 13.2 and 27.2 mm/yr (11.2 ± 3.8 and 9.0 ± 3.2 mm /yr, respectively). Part of this deformation may be associated to the geometry of the Chenab reentrant, which could generate an extra oblique component. However, the lower bound of our shortening rates is consistent with previously determined geodetic rates. Active deformation on these structures follows an in-sequence/out-of-sequence pattern, with breaking of both ramps being possible for earthquakes triggered on the main detachment.

  20. Microstructures Resulting from Uniaxial Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Lindquist, A. K.; Feinberg, J. M.

    2012-12-01

    Researchers rely on the magnetic record preserved in magnetite when investigating magnetic field reversals, reconstructing past tectonic plate locations, and studying changes in the strength of the earth's magnetic field. Despite the extensive use of magnetite in scientific studies, the effects of dislocations on magnetite's remanence and magnetic stability are poorly understood, yet are crucial to understanding how magnetite records and maintains past magnetic field directions and intensities. To begin to address this need, we have studied the dislocation and defect structures in magnetite that form after controlled deformation. We have also measured major hysteresis loops to investigate the changes in remanence and coercivity that result from each of these deformation events. A single magnetite octahedron was cut into roughly equal bar-shaped pieces, and each was deformed uniaxially along a <121> direction at one atmosphere using a variety of temperature and pressure conditions, each selected to fall within the dislocation glide regime. Slices were cut from each deformed bar after deformation and investigated using a transmission electron microscope to characterize the types of deformation structures resulting from each of the temperature-pressure combinations. A variety of deformation structures were observed, especially dislocations and deformation bands. Dislocations were more common in samples deformed below 875°C. Hysteresis loops were measured for each sample with a field direction perpendicular to the deformation axis. Surprisingly, there is no significant difference in the bulk coercivity of a deformed and undeformed piece of magnetite.

  1. Occurrence of oral deformities in larval anurans

    USGS Publications Warehouse

    Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.

    2007-01-01

    We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.

  2. Helium release during shale deformation: Experimental validation

    NASA Astrophysics Data System (ADS)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  3. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    SciTech Connect

    Fortunati, Valerio; Verhaart, René F.; Angeloni, Francesco; Lugt, Aad van der; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; Walsum, Theo van

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.

  4. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    NASA Astrophysics Data System (ADS)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-08-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of ~2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to ~2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to ~3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  5. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco A.; Aydin, Atilla; Pollard, David D.

    1994-07-01

    At Arches National Park it is possible to distinguish three kinds of deformation bands on the basis of their distinctive microstructure: (1) deformation bands with little or no cataclasis; (2) deformation bands with cataclasis; and (3) deformation bands with clay smearing. The micromechanics of deformation band development consist of initial dilatancy followed by grain crushing and compaction. This process may be developed to different stages according to the interplay of porosity, confining pressure, clay content and amount of strain. Low porosities and low confining pressures promote the formation of dilatant bands with no cataclasis. High porosities and high confining pressures promote compaction and cataclasis. Two generations of deformation bands were documented. The older generation has little or no cataclasis and formed in relatively undisturbed sandstone probably under conditions of low confining pressure. The younger generation exhibits cataclasis, appears to be localized in proximity to major faults and seems to have developed under conditions of high confining pressure. The temporal sequence of deformation band development can be related to the regional geology of the area; where the first generation probably formed during growth of the salt anticline, and the second generation during its collapse.

  6. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies

  7. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  8. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  9. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  10. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  11. Equivariant deformations of horospherical surfaces

    NASA Astrophysics Data System (ADS)

    Deutsch, Michael Benjamin

    The classical Goursat transform for minimal surfaces is interpreted as conformal transformation of the Gauss map, allowing us to "bend" these surfaces for certain geometric purposes. A simple analogue of this deformation is defined for CMC1 surfaces which makes the Goursat transform equivariant with respect to the Lawson correspondence, thereby increasing the number of explicitly computable examples of minimal/CMC1 cousin pairs. We then indicate how the Goursat transformation law and integrability conditions for the "spin curve" of a horospherical surface are analogous to the Lorentz transformation law and equations of motion for the wavefunction of a massless fermion.

  12. The large deformation elastic response of woven Kevlar fabric

    SciTech Connect

    Warren, W.E.

    1991-01-01

    The large deformation elastic response of a plane woven Kevlar fabric is investigated analytically and experimentally. The analysis assumes the undeformed geometry to be a sequence of interlaced arcs of circles which reverse at each yarn midpoint, ad each yarn is modeled as an extensible elastical subject to certain compatibility conditions. Deflection-force relations for the fabric are determined in terms of the initial weave geometry and the elastic properties of the individual yarns. The theoretical results agree well with the results of experiments performed on a fabric woven from 400 denier Kevlar yarns under conditions of uniaxial loading in both warp and fill directions. 13 refs., 4 figs.

  13. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    NASA Astrophysics Data System (ADS)

    Fauchard, C.; Royer, G.

    1996-02-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension.

  14. The sequence of sequencers: The history of sequencing DNA.

    PubMed

    Heather, James M; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way.

  15. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  16. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  17. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  18. Regularities of bainitic steel deformation transition

    NASA Astrophysics Data System (ADS)

    Gromov, V. E.; Nikitina, E. N.; Ivanov, Yu F.; Aksenova, K. V.

    2016-09-01

    Quantitative analysis of defect and carbide subsystems evolution in medium-carbon bainitic steel subjected to compressive strain up to 36% was performed by means of transmission electron diffraction microscopy. Dislocation substructure and carbide phase parameters dependence on degree of deformation are identified, possible reasons of staging in their changes are discussed. It is suggested that the reason for bainitic steel softening at high (over 15%) degrees of deformation is activation of deformation microtwinning process.

  19. Smooth Crossed Products of Rieffel's Deformations

    NASA Astrophysics Data System (ADS)

    Neshveyev, Sergey

    2014-03-01

    Assume is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel's deformation of . We construct an explicit isomorphism between the smooth crossed products and . When combined with the Elliott-Natsume-Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel's and Kasprzak's approaches to deformation.

  20. Integrable deformations of the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Fiévet, Lucas; de Leeuw, Marius; Loebbert, Florian

    2013-09-01

    We consider integrable deformations of the XXZ spin chain for periodic and open boundary conditions. In particular, we classify all long-range deformations and study their impact on the spectrum. As compared to the XXX case, we have the z-spin at our disposal, which induces two additional deformations: the short-range magnetic twist and a new long-range momentum-dependent twist.

  1. Self-adjointness of deformed unbounded operators

    SciTech Connect

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  2. Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

    PubMed

    Warfield, Simon K; Haker, Steven J; Talos, Ion-Florin; Kemper, Corey A; Weisenfeld, Neil; Mewes, Andrea U J; Goldberg-Zimring, Daniel; Zou, Kelly H; Westin, Carl-Fredrik; Wells, William M; Tempany, Clare M C; Golby, Alexandra; Black, Peter M; Jolesz, Ferenc A; Kikinis, Ron

    2005-04-01

    During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.

  3. Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.

    PubMed

    Warfield, Simon K; Haker, Steven J; Talos, Ion-Florin; Kemper, Corey A; Weisenfeld, Neil; Mewes, Andrea U J; Goldberg-Zimring, Daniel; Zou, Kelly H; Westin, Carl-Fredrik; Wells, William M; Tempany, Clare M C; Golby, Alexandra; Black, Peter M; Jolesz, Ferenc A; Kikinis, Ron

    2005-04-01

    During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women's Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy. PMID:15721230

  4. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  5. Preserving sequence annotations across reference sequences

    PubMed Central

    2014-01-01

    Background Matching and comparing sequence annotations of different reference sequences is vital to genomics research, yet many annotation formats do not specify the reference sequence types or versions used. This makes the integration of annotations from different sources difficult and error prone. Results As part of our effort to create linked data for interoperable sequence annotations, we present an RDF data model for sequence annotation using the ontological framework established by the OBO Foundry ontologies and the Basic Formal Ontology (BFO). We defined reference sequences as the common domain of integration for sequence annotations, and identified three semantic relationships between sequence annotations. In doing so, we created the Reference Sequence Annotation to compensate for gaps in the SO and in its mapping to BFO, particularly for annotations that refer to versions of consensus reference sequences. Moreover, we present three integration models for sequence annotations using different reference assemblies. Conclusions We demonstrated a working example of a sequence annotation instance, and how this instance can be linked to other annotations on different reference sequences. Sequence annotations in this format are semantically rich and can be integrated easily with different assemblies. We also identify other challenges of modeling reference sequences with the BFO. PMID:25093075

  6. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  7. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  8. Klein tunneling in deformed honeycomb lattices.

    PubMed

    Bahat-Treidel, Omri; Peleg, Or; Grobman, Mark; Shapira, Nadav; Segev, Mordechai; Pereg-Barnea, T

    2010-02-12

    We study the scattering of waves off a potential step in deformed honeycomb lattices. For deformations below a critical value, perfect Klein tunneling is obtained; i.e., a potential step transmits waves at normal incidence with nonresonant unit-transmission probability. Beyond the critical deformation a gap forms in the spectrum, and a potential step perpendicular to the deformation direction reflects all normally incident waves, exhibiting a dramatic transition form unit transmission to total reflection. These phenomena are generic to honeycomb lattices and apply to electromagnetic waves in photonic lattices, quasiparticles in graphene, and cold atoms in optical lattices. PMID:20366822

  9. Deformation of vect(1)-modules of symbols

    NASA Astrophysics Data System (ADS)

    Basdouri, Imed; Ben Ammar, Mabrouk; Dali, Béchir; Omri, Salem

    2010-03-01

    We consider the action of the Lie algebra of polynomial vector fields, vect(1), by the Lie derivative on the space of symbols Sβn=⨁j=0nF. We study the deformations of this action. We exhibit explicit expressions of some 2-cocycles generating the second cohomology space Hdiff2(vect(1),D) where D is the space of differential operators from Fν to Fμ. Necessary second-order integrability conditions of any infinitesimal deformations of Sβn are given. We describe completely the formal deformations for some spaces Sβn and we give concrete examples of nontrivial deformations.

  10. Adaptive PVDF piezoelectric deformable mirror system.

    PubMed

    Sato, T; Ishida, H; Ikeda, O

    1980-05-01

    An adaptive mirror system whose surface deforms smoothly according to the desired curve has been made of polyvinylidene fluoride (PVDF) piezoelectric film and laminar glass plate. One surface of the glass plate was evaporated with silver, and this side was used as the mirror surface. A PVDF film, whose shape was determined by the deformation curve, was pasted tightly on the other surface. The mirror deforms smoothly along this curve with the application of a single voltage to the film. Holographic filter and feedback were lso considered to improve the static and dynamic characteristics. Typically, deformation along ax(2)+bx(3) was obtained. PMID:20221054

  11. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    SciTech Connect

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  12. Constraining lithosphere deformation mode evolution for the Iberia-Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto

    2015-04-01

    The deformation of lithosphere and asthenosphere and its evolution during continental rifting leading to breakup and seafloor spreading initiation is poorly understood. The resulting margin architecture and OCT structure is complex and diverse, and observations at magma poor margins includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. A coupled kinematic-dynamic model of lithosphere and asthenosphere deformation has been used to investigate the sequence of lithosphere deformation modes for 2 conjugate margin profiles for the Iberia-Newfoundland rifted margins. We use the observed water-loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation, to test and constrain lithosphere and asthenosphere deformation models. A sequence of lithosphere deformation modes is represented by a succession of flow-fields, which are generated by a 2D finite element viscous flow model (FE-Margin), and is used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (e.g. Braun et al. 2000) is also kinematically included. The methodology of Katz et al., 2003 is used to predict melt generation by decompressional melting. The magnitude of extension used in the modelling is consistent with that proposed by Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  13. Capillary deformations of bendable films.

    PubMed

    Schroll, R D; Adda-Bedia, M; Cerda, E; Huang, J; Menon, N; Russell, T P; Toga, K B; Vella, D; Davidovitch, B

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films.

  14. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  15. Deformation in the continental lithosphere

    NASA Astrophysics Data System (ADS)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  16. Permanent deformation of flexible pavements

    NASA Astrophysics Data System (ADS)

    Brown, S. F.; Broderick, B. V.; Pappin, J. W.

    1980-06-01

    Seven pairs of pavements with granular bases were tested under controlled conditions. One pavement in each pair contained fabric inclusions. An improved testing facility was developed, including: (1) servo-hydraulic system for the loading carriage; (2) amplification and read-out system for pressure cells; (3) linearizing unit for strain coils; (4) transducers for measuring vertical and resilient deflection; (5) techniques for measuring in situ strain on fabric inclusions; (6) extensive use of nuclear density meter to monitor pavement and foundation materials. The following conclusions are drawn: (1) No improvement in performance resulted from fabric inclusions. (2) No consistent reduction in in-situ stresses, resilient strains, or permanent strains was observed as a result of fabric inclusion. (3) No consistent improvement in densities resulted from fabric inclusions. (4) Some slip apparently occurred between fabric and soil on those pavements which involved large deformations. The slip occurred between fabric and crushed limestone base rather than between fabric and silty-clay subgrade.

  17. Deformation and seismicity of Taiwan.

    PubMed

    Vita-Finzi, C

    2000-10-10

    14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.

  18. Recent advances in the deformation processing of titanium alloys

    NASA Astrophysics Data System (ADS)

    Tamirisakandala, S.; Bhat, R. B.; Vedam, B. V.

    2003-12-01

    Titanium (Ti) alloys are special-purpose materials used for several critical applications in aerospace as well as non-aerospace industries, and extensive deformation processing is necessary to shape-form these materials, which poses many challenges due to the microstructural complexities. Some of the recent developments in the deformation processing of Ti alloys and usefulness of integrating the material behavior information with simulation schemes while designing and optimizing manufacturing process schedules are discussed in this paper. Discussions are primarily focused on the most important alloy, Ti-6Al-4V and on developing a clear understanding on the influence of key parameters (e.g., oxygen content, starting microstructure, temperature, and strain rate) on the deformation behavior during hot working. These studies are very useful not only for obtaining controlled microstructures but also to design complex multi-step processing sequences to produce defect-free components. Strain-induced porosity (SIP) has been a serious problem during titanium alloy processing, and improved scientific understanding helps in seeking elegant solutions to avoid SIP. A novel high-speed processing technique for microstructural conversion in titanium has been described, which provides several benefits over the conventional slow-speed practices. The hot working behavior of some of the affordable α+β and β titanium alloys being developed recently—namely, Ti-5.5Al-1Fe, Ti-10V-2Fe-3Al, Ti-6.8Mo-4.5Fe-1.5Al, and Ti-10V-4.5Fe-1.5Al—has been analyzed, and the usefulness of the processing maps in optimizing the process parameters and design of hot working schedules in these alloys is demonstrated. Titanium alloys modified with small additions of boron are emerging as potential candidates for replacing structural components requiring high specific strength and stiffness. Efforts to understand the microstructural mechanisms during deformation processing of Ti-B alloys and the issues

  19. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  20. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  1. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  2. Plate-tectonic mechanism of Laramide deformation.

    USGS Publications Warehouse

    Hamilton, W.

    1981-01-01

    The Laramide compressive deformation of the craton was caused by a clockwise rotation of about 2-4o of the Colorado Plateau region relative to the continental interior, during late Late Cretaceous and early Tertiary time. Late Paleozoic and Neogene deformation of the craton also were produced by motion of a southwestern subplate relative to the continental interior. -from Author

  3. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation.

  4. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  5. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453

  6. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  7. Quantification of abdominal aortic deformation after EVAR

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  8. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  9. Deciphering the chronology of internal wedge deformation by means of strontium isotopes of vein carbonates

    NASA Astrophysics Data System (ADS)

    Berger, Alfons; Dielforder, Armin; Herwegh, Marco

    2015-04-01

    The formation and growth of accretionary complexes is accompanied by a suite of deformation processes, ranging from early compaction of unconsolidated sediments near the trench to pervasive visco-plastic deformation of well cemented rocks beyond the down-dip limit of the seismogenic zone. Although the integrated record of previous field studies, seismic surveys and borehole data provided invaluable insights into the architecture of accretionary complexes, the relative timing and precise conditions of different deformation modes have remained largely elusive. Here we present a new approach to decipher the chronology of internal wedge deformation by means of radiogenic strontium isotopes of vein carbonates. Our study area is located within the Paleogene accretionary complex of the central European Alps, comprising a ~4 km thick sequence of Upper Cretaceous to Eocene shelf sediments and syn-orogenic turbidites. We sampled different types of mineral veins that were formed during sediment compaction, nappe stacking, nappe internal thrusting, folding, layer parallel shear, normal faulting, extensional fracturing and regional out-of-sequence thrusting. We show that the 87Sr/86Sr ratio of these veins record an evolution from initially seawater derived fluids toward diagenetic-metamorphic fluids within the accretionary complex. The combination of structural analysis and Sr isotope geochemistry allows us to resolve the relative timing of different deformation events on a resolution that cannot be assessed by field observations solely. By extending the Sr-record with quartz-calcite oxygen isotope thermometry, we further constrain the temperature range of different deformation processes and demonstrate, how internal wedge deformation differs between the aseimic and seismogenic zone.

  10. Boundary-aware multidomain subspace deformation.

    PubMed

    Yang, Yin; Xu, Weiwei; Guo, Xiaohu; Zhou, Kun; Guo, Baining

    2013-10-01

    In this paper, we propose a novel framework for multidomain subspace deformation using node-wise corotational elasticity. With the proper construction of subspaces based on the knowledge of the boundary deformation, we can use the Lagrange multiplier technique to impose coupling constraints at the boundary without overconstraining. In our deformation algorithm, the number of constraint equations to couple two neighboring domains is not related to the number of the nodes on the boundary but is the same as the number of the selected boundary deformation modes. The crack artifact is not present in our simulation result, and the domain decomposition with loops can be easily handled. Experimental results show that the single-core implementation of our algorithm can achieve real-time performance in simulating deformable objects with around quarter million tetrahedral elements. PMID:23929845

  11. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications.

  12. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  13. Quantum Deformations of Einstein's Relativistic Symmetries

    SciTech Connect

    Lukierski, Jerzy

    2006-11-03

    We shall outline two ways of introducing the modification of Einstein's relativistic symmetries of special relativity theory -- the Poincare symmetries. The most complete way of introducing the modifications is via the noncocommutative Hopf-algebraic structure describing quantum symmetries. Two types of quantum relativistic symmetries are described, one with constant commutator of quantum Minkowski space coordinates ({theta}{mu}{nu}-deformation) and second with Lie-algebraic structure of quantum space-time, introducing so-called {kappa}-deformation. The third fundamental constant of Nature - fundamental mass {kappa} or length {lambda} - appears naturally in proposed quantum relativistic symmetry scheme. The deformed Minkowski space is described as the representation space (Hopf-module) of deformed Poincare algebra. Some possible perspectives of quantum-deformed relativistic symmetries will be outlined.

  14. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  15. Deformation-based surface morphometry applied to gray matter deformation.

    PubMed

    Chung, Moo K; Worsley, Keith J; Robbins, Steve; Paus, Tomás; Taylor, Jonathan; Giedd, Jay N; Rapoport, Judith L; Evans, Alan C

    2003-02-01

    We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents. PMID:12595176

  16. Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph.

    PubMed

    Du, Dawei; Qi, Honggang; Li, Wenbo; Wen, Longyin; Huang, Qingming; Lyu, Siwei

    2016-08-01

    Recent advances in online visual tracking focus on designing part-based model to handle the deformation and occlusion challenges. However, previous methods usually consider only the pairwise structural dependences of target parts in two consecutive frames rather than the higher order constraints in multiple frames, making them less effective in handling large deformation and occlusion challenges. This paper describes a new and efficient method for online deformable object tracking. Different from most existing methods, this paper exploits higher order structural dependences of different parts of the tracking target in multiple consecutive frames. We construct a structure-aware hyper-graph to capture such higher order dependences, and solve the tracking problem by searching dense subgraphs on it. Furthermore, we also describe a new evaluating data set for online deformable object tracking (the Deform-SOT data set), which includes 50 challenging sequences with full annotations that represent realistic tracking challenges, such as large deformations and severe occlusions. The experimental result of the proposed method shows considerable improvement in performance over the state-of-the-art tracking methods. PMID:27214901

  17. A low-dimensional deformation model for cancer cells in flow.

    PubMed

    Lee, A M; Berny-Lang, M A; Liao, S; Kanso, E; Kuhn, P; McCarty, O J T; Newton, P K

    2012-08-01

    A low-dimensional parametric deformation model of a cancer cell under shear flow is developed. The model is built around an experiment in which MDA-MB-231 adherent cells are subjected to flow with increasing shear. The cell surface deformation is imaged using differential interference contrast microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an active shape model from which we obtain the principal components of deformation. These principal components are then used to obtain the parameters in an empirical constitutive equation determining the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface which can be deformed with three active parameters: H (height), σ(x) (x-width), and σ(y) (y-width). Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that active shape models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting.

  18. Intraoperative measurement of indenter-induced brain deformation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2014-03-01

    Accurate measurement of soft tissue material properties is critical for characterizing its biomechanical behaviors but can be challenging especially for the human brain in vivo. In this study, we investigated the feasibility of inducing and detecting cortical surface deformation intraoperatively for patients undergoing open skull neurosurgeries. A custom diskshaped indenter made of high-density tungsten (diameter of 15 mm with a thickness of 6 mm) was used to induce deformation on the brain cortical surface immediately after dural opening. Before and after placing the indenter, sequences (typically 250 frames at 15 frames-per-second, or ~17 seconds) of high-resolution stereo image pairs were acquired to capture the harmonic motion of the exposed cortical surface as due to blood pressure pulsation and respiration. For each sequence with the first left image serving as a baseline, an optical-flow motion-tracking algorithm was used to detect in-sequence cortical surface deformation. The resulting displacements of the exposed features within the craniotomy were spatially averaged to identify the temporal frames corresponding to motion peak magnitudes. Corresponding image pairs were then selected to reconstruct full-field three-dimensional (3D) cortical surfaces before and after indentation, respectively, from which full 3D displacement fields were obtained by registering their projection images. With one clinical patient case, we illustrate the feasibility of the technique in detecting indenter-induced cortical surface deformation in order to allow subsequent processing to determine material properties of the brain in vivo.

  19. Myocardial deformation from tagged MRI in hypertrophic cardiomyopathy using an efficient registration strategy

    NASA Astrophysics Data System (ADS)

    Piella, G.; De Craene, M.; Oubel, E.; Larrabide, I.; Huguet, M.; Bijnens, B. H.; Frangi, A. F.

    2009-02-01

    This paper combines different parallelization strategies for speeding up motion and deformation computation by non-rigid registration of a sequence of images. The registration is performed in a two-level acceleration approach: (1) parallelization of each registration process using MPI and/or threads, and (2) distribution of the sequential registrations over a cluster. On a 24-node double quad-core Intel Xeon (2.66 GHz CPU, 16 GB RAM) cluster, the method is demonstrated to efficiently compute the deformation of a cardiac sequence reducing the computation time from more than 3 hours to a couple of minutes (for low downsampled images). It is shown that the distribution of the sequential registrations over the cluster together with the parallelization of each pairwise registration by multithreading lowers the computation time towards values compatible with clinical requirements (a few minutes per patient). The combination of MPI and multithreading is only advantageous for large input data sizes. Performances are assessed for the specific scenario of aligning cardiac sequences of taggedMagnetic Resonance (tMR) images, with the aim of comparing strain in healthy subjects and hypertrophic cardiomyopathy (HCM) patients. In particular, we compared the distribution of systolic strain in both populations. On average, HCM patients showed lower average values of strain with larger deviation due to the coexistence of regions with impaired deformation and regions with normal deformation.

  20. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    SciTech Connect

    Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  1. Inelastic deformation and dislocation structure of a nickel alloy - Effects of deformation and thermal histories

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Page, R. A.

    1988-01-01

    Inelastic deformation behavior of the cast Ni-base alloy, B1900 + Hf, was investigated using data from step-temperature tensile tests and thermomechanical cyclic tests in the temperature ranges 538-760 C and 760-982 C. The deformation results were correlated with the dislocation structures of deformed specimens, identified by TEM. It was found that, in the 760-982 C temperature range, there are no thermal history effects in the inelastic deformation behavior of B1900 + Hf. In the 538-760 range, anomalous cyclic hardening and, possibly, thermal history effects were observed in thermomechanically deformed alloy, caused by sessile (010) dislocations in the gamma-prime phase.

  2. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  3. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  4. The C342R mutation in FGFR2 causes Crouzon syndrome with elbow deformity.

    PubMed

    Ke, Ronghu; Yang, Xianxian; Tianyi, Cai; Ge, Min; Lei, Jiaqi; Mu, Xiongzheng

    2015-03-01

    Crouzon syndrome is an autosomal dominant craniosynostosis syndrome caused by mutation in the fibroblast growth factor receptor 2 (FGFR-2). Numerous findings from animal studies imply a critical role for FGFRs in the regulation of skeletal development. Here, we report 2 unrelated patients with Crouzon syndrome accompanied by elbow deformity. Subsequently, we analyzed the sequence of the FGFR2 gene and found that both of the patients carried the Cys342Arg mutation. The findings suggest that the C342R mutation in FGFR2 may cause Crouzon syndrome and elbow deformity in Chinese patients. PMID:25759925

  5. Dynamic speckle pattern technique on measuring in-plane deformation of metal surface

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Li, Shanxiang; Sun, Yiling; An, Henan

    2001-04-01

    In order to study the metal target surface in-place deformation induced by the laser beam or other ones effecting upon, three kinds of measuring dynamic in-plane deformation techniques by means of a laser speckle, which are the speckle field time sequence processing (that is the optical flow analysis of speckle pattern), the digital speckle pattern processing (in fact, it is a kind of pattern or picture enhancement technique), and the digital speckle pattern correlation metrology, have been studded and developed. The latter, the correlation metrology, has been made a big progress: better precision and higher processing speed.

  6. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation.

    PubMed

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-06-18

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires.

  7. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  8. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  9. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  10. Multimodal sequence learning.

    PubMed

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.

  11. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  12. Capillary deformations of bendable films.

    PubMed

    Schroll, R D; Adda-Bedia, M; Cerda, E; Huang, J; Menon, N; Russell, T P; Toga, K B; Vella, D; Davidovitch, B

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. PMID:23863002

  13. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  14. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  15. Deformability-based capsule sorting

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Munier, Nadege; Maire, Pauline; Edwards-Levy, Florence; Salsac, Anne-Virginie

    2015-11-01

    Many microfluidic devices have been developed for cancer diagnosis applications, most of which relying on costly antibodies. Since some cancer cells display abnormal mechanical properties, new sorting tools based on mechanical sensing are of particular interest. We present a simple, passive pinched flow microfluidic system for capsule sorting. The device consists of a straight microchannel containing a cylindrical obstacle. Thanks to a flow-focusing module placed at the channel entrance, capsules arrive well-centered in the vicinity of the obstacle. Pure size-sorting can be achieved at low shear rate. When increasing the shear rate, capsules are deformed in the narrow space between the pillar and the wall. The softer the capsule, the more tightly it wraps around the obstacle. After the obstacle, streamlines diverge, allowing for the separation between soft capsules, that follow central streamlines, and stiff capsules, that drift away from the obstacle with a wider angle. This proves that we have developed a flexible multipurpose sorting microsystem based on a simple design.

  16. Deformation Control of Scroll Compressor for CO2 Refrigerant

    NASA Astrophysics Data System (ADS)

    Hiwata, Akira; Sawai, Kiyoshi; Morimoto, Takashi; Murakami, Hideki

    The compressors for CO2 refrigerant have a lot of difficulties to achieve high efficiency and reliability because of its very high operating pressure, which causes the deformation for scroll element. The deformations of the fixed scroll during operation fall into the following four categories: (1) pressure deformation due to pressure differences; (2) thermal deformation due to temperature difference; (3) deformation caused by welding for fixing the frame to the shell; and (4) bolt tightening deformation of the compression mechanism. In this study, in order to minimize the deformation during operation, deformations (1) and (2) are grasped by numerical calculations and deformations (3) and (4) are controlled to cancel the deformations (1) and (2) by adjusting the stiffness of fixed scroll. In addition, we measured the deformation under the operation by using the strain gauge in order to confirm that the proper stiffness of fixed scroll can minimize its total amount of deformation.

  17. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  18. Science sequence design

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.

    1973-01-01

    The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.

  19. Models of the Dynamic Deformations of Polymers

    NASA Astrophysics Data System (ADS)

    Merzhievsky, Lev; Voronin, Mihail; Korchagina, Anna

    2013-06-01

    In the process of deformation under the influence of external loading polymeric mediums show the complicated behavior connected with features of their structure. For amorphous polymers distinguish three physical conditions - glasslike, highlyelastic and viscoplastic. To each of the listed conditions there corresponds to mikro - meso- and macrostructural mechanisms of irreversible deformation. In the report the review of results of construction of models for the description of dynamic and shock-wave deformation of the polymers which are based on developed authors representations about mechanisms of irreversible deformation is made. Models include the formulation of the equations of conservation laws, considering effect of a relaxation of shear stresses in the process of deformation. For closing of models the equations of states with nonspherical tensor of deformations and relation for time of a relaxation of shear stresses are constructed. With using of the formulated models a number of problems of dynamic and shock wave deformations has been solved. The results are compared with corresponding experimental date. Development of the used approach are in summary discussed. To taking into account memory and fractal properties of real polymers is supposed of derivatives and integrals of a fractional order to use. Examples of constitutive equations with derivatives of a fractional order are presented. This work is supported by the Integration project of the Siberian Branch of the Russian Academy of Science 64 and grant RFBR 12-01-00726.

  20. State-variable theories for nonelastic deformation

    SciTech Connect

    Li, C.Y.

    1981-01-01

    The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep without relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.

  1. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  2. Procedure selection for the flexible adult acquired flatfoot deformity.

    PubMed

    Hentges, Matthew J; Moore, Kyle R; Catanzariti, Alan R; Derner, Richard

    2014-07-01

    Adult acquired flatfoot represents a spectrum of deformities affecting the foot and the ankle. The flexible, or nonfixed, deformity must be treated appropriately to decrease the morbidity that accompanies the fixed flatfoot deformity or when deformity occurs in the ankle joint. A comprehensive approach must be taken, including addressing equinus deformity, hindfoot valgus, forefoot supinatus, and medial column instability. A combination of osteotomies, limited arthrodesis, and medial column stabilization procedures are required to completely address the deformity.

  3. Procedure selection for the flexible adult acquired flatfoot deformity.

    PubMed

    Hentges, Matthew J; Moore, Kyle R; Catanzariti, Alan R; Derner, Richard

    2014-07-01

    Adult acquired flatfoot represents a spectrum of deformities affecting the foot and the ankle. The flexible, or nonfixed, deformity must be treated appropriately to decrease the morbidity that accompanies the fixed flatfoot deformity or when deformity occurs in the ankle joint. A comprehensive approach must be taken, including addressing equinus deformity, hindfoot valgus, forefoot supinatus, and medial column instability. A combination of osteotomies, limited arthrodesis, and medial column stabilization procedures are required to completely address the deformity. PMID:24980927

  4. Cubic Wavefunction Deformation of Compressed Atoms

    NASA Astrophysics Data System (ADS)

    Portela, Pedro Calvo; Llanes-Estrada, Felipe J.

    2015-05-01

    We hypothesize that in a non-metallic crystalline structure under extreme pressures, atomic wavefunctions deform to adopt a reduced rotational symmetry consistent with minimizing interstitial space in the crystal. We exemplify with a simple numeric variational calculation that yields the energy cost of this deformation for Helium to 25 %. Balancing this with the free energy gained by tighter packing we obtain the pressures required to effect such deformation. The consequent modification of the structure suggests a decrease in the resistance to tangential stress, and an associated decrease of the crystal's shear modulus. The atomic form factor is also modified. We also compare with neutron matter in the interior of compact stars.

  5. Deformations of GR and BH thermodynamics

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2016-08-01

    In four space-time dimensions General Relativity can be non-trivially deformed. Deformed theories continue to describe two propagating degrees of freedom, as GR. We study Euclidean black hole thermodynamics of these deformations. We use the recently developed formulation that works with {{SO}}(3) connections as well as certain matrices M of auxiliary fields. We show that the black hole entropy is given by one quarter of the horizon area as measured by the Lie algebra valued two-form MF, where F is the connection curvature. This coincides with the horizon area as measured by the metric only for the case of General Relativity.

  6. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  7. Deformations of GR and BH thermodynamics

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2016-08-01

    In four space–time dimensions General Relativity can be non-trivially deformed. Deformed theories continue to describe two propagating degrees of freedom, as GR. We study Euclidean black hole thermodynamics of these deformations. We use the recently developed formulation that works with {{SO}}(3) connections as well as certain matrices M of auxiliary fields. We show that the black hole entropy is given by one quarter of the horizon area as measured by the Lie algebra valued two-form MF, where F is the connection curvature. This coincides with the horizon area as measured by the metric only for the case of General Relativity.

  8. Optical tweezer for probing erythrocyte membrane deformability

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Soni, Harsh; Sood, A. K.

    2009-12-01

    We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.

  9. Spinal Deformity Associated with Chiari Malformation.

    PubMed

    Kelly, Michael P; Guillaume, Tenner J; Lenke, Lawrence G

    2015-10-01

    Despite the frequency of Chiari-associated spinal deformities, this disease process remains poorly understood. Syringomyelia is often present; however, this is not necessary and scoliosis has been described in the absence of a syrinx. Decompression of the hindbrain is often recommended. In young patients (<10 years old) and/or those with small coronal Cobb measurements (<40°), decompression of the hindbrain may lead to resolution of the spinal deformity. Spinal fusion is reserved for those curves that progress to deformities greater than 50°. Further research is needed to understand the underlying pathophysiology to improve prognostication and treatment of this patient population.

  10. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  11. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  12. Left ventricular endocardium tracking by fusion of biomechanical and deformable models.

    PubMed

    Ketout, Hussin; Gu, Jason

    2014-01-01

    This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing them to a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814

  13. Left Ventricular Endocardium Tracking by Fusion of Biomechanical and Deformable Models

    PubMed Central

    Gu, Jason

    2014-01-01

    This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing themto a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814

  14. Diagensis and deformation of the Madison Group, Colorado and Utah overthrust belt

    NASA Astrophysics Data System (ADS)

    Budai, J. M.

    A regional evaluation of dolomitization patterns and variations in the isotopic composition of replacive dolomite in the Mississippian Madison Group led to the conclusion that there were at least two regional episodes of early dolomitization. The earliest dolomitization event was related to hypersaline brines generated on upper Madison Group tidal flats. A second episode of mixed water dolomitization occurred during the early stages of Amsden Formation deposition. Deep burial and overthrust belt deformation of the Madison Group introduced a complex sequence of fracturing pressure solution, and carbonate vein mineralization. Deformational textual relationships in the Madison Group lead to the conclusion that fractures both modify and enhance continued pressure solution. Isotopic changes in vein mineralization together with the textual evidence to calcitization of host rock and vein dolomite suggest that pressure solution and fracturing were processes that opened the Madison Group to large scale allochthonous fluid migration during deformation.

  15. Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in TiAl alloys

    SciTech Connect

    Chen, C.L.; Lu, W.; Sun Dai; He, L.L.; Ye, H.Q.

    2010-11-15

    Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced {gamma} plate (DI-{gamma}) and the stacking sequence change of the {alpha}{sub 2} matrix were two key evidences for determining the occurrence of the deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard {gamma} phase; on the contrary, the product phase of the high-temperature transformation was standard {gamma} phase.

  16. Digital deformation model for fisheye image rectification.

    PubMed

    Hou, Wenguang; Ding, Mingyue; Qin, Nannan; Lai, Xudong

    2012-09-24

    Fisheye lens can provide a wide view over 180°. It then has prominence advantages in three dimensional reconstruction and machine vision applications. However, the serious deformation in the image limits fisheye lens's usage. To overcome this obstacle, a new rectification method named DDM (Digital Deformation Model) is developed based on two dimensional perspective transformation. DDM is a type of digital grid representation of the deformation of each pixel on CCD chip which is built by interpolating the difference between the actual image coordinate and pseudo-ideal coordinate of each mark on a control panel. This method obtains the pseudo-ideal coordinate according to two dimensional perspective transformation by setting four mark's deformations on image. The main advantages are that this method does not rely on the optical principle of fisheye lens and has relatively less computation. In applications, equivalent pinhole images can be obtained after correcting fisheye lens images using DDM.

  17. Zika Linked to Deformed Limbs in Newborns

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160324.html Zika Linked to Deformed Limbs in Newborns Cause isn' ... 2016 TUESDAY, Aug. 9, 2016 (HealthDay News) -- The Zika virus has already been linked to serious birth ...

  18. Correction of pincer nail deformity with phenol.

    PubMed

    Sugamata, Akira; Inuzuka, Kiyoshi

    2011-09-01

    From 2006 to 2009 we treated nine cases (11 toes) with pincer nail deformity of the first toe, using phenol. There were 8 women and 1 man, age range 9-81 years (mean 51). They were followed up for 7-17 months (mean 12) and all reported improvement of the pincer nail deformity and disappearance of pain from the first toes. Only one woman complained of a recurrent pincer nail deformity eight months after the first treatment, and the procedure was repeated. The mechanism of improvement is contraction of the phenolised wound away from the lateral nail fold, which gradually stretches and flattens the nail bed. We conclude that this technique is a simple and effective treatment for pincer nail deformity.

  19. Probing deformed commutators with macroscopic harmonic oscillators

    PubMed Central

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  20. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  1. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  2. Defect characterization in plastically deformed gallium arsenide

    SciTech Connect

    Leipner, H.S.; Huebner, C.; Storbeck, O.; Polity, A.; Krause-Rehberg, R.

    1996-12-31

    The defect spectrum in plastically deformed GaAs is analyzed by positron lifetime measurements. Different types of defects, such as vacancy clusters or antisites, are identified and their thermal annealing behavior is studied.

  3. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    PubMed

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. PMID:26273051

  4. 7 CFR 51.1357 - Seriously deformed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... deformed means that the pear is so badly misshapen as to cause a loss during the usual commercial preparation for use of over 20 percent, by weight, of the pear in excess of that which would occur if the...

  5. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  6. On Isospectral Deformations of an Inhomogeneous String

    NASA Astrophysics Data System (ADS)

    Colville, Kale; Gomez, Daniel; Szmigielski, Jacek

    2016-07-01

    In this paper we consider a class of isospectral deformations of the inhomogeneous string boundary value problem. The deformations considered are generalizations of the isospectral deformation that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is proved that these new isospectral deformations result in evolution equations on the mass density whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the evolution equations in this class linearize on the spectral side and hence can be solved by the inverse spectral method. In particular, the problem involving a mass density given by a discrete finite measure and arbitrary boundary conditions is shown to be solvable by Stieltjes' continued fractions.

  7. Management of the cleft lip nasal deformity.

    PubMed

    Dutton, J M; Bumsted, R M

    2001-02-01

    Management of the cleft lip nasal deformity offers a unique and ongoing challenge in facial plastic surgery. Although there has been no consensus regarding the optimal timing and technique for surgical repair of this deformity, the authors have found a three-tiered approach to be satisfactory. This approach involves a primary rhinoplasty performed at the time of the initial cleft lip repair to address reconstruction of the nasal floor and sill, columellar lengthening, repositioning of the alar base, and repositioning of the skin and mucosa of the lower lateral cartilage. Following alveolar bone grafting, an intermediate rhinoplasty is often performed at 6 to 10 years of age through an open approach to correct the cartilaginous lower nasal deformity. A delayed rhinoplasty is then performed in the later teenage years to correct the bony dorsal deformity and the various causes of nasal obstruction.

  8. Deformed and twisted black holes with NUTs

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; Kubizňák, David; Frolov, Valeri P.; Kolář, Ivan

    2016-06-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by ‘unspinning’ the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of a deformed and/or twisted sphere, with the deformation and twist characterized by the ‘Euclidean NUT’ parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  9. Digital deformation model for fisheye image rectification.

    PubMed

    Hou, Wenguang; Ding, Mingyue; Qin, Nannan; Lai, Xudong

    2012-09-24

    Fisheye lens can provide a wide view over 180°. It then has prominence advantages in three dimensional reconstruction and machine vision applications. However, the serious deformation in the image limits fisheye lens's usage. To overcome this obstacle, a new rectification method named DDM (Digital Deformation Model) is developed based on two dimensional perspective transformation. DDM is a type of digital grid representation of the deformation of each pixel on CCD chip which is built by interpolating the difference between the actual image coordinate and pseudo-ideal coordinate of each mark on a control panel. This method obtains the pseudo-ideal coordinate according to two dimensional perspective transformation by setting four mark's deformations on image. The main advantages are that this method does not rely on the optical principle of fisheye lens and has relatively less computation. In applications, equivalent pinhole images can be obtained after correcting fisheye lens images using DDM. PMID:23037373

  10. Surgical correction of foot deformities after stroke.

    PubMed

    Yamamoto, H; Okumura, S; Morita, S; Obata, K; Furuya, K

    1992-09-01

    Of 104 patients with corrective surgery for foot deformities subsequent to a cerebrovascular accident from 1980 until 1983, 53 patients returned for clinical examination and 22 patients were evaluated by questionnaire and telephone interview. The average follow-up period was 6.4 years. The operative techniques were tenotomy of the toe flexors for hammer-toe deformity, lengthening of the aponeurosis of the gastrocnemius for equinus deformity, and transfer of the anterior tibial tendon or the posterior tibial tendon or the long toe flexors for varus deformity. In 74% of patients, correction was maintained; 79% did not use an orthosis; 51% could bathe unassisted; and 76% were satisfied with the results. The ability to walk was related to the degree of paralysis, the age of the patient at surgery, and the walking speed at discharge.

  11. Study of the deformation in Central Afar using InSAR NSBAS chain

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.

    2013-12-01

    The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both In

  12. Seismic evidence for Messinian salt deformation and fluid circulation on the South Balearic margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela

    2014-05-01

    The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU

  13. Deformed suq(2) with deformed Coriolis effect description of superdeformed nuclei in A ~ 190 region

    NASA Astrophysics Data System (ADS)

    Alharbi, Hamoud; Alhendi, Hamad; Aloyayd, Turki

    2015-04-01

    The deformed suq(2) model with Coriolis effect is applied to 79 superdeformed bands in the region A ~ 190. The transition energies and the moments of inertia are calculated within the model and their validity is investigated by comparing them with the experimental data. The effect of deformation of Coriolis effect in the transition energies and the moments of inertia was investigated. A comparison between the suq(2) with and without deformed Coriolis effect is made and shows significant improvements in fitting the experimental data. It was shown that deformation of improve the standard deviation of the transition energies up to 80%. Correlation between the deformation parameter ? and the excesses of neutrons over protons, S, has been observed. This correlation shows a decaying behavior. As a result, the deformation of Coriolis effect becomes weak with the increase of S.

  14. Large-scale deformational systems in the South Polar Layered Deposits (Promethei Lingula, Mars): "Soft-sediment" and Deep-Seated Gravitational Slope Deformations Mechanisms

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Brozzetti, Francesco; Marinangeli, Lucia

    2012-08-01

    deformational systems in the SPLD necessarily implies that a large-scale dynamics of the ice-sheet occurred in the past. The relatively fast internal creep and basal/internal sliding, inferable from the structure assemblage, can be due to partial melting of the ice possibly caused by climatic changes in the Promethei Lingula region. In this manner, we believe that climate heating (which, according to the literature, is likely caused by orbital variations) softened some of the SPLD layers, triggering or accelerating the ice sheet's outward movement. The evidence of a marked disharmonic deformational style through the SPLD succession suggests the possibility of local periodic compositional variations in the sequence.

  15. Modeling of spray droplets deformation and breakup

    NASA Technical Reports Server (NTRS)

    Ibrahim, E. A.; Yang, H. Q.; Przekwas, A. J.

    1993-01-01

    A droplet deformation and breakup (DDB) model is proposed to study shear-type mechanism of spray droplets in pure extentional flows. A numerical solution of the DDB model equation is obtained using a fourth-order Runge-Kutta initial-value solver. The predictions of the DDB model as well as semianalytical and the Taylor analogy models are compared with the experimental data (Krzeczkowski, 1980) for shear breakup, which depict the dimensionless deformation of the drop vs dimensionless time.

  16. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  17. Dynamics of continental deformation in Asia

    NASA Astrophysics Data System (ADS)

    Vergnolle, M.; Calais, E.; Dong, L.

    2007-11-01

    The relevance of plate tectonics concepts to the description of deformation of large continental areas like Asia is subject to much debate. For some, the deformation of continents is better described by rigid motion of lithospheric blocks with strain concentrated along narrow fault zones. For others, it is better described by viscous flow of a continuously deforming solid in which faults play a minor role. Discriminating these end-member hypotheses requires spatially dense measurements of surface strain rates covering the whole deforming area. Here we revisit the issue of the forces and rheological structure that control present-day deformation in Asia. We use the "thin sheet" theory, with deformation driven by the balance of boundary and buoyancy stresses acting on a faulted lithosphere with laterally varying strength. Models are validated against a recent, homogeneous, GPS velocity field that covers most of Asia. In the models, deformation in compressional areas (Himalayas, Tien Shan, Altay) is well reproduced with strong coupling at the India/Eurasia plate contact, which allows for boundary forces to transfer into Asia. Southeastward motions observed in north and south China, however, require tensional, oceanward directed stresses, possibly generated by gravitational potential energy gradients across the Indonesian and Pacific subductions. Model and observed strain rates show that a large part of Asia undergoes no resolvable strain, with a kinematics apparently consistent with block- or plate-like motions. Internal strain, possibly continuous, is limited to high-elevation, mechanically weaker areas. Lateral variations of lithospheric strength appear to control the style of deformation in Asia, with a dynamics consistent with the thin sheet physical framework.

  18. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  19. Optico-photographic measurements of airplane deformations

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1931-01-01

    The deformation of aircraft wings is measured by photographically recording a series of bright shots on a moving paper band sensitive to light. Alternating deformations, especially vibrations, can thus be measured in operation, unaffected by inertia. A handy recording camera, the optograph, was developed by the static division of the D.V.L. (German Experimental Institute for Aeronautics) for the employment of this method of measurement on airplanes in flight.

  20. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  1. Harvey Cushing's experience with cranial deformity.

    PubMed

    Maher, Cormac O; Buchman, Steven R; O'Hara, Edward; Cohen-Gadol, Aaron A

    2010-12-01

    Surgery for cranial deformity was associated with significant surgical morbidity during the early part of the 20th century. For this reason, Harvey Cushing was initially not in favor of surgical treatment of craniosynostosis. Later in his career, Cushing began to operate on these children, although it never became a major focus of his practice. Several examples of his patients with cranial deformity are presented, and his limited role in the development of this field is discussed. PMID:21121720

  2. Extremal black hole initial data deformations

    NASA Astrophysics Data System (ADS)

    Aceña, Andrés; Gabach Clément, María E.

    2016-06-01

    We study deformations of axially symmetric initial data for Einstein-Maxwell equations satisfying time-rotation (t-ϕ) symmetry and containing one asymptotically cylindrical end and one asymptotically flat end. We find that the t-ϕ symmetry implies the existence of a family of deformed data having the same horizon structure. This result allows us to measure how close the solutions are to the Lichnerowicz equation when arising from nearby free data.

  3. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  4. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  5. Variations in deformation styles within the central Maine terrane: An example from the Presidential Range, NH

    SciTech Connect

    Eusden, J.D. Jr.; Garesche, J.; Johnson, A.; Maconochie, J.M. . Dept. of Geology)

    1993-03-01

    The Silurian and Devonian cover rocks of the Central Maine Terrane in the northern Appalachians are a complex, highly metamorphosed, stratigraphy that has been equally, if not more complexly, deformed. Correlations of regional deformation sequences (be they Acadian and/or Alleghanian) have been difficult, controversial, and elusive. This stems from the common observation that across-strike and strike-parallel variations in deformation sequences appear to be the norm rather than the exception in this belt. Enormous variations in structural style have been routinely observed in a detailed, five-year study of the well-exposed outcrops above treeline in the Presidential Range. Domains of different structural styles have been mapped in the northern, central and southern portions of the range. The northern domain, including Mts. Madison, Adams, and Jefferson, is composed of various members of the Devonian Littleton Formation. The map pattern is dominated by three macroscopic F1 synclines that face and are interpreted to verge northeasterly. The central domain, which includes Mt. Clay and much of Great Gulf, is interpreted to be a klippe of presumably Silurian gneisses probably correlative to the Rangeley, Smalls Falls, and Madrid Formations. A stratigraphic discontinuity, interpreted as the Greenough Spring thrust fault, separates this domain from the others and truncates the early fold structures of all domains. Within the Klippe there is evidence for an early phase of deformation but no folds related to it have been mapped. The map pattern is dominated by second phase folds that deform the early schistosity. The Greenough Spring thrust fault, and the second phase folds within it are refolded by a late phase of deformation which is characterized by a macroscopic, overturned synform.

  6. Akinesia: a syndrome common to parkinsonism, retarded depression, and negative symptoms of schizophrenia.

    PubMed

    Bermanzohn, P C; Siris, S G

    1992-01-01

    A distinct hypokinetic syndrome appears to exist across several different neuropsychiatric diagnoses, involving (1) slowed motor activity with difficulty initiating and sustaining behaviors, (2) anhedonia with depressed mood and reduced affective range, and (3) cognitive impairment. Specifically, three well-recognized states--parkinsonism, retarded depression, and the negative symptoms of schizophrenia--prominently feature the components of this syndrome, and reduced dopamine turnover in the brain has been hypothesized to play a part in the pathophysiology of each. While aspects of this conceptualization remain controversial, it generates testable hypotheses that could have implications for the understanding and treatment of these states.

  7. Akinesia in Parkinsonism. Relation between spontaneous movement (other than tremor) and voluntary movements made on command

    PubMed Central

    Meyer, Carl Ha

    1982-01-01

    In eleven patients with Parkinsonism there was a strong inverse relationship between the frequency of spontaneous activity of the arms and the degree of fatiguing of repetitive finger movements made upon command. The prevalence of spontaneous arm movement was related inversely (but more weakly) to the time taken to complete a pegboard test or to move clothespegs by hand; it had little association with the speed of linear movement or with simple motor reaction time involving the arm. PMID:7119827

  8. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  9. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.

  10. Membranotropic photobiomodulation on red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  11. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  12. [Correction of complex deformities in infectious conditions].

    PubMed

    Suger, G; Schmelz, A; Kinzl, L; Liener, U

    2000-01-01

    Skeletal deformities do occur after conservative or operative fracture treatment, as a consequence of congenital growth disturbance and as sequlae after posttraumatic and haematogenous osteomyelitis. In postinfectious deformities the course of the bone and soft tissue infection plays a decisive role when choosing the appropriate operative technique. Even in non active situations with a closed soft tissues envelope and no draining sinus persistence of germs within the bone has to be anticipated. The biological quality of the bone and the soft tissue envelope is often reduced because of local changes and as a result of multiple local revisions. Consequently wide areas of scar tissue and sclerotic bone are often encountered. The apex of the deformity is in most cases identical with the focus of the active or non active infection. The correction of the deformity at the apex can therefore only be accomplished if the infectious bone is also resected. If a correction is not possible at the apex of the deformity, translation at the osteotomy site is necessary to achieve a correct mechanical axis. The later rather complex operative procedure necessitates intensive preoperative planning and an extensive experience with deformity corrections by external fixators. PMID:10663242

  13. Deformation of orthodontic archwires over time.

    PubMed

    Wong, E K; Borland, D W; West, V C

    1994-10-01

    Most previous studies of archwire deformation over time (hereafter referred to as "time-dependent deformation of orthodontic wires") have been conducted at a constant room temperature. In the clinical situation however, arch wires are exposed to 37 degrees C as well as to periods of temperature increase when hot foods or fluids are ingested. The effects of the latter on time-dependent behaviour are largely unknown. Since the introduction of direct electric resistance heat treatment to superelastic nickel titanium wires, there have been no reports on its effect on time-dependent deformation. This study investigated the effects of repeated temperature increases (70 degrees C) on stainless steel, nickel titanium and beta titanium wires. The wires were deflected by approximately 3 and 5 mm on two jigs for periods of 1 minute, 1, 7, 14 and 28 days. Permanent deformation was measured optically with a measuring microscope and the amount of time-dependent deformation was calculated. Beta titanium wires demonstrated the greatest amount of time-dependent deformation; followed by non-superelastic nickel titanium, stainless steel, and superelastic nickel titanium. Exposure to repeated temperature (70 degrees C) increases and direct electric resistance heat treatment of superelastic nickel titanium did not affect time-dependent behaviour. PMID:8975645

  14. Quantum deformations of the flat space superstring

    NASA Astrophysics Data System (ADS)

    Pachoł, Anna; van Tongeren, Stijn J.

    2016-01-01

    We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.

  15. Elastic Energy Partitioning in DNA Deformation and Binding to Proteins.

    PubMed

    Teng, Xiaojing; Hwang, Wonmuk

    2016-01-26

    We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces.

  16. Elastic Energy Partitioning in DNA Deformation and Binding to Proteins.

    PubMed

    Teng, Xiaojing; Hwang, Wonmuk

    2016-01-26

    We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces. PMID:26638896

  17. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  18. The generalized quaternion sequence

    NASA Astrophysics Data System (ADS)

    Deveci, Ömür

    2016-04-01

    In this work, we define the recurrence sequence by using the relation matrix of the generalized quaternion group and then, we obtain miscellaneous properties of this sequence. Also, we obtain the cyclic groups and the semigroups which are produced by generating matrix of the sequence defined when read modulo m. Furthermore, we study this sequence modulo m, and then we derive the relationship among the order the cyclic groups obtained and the periods of the sequence defined.

  19. Constrained Deformable-Layer Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, H.

    2006-12-01

    The improvement on traveltime tomography depends on improving data coverage and tomographic methodology. The data coverage depends on the spatial distribution of sources and stations, as well as the extent of lateral velocity variation that may alter the raypaths locally. A reliable tomographic image requires large enough ray hit count and wide enough angular range between traversing rays over the targeted anomalies. Recent years have witnessed the advancement of traveltime tomography in two aspects. One is the use of finite frequency kernels, and the other is the improvement on model parameterization, particularly that allows the use of a priori constraints. A new way of model parameterization is the deformable-layer tomography (DLT), which directly inverts for the geometry of velocity interfaces by varying the depths of grid points to achieve a best traveltime fit. In contrast, conventional grid or cell tomography seeks to determine velocity values of a mesh of fixed-in-space grids or cells. In this study, the DLT is used to map crustal P-wave velocities with first arrival data from local earthquakes and two LARSE active surveys in southern California. The DLT solutions along three profiles are constrained using known depth ranges of the Moho discontinuity at 21 sites from a previous receiver function study. The DLT solutions are generally well resolved according to restoration resolution tests. The patterns of 2D DLT models of different profiles match well at their intersection locations. In comparison with existing 3D cell tomography models in southern California, the new DLT models significantly improve the data fitness. In comparison with the multi-scale cell tomography conducted for the same data, while the data fitting levels of the DLT and the multi-scale cell tomography models are compatible, the DLT provides much higher vertical resolution and more realistic description of the undulation of velocity discontinuities. The constraints on the Moho depth

  20. Cratering motions and structural deformation in the rim of the Prairie Flat multiring explosion crater

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.

    1977-01-01

    Cratering motions and structural deformation are described for the rim of the Prairie Flat multiring crater, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the crater. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the crater walls. Preliminary comparisons with laboratory experimental cratering and with numerical simulations indicate that explosion craters of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact craters with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.

  1. FEM simulation of microstructure refinement during severe deformation

    NASA Astrophysics Data System (ADS)

    Bylya, O. I.; Sarangi, M. K.; Ovchinnikova, N. V.; Vasin, R. A.; Yakushina, E. B.; Blackwell, P. L.

    2014-08-01

    The majority of methods of severe plastic deformation (SPD) used for producing ultra-fine grained (UFG) and nano materials involve the non-uniform distribution of strains in the workpiece. To make the refinement of grains uniform, interlinked operations are used in which either the orientation of the workpiece or the type of SPD is changed in some sequence. Each operation has its own set of control parameters affecting the output result. As a result, the optimization of the total chain of operations becomes very difficult, especially taking into account that each stage of material processing comes from the previous one with a certain non-uniformity of the structure. To deal with such types of problems the capability of tracing the transformation of the microstructure and accounting for its effect on mechanical properties in finite element modeling (FEM) is required. There are a number of detailed physical models of grain refinement and texture formation, but very often they are too complicated for practical engineering simulations. The mechanics of SPD are also studied and simulated in many works, but normally it is assumed that material is uniform, isotropic and its properties don't change during deformation. In this paper a microstructurally-coupled FE model of the SPD process is proposed. The question of selection and verification of macroscopic and microscopic constitutive relations is discussed. The results of a simulation made in QForm are analyzed and compared with some initial experimental data.

  2. A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers

    SciTech Connect

    Nichol, Alan M.; Brock, Kristy K.; Lockwood, Gina A.; Moseley, Douglas J.; Rosewall, Tara; Warde, Padraig R.; Catton, Charles N.; Jaffray, David A. . E-mail: david.jaffray@rmp.uhn.on.ca

    2007-01-01

    Purpose: To describe prostate deformation during radiotherapy and determine the margins required to account for prostate deformation after setup to intraprostatic fiducial markers (FM). Methods and Materials: Twenty-five patients with T1c-T2c prostate cancer had three gold FMs implanted. The patients presented with a full bladder and empty rectum for two axial magnetic resonance imaging (MRI) scans using a gradient recalled echo (GRE) sequence capable of imaging the FMs. The MRIs were done at the time of radiotherapy (RT) planning and a randomly assigned fraction. A single observer contoured the prostate surfaces. They were entered into a finite element model and aligned using the centroid of the three FMs. Results: During RT, the prostate volume decreased by 0.5%/fraction (p = 0.03) and the FMs in-migrated by 0.05 mm/fraction (p < 0.05). Prostate deformation was unrelated to differential bladder and bowel filling, but was related to a transurethral resection of the prostate (TURP) (p = 0.003). The standard deviation for systematic uncertainty of prostate surface contouring was 0.8 mm and for FM centroid localization was 0.4 mm. The standard deviation of random interfraction prostate deformation was 1.5 mm and for FM centroid variability was 1.1 mm. These uncertainties from prostate deformation can be incorporated into a margin recipe to determine the total margins required for RT. Conclusions: During RT, the prostate exhibited: volume decrease, deformation, and in-migration of FMs. Patients with TURPs were prone to prostate deformation.

  3. Evaluation of skin and muscular deformations in a non-rigid motion analysis

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Carli, Marco; Conforto, Silvia; Bibbo, Daniele; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    During contraction and stretching, muscles change shape and size, and produce a deformation of skin tissues and a modification of the body segment shape. In human motion analysis, it is indispensable to take into account this phenomenon and thus approximating body limbs to rigid structures appears as restrictive. The present work aims at evaluating skin and muscular deformation, and at modeling body segment elastic behavior by analysing video sequences that capture a sport gesture. The soft tissue modeling is accomplished by using triangular meshes that automatically adapt to the body segment during the execution of a static muscle contraction. The adaptive triangular mesh is built on reference points whose motion is estimated by using the technique based on Gauss Laguerre Expansion. Promising results have been obtained by applying the proposed method to a video sequence, where an upper arm isometric contraction was present.

  4. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  5. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  6. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  7. High-temperature microstructures and rheology of deformed granite, Erzgebirge, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Schulmann, Karel; Mlčoch, Bedřich; Melka, Radek

    1996-06-01

    Three stages of granite deformation were recognized in porphyric granitoids sheared under amphibolite facies conditions in the Erzgebirge Mts: (1) weakly deformed granite in lozenge-shaped pods, (2) S—C orthogneiss, and (3) thin zones of banded mylonites. Weakly deformed granite forms a load-bearing framework (LBF) structure in which quartz and feldspar aggregates exhibit similar strain intensities and shapes. K-feldspar deforms by fracturing and onset of dynamic recrystallization along clast margins, plagioclase recrystallizes completely and quartz shows effects of grain boundary migration recrystallization and activity of basal (a) slip. S—C orthogneiss is interpreted as an interconnected weak layer (IWL) structure with high viscosity contrast between quartz and both feldspars. Concentration of deformation into thin quartz layers is indicated by intense strain of quartz, grain size variations of recrystallized quartz and dominant prism (a) slip. Feldspars show well annealed structures and slip on (010)(001). Banded mylonite is marked by similar strain intensity of quartz and feldspar aggregates and low viscosity contrast between constituent phases. Quartz shows evidence for grain size increase and rhomb (a + c) slip. Fully recrystallized feldspars show evidence for (010)(100) slip. The whole microstructural sequence and the transitions from LBF structure to IWL structures show the dependence of microstructural evolution of different materials on the bulk strain intensity.

  8. Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System

    PubMed Central

    Han, Xin; Liu, Zongbin; Zhao, Li; Wang, Feng; Yu, Yang; Yang, Jianhua; Chen, Rui

    2016-01-01

    Herein we report a CRISPR-Cas9-mediated loss-of-function kinase screen for cancer cell deformability and invasive potential in a high-throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted in cells becoming more deformable and invasive. High-ranking candidates identified included well-reported tumor suppressor kinases, such as chk2, IKK-α, p38 MAPKs, and DAPK2. A high-ranking candidate STK4 was chosen for functional validation and identified to play an important role in the regulation of cell deformability and tumor suppression. Collectively, we have demonstrated that CRISPR-based on-chip mechanical screening is a potentially powerful strategy to facilitate systematic genetic analyses. PMID:27258939

  9. Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System.

    PubMed

    Han, Xin; Liu, Zongbin; Zhao, Li; Wang, Feng; Yu, Yang; Yang, Jianhua; Chen, Rui; Qin, Lidong

    2016-07-18

    Herein we report a CRISPR-Cas9-mediated loss-of-function kinase screen for cancer cell deformability and invasive potential in a high-throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted in cells becoming more deformable and invasive. High-ranking candidates identified included well-reported tumor suppressor kinases, such as chk2, IKK-α, p38 MAPKs, and DAPK2. A high-ranking candidate STK4 was chosen for functional validation and identified to play an important role in the regulation of cell deformability and tumor suppression. Collectively, we have demonstrated that CRISPR-based on-chip mechanical screening is a potentially powerful strategy to facilitate systematic genetic analyses.

  10. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  11. Significance of geometrical relationships between low-temperature intracrystalline deformation microstructures in naturally deformed quartz

    NASA Astrophysics Data System (ADS)

    Derez, T.; Pennock, G.; Drury, M. R.; Sintubin, M.

    2013-12-01

    Although quartz is one of the most studied minerals in the Earth's crust when it comes to its rheology, the interpretation of intracrystalline deformation microstructures with respect to deformation conditions and mechanisms, remains highly contentious. Moreover, inconsistent use of terminology for both deformation microstructures and mechanisms makes a correct assessment of observations and interpretations in published material very difficult. With respect to low-temperature intracrystalline deformation microstructures in quartz, different conflicting genetic models have been proposed. Most probably, the lack of consensus means that there is no unique interpretation for these microstructures, primarily because their initiation and development depend on many ambient conditions. We extensively studied these intracrystalline deformation microstructures by means of optical microscopy, Hot-Cathodoluminescence, SEM-Cathodoluminescence and Electron Backscatter Diffraction Orientation Imaging, in vein quartz of the High-Ardenne slate belt (Belgium, France, Luxemburg, Germany), (de)formed in a low-temperature regime. Firstly, we propose a new, purely descriptive terminology for the low-temperature intracrystalline deformation microstructures in naturally deformed quartz: fine extinction bands (FEB), wide extinction bands (WEB) and strings. The strings can be further subdivided into blocky (BS), straight (SS) and recrystallised (RS) morphological types. FEBs have consistently been called deformation lamellae in quartz and planar slip bands in metals. WEBs have been called deformation bands, prismatic kink bands or type II kink bands. Strings have formerly been called shear bands, deformation bands or type I kink bands. No distinction between blocky and straight morphological string types had ever been made. Secondly, a survey of the pre-recrystallisation stages in the history of the intracrystalline deformation microstructures reveals that the different types of low

  12. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength and deformation. 23.305 Section 23... Strength and deformation. (a) The structure must be able to support limit loads without detrimental, permanent deformation. At any load up to limit loads, the deformation may not interfere with safe...

  13. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Strength and deformation. 23.305 Section 23... Strength and deformation. (a) The structure must be able to support limit loads without detrimental, permanent deformation. At any load up to limit loads, the deformation may not interfere with safe...

  14. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength and deformation. 23.305 Section 23... Strength and deformation. (a) The structure must be able to support limit loads without detrimental, permanent deformation. At any load up to limit loads, the deformation may not interfere with safe...

  15. 14 CFR 23.305 - Strength and deformation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Strength and deformation. 23.305 Section 23... Strength and deformation. (a) The structure must be able to support limit loads without detrimental, permanent deformation. At any load up to limit loads, the deformation may not interfere with safe...

  16. Elevated and Low Temperature Deformation of Cast Depleted Uranium

    SciTech Connect

    Vogel, Sven C.

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during high and low temperature deformation of uranium, in particular texture, and develop constitutive micro-structure based model for uranium deformation. Deliverables achieved: Completed texture measures for 11 pre- and post-dU compression samples, quantified texture pre- and post-deformation, and provided data to constrain deformation models.

  17. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals

  18. Spinal deformity after multilevel osteoplastic laminotomy

    PubMed Central

    Juergen, Krauss; Gloger, Harald; Soerensen, Nils; Wild, Alexander

    2007-01-01

    Multilevel laminectomy in children has a significant rate of postoperative spinal deformity. To decrease the incidence of this complication, the use of osteoplastic laminotomy is advocated to minimise the risk of spinal deformity by preserving the normal architecture of the spine. In this retrospective study, a 10-year series of a paediatric population undergoing multilevel osteoplastic laminotomy is reviewed to determine the incidence, especially in contrast to laminectomies, and to identify factors that affect the occurrence of spinal column deformity. Seventy patients (mean age 4.2 years) underwent multilevel osteoplastic laminotomy for congenital anomalies or removal of spinal tumours. All patients had a clinical and radiographic examination preoperatively, 12 months postoperatively and at follow-up. Mean follow-up was 5.3 years (range 3–12.6 years). Nineteen patients (27%) had a new or progressive spinal deformity. There was an increased incidence in patients who had surgery for spinal tumours (P < 0.05), surgery of the cervical spine (P < 0.01), and who had more than five levels of the spine included (P < 0.05). A review of the literature on children with multilevel laminectomy (n = 330), the incidence of spinal deformity found a significantly higher (46%) compared to our study group. This study demonstrates that osteoplastic laminotomy was found to be very effective in decreasing the incidence of spinal deformities after spinal-canal surgery for spinal-cord tumours or congenital anomalies in children and adolescents. The choice of an anatomical reconstructive surgical technique such as osteoplastic laminotomy seems to be essential to minimise secondary problems due to the surgical technique itself. Nevertheless, growing patients should be followed up for several years after the initial operation for early detection and consequent management of any possible deformity of the spinal column. PMID:17323095

  19. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    SciTech Connect

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  20. Response of a low-subsiding intracratonic basin to long wavelength deformations: the Palaeocene-early Eocene period in the Paris Basin

    NASA Astrophysics Data System (ADS)

    Briais, J.; Guillocheau, F.; Lasseur, E.; Robin, C.; Châteauneuf, J. J.; Serrano, O.

    2016-02-01

    The uppermost Cretaceous to early Palaeogene is a period of major deformations of the western part of the Eurasian plate with prominent basin inversions starting from the Coniacian onwards. These deformations occur in a complex geodynamic setting within both the context of the Africa-Eurasia convergence and the North Atlantic opening. While Mesozoic graben inversions have been extensively studied, particularly in Eastern Europe and the North Sea, more gentle deformations that affect thicker crust areas (intracratonic basins and emerged lands) are not as well documented. The objective of this study is to constrain the exact timing, type, and magnitude of the early Palaeogene deformations affecting the intracratonic Paris Basin and to integrate them at the western European scale. Low-amplitude deformations are attempted through a high-resolution reconstitution of its stratigraphic record based on well-dated outcrops and well-dated wells, and a high number of well-logs that are correlated using the "stacking pattern" sequence stratigraphic technique. Two orders of sequences are identified (third and fourth order) and correlated throughout the basin. Basin geometric and palaeogeographic reconstitutions are based on sediment thickness and facies analysis. Two-dimensional accommodation space measurements were taken in order to quantify the magnitude of the deformations. Three phases of deformation were recognized. 1. An intra-Maastrichtian-pre-Thanetian (59 Ma) deformation, with major uplift and erosion of the Cretaceous strata with two sub-periods of deformation: Maastrichtian-pre-middle-Danian and Upper Danian-pre-Thanetian long-wavelength deformations. This period of major deformation is coeval with Upper Cretaceous/pre-Danian compressive deformations linked to the Africa-Eurasia convergence in southern France and with volcanic activity from the North Atlantic to Massif Central and the Rhenish Shield during the Palaeocene. 2. An early Ypresian (55.1-54.3 Ma) medium

  1. Response of a low subsiding intracratonic basin to long wavelength deformations: the Palaeocene-early Eocene period in the Paris basin

    NASA Astrophysics Data System (ADS)

    Briais, J.; Guillocheau, F.; Lasseur, E.; Robin, C.; Châteauneuf, J. J.; Serrano, O.

    2015-12-01

    The uppermost Cretaceous to early Palaeogene is a period of major deformations of the western part of the Eurasian plate with prominent basin inversions starting from the Coniacian onwards. These deformations occur in a complex geodynamic setting within both the context of the Africa-Eurasia convergence and the North Atlantic opening. While Mesozoic graben inversions have been extensively studied, particularly in Eastern Europe and the North Sea, more gentle deformations that affect thicker crust areas (intracratonic basins and emerged lands) are not as well documented. The objective of this study is to constrain the exact timing, type and magnitude of the early Palaeogene deformations affecting the intracratonic Paris basin and to integrate them at the Western European scale. Relatively gentle deformations are attempted through a high-resolution reconstitution of its stratigraphic record based on outcrops and well-dated wells, and a high number of well-logs that are correlated using the "stacking pattern" sequence stratigraphic technique. Two orders of sequences are identified (third- and fourth-order) and correlated throughout the basin. Basin geometric and palaeogeographic reconstitutions are based on sediment thickness and facies analysis. Two-dimensional accommodation space measurements were taken in order to quantify the magnitude of the deformations. Three phases of deformation were recognized. 1. An intra-Maastrichtian-pre-Thanetian (59 Ma) deformation, with major uplift and erosion of the Cretaceous strata with two sub-periods of deformation: Maastrichtian-pre-middle-Danian and Upper Danian-pre-Thanetian long wavelength deformations. This period of major deformation is coeval with Upper Cretaceous-pre-Danian compressive deformations linked to the Africa-Eurasia convergence in southern France and with volcanic activity from the North Atlantic to Massif Central and the Rhenish Shield during the Palaeocene; 2. an early Ypresian (55.1-54.3 Ma) medium

  2. Isotopic age constraints on middle Paleozoic deformation in the northern Sierra Nevada, California

    SciTech Connect

    Saleeby, J.; Hannah, J.L.; Varga, R.J.

    1987-08-01

    Allochthons of the lower Paleozoic Shoo Fly Complex in the northern Sierra Nevada were assembled and internally deformed prior to formation of a Devonian-Permian island-arc sequence. U/Pb data on zircons indicate ages of 423 +5/-15 Ma for a submarine tuff within the uppermost thrust slice of the Shoo Fly Complex and 378 +5/-10 Ma for a granitic intrusion that may be cogenetic with the lower part of the arc sequence. These data indicate late Early Silurian Shoo Fly deposition and proximity to active volcanism, as well as late Middle Devonian initiation of arc-related magmatism.

  3. Genome Sequence Databases (Overview): Sequencing and Assembly

    SciTech Connect

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  4. Two-Stage Deformation of Olivine Aggregates with Changing Deformation Kinematics

    NASA Astrophysics Data System (ADS)

    Mahan, B. M.; Skemer, P. A.; Griera, A.

    2011-12-01

    Two-stage deformation experiments have been conducted on synthetic olivine aggregates to investigate the influence of pre-existing fabric on the evolution of lattice-preferred orientation (LPO), seismic anisotropy, and grain morphology. This study is motivated by recent work on naturally and experimentally deformed peridotites, which suggest that the alignment of olivine axes with the shear plane requires more strain in samples with a strong pre-existing LPO than in samples with weak or random LPO. In the first stage of deformation, aggregates synthesized from San Carlos olivine are deformed at P = 1 GPa and T = 1500 K in a triaxial geometry to produce axi-symmetric LPOs of varying strength. In a second stage of deformation, the aggregates are re-deformed in simple shear to varying shear strains. Microstructural analyses are performed after each step (synthesis, triaxial deformation, simple shear deformation) using optical microscopy and electron backscatter diffraction (EBSD). These results are compared to numerical models of microstructural evolution. Our results provide constraints on the evolution of LPO and consequent seismic signature as a function of preexisting rock fabric. These data are necessary to interpret seismic anisotropy in settings where kinematics are complex, such as mid-ocean ridges and subduction zones.

  5. Surface Deformation in Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  6. Contamination of sequence databases with adaptor sequences

    SciTech Connect

    Yoshikawa, Takeo; Sanders, A.R.; Detera-Wadleigh, S.D.

    1997-02-01

    Because of the exponential increase in the amount of DNA sequences being added to the public databases on a daily basis, it has become imperative to identify sources of contamination rapidly. Previously, contaminations of sequence databases have been reported to alert the scientific community to the problem. These contaminations can be divided into two categories. The first category comprises host sequences that have been difficult for submitters to manage or control. Examples include anomalous sequences derived from Escherichia coli, which are inserted into the chromosomes (and plasmids) of the bacterial hosts. Insertion sequences are highly mobile and are capable of transposing themselves into plasmids during cloning manipulation. Another example of the first category is the infection with yeast genomic DNA or with bacterial DNA of some commercially available cDNA libraries from Clontech. The second category of database contamination is due to the inadvertent inclusion of nonhost sequences. This category includes incorporation of cloning-vector sequences and multicloning sites in the database submission. M13-derived artifacts have been common, since M13-based vectors have been widely used for subcloning DNA fragments. Recognizing this problem, the National Center for Biotechnology Information (NCBI) started to screen, in April 1994, all sequences directly submitted to GenBank, against a set of vector data retrieved from GenBank by use of key-word searches, such as {open_quotes}vector.{close_quotes} In this report, we present evidence for another sequence artifact that is widespread but that, to our knowledge, has not yet been reported. 11 refs., 1 tab.

  7. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  8. Deformation field heterogeneity in punch indentation

    PubMed Central

    Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid

    2014-01-01

    Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521

  9. White blood cell deformation and firm adhesion

    NASA Astrophysics Data System (ADS)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  10. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  11. Survey of Reflection-Asymmetric Nuclear Deformations

    NASA Astrophysics Data System (ADS)

    Olsen, Erik; Birge, Noah; Erler, Jochen; Nazarewicz, Witek; Perhac, Alex; Schunck, Nicolas; Stoitsov, Mario; Nuclei Collaboration

    2015-10-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. Overall, 140 even-even nuclei (near and among the lantanides and actinides and in the superheavy region near N = 184) were predicted by all 6 EDFs to have a pear-like deformation. The case of 112Xe also proved curious as it was predicted by 5 EDFs to have a pear-like deformation despite its proximity to the two-proton drip line. Deceased.

  12. [Adolescent scoliosis : From deformity to treatment].

    PubMed

    Schulze, A; Schrading, S; Betsch, M; Quack, V; Tingart, M

    2015-11-01

    Scoliosis affects up to 6 % of the population. The resulting spine deformity, the increasing risk of back pain, cosmetic aspects, pulmonary disorders if the Cobb angle is > 80°, and the progress of the deformity to > 50° after the end of growth indicate non-operative or operative therapy. In daily clinical practice, the classifications of scoliosis allow the therapy to be adapted. Classifications consider deformity, topography of the scoliosis, and the age at diagnosis. This publication gives an overview of the relevant and most common classifications in the treatment of adolescent scoliosis. For evaluation, the deformity measurement on the coronary radiographic projection of the total spine (Cobb angle) is relevant to therapy. The classification of topography, form, and the sagittal profile of the deformity of the spine are useful for preoperative planning of the fusion level. Classifications that take into account the age at the time of the diagnosis of scoliosis differentiate among early onset scoliosis (younger than 10 years of age), adolescent scoliosis (up to the end of growth), and adult scoliosis. Early onset scoliosis is subdivided by age and etiology. Therapy is derived from the classification of clinical and radiological findings. Classifications that take into account clinical and radiological parameters are essential components of modern scoliosis therapy.

  13. A Refined Shear Deformation Plate Theory

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2011-04-01

    An improved higher-order shear deformation theory of plates is presented in this paper. The theory is developed from the transverse shear deformation theory presented by Ambartsumian [11]. The present plate theory contains kinematics of higher-order displacement field of plates, a system of higher-order differential equilibrium equations in terms of the three generalized displacements of bending plates, and a system of boundary conditions at each edge of plate boundaries. The present shear deformation theory of plates is validated by applying it to solve torsional plates and simply supported plates. The obtained solutions using the present theory are compared with the solutions of other shear-deformation theories. A good agreement is achieved through these comparisons and the advantages of the present theory are clearly verified. The shear deformation plate theory presented here can be applied to the analysis of laminated composite plates to better predict their dynamic and static behaviors. The proposed theory should also be supplemented to the theory of finite element analysis for developing new shell elements.

  14. Core Characteristics Deterioration due to Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kaido, Chikara; Arai, Satoshi

    This paper discusses the effect of plastic deformation at core manufacturing on the characteristics of cores where non-oriented electrical steel sheets are used as core material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rP<10, where rP is a ratio of plastic deformation to that at yield point. In this region, anomalous eddy currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous eddy current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.

  15. An algorithmic approach to crustal deformation analysis

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin Baki

    1987-01-01

    In recent years the analysis of crustal deformation measurements has become important as a result of current improvements in geodetic methods and an increasing amount of theoretical and observational data provided by several earth sciences. A first-generation data analysis algorithm which combines a priori information with current geodetic measurements was proposed. Relevant methods which can be used in the algorithm were discussed. Prior information is the unifying feature of this algorithm. Some of the problems which may arise through the use of a priori information in the analysis were indicated and preventive measures were demonstrated. The first step in the algorithm is the optimal design of deformation networks. The second step in the algorithm identifies the descriptive model of the deformation field. The final step in the algorithm is the improved estimation of deformation parameters. Although deformation parameters are estimated in the process of model discrimination, they can further be improved by the use of a priori information about them. According to the proposed algorithm this information must first be tested against the estimates calculated using the sample data only. Null-hypothesis testing procedures were developed for this purpose. Six different estimators which employ a priori information were examined. Emphasis was put on the case when the prior information is wrong and analytical expressions for possible improvements under incompatible prior information were derived.

  16. Molecular and Biological Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.)

    PubMed Central

    Lanzi, Gaetana; de Miranda, Joachim R.; Boniotti, Maria Beatrice; Cameron, Craig E.; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M.; Rossi, Cesare

    2006-01-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5′ nontranslated leader sequence and a 317-nucleotide 3′ nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus. PMID:16641291

  17. Can Rock Deformation Experiments Help us to Forecast Volcanic Eruptions?

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kilburn, C. R.; Sammonds, P. R.

    2009-05-01

    Volcanic eruption forecasting models show that the strength and mechanical properties of volcanic rocks are a primary control on the behaviour of volcanic systems, especially during the approach to eruptions. The progressive failure of these rocks, recorded as sequences of small volcano tectonic earthquakes, can lead to the formation of new magma pathways, allowing eruptions to begin at volcanoes that have not erupted in hundreds of years. Rates and patterns of these small earthquakes, which are typically located within a few km of the volcano summit, are monitored at many volcanoes and used to forecast eruptions. Models of crack growth and interaction have been used to constrain expected patterns in accelerating earthquake rates before the first eruption after a long repose interval. These deterministic models rely on laboratory mechanical data from volcanic rocks tested under the temperature and pressure conditions expected within and beneath a volcanic edifice. Here, we present data from high temperature uniaxial and triaxial deformation of andesite and dacite at temperatures of up to 1000°C, and under confining pressures of up to 50 MPa. These are typical rock types for volcanoes likely to erupt violently after hundreds of years of repose, where these forecasting models have previously been applied. The conditions tested cover the full range of temperatures and pressures expected within the upper 2-3 km of volcanic systems. The eruption forecasting model, with new constraints from this laboratory data, is applied to sequences of VT earthquakes before eruptions and to sequences of acoustic emissions before laboratory sample failure. Both types of data showed accelerating trends within the limits defined in the model, whilst sequences of earthquakes and acoustic emissions not resulting in eruption or sample failure exhibited accelerations outside the model limits. These results support the scaling of laboratory data to field scale and the use of laboratory data

  18. Shape Function-Based Estimation of Deformation with Moving Cameras Attached to the Deforming Body

    NASA Astrophysics Data System (ADS)

    Jokinen, O.; Ranta, I.; Haggrén, H.; Rönnholm, P.

    2016-06-01

    The paper presents a novel method to measure 3-D deformation of a large metallic frame structure of a crane under loading from one to several images, when the cameras need to be attached to the self deforming body, the structure sways during loading, and the imaging geometry is not optimal due to physical limitations. The solution is based on modeling the deformation with adequate shape functions and taking into account that the cameras move depending on the frame deformation. It is shown that the deformation can be estimated even from a single image of targeted points if the 3-D coordinates of the points are known or have been measured before loading using multiple cameras or some other measuring technique. The precision of the method is evaluated to be 1 mm at best, corresponding to 1:11400 of the average distance to the target.

  19. Inter-relationships between deformation partitioning, metamorphism and tectonism

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Rieuwers, M. T.; Cihan, M.; Evans, T. P.; Ham, A. P.; Welch, P. W.

    2013-03-01

    Thrusting from the east loaded the thick Pomfret dome stratigraphic sequence in Vermont to such an extent that by the time the first schistosity had formed it was 20 km deep. This occurred without garnet growth even though rock compositions were ideal for this phase to grow before they reached this depth. The rocks remained at this depth until garnet growth ceased ~ 50 million years later after 5 periods of FIA development (foliation intersection/inflection axes preserved within porphyroblasts). The first phase of the garnet growth in each sample from the Pomfret dome was overstepped in pressure, nucleating well above the incoming phase boundary for this phase at ~7 kbar for whatever FIA set was the first to develop. This was not the case 45 km S in the Chester dome where a thin stratigraphic sequence overlay a basement high of gneiss. Lateral ramping against this basement thinned the thrust sheet preventing overstepping. Frontal ramping to the WNW had the same effect. The pressure did not increase in both regions to ~ 7 kbars until FIA 2. Approximately 50% of the rocks sampled around the Pomfret dome did not grow garnet during FIA 0. PT pseudosections and overstepped garnet phase boundaries indicate that all would have grown garnet if the bulk composition and PT were the only controlling factors. If metastability alone was a factor the other 50% should have grown garnet during the development of FIA 1. They did not, and this pattern was repeated for FIAs 2 and 3. Why, where and when garnet first grew in this PT overstepped environment was recorded by the inclusion trail geometries in each sample; all grew at the start of crenulation-producing events. The variable partitioning of a succession of differently oriented crenulation deformations through the region from FIA to FIA controlled where garnet growth first occurred. Successive FIAs shifted the bulk shortening direction relative to competent rocks, deforming sites previously protected and protecting others. The

  20. Light-induced deformation in a liquid crystal elastomer photonic crystal

    NASA Astrophysics Data System (ADS)

    Krishnan, D.; Johnson, H. T.

    2014-01-01

    Elastomer materials can undergo large, reversible elastic deformation, and offer novel possibilities for coupled optomechanical behavior when light itself is used to induce that deformation. This phenomenology is especially interesting to consider when photonic bandstructure effects and mechanical instabilities are present over the same length scales. Here we investigate a novel, coupled optomechanical material behavior whereby complex deformation, with the potential to occur cyclically, occurs in a soft photonic crystal structure due to a mechanical instability, as a result of constant, uniform illumination by normally incident light. We suppose that the base material for the structure is a material that responds to light by undergoing a microstructural change. Such a behavior is observed, for example, in a liquid crystal elastomer containing azobenzene moieties attached to the liquid crystal main-chains (Finkelmann et al., 2001) transformational strain generated by the effect of localized light energy on the isomerization of the azobenzene moieties can be calculated from an order-parameter based model (Hogan et al., 2002). Under uniform exposure to constant illumination, the interaction between the light, the material, and the deforming structure lead to a complex, reversible deformation sequence. We analyze the electromagnetic energy distribution inside this photonic crystal structure by solving Maxwells equations for the electromagnetic problem of light transmittance using finite element analysis. First, upon contraction of the structure due to isomerization in the uniformly illuminated material, the photonic bandstructure shifts, thereby significantly reducing the average illumination of material within the structure. The locally reduced illumination allows for a relaxation of the strain in some parts of the structure, due to the reversible isomerization at room temperature. Then, as a result of this relaxation, the structure is subjected to uniaxial stress

  1. Sequence information signal processor

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  2. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  3. Cellulases and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  4. Roles of repetitive sequences

    SciTech Connect

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  5. Nonparametric Combinatorial Sequence Models

    NASA Astrophysics Data System (ADS)

    Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.

  6. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  7. Atypical presentation of amniotic band sequence.

    PubMed

    Bodamer, O A; Popek, E J; Bacino, C

    2001-04-22

    Amniotic Band Sequence (ABS) is a disruption sequence that results in a variable group of abnormalities secondary to the disruption process and subsequent deformations. The incidence of ABS ranges from 1:1,200 to 1:15,000 live-born, and is even higher in still-born [Froster and Baird, 1993: Am J Med Genet 46:497-500]. The pathophysiology of ABS remains controversial, but a close look to critical periods of embryogenesis and/or organogenesis has helped in understanding pathogenetic mechanisms leading to the ABS disruption. The abnormalities are typically limited to external structures; however, associated internal malformations as seen in the case reported here may occur [Hunter and Carpenter, 1986: Am J Med Genet 24:691-700]. The prognosis depends on the severity of the abnormalities and the involvement of internal organs [Froster and Baird; 1993: Am J Med Genet 46:497-500; Levy, 1998: Ped Rev 19:249].

  8. Shape Determination for Deformed Electromagnetic Cavities

    SciTech Connect

    Akcelik, Volkan; Ko, Kwok; Lee, Lie-Quan; Li, Zhenghai; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2007-12-10

    The measured physical parameters of a superconducting cavity differ from those of the designed ideal cavity. This is due to shape deviations caused by both loose machine tolerances during fabrication and by the tuning process for the accelerating mode. We present a shape determination algorithm to solve for the unknown deviations from the ideal cavity using experimentally measured cavity data. The objective is to match the results of the deformed cavity model to experimental data through least-squares minimization. The inversion variables are unknown shape deformation parameters that describe perturbations of the ideal cavity. The constraint is the Maxwell eigenvalue problem. We solve the nonlinear optimization problem using a line-search based reduced space Gauss-Newton method where we compute shape sensitivities with a discrete adjoint approach. We present two shape determination examples, one from synthetic and the other from experimental data. The results demonstrate that the proposed algorithm is very effective in determining the deformed cavity shape.

  9. Monopole strength function of deformed superfluid nuclei

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Nakatsukasa, T.; Losa, C.; Nazarewicz, W.

    2011-10-01

    We present an efficient method for calculating strength functions using the finite-amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasiparticle random-phase approximation (QRPA) at a fraction of the computational cost. As a demonstration, we compute the isoscalar and isovector monopole strengths for strongly deformed configurations in 100Zr and 240Pu by considering huge quasiparticle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-deformed superfluid nuclei across the nuclear landscape.

  10. Wear study under plastic deformation conditions

    NASA Astrophysics Data System (ADS)

    Shukla, B. M.; Singhal, S.; Singh, D. V.

    1994-03-01

    Lubrication in metalworking processes is characterized by plastic deformation conditions resulting in generation of a large amount of virgin surface and of heat of deformation. The study of wear under these conditions is important from the point of view of product quality and tool/die wear. A laboratory study of wear under simulated plastic deformation conditions using pairs of mild steel and EN31 discs on an Amsler friction and wear testing machine was carried out. The worn surfaces and wear particles were examined by scanning electron microscopy. It was observed that wear with a mineral oil was greater than that with a vegetable oil. This paper analyzes the phenomenon through an examination of the surfaces and the wear particles.

  11. Materials response to large plastic deformation

    SciTech Connect

    Stout, M.G.; Hecker, S.S.

    1982-01-01

    Strain hardening at large plastic strains cannot be inferred from small-strain tensile tests. Most metals and alloys at room temperature do not reach steady state saturation at strain levels of 3 to 5. Typically, some disturbing influence offsets the balance between dislocation generation and annihilation. The most prominent of these appears to be texture formation. However, grain size, second-phase particles, and deformation on shear bands are also important. The effect on hardening of most of these features depends on geometry (or deformation mode) and, hence, no single intrinsic hardening curve can be expected at large strains. It should be noted that high material purity and a torsional deformation mode favor saturation. 42 references, 15 figures.

  12. Exactly isochoric deformations of soft solids

    NASA Astrophysics Data System (ADS)

    Biggins, John S.; Wei, Z.; Mahadevan, L.

    2014-12-01

    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in two-dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid.

  13. Computing Fault Displacements from Surface Deformations

    NASA Technical Reports Server (NTRS)

    Lyzenga, Gregory; Parker, Jay; Donnellan, Andrea; Panero, Wendy

    2006-01-01

    Simplex is a computer program that calculates locations and displacements of subterranean faults from data on Earth-surface deformations. The calculation involves inversion of a forward model (given a point source representing a fault, a forward model calculates the surface deformations) for displacements, and strains caused by a fault located in isotropic, elastic half-space. The inversion involves the use of nonlinear, multiparameter estimation techniques. The input surface-deformation data can be in multiple formats, with absolute or differential positioning. The input data can be derived from multiple sources, including interferometric synthetic-aperture radar, the Global Positioning System, and strain meters. Parameters can be constrained or free. Estimates can be calculated for single or multiple faults. Estimates of parameters are accompanied by reports of their covariances and uncertainties. Simplex has been tested extensively against forward models and against other means of inverting geodetic data and seismic observations. This work

  14. Decoherence of spin-deformed bosonic model

    SciTech Connect

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  15. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  16. Modelling deformation and fracture in confectionery wafers

    SciTech Connect

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  17. Yang-Baxter deformations of Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Sakamoto

    2016-01-01

    We discuss Yang-Baxter sigma deformations of 4D Minkowski spacetime proposed recently. To avoid the degeneracy of the standard bilinear form associated with the familiar coset ISO(1,3)/SO(1,3), we consider a slice of AdS5 in Poincaré coordinates by embedding the 4D Poincaré group into the 4D conformal group SO(2,4). With this procedure we present the metrics and B-fields as Yang-Baxter deformations which correspond to well-known backgrounds such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field.

  18. Deformed phase spaces with group valued momenta

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Nettel, Francisco

    2016-10-01

    We introduce a general framework for describing deformed phase spaces with group valued momenta. Using techniques from the theory of Poisson-Lie groups and Lie bialgebras we develop tools for constructing Poisson structures on the deformed phase space starting from the minimal input of the algebraic structure of the generators of the momentum Lie group. The tools developed are used to derive Poisson structures on examples of group momentum space much studied in the literature such as the n -dimensional generalization of the κ -deformed momentum space and the S L (2 ,R ) momentum space in three space-time dimensions. We discuss classical momentum observables associated to multiparticle systems and argue that these combine according the usual four-vector addition despite the non-Abelian group structure of momentum space.

  19. Hamiltonian deformations of Gabor frames: First steps

    PubMed Central

    de Gosson, Maurice A.

    2015-01-01

    Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903

  20. Enhanced virome sequencing using targeted sequence capture

    PubMed Central

    Wylie, Todd N.; Wylie, Kristine M.; Herter, Brandi N.; Storch, Gregory A.

    2015-01-01

    Metagenomic shotgun sequencing (MSS) is an important tool for characterizing viral populations. It is culture independent, requires no a priori knowledge of the viruses in the sample, and may provide useful genomic information. However, MSS can lack sensitivity and may yield insufficient data for detailed analysis. We have created a targeted sequence capture panel, ViroCap, designed to enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts. A computational approach condensed ∼1 billion bp of viral reference sequence into <200 million bp of unique, representative sequence suitable for targeted sequence capture. We compared the effectiveness of detecting viruses in standard MSS versus MSS following targeted sequence capture. First, we analyzed two sets of samples, one derived from samples submitted to a diagnostic virology laboratory and one derived from samples collected in a study of fever in children. We detected 14 and 18 viruses in the two sets, comprising 19 genera from 10 families, with dramatic enhancement of genome representation following capture enrichment. The median fold-increases in percentage viral reads post-capture were 674 and 296. Median breadth of coverage increased from 2.1% to 83.2% post-capture in the first set and from 2.0% to 75.6% in the second set. Next, we analyzed samples containing a set of diverse anellovirus sequences and demonstrated that ViroCap could be used to detect viral sequences with up to 58% variation from the references used to select capture probes. ViroCap substantially enhances MSS for a comprehensive set of viruses and has utility for research and clinical applications. PMID:26395152

  1. Enhanced virome sequencing using targeted sequence capture.

    PubMed

    Wylie, Todd N; Wylie, Kristine M; Herter, Brandi N; Storch, Gregory A

    2015-12-01

    Metagenomic shotgun sequencing (MSS) is an important tool for characterizing viral populations. It is culture independent, requires no a priori knowledge of the viruses in the sample, and may provide useful genomic information. However, MSS can lack sensitivity and may yield insufficient data for detailed analysis. We have created a targeted sequence capture panel, ViroCap, designed to enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts. A computational approach condensed ∼1 billion bp of viral reference sequence into <200 million bp of unique, representative sequence suitable for targeted sequence capture. We compared the effectiveness of detecting viruses in standard MSS versus MSS following targeted sequence capture. First, we analyzed two sets of samples, one derived from samples submitted to a diagnostic virology laboratory and one derived from samples collected in a study of fever in children. We detected 14 and 18 viruses in the two sets, comprising 19 genera from 10 families, with dramatic enhancement of genome representation following capture enrichment. The median fold-increases in percentage viral reads post-capture were 674 and 296. Median breadth of coverage increased from 2.1% to 83.2% post-capture in the first set and from 2.0% to 75.6% in the second set. Next, we analyzed samples containing a set of diverse anellovirus sequences and demonstrated that ViroCap could be used to detect viral sequences with up to 58% variation from the references used to select capture probes. ViroCap substantially enhances MSS for a comprehensive set of viruses and has utility for research and clinical applications.

  2. Career Academy Course Sequences.

    ERIC Educational Resources Information Center

    Markham, Thom; Lenz, Robert

    This career academy course sequence guide is designed to give teachers a quick overview of the course sequences of well-known career academy and career pathway programs from across the country. The guide presents a variety of sample course sequences for the following academy themes: (1) arts and communication; (2) business and finance; (3)…

  3. Effects of oxidative stress on erythrocyte deformability

    NASA Astrophysics Data System (ADS)

    Bayer, Rainer; Wasser, Gerd

    1996-05-01

    Hemolysis as a consequence of open heart surgery is well investigated and explained by the oxidative and/or mechanical stress produced, e.g. by the heart lung machine. In Europe O3 is widely used by physicians, dedicated to alternative medicine. They apply O3 mostly by means of the Major Autohematotherapy (MAH, a process of removing 50 - 100 ml of blood, adding O3 gas to it and returning it to the patient's body). No controlled studies on the efficacy of O3 are available so far, but several anecdotal cases appear to confirm that MAH improves microcirculation, possibly due to increased RBC flexibility. Most methods established to estimate RBC deformability are hard to standardize and include high error of measurement. For our present investigation we used the method of laser diffraction in combination with image analysis. The variation coefficient of the measurement is less than 1%. Previous investigations of our group have shown, that mechanical stress decreases deformability, already at rather low levels of mechanical stress which do not include hemolysis. On the other hand exposure to O2, H2O2 or O3 does not alter the deformability of RBC and--except O3--does not induce considerably hemolysis. However this only holds true if deformability (shear rates 36/s - 2620/s) is determined in isotonic solutions. In hypertonic solutions O3 decreases RBC deformability, but improves it in hypotonic solutions. The results indicate that peroxidative stress dehydrates RBC and reduces their size. To explain the positive effect of O3 on the mechanical fragility of RBC we tentatively assume, that the reduction of RBC size facilitates the feed through small pore filters. In consequence, the size reduction in combination with undisturbed deformability at iso-osmolarity may have a beneficial effect on microcirculation.

  4. Deformation of square objects and boudins

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Lan, Labao

    2004-08-01

    Some geological objects, such as clasts and boudins, may have had original shapes close to square, that have been modified by ductile deformation. We demonstrate through finite element models presented here and in earlier papers that square objects in a matrix with contrasting viscosity can deform to a variety of curved shapes. The maximum shape change is where the square edges are parallel to the principal bulk strains. Competent objects with viscosity ratio to matrix ( m) of 2-20 become barrel shaped, showing concave 'fish mouth' shortened edges. Incompetent objects ( m<1) show a narrower variety of shapes with m, all becoming smoothed to bone, dumb-bell or lobate shapes, and losing the original corners. We compare the results for square objects with linear and non-linear rheology (power law, stress exponent n=1, 3 or 10), and with previous modelling with different object-matrix proportions. Competent objects with higher n values deform slightly less, and more irregularly, than linearly viscous ( n=1) objects, but the distinctions between n=3 and 10 are only slight. The differences are even slighter (in the opposite sense) for incompetent objects. The proportion of object to matrix is as important, if not more, in controlling the deformation and shape of these objects. The results are compared via graphs of object strain and concavity versus bulk strain. The concavity graph for competent square objects with linear viscosity up to very high strain can be compared with examples of ductile boudins with barrel or fish mouth shapes. Subject to a number of assumptions, this provides a method of estimating boudin-matrix viscosity ratios and post-boudinage ductile strain, of potential use in highly deformed rocks lacking other strain markers. The approach may also be suitable for deformed porphyroblasts, but is more difficult to apply to single clasts in breccias and conglomerates.

  5. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    NASA Astrophysics Data System (ADS)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  6. Mineralogy and deformation in some lunar samples.

    PubMed

    Douglas, J A; Dence, M R; Plant, A G; Traill, R J

    1970-01-30

    Observations on the mineralogy and deformation in samples of crystalline rocks, breccias, and fines from Tranquillity Base provide evidence for magmatic and impact processes. Overall homogeneity, igneous textures, and absence of xenoliths in the crystalline rocks indicate derivation from a common titanium-rich magma by internal, anorogenic volcanism rather than by impact. Crystallization conditions allowed strong compositional variation in pyroxenes, olivine, and plagioclase and the growth of a new mineral, the iron analog of pyroxmangite. Subsequently, impact produced breccias containing shock-deformed crystals and glasses of varying compositions.

  7. Deformed Conformal and Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vyacheslav

    Within the standard quantum mechanics a q-deformation of the simplest N=2 supersymmetry algebra is suggested. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e., the spectrum of one can be obtained from another (with possible exception of the lowest level) by the q2-factor scaling. A special class of the self-similar potentials is shown to obey the dynamical conformal symmetry algebra suq(1,1). These potentials exhibit exponential spectra and corresponding raising and lowering operators satisfy the q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane.

  8. The nanostructured origin of deformation twinning.

    PubMed

    Yu, Qian; Qi, Liang; Chen, Kai; Mishra, Raja K; Li, Ju; Minor, Andrew M

    2012-02-01

    We have revealed the fundamental embryonic structure of deformation twins using in situ mechanical testing of magnesium single crystals in a transmission electron microscope. This structure consists of an array of twin-related laths on the scale of several nanometers. A computational model demonstrates that this structure should be a generic feature at the incipient stage of deformation twinning when there are correlated nucleation events. Our results shed light on the origin of twinning-induced plasticity and transformation toughening, critical to the development of advanced structural alloys with high strength, ductility, and toughness.

  9. Optical Detection Of Deformations Of An Antenna

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1990-01-01

    Proposed control subsystem generates small aiming-bias signals to correct for deviations of 70-m-diameter reflector of microwave antenna from its ideal shape. Takes optical measurements to determine deformations produced by such environmental factors as wind, gravity, and thermal differentials. Using these measurements, subsystem estimates misalignment of radiation pattern caused by deformations. Signals to correct for estimated misalignment added to angle-command signals of main antenna-aiming system. To measure deviations laser ranging devices placed at base of feed on rigid intermediate reference structure, white retroreflectors placed on parts that deviate from assigned positions relative to intermediate reference structure.

  10. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  11. Deformed Brueckner-Hartree-Fock calculations.

    NASA Technical Reports Server (NTRS)

    Ford, W. F.; Braley, R. C.; Becker, R. L.; Patterson, M. R.

    1972-01-01

    The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems has been generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock theory.

  12. Study of hadron deformation in lattice QCD

    SciTech Connect

    Alexandrou, Constantia; Koutsou, Giannis

    2008-11-01

    We develop the formalism for the evaluation of density-density correlators in lattice QCD that includes techniques for the computation of the all-to-all propagators involved. A novel technique in this context is the implementation of the one-end trick in the meson sector. Density-density correlators provide a gauge invariant definition for the hadron wave function and yield information on hadron deformation. We evaluate density-density correlators using two degenerate flavors of dynamical Wilson fermions for the pion, the rho meson, the nucleon, and the {delta}. Using the one-end trick we obtain results that clearly show deformation of the rho meson.

  13. Reports on crustal movements and deformations

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1981-01-01

    Studies of tectonic plate motions, regional crustal deformations, strain accumulation and release, deformations associated with earthquakes and fault motion, and micro-plate motion, were collected and are summarized. To a limited extent, papers dealing with global models of current plate motions and crustal stress are included. The data base is restricted to articles appearing in reveiwed technical journals during the years 1970-1980. The major journals searched include: Journal of Geophysical Research (solid earth), Tectonophysics, Bulletin of the Seismological Society of America, Geological Society of America Bulletin, Geophysical Journal of the Royal Astronomical Society, and the Journal of Geology.

  14. Spiderweb deformation induced by electrostatically charged insects

    NASA Astrophysics Data System (ADS)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-07-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture.

  15. Dislocation Mechanics of High-Rate Deformations

    NASA Astrophysics Data System (ADS)

    Armstrong, Ronald W.; Li, Qizhen

    2015-10-01

    Four topics associated with constitutive equation descriptions of rate-dependent metal plastic deformation behavior are reviewed in honor of previous research accomplished on the same issues by Professor Marc Meyers along with colleagues and students, as follow: (1) increasing strength levels attributed to thermally activated dislocation migration at higher loading rates; (2) inhomogeneous adiabatic shear banding; (3) controlling mechanisms of deformation in shock as compared with shock-less isentropic compression experiments and (4) Hall-Petch-based grain size-dependent strain rate sensitivities exhibited by nanopolycrystalline materials. Experimental results are reviewed on the topics for a wide range of metals.

  16. Deformation associated with continental normal faults

    NASA Astrophysics Data System (ADS)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  17. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  18. Tensile Deformation of Polyethylenes: Crystallinity Effects

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Metaxas, Costas

    2004-03-01

    The crystalline fraction of polyethylene can be reduced by increasing the cooling rate, the molecular weight or the fraction of comonomer. All three methods have been used in this study of tensile deformation which shows that true stress - true strain behavior depends systematically on morphology. The dependence of uniaxial yield stress on crystal thickness is well understood in terms of dislocation nucleation. Post yield flow is dominated by the strain hardening rate that is larger in polyethylenes of lower crystallinity. Noncrystalline polymer evidently reduces the plastic compliance while providing for elastic (reversible) strains. These observations are examined in terms of old and new theories for deformation of semicrystalline polymers.

  19. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  20. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  1. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  2. Metabolic dependence of red cell deformability

    PubMed Central

    Weed, Robert I.; LaCelle, Paul L.; Merrill, Edward W.

    1969-01-01

    The contribution of the metabolic state of human erythrocytes to maintenance of cellular deformability was studied during and after in vitro incubation in serum for periods up to 28 hr. An initial loss of membrane deformability became apparent between 4 and 6 hr when cellular adenosine triphosphate (ATP) levels were approximately 70% of initial values. Membrane deformability then remained stable between 6 and 10 hr. After 10 hr, when cellular ATP had decreased to < 15% of initial values, progressive parallel changes occurred in red cell calcium which increased 400% by 24 hr and in the viscosity of red cell suspensions which had risen 500-750% at 24 hr. A further progressive decrease in membrane deformability also occurred and was reflected by a 1000% increase in negative pressure required to deform the membrane. Red cell filterability decreased to zero as the disc-sphere shape transformation ensued. These changes were accompanied by an increase in ghost residual hemoglobin and nonhemoglobin protein. Regeneration of ATP in depleted cells by incubation with adenosine produced significant reversal of these changes, even in the presence of ouabain. Introduction of calcium into reconstituted ghosts prepared from fresh red cells mimicked the depleted state, and introduction of ATP, ethylenediamine tetraacetate (EDTA), and magnesium into depleted cells mimicked the adenosine effects in intact depleted cells. ATP added externally to 24-hr depleted cells was without effect. Simultaneous introduction of EDTA, ATP, or magnesium along with calcium into reconstituted ghosts prevented the marked decrease in deformability produced by calcium alone. Incorporation of adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), NADP, reduced form (NADPH), glutatione, reduced form (GSH), inosine triphosphate (ITP), guanosine triphosphate (GTP), and uridine triphosphate (UTP) was without effect. These data suggest that a major role of ATP in maintenance

  3. Uncorrectable sequences and telecommand

    NASA Technical Reports Server (NTRS)

    Ekroot, Laura; Mceliece, R.; Dolinar, S.; Swanson, L.

    1993-01-01

    The purpose of a tail sequence for command link transmission units is to fail to decode, so that the command decoder will begin searching for the start of the next unit. A tail sequence used by several missions and recommended for this purpose by the Consultative Committee on Space Data Standards is analyzed. A single channel error can cause the sequence to decode. An alternative sequence requiring at least two channel errors before it can possibly decode is presented. (No sequence requiring more than two channel errors before it can possibly decode exists for this code.)

  4. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  5. Regulatory sequence analysis tools.

    PubMed

    van Helden, Jacques

    2003-07-01

    The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) offers a collection of software tools dedicated to the prediction of regulatory sites in non-coding DNA sequences. These tools include sequence retrieval, pattern discovery, pattern matching, genome-scale pattern matching, feature-map drawing, random sequence generation and other utilities. Alternative formats are supported for the representation of regulatory motifs (strings or position-specific scoring matrices) and several algorithms are proposed for pattern discovery. RSAT currently holds >100 fully sequenced genomes and these data are regularly updated from GenBank.

  6. Single Image Super-resolution using Deformable Patches.

    PubMed

    Zhu, Yu; Zhang, Yanning; Yuille, Alan L

    2014-06-01

    We proposed a deformable patches based method for single image super-resolution. By the concept of deformation, a patch is not regarded as a fixed vector but a flexible deformation flow. Via deformable patches, the dictionary can cover more patterns that do not appear, thus becoming more expressive. We present the energy function with slow, smooth and flexible prior for deformation model. During example-based super-resolution, we develop the deformation similarity based on the minimized energy function for basic patch matching. For robustness, we utilize multiple deformed patches combination for the final reconstruction. Experiments evaluate the deformation effectiveness and super-resolution performance, showing that the deformable patches help improve the representation accuracy and perform better than the state-of-art methods.

  7. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  8. Application of high resolution geophysical prospecting to assess the risk related to subsurface deformation in Mexico City

    NASA Astrophysics Data System (ADS)

    Centeno-Salas, F. A.; Carreón-Freyre, D.; Flores-García, W. A.; Gutiérrez-Calderón, R. I.

    2015-11-01

    In the eastern sector of Mexico City the sub soil consists of high contrasting sequences (lacustrine and volcanic inter bedded deposits) that favor the development of erratic fracturing in the surface causing damage to the urban infrastructure. The high-resolution geophysical prospecting are useful tools for the assessment of ground deformation and fracturing associated with land subsidence phenomena. The GPR method allowed to evaluate the fracture propagation and deformation of vulcano-sedimentary sequences at different depths, the main electrical parameters are directly related with the gravimetric and volumetric water content and therefore with the plasticity of the near surface prospected sequences. The active seismology prospection consisted in a combination of Seismic Refraction (SR) and Multichannel Analysis of Surface Waves (MASW) for the estimation of the velocity of the mechanical compressive (P) and the shear (S) waves. The integration of both methods allowed to estimate the geomechanical parameters characterizing the studied sequence, the Poisson Ratio and the volumetric compressibility. The obtained mechanical parameters were correlated with laboratory measured parameters such as plasticity index, density, shear strength and compressibility and, GPR and seismic profiles were correlated with the mapped fracture systems in the study area. Once calibrated, the profiles allowed to identify the lithological contact between lacustrine and volcanic sequences, their variations of thicknesses in depth and to assess the deformation area in the surface. An accurate determination of the geometry of fracturing was of the most importance for the assessment of the geological risk in the study area.

  9. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions.

    PubMed

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  10. Visualization of Sliding and Deformation of Orbital Fat During Eye Rotation

    PubMed Central

    Hötte, Gijsbert J.; Schaafsma, Peter J.; Botha, Charl P.; Wielopolski, Piotr A.; Simonsz, Huibert J.

    2016-01-01

    Purpose Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. Methods Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. Results Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. Conclusion B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. Translational Relevance Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan. PMID:27540495

  11. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    PubMed Central

    Abusara, Ziad; Von Kossel, Markus; Herzog, Walter

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done using confined and unconfined loading configurations and indentation testing. These loading conditions can be well controlled and allow for accurate measurements of cartilage and cell deformations, but they have little to do with the contact mechanics occurring in a joint where non-congruent cartilage surfaces with different material and functional properties are pressed against each other by muscular forces. The aim of this study was to measure in vivo, real time articular cartilage deformations for precisely controlled static and dynamic muscular loading conditions in the knees of mice. Fifty and 80% of the maximal knee extensor muscular force (equivalent to approximately 0.4N and 0.6N) produced average peak articular cartilage strains of 10.5±1.0% and 18.3±1.3% (Mean ± SD), respectively, during 8s contractions. A sequence of 15 repeat, isometric muscular contractions (0.5s on, 3.5s off) of 50% and 80% of maximal muscular force produced cartilage strains of 3.0±1.1% and 9.6±1.5% (Mean ± SD) on the femoral condyles of the mouse knee. Cartilage thickness recovery following mechanical compression was highly viscoelastic and took almost 50s following force removal in the static tests. PMID:26807930

  12. Deforming Etna's Basement: Implications for Edifice stability.

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2013-04-01

    At over 3 kilometers in height, Mt. Etna (Italy) is the largest volcano of continental Europe. The volcano formed on top of the alpine fold and thrust belt, with basaltic outflows lying unconformably on top of an alternation between sandstones, limestones and clays. Presently Etna's eastern flank is moving with speeds up to 2cm/yr to the east [Tibaldi and Groppelli, 2002]. It is the sequence of layers below the volcano that is thought to provide a complex, structurally controlled, mechanism to the volcano deformation as a whole. This is due to the interplay of gravitational forces, volcanic pressurization, and regional tectonics, which combine to play a complex role that remains poorly understood, especially when the physical and mechanical properties of the rocks are considered. In this study, we concentrate on the rock mechanical component, and in particular the formation known as Comiso Limestone. This limestone forms of one of the key lithologies of Etna's basement. The formation has been suggested to be affected by thermal weakening [Heap et al., 2013]. Previous work on Comiso Limestone suggests brittle behavior for the range of temperatures (up to 760 ˚C) and a significant reduction in strength with higher temperatures. [Mollo et al., 2011]. Chiodini et al [2011], speculate carbonate assimilation. This implies that the Carbondioxide created by decarbonatization, is able to escape. Using an internally heated "Paterson" type pressure vessel, we recreated conditions at 2-4 km depth (50-100 MPa) and using an anomalously high geotherm, as expected in volcanic settings (ranging from room to 600 ˚C). With the addition of confining pressure, we show a brittle to ductile transition occurs at a relatively low temperature of 300 ˚C. A significant decrease in strength occurs when the rock is exposed to temperatures exceeding 400 ˚C. In addition, we observe a significant difference in mechanical behavior between vented and unvented situations when decarbonatization is

  13. Microstructures in subglacial and proglacial sediments: understanding faults, folds and fabrics, and the influence of water on the style of deformation

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys; Merritt, Jon; Auton, Clive; Golledge, Nick

    2007-06-01

    Macroscopic field and micromorphological studies have been carried out on subglacially and proglacially deformed glacigenic sequences at a number of sites throughout Scotland, UK. Examination of microstructures (folds, faults, hydrofractures, plasmic fabrics) aided understanding of the deformation histories preserved in the sediments, but a similar range of structures were developed in both Subglacial and Proglacial settings. Discrimination between Subglacial and Proglacial deformation was only possible when micromorphological data was used in conjunction with larger-scale field observations. Variations in lithology and water content were controlling factors influencing the style and apparent intensity of deformation recorded. Changes in pore-water content and pressure during deformation can lead to liquefaction and hydrofracturing, with early-formed structures locally controlling the pattern of water escape. Liquefaction can also lead to homogenisation of the sediments and the destruction of earlier deformation structures, even at relatively low strains. Beds or zones of liquefied sand and silt may form highly 'lubricated' detachments within the sediment pile, resulting in a marked reduction in the amount of shear transmitted to underlying units. A multidisciplinary approach, involving sedimentological, geomorphological, stratigraphical and structural field observations, combined with micromorphological analysis, is recommended to confidently unravel the glacitectonic history and depositional environment of most deformed glacigenic sedimentary sequences.

  14. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  15. Insect wing deformation measurements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Mendoza Santoyo, Fernando; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian; Gutierrez Hernandez, David Asael

    2010-03-15

    An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps. PMID:20389581

  16. Structural concepts and techniques II. Basement-involved deformation

    SciTech Connect

    Foster, N.H.; Beaumont, E.A.

    1989-01-01

    This volume of text is part of a much larger treatise on petroleum geology developed as an information series for exploration and development of oil and gas fields. This volume contains papers related to extensional, compressional, and strike-slip deformation. Extensional deformation includes papers discussing crustal rifting and normal faulting. Compressional deformation includes papers discussing foreland deformation. In most cases, these papers use the Rocky Mountains as an example. Strike-slip deformation includes papers discussing strike-slip or wrench fault deformation processes and the consequent effects these processes have on folding, faulting, basin formation, and sedimentation.

  17. Model the Deformation and Failure of Solids

    2001-10-19

    EMU models the deformation and failure of solids based on a reformulated theory of continuum mechanics known as the Peridynamic model. This approach allows dynamic fracture and other failure mechanisms to be simulated with a minimum of mesh effeces and without a need for supplementary kinetic relations for crack growth. Penetration by a rigid projectile is also included in the code.

  18. Measuring Crustal Deformation in the American West.

    ERIC Educational Resources Information Center

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    Suggests that there is a close relationship between deformation in the western United States and the large-scale motions of tectonic plates. Introduces very-long-baseline interferometry (VLBI) as one of the space-geodetic techniques, vector addition of the VLBI data and geological data, and a new geodetic network. (YP)

  19. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2008-08-19

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  20. Subglacial till: the deforming glacier bed

    NASA Astrophysics Data System (ADS)

    van der Meer, Jaap J. M.; Menzies, John; Rose, James

    2003-07-01

    "Till is a sediment and is perhaps more variable than any sediment known by a single name." R.F. Flint 1957 Glacial and Pleistocene Geology Tills are commonly classified according to the perceived process of deposition. However, it is increasingly recognised that this classification, which is mainly based on macroscopic field data, has severe limitations. At the same time the concept of the deforming glacier bed has become more realistic as a framework for discussing tills and their properties, and this (tectonic) concept is irreconcilable with the existing (depositional) till classification scheme. Over the last 20 years large thin sections have been used to study tills, which has provided new insights into the textural and structural properties of tills. These results have revolutionised till sedimentology as they show that, in the main, subglacial tills possess deformational characteristics. Depositional properties are rare. Based on this new insight the process of subglacial till formation is discussed in terms of glacier/ice sheet basal velocity, clay, water and carbonate content and the variability of these properties in space and time. The end result of this discussion is: till, the deforming glacier bed. To distinguish subglacial till from depositional sediments the term 'tectomict' is proposed. Within the single framework of subglacial till as the deforming glacier bed, many textural, structural and geomorphological features of till beds can be more clearly and coherently explained and understood.

  1. On the deformation behavior of human amnion.

    PubMed

    Buerzle, Wilfried; Mazza, Edoardo

    2013-07-26

    Recently renewed interest for the mechanical behavior of fetal membranes is related to the problem of iatrogenic preterm rupture, limiting the effectiveness and applicability of minimally invasive fetal surgery. This study aimed at characterizing and modeling the deformation behavior of the amnion layer, the highly deformable and tough membrane that surrounds the amniotic fluid and the growing fetus in the uterine cavity. Uniaxial tension tests have been performed on samples obtained immediately after cesarean section, and the deformation field has been analyzed by digital image correlation. The results show that the kinematic response of human amnion is highly reproducible and that the incremental Poisson's ratio is, with a value of up to 8, higher than any previously reported value for biological or synthetic materials. This unique behavior is related to the characteristic architecture of amnion's microstructure and can be rationalized by mechanisms of rotation, stretching and buckling of collagen fibers. Simple constitutive equations have been selected based on this interpretation, which lead to a model with excellent predictive capabilities for the uniaxial and equibiaxial mechanical response of human amnion. Relevant insights were gained on the role of collagen fibers in determining the deformability and toughness of soft biological tissue.

  2. Is microrheometry affected by channel deformation?

    PubMed

    Del Giudice, Francesco; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca

    2016-07-01

    Microrheometry is very important for exploring rheological behaviours of several systems when conventional techniques fail. Microrheometrical measurements are usually carried out in microfluidic devices made of Poly(dimethylsiloxane) (PDMS). Although PDMS is a very cheap material, it is also very easy to deform. In particular, a liquid flowing in a PDMS device, in some circumstances, can effectively deform the microchannel, thus altering the flow conditions. The measure of the fluid relaxation time might be performed through viscoelasticity induced particle migration in microfluidics devices. If the channel walls are deformed by the flow, the resulting measured value of the relaxation time could be not reliable. In this work, we study the effect of channel deformation on particle migration in square-shaped microchannel. Experiments are carried out in several PolyEthylene Oxyde solutions flowing in two devices made of PDMS and Poly(methylmethacrylate) (PMMA). The relevance of wall rigidity on particle migration is investigated, and the corresponding importance of wall rigidity on the determination of the relaxation time of the suspending liquid is examined. PMID:27098237

  3. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  4. Postseismic Deformation in the Central Andaman Islands

    NASA Astrophysics Data System (ADS)

    Puchakayala, J. P.; Smalley, R.; Bilham, R.; Lowry, A.; Batacharjee, A.

    2005-12-01

    The December 26, 2004 Sumatra-Andaman earthquake generated horizontal displacements at Port Blair totaling 3.08 m and vertical subsidence of 0.6-0.9m, indicating 1.6 m arc normal and 6.2±0.6 m dextral coseismic slip on the plate interface. Displacements occurred steadily beginning 10 minutes after the mainshock and were largely complete within 30 minutes after the mainshock. Although continuous GPS measurements were not initiated until 24 days after the mainshock by us and other groups, it is possible from these records to inferthat postseismic deformation in this interval did not exceed 10% of the coseismic displacements. Postseismic deformation continues at present at an exponentially decaying rate. Between January and June 2005, Port Blair has moved 4.5 cm south, 15 cm west and 10 cm up, suggesting postseismic slip downdip of the coseismic rupture and/or viscoelastic relaxation of the mantle. Elastic models of the region based on GPS coseismic slip observations provided by Center for Earth Science Studies (CESS) are consistent with reports of uplift from the islands: North Sentinel (50 km west of Port Blair) rose by 1.0±0.2 m, Port Blair and Middle Andaman subsided by about 1 m and Havelock Island (32 km east) showed no significant vertical deformation. We report data from five campaign sites in the Andaman Islands measured thrice since the earthquake that permit viscoelastic and afterslip models of postseismic deformation to be developed and assessed.

  5. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  6. Parachute deformity of the mitral valve

    PubMed Central

    Bett, J. H. N.; Stovin, P. G. I.

    1969-01-01

    A case of parachute deformity of the mitral valve, a rare congenital form of mitral stenosis characterized by insertion of the chordae tendineae into a single posterior papillary muscle, is described in an 11-year-old girl. The eleven other cases in the English literature are reviewed. Images PMID:5348334

  7. Measuring High Speed Deformation for Space Applications

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2014-01-01

    PDV (Photonic Doppler Velocimetry) has proven to be a reliable and versatile technique to observe rapid deformation of frangible joints. It will be a valuable technique in order to understand the physics of two-stage light gas guns and the material response to hypervelocity impact.

  8. Particle deformation during stirred media milling

    NASA Astrophysics Data System (ADS)

    Hamey, Rhye Garrett

    Production of high aspect ratio metal flakes is an important part of the paint and coating industry. The United States Army also uses high aspect ratio metal flakes of a specific dimension in obscurant clouds to attenuate infrared radiation. The most common method for their production is by milling a metal powder. Ductile metal particles are initially flattened in the process increasing the aspect ratio. As the process continues, coldwelding of metal flakes can take place increasing the particle size and decreasing the aspect ratio. Extended milling times may also result in fracture leading to a further decrease in the particle size and aspect ratio. Both the coldwelding of the particles and the breakage of the particles are ultimately detrimental to the materials performance. This study utilized characterization techniques, such as, light scattering and image analysis to determine the change in particle size as a function of milling time and parameters. This study proved that a fundamental relationship between the milling parameters and particle deformation could be established by using Hertz's theory to calculate the stress acting on the aluminum particles. The study also demonstrated a method by which milling efficiency could be calculated, based on the amount of energy required to cause particle deformation. The study found that the particle deformation process could be an energy efficient process at short milling times with milling efficiency as high as 80%. Finally, statistical design of experiment was used to obtain a model that related particle deformation to milling parameters, such as, rotation rate and milling media size.

  9. Habit tic deformity secondary to guitar playing.

    PubMed

    Wu, Jashin J

    2009-03-15

    A 29-year-old man exhibited linear ridges of the right thumbnail that had been present for ten years. After he stopped playing the guitar for three months, the proximal portion of the abnormality cleared. Nail changes similar to the habit tic deformity may be produced by guitar playing.

  10. Viscoelastic deformation of lipid bilayer vesicles.

    PubMed

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  11. Optoelectronics Properties Tunability by Controlled Deformation

    NASA Astrophysics Data System (ADS)

    Alharbi, F. H.; Serra, P.; Carignano, M. A.; Kais, S.

    2016-04-01

    Manipulating energy levels while controlling the electron localization is an essential step for many applications of confined systems. In this paper we demonstrate how to achieve electron localization and induce energy level oscillation in one-dimensional quantum systems by externally controlling the deformation of the system. From a practical point of view, the one-dimensional potentials can be realized using layered structures. In the analysis, we considered three different examples. The first one is a graded quantum well between confining infinite walls where the deformation is modeled by varying slightly the graded well. The second systems is a symmetric multiple quantum well between infinite walls under the effect of biasing voltage. The third system is a layered 2D hybrid perovskites where pressure is used to induce deformation. The calculations are conducted both numerically and analytically using the perturbation theory. It is shown that the obtained oscillations are associated with level avoided crossings and that the deformation results in changing the spatial localization of the electrons.

  12. Deformation of a micro-torque swimmer

    PubMed Central

    Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki

    2016-01-01

    The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893

  13. Reports on crustal movements and deformations. [bibliography

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  14. Deformable mirror design of Subaru LGSAO system

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Arimoto, Nobuo; Colley, Stephen; Eldred, Michael; Kane, Thomas; Hattori, Masayuki; Saito, Yoshihiko; Kamata, Yukiko; Kobayashi, Naoto; Minowa, Yosuke; Goto, Miwa; Takato, Naruhisa

    2004-10-01

    As an upgrade plan of Subaru adaptive optics facility, laser-guide-star adaptive-optics (LGSAO) project is on going. One of key components of the project is a deformable mirror (DM). The DM for LGSAO is a bimorph type of PZT with 188 control elements. The specification of design is presented together with the analysis of stroke and vibration properties by FEM.

  15. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  16. Recent plate motions and crustal deformation

    SciTech Connect

    Lisowski, M. )

    1991-01-01

    Reports by U.S. workers on geodetic measurements of recent plate motions or crustal deformation published in 1987-1990 are reviewed. The review begins with global plate motions, proceeds through plate boundaries in California, Alaska, and the Pacific Northwest, and finishes with volcanic phenomena, monument stability and longevity, and GPS relative position measurements. 184 refs.

  17. Joining of advanced materials by superplastic deformation

    DOEpatents

    Goretta, Kenneth C.; Routbort, Jules L.; Gutierrez-Mora, Felipe

    2005-12-13

    A method for utilizing superplastic deformation with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques.

  18. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  19. Crustal deformation along the San Andreas, California

    NASA Astrophysics Data System (ADS)

    Li, Victor C.

    1992-03-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  20. Transient Non Lin Deformation in Fractured Rock

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  1. Crustal deformation along the San Andreas, California

    NASA Technical Reports Server (NTRS)

    Li, Victor C.

    1992-01-01

    The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.

  2. Deformation and Forming of Joined Materials

    SciTech Connect

    Carsley, John; Hovanski, Yuri; Clarke, Kester D.; Krajewski, Paul E.

    2014-09-23

    Introductory article to a set of invited papers from the TMS committee on shaping and forming. This paper introduces a set of papers that were prepared to discussing the deformation and forming of joined materials, and to announce an upcoming symposium at the 2015 MS&T meeting in Columbus Ohio.

  3. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  4. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  5. Indexing Similar DNA Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Songbo; Lam, T. W.; Sung, W. K.; Tam, S. L.; Yiu, S. M.

    To study the genetic variations of a species, one basic operation is to search for occurrences of patterns in a large number of very similar genomic sequences. To build an indexing data structure on the concatenation of all sequences may require a lot of memory. In this paper, we propose a new scheme to index highly similar sequences by taking advantage of the similarity among the sequences. To store r sequences with k common segments, our index requires only O(n + NlogN) bits of memory, where n is the total length of the common segments and N is the total length of the distinct regions in all texts. The total length of all sequences is rn + N, and any scheme to store these sequences requires Ω(n + N) bits. Searching for a pattern P of length m takes O(m + m logN + m log(rk)psc(P) + occlogn), where psc(P) is the number of prefixes of P that appear as a suffix of some common segments and occ is the number of occurrences of P in all sequences. In practice, rk ≤ N, and psc(P) is usually a small constant. We have implemented our solution and evaluated our solution using real DNA sequences. The experiments show that the memory requirement of our solution is much less than that required by BWT built on the concatenation of all sequences. When compared to the other existing solution (RLCSA), we use less memory with faster searching time.

  6. Novel optical fiber sensor for deformation measurement

    NASA Astrophysics Data System (ADS)

    Di, Haiting; Sun, Suping; Yu, Jianqiang; Liu, Renqiang

    2010-10-01

    A light intensity modulation optical fiber sensor, which can measure deformation directly, has been developed. A light leakage zone is introduced on one side of fiber to increase the sensitivity of fiber under deformation. The machining process of sensor is considered. Hand carving, milling and embossing methods are introduced to produce the light leakage zone respectively, and the comparison between these methods is carried out. To obtain the static curve of sensor, cantilevered beam, simple support beam and cylinders are used respectively to measure little and large deformation. The static characters of sensor, such as sensitivity and measurement range, are analyzed from the static curve. The experimental results show that the sensor can distinguish the direction of deformation (positive bending and negative bending). Positive bending increases the throughput of light, and is distinguishable from negative bending, which decreases the throughput. The output of sensor is linear with curvature when the curvature radius is larger than 60mm. The response of sensor is a cosine function with the direction of deformation and there is a maximum sensitivity direction (perpendicular to the light leakage zone plane and passing through the axis of the fiber) and a minimum sensitivity direction (parallel to light leakage zone plane and pass through the axis of the fiber). The dynamic responds of attenuation vibration and sawtooth input signal are studied. Comparison between the optical fiber sensor, untreated fiber and strain gauge shows that the sensor is 400 times of untreated fiber in sensitivity and is more advantageous in measurement of thin structures. The sensor is easily made by multi-mode plastic optical fiber and the detection equipments are very simple, therefore it is small in size, simple in structure and low in cost, which make the sensor can be widely used in various fields.

  7. Offshore Deformation Front in Miaoli Area

    NASA Astrophysics Data System (ADS)

    Chiang, P.; Gwo-shyn, S.

    2015-12-01

    Taiwan is located at the junction of the Eurasian Plate and the Philippine Sea Plate. It's because arc-continent collision occurs in the western Taiwan, resulting in the orogeny has formed a fold-and-thrust belt, developing a series of thrusts aligned in north-south direction. The thrust faults, locating in the central island, are the oldest and have almost inactive. Westward to the island, the faults become younger, dipping angles are smaller, and motions were stronger. On the west side, the foot of the Taiwan Western Foothill is considered the youngest thrust faults located along west Taiwan. Scholars recognized them as so-called the deformation front, and they also believed that the deformation front is located in between the compressive terrain uplifted area and the extensional subsidence area. Therefore, this front line is on the boundary of two different tectonic zones. This study investigates the trace of the deformation front in Miaoli area. Previous studies suggested that the west side of Miaoli collision zone should be fault-bounded, and is located in the seabed. However, in the geological map, there is no geologic evidence that appears on land and so-called active faults related with this deformation front. In the near coast seafloor, according to the reflection earthquakes data from the Institute of Oceanography of NTU, we can only see the offshore strata have been uplifted, and the data also shows that seabed is only covered by thin layer of sediments. This study indicates that in offshore place within three kilometers, shallow formations show a special layer of slime which was extruded to be corrugated transversely. Accordingly, we believe that this slime layer should be pressurized and filled with muddy water. Such features should be further investigated with other geological and geophysical survey data to check if they belong to the structural product of the deformation front.

  8. Crustal deformation measurements in Guerrero, Mexico

    USGS Publications Warehouse

    Larson, K.M.; Lowry, A.R.; Kostoglodov, V.; Hutton, W.; Sanchez, O.; Hudnut, K.; Suarez, G.

    2004-01-01

    GPS measurements of crustal deformation in Guerrero, southern Mexico, include surveys collected between 1992 and 2001 as well as continuous GPS measurements at a few sites. These geodetic observations are used to calculate interseismic deformation rates and assess the presence and possible location of transient deformation during the period encompassing 1992.25 to 2001.75. The data are used to examine transient deformation in 1998 previously described from data at a single site by Lowry et al. [2001]. Survey measurements and continuous data from a site near Popocate??petl volcano confirm the 1998 transient, and survey data also suggest another transient occurred following the 14 September 1995 (Mw = 7.3) Copala earthquake. All of the available GPS position estimates have been inverted for a combined model of slip during each event plus the steady state slip on the plate interface. Modeling of the steady state deformation rates confirms that the Guerrero seismic gap is partially frictionally locked at depths shallower than about 25 km and accumulating strain that may eventually be released in a great earthquake. The data also suggest that there is frictional coupling to much greater (>40 km) depths, which releases more frequently in aseismic slip events. The locations and sizes of the transient events are only partially constrained by the available data. However, the transient models which best fit the GPS coordinate time series suggest that aseismic slip was centered downdip of the seismogenic portion of the plate-bounding thrust in both events, and the moment release had equivalent magnitudes Mw = 7.1 + 1.3/-1.0 in 1995-1996 and 7.1 + 0.4/-0.1 in 1998. Copyright 2004 by the American Geophysical Union.

  9. Spinal deformity in children treated for neuroblastoma

    SciTech Connect

    Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.; Nehme, M.E.

    1981-02-01

    Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis with a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.

  10. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  11. Dynamic deformability of sickle red blood cells in microphysiological flow

    PubMed Central

    Alapan, Y.; Matsuyama, Y.; Little, J. A.; Gurkan, U. A.

    2016-01-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell’s aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. PMID:27437432

  12. Deformation and recrystallization texture development in Fe-4%Si subjected to large shear deformation

    NASA Astrophysics Data System (ADS)

    Kustas, A. B.; Sagapuram, D.; Chandrasekar, S.; Trumble, K. P.

    2015-04-01

    Machining is used as a deformation technique to impose large shear strains (γ ˜ 2) in a commercial Fe-4%Si alloy. The partial <111> and {110} - fiber texture components are generated throughout the as-deformed microstructure, which is expected of BCC metals deformed in simple shear. Using an annealing schedule similar to that in the commercial rolling process, samples retain the deformation texture, consistent with a continuous-type recrystallization mechanism. Fine-grained annealed samples reveal two different partial fiber orientations, one of which becomes the dominate texture, following the high-temperature growth treatment. The mechanisms of texture evolution and implications for texture control in the machining-based process are discussed.

  13. The behavior of a convergent plate boundary - Crustal deformation in the South Kanto district, Japan

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Kato, T.

    1978-01-01

    The northwesternmost part of the Sagami trough, a part of the Philippine Sea-Eurasian plate boundary, was ruptured during the great South Kanto earthquake in 1923. Very extensive and frequent geodetic measurements of crustal deformation have been made in the South Kanto district since the 1890's, and these constitute the most complete data set on crustal movements in the world. These data were reanalyzed and interpreted and according to our interpretation indicate the following sequence of events. The coseismic movements were due to oblique thrust and right lateral slip of about 8 m on a fault outcropping at the base of the Sagami trough. This was followed by postseismic deformation resulting from reversed afterslip of 20-60 cm that occurred at an exponentially decaying rate in time. The interseismic deformation is produced by steady subduction at a rate of about 1.8 cm/yr. During subduction the top 10-15 km of the plate boundary is apparently locked, while deeper parts slip aseismically at an irregular rate. No significant precursory deformation was observed. The recurrence time for 1923 type earthquakes is 200-300 years. The Boso and Miura peninsulas are broken into a series of fault-bound blocks that move semi-independently of the surrounding region. The subduction zone itself, where it is exposed on land, is shown to be a wide zone encompassing several faults that are active at different times.

  14. Interfacial segregation and deformation of superplastically deformed Al-Mg-Mn alloys

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Bruemmer, S.M.

    1995-03-01

    Microstructural and microchemical studies have been carried out on superplastically deformed Al-Mg-Mn (AA5083-type) alloys. Grain boundary composition was measured using a Scanning Auger Microprobe (SAM) and an Analytical Transmission Electron Microscope (ATEM), while conventional TEM was used for microstructural evaluation. Non-equilibrium segregation of Si to grain boundaries following deformation was measured by both techniques. Significant interfacial Si enrichment was only detected in gage sections of tensile specimens after uniaxial strains from 50 to 200%. Grip regions which experience identical thermal histories, but without plastic deformation, did not reveal Si segregation. Selected samples also showed a slight depletion of Mg at grain boundaries after deformation. The only reproducible observation of equilibrium segregation was in Zr-modified alloys, where Sn was detected by SAM in both the deformed and undeformed sections of the sample. Microstructural analysis documented subgrain formation and subgrain-precipitate interactions during superplastic deformation. In addition, many grain boundaries and precipitate interfaces contained small (5 to 20 nm) voids. Compositional analysis of these nano-voids revealed that they were enriched in Mg with the adjacent boundary regions correspondingly depleted.

  15. Intraplate deformation due to continental collisions: A numerical study of deformation in a thin viscous sheet

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Morgan, R. C.

    1985-01-01

    A model of crustal deformation from continental collision that involves the penetration of a rigid punch into a deformable sheet is investigated. A linear viscous flow law is used to compute the magnitude and rate of change of crustal thickness, the velocity of mass points, strain rates and their principal axes, modes of deformation, areal changes, and stress. In general, a free lateral boundary reduces the magnitude of changes in crustal thickening by allowing material to more readily escape the advancing punch. The shearing that occurs diagonally in front of the punch terminates in compression or extension depending on whether the lateral boundary is fixed or free. When the ratio of the diameter of the punch to that of the sheet exceeds one-third, the deformation is insenstive to the choice of lateral boundary conditions. When the punch is rigid with sharply defined edges, deformation is concentrated near the punch corners. With non-rigid punches, shearing results in deformation being concentrated near the center of the punch. Variations with respect to linearity and nonlinearity of flow are discussed.

  16. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed

  17. Multidimensional integrable systems and deformations of Lie algebra homomorphisms

    SciTech Connect

    Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.

    2007-09-15

    We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})

  18. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  19. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1986-01-01

    This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.

  20. Quadrupole moment measurements for strongly deformed bands in {sup 171,172}Hf

    SciTech Connect

    Mukhopadhyay, S.; Ma, W. C.; Ijaz, Q. A.; Marsh, J.; Yadav, R. B.; Janssens, R. V. F.; Carpenter, M. P.; Khoo, T. L.; Lauritsen, T.; Zhu, S.; Chiara, C. J.; Chowdhury, P.; Hota, S. S.; Lakshmi, S.; Cullen, D. M.; Hagemann, G. B.; Hartley, D. J.; Kondev, F. G.; Riedinger, L. L.; Toh, Y.

    2011-04-15

    A lifetime experiment, using the Doppler-shift attenuation method, has been performed at Gammasphere to measure the transition quadrupole moments Q{sub t} of strongly deformed bands in {sup 171}Hf and {sup 172}Hf. The measured value of Q{sub t} {approx} 9.5 e b for the band labeled ED in {sup 171}Hf strongly supports the recent suggestion that this sequence and several structures with similar properties in neighboring Hf isotopes are associated with a near-prolate shape with a deformation enhanced relative to that of normal deformed structures. The measured values of Q{sub t} {approx} 14 e b for the bands labeled SD1 and SD3 in {sup 172}Hf confirm that these sequences are associated with a prolate superdeformed shape, a property inferred in earlier work from other measured characteristics of the bands. Similar bands in {sup 173-175}Hf are also likely to be associated with superdeformed shapes. The observations are in contrast to predictions of cranking calculations performed with the ultimate cranker code.

  1. Congruence analysis of point clouds from unstable stereo image sequences

    NASA Astrophysics Data System (ADS)

    Jepping, C.; Bethmann, F.; Luhmann, T.

    2014-06-01

    This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

  2. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  3. Fun from None: Deformed Symmetries and Fock Space

    SciTech Connect

    Arzano, Michele

    2009-12-15

    We give a pedagogical introduction to the basics of deformations of relativistic symmetries and the Hilbert spaces of free quantum fields built as their representations. We focus in particular on the example of a kappa-deformed scalar quantum field for which the generators of spatial translations that label the field modes act according to a deformed Leibniz rule. We explore the richer structure of the kappa-Fock space and point out possible physical consequences of the deformation.

  4. What's New in Severe Deformity Correction: The German Perspective.

    PubMed

    Schmitt, Sebastian; Peak, Anna C; Berrsche, Gregor; Wenz, Wolfram

    2016-06-01

    Foot deformities are found in several neurologic conditions, most typically, but not exclusively, Charcot-Marie-Tooth disease. Posttraumatic deformities and undercorrection or overcorrection of congenital talipes equinovarus are also encountered. A severely deformed foot that cannot fit into normal shoes presents a significant day-to-day challenge to the young and active patient. This article presents some basic principles for evaluating the deformity and a toolkit of procedures to deal with these complex cases. PMID:27261803

  5. Integrated Approach for the Assessment of Land Deformation in the Jazan City and Surroundings, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pankratz, H. G.; Sultan, M.; Elkadiri, R.; AlMogren, S. M.; Gebremichael, E.; Ahmed, M.; Emil, M.; Othman, A.

    2015-12-01

    Jazan City is a growing (in size and population) industrial city in the Jazan Province and an important port on the Red Sea coastline of Saudi Arabia. Parts of the city are built on sabkha deposits and others on a salt plateau (diaper) that intrudes overlying sedimentary sequences. Both areas are reported to experience various degrees of ground deformation, causing severe damages to buildings and infrastructure. An integrated study involving remote sensing (i.e. optical, multispectral, and radar) and geophysical (gravity) was applied to address the following objectives: (1) identification of the spatial distribution and areal extent of lithologic units in the study area, (2) assessment of the factors controlling the deformation, (3) locating the areas that are most susceptible to present and future deformation, and (4) quantifying the relative deformation rates in various parts of the city. The following methodology was adopted: (1) deformation rates were extracted applying both Persistent Scatterer (PS) and Small BAseline Subset (SBAS) radar interferometric techniques using seven Envisat scenes over a time span of six years (from 2003 to 2009), (2) the extracted deformation rates were correlated spatially in a GIS platform with relevant datasets (e.g. lithology, soil type, geologic structures, subsurface data) to identify the factors controlling land deformation, and (3) temporal datasets (e.g. Tropical Rainfall Measuring Mission; TRMM) were used to investigate whether deformation rates are affected by rainfall intensity. Our preliminary findings indicate a spatial correspondence between the PS results: (1) subsidence rates (-1.4 mm/yr) correlates with the distribution of the mapped sabkha units and uplift rates (0.95 mm/yr) with the mapped distribution of salt dome plateau outcrops. The sabkha subsidence could be associated with agricultural activities, poor waste management practices, and large rainfall events that induce salt removal from the sabkha soil

  6. Topological optical Bloch oscillations in a deformed slab waveguide.

    PubMed

    Longhi, Stefano

    2007-09-15

    Spatial Bloch oscillations of light waves of purely topological origin are theoretically shown to exist in weakly deformed slab waveguides. As the optical rays trapped in the deformed waveguide can roll freely, wave diffraction is strongly affected by the topology of the deformed surface, which can be tailored to simulate the effect of a tilted periodic refractive index.

  7. Performance of the deformable mirror for Subaru LGSAO

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Bouvier, Aurelien; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Hattori, Masayuki; Saito, Yoshihiko; Itoh, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2006-06-01

    The performance of a deformable mirror with 188 electrodes is reported in this paper. The deformable mirror has been manufactured by CILAS for a new adaptive optics system at Subaru Telescope equipped with laser-guide-star. The type of deformable mirror is bimorph PZT with the blank diameter of 130 mm (beam size 90 mm).

  8. Surface tension and deformation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  9. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  10. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  11. Plastic deformation at surface during unlubricated sliding

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism.

  12. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  13. Elevated temperature deformation of TD-nickel.

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Ebert, L. J.

    1973-01-01

    Sensitivity of the elevated temperature (above 0.5 Tm) deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Temperature sensitivity of the yield stress, as well as high (compared to self diffusion) apparent tensile activation enthalpies were the result of the internal stress not being proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and, to a lesser extent, increasing grain diameter, reaching high values which may be apparent values. The thoria particle dispersion may have been altered by elevated temperature tensile and creep deformation.

  14. Nonlinear Elasticity in a Deforming Ambient Space

    NASA Astrophysics Data System (ADS)

    Yavari, Arash; Ozakin, Arkadas; Sadik, Souhayl

    2016-07-01

    In this paper, we formulate a nonlinear elasticity theory in which the ambient space is evolving. For a continuum moving in an evolving ambient space, we model time dependency of the metric by a time-dependent embedding of the ambient space in a larger manifold with a fixed background metric. We derive both the tangential and the normal governing equations. We then reduce the standard energy balance written in the larger ambient space to that in the evolving ambient space. We consider quasi-static deformations of the ambient space and show that a quasi-static deformation of the ambient space results in stresses, in general. We linearize the nonlinear theory about a reference motion and show that variation of the spatial metric corresponds to an effective field of body forces.

  15. Deformation mechanisms of irradiated metallic nanofoams

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, L. A.; Martinez, E.; Caro, M.; Fu, E. G.; Caro, A.

    2013-07-01

    It was recently proposed that within a particular window in the parameter space of temperature, ion energy, dose rate, and filament diameter, nanoscale metallic foams could show radiation tolerance [Bringa et al., Nano Lett. 12, 3351 (2012)]. Outside this window, damage appears in the form of vacancy-related stacking fault tetrahedra (SFT), with no effects due to interstitials [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. These SFT could be natural sources of dislocations within the ligaments composing the foam and determine their mechanical response. We employ molecular dynamics simulations of cylindrical ligaments containing an SFT to obtain an atomic-level picture of their deformation behavior under compression. We find that plastic deformation originates at the edges of the SFT, at lower stress than needed to create dislocations at the surface. Our results predict that nanoscale foams soften under irradiation, a prediction not yet tested experimentally.

  16. A digital video model deformation system

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Childers, B. A.

    1987-01-01

    The use of solid-state array cameras and a PC-controlled image acquisition system to measure model deformation in a wind tunnel is discussed. This digital system improves an earlier video model deformation system that used high-resolution tube cameras and required the manual measurement of targets on video hardcopy images. The new system eliminates both the vibration-induced distortion associated with tube cameras and the manual readup of video images necessary in the earlier version. Camera calibration and data reduction procedures necessary to convert pixel image plane data from two cameras into wing deflections are presented. Laboratory tests to establish the uncertainty of the system with the geometry to be used are described.

  17. Deformed Coherent State for Multiparticle Production Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Leong, Q.; Ng, W. K.; Dewanto, A.; Chan, A. H.; Oh, C. H.

    2014-04-01

    The deformation structure function describing the Generalised Multiplicities Distribution (GMD), Negative Binomial Distribution (NBD), Furry-Yule Distribution (FYD), and their corresponding deformed coherent states and second order correlation function g(2) are derived. A superposition model of the GMD and NBD states is then proposed as a general description of the mechanism that gives rise to the double NBD model first proposed by Giovannini. The model is applied to LHC multiplicity data at |η| ≤ 2.4 and 0.9, 2.36 and 7 TeV, from the CMS collaboration at CERN, and the second order correlation g(2) of the model is then compared with the normalised second factorial moment {F_2}/F_1^2 of the multiplicity.

  18. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  19. [Clinical aspects of congenital maxillofacial deformities].

    PubMed

    Sólya, Kitti; Dézsi, Csilla; Vanya, Melinda; Szabó, János; Sikovanyecz, János; Kozinszky, Zoltán; Szili, Károly

    2015-09-13

    The cleft lip and palate deformity is one of the most common type of congenital abnormalities. The aim of this paper is to summarise the literature knowledge about cleft lip and/or palate. The authors review and discuss international literature data on the prevention, genetic and environmental predisposing factors, anatomical and embryological features, as well as pre- and post-natal diagnosis and treatment of these deformities. The aetiology is multifactorial, driven by both genetic and environmental factors which lead to multifaceted phenotypes and clinical features of these malformations. The lack of the multidisciplinary knowledge about prenatal diagnosis, prevention, genetic aspects and treatment strategy could result in serious diagnostic errors, hence clinical teamwork is critically important to solve the problems of this pathology. Only the professional teamwork and multidisciplinary cooperation can guarantee the optimal level of health care and better quality of life for these patients and their families.

  20. Fluid-structure interaction in deformable microchannels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debadi; Prakash, J. Ravi; Friend, James; Yeo, Leslie

    2012-10-01

    A polydimethylsiloxane microfluidic device composed of a single microchannel with a thin flexible layer present over a short length along one side of the channel was fabricated and modelled in order to investigate the complex fluid-structure interaction that arises between a flowing fluid and a deformable wall. Experimental measurements of thin layer deformation and pressure drop are compared with predictions of two- and three-dimensional computational models that numerically solve the coupled set of equations governing both the elasticity of the thin layer and the fluid. It is shown that the two-dimensional model, which assumes the flexible thin layer comprises an infinitely wide elastic beam of finite thickness, reasonably approximates a three-dimensional model, and is in excellent agreement with experimental observations of the thin layer profile when the width of the thin layer is beyond a critical value, roughly twice the length of the thin layer.

  1. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  2. Fine structure in deformed proton emitters.

    SciTech Connect

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-12-07

    In a recent experiment to study the proton radioactivity of the highly deformed {sup 131}Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2{sup +} state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2{sup +} energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed.

  3. Elastocapillary Deformations and Fracture of Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  4. Extracting tissue deformation using Gabor filter banks

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Metaxas, Dimitris; Axel, Leon

    2004-04-01

    This paper presents a new approach for accurate extraction of tissue deformation imaged with tagged MR. Our method, based on banks of Gabor filters, adjusts (1) the aspect and (2) orientation of the filter"s envelope and adjusts (3) the radial frequency and (4) angle of the filter"s sinusoidal grating to extract information about the deformation of tissue. The method accurately extracts tag line spacing, orientation, displacement and effective contrast. Existing, non-adaptive methods often fail to recover useful displacement information in the proximity of tissue boundaries while our method works in the proximity of the boundaries. We also present an interpolation method to recover all tag information at a finer resolution than the filter bank parameters. Results are shown on simulated images of translating and contracting tissue.

  5. Deformation enhanced decarburization of WC-Co

    SciTech Connect

    Jayaram, V.; Sinclair, R.; Rowcliffe, D.J.

    1986-01-01

    The paper describes an unusual transformation that takes place only within the deformed region of identations. Under a suitable ambient temperature decarburization of cemented WC-Co on annealing is enhanced by prior localized deformation. Within individual WC grains, plate-like growth of a mixed carbide (either Co/sub 3/W/sub 3/C or Co/sub 6/W/sub 6/C) occurs preferentially. On some occasions intrusion of the substoichiometric carbide is preceded by a structural transformation in the WC slip band. This transformation is consistent with the formation of an orthorhombic (pseudo-hexagonal) WC phase that may be derived from the original structure by the passage of one partial dislocation on every sucessive slip plane.

  6. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  7. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  8. Regional Deformation Studies with GRACE and GPS

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Elosequi, P.; Tamisiea, M.; Mitrovica, J. X.

    2005-01-01

    GRACE data indicate large seasonal variations in gravity that have been shown to be to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass deforms the Earth, and our previous study using GRACE data demonstrate that annual radial deformations of +/-13 mm in the region of Amazon River Basin were observed by both GRACE and ten GPS sites in the region. For the GRACE determinations, we estimate in a least-squares solution for each Stokes coefficient parameters that represent the amplitudes of the annual variation. We then filter these parameters based on a statistical test that uses the scatter of the postfit residuals. We demonstrate by comparison to the GPS amplitudes that this method is more accurate, for this region, than Gaussian smoothing. Our model for the temporal behavior of the gravity coefficients includes a rate term, and although the time series are noisy, the glacial isostatic adjustment signal over Hudson s Bay can be observed. .

  9. Distal metatarsal osteotomy for bunionette deformity.

    PubMed

    Konradsen, L; Nielsen, P T

    1988-01-01

    Surgical treatment of a bunionette deformity was carried out in 54 feet (36 patients) using the Hohmann displacement osteotomy modified by Thomasen on the fifth metatarsal. Forty-eight operated feet (32 patients) were evaluated 69 months postoperatively (median). The patients were fully satisfied in 88% of the cases and partly satisfied or unsatisfied in 12%. The fully satisfied patients stressed the fact that they were now able to wear whatever style of footwear they desired. The objective success rate was 78% (6% recurrences, 10% transfer lesions, 4% intractable plantar keratosis and 2% operative complications). The authors conclude that the operation is an effective treatment for the bunionette deformity, and that the effect of the operation appears to be long lasting, with few reappearances 5 to 6 years after the operation.

  10. Monopole Strength Function of Deformed Superfluid Nuclei

    SciTech Connect

    Stoitsov, M. V.; Kortelainen, E. M.; Nakatsukasa, T.; Losa, C.; Nazarewicz, Witold

    2011-01-01

    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in ^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  11. Blood viscosity: influence of erythrocyte deformation.

    PubMed

    Chien, S; Usami, S; Dellenback, R J; Gregersen, M I

    1967-08-18

    Suspensions of canine and human erythocytes hardened with acetaldehyde differ from the suspensions of normal erythrocytes with respect to their rheological behavior. Normal erythrocytes can be packed by centrifugation so that the sediment volume is nearly 100 percent cells, but the hardened erythrocytes (RBC's) can be packed only to approximately 60 percent cells. At the same cell percentage the viscosity of the hardened RBC suspension is higher than that of the suspension of normal erythocytes. An increase in shear stress deforms the normal erythocytes and lowers the suspension viscosity, but has no influence on the viscosity of the hardened cell suspension. In blood with high cell percentages, the shear deformation of normal RBC's plays an important role in reducing viscosity and facilitating flow at high shear stresses. PMID:17842793

  12. Grain boundary engineering of highly deformable ceramics

    SciTech Connect

    Mecartney, M.L.

    2000-07-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature.

  13. Fixed flexion deformity and total knee arthroplasty.

    PubMed

    Su, E P

    2012-11-01

    Fixed flexion deformities are common in osteoarthritic knees that are indicated for total knee arthroplasty. The lack of full extension at the knee results in a greater force of quadriceps contracture and energy expenditure. It also results in slower walking velocity and abnormal gait mechanics, overloading the contralateral limb. Residual flexion contractures after TKA have been associated with poorer functional scores and outcomes. Although some flexion contractures may resolve with time after surgery, a substantial percentage will become permanent. Therefore, it is essential to correct fixed flexion deformities at the time of TKA, and be vigilant in the post-operative course to maintain the correction. Surgical techniques to address pre-operative flexion contractures include: adequate bone resection, ligament releases, removal of posterior osteophytes, and posterior capsular releases. Post-operatively, extension can be maintained with focused physiotherapy, a specially modified continuous passive motion machine, a contralateral heel lift, and splinting.

  14. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers. PMID:23132014

  15. Sequences for Student Investigation

    ERIC Educational Resources Information Center

    Barton, Jeffrey; Feil, David; Lartigue, David; Mullins, Bernadette

    2004-01-01

    We describe two classes of sequences that give rise to accessible problems for undergraduate research. These problems may be understood with virtually no prerequisites and are well suited for computer-aided investigation. The first sequence is a variation of one introduced by Stephen Wolfram in connection with his study of cellular automata. The…

  16. Agriculture: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This guide, which was written as an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System, outlines the suggested scope and sequence of a 3-year program in agriculture. The guide consists of a course description; general course objectives;…

  17. M&m Sequences

    ERIC Educational Resources Information Center

    Schultz, Harris S.; Shiflett, Ray C.

    2005-01-01

    Consider a sequence recursively formed as follows: Start with three real numbers, and then when k are known, let the (k +1)st be such that the mean of all k +1 equals the median of the first k. The authors conjecture that every such sequence eventually becomes stable. This article presents results related to their conjecture.

  18. Cosmetology: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for a cosmetology vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed by teachers, parents, and the…

  19. Lichenase and coding sequences

    DOEpatents

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  20. Twin Mitochondrial Sequence Analysis.

    PubMed

    Bouhlal, Yosr; Martinez, Selena; Gong, Henry; Dumas, Kevin; Shieh, Joseph T C

    2013-09-01

    When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high throughput-sequencing and evaluated variants with primer extension and mitochondrial pre-enrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mitochondrial DNA, and they were further evaluated. When we assessed calls in pre-enriched mitochondrial DNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mitochondrial DNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly since significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists. PMID:24040623