Science.gov

Sample records for akt extracellular signal-regulated

  1. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    PubMed

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  2. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

    PubMed

    Wu, Yuanfeng; Beland, Frederick A; Chen, Si; Fang, Jia-Long

    2015-08-01

    Triclosan is a broad spectrum anti-bacterial agent widely used in many personal care products, household items, medical devices, and clinical settings. Human exposure to triclosan is mainly through oral and dermal routes. In previous studies, we found that sub-chronic dermal exposure of B6C3F1 mice to triclosan induced epidermal hyperplasia and focal necrosis; however, the mechanisms for these responses remain elusive. In this study, using mouse epidermis-derived JB6 Cl 41-5a cells, we found that triclosan stimulated cell growth in a concentration- and time-dependent manner. Enhanced cell proliferation was demonstrated by a substantial increase in the percentage of BrdU-positive cells, an elevation in the protein levels of cyclin D1 and cyclin A, and a reduction in the protein level of p27(Kip1). Western blotting analysis revealed that triclosan induced the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), p38, and Akt. Pre-treatment of the cells with PD184352, an inhibitor of the upstream kinase MEK1/2, or with wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked triclosan-mediated phosphorylation of ERK1/2 and Akt, respectively, and substantially suppressed triclosan-stimulated cell proliferation, whereas the JNK inhibitor SP600125 or the p38 inhibitor SB203580 had little to no effect on triclosan-stimulated cell proliferation. The phosphorylation activation of ERK1/2 and Akt was further confirmed on the skin of mice dermally administered triclosan. These data suggest that the activation of ERK1/2 and Akt is involved in triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

  3. Differential Modulation of Brainstem Phosphatidylinositol 3-Kinase/Akt and Extracellular Signal-Regulated Kinase 1/2 Signaling Underlies WIN55,212-2 Centrally Mediated Pressor Response in Conscious Rats

    PubMed Central

    Ibrahim, Badr Mostafa

    2012-01-01

    Our recent study demonstrated that central cannabinoid receptor 1 (CB1R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB1R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB1R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB1R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2′-amino-3′-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB1R activation in conscious rats. PMID:21946192

  4. 8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: role in induction of apoptosis in multiple myeloma.

    PubMed

    Ghias, Kulsoom; Ma, Chunguang; Gandhi, Varsha; Platanias, Leonidas C; Krett, Nancy L; Rosen, Steven T

    2005-04-01

    Multiple myeloma is a slowly proliferating B-cell malignancy that accumulates apoptosis-resistant and replication-quiescent cell populations, posing a challenge for current chemotherapeutics that target rapidly replicating cells. Multiple myeloma remains an incurable disease in need of new therapeutic approaches. The purine nucleoside analogue, 8-amino-adenosine (8-NH2-Ado), exhibits potent activity in preclinical studies, inducing apoptosis in several multiple myeloma cell lines. This cytotoxic effect requires phosphorylation of 8-NH2-Ado to its triphosphate form, 8-amino-ATP, and results in a concomitant loss of endogenous ATP levels. Here, we show the novel effect of 8-NH2-Ado on the phosphorylation status of key cellular signaling molecules. Multiple myeloma cells treated with 8-NH2-Ado exhibit a dramatic loss of phosphorylation of several important signaling proteins, including extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and Akt kinase. Cells depleted of ATP independent of 8-NH2-Ado do not exhibit the same decrease in phosphorylation of vital cellular proteins. Therefore, the significant shifts in endogenous ATP pools caused by 8-NH2-Ado treatment cannot account for the changes in phosphorylation levels. Instead, 8-NH2-Ado may influence the activity of select regulatory protein kinases and/or phosphatases, with preliminary data suggesting that protein phophatase 2A activity is affected by 8-NH2-Ado. The distinctive effect of 8-NH2-Ado on the phosphorylation status of cellular proteins is a novel phenomenon for a nucleoside analogue drug and is unique to 8-NH2-Ado among this class of drugs. The kinetics of 8-NH2-Ado-mediated changes in phosphorylation levels of critical prosurvival and apoptosis-regulating proteins suggests that the modulation of these proteins by dephosphorylation at early time points may be an important mechanistic step in 8-NH2-Ado-induced apoptosis.

  5. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.

    PubMed

    Mut, Melike; Lule, Sevda; Demir, Ozlem; Kurnaz, Isil Aksan; Vural, Imran

    2012-02-01

    Epidermal growth factor (EGF) and its receptor (EGFR) have been shown to play a significant role in the pathogenesis of glioblastoma. In our study, the EGFR was stimulated with EGF in human U138 glioblastoma cells. We show that the activated mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 pathway phosphorylated the E twenty-six (ETS)-like transcription factor 1 (Elk-1) mainly at serine 383 residue. Mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, UO126 and ERK inhibitor II, FR180204 blocked the Elk-1 phosphorylation and activation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt pathway was also involved in the Elk-1 activation. Activation of the Elk-1 led to an increased survival and a proliferative response with the EGF stimulation in the U138 glioblastoma cells. Knocking-down the Elk-1 using an RNA interference technique caused a decrease in survival of the unstimulated U138 glioblastoma cells and also decreased the proliferative response to the EGF stimulation. The Elk-1 transcription factor was important for the survival and proliferation of U138 glioblastoma cells upon the stimulation of EGFR with EGF. The MAPK/ERK1/2 and PI3K/Akt pathways regulated this response via activation of the Elk-1 transcription factor. The Elk-1 may be one of the convergence points for pathways located downstream of EGFR in glioblastoma cells. Utilization of the Elk-1 as a therapeutic target may lead to a novel strategy in treatment of glioblastoma.

  6. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy.

    PubMed

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-10-23

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.

  7. PI3K/AKT Signaling Regulates Bioenergetics in Immortalized Hepatocytes

    PubMed Central

    Li, Chen; Li, Yang; He, Lina; Agarwal, Amit R.; Zeng, Ni; Cadenas, Enrique; Stiles, Bangyan L.

    2013-01-01

    Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on Chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial residence proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., decrease of its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT-GSK3β-PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity. PMID:23376468

  8. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  9. Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1.

    PubMed Central

    Cheng, J T; Cobb, M H; Baer, R

    1993-01-01

    Alteration of the TAL1 gene is the most common genetic lesion found in T-cell acute lymphoblastic leukemia. TAL1 encodes phosphoproteins, pp42TAL1 and pp22TAL1, that represent phosphorylated versions of the full-length (residues 1 to 331) and truncated (residues 176 to 331) TAL1 gene products, respectively. Both proteins contain the basic helix-loop-helix motif, a DNA-binding and protein dimerization motif common to several known transcriptional regulatory factors. We now report that serine residue 122 (S122) is a major phosphorylation site of pp42TAL1 in leukemic cell lines and transfected COS1 cells. In vivo phosphorylation of S122 is induced by epidermal growth factor with a rapid time course that parallels activation of the ERK/MAP2 protein kinases. Moreover, S122 is readily phosphorylated in vitro by the extracellular signal-regulated protein kinase ERK1. These data suggest that TAL1 residue S122 serves as an in vivo substrate for ERK/MAP2 kinases such as ERK1. Therefore, S122 phosphorylation may provide a mechanism whereby the properties of TAL1 polypeptides can be modulated by extracellular stimuli. Images PMID:8423803

  10. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.

    PubMed

    Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro

    2014-02-01

    Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size.

  11. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms

    PubMed Central

    Dine, Julien; Ducourneau, Vincent R R; Fénelon, Valérie S; Fossat, Pascal; Amadio, Aurélie; Eder, Matthias; Israel, Jean-Marc; Oliet, Stéphane H R; Voisin, Daniel L

    2014-01-01

    Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of

  12. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  13. Sex differences in fear extinction and involvements of extracellular signal-regulated kinase (ERK).

    PubMed

    Matsuda, Shingo; Matsuzawa, Daisuke; Ishii, Daisuke; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2015-09-01

    Stress-related disorders, such as post-traumatic stress disorder (PTSD) and panic disorders, are disproportionately prevalent in females. However, the biological mechanism underlying these sex differences in the prevalence rate remains unclear. In the present study, we examined sex differences in fear memory, fear extinction, and spontaneous recovery of fear. We investigated the presence of sex differences in recent and remote fear memory in mice using contextual fear conditioning, as well as sex differences in spontaneous recovery of fear memory using a consecutive fear extinction paradigm. We examined the number of fear extinction days required to prevent spontaneous recovery of fear in either sex. We investigated whether ovariectomy affected fear extinction and spontaneous recovery. We also measured the activation of extracellular signal-regulated kinase (ERK) 1 and 2 in the dorsal hippocampus and the medial prefrontal cortex following fear extinction sessions. In our results, we found no sex difference in recent or remote fear memory. However, females required more fear extinction sessions compared to males to prevent spontaneous recovery. Within-extinction freezing also differed between males and females. Moreover, females required more extinction sessions than males to increase ERK2 phosphorylation in the dorsal hippocampus. Our data suggest that contextual fear extinction was unstable in females compared to males and that such sex differences may be related to the ERK2 phosphorylation in the hippocampus.

  14. Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect.

    PubMed

    Yang, Ji-Ping; Liu, Xin-Feng; Liu, Huai-Jun; Xu, Ge-Lin; Ma, Yu-Ping

    2008-03-28

    Compelling evidence has shown that extracellular signal-regulated kinase (ERK) is widely expressed in many tissues, including the brain. In the present work, we investigated the temporospatial alterations of ERK1 immunoreactivity in hippocampus and perifocal cortex, and the expression involved in NGF/VEGF-induced neuroprotective effect. We demonstrated that ERK1 expression was first increased in hippocampal CA3/DG 1 h after reperfusion, then it was also increased 6 h after reperfusion in other brain regions, with a peak at day 1-3, and then gradually decreased to basal level at day 14. The expression of caspase-3 was strongly increased 1 h after reperfusion, with peak demonstrated at 3d. NGF/VEGF significantly inhibited the expression of ERK1 and caspase-3. These results suggest that ERK1 signaling pathway may be involved in neuronal cell death and NGF/VEGF-induced neuroprotective effect and there appeared an association between ERK and caspase-3. Inhibition of the ERK signaling pathway might therefore provide an efficient way to prevent neuronal cell death after ischemic cerebral injuries.

  15. Lovastatin inhibits the extracellular-signal-regulated kinase pathway in immortalized rat brain neuroblasts

    PubMed Central

    Cerezo-Guisado, Maria Isabel; GarcíA-Román, Natalia; García-MaríN, Luis Jesús; Álvarez-Barrientos, Alberto; Bragado, Maria Julia; Lorenzo, Maria Jesús

    2006-01-01

    We have shown previously that lovastatin, a 3-hydroxy-3-methyl- glutaryl coenzyme A reductase inhibitor, induces apoptosis in spontaneously immortalized rat brain neuroblasts. In the present study, we analysed the intracellular signal transduction pathways by which lovastatin induces neuroblast apoptosis. We showed that lovastatin efficiently inhibited Ras activation, which was associ-ated with a significant decrease in ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Lovastatin also decreased CREB phosphorylation and CREB-mediated gene expression. The effects of lovastatin on the Ras/ERK1/2/CREB pathway were time- and concentration-dependent and fully prevented by meva-lonate. In addition, we showed that two MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitors, PD98059 and PD184352, were poor inducers of apoptosis in serum-treated neuroblasts. However, these inhibitors significantly increased apop-tosis induced by lovastatin treatment. Furthermore, we showed that pharmacological inhibition of both MEK and phosphoinos-itide 3-kinase activities was able to induce neuroblast apoptosis with similar efficacy as lovastatin. Our results suggest that lovast-atin triggers neuroblast apoptosis by regulating several signalling pathways, including the Ras/ERK1/2 pathway. These findings might also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy. PMID:16952276

  16. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  17. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus.

    PubMed

    Guan, Zhiwei; Peng, Xuwen; Fang, Jidong

    2004-08-20

    Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.

  18. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  19. Cadmium activates extracellular signal-regulated kinase 5 in HK-2 human renal proximal tubular cells

    SciTech Connect

    Kondo, Mio; Inamura, Hisako; Matsumura, Ken-ichi; Matsuoka, Masato

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cadmium exposure induces ERK5 phosphorylation in HK-2 renal proximal tubular cells. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced ERK5 but not ERK1/2 phosphorylation. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced CREB and c-Fos phosphorylation. Black-Right-Pointing-Pointer ERK5 activation by cadmium exposure may play an anti-apoptotic role in HK-2 cells. -- Abstract: We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the phosphorylation and functionality of extracellular signal-regulated kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, in HK-2 human renal proximal tubular cells. Following exposure to CdCl{sub 2}, ERK5 phosphorylation increased markedly, but the level of total ERK5 was unchanged. ERK5 phosphorylation following CdCl{sub 2} exposure was rapid and transient, similar to the time course of ERK1/2 phosphorylation. Treatment of HK-2 cells with the MAPK/ERK kinase 5 inhibitor, BIX02189, suppressed CdCl{sub 2}-induced ERK5 but not ERK1/2 phosphorylation. The CdCl{sub 2}-induced increase of phosphorylated cAMP response element-binding protein (CREB) and activating transcription factor-1 (ATF-1), as well as the accumulation of mobility-shifted c-Fos protein, were suppressed by BIX02189 treatment. Furthermore, BIX02189 treatment enhanced cleavage of poly(ADP-ribose) polymerase and increased the level of cytoplasmic nucleosomes in HK-2 cells exposed to CdCl{sub 2}. These findings suggest that ERK5 pathway activation by CdCl{sub 2} exposure might induce the phosphorylation of cell survival-transcription factors, such as CREB, ATF-1, and c-Fos, and may exert a partial anti-apoptotic role in HK-2 cells.

  20. Dynamic expression of extracellular signal-regulated kinase in rat liver tissue during hepatic fibrogenesis

    PubMed Central

    Zhang, Xiao-Lan; Liu, Jin-Ming; Yang, Chang-Chun; Zheng, Yi-Lin; Liu, Li; Wang, Zhan-Kui; Jiang, Hui-Qing

    2006-01-01

    AIM: To investigate whether extracellular signal-regulated kinase 1 (ERK1) is activated and associated with hepatic stellate cell (HSC) proliferation in fibrotic rat liver tissue. METHODS: Rat hepatic fibrosis was induced by bile duct ligation (BDL). Histopathological changes were evaluated by hematoxylin and eosin staining, and Masson’s trichrome method. ERK1 mRNA in rat liver tissue was determined by reverse transcription-polymerase chain reaction, while the distribution of ERK1 was assessed by immunohistochemistry. ERK1 protein was detected by Western blotting analysis. The number of activated HSCs was quantified after alpha smooth muscle actin (α-SMA) staining. RESULTS: With the development of hepatic fibrosis, the positive staining cells of α-SMA increased obviously, and mainly resided in the portal ducts. Fiber septa and perisinuses were accompanied with proliferating bile ducts. The positive staining areas of the rat livers in model groups 1-4 wk after ligation of common bile duct (12.88% ± 2.63%, 22.65% ± 2.16%, 27.45% ± 1.86%, 35.25% ± 2.34%, respectively) were significantly larger than those in the control group (5.88% ± 1.46%, P < 0.01). With the development of hepatic fibrosis, the positive cells of ERK1 increased a lot, and were mainly distributed in portal ducts, fiber septa around the bile ducts, vascular endothelial cells and perisinusoidal cells. Western blotting analysis displayed that the expression of ERK1 and ERK2 protein was up-regulated during the model course, and its level was the highest 4 wk after operation, being 3.9-fold and 7.2-fold higher in fibrotic rat liver than in controls. ERK1 mRNA was expressed in normal rat livers as well, which was up-regulated two days after BDL and reached the highest 4 wk after BDL. The expression of ERK1 was positively correlated with α-SMA expression (r = 0.958,P < 0.05). CONCLUSION: The expression of ERK1 protein and mRNA is greatly increased in fibrotic rat liver tissues, which may play a

  1. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells.

    PubMed

    Delgado-Martín, Cristina; Escribano, Cristina; Pablos, José Luis; Riol-Blanco, Lorena; Rodríguez-Fernández, José Luis

    2011-10-28

    Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.

  2. Measurement of phosphorylated extracellular signal-regulated kinase 1 and 2 in an undergraduate teaching laboratory with ALPHAscreen technology.

    PubMed

    Hay, Debbie L

    2009-03-17

    Teaching the practical aspects of signal transduction to large undergraduate classes can be challenging when there is only a finite time frame in which to engage in laboratory activities. This teaching resource describes the use of bead-based ALPHAscreen technology for a class of 300 second-year biochemistry students, exposing the next generation of researchers to cutting-edge technology. Although in this case phosphorylated extracellular signal-regulated kinase 1 and 2 were measured, this technology is applicable to the measurement of many different signaling components. This resource provides a practical guide for instructors and exemplifies how such traditionally high-throughput research technologies can be used as teaching tools.

  3. Expression and activation of platelet-derived growth factor β receptor, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) in canine mammary tumours.

    PubMed

    Altamura, Gennaro; Uberti, Barbara Degli; Galiero, Giorgio; Martano, Manuela; Pirro, Antonella; Russo, Marco; Borzacchiello, Giuseppe

    2017-02-01

    Canine mammary tumours are frequent neoplasms mostly affecting intact female dogs, for which no 100% efficient therapy is available. Platelet derived growth factor β receptor (PDGFβR) is a tyrosine kinase receptor (TKR) with a potential role in human breast cancer and a series of canine tumours. In this study we demonstrated, for the first time, expression of PDGFβR and its downstream transduction molecules, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and extracellular signal-regulated kinase (ERK), as well as their activated forms in canine mammary tumours by both biochemical analysis and immunohistochemistry. PDGFβR was expressed and hyperphosphorylated in the majority of tumour samples and tumour derived cell lines. Additionally, both MEK and ERK were expressed and activated in cell lines as well as biopsies. TKR inhibitors (TKRi) are currently under investigation as possible therapy in human breast and several canine tumours, thus our in vivo and in vitro findings pave the way for future studies aimed at establishing a potential therapeutic employment of TKRi for the treatment of canine mammary cancer.

  4. Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase*

    PubMed Central

    Subramanyam, Muthangi; Takahashi, Nobuyuki; Hasegawa, Yuichi; Mohri, Tatsuma; Okada, Yasunobu

    2010-01-01

    Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1. PMID:20048146

  5. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer

    PubMed Central

    van der Mijn, Johannes C.; Sol, Nik; Mellema, Wouter; Jimenez, Connie R.; Piersma, Sander R.; Dekker, Henk; Schutte, Lisette M.; Smit, Egbert F.; Broxterman, Henk J.; Skog, Johan; Tannous, Bakhos A.; Wurdinger, Thomas; Verheul, Henk M. W.

    2014-01-01

    Background Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. Methods EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. Results In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). Conclusion Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. PMID:25491250

  6. Prevention of tumour cell apoptosis associated with sustained protein kinase B phosphorylation is more sensitive to regulation by insulin signalling than stimulation of proliferation and extracellular signal-regulated kinase.

    PubMed

    Schmid, Christoph; Ghirlanda, Claudia; Niessen, Markus

    2017-03-18

    Insulin controls blood glucose while insulin-like growth factor (IGF) 1 is an important growth factor. Interestingly, both hormones have overlapping bioactivities and can activate the same intracellular signal transduction cascades. Growth control (mainly by IGF1) and metabolic function (predominantly by insulin) are believed to depend on activation of extracellular signal-regulated kinases (ERKs) 1/2 and protein kinase B (Akt/PKB), respectively. Therefore, insulin analogues that are used to normalize blood glucose are tested for their ability to preferentially activate Akt/PKB but not ERK1/2 and mitogenesis. Growth hormone, IGF1, and hyperinsulinemia are associated with increased risk of growth progression of some cancer types. To test if continuous exposure to insulin can favour tumour growth, we studied insulin/IGF1-dependent activation of ERK1/2 and Akt/PKB by Western blotting, inhibition of apoptosis by ELISA, and induction of proliferation by [(3)H]-thymidine incorporation in Saos-2/B10 osteosarcoma cells. IGF1 and insulin both induced proliferation and prevented apoptosis effectively. Regulation of apoptosis was far more sensitive than regulation of proliferation. IGF1 and insulin activated PKB (Akt/PKB) rapidly and consistently maintained its phosphorylation. Activation of ERK1/2 was only observed in response to IGF1. Loss of p-Akt/PKB (but not of p-ERK1/2) was associated with increased apoptosis, and protection from apoptosis was lost when activation of Akt/PKB was inhibited. These findings in Saos-2/B10 cells were also replicated in the A549 cell line, originally derived from a human lung carcinoma. Therefore, IGF1 and insulin more likely (at lower concentrations) enhance tumour cell survival than proliferation, via activation and maintenance of phosphatidylinositol 3-kinase activity and p-Akt/PKB.

  7. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  8. Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor

    PubMed Central

    Lee, Seung Jae; Lee, Woo Jin; Chang, Sung Eun; Lee, Ga-Young

    2015-01-01

    Background Panax ginseng has been used to prolong longevity and is believed to be useful for improving skin complexion. Ginsenosides are the most active components isolated from ginseng, and ginsenoside Rg3 (G-Rg3) in particular has been demonstrated to possess antioxidative, antitumorigenic, and anti-inflammatory properties. The aim of this study was to examine the ability of G-Rg3 to inhibit melanogenesis. Methods The effects of G-Rg3 on melanin contents and the protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related protein 1 (TRP1) were evaluated. Melanogenesis-regulating signaling molecules such as Akt and extracellular signal-regulated kinase (ERK) were also examined to explore G-Rg3-induced antimelanogenic mechanisms. Results G-Rg3 was found to significantly inhibit the synthesis of melanin in normal human epidermal melanocytes and B16F10 cells in a dose-dependent manner. The activity of cellular tyrosinase and the expression of MITF, tyrosinase, and TRP1 were all reduced, whereas ERK was strongly activated. PD98059 (a specific inhibitor of ERK) attenuated the G-Rg3-induced inhibition of melanin synthesis and tyrosinase activity. Conclusion Taken together, these results showed that G-Rg3 induces the activation of ERK, which accounts for its antimelanogenic effects. G-Rg3 may be a promising safe skin-whitening agent, adding to the long list of uses of P. ginseng for the enhancement of skin beauty. PMID:26199555

  9. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    ERIC Educational Resources Information Center

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  10. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  11. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.

    PubMed

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-02-19

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.

  12. Resting extracellular signal-regulated protein kinase 1/2 expression following a continuum of chronic resistance exercise training paradigms.

    PubMed

    Galpin, Andrew J; Fry, Andrew C; Nicoll, Justin X; Moore, Christopher A; Schilling, Brian K; Thomason, Donald B

    2016-01-01

    Extracellular signal-regulated protein kinase 1/2 (ERK1/2) moderates skeletal muscle growth; however, chronic responses of this protein to unique resistance exercise (RE) paradigms are yet to be explored. The purpose of this investigation was to describe the long-term response of ERK1/2 following circuit weight training (CWT), recreationally weight training (WT), powerlifting (PL) and weightlifting (WL). Independent t-tests were used to determine differences in trained groups compared to sedentary controls. Total ERK1/2 content was lower in PL and WL compared to their controls (p ≤ 0.05). Specific trained groups displayed large (WL: pERK/total-ERK; d = 1.25) and moderate (CWT: total ERK1/2; d = 0.54) effect sizes for altered kinase expression compared to controls. The results indicate ERK1/2 expression is down-regulated after chronic RE in well-trained weightlifters and powerlifters. Lower expression of this protein may be a method in which anabolism is tightly regulated after many years of high-intensity RE.

  13. NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase

    PubMed Central

    Kuek, Vincent; Yang, Zhifan; Chim, Shek Man; Zhu, Sipin; Xu, Huazi; Chow, Siu To; Tickner, Jennifer; Rosen, Vicki; Erber, Wendy; Li, Xiucheng; An, Qin; Qian, Yu; Xu, Jiake

    2016-01-01

    Angiogenesis plays an important role in bone development and remodeling and is mediated by a plethora of potential angiogenic factors. However, data regarding specific angiogenic factors that are secreted within the bone microenvironment to regulate osteoporosis is lacking. Here, we report that Nephronectin (NPNT), a member of the epidermal growth factor (EGF) repeat superfamily proteins and a homologue of EGFL6, is expressed in osteoblasts. Intriguingly, the gene expression of NPNT is reduced in the bone of C57BL/6J ovariectomised mice and in osteoporosis patients. In addition, the protein levels of NPNT and CD31 are also found to be reduced in the tibias of OVX mice. Exogenous addition of mouse recombinant NPNT on endothelial cells stimulates migration and tube-like structure formation in vitro. Furthermore, NPNT promotes angiogenesis in an ex vivo fetal mouse metatarsal angiogenesis assay. We show that NPNT stimulates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated kinase (MAPK) in endothelial cells. Inhibition of ERK1/2 impaired NPNT-induced endothelial cell migration, tube-like structure formation and angiogenesis. Taken together, these results demonstrate that NPNT is a paracrine angiogenic factor and may play a role in pathological osteoporosis. This may lead to new targets for treatment of bone diseases and injuries. PMID:27782206

  14. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Yao, Jing; Zhang, Yun-Shi; Feng, Gan-Zhu; Du, Qiang

    2015-11-01

    Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma.

  15. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement.

    PubMed

    Zhai, Haifeng; Li, Yanqin; Wang, Xi; Lu, Lin

    2008-02-01

    Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction.

  16. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats.

    PubMed

    Wang, X-W; Li, T-T; Zhao, J; Mao-Ying, Q-L; Zhang, H; Hu, S; Li, Q; Mi, W-L; Wu, G-C; Zhang, Y-Q; Wang, Y-Q

    2012-08-16

    Cancer pain, especially cancer-induced bone pain, affects the quality of life of cancer patients, and current treatments for this pain are limited. The present study demonstrates that spinal extracellular signal-regulated kinase (ERK) activation in glial cells plays a crucial role in cancer-induced bone pain. From day 4 to day 21 after the intra-tibia inoculation with Walker 256 mammary gland carcinoma cells, significant mechanical allodynia was observed as indicated by the decrease of mechanical withdrawal thresholds in the von Frey hair test. Intra-tibia inoculation with carcinoma cells induced a vast and persistent (>21 D) activation of ERK in the bilateral L2-L3 and L4-L5 spinal dorsal horn. The increased pERK1/2-immunoreactivity was observed in both Iba-1-expressing microglia and GFAP-expressing astrocytes but not in NeuN-expressing neurons. A single intrathecal injection of the selective MEK (ERK kinase) inhibitors PD98059 (10 μg) on day 12 and U0126 (1.25 and 3 μg) on day 14, attenuated the bilateral mechanical allodynia in the von Frey hair test. Altogether, our results suggest that ERK activation in spinal microglia and astrocytes is correlated with the onset of allodynia and is important for allodynia maintenance in the cancer pain model. This study indicated that inhibition of the ERK pathway may provide a new therapy for cancer-induced bone pain.

  17. Sex differences in contextual fear conditioning are associated with differential ventral hippocampal extracellular signal-regulated kinase activation.

    PubMed

    Gresack, J E; Schafe, G E; Orr, P T; Frick, K M

    2009-03-17

    Although sex differences have been reported in hippocampal-dependent learning and memory, including contextual fear memories, the underlying molecular mechanisms contributing to such differences are not well understood. The present study examined the extent to which sex differences in contextual fear conditioning are related to differential activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), a protein kinase critically involved in memory formation. We first show that male rats exhibit more long-term retention of contextual fear conditioning than female rats. During a tone test, females spent more time freezing than males, although both sexes exhibited robust retention of auditory fear learning. Using Western blot analysis, we then show that phosphorylated ERK levels in ventral, but not dorsal, hippocampus are higher in males than females, relative to same-sex controls, 60 minutes after fear conditioning. Post-conditioning increases in ERK activation were observed in the amygdala in both males and females, suggesting a selective effect of sex on hippocampal ERK activation. Together, these findings suggest that differential activation of the ERK signal transduction pathway in male and female rats, particularly in the ventral hippocampus, is associated with sex differences in contextual fear.

  18. Extracellular signal-regulated kinase 5 in the cerebrospinal fluid-contacting nucleus contributes to morphine physical dependence in rats.

    PubMed

    Wang, Chun-Guang; Ding, Yan-Ling; Zheng, Tian-Fang; Wei, Jing-Qiu; Liu, He; Chen, Yu-Feng; Wang, Jia-You; Zhang, Li-Cai

    2013-05-01

    The cerebrospinal fluid-contacting nucleus (CSF-CN) may influence actual composition of the CSF for non-synaptic signal transmission via releasing or absorbing bioactive substances, which distributes and localizes in the ventral periaqueductal central gray of the brainstem. Previous studies demonstrated that CSF-CN was involved in neuropathic pain and morphine dependence. Thus, to identify whether extracellular signal-regulated kinase 5 (ERK5) distributed in the CSF-CN and its function on the formation and development of morphine physical dependence, morphine withdrawal-like behavioral test and immunofluorescent technique were used in this research. Morphine was subcutaneously injected by an intermittent and escalating procedure to induce physical dependence, which was measured by withdrawal symptoms. In this study, we found that horseradish peroxidase-conjugated toxin subunit B/p-ERK5 double-labeled neurons expressed in the CSF-CN of normal rats. ERK5 signaling pathway was remarkably activated by naloxone-precipitated withdrawal in the CSF-CN. Moreover, selective attenuation of p-ERK5 expression in the CSF-CN by lateral ventricle injection of BIX02188 could significantly relieve morphine withdrawal symptom. These findings confirmed that the activation of p-ERK5 in the CSF-CN might contribute to morphine physical dependence.

  19. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    SciTech Connect

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  20. Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase

    PubMed Central

    Jiang, Youwei; Cypess, Aaron M.; Muse, Evan D.; Wu, Cui-Rong; Unson, Cecilia G.; Merrifield, R. B.; Sakmar, Thomas P.

    2001-01-01

    We prepared a stable cell line expressing the glucagon receptor to characterize the effect of Gs-coupled receptor stimulation on extracellular signal-regulated protein kinase 1/2 (ERK1/2) activity. Glucagon treatment of the cell line caused a dose-dependent increase in cAMP concentration, activation of cAMP-dependent protein kinase (PKA), and transient release of intracellular calcium. Glucagon treatment also caused rapid dose-dependent phosphorylation and activation of mitogen-activated protein kinase kinase/ERK kinase (MEK1/2) and ERK1/2. Inhibition of either PKA or MEK1/2 blocked ERK1/2 activation by glucagon. However, no significant activation of several upstream activators of MEK, including Ras, Rap1, and Raf, was observed in response to glucagon treatment. In addition, chelation of intracellular calcium reduced glucagon-mediated ERK1/2 activation. In transient transfection experiments, glucagon receptor mutants that bound glucagon but failed to increase intracellular cAMP and calcium concentrations showed no glucagon-stimulated ERK1/2 phosphorylation. We conclude that glucagon-induced MEK1/2 and ERK1/2 activation is mediated by PKA and that an increase in intracellular calcium concentration is required for maximal ERK activation. PMID:11517300

  1. Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors

    PubMed Central

    Chen, Fengming; MacKerell, Alexander D.; Luo, Yuan

    2008-01-01

    We have recently identified several novel ATP-independent inhibitors that target the extracellular signal-regulated kinase-2 (ERK2) protein and inhibit substrate phosphorylation. To further characterize these compounds, we describe the use of C. elegans as a model organism. C. elegans is recognized as a versatile and cost effective model for use in drug development. These studies take advantage of the well characterized process of vulva development and egg laying, which requires MPK-1, the homolog to human ERK2. It is shown that treatment of C. elegans eggs or larvae prior to vulva formation with a previously identified lead compound (76) caused up to 50% reduction in the number of eggs produced from the adult worm. In contrast, compound 76 had no effect on egg laying in young adult or adult worms with fully formed vulva. The reduction in egg laying by the test compound was not due to effects on C. elegans life span, general toxicity, or non-specific stress. However, compound 76 did show selective inhibition of phosphorylation of LIN-1, a MPK-1 substrate essential for vulva precursor cell formation. Moreover, compound 76 inhibited cell fusion necessary for vulva maturation and reduced the multivulva phenotype in LET-60 (Ras) mutant worms that have constitutive activation of MPK-1. These findings support the use of C. elegans as a model organism to evaluate the selectivity and specificity of novel ERK targeted compounds. PMID:19105050

  2. Genistein modulates prostate epithelial cell proliferation via estrogen- and extracellular signal-regulated kinase-dependent pathways.

    PubMed

    Wang, Xingya; Clubbs, Elizabeth A; Bomser, Joshua A

    2006-03-01

    Epidemiological evidence suggests that consumption of soy is associated with a decreased risk for prostate cancer. Genistein, the most abundant isoflavone present in soy, is thought to be responsible, in part, for these anticancer effects. The present study examined the effects of genistein on cellular proliferation, extracellular signal-regulated kinase (ERK1/2) activity and apoptosis in a nontumorigenic human prostate epithelial cell line (RWPE-1). Low concentrations of genistein (0-12.5 micromol/L) significantly increased cell proliferation and ERK1/2 activity (P<.01) in RWPE-1 cells, while higher concentrations (50 and 100 micromol/L) of genistein significantly inhibited cell proliferation and ERK1/2 activity (P<.001). A similar biphasic effect of genistein on MEK1 activity, an ERK1/2 kinase, was also observed. Pretreatment of cells with a MEK1 inhibitor (PD 098059) significantly blocked genistein-induced proliferation and ERK1/2 activity (P<.01). In addition, treatment of cells with ICI 182,780, a pure antiestrogen, inhibited genistein-induced RWPE-1 proliferation and ERK1/2 signaling. Taken together, these results suggest that genistein modulates RWPE-1 cell proliferation and signal transduction via an estrogen-dependent pathway involving ERK1/2 activation.

  3. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  4. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    PubMed Central

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  5. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway.

    PubMed

    Miao, Jiayin; Ding, Minghui; Zhang, Aiwu; Xiao, Zijian; Qi, Weiwei; Luo, Ning; Di, Wei; Tao, Yuqian; Fang, Yannan

    2012-12-01

    Pleiotrophin (PTN) is an effective neuroprotective factor and its expression is strikingly increased in microglia after ischemia/reperfusion injury. However, whether PTN could provide neurotrophic support to neurons by regulating microglia function is not clear. In this study, we demonstrated that the expression of PTN was induced in microglia after oxygen-glucose deprivation/reperfusion. PTN promoted the proliferation of microglia by enhancing the G1 to S phase transition. PTN also stimulated the secretion of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and nerve growth factor (NGF) in microglia, but did not upregulate the expression of proinflammatory factors such as TNF-α, IL-1β and iNOS. Mechanistically, we found that PTN increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in microglia in both concentration-dependent and time-dependent manners. In addition, ERK1/2 inhibitor U0126 abolished the proliferation and G1 to S phase transition of microglia stimulated by PTN, and inhibited the production of BDNF, CNTF and NGF induced by PTN. In conclusion, our results demonstrated that PTN-ERK1/2 pathway plays important role in regulating microglia growth and secretion of neurotrophic factors. These findings provide new insight into the neuroprotective role of PTN and suggest that PTN is a new target for therapeutic intervention of stroke.

  6. N-Terminal Ubiquitination of Extracellular Signal-Regulated Kinase 3 and p21 Directs Their Degradation by the Proteasome

    PubMed Central

    Coulombe, Philippe; Rodier, Geneviève; Bonneil, Eric; Thibault, Pierre; Meloche, Sylvain

    2004-01-01

    Extracellular signal-regulated kinase 3 (ERK3) is an unstable mitogen-activated protein kinase homologue that is constitutively degraded by the ubiquitin-proteasome pathway in proliferating cells. Here we show that a lysineless mutant of ERK3 is still ubiquitinated in vivo and requires a functional ubiquitin conjugation pathway for its degradation. Addition of N-terminal sequence tags of increasing size stabilizes ERK3 by preventing its ubiquitination. Importantly, we identified a fusion peptide between the N-terminal methionine of ERK3 and the C-terminal glycine of ubiquitin in vivo by tandem mass spectrometry analysis. These findings demonstrate that ERK3 is conjugated to ubiquitin via its free NH2 terminus. We found that large N-terminal tags also stabilize the expression of the cell cycle inhibitor p21 but not that of substrates ubiquitinated on internal lysine residues. Consistent with this observation, lysineless p21 is ubiquitinated and degraded in a ubiquitin-dependent manner in intact cells. Our results suggests that N-terminal ubiquitination is a more prevalent modification than originally recognized. PMID:15226418

  7. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway

    SciTech Connect

    Wei Li; Liu Jue

    2009-03-30

    Postweaning multisystemic wasting syndrome, which is primarily caused by porcine circovirus type 2 (PCV2), is an emerging and important swine disease. We have recently shown that PCV2 induces nuclear factor kappa B activation and its activation is required for active replication, but the other cellular factors involved in PCV2 replication are not well defined. The extracellular signal-regulated kinase (ERK) which served as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. In this report, we show that PCV2 activates ERK1/2 in PCV2-infected PK15 cells dependent on viral replication. The PCV2-induced ERK1/2 leads to phosphorylation of the ternary complex factor Elk-1, which kinetically paralleled ERK1/2 activation. Inhibition of ERK activation with U0126, a specific MEK1/2 inhibitor, significantly reduced viral progeny release. Investigations into the mechanism of ERK1/2 regulation revealed that inhibition of ERK activation leads to decreased viral transcription and lower virus protein expression. These data indicate that the ERK signaling pathway is involved in PCV2 infection and beneficial to PCV2 replication in the cultured cells.

  8. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats.

    PubMed

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-02-22

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension.

  9. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells.

    PubMed

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-11-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses.

  10. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase.

    PubMed

    Takeda, Kotaro; Tsuji, Minoru; Miyagawa, Kazuya; Takeda, Hiroshi

    2017-01-18

    Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The present study examined the involvement of extracellular signal-regulated kinase 1/2 (ERK) signaling on the serotonin (5-HT)7 receptor-mediated fear conditioning. Conditioning was performed in a trial in which a tone was followed by an electrical foot-shock. Context- and tone-dependent fear were examined in tests conducted 24 and 48h after conditioning, respectively. The selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,-tetrahydrobenzo(c,d)indol-2-(1H)-one (DR4004) (5mg/kg), when administered intraperitoneally (i.p.) immediately after conditioning, caused a significant decrease in both context- and tone-dependent fear responses (freezing behavior). A significant increase in ERK activity was observed in the amygdala of mice that displayed context- or tone-dependent fear responses, and these changes were also inhibited by the administration of DR4004 (5mg/kg, i.p.) immediately after conditioning. In contrast, the increase in hippocampal ERK activity in mice that displayed context-dependent fear responses was further enhanced by the administration of DR4004 (5mg/kg, i.p.). These results suggest that 5-HT7 receptor-mediated ERK signaling may play a significant role in the processes of emotional learning and memory.

  11. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  12. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways.

    PubMed

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T; Portell, Craig A; Lannutti, Brian J; Almasan, Alexandru; Hsi, Eric D

    2013-10-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.

  13. Early postnatal stress alters extracellular signal-regulated kinase signaling in the corticolimbic system modulating emotional circuitry in adult rats.

    PubMed

    Ishikawa, Shuhei; Saito, Yasuhiro; Yanagawa, Yoshiki; Otani, Satoru; Hiraide, Sachiko; Shimamura, Kei-ichi; Matsumoto, Machiko; Togashi, Hiroko

    2012-01-01

    The present study elucidated whether early life stress alters the extracellular signal-regulated kinase (ERK) pathway that underlies fear retrieval and fear extinction based on a contextual fear conditioning paradigm, using a juvenile stress model. Levels of phospho-ERK (pERK), the active form of ERK, increased after fear retrieval in the hippocampal CA1 region but not in the medial prefrontal cortex (mPFC). ERK activation in the CA1 following fear retrieval was not observed in adult rats who received aversive footshock (FS) stimuli during the second postnatal period (2wFS), which exhibited low levels of freezing. In fear extinction, pERK levels in the CA1 were increased by repeated extinction trials, but they were not altered after extinction retrieval. In contrast, pERK levels in the mPFC did not change during extinction training, but were enhanced after extinction retrieval. These findings were compatible in part with electrophysiological data showing that synaptic transmission in the CA1 field and mPFC was enhanced during extinction training and extinction retrieval, respectively. ERK activation in the CA1 and mPFC associated with extinction processes did not occur in rats that received FS stimuli during the third postnatal period (3wFS), which exhibited sustained freezing behavior. The repressed ERK signaling and extinction deficit observed in the 3wFS group were ameliorated by treatment with the partial N-methyl-D-aspartate receptor agonist D-cycloserine. These findings suggest that early postnatal stress induced the downregulation of ERK signaling in distinct brain regions through region-specific regulation, which may lead to increased behavioral abnormalities or emotional vulnerabilities in adulthood.

  14. α1A-Adrenergic Receptor Induces Activation of Extracellular Signal-Regulated Kinase 1/2 through Endocytic Pathway

    PubMed Central

    Liu, Fei; He, Kangmin; Yang, Xinxing; Xu, Ning; Liang, Zhangyi; Xu, Ming; Zhao, Xinsheng; Han, Qide; Zhang, Youyi

    2011-01-01

    G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α1A-adrenergic receptor (α1A-AR)-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Agonist-mediated endocytic traffic of α1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A). α1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α1A-AR. α1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent). Activation of protein kinase C (PKC) and C-Raf by α1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor) and Ro 31–8220 (a PKC inhibitor) inhibited α1B-AR- but not α1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α1A-AR-induced ERK1/2 activation, which is independent of Gq/PLC/PKC signaling. PMID:21738688

  15. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    SciTech Connect

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  16. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    PubMed

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  17. Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration

    PubMed Central

    White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A

    2004-01-01

    Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194

  18. Phosphorylation of TPL-2 on Serine 400 Is Essential for Lipopolysaccharide Activation of Extracellular Signal-Regulated Kinase in Macrophages▿

    PubMed Central

    Robinson , M. J.; Beinke , S.; Kouroumalis, A.; Tsichlis, P. N.; Ley, S. C.

    2007-01-01

    Tumor progression locus 2 (TPL-2) kinase is essential for Toll-like receptor 4 activation of the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) and for upregulation of the inflammatory cytokine tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-stimulated macrophages. LPS activation of ERK requires TPL-2 release from associated NF-κB1 p105, which blocks TPL-2 access to its substrate, the ERK kinase MEK. Here we demonstrate that TPL-2 activity is also regulated independently of p105, since LPS stimulation was still needed for TPL-2-dependent activation of ERK in Nfkb1−/− macrophages. In wild-type macrophages, LPS induced the rapid phosphorylation of serine (S) 400 in the TPL-2 C-terminal tail. Mutation of this conserved residue to alanine (A) blocked the ability of retrovirally expressed TPL-2 to induce the activation of ERK in LPS-stimulated Nfkb1−/− macrophages. TPL-2S400A expression also failed to reconstitute LPS activation of ERK and induction of TNF in Map3k8−/− macrophages, which lack endogenous TPL-2. Consistently, the S400A mutation was found to block LPS stimulation of TPL-2 MEK kinase activity. Thus, induction of TPL-2 MEK kinase activity by LPS stimulation of macrophages requires TPL-2 phosphorylation on S400, in addition to its release from NF-κB1 p105. Oncogenic C-terminal truncations of TPL-2 that remove S400 could promote its transforming potential by eliminating this critical control step. PMID:17709378

  19. Pattern-dependent role of NMDA receptors in action potential generation: consequences on extracellular signal-regulated kinase activation.

    PubMed

    Zhao, Meilan; Adams, J Paige; Dudek, Serena M

    2005-07-27

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular signal-regulated kinases (ERKs) 1 and 2 with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question of whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current-clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs and ERK activation could be overcome with the addition of the GABAA antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to 2-amino-5-phosphonovalerate, in contrast to that induced with 5 or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role that NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation.

  20. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells.

    PubMed

    Fahlenkamp, Astrid V; Rossaint, Rolf; Haase, Hajo; Al Kassam, Hussam; Ryang, Yu-Mi; Beyer, Cordian; Coburn, Mark

    2012-01-15

    Recently, the noble gas argon has been identified as a potent neuroprotective agent, but little is known about its cellular effects. In this in vitro study, we investigated argon's influence on the extracellular signal-regulated kinase (ERK) 1/2, a ubiquitous enzyme with numerous functions in cell proliferation and survival. Primary neuronal and astroglial cell cultures and the microglial cell line BV-2 were exposed to 50 vol.% argon. Further possible effects were studied following stimulation of microglia with 50 ng/ml LPS. ERK 1/2 activation was assessed by phosphorylation state-specific western blotting, cytokine levels by real-time PCR and western blotting. Total phosphotyrosine phosphatase activity was examined with p-nitrophenylphosphate. After 30 min exposure, argon significantly activated ERK 1/2 signaling in microglia. Enhanced phosphorylation of ERK 1/2 was also found in astrocytes and neurons following argon exposure, but it lacked statistical significance. In microglia, argon did not substantially interfere with LPS-induced ERK1/2 activation and inflammatory cytokine induction. Addition of the MEK-Inhibitor U0126 abolished the induced ERK 1/2 phosphorylation. Cellular phosphatase activity and the inactivation of phosphorylated ERK 1/2 were not altered by argon. In conclusion, argon enhanced ERK 1/2 activity in microglia via the upstream kinase MEK, probably through a direct mode of activation. ERK 1/2 signaling in astrocytes and neurons in vitro was also influenced, although not with statistical significance. Whether ERK 1/2 activation by argon affects cellular functions like differentiation and survival in the brain in vivo will have to be determined in future experiments.

  1. PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation

    PubMed Central

    Nakamura, Kazuhiro; Uhlik, Mark T.; Johnson, Nancy L.; Hahn, Klaus M.; Johnson, Gary L.

    2006-01-01

    MEKK2, MEK5, and extracellular signal-regulated kinase 5 (ERK5) are members of a three-kinase cascade for the activation of ERK5. MEK5 is the only MAP2K to express a PB1 domain, and we have shown that it heterodimerizes with the PB1 domain of MEKK2. Here we demonstrate the MEK5 PB1 domain is a scaffold that also binds ERK5, functionally forming a MEKK2-MEK5-ERK5 complex. Reconstitution assays and CFP/YFP imaging (fluorescence resonance energy transfer [FRET]) measuring YFP-MEKK2/CFP-MEK5 and CFP-MEK5/YFP-ERK5 interactions define distinct MEK5 PB1 domain binding sites for MEKK2 and ERK5, with a C-terminal extension of the PB1 domain contributing to ERK5 binding. Stimulus-dependent CFP/YFP FRET in combination with mutational analysis was used to define MEK5 PB1 domain residues critical for the interaction of MEKK2/MEK5 and MEK5/ERK5 required for activation of the ERK5 pathway in living cells. Fusion of the MEK5 PB1 domain to the N terminus of MEK1 confers ERK5 regulation by a MAP2K normally regulating only ERK1/2. The MEK5 PB1 domain confers stringent MAP3K regulation of ERK5 relative to more promiscuous MAP3K control of ERK1/2, JNK, and p38. PMID:16507987

  2. Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaine-induced synaptic plasticity and rewarding effects.

    PubMed

    Pan, Bin; Zhong, Peng; Sun, Dalong; Liu, Qing-song

    2011-08-03

    Drugs of abuse such as cocaine induce long-term synaptic plasticity in the reward circuitry, which underlies the formation of drug-associated memories and addictive behavior. We reported previously that repeated cocaine exposure in vivo facilitates long-term potentiation (LTP) in dopamine neurons of the ventral tegmental area (VTA) by reducing the strength of GABAergic inhibition and that endocannabinoid-dependent long-term depression at inhibitory synapses (I-LTD) constitutes a mechanism for cocaine-induced reduction of GABAergic inhibition. The present study investigated the downstream signaling mechanisms and functional consequences of I-LTD in the VTA in the rat. Extracellular signal-regulated kinase (ERK) signaling has been implicated in long-term synaptic plasticity, associative learning, and drug addiction. We tested the hypothesis that VTA ERK activity is required for I-LTD and cocaine-induced long-term synaptic plasticity and behavioral effects. We show that the activation of receptors required for I-LTD increased ERK1/2 phosphorylation and inhibitors of ERK activation blocked I-LTD. We further demonstrate that ERK mediates cocaine-induced reduction of GABAergic inhibition and facilitation of LTP induction. Finally, we show that cocaine conditioned place preference (CPP) training (15 mg/kg; four pairings) increased ERK1/2 phosphorylation in the VTA, while bilateral intra-VTA injections of a CB(1) antagonist or an inhibitor of ERK activation attenuated ERK1/2 phosphorylation and the acquisition, but not the expression, of CPP to cocaine. Our study has identified the CB(1) and ERK signaling cascade as a key mediator of several forms of cocaine-induced synaptic plasticity and provided evidence linking long-term synaptic plasticity in the VTA to rewarding effects of cocaine.

  3. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes.

    PubMed

    Cohen-Matsliah, Sivan Ida; Brosh, Inbar; Rosenblum, Kobi; Barkai, Edi

    2007-11-14

    Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst afterhyperpolarization (AHP), which is generated by repetitive spike firing. AHP reduction is attributable to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that such learning-induced AHP reduction is maintained by PKC activation. However, the molecular machinery underlying such long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the extracellular signal-regulated kinase I/II (ERKI/II) pathway, which is known to be crucial in learning, memory, and synaptic plasticity processes, is instrumental for the long-term maintenance of learning-induced AHP reduction. PD98059 or UO126, which selectively block MEK, the upstream kinase of ERK, increased the AHP in neurons from trained rats but not in neurons from naive and pseudo-trained rats. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls were abolished. This effect was not mediated by modulation of basic membrane properties. In accordance with its effect on neuronal excitability, the level of activated ERK in the membranal fraction was significantly higher in piriform cortex samples taken from trained rats. In addition, the PKC activator OAG (1-oleoyl-20acety-sn-glycerol), which was shown to reduce the AHP in neurons from control rats, had no effect on these neurons in the presence of PD98059. Our data show that ERK has a key role in maintaining long-lasting learning-induced enhancement of neuronal excitability.

  4. Reciprocal regulation of extracellular signal regulated kinase 1/2 and mitogen activated protein kinase phosphatase-3

    SciTech Connect

    Zeliadt, Nicholette A.; Mauro, Laura J.; Wattenberg, Elizabeth V.

    2008-11-01

    Mitogen activated protein kinase phosphatase-3 (MKP-3) is a putative tumor suppressor. When transiently overexpressed, MKP-3 dephosphorylates and inactivates extracellular signal regulated kinase (ERK) 1/2. Little is known about the roles of endogenous MKP-3, however. We previously showed that MKP-3 is upregulated in cell lines that express oncogenic Ras. Here we tested the roles of endogenous MKP-3 in modulating ERK1/2 under conditions of chronic stimulation of the Ras/Raf/MEK1/2/ERK1/2 pathway by expression of oncogenic Ras. We used two cell lines: H-ras MCF10A, breast epithelial cells engineered to express H-Ras, and DLD-1, colon cancer cells that express endogenous Ki-Ras. First, we found that MKP-3 acts in a negative feedback loop to suppress basal ERK1/2 when oncogenic Ras stimulates the Ras/Raf/MEK1/2/ERK1/2 cascade. ERK1/2 was required to maintain elevated MKP-3, indicative of a negative feedback loop. Accordingly, knockdown of MKP-3, via siRNA, increased ERK1/2 phosphorylation. Second, by using siRNA, we found that MKP-3 helps establish the sensitivity of ERK1/2 to extracellular activators by limiting the duration of ERK1/2 phosphorylation. Third, we found that the regulation of ERK1/2 by MKP-3 is countered by the complex regulation of MKP-3 by ERK1/2. Potent ERK1/2 activators stimulated the loss of MKP-3 within 30 min due to an ERK1/2-dependent decrease in MKP-3 protein stability. MKP-3 levels recovered within 120 min due to ERK1/2-dependent resynthesis. Preventing MKP-3 resynthesis, via siRNA, prolonged ERK1/2 phosphorylation. Altogether, these results suggest that under the pressure of oncogenic Ras expression, MKP-3 reins in ERK1/2 by serving in ERK1/2-dependent negative feedback pathways.

  5. Fenofibrate Attenuated Glucose-Induced Mesangial Cells Proliferation and Extracellular Matrix Synthesis via PI3K/AKT and ERK1/2

    PubMed Central

    Zhu, Fengming; Ma, Zufu; Liao, Wenhui; He, Yong; He, JinSeng; Li, Wei; Yang, Juan; Lu, Qian; Xu, Gang; Yao, Ying

    2013-01-01

    Excess mesangial extracellular matrix (ECM) and mesangial cell proliferation is the major pathologic feature of diabetic nephropathy (DN). Fenofibrate, a PPARα agonist, has been shown to attenuate extracellular matrix formation in diabetic nephropathy. However, the mechanisms underlying this effect remain to be elucidated. In this study, the effect of fenofibrate on high-glucose induced cell proliferation and extracellular matrix exertion and its mechanisms were investigated in cultured rat mesangial cells by the methylthiazoletetrazolium (MTT) assay, flow cytometry and western blot. The results showed that treatment of mesangial cells (MCs) with fenofibrate repressed high-glucose induced up-regulation of extracellular matrix Collagen-IV, and inhibited entry of cell cycle into the S phase. This G1 arrest and ECM inhibition was caused by the reduction of phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. On the contrary, PPARα siRNA accelerated high glucose-induced cell cycle progression by ERK1/2 and AKT activation. Taken together, fenofibrate ameliorated glucose-induced mesangial cell proliferation and matrix production via its inhibition of PI3K/AKT and ERK1/2 signaling pathways. Such mechanisms may contribute to the favorable effects of treatment using fenofibrate in diabetic nephropathy. PMID:24130796

  6. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/212

    PubMed Central

    Tang, Maggie K S; Zhou, Hong Y; Yam, Judy W P; Wong, Alice S T

    2010-01-01

    Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis), which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF) receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications. PMID:20126471

  7. Modulation of Brahma expression by the mitogen-activated protein kinase/extracellular signal regulated kinase pathway is associated with changes in melanoma proliferation.

    PubMed

    Mehrotra, Aanchal; Saladi, Srinivas Vinod; Trivedi, Archit R; Aras, Shweta; Qi, Huiling; Jayanthy, Ashika; Setaluri, Vijayasaradhi; de la Serna, Ivana L

    2014-12-01

    Brahma (BRM) and Brahma-related gene 1(BRG1) are catalytic subunits of SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes. BRM is epigenetically silenced in a wide-range of tumors. Mutations in the v-raf murine sarcoma viral oncogene homolog B1 (BRAF) gene occur frequently in melanoma and lead to constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK1/2) pathway. We tested the hypothesis that BRM expression is modulated by oncogenic BRAF and phosphorylation of ERK1/2 in melanocytes and melanoma cells. Expression of oncogenic BRAF in melanocytes and melanoma cells that are wild-type for BRAF decreased BRM expression and increased BRG1 expression. Inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) or selective inhibition of BRAF in melanoma cells that harbor oncogenic BRAF increased BRM expression and decreased BRG1 expression. Increased BRM expression was associated with increased histone acetylation on the BRM promoter. Over-expression of BRM in melanoma cells that harbor oncogenic BRAF promoted changes in cell cycle progression and apoptosis consistent with a tumor suppressive role. Upon inhibition of BRAF(V600E) with PLX4032, BRM promoted survival. PLX4032 induced changes in BRM function were correlated with increased acetylation of the BRM protein. This study provides insights into the epigenetic consequences of inhibiting oncogenic BRAF in melanoma through modulation of SWI/SNF subunit expression and function.

  8. Inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase disrupts latent inhibition of cued fear conditioning in C57BL/6 mice.

    PubMed

    Lewis, Michael C; Davis, Jennifer A; Gould, Thomas J

    2004-12-01

    The mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) cascade has been implicated in a variety of associative conditioning tasks. However, the role of the MAPK-ERK cascades in modulating conditioning is less clear. The authors examined the effect of the potent and selective MAPK-ERK inhibitor SL327 on latent inhibition of cued fear conditioning. The results demonstrate that 50 mg/kg and 100 mg/kg SL327 disrupt latent inhibition of cued fear conditioning. These data provide evidence for an essential role of the MAPK-ERK cascade in tasks that modulate the strength of associative conditioning. The results are discussed in relation to the molecular mechanisms that support latent inhibition of cued fear conditioning.

  9. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Joe Yiu; Yu Le; Li Zhijie; Chu, Kent Man; Cho, C.H.

    2008-08-22

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease.

  10. Expression of Extracellular Signal-regulated Kinase 5 and Ankyrin Repeat Domain 1 in Composite Pheochromocytoma and Ganglioneuroblastoma Detected Incidentally in the Adult Adrenal Gland.

    PubMed

    Suenaga, Shinta; Ichiyanagi, Osamu; Ito, Hiromi; Naito, Sei; Kato, Tomoyuki; Nagaoka, Akira; Kato, Tomoya; Yamakawa, Mitsunori; Obara, Yutaro; Tsuchiya, Norihiko

    Composite pheochromocytoma (cPC) is extremely rare, arising in the adrenal medulla as a mixture of PC and other tumors of neural origin. We herein report on a case of adrenal incidentaloma post-operatively diagnosed as cPC with ganglioneuroblastoma (GNBL). The PC component had 7 points on the PASS, a Ki-67 index of 5.1%, a focal absence of sustentacular cells, and no genetic aberrations in succinate dehydrogenase subunit B. The GNBL component exhibited no N-myc amplification. Tumor cells of both components were stained positively for extracellular signal-regulated kinase 5 and ankyrin repeat domain 1. The aberrant activation of growth signaling may play a role in the marginal malignancy of cPC.

  11. Expression of Extracellular Signal-regulated Kinase 5 and Ankyrin Repeat Domain 1 in Composite Pheochromocytoma and Ganglioneuroblastoma Detected Incidentally in the Adult Adrenal Gland

    PubMed Central

    Suenaga, Shinta; Ichiyanagi, Osamu; Ito, Hiromi; Naito, Sei; Kato, Tomoyuki; Nagaoka, Akira; Kato, Tomoya; Yamakawa, Mitsunori; Obara, Yutaro; Tsuchiya, Norihiko

    2016-01-01

    Composite pheochromocytoma (cPC) is extremely rare, arising in the adrenal medulla as a mixture of PC and other tumors of neural origin. We herein report on a case of adrenal incidentaloma post-operatively diagnosed as cPC with ganglioneuroblastoma (GNBL). The PC component had 7 points on the PASS, a Ki-67 index of 5.1%, a focal absence of sustentacular cells, and no genetic aberrations in succinate dehydrogenase subunit B. The GNBL component exhibited no N-myc amplification. Tumor cells of both components were stained positively for extracellular signal-regulated kinase 5 and ankyrin repeat domain 1. The aberrant activation of growth signaling may play a role in the marginal malignancy of cPC. PMID:27980262

  12. Neuroprotection of brain-derived neurotrophic factor against hypoxic injury in vitro requires activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.

    PubMed

    Sun, Xiaomei; Zhou, Hui; Luo, Xiaoli; Li, Shengfu; Yu, Dan; Hua, Jiping; Mu, Dezhi; Mao, Meng

    2008-01-01

    Intrauterine asphyxia is one of the major contributors for perinatal death, mental and physical disorders of surviving children. Brain-derived neurotrophic factor (BDNF) provides a promising solution to hypoxic injury due to its survival-promoting effects. In an attempt to identify possible molecular mechanisms underlying the neuroprotective role of BDNF, we studied extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI-3-K) and p38 mitogen-activated protein kinase (MAPK) pathways. We demonstrated that BDNF protected cortical neurons against hypoxic injury in vitro via activation of both the ERK and PI-3-K pathways but not the p38 MAPK pathway. We also showed that both hypoxic stimuli and exogenous BDNF treatment phosphorylated the cyclic AMP response element-binding protein (CREB) and that CREB phosphorylation induced by BDNF was mediated via the ERK pathway in cultured cortical neurons.

  13. The Vaccinia Virus O1 Protein Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase 1/2 and Promotes Viral Virulence

    PubMed Central

    Lukassen, Susanne; Späth, Michaela; Wolferstätter, Michael; Babel, Eveline; Brinkmann, Kay; Wielert, Ursula; Chaplin, Paul; Suter, Mark

    2012-01-01

    Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo. PMID:22171261

  14. Integrin-mediated Ras–Extracellular Regulated Kinase (ERK) Signaling Regulates Interferon γ Production in Human Natural Killer Cells

    PubMed Central

    Mainiero, Fabrizio; Gismondi, Angela; Soriani, Alessandra; Cippitelli, Marco; Palmieri, Gabriella; Jacobelli, Jordan; Piccoli, Mario; Frati, Luigi; Santoni, Angela

    1998-01-01

    Recent evidence indicates that integrin engagement results in the activation of biochemical signaling events important for regulating different cell functions, such as migration, adhesion, proliferation, differentiation, apoptosis, and specific gene expression. Here, we report that β1 integrin ligation on human natural killer (NK) cells results in the activation of Ras/mitogen-activated protein kinase pathways. Formation of Shc–growth factor receptor–bound protein 2 (Grb2) and Shc–proline-rich tyrosine kinase 2–Grb2 complexes are the receptor-proximal events accompanying the β1 integrin–mediated Ras activation. In addition, we demonstrate that ligation of β1 integrins results in the stimulation of interferon γ (IFN-γ) production, which is under the control of extracellular signal–regulated kinase 2 activation. Overall, our data indicate that β1 integrins, by delivering signals capable of triggering IFN-γ production, may function as NK-activating receptors. PMID:9763606

  15. Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.

    PubMed

    Roberts, R E

    2001-07-01

    The mechanism of alpha(2) adrenoceptor-mediated vasoconstriction is unknown, but may involve activation of voltage-sensitive calcium channels, and/or a protein tyrosine kinase. Recently the extracellular signal-regulated kinase (Erk) cascade, often an event downstream of tyrosine kinase activation, has been shown to mediate vasoconstriction to a variety of agents. The aim of this present study was to determine the involvement of the Erk signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction, and to confirm the involvement of activation of voltage-sensitive calcium channels, and protein tyrosine kinase. Contractions to the alpha(2) adrenoceptor agonist UK14304 in the porcine palmar lateral vein in vitro were reduced 70 - 80% by the MEK inhibitors PD98059 (10 - 50 microM) and U0126 (10 - 50 microM), indicating the involvement of the Erk signal transduction cascade. Immunoblots also demonstrated an increase in the phosphorylated (activated) form of Erk in palmar lateral vein segments after contraction with UK14304, which was inhibited by PD98059 and U0126. The calcium channel blockers nifedipine and verapamil, or removal of extracellular calcium inhibited UK14304-induced contractions and phosphorylation of Erk, demonstrating the importance of an influx of extracellular calcium. UK14304-induced contractions were inhibited by PP2 (1 - 10 microM), a selective inhibitor of Src tyrosine kinases, but not by PP3, an inactive analogue. PP2 also prevented the phosphorylation of Erk by UK14304. These data demonstrate that alpha(2) adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein is dependent upon activation of the Erk signal transduction cascade, which is downstream of an influx of extracellular calcium, and activation of Src tyrosine kinases.

  16. Erythropoietin inhibits osmotic swelling of retinal glial cells by Janus kinase- and extracellular signal-regulated kinases1/2-mediated release of vascular endothelial growth factor.

    PubMed

    Krügel, K; Wurm, A; Linnertz, R; Pannicke, T; Wiedemann, P; Reichenbach, A; Bringmann, A

    2010-02-17

    The volume homeostasis of retinal glial cells is mediated by an autocrine purinergic mechanism of ion channel opening which is activated in response to a decrease in the extracellular osmolarity. Here, we show that erythropoietin (EPO) prevents the osmotic swelling of glial somata in retinal slices and of isolated glial cells from control and diabetic rats, with a half-maximal effect at approximately 0.01 nM. The downstream signaling evoked by EPO includes a release of vascular endothelial growth factor from the cells which was blocked by Janus kinase and extracellular signal-regulated kinases (ERK)1/2 inhibitors. Transactivation of kinase insert domain-containing receptor/fms-like tyrosine kinase 1 (KDR/flk-1) evokes a calcium-dependent, exocytotic release of glutamate, followed by activation of group I/II metabotropic glutamate receptors which results in calcium-independent release of ATP and adenosine from the cells. The final step in this cascade is the activation of adenosine A(1) receptors which results in protein kinase A- and phosphoinositide 3-kinase-mediated opening of potassium and chloride channels. EPO receptor protein was immunohistochemically localized to the inner retina and photoreceptor inner segments. In isolated glial cells, EPO receptor protein is selectively localized to fibers which traverse the inner nuclear layer in situ. Inhibition of glial swelling might contribute to the neuroprotective action of EPO in the retina under pathological conditions.

  17. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    SciTech Connect

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  18. β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy.

    PubMed

    Li, Lin; Cai, Hongyan; Liu, Hua; Guo, Tao

    2015-06-01

    The cardiac adrenergic signaling pathway is important in the induction of cardiac hypertrophy. The cardiac adrenergic pathway involves two main branches, phospholipase C (PLC)/protein kinase C (PKC) and the adenylate cyclase (cAMPase)/protein kinase A (PKA) signaling pathways. It is hypothesized that PLC/PKC and cAMPase/PKA are activated by the α‑adrenergic receptor (αAR) and the β‑adrenergic receptor (βAR), respectively. Previous studies have demonstrated that exchange protein directly activated by cAMP (Epac), a guanine exchange factor, activates phospholipase Cε. It is possible that there are βAR‑activated PKC pathways mediated by Epac and PLC. In the present study, the role of Epac and PLC in βAR activated PKC pathways in cardiomyocytes was investigated. It was found that PKCε activation and translocation were induced by the βAR agonist, isoproterenol (Iso). Epac agonist 8‑CPT‑2'OMe‑cAMP also enhanced PKCε activation. βAR stimulation activated PKCε in the cardiomyocytes and was regulated by Epac. Iso‑induced change in PKCε was not affected in the cardiomyocytes, which were infected with adenovirus coding rabbit muscle cAMP‑dependent protein kinase inhibitor. However, Iso‑induced PKCε activation was inhibited by the PLC inhibitor, U73122. The results suggested that Iso‑induced PKCε activation was independent of PKA, but was regulated by PLC. To further investigate the downstream signal target of PKCε activation, the expression of phosphorylated extracellular signal‑regulated kinase (pERK)1/2 and the levels of ERK phosphorylation was analyzed. The results revealed that Iso‑induced PKCε activation led to an increase in the expression of pERK1/2. ERK phosphorylation was inhibited by the PKCε inhibitor peptide. Taken together, these data demonstrated that the βAR is able to activate PKCε dependent on Epac and PLC, but independent of PKA.

  19. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    PubMed

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  20. Wnt5a-Dopamine D2 Receptor Interactions Regulate Dopamine Neuron Development via Extracellular Signal-regulated Kinase (ERK) Activation*

    PubMed Central

    Yoon, Sehyoun; Choi, Mi-hyun; Chang, Min Seok; Baik, Ja-Hyun

    2011-01-01

    The dopamine D2 receptor (D2R) plays an important role in mesencephalic dopaminergic neuronal development, particularly coupled with extracellular signal-regulated kinase (ERK) activation. Wnt5a protein is known to regulate the development of dopaminergic neurons. We analyzed the effect of Wnt5a on dopaminergic neuron development in mesencephalic primary cultures from wild-type (WT) and D2R knock-out (D2R−/−) mice. Treatment with Wnt5a increased the number and neuritic length of dopamine neurons in primary mesencephalic neuronal cultures from WT mice, but not from D2R−/− mice. The effect of Wnt5a was completely blocked by treatment with D2R antagonist or inhibitors of MAPK or EGFR. Wnt5a-mediated ERK activation in mesencephalic neuronal cultures was inhibited by treatment of D2R antagonist and EGFR inhibitors in WT mice. However, these regulations were not observed for D2R−/− mice. Co-immunoprecipitation and displacement of [3H]spiperone from D2R by Wnt5a demonstrated that Wnt5a could bind with D2R. This interaction was confirmed by GST pulldown assays demonstrating that the domain including transmembrane domain 4, second extracellular loop, and transmembrane domain 5 of D2R binds to Wnt5a. These results suggest that the interaction between D2R and Wnt5a has an important role in dopamine neuron development in association with EGFR and the ERK pathway. PMID:21454669

  1. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  2. Oxytocin in the regulation of social behaviours in medial amygdala-lesioned mice via the inhibition of the extracellular signal-regulated kinase signalling pathway.

    PubMed

    Wang, Yu; Zhao, Shanshan; Wu, Zhe; Feng, Yu; Zhao, Chuansheng; Zhang, Chaodong

    2015-05-01

    The neuropeptide oxytocin (OXT) has been implicated in the pathophysiology of behavioural deficits among patients with autism spectrum disorder (ASD). However, the molecular mechanisms underlying its role in ASD remain unclear. In the present study, a murine model with ASD-like phenotypes was induced by intra-medial amygdala injection of N-methyl-d-aspartate, and it was used to investigate the role of OXT in behaviour regulation. Behavioural tests were performed to verify the ASD-like phenotypes of N-methyl-d-aspartate-treated mice, and the results showed that mice with bilateral medial amygdala lesions presented significant behavioural deficits, including impaired learning and memory and increased anxiety and depression. We also observed a notably decreased level of OXT in both the plasma and the hypothalamus of medial amygdala-lesioned mice, and the extracellular signal-regulated kinase (ERK) was activated. Further studies demonstrated that the administration of OXT alleviated ASD-like symptoms and significantly inhibited phosphorylation of ERK; the inhibitory effect was similar to that of U0126, an ERK signalling inhibitor. In addition, OXT administration modulated the expression of downstream proteins of the ERK signalling pathway, such as cyclic adenosine monophosphate response element binding and c-fos. Taken together, our data indicate that OXT plays an important role in ameliorating behavioural deficits in an ASD-like mouse model, which was mediated by inhibiting the ERK signalling pathway and its downstream proteins.

  3. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells.

    PubMed

    Jorritsma, Patricia J; Brogdon, Jennifer L; Bottomly, Kim

    2003-03-01

    Although extracellular signal-regulated kinase (Erk) activation influences IL-4 production in various experimental systems, its role during Th differentiation is unclear. In this study, we show that Erk plays a critical role in IL-4 expression during TCR-induced Th differentiation of naive CD4(+) T cells. Stimulation of CD4(+) T cells with a high affinity peptide resulted in sustained Erk activation and Th1 differentiation. However, reduction of Erk activity led to a dramatic increase in IL-4 production and Th2 generation. Analysis of RNA and nuclear proteins of CD4(+) T cells 48 h after stimulation revealed that this was due to early IL-4 expression. Interestingly, transient Erk activation resulted in altered AP-1 DNA binding activity and the induction of an AP-1 complex that was devoid of Fos protein and consisted of Jun-Jun dimers. These data show that in the presence of a strong TCR signal, IL-4 expression can be induced in naive CD4(+) T cells by altering the strength of Erk activation. In addition, these data suggest that TCR-induced Erk activation is involved in the regulation of IL-4 expression by altering the composition of the AP-1 complex and its subsequent DNA binding activity.

  4. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain*

    PubMed Central

    Yu, Li-na; Sun, Li-hong; Wang, Min; Yan, Min

    2016-01-01

    Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophosphate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyl-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail. PMID:27704743

  5. Distribution of extracellular signal-regulated kinase 1- and 2-activated neurons in the rat periaqueductal gray matter after noxious stimulation.

    PubMed

    Gioia, Magda; Moscheni, Claudia; Gagliano, Nicoletta

    2005-05-01

    The periaqueductal gray matter (PAG), the midbrain region made up of neuronal columns encircling the cerebral aqueduct, plays a key role in nociception. As the extracellular signal-regulated kinases (ERKs) 1 and 2 are activated after noxious stimulation, we analyzed the distribution of ERK-activated neurons in the PAG after visceral noxious stimulation. Ether- and urethane-anesthetized rats received an intraperitoneal injection of acetic acid or were left untreated and were perfused after 2 hr. Serial sections immunoreacted with an antibody selective for the activated ERKs. Significant ERK activation occurred only in the ether-anesthetized noxious stimulated rats. In these rats, we evaluated the number of ERK-activated neurons and their density as the ratio of the number of immunolabeled neurons to the extension of the region where they were located. ERK-activated neurons were more numerous in the lateral (LPAG) and ventrolateral (VLPAG) columns, but without significant differences. No ERK activation was seen in neurons of the most rostral PAG. The ERK-activated neurons were significantly denser at the intermediate level of the PAG. At the caudal level, they were denser in the LPAG and VLPAG columns, and in the DPAG column at the intermediate and rostral level. These findings suggest that noxious stimulation activates ERKs in neurons involved in the different functional activities related to nociception, overlapping in the PAG columns, and strengthens the role of PAG in integration.

  6. 17 beta-estradiol induces spermatogonial proliferation through mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activity in the lizard (Podarcis s. sicula).

    PubMed

    Chieffi, Paolo; Colucci D'Amato, Luca; Guarino, Fabio; Salvatore, Gaetano; Angelini, Francesco

    2002-02-01

    There are always more evidences indicating that 17beta-estradiol (E(2)) is necessary for normal male fertility. We have used a nonmammalian vertebrate model (the lizard Podarcis s. sicula) to investigate the regulation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity in the testis during the annual sexual cycle and to study whether E(2) exerts a role in the spermatogenesis through ERK1/2 activity. Immunocytochemistry analysis shows that ERK1/2 proteins are present in the nucleus of the spermatogonia (SPG), and in primary (I) spermatocytes (SPC). The annual E(2) profile shows a progressive increase during the active spermatogenesis (from April to June) and a peak in the month of August (spermatogonial mitosis). In parallel, ERK1/2 (molecular weight 44 and 42 kDa, respectively) are highly phosphorylated during the period of active spermatogenesis and in post-refractory period (August) compared with the winter stasis (from November to March). Present results demonstrate that E(2) treatment induces spermatogonial proliferation, possibly via the activation of ERK1/2, and this effect is counteracted by the antiestrogen ICI 182-780.

  7. Repositioning of amprenavir as a novel extracellular signal-regulated kinase-2 inhibitor and apoptosis inducer in MCF-7 human breast cancer.

    PubMed

    Jiang, Wenchun; Li, Xin; Li, Tongyu; Wang, Hailian; Shi, Wei; Qi, Ping; Li, Chunyang; Chen, Jie; Bao, Jinku; Huang, Guodong; Wang, Yi

    2017-03-01

    Computational drug repositioning by virtually screening existing drugs for additional therapeutic usage could efficiently accelerate anticancer drug discovery. Herein, a library of 1447 Food and Drug Administration (FDA)-approved small molecule drugs was screened in silico for inhibitors of extracellular signal-regulated kinase 2 (ERK2). Then, in vitro kinase assay demonstrated amprenavir, a HIV-1 protease inhibitor, as a potential kinase inhibitor of ERK2. The in vivo kinase assay indicated that amprenavir could inhibit ERK2-mediated phosphorylation of BimEL at Ser69. Amprenavir could suppress this phosphorylation in MCF-7 cells, which may further facilitate the association of BimEL with several pro-survival molecules. Additionally, inhibition of ERK2-BimEL signaling pathway by amprenavir could contribute to its anti-proliferative and apoptosis-inducing activity in MCF-7 cells. Finally, in vivo tumor growth and immunohistochemical studies confirmed that amprenavir remarkably suppressed tumor proliferation and induce apoptosis in MCF-7 xenografts. Taken together, amprenavir can effectively inhibit the kinase activity of ERK2, and thus induces apoptosis and inhibits tumor growth in human MCF-7 cancer cells both in vitro and in vivo, making amprenavir a promising candidate for future anticancer therapeutics.

  8. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    SciTech Connect

    Jin, Yonghui; Kato, Tomohisa; Furu, Moritoshi; Nasu, Akira; Kajita, Yoichiro; Mitsui, Hiroto; Ueda, Michiko; Aoyama, Tomoki; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2010-01-15

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO{sub 2}) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO{sub 2}) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  9. Prenatal ethanol exposure persistently impairs N-methyl-D-aspartate receptor-dependent activation of extracellular signal-regulated kinase in the mouse dentate gyrus

    PubMed Central

    Samudio-Ruiz, Sabrina L.; Allan, Andrea M.; Valenzuela, C. Fernando; Perrone-Bizzozero, Nora I.; Caldwell, Kevin K.

    2009-01-01

    The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by N-methyl-D-aspartate (NMDA) receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed (FAE) adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult FAE mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure. PMID:19317851

  10. Blockade of ankyrin repeat-rich membrane spanning protein modulates extracellular signal-regulated kinase expression and inhibits allergic inflammation in ovalbumin-sensitized mice.

    PubMed

    Ni, Xiuqin; Li, Xing; Tao, Shuhua; Xu, Minghui; Ma, Hongmei; Wang, Xiuli

    2013-07-01

    Ankyrin repeat-rich membrane spanning protein (ARMS), also known as kinase D-interacting substrate of 220 kDa (Kidins220), is a transmembrane protein that has been reported to be involved in the pathogenesis of asthma through the nerve growth factor (NGF)/tyrosine kinase A (TrkA) receptor signaling pathway. To investigate whether NGF/TrkA-Kidins220/ARMS-extracellular signal-regulated kinase (ERK) signaling is activated in airway inflammation of asthma, BALB/c mice were sensitized and challenged with ovalbumin (OVA). The effects of Kidins220/ARMS on ERK, interleukin (IL)-1β, IL-4 and tumor necrosis factor (TNF)-α in lung tissues following the allergic airway challenge in mice were assessed by administering anti-ARMS antibody to the mice. Pathological changes in the bronchi and lung tissues were examined via hematoxylin and eosin staining. The phosphorylated ERK, IL-1β, IL-4 and TNF-α levels were determined using western blot analysis and ELISA and were found to be overexpressed in lung tissues following the allergen challenge. Moreover, after the mice were treated with anti-NGF, anti-TrkA or anti-ARMS, the levels of Kidins220/ARMS, phosphorylated ERK, IL-1β, IL-4, TNF-α and allergen-induced airway inflammation were downregulated. These results suggested that NGF/TrkA-Kidins220/ARMS-ERK signaling was activated in airway inflammation induced by the allergic airway challenge, possibly representing a new mechanism in asthma.

  11. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus.

    PubMed

    Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio

    2017-03-09

    Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate ((C18),) a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation.

  12. Pb2+ induces gastrin gene expression by extracellular signal-regulated kinases 1/2 and transcription factor activator protein 1 in human gastric carcinoma cells.

    PubMed

    Chan, Chien-Pin; Tsai, Yao-Ting; Chen, Yao-Li; Hsu, Yu-Wen; Tseng, Joseph T; Chuang, Hung-Yi; Shiurba, Robert; Lee, Mei-Hsien; Wang, Jaw-Yuan; Chang, Wei-Chiao

    2015-02-01

    Divalent lead ions (Pb(2+) ) are toxic environmental pollutants known to cause serious health problems in humans and animals. Absorption of Pb(2+) from air, water, and food takes place in the respiratory and digestive tracts. The ways in which absorbed Pb(2+) affects cell physiology are just beginning to be understood at the molecular level. Here, we used reverse transcription PCR and Western blotting to analyze cultures of human gastric carcinoma cells exposed to 10 μM lead nitrate. We found that Pb(2+) induces gastrin hormone gene transcription and translation in a time-dependent manner. Promoter deletion analysis revealed that activator protein 1 (AP1) was necessary for gastrin gene transcription in cells exposed to Pb(2+) . MitogIen-activated protein kinase (MAPK)/ERK kinase inhibitor PD98059 suppressed the Pb(2+) -induced increase in messenger RNA. Epidermal growth factor receptor (EGFR) inhibitors AG1478 and PD153035 reduced both transcription and phosphorylation by extracellular signal-regulated kinase (ERK1/2). Cells exposed to Pb(2+) also increased production of c-Jun protein, a component of AP1, and over-expression of c-Jun enhanced activation of the gastrin promoter. In sum, the findings suggest the EGFR-ERK1/2-AP1 pathway mediates the effects of Pb(2+) on gastrin gene activity in cell culture.

  13. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter.

    PubMed

    Benkoussa, Madjid; Brand, Céline; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2002-07-01

    Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPK(ERK)) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters.

  14. Retinoic Acid Receptors Inhibit AP1 Activation by Regulating Extracellular Signal-Regulated Kinase and CBP Recruitment to an AP1-Responsive Promoter

    PubMed Central

    Benkoussa, Madjid; Brand, Céline; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2002-01-01

    Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPKERK) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters. PMID:12052862

  15. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    PubMed

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  16. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    PubMed Central

    Gutierrez-Mecinas, Maria; Polgár, Erika; Todd, Andrew J

    2016-01-01

    Background Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway. PMID:27270268

  17. Hydrogen sulfide potentiates interleukin-1{beta}-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    SciTech Connect

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg . E-mail: htchung@wonkwang.ac.kr

    2006-07-07

    Hydrogen sulfide (H{sub 2}S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H{sub 2}S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1{beta} (IL-1{beta}). Although H{sub 2}S by itself showed no effect on NO production, it augmented IL-{beta}-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-{kappa}B. IL-1{beta} activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H{sub 2}S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1{beta}-induced NF-{kappa}B activation, iNOS expression, and NO production either in the absence or presence of H{sub 2}S. Our findings suggest that H{sub 2}S enhances NO production and iNOS expression by potentiating IL-1{beta}-induced NF-{kappa}B activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.

  18. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    SciTech Connect

    Lu, Zhengyu; Yang, Qi; Cui, Mei; Liu, Yanping; Wang, Tao; Zhao, Hong; Dong, Qiang

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  19. IκB Kinase 2 Regulates TPL-2 Activation of Extracellular Signal-Regulated Kinases 1 and 2 by Direct Phosphorylation of TPL-2 Serine 400

    PubMed Central

    Roget, Karine; Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Gantke, Thorsten; Yang, Huei-Ting; Janzen, Julia; Morrice, Nick; Abbott, Derek

    2012-01-01

    Tumor progression locus 2 (TPL-2) functions as a MEK-1/2 kinase, which is essential for Toll-like receptor 4 (TLR4) activation of extracellular signal-regulated kinase 1 and 2 (ERK-1/2) mitogen-activated protein (MAP) kinases in lipopolysaccharide (LPS)-stimulated macrophages and for inducing the production of the proinflammatory cytokines tumor necrosis factor and interleukin-1β. In unstimulated cells, association of TPL-2 with NF-κB1 p105 prevents TPL-2 phosphorylation of MEK-1/2. LPS stimulation of TPL-2 MEK-1/2 kinase activity requires TPL-2 release from p105. This is triggered by IκB kinase 2 (IKK-2) phosphorylation of the p105 PEST region, which promotes p105 ubiquitination and degradation by the proteasome. LPS activation of ERK-1/2 additionally requires transphosphorylation of TPL-2 on serine 400 in its C terminus, which controls TPL-2 signaling to ERK-1/2 independently of p105. However, the identity of the protein kinase responsible for TPL-2 serine 400 phosphorylation remained unknown. In the present study, we show that TPL-2 serine 400 phosphorylation is mediated by IKK2. The IKK complex therefore regulates two of the key regulatory steps required for TPL-2 activation of ERK-1/2, underlining the close linkage of ERK-1/2 MAP kinase activation to upregulation of NF-κB-dependent transcription. PMID:22988300

  20. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    PubMed

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.

  1. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.

    PubMed

    Shiju, T M; Rajkumar, R; Rajesh, N G; Viswanathan, Pragasam

    2013-02-01

    To investigate the nephroprotective effect of garlic and elucidate the mechanism by which it prevents the progression of diabetic nephropathy in diabetic rats, diabetes was induced by a single ip injection of streptozotocin (45 mg/kg body weight). Garlic extract (500 mg/kg body weight) and aminoguanidine (1 g/L) were supplemented in the treatment groups. Histopathological examination using H&E, PAS staining and the immunohistochemical analysis of vascular endothelial growth factor (VEGF) and extracellular signal-regulated kinase-1 (ERK-1) expression were performed on kidney sections at the end of 12 weeks. Significant change in both, the urine and serum biochemistry confirmed kidney damage in diabetic animals which was further confirmed by the histological changes such as mesangial expansion, glomerular basement membrane thickening, glycosuria and proteinuria. However, the diabetic animals treated with garlic extract showed a significant change in urine and serum biochemical parameters such as albumin, urea nitrogen and creatinine compared to that of diabetic rats. Further, the garlic supplemented diabetic rats showed a significant decrease in the expression of VEGF and ERK-1 compared to diabetic rats, attenuating mesangial expansion and glomerulosclerosis. Thus, garlic extract rendered nephroprotection in diabetic rats.

  2. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    SciTech Connect

    Liang, Weiguo; Fang, Dejian; Ye, Dongping; Zou, Longqiang; Shen, Yan; Dai, Libing; Xu, Jiake

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  3. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase.

    PubMed

    Gao, Ying; Nikulina, Elena; Mellado, Wilfredo; Filbin, Marie T

    2003-12-17

    Inhibitors of regeneration in myelin, such as myelin-associated glycoprotein (MAG), play an important role in preventing regeneration after CNS injury. Elevation of cAMP, either with dibutyryl-cAMP (db-cAMP) or by priming with a variety of neurotrophins, overcomes inhibition by MAG and myelin. However, activation of cAMP is not generally regarded as a signaling pathway for neurotrophins. Here we show that the NGF-like neurotrophins overcome inhibition by MAG by activating tyrosine kinase receptors. We also show that activation of extracellular signal-regulated kinase (Erk) by BDNF is required to overcome inhibition by MAG, and that activated Erk transiently inhibits phosphodiesterase 4 (PDE4), the enzyme that hydrolyzes cAMP. Inhibition of PDE4 then allows cAMP to increase and so initiates the pathway to overcome inhibition. Furthermore, we also show that basal levels of Erk activation and basal cAMP levels contribute to the effects of db-cAMP by pushing the combined levels of cAMP above a threshold required to overcome inhibition. Together, these results not only show how NGF-like neurotrophins can elevate cAMP and overcome inhibition but also point to a novel mechanism of cross talk in neurons from the Erk to the cAMP signaling pathways.

  4. Mitogen-activated protein kinase phosphatase-1 inhibition and sustained extracellular signal-regulated kinase 1/2 activation in camptothecin-induced human colon cancer cell death

    PubMed Central

    Lee, Minyoung; Young Kim, Sun; Kim, JongGuk; Kim, Hak-Su; Kim, Sang-Man; Kim, Eun Ju

    2013-01-01

    Camptothecins are commonly used chemotherapeutics; in some models, they enhance signaling via the mitogen-activated protein kinase (MAPK) pathway through effects on upstream kinases. To evaluate the impact of camptothecin (CPT) on MAPKs in human colon cancer, we studied HCT116 and CaCo2 colon cancer cells. We found that HCT116 cells highly express mitogen-activated protein kinase phosphatase-1 (MKP1), which selectively inactivates extracellular signal-regulated kinase (ERK), whereas MKP1 levels were undetectable in CaCo2 cells. CPT did not affect ERK activity in CaCo2 cells, but did induce a striking increase in ERK activity in HCT116 cells in association with a corresponding decrease in MKP1. The reduction in MKP1 expression occurred at a posttranscriptional level and was blocked by the proteasome inhibitor MG132, whereas that CPT-induced downregulation of MKP1 was not due to proteasome-mediated degradation. Treatment of HCT116 cells with CPT induced a sustained activation of nuclear ERK, which was required for CPT-induced apoptosis. P38 and JNK activity were unaffected by CPT, suggesting that the effects of CPT are mediated specifically by ERK. These results suggest that targeting dual-specificity MAPK phosphatases in colon cancer cells may be a viable strategy for optimizing camptothecin-based therapeutic protocols. PMID:24005240

  5. Adenylate cyclase, cyclic AMP and extracellular-signal-regulated kinase-2 in airway smooth muscle: modulation by protein kinase C and growth serum.

    PubMed Central

    Moughal, N; Stevens, P A; Kong, D; Pyne, S; Pyne, N J

    1995-01-01

    Bradykinin and phorbol 12-myristate 13-acetate stimulate adenylate cyclase activity in serum-depleted cultured airway smooth muscle via a protein kinase C (PKC)-dependent pathway. The probable target is the type II adenylate cyclase, which can integrate coincident signals from both PKC and Gs. Therefore, activation of Gs (by cholera-toxin pre-treatment) amplified the bradykinin-stimulated cyclic AMP signal and concurrently attenuated the partial activation of extracellular-signal-regulated kinase-2 (ERK-2) by bradykinin. We have previously demonstrated that, in order to induce full activation of ERK-2 with bradykinin, it is necessary to obliterate PKC-stimulated cyclic AMP formation. We concluded that the cyclic AMP signal limits the magnitude of ERK-2 activation [Pyne, Moughal, Stevens, Tolan and Pyne (1994) Biochem. J. 304, 611-616]. The present study indicates that the bradykinin-stimulated ERK-2 pathway is entirely cyclic AMP-sensitive, and suggests that coincident signal detection by adenylate cyclase may be an important physiological route for the modulation of early mitogenic signalling. Furthermore, the direct inhibition of adenylate cyclase activity enables bradykinin to induce DNA synthesis, indicating that the PKC-dependent activation of adenylate cyclase limits entry of cells into the cell cycle. These studies suggest that the mitogenicity of an agonist may be governed, in part, by its ability to stimulate an inhibitory cyclic AMP signal pathway in the cell. The activation of adenylate cyclase by PKC appears to be downstream of phospholipase D. However, in cells that were maintained in growth serum (i.e. were not growth-arrested), bradykinin was unable to elicit a PKC-stimulated cyclic AMP response. The lesion in the signal-response coupling was not at the level of either the receptor or phospholipase D, which remain functionally operative and suggests modification occurs at either PKC or adenylate cyclase itself. These studies are discussed with

  6. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    SciTech Connect

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  7. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin.

    PubMed Central

    Lee-Kwon, W; Park, D; Bernier, M

    1998-01-01

    Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase. PMID:9531502

  8. Effect of sod (superoxide dismutase) protein supplementation in semen extenders on motility, viability, acrosome status and ERK (extracellular signal-regulated kinase) protein phosphorylation of chilled stallion spermatozoa.

    PubMed

    Cocchia, N; Pasolini, M P; Mancini, R; Petrazzuolo, O; Cristofaro, I; Rosapane, I; Sica, A; Tortora, G; Lorizio, R; Paraggio, G; Mancini, A

    2011-04-15

    New studies are underway to find new methods for supporting longer storage of cooled stallion semen. It is known that high concentrations of reactive oxygen species (ROS) cause sperm pathology. The metalloprotein superoxide dismutase (SOD) is responsible for H(2)O(2) and O(2) production, by dismutation of superoxide radicals. The aim of this study is to assess the quality of chilled stallion semen processed with extenders containing SOD at different concentrations as antioxidant additives. A total of 80 ejaculates collected from 5 standardbred stallions was divided into 5 aliquots treated as: native semen (control 1); native semen diluted 1:3 with Kenney semen extender (control 2); spermatozoa diluted after centrifugation in extender without (control 3) or with SOD at 25 IU/ml (experimental 1) or 50 IU/ml (experimental 2). Each sample was analyzed for motility, viability and acrosome status, immediately after semen preparation and again after storage at 5 °C for 24 h, 48 h and 7 2h. Acrosome integrity was evaluated by Chlortetracycline (CTC) and Fluorescent-labeled peanut lectin agglutinin (PNA-FITC conjugated staining). A proteomic approach of quantifying extracellular signal regulated kinase (ERK) was also evaluated as an indirect indicator of oxidative stress. In all samples sperm progressive motility and sperm acrosomal integrity showed a significant reduction between fresh and cooled spermatozoa at 24 h, 48 h and 72 h. Quality parameters of sperm were significantly higher (Progressive Motility P < 0.01; Viability P < 0.001) in aliquots supplemented with SOD. ERK phosphorylation was statistically higher (P < 0.01) in aliquots without SOD. The Authors concluded that addition of SOD to semen extenders improves the quality of chilled equine semen and reduces ERK activation.

  9. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    PubMed

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.

  10. Blockade of ankyrin repeat-rich membrane spanning protein modulates extracellular signal-regulated kinase expression and inhibits allergic inflammation in ovalbumin-sensitized mice

    PubMed Central

    NI, XIUQIN; LI, XING; TAO, SHUHUA; XU, MINGHUI; MA, HONGMEI; WANG, XIULI

    2013-01-01

    Ankyrin repeat-rich membrane spanning protein (ARMS), also known as kinase D-interacting substrate of 220 kDa (Kidins220), is a transmembrane protein that has been reported to be involved in the pathogenesis of asthma through the nerve growth factor (NGF)/tyrosine kinase A (TrkA) receptor signaling pathway. To investigate whether NGF/TrkA-Kidins220/ARMS-extracellular signal-regulated kinase (ERK) signaling is activated in airway inflammation of asthma, BALB/c mice were sensitized and challenged with ovalbumin (OVA). The effects of Kidins220/ARMS on ERK, interleukin (IL)-1β, IL-4 and tumor necrosis factor (TNF)-α in lung tissues following the allergic airway challenge in mice were assessed by administering anti-ARMS antibody to the mice. Pathological changes in the bronchi and lung tissues were examined via hematoxylin and eosin staining. The phosphorylated ERK, IL-1β, IL-4 and TNF-α levels were determined using western blot analysis and ELISA and were found to be overexpressed in lung tissues following the allergen challenge. Moreover, after the mice were treated with anti-NGF, anti-TrkA or anti-ARMS, the levels of Kidins220/ARMS, phosphorylated ERK, IL-1β, IL-4, TNF-α and allergen-induced airway inflammation were downregulated. These results suggested that NGF/TrkA-Kidins220/ARMS-ERK signaling was activated in airway inflammation induced by the allergic airway challenge, possibly representing a new mechanism in asthma. PMID:24649008

  11. Leukaemia inhibitory factor mediated proliferation of HTR-8/SVneo trophoblast cells is dependent on activation of extracellular signal-regulated kinase 1/2.

    PubMed

    Prakash, Golla Jaya; Suman, Pankaj; Morales Prieto, Diana M; Markert, Udo R; Gupta, Satish K

    2011-01-01

    Leukaemia inhibitory factor (LIF) is one of the cytokines that is indispensable for embryo implantation. The aim of the present study was to investigate the role of activation of extracellular signal-regulated kinase (ERK) 1/2 in LIF-mediated proliferation of HTR-8/SVneo cells. Stimulation of HTR-8/SVneo cells with LIF (50 ng mL(-1)) resulted in an increase in cell proliferation (P < 0.05) via increased transition of cells to the G(2)/M phase of cell cycle. Stimulation with LIF resulted in the activation of both signal transducer and activator of transcription (STAT) 3 Tyr(705) and ERK1/2, but inhibition of ERK1/2 signalling by pretreatment of cells with U0126 (10 µM) for 2h resulted in abrogation of LIF-mediated increases in G(2)/M transition, with a significant decrease (P < 0.05) in absolute cell numbers compared with control. Although STAT3 silencing had no effect on LIF-dependent proliferation of HTR-8/SVneo cells, it did result in an increase in cell apoptosis, which increased further upon inhibition of ERK1/2 activation irrespective of LIF stimulation. Stimulation of cells with LIF increased the Bcl-2/Bax ratio, whereas ERK1/2 inhibition decreased the Bcl-2/Bax ratio, even after LIF stimulation. Hence, it can be inferred that ERK1/2 activation is essential for LIF-mediated increases in proliferation and that both STAT3 and ERK1/2 activation are important for the survival of HTR-8/SVneo cells.

  12. ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways.

    PubMed

    Lee, S J; Drabik, K; Van Wagoner, N J; Lee, S; Choi, C; Dong, Y; Benveniste, E N

    2000-10-15

    ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.

  13. Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release.

    PubMed

    Kotha, Sainath R; Piper, Melissa G; Patel, Rishi B; Sliman, Sean; Malireddy, Smitha; Zhao, Lingying; Baran, Christopher P; Nana-Sinkam, Patrick S; Wewers, Mark D; Romberger, Debra; Marsh, Clay B; Parinandi, Narasimham L

    2013-11-01

    The mechanisms of poultry particulate matter (PM)-induced agricultural respiratory disorders are not thoroughly understood. Hence, it is hypothesized in this article that poultry PM induces the release of interleukin-8 (IL-8) by lung epithelial cells that is regulated upstream by the concerted action of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK). To test this hypothesis, the widely used cultured human lung epithelial cells (A549) were chosen as the model system. Poultry PM caused a significant activation of PLA2 in A549 cells, which was attenuated by AACOCF3 (cPLA2 inhibitor) and PD98059 (ERK-1/2 upstream inhibitor). Poultry PM induced upstream ERK-1/2 phosphorylation and downstream cPLA2 serine phosphorylation, in a concerted fashion, in cells with enhanced association of ERK-1/2 and cPLA2. The poultry PM-induced cPLA2 serine phosphorylation and IL-8 release were attenuated by AACOCF3, PD98059, and by transfection with dominant-negative ERK-1/2 DNA in cells. The poultry PM-induced IL-8 release by the bone marrow-derived macrophages of cPLA2 knockout mice was significantly lower. For the first time, this study demonstrated that the poultry PM-induced IL-8 secretion by human lung epithelial cells was regulated by cPLA2 activation through ERK-mediated serine phosphorylation, suggesting a mechanism of airway inflammation among poultry farm workers.

  14. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    PubMed

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  15. Epidermal Growth Factor-dependent Activation of the Extracellular Signal-regulated Kinase Pathway by DJ-1 Protein through Its Direct Binding to c-Raf Protein*

    PubMed Central

    Takahashi-Niki, Kazuko; Kato-Ose, Izumi; Murata, Hiroaki; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2015-01-01

    DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf. PMID:26048984

  16. Epidermal Growth Factor-dependent Activation of the Extracellular Signal-regulated Kinase Pathway by DJ-1 Protein through Its Direct Binding to c-Raf Protein.

    PubMed

    Takahashi-Niki, Kazuko; Kato-Ose, Izumi; Murata, Hiroaki; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2015-07-17

    DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.

  17. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    PubMed

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  18. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP.

    PubMed

    Li, Yanping; Dillon, Tara J; Takahashi, Maho; Earley, Keith T; Stork, Philip J S

    2016-10-07

    Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1, have been proposed to mediate this activation, with either Ras or Rap1 acting in distinct cell types. Using Hek293 cells, we show that both Ras and Rap1 are required for cAMP signaling to ERKs. The roles of Ras and Rap1 were distinguished by their mechanism of activation, dependence on the cAMP-dependent protein kinase (PKA), and the magnitude and kinetics of their effects on ERKs. Ras was required for the early portion of ERK activation by cAMP and was activated independently of PKA. Ras activation required the Ras/Rap guanine nucleotide exchange factor (GEF) PDZ-GEF1. Importantly, this action of PDZ-GEF1 was disrupted by mutation within its putative cyclic nucleotide-binding domain within PDZ-GEF1. Compared with Ras, Rap1 activation of ERKs was of longer duration. Rap1 activation was dependent on PKA and required Src family kinases and the Rap1 exchanger C3G. This is the first report of a mechanism for the cooperative actions of Ras and Rap1 in cAMP activation of ERKs. One physiological role for the sustained activation of ERKs is the transcription and stabilization of a range of transcription factors, including c-FOS. We show that the induction of c-FOS by cAMP required both the early and sustained phases of ERK activation, requiring Ras and Rap1, as well as for each of the Raf isoforms, B-Raf and C-Raf.

  19. PACAP stimulation of maturational gonadotropin secretion in goldfish involves extracellular signal-regulated kinase, but not nitric oxide or guanylate cyclase, signaling.

    PubMed

    Chang, John P; Sawisky, Grant R; Mitchell, Gabriel; Uretsky, Aubrey D; Kwong, Patrick; Grey, Caleb L; Meints, Amanda N; Booth, Morgan

    2010-01-01

    In goldfish, nitric oxide synthase (NOS) immunoreactivity is present in gonadotropes and extracellular signal-regulated protein kinase (ERK) mediates GnRH stimulation of gonadotropin release and synthesis. In this study, we tested the possible involvement of nitric oxide (NO) and ERK in mediating PACAP-stimulated maturational gonadotropin (GTH-II) release from primary cultures of dispersed goldfish pituitary cells. In static incubation experiments, PACAP-induced GTH-II release was unaffected by two inhibitors of NOS synthase, AGH and 1400W; whereas addition of a NO donor, SNAP, elevated GTH-II secretion. In perifusion experiments, neither NOS inhibitors (AGH, 1400W and 7-Ni) nor NO scavengers (PTIO and rutin hydrate) attenuated the GTH-II response to pulse applications of PACAP. In addition, the GTH-II responses to PACAP and the NO donor SNP were additive while PTIO blocked SNP action. Although dibutyryl cGMP increased GTH-II secretion in static incubation, inhibition of guanylate cyclase (GC), a known down-stream target for NO signaling, did not reduce the GTH-II response to pulse application of PACAP. On the other hand, GTH-II responses to PACAP in perifusion were attenuated in the presence of two inhibitors of ERK kinase (MEK), U 0126 and PD 98059. These results suggest that although increased availability of NO and cGMP can lead to increased GTH-II secretion, MEK/ERK signaling, rather than NOS/NO/GC activation, mediates PACAP action on GTH-II release in goldfish.

  20. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.

  1. Extracellular Signal-Regulated Kinase Is an Endogenous Signal Retaining the Nuclear Constitutive Active/Androstane Receptor (CAR) in the Cytoplasm of Mouse Primary Hepatocytes

    PubMed Central

    Koike, Chika; Moore, Rick; Negishi, Masahiko

    2007-01-01

    The nuclear receptor constitutive active/androstane receptor (CAR) is sequestered in the cytoplasm of liver cells before its activation by therapeutic drugs and xenobiotics such as phenobarbital (PB) and 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in mouse liver, the regulatory mechanism of which remains poorly understood. Given the finding that epidermal growth factor repressed PB activation of CAR-mediated transcription (Mol Pharmacol 65:172–180, 2004), here we investigated the regulatory role of hepatocyte growth factor (HGF)-mediated signal in sequestering CAR in the cytoplasm of mouse primary hepatocytes. HGF treatment effectively repressed the induction of endogenous CYP2b10 gene by PB and TCPOBOP in mouse primary hepatocytes. On the other hand, inhibition by 1,4-diamino-2,3-dicyano-1,4-bis(methyl-thio)butadiene (U0126) of an HGF downstream kinase mitogen-activated protein kinase kinase (MEK) induced the Cyp2b10 gene and up-regulated the CAR-regulated promoter activity in the absence of TCPOBOP. HGF treatment increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the cytosol, thus decreasing the TCPOBOP-induced nuclear accumulation of CAR. In contrast, U0126 dephosphorylated ERK1/2 and increased nuclear CAR accumulation in the absence of TCPOBOP. These results are consistent with the conclusion that the HGF-dependent phosphorylation of ERK1/2 is the endogenous signal that sequesters CAR in the cytoplasm of mouse primary hepatocytes. PMID:17314319

  2. Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase.

    PubMed

    Youn, Dong-Hyun; Park, Jinbong; Kim, Hye-Lin; Jung, Yunu; Kang, JongWook; Jeong, Mi-Young; Sethi, Gautam; Seok Ahn, Kwang; Um, Jae-Young

    2017-02-07

    Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH.

  3. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes.

    PubMed

    Xu, Xiang; Chen, Hui; Ling, Bing-Yu; Xu, Lan; Cao, Hong; Zhang, Yu-Qiu

    2014-02-01

    Painful peripheral neuropathy is a common complication of diabetes mellitus. The symptom of pain can become a major factor that decreases the quality of life of patients with diabetes, while effective treatment is lacking. In the present study, we aimed to investigate the changes of pain threshold in the early stage of diabetes in db/db mice, an animal model of type 2 diabetes mellitus, and the underlying molecular mechanisms. We found that (1) db/db mice (with a leptin receptor-null mutation and characterized by obesity and hyperglycemia) showed hypersensitivity to mechanical and thermal stimuli at the early stage of diabetes; (2) phosphorylated extracellular signal-regulated kinase (pERK), but not total ERK in the spinal cord and dorsal root ganglia in db/db mice significantly increased compared with wild-type mice. The increased pERK immunoreactivity occurred in both NeuN-expressing neurons and GFAP-expressing astrocytes, but not in Iba-1-expressing microglia; (3) both single and consecutive (for 5 days) intrathecal injections of U0126 (2 nmol per day), a selective MEK (an ERK kinase) inhibitor beginning at 8 weeks of age, attenuated the bilateral mechanical allodynia in the von-Frey test and heat hyperalgesia in Hargreave's test; and (4) db/db mice also displayed increased nocifensive behavior during the formalin test, and this was blocked by intrathecal injection of U0126. Also, the expression of pERK1 and pERK2 was upregulated following the formalin injection. Our results suggested that the activation of ERK in spinal neurons and astrocytes is correlated with pain hypersensitivity of the type 2 diabetes animal model. Inhibiting the ERK pathway may provide a new therapy for pain control in type 2 diabetes.

  4. Phosphorylation of Nuclear Phospholipase C β1 by Extracellular Signal-Regulated Kinase Mediates the Mitogenic Action of Insulin-Like Growth Factor I

    PubMed Central

    Xu, Aimin; Suh, Pann-Ghill; Marmy-Conus, Nelly; Pearson, Richard B.; Seok, Oh Yong; Cocco, Lucio; Gilmour, R. Stewart

    2001-01-01

    It is well established that a phosphoinositide (PI) cycle which is operationally distinct from the classical plasma membrane PI cycle exists within the nucleus, where it is involved in both cell proliferation and differentiation. However, little is known about the regulation of the nuclear PI cycle. Here, we report that nucleus-localized phospholipase C (PLC) β1, the key enzyme for the initiation of this cycle, is a physiological target of extracellular signal-regulated kinase (ERK). Stimulation of Swiss 3T3 cells with insulin-like growth factor I (IGF-I) caused rapid nuclear translocation of activated ERK and concurrently induced phosphorylation of nuclear PLC β1, which was completely blocked by the MEK inhibitor PD 98059. Coimmunoprecipitation detected a specific association between the activated ERK and PLC β1 within the nucleus. In vitro studies revealed that recombinant PLC β1 could be efficiently phosphorylated by activated mitogen-activated protein kinase but not by PKA. The ERK phosphorylation site was mapped to serine 982, which lies within a PSSP motif located in the characteristic carboxy-terminal tail of PLC β1. In cells overexpressing a PLC β1 mutant in which serine 982 is replaced by glycine (S982G), IGF-I failed to activate the nuclear PI cycle, and its mitogenic effect was also markedly attenuated. Expression of S982G was found to inhibit ERK-mediated phosphorylation of endogenous PLC β1. This result suggests that ERK-evoked phosphorylation of PLC β1 at serine 982 plays a critical role in the activation of the nuclear PI cycle and is also crucial to the mitogenic action of IGF-I. PMID:11287604

  5. Extracellular-signal regulated kinase 8 of Trypanosoma brucei uniquely phosphorylates its proliferating cell nuclear antigen homolog and reveals exploitable properties

    PubMed Central

    Valenciano, Ana L.; Knudsen, Giselle M.; Mackey, Zachary B.

    2016-01-01

    ABSTRACT The Trypanosoma brucei subspecies T. brucei gambiense and T. brucei rhodesiense are vector-borne pathogens that cause sleeping sickness also known as Human African Trypanosomiasis (HAT), which is fatal if left untreated. The drugs that treat HAT are ineffective and cause toxic side effects. One strategy for identifying safer and more effective HAT drugs is to therapeutically exploit essential gene targets in T. brucei. Genes that make up a basic mitogen-activated protein kinase (MAPK) network are present in T. brucei. Tb927.10.5140 encodes an essential MAPK that is homologous to the human extracellular-signal regulated kinase 8 (HsERK8) which forms a tight complex with the replication factor proliferating cell nuclear antigen (PCNA) to stabilize intracellular PCNA levels. Here we demonstrate that (TbPCNA) is uniquely phos-phorylated on serine (S) and threonine (T) residues in T. brucei and that TbERK8 phosphorylates TbPCNA at each of these residues. The ability of an ERK8 homolog to phosphorylate a PCNA homolog is a novel biochemical property that is first demonstrated here in T. brucei and may be unique to this pathogen. We demonstrate that the potent HsERK8 inhibitor Ro318220, has an IC50 for TbERK8 that is several hundred times higher than its reported IC50 for HsERK8. This indicated that the active sites of TbERK8 and HsERK8 can be selectively inhibited, which provides a rational basis for discovering inhibitors that specifically target this essential parasite MAPK to kill the parasite. PMID:27589575

  6. The effect of active and passive intravenous cocaine administration on the extracellular signal-regulated kinase (ERK) activity in the rat brain.

    PubMed

    Miszkiel, Joanna; Detka, Jan; Cholewa, Joanna; Frankowska, Małgorzata; Nowak, Ewa; Budziszewska, Bogusława; Przegaliński, Edmund; Filip, Małgorzata

    2014-08-01

    According to a current hypothesis of learning processes, recent papers pointed out to an important role of the extracellular signal-regulated kinase (ERK), in drug addiction. We employed the Western blotting techniques to examine the ERK activity immediately after cocaine iv self-administration and in different drug-free withdrawal periods in rats. To distinguish motivational vs. pharmacological effects of the psychostimulant intake, a "yoked" procedure was used. Animals were decapitated after 14 daily cocaine self-administration sessions or on the 1st, 3rd or 10th extinction days. At each time point the activity of the ERK was assessed in several brain structures, including the prefrontal cortex, hippocampus, dorsal striatum and nucleus accumbens. Passive, repeated iv cocaine administration resulted in a 45% increase in ERK phosphorylation in the hippocampus while cocaine self-administration did not change brain ERK activity. On the 1st day of extinction, the activity of the ERK in the prefrontal cortex was decreased in rats with a history of cocaine chronic intake: by 66% for "active" cocaine group and by 35% for "yoked" cocaine group. On the 3rd day the reduction in the ERK activity (25-34%) was observed in the hippocampus for both cocaine-treated groups, and also in the nucleus accumbens for "yoked" cocaine group (40%). On the 10th day of extinction there was no significant alteration in ERK activity in any group of rats. Our findings suggest that cortical ERK is involved in cocaine seeking behavior in rats. They also indicate the time and regional adaptations in this enzyme activity after cocaine withdrawal.

  7. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    PubMed Central

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  8. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2002-11-01

    Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.

  9. Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway.

    PubMed

    Hara, Tomoya; Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Lai, Fangyuan; Kusumoto, Kenji

    2016-12-01

    Platelet-rich plasma (PRP) contains a high concentration of several growth factors and contributes to soft-tissue engineering and wound healing. However, the effect of PRP on human dermal fibroblast proliferation and responses is unknown. This was investigated in the present study using PRP prepared from the whole human blood using the double-spin method. Human dermal fibroblast cultures were established from skin samples collected during plastic surgery. Platelet concentration and growth factor levels in PRP were estimated, and a cell proliferation assay was carried out after PRP treatment. The role of Ras-dependent extracellular signal-regulated kinase (ERK)1/2 in the effects of PRP was investigated in human dermal fibroblasts by suppressing ERK1/2 expression with an inhibitor or by short interfering (si)RNA-mediated knockdown, and assessing ERK1/2 phosphorylation by western blotting as well as proliferation in PRP-treated cells. We found that PRP stimulated human dermal fibroblast proliferation, which was suppressed by ERK1/2 inhibitor treatment (P < 0.01). ERK1/2 phosphorylation was increased in the presence of PRP, while siRNA-mediated knockdown of ERK1/2 blocked cell proliferation normally induced by PRP treatment (P < 0.01). These results demonstrate that PRP induces human dermal fibroblast proliferation via activation of ERK1/2 signaling. Our findings provide a basis for the development of agents that can promote wound healing and can be applied to soft-tissue engineering.

  10. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons

    PubMed Central

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top–down pathway. These findings may

  11. Tissue Strain Reorganizes Collagen With a Switchlike Response That Regulates Neuronal Extracellular Signal-Regulated Kinase Phosphorylation In Vitro: Implications for Ligamentous Injury and Mechanotransduction

    PubMed Central

    Zhang, Sijia; Cao, Xuan; Stablow, Alec M.; Shenoy, Vivek B.; Winkelstein, Beth A.

    2016-01-01

    Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a “switchlike” fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2–13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local

  12. Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression.

    PubMed

    Pelaez, Daniel; Arita, Nestor; Cheung, Herman S

    2012-01-27

    Elucidating the intracellular signaling cascades which lead to differentiation programs can be a daunting but necessary task. Even more so when the nature of the differentiating stimuli can elicit different biochemical responses yet achieve the same functional outcome. In the field of cartilage and bone regeneration the importance of the extracellular signal-regulated kinase (ERK) pathway has been a controversial issue as of late. Whether differentiation results from a soluble chemical induction or a microenvironmental cue on the cells seems to have a determining effect on the role that this pathway plays in ultimate cell fate. Here we explore the role of the ERK1/2 pathway on the mechanical induction of chondrogenesis of bone marrow mesenchymal stem cells (MSC). The cells were encapsulated in fibrin gel scaffolds and subjected to a dynamic mechanical compression stimulus previously demonstrated to induce chondrogenic differentiation of the cells with and without the addition of PD98059, a selective inhibitor for the ERK1/2 pathway. Samples were then analyzed by RT-PCR and histochemical staining for markers of both chondrogenic and osteogenic differentiation. Our results show that dynamic compression induces the chondrogenic differentiation of the cells and that inhibition of the ERK1/2 pathway completely abolishes this chondrogenic response. On the other hand, inhibition of ERK1/2 under dynamic compression augments the osteogenic response of the cells and significantly increases their expression of alkaline phosphatase (ALP), collagen type I (COLI) and osteocalcin (OCN) (P<0.05). These results were confirmed by the histochemical staining where dynamically compressed samples show staining for sulfated glycosaminoglycans (sGAG) while the inhibited and compressed samples show no sGAG but present positive staining for microcalcifications. These results would suggest that the activation of ERK1/2 can determine the ultimate cell fate between the chondrogenic and

  13. Salvinorin A Pretreatment Preserves Cerebrovascular Autoregulation After Brain Hypoxic/Ischemic Injury via Extracellular Signal-Regulated Kinase / Mitogen-Activated Protein Kinase in Piglets

    PubMed Central

    Su, Diansan; Riley, John; Armstead, William M.; Liu, Renyu

    2012-01-01

    Background Cerebral hypoxia/ischemia during infant congenital heart surgery is not uncommon, and may induce devastating neurologic disabilities persistent over the lifespan. Hypoxia/ischemia-induced cerebrovascular dysfunction is thought to be an important contributor to neurological damage. No pharmacological agents have been found to prevent this. Mitogen activated protein kinase (MAPK), including extracellular signal regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38, is thought to contribute to ischemic preconditioning. We investigated whether pretreatment with salvinorin A, the only natural non-opioid kappa receptor agonist, could preserve autoregulation of the pial artery via MAPK. Methods The response of the pial artery to hypotension and hypercapnia was monitored in piglets equipped with a closed cranial window before and after hypoxia and ischemia in the presence or absence of U0126, an inhibitor for the protein kinase upstream of ERK, sp600125, an inhibitor of c-JNK or sb203580, an inhibitor of p38. Salvinorin A (10 μg/kg IV) was administered 30 minutes before hypoxia/ischemia in salvinorin-treated animals. Cerebrospinal fluid samples were collected before and 30 minutes after salvinorin A administration for the measurement of MAPK. Data (n=5) were analyzed by repeated-measures analysis of variance. Results Pial artery dilation to hypercapnia and hypotension was blunted after hypoxia/ischemia, but preserved well by pretreatment with salvinorin A. U0126, but not sp600125 or sb203580, abolished the preservative effects of salvinorin A on cerebral vascular autoregulation to hypotension and hypercapnia. The ratio of pERK/ERK in cerebrospinal fluid increased significantly in salvinorin-treated animals, which was inhibited by U0126. Conclusions Salvinorin A pretreatment preserves autoregulation of the pial artery to hypotension and hypercapnia after hypoxia/ischemia via ERK in a piglet model. PMID:22075021

  14. Sulfur Dioxide Inhibits Extracellular Signal-regulated Kinase Signaling to Attenuate Vascular Smooth Muscle Cell Proliferation in Angiotensin II-induced Hypertensive Mice

    PubMed Central

    Wu, Hui-Juan; Huang, Ya-Qian; Chen, Qing-Hua; Tian, Xiao-Yu; Liu, Jia; Tang, Chao-Shu; Jin, Hong-Fang; Du, Jun-Bao

    2016-01-01

    Background: Clarifying the mechanisms underlying vascular smooth muscle cell (VSMC) proliferation is important for the prevention and treatment of vascular remodeling and the reverse of hyperplastic lesions. Previous research has shown that the gaseous signaling molecule sulfur dioxide (SO2) inhibits VSMC proliferation, but the mechanism for the inhibition of the angiotensin II (AngII)-induced VSMC proliferation by SO2 has not been fully elucidated. This study was designed to investigate if SO2 inhibited VSMC proliferation in mice with hypertension induced by AngII. Methods: Thirty-six male C57 mice were randomly divided into control, AngII, and AngII + SO2 groups. Mice in AngII group and AngII + SO2 group received a capsule-type AngII pump implanted under the skin of the back at a slow-release dose of 1000 ng·kg−1·min−1. In addition, mice in AngII + SO2 received intraperitoneal injections of SO2 donor. Arterial blood pressure of tail artery was determined. The thickness of the aorta was measured by elastic fiber staining, and proliferating cell nuclear antigen (PCNA) and phosphorylated-extracellular signal-regulated kinase (P-ERK) were detected in aortic tissues. The concentration of SO2 in serum and aortic tissue homogenate supernatant was measured using high-performance liquid chromatography with fluorescence determination. In the in vitro study, VSMC of A7R5 cell lines was divided into six groups: control, AngII, AngII + SO2, PD98059 (an inhibitor of ERK phosphorylation), AngII + PD98059, and AngII + SO2 + PD98059. Expression of PCNA, ERK, and P-ERK was determined by Western blotting. Results: In animal experiment, compared with the control group, AngII markedly increased blood pressure (P < 0.01) and thickened the aortic wall in mice (P < 0.05) with an increase in the expression of PCNA (P < 0.05). SO2, however, reduced the systemic hypertension and the wall thickness induced by AngII (P < 0.05). It inhibited the increased expression of PCNA and P

  15. Extracellular Signal-regulated Kinase Mediates Phosphorylation of Tropomyosin-1 to Promote Cytoskeleton Remodeling in Response to Oxidative Stress: Impact on Membrane Blebbing

    PubMed Central

    Houle, François; Rousseau, Simon; Morrice, Nick; Luc, Mario; Mongrain, Sébastien; Turner, Christopher E.; Tanaka, Sakae; Moreau, Pierre; Huot, Jacques

    2003-01-01

    Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2′-amino-3′-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H2O2 resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H2O2 induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEKCA), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H2O2 or by expression of MEKCA. We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated

  16. Sigma-1 receptor stimulation protects retinal ganglion cells from ischemia-like insult through the activation of extracellular-signal-regulated kinases 1/2.

    PubMed

    Mueller, Brett H; Park, Yong; Ma, Hai-Ying; Dibas, Adnan; Ellis, Dorette Z; Clark, Abbot F; Yorio, Thomas

    2014-11-01

    Sigma-1 receptor (σ-1) activation and mitogen-activated protein kinases (MAPKs) have been shown to protect retinal ganglion cells (RGCs) from cell death. The purpose of this study was to determine if σ-1 receptor stimulation with pentazocine could promote neuroprotection under conditions of an ischemia-like insult (oxygen glucose deprivation (OGD)) through the phosphorylation of extracellular signal regulated kinase (pERK)1/2. Primary RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using Thy1.1 antibodies. RGCs were cultured for 7 days before subjecting the cells to an OGD insult (0.5% oxygen in glucose-free medium) for 6 h. During the OGD, RGCs were treated with pentazocine (σ-1 receptor agonist) with or without BD 1047 (σ-1 receptor antagonist). In other experiments, primary RGCs were treated with pentazocine in the presence or absence of an MEK1/2 inhibitor, PD098059. Cell survival/death was assessed by staining with the calcein-AM/ethidium homodimer reagent. Levels of pERK1/2, total ERK1/2, and beta tubulin expression were determined by immunoblotting and immunofluorescence staining. RGCs subjected to OGD for 6 h induced 50% cell death in primary RGCs (p < 0.001) and inhibited pERK1/2 expression by 65% (p < 0.001). Cell death was attenuated when RGCs were treated with pentazocine under OGD (p < 0.001) and pERK1/2 expression was increased by 1.6 fold (p < 0.05) compared to OGD treated RGCs without pentazocine treatment. The co-treatment of PD098059 (MEK1/2 inhibitor) with pentazocine significantly abolished the protective effects of pentazocine on the RGCs during this OGD insult. Activation of the σ-1 receptor is a neuroprotective target that can protect RGCs from an ischemia-like insult. These results also established a direct relationship between σ-1 receptor stimulation and the neuroprotective effects of the ERK1/2 pathway in purified RGCs subjected to OGD. These findings suggest that activation of

  17. Effects of resistance exercise intensity on extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation in men.

    PubMed

    Taylor, Lem W; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2012-03-01

    Extracellular signal-regulated kinase (ERK) 1/2 signaling has been shown to be increased after heavy resistance exercise and suggested to play a role in the hypertrophic adaptations that are known to occur with training. However, the role that ERK1/2 may play in response to lower intensities of resistance exercise is unknown. Therefore, the purpose of this study was to determine the effects of resistance exercise intensity on ERK1/2 activity in human skeletal muscle. Twelve recreationally active men completed separate bouts of single-legged resistance exercise with 8-10 repetitions (reps) at 80-85% 1 repetition maximum (1RM) (85%) and 18-20 reps at 60-65% 1RM (65%) in a randomized crossover fashion. For both resistance exercise sessions, vastus lateralis biopsies and blood draws were taken immediately before exercise (PRE) and at 30 minutes (30MPST), 2 hours (2HRPST), and 6 hours (6HRPST) post exercise, with an additional blood draw occurring immediately after exercise (POST). The phosphorylated levels of pIGF-1R, pMEK1, pERK1/2, and activated Elk-1 were assessed by phosphoELISA, and serum insulin-like growth factor 1 (IGF-1) was assessed via enzyme-linked immunosorbent assay. Statistical analyses used a 2 × 4 (muscle responses) and 2 × 5 (serum responses) multivariate analysis of variance on delta values from baseline (p < 0.05). Both exercise intensities significantly increased the activity of insulin-like growth factor 1 receptor (IGF-1R), mitogen-activated protein kinase 1, ERK1/2, and Elk-1, with peak activity occurring at 2HRPST (p < 0.001). However, 65% resulted in a preferential increase in IGF-1R and Elk-1 activation when compared with 85% (p < 0.05). No differences were observed for serum IGF-1 levels regardless of intensity and time. These findings demonstrate that resistance exercise upregulates ERK1/2 signaling in a manner that does not appear to be preferentially dependent on exercise intensity.

  18. A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP

    PubMed Central

    Woodard, Crystal; Liao, Gangling; Goodwin, C. Rory; Hu, Jianfei; Xie, Zhi; dos Reis, Thaila F.; Newman, Rob; Rho, Heesool; Qian, Jiang

    2015-01-01

    ABSTRACT The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence for in vivo phosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death. IMPORTANCE KSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human

  19. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  20. Analysis of Extracellular Superoxide Dismutase and Akt in Ascending Aortic Aneurysm With Tricuspid or Bicuspid Aortic Valve

    PubMed Central

    Arcucci, A.; Ruocco, M.R.; Albano, F.; Granato, G.; Romano, V.; Corso, G.; Bancone, C.; De Vendittis, E.; Corte, A. Della

    2014-01-01

    Ascending aortic aneurysm (AsAA) is a consequence of medial degeneration (MD), deriving from apoptotic loss of smooth muscle cells (SMC) and fragmentation of elastin and collagen fibers. Alterations of extracellular matrix structure and protein composition, typical of medial degeneration, can modulate intracellular pathways. In this study we examined the relevance of extracellular superoxide dismutase (SOD3) and Akt in AsAA pathogenesis, evaluating their tissue distribution and protein levels in ascending aortic tissues from controls (n=6), patients affected by AsAA associated to tricuspid aortic valve (TAV, n=9) or bicuspid aortic valve (BAV, n=9). The results showed a significant reduction of SOD3, phospho-Akt and Akt protein levels in AsAA tissues from patients with BAV, compared to controls, whereas the differences observed between controls and patients with TAV were not significant. The decreased levels of SOD3 and Akt in BAV aortic tissues are associated with decreased Erk1/Erk2 phosphorylation and MMP-9 levels increase. The authors suggest a role of decreased SOD3 protein levels in the progression of AsAA with BAV and a link between ECM modifications of aortic media layer and impaired Erk1/Erk2 and Akt signaling in the late stages of the aortopathy associated with BAV. PMID:25308842

  1. TNFα Signaling Regulates Cystic Epithelial Cell Proliferation through Akt/mTOR and ERK/MAPK/Cdk2 Mediated Id2 Signaling

    PubMed Central

    Zhou, Julie X.; Fan, Lucy X.; Li, Xiaoyan; Calvet, James P.; Li, Xiaogang

    2015-01-01

    Tumor necrosis factor alpha (TNFα) is present in cyst fluid and promotes cyst growth in autosomal dominant polycystic kidney disease (ADPKD). However, the cross-talk between TNFα and PKD associated signaling pathways remains elusive. In this study, we found that stimulation of renal epithelial cells with TNFα or RANKL (receptor activator of NF-κB ligand), a member of the TNFα cytokine family, activated either the PI3K pathway, leading to AKT and mTOR mediated the increase of Id2 protein, or MAPK and Cdk2 to induce Id2 nuclear translocation. The effects of TNFα/RANKL on increasing Id2 protein and its nuclear translocation caused significantly decreased mRNA and protein levels of the Cdk inhibitor p21, allowing increased cell proliferation. TNFα levels increase in cystic kidneys in response to macrophage infiltration and thus might contribute to cyst growth and enlargement during the progression of disease. As such, this study elucidates a novel mechanism for TNFα signaling in regulating cystic renal epithelial cell proliferation in ADPKD. PMID:26110849

  2. Effects of extracellular acid stimulation on rat vascular smooth muscle cell in Gas6/Axl or PI3K/Akt signaling pathway.

    PubMed

    Cui, Liwen; Bai, Yaling; Zhang, Junxia; Zhang, Shenglei; Xu, Jinsheng

    Recent studies have indicated that extracellular acid stimulation inhibited the calcification of vascular smooth muscle cells (VSMCs). Cell apoptosis played an important role in the occurrence and development of vascular calcification. We further explored the effects of Gas6/Axl or PI3K/Akt signaling pathway on the inhibition of rat VSMCs calcification in response to extracellular acid stimulation. Our study demonstrated that a high concentration of phosphorus induced apoptosis and calcification of VSMCs, decreased expression of Axl, and reduced phosphorylation of Akt. Stimulation of extracellular acid counteracted the effects as above by increasing the expression of Axl and Akt phosphorylation and decreasing the expression of activated Caspase3, which thereby decreased cell apoptosis and calcification. Moreover, the effects can be attenuated by PI3K inhibitor. Our study proved that extracellular acid stimulation played a vital role in the inhibition of rat VSMCs calcification and apoptosis in Gas6/Axl or PI3K/Akt signaling pathway.

  3. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice.

    PubMed

    Chen, Ning; Hao, Jun; Li, Lisha; Li, Fan; Liu, Shuxia; Duan, Huijun

    2016-06-10

    Glomerulosclerosis and tubular interstitial extracellular matrix deposit and fibrosis are the main features of diabetic nephropathy, which are mediated by activation of PI3K/Akt signal pathway. Carboxy-terminal modulator protein (CTMP) is known as a negative regulator of PI3K/Akt pathway. Whether CTMP regulates renal extracellular matrix metabolism of diabetic nephropathy is still not known. Here, renal decreased CTMP, enhanced phospho-Akt (Ser 473), TGF-β1, α-SMA and extracellular matrix deposit are found in diabetic mice. Furthermore, high glucose decreases CTMP expression accompanied by enhanced phospho-Akt (Ser 473), TGF-β1 and α-SMA in cultured human renal proximal tubular epithelial cells (HKC), which are effectively prevented by transfection of pYr-ads-4-musCTMP vector. Moreover, delivery of pYr-ads-4-musCTMP vector into kidneys via tail vein of diabetic mice increases CTMP expression by 8.84 times followed by 60.00%, 76.50% and 24.37% decreases of phospho-Akt (Ser 473), TGF-β1 and α-SMA compared with diabetic mice receiving pYr-adshuttle-4 vector. Again, increased renal extracellular matrix accumulation of diabetic mice is also inhibited with delivery of pYr-ads-4-musCTMP vector. Our results indicate that CTMP attenuates renal extracellular matrix deposit by regulating the phosphorylation of Akt, TGF-β1 and α-SMA expression in diabetic mice.

  4. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation

    PubMed Central

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Background: Rice (Oryza sativa) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. Materials and Methods: In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. Conclusion: This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. SUMMARY Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin

  5. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  6. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST.

    PubMed

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X; Lu, Zhimin

    2011-11-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression.

  7. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells

    PubMed Central

    Joo, Donghyun; Woo, Jong Soo; Cho, Kwang-Hyun; Han, Seung Hyun; Min, Tae Sun; Yang, Deok-Chun; Yun, Cheol-Heui

    2016-01-01

    Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling. [BMB Reports 2016; 49(4): 220-225] PMID:26879318

  8. Dexmedetomidine Dose-Dependently Attenuates Ropivacaine-Induced Seizures and Negative Emotions Via Inhibiting Phosphorylation of Amygdala Extracellular Signal-Regulated Kinase in Mice.

    PubMed

    Zhai, Ming-Zhu; Wu, Huang-Hui; Yin, Jun-Bin; Cui, Yuan-Yuan; Mei, Xiao-Peng; Zhang, Han; Zhu, Xia; Shen, Xue-Feng; Kaye, Alan David; Chen, Guo-Zhong

    2016-05-01

    Ropivacaine (Ropi), one of the newest and safest amino amide local anesthetics, is linked to toxicity, including the potential for seizures, changes in behavior, and even cardiovascular collapse. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has been widely used in anesthesia and critical care practice. To date, the underlying mechanisms of the effects of Dex premedication on Ropi-induced toxicity have not been clearly identified. In the current study, we investigated the effects of increasing doses of Dex premedication on 50% convulsive dose (CD50) of Ropi. With increasing doses of intraperitoneal (i.p.) Dex 10 min prior to each i.p. RopiCD50, the latency and duration of seizure activity were recorded. Open-field (OF) and elevated plus maze (EPM) test were used to measure negative behavioral emotions such as depression and anxiety. Immunohistochemistry and Western blot were utilized to investigate phosphorylation-extracellular regulated protein kinases (p-ERK) expression in the basolateral amygdala (BLA) on 2 h and in the central amygdala (CeA) on 24 h after convulsion in mice. The results of our investigation demonstrated that Dex dose-dependently increased RopiCD50, prolonged the latency and shortened the duration of each RopiCD50-induced seizure, improved the negative emotions revealed by both OF and EPM test, and inhibited p-ERK expression in the BLA and the CeA.

  9. Erythropoietin Rescues Primary Rat Cortical Neurons by Altering the Nrf2:Bach1 Ratio: Roles of Extracellular Signal-Regulated Kinase 1/2.

    PubMed

    Zhang, Li-Min; Zhang, Dong-Xue; Zhao, Xiao-Chun; Sun, Wenbo

    2017-01-12

    While inhalation anesthetics are indispensable, and generally considered safe and effective, there is growing concern about the selective neurotoxicity of these agents, especially sevoflurane. Erythropoetin (EPO)-induced protection against sevoflurane-induced neuronal death is an effective intervention, but the underlying mechanism is poorly understood. Extracellular signal-related kinases (Erk) 1/2 plays a pivotal role in cell growth and proliferation. Alteration of the nuclear factor erythroid 2-related factor (Nrf2)/BTB-to-CNC homology 1 (Bach1) ratio by Erk1/2 ameliorates the oxidative stress which occurs in human macrophages. Primary cortical neuron cultures exposed to sevoflurane were assessed for Nrf2, Bach1, total Erk1/2, and phosphorylated Erk1/2 with the following: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; propidium iodide uptake; lactate dehydrogenase; malondialdehyde (MDA); superoxide dismutase (SOD); and Western blot. Sevoflurane exposure increased cell death, injury, and MDA (n = 9, P < 0.05), but decreased cell viability and the Nrf2:Bach1 ratio (n = 9, P < 0.05) and down-regulated SOD (n = 9, P < 0.05), while EPO partially rescued the neurotoxicity induced by sevoflurane (n = 9, P < 0.05). Inhibition of Erk1/2 phosphorylation via PD98059 reversed the protective effect of EPO (n = 9, P < 0.05). Thus, protection of EPO markedly attenuated death of neurons exposed to sevoflurane by altering the Nrf2:Bach1 ratio mediated by phosphorylation and activation of Erk1/2.

  10. Targeting of a novel Ca+2/calmodulin-dependent protein kinase II is essential for extracellular signal-regulated kinase-mediated signaling in differentiated smooth muscle cells.

    PubMed

    Marganski, William A; Gangopadhyay, Samudra S; Je, Hyun-Dong; Gallant, Cynthia; Morgan, Kathleen G

    2005-09-16

    Subcellular targeting of kinases controls their activation and access to substrates. Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to regulate differentiated smooth muscle cell (dSMC) contractility, the importance of targeting in this regulation is not clear. The present study investigated the function in dSMCs of a novel variant of the gamma isoform of CaMKII that contains a potential targeting sequence in its association domain (CaMKIIgamma G-2). Antisense knockdown of CaMKIIgamma G-2 inhibited extracellular signal-related kinase (ERK) activation, myosin phosphorylation, and contractile force in dSMCs. Confocal colocalization analysis revealed that in unstimulated dSMCs CaMKIIgamma G-2 is bound to a cytoskeletal scaffold consisting of interconnected vimentin intermediate filaments and cytosolic dense bodies. On activation with a depolarizing stimulus, CaMKIIgamma G-2 is released into the cytosol and subsequently targeted to cortical dense plaques. Comparison of phosphorylation and translocation time courses indicates that, after CaMKIIgamma G-2 activation, and before CaMKIIgamma G-2 translocation, vimentin is phosphorylated at a CaMKII-specific site. Differential centrifugation demonstrated that phosphorylation of vimentin in dSMCs is not sufficient to cause its disassembly, in contrast to results in cultured cells. Loading dSMCs with a decoy peptide containing the polyproline sequence within the association domain of CaMKIIgamma G-2 inhibited targeting. Furthermore, prevention of CaMKIIgamma G-2 targeting led to significant inhibition of ERK activation as well as contractility. Thus, for the first time, this study demonstrates the importance of CaMKII targeting in dSMC signaling and identifies a novel targeting function for the association domain in addition to its known role in oligomerization.

  11. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts.

    PubMed

    Liu, Xiaoqiu; Sun, Shu Qiang; Hassid, Aviv; Ostrom, Rennolds S

    2006-12-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that might inhibit fibrosis. Increased cAMP formation inhibits myofibroblast differentiation and collagen production by cardiac fibroblasts, but the mechanism of this inhibition is not known. We sought to characterize the signaling pathways by which cAMP-elevating agents alter collagen expression and myofibroblast differentiation. Treatment with 10 microM forskolin or isoproterenol increased cAMP production and cAMP response element binding protein (CREB) phosphorylation in cardiac fibroblasts and inhibited serum- or TGF-beta-stimulated collagen synthesis by 37% or more. These same cAMP-elevating agents blunted TGF-beta-stimulated expression of collagen I, collagen III, and alpha-smooth muscle actin. Forskolin or isoproterenol treatment blocked the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by TGF-beta despite the fact that these cAMP-elevating agents stimulated ERK1/2 activation on their own. cAMP-elevating agents also attenuated the activation of c-Jun NH(2)-terminal kinase and reduced binding of the transcriptional coactivator CREB-binding protein 1 to transcriptional complexes containing Smad2, Smad3, and Smad4. Pharmacological inhibition of ERK completely blocked TGF-beta-stimulated collagen gene expression, but expression of an active mutant of MEK was additive with TGF-beta treatment. Thus, cAMP-elevating agents inhibit the profibrotic effects of TGF-beta in cardiac fibroblasts largely through inhibiting ERK1/2 phosphorylation but also by reducing Smad-mediated recruitment of transcriptional coactivators.

  12. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen.

    PubMed

    Hu, Yanwu; Liu, Kai; Yan, Mengtong; Zhang, Yang; Wang, Yadi; Ren, Liqun

    2016-03-01

    Icariin, a flavonoid isolated from the traditional Chinese herbal medicine Epimedium brevicornum Maxim, has been shown to possess anti-inflammatory, anti‑oxidant and anti-atherosclerotic activities in vivo and in vitro. The aim of the present study was to investigate the effects of icariin on oxidized low‑density lipoprotein (ox-LDL)-induced proliferation of vascular smooth muscle cells (VSMCs) and the possible underlying mechanism. VSMCs were cultured and pre‑treated with various concentrations of icariin (0, 10, 20 or 40 µm) prior to stimulation by ox‑LDL (50 µg/ml). Cell proliferation was evaluated by an MTT assay. Flow cytometry was used to study the influence of icariin on the cell cycle. Proliferating cell nuclear antigen (PCNA) expression and phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 were detected by western blot analysis. The results indicated that icariin significantly inhibited ox‑LDL‑induced proliferation of VSMCs and phosphorylation of ERK1/2. Furthermore, icariin also blocked the ox‑LDL‑induced cell‑cycle progression at G1/S‑interphase and downregulated the expression of PCNA in VSMCs. In conclusion, the present study indicated for the first time that icariin reduced the amount of ox‑LDL‑induced proliferation of VSMCs through suppression of PCNA expression and inactivation of ERK1/2.

  13. A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes.

    PubMed

    Provot, Sylvain; Nachtrab, Gregory; Paruch, Jennifer; Chen, Adele Pin; Silva, Alcino; Kronenberg, Henry M

    2008-01-01

    Parathyroid hormone-related peptide (PTHrP) and the parathyroid hormone-PTHrP receptor increase chondrocyte proliferation and delay chondrocyte maturation in endochondral bone development at least partly through cyclic AMP (cAMP)-dependent signaling pathways. Because data suggest that the ability of cAMP to stimulate cell proliferation involves the mitogen-activated protein kinase kinase kinase B-Raf, we hypothesized that B-Raf might mediate the proliferative action of PTHrP in chondrocytes. Though B-Raf is expressed in proliferative chondrocytes, its conditional removal from cartilage did not affect chondrocyte proliferation and maturation or PTHrP-induced chondrocyte proliferation and PTHrP-delayed maturation. Similar results were obtained by conditionally removing B-Raf from osteoblasts. Because A-raf and B-raf are expressed similarly in cartilage, we speculated that they may fulfill redundant functions in this tissue. Surprisingly, mice with chondrocytes deficient in both A-Raf and B-Raf exhibited normal endochondral bone development. Activated extracellular signal-regulated kinase (ERK) was detected primarily in hypertrophic chondrocytes, where C-raf is expressed, and the suppression of ERK activation in these cells by PTHrP or a MEK inhibitor coincided with a delay in chondrocyte maturation. Taken together, these results demonstrate that B-Raf and A-Raf are dispensable for endochondral bone development and they indicate that the main role of ERK in cartilage is to stimulate not cell proliferation, but rather chondrocyte maturation.

  14. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells

    SciTech Connect

    Wang Yu; Yan Tianhua; Wang Qiujuan Wang Wei; Xu Jinyi; Wu Xiaoming; Ji Hui

    2008-10-10

    AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT{sub 1}) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [{sup 3}H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was blocked by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.

  15. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma.

  16. Effects of DA-9701, a Novel Prokinetic Agent, on Phosphorylated Extracellular Signal-Regulated Kinase Expression in the Dorsal Root Ganglion and Spinal Cord Induced by Colorectal Distension in Rats

    PubMed Central

    Lee, Sang Pyo; Lee, Kang Nyeong; Lee, Hang Lak; Jun, Dae Won; Yoon, Byung Chul; Choi, Ho Soon; Hwang, Se Jin; Lee, Seo Eun

    2014-01-01

    Background/Aims DA-9701, a standardized extract of Pharbitis Semen and Corydalis Tuber, is a new prokinetic agent that exhibits an analgesic effect on the abdomen. We investigated whether DA-9701 affects visceral pain induced by colorectal distension (CRD) in rats. Methods A total of 21 rats were divided into three groups: group A (no CRD+no drug), group B (CRD+no drug), and group C (CRD+DA-9701). Expression of pain-related factors, substance P (SP), c-fos, and phosphorylated extracellular signal-regulated kinase (p-ERK) in the dorsal root ganglion (DRG) and spinal cord was determined by immunohistochemical staining and Western blotting. Results The proportions of neurons in the DRG and spinal cord expressing SP, c-fos, and p-ERK were higher in group B than in group A. In the group C, the proportion of neurons in the DRG and spinal cord expressing p-ERK was lower than that in group B. Western blot results for p-ERK in the spinal cord indicated a higher level of expression in group B than in group A and a lower level of expression in group C than in group B. Conclusions DA-9701 may decrease visceral pain via the downregulation of p-ERK in the DRG and spinal cord. PMID:24672654

  17. Thrombin-induced regulation of CD95(Fas) expression in the N9 microglial cell line: evidence for involvement of proteinase-activated receptor(1) and extracellular signal-regulated kinase 1/2.

    PubMed

    Weinstein, Jonathan R; Zhang, Matthew; Kutlubaev, Mansur; Lee, Richard; Bishop, Caroline; Andersen, Henrik; Hanisch, Uwe-Karsten; Möller, Thomas

    2009-03-01

    Microglia are the immune cells of the CNS. Brain injury triggers phenotypic changes in microglia including regulation of surface antigens. The serine proteinase alpha-thrombin can induce profound changes in neural cell physiology via cleavage of proteinase-activated receptors (PARs). We recently demonstrated that pharmaceutical-grade recombinant human alpha-thrombin (rh-thr) induces a restricted set of proteolysis-dependent changes in microglia. CD95(Fas) is a cell-death receptor that is up-regulated in microglia by inflammatory stimuli. Here we characterized the effect of rh-thr on CD95(Fas) expression in the N9 microglial cell line. Dose-response and time course studies demonstrated maximal effects at 100 U/ml and 24 h, respectively. Regulation of expression was seen at both the surface protein and steady-state mRNA levels. The rh-thr-induced effects were mimicked by PAR(1) agonist peptides and blocked by pharmacologic inhibitors selective for extracellular signal-regulated kinase 1/2 (ERK 1/2). Rh-thr also induced a rapid and sustained phosphorylation of ERK 1/2. Thrombin-induced regulation of CD95(Fas) could modulate the neuroinflammatory response in a variety of neurological disorders.

  18. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    PubMed

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  19. Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation

    PubMed Central

    Poli, Maura; Luscieti, Sara; Gandini, Valentina; Maccarinelli, Federica; Finazzi, Dario; Silvestri, Laura; Roetto, Antonella; Arosio, Paolo

    2010-01-01

    Background Impaired regulation of hepcidin in response to iron is the cause of genetic hemochromatosis associated with defects of HFE and transferrin receptor 2. However, the role of these proteins in the regulation of hepcidin expression is unclear. Design and Methods Hepcidin expression, SMAD and extracellular signal-regulated kinase (Erk) phosphorylation and furin expression were analyzed in hepatic HepG2 cells in which HFE and transferrin receptor 2 were down-regulated or expressed, or furin activity specifically inhibited. Furin expression was also analyzed in the liver of transferrin receptor 2 null mice. Results We showed that the silencing of HFE and transferrin receptor 2 reduced both Erk phosphorylation and furin expression, that the exogenous expression of the two enhanced the induction of phosphoErk1/2 and furin by holotransferrin, but that this did not occur when the pathogenic HFE mutant C282Y was expressed. Furin, phosphoErk1/2 and phosphoSMAD1/5/8 were down-regulated also in transferrin receptor 2-null mice. Treatment of HepG2 cells with an inhibitor of furin activity caused a strong suppression of hepcidin mRNA, probably due to the inhibition of bone morphogenic protein maturation. Conclusions The data indicate that transferrin receptor 2 and HFE are involved in holotransferrin-dependent signaling for the regulation of furin which involved Erk phosphorylation. Furin in turn may control hepcidin expression. PMID:20634490

  20. Polycystin-1 Regulates Extracellular Signal-Regulated Kinase-Dependent Phosphorylation of Tuberin To Control Cell Size through mTOR and Its Downstream Effectors S6K and 4EBP1 ▿

    PubMed Central

    Distefano, Gianfranco; Boca, Manila; Rowe, Isaline; Wodarczyk, Claas; Ma, Li; Piontek, Klaus B.; Germino, Gregory G.; Pandolfi, Pier Paolo; Boletta, Alessandra

    2009-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease characterized by bilateral renal cyst formation. Both hyperproliferation and hypertrophy have been previously observed in ADPKD kidneys. Polycystin-1 (PC-1), a large orphan receptor encoded by the PKD1 gene and mutated in 85% of all cases, is able to inhibit proliferation and apoptosis. Here we show that overexpression of PC-1 in renal epithelial cells inhibits cell growth (size) in a cell cycle-independent manner due to the downregulation of mTOR, S6K1, and 4EBP1. Upregulation of the same pathway leads to increased cell size, as found in mouse embryonic fibroblasts derived from Pkd1−/− mice. We show that PC-1 controls the mTOR pathway in a Tsc2-dependent manner, by inhibiting the extracellular signal-regulated kinase (ERK)-mediated phosphorylation of tuberin in Ser664. We provide a detailed molecular mechanism by which PC-1 can inhibit the mTOR pathway and regulate cell size. PMID:19255143

  1. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration.

    PubMed

    Grueter, Brad A; Gosnell, Heather B; Olsen, Christopher M; Schramm-Sapyta, Nicole L; Nekrasova, Tanya; Landreth, Gary E; Winder, Danny G

    2006-03-22

    The bed nucleus of the stria terminalis (BNST) is a key component of the CNS stress and reward circuit. Synaptic plasticity in this region could in part underlie the persistent behavioral alterations in generalized anxiety and addiction. Group I metabotropic glutamate receptors (mGluRs) have been implicated in stress, addiction, and synaptic plasticity, but their roles in the BNST are unknown. We find that activation of group I mGluRs in the dorsal BNST induces depression of excitatory synaptic transmission through two distinct mechanisms. First, a combined activation of group I mGluRs (mGluR1 and mGluR5) induces a transient depression that is cannabinoid 1 receptor dependent. Second, as with endocannabinoid-independent group I mGluR long-term depression (LTD) in the adult hippocampus, we find that activation of mGluR5 induces an extracellular signal-regulated kinase (ERK)-dependent LTD. Surprisingly, our data demonstrate that this LTD requires the ERK1 rather than ERK2 isoform, establishing a key role for this isoform in the CNS. Finally, we find that this LTD is dramatically reduced after multiple exposures but not a single exposure to cocaine, suggesting a role for this form of plasticity in the actions of psychostimulants on anxiety and reward circuitries and their emergent control of animal behavior.

  2. Novel human neutrophil agonistic properties of arsenic trioxide: involvement of p38 mitogen-activated protein kinase and/or c-jun NH2-terminal MAPK but not extracellular signal-regulated kinases-1/2.

    PubMed

    Binet, François; Girard, Denis

    2008-12-01

    Arsenic trioxide (ATO) is known for treating acute promyelocytic leukemia and for inducing apoptosis and mitogen-activated protein kinases (MAPKs) in promyelocytes and cancer cells. We recently reported that ATO induces neutrophil apoptosis. The aim of this study was to establish whether or not ATO recruits MAPKs in neutrophils, as well as to further investigate its agonistic properties. We found that ATO activates p38 and that, unlike H2O2, this response was not inhibited by exogenous catalase. Also, we demonstrated that ATO-induced p38 activation occurs before H2O2 generation and without a calcium burst. We next established that ATO recruits c-jun NH2-terminal (JNK) but not extracellular signal-regulated kinase 1 and 2 (Erk-1/2). Using pharmacological inhibitors, we found that the proapoptotic activity of ATO occurs by a MAPK-independent mechanism. In contrast, the ability of ATO to enhance adhesion, migration, phagocytosis, release, and activity of gelatinase and degranulation of secretory, specific, and gelatinase, but not azurophilic granules, is dependent upon activation of p38 and/or JNK. This is the first study establishing that ATO possesses important agonistic properties in human neutrophils. Given the central role of neutrophils in various inflammatory disorders, we propose that ATO might have broader therapeutic implications in clinics, especially for regulating inflammation.

  3. Extracellular Signal-Regulated Protein Kinase, c-Jun N-terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1.

    PubMed

    Lesch, Andrea; Rössler, Oliver G; Thiel, Gerald

    2017-01-23

    Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca(2+) /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. This article is protected by copyright. All rights reserved.

  4. Suppression of Mitochondrial Biogenesis through Toll-Like Receptor 4–Dependent Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling in Endotoxin-Induced Acute Kidney Injury

    PubMed Central

    Smith, Joshua A.; Stallons, L. Jay; Collier, Justin B.; Chavin, Kenneth D.

    2015-01-01

    Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1β) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis. PMID:25503387

  5. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis

    PubMed Central

    Yu, Sharon J; Grider, John R; Gulick, Melisa A; Xia, Chun-mei; Shen, Shanwei; Qiao, Li-Ya

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays an essential role in sensory neuronal activation in response to visceral inflammation. Here we report that BDNF up-regulation in the primary afferent neurons in the dorsal root ganglia (DRG) in a rat model of colitis is mediated by the activation of endogenous extracellular signal-regulated protein kinases (ERK) 5 and by nerve growth factor (NGF) retrograde signaling. At 7 days of colitis, the expression level of BDNF is increased in conventional neuronal tracing dye Fast Blue labeled primary afferent neurons project to the distal colon. In these neurons, the phosphorylation (activation) level of ERK5 is also increased. In contrast, the level of phospho-ERK1/2 is not changed in the DRG during colitis. Prevention of the ERK5 activation in vivo with an intrathecal application of the MEK inhibitor PD98059 significantly attenuates the colitis-induced increases in BDNF expression in the DRG. Further studies show that BDNF up-regulation in the DRG is triggered by NGF retrograde signaling which also involves activation of the MEK/ERK pathways. Application of exogenous NGF exclusively to the compartment containing DRG nerve terminals in an ex vivo ganglia-nerve preparation has markedly increased the BDNF expression level in the DRG neuronal cell body that is placed in a different compartment; this BDNF elevation is attenuated by U0126, PD98059 and a specific ERK5 inhibitor BIX02188. These results demonstrate the mechanisms and pathways by which BDNF expression is elevated in primary sensory neurons following visceral inflammation that is mediated by increased activity of ERK5 and is likely to be triggered by the elevated NGF level in the inflamed viscera. PMID:22921460

  6. Oxidative stress induces extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase in cystic fibrosis lung epithelial cells: Potential mechanism for excessive IL-8 expression.

    PubMed

    Boncoeur, Emilie; Criq, Vinciane Saint; Bonvin, Elise; Roque, Telma; Henrion-Caude, Alexandra; Gruenert, Dieter C; Clement, Annick; Jacquot, Jacky; Tabary, Olivier

    2008-01-01

    Cystic fibrosis (CF) is a lethal disease caused by defective function of the cftr gene product, the CF transmembrane conductance regulator (CFTR) that leads to oxidative damage and excessive inflammatory response in lungs of CF patients. We here report the effects of oxidative stress (hyperoxia, 95% O(2)) on the expression of pro-inflammatory interleukin (IL)-8 and CXCR1/2 receptors in two human CF lung epithelial cell lines (IB3-1, with the heterozygous F508del/W1282X mutation and CFBE41o- with the homozygous F508del/F508del mutation) and two control non-CF lung epithelial cell lines (S9 cell line derived from IB3-1 after correction with wtCFTR and the normal bronchial cell line 16HBE14o-). Under oxidative stress, the expression of IL-8 and CXCR1/2 receptors was increased in CF, corrected and normal lung cell lines. The effects of oxidative stress were also investigated by measuring the transcription nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) activities. Under oxidative stress, no increase of NF-kappaB activation was observed in CF lung cells in contrast to that observed in normal and corrected CF lung cells. The signalling of mitogen-activated protein (MAP) kinases was further studied. We demonstrated that extracellular signal-regulated kinase (ERK1/2) and AP-1 activity was markedly enhanced in CF but not non-CF lung cells under oxidative stress. Consistently, inhibition of ERK1/2 in oxidative stress-exposed CF lung cells strongly decreased both the IL-8 production and CXCR1/2 expression. Therefore, targeting of ERK1/2 MAP kinase may be critical to reduce oxidative stress-mediated inflammation in lungs of CF patients.

  7. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2.

    PubMed

    Perkovic, Sanja; Basic-Kinda, Sandra; Gasparovic, Vladimir; Krznaric, Zeljko; Babel, Jaksa; Ilic, Ivana; Aurer, Igor; Batinic, Drago

    2012-07-11

    Aggressive natural killer-cell leukaemia (ANKL) is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV) and P-glycoprotein (P-gp) expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56(+) NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  8. Morphine activates the E twenty six-like transcription factor-1/serum response factor pathway via extracellular signal-regulated kinases 1/2 in F11 cells derived from dorsal root ganglia neurons.

    PubMed

    Rothe, Kathrin; Solinski, Hans Jürgen; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas

    2012-07-01

    Morphine-induced signaling via opioid receptors (ORs) in dorsal root ganglia (DRG) neurons, the spinal cord, and various brain regions has been shown to modulate gene activity. Hitherto, little attention has been paid to extracellular signal-regulated kinases-1/2 (ERK-1/2)-mediated activation of the serum response factor (SRF) and ternary complex factors (TCFs) such as the E twenty six-like transcription factor-1 (ELK-1) in this context. Using TCF/SRF-dependent reporter gene constructs, a specific ERK-1/2 inhibitor and a dominant-negative ELK-1 mutant, we show herein that morphine activates ELK-1 via ERK-1/2 in DRG-derived F11 cells endogenously expressing μ and δ ORs. Previous studies with glioma cell lines such as NG108-15 cells attributed morphine-induced gene expression to the activation of the cAMP-responsive element binding protein (CREB). Thus, we also analyzed morphine-dependent activation of CREB in F11 and NG108-15 cells. In contrast to the CREB stimulation found in NG108-15 cells, we observed an inhibitory effect of morphine in F11 cells, indicating cell type-specific regulation of CREB by morphine. To obtain data about putative target genes of morphine-induced ELK-1/SRF activation, we analyzed mRNA levels of 15 ELK-1/SRF-dependent genes in cultured rat DRG neurons and F11 cells. We identified the early growth response protein-4 (EGR-4) as the strongest up-regulated gene in both cell types and observed ELK-1 activity-dependent activation of an EGR-4-driven reporter in F11 cells. Overall, we reveal an important role of ELK-1 for morphine-dependent gene induction in DRG-derived cells and propose that ELK-1 and EGR-4 contribute to the effects of morphine on neuronal plasticity.

  9. Lipopolysaccharide Activation of the TPL-2/MEK/Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Cascade Is Regulated by IκB Kinase-Induced Proteolysis of NF-κB1 p105†

    PubMed Central

    Beinke, S.; Robinson, M. J.; Hugunin, M.; Ley, S. C.

    2004-01-01

    The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-κB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool. Activation of TPL-2, MEK, and ERK by LPS is also demonstrated to require proteasome-mediated proteolysis. p105 is known to be proteolysed by the proteasome following stimulus-induced phosphorylation of two serines in its PEST region by the IκB kinase (IKK) complex. Expression of a p105 point mutant, which is not susceptible to signal-induced proteolysis, in RAW264.7 macrophages impairs LPS-induced release of TPL-2 from p105 and its subsequent activation of MEK. Furthermore, expression of wild-type but not mutant p105 reconstitutes LPS stimulation of MEK and ERK phosphorylation in primary NF-κB1-deficient macrophages. Consistently, pharmacological blockade of IKK inhibits LPS-induced release of TPL-2 from p105 and TPL-2 activation. These data show that IKK-induced p105 proteolysis is essential for LPS activation of TPL-2, thus revealing a novel function of IKK in the regulation of the ERK MAP kinase cascade. PMID:15485931

  10. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    SciTech Connect

    Onda, Kenji . E-mail: knjond@ps.toyaku.ac.jp; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} was not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  11. Activation of extracellular signal-regulated kinase (ERK) and induction of mitogen-activated protein kinase phosphatase 1 (MKP-1) by perifused thyrotropin-releasing hormone (TRH) stimulation in rat pituitary GH3 cells.

    PubMed

    Oride, Aki; Kanasaki, Haruhiko; Mutiara, Sandra; Purwana, Indri Nuryani; Miyazaki, Kohji

    2008-12-16

    We investigated the pattern of extracellular signal-regulated kinase (ERK) phosphorylation and the induction of mitogen-activated protein kinase phosphatase 1 (MKP-1) by thyrotropin-releasing hormone (TRH) under various stimulation conditions in pituitary GH3 cells. In static culture, ERK activation by continuous TRH was maximal at 10 min and persisted for up to 60 min, with a return to the basal level by 2h. Stimulation with continuous TRH in perifused cells resulted in a similar level of ERK phosphorylation. MKP-1 was expressed 60 min following either static or perifused, continuous TRH stimulation. When cells were stimulated with pulsatile TRH every 30 min, ERK activation was maximal at 10 min and returned to its baseline level by 30 min. ERK was phosphorylated again with each subsequent pulse. Pulsatile TRH did not induce MKP-1. Prolactin promoter activity following continuous, static TRH stimulation was higher than that following perifused TRH stimulation. TRH at a frequency of one pulse every 30 min increased prolactin promoter activity similar to that of perifused, continuous TRH stimulation. Additionally, changes in pulse frequency resulted in alterations in the level of prolactin promoter. Following static stimulation, a 10 min exposure to TRH was sufficient to obtain full activation of the prolactin promoter. Additionally, a 5-10 min exposure of TRH was sufficient to maintain ERK activation. A single 5-min pulse of TRH stimulation resulted in low activation of the prolactin promoter. ERK activation was necessary for prolactin gene transcription; however, prolactin gene transcription is not entirely determined by the strength or duration of TRH-induced ERK activation.

  12. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    PubMed

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.

  13. Selective inhibition of extracellular signal-regulated kinases 1/2 blocks nerve growth factor to brain-derived neurotrophic factor signaling and suppresses the development of and reverses already established pain behavior in rats.

    PubMed

    Matsuoka, Y; Yang, J

    2012-03-29

    Brain-derived neurotrophic factor (BDNF) plays a key role in the development of pathological pain. Although it is known that nerve growth factor (NGF) induces BDNF mRNA through extracellular signal-regulated kinases (ERK), whether ERK1/2 or ERK5, two closely related members of the ERK family, mediate this signal is still unclear because classical MEK inhibitors block both pathways. We studied the involvement of ERK-signaling in NGF induction of BDNF in PC12 cells, cultured dorsal root ganglia neurons, and in rats subjected to neuropathic pain models using ERK1/2- and ERK5-specific tools. Selective activation of ERK1/2 upregulated BDNF mRNA in PC12 cells, whereas selective ERK5 activation did not. AZD6244, a potent selective inhibitor of ERK1/2 activation, blocked NGF induction of BDNF mRNA in vitro suggesting that NGF induction of BDNF is mediated by ERK1/2. siRNA experiments indicated that both ERK1 or ERK2 can signal suggesting that both pathways must be blocked to prevent NGF-induced increase in BDNF mRNA. I.p. injection of AZD6244 prevented the development of pain in rats subjected to the chronic constriction injury and reversed already established pain in the spared nerve injury model. Immunohistochemical studies showed decreased phospho-ERK1/2-immunoreactivity in dorsal root ganglia and BDNF immunoreactivity in ipsilateral spinal dorsal horn in the drug-treated rats. Our results suggest the possible use of AZD6244, already in human clinical trials as an anticancer agent, for the treatment of pathological pain.

  14. Pigment epithelium-derived factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2.

    PubMed

    Sanchez, A; Tripathy, D; Yin, X; Luo, J; Martinez, J; Grammas, P

    2012-01-01

    Mitigating oxidative stress-induced damage is critical to preserve neuronal function in diseased or injured brains. This study explores the mechanisms contributing to the neuroprotective effects of pigment epithelium-derived factor (PEDF) in cortical neurons. Cultured primary neurons are exposed to PEDF and H₂O₂ as well as inhibitors of phosphoinositide-3 kinase (PI3K) or extracellular signal-regulated kinase 1/2 (ERK1/2). Neuronal survival, cell death and levels of caspase 3, PEDF, phosphorylated ERK1/2, and Bcl-2 are measured. The data show cortical cultures release PEDF and that H₂O₂ treatment causes cell death, increases activated caspase 3 levels and decreases release of PEDF. Exogenous PEDF induces a dose-dependent increase in Bcl-2 expression and neuronal survival. Blocking Bcl-2 expression by siRNA reduced PEDF-induced increases in neuronal survival. Treating cortical cultures with PEDF 24 h before H₂O₂ exposure mitigates oxidant-induced decreases in neuronal survival, Bcl-2 expression, and phosphorylation of ERK1/2 and also reduces elevated caspase 3 level and activity. PEDF pretreatment effect on survival is blocked by inhibiting ERK or PI3K. However, only inhibition of ERK reduced the ability of PEDF to protect neurons from H₂O₂-induced Bcl-2 decrease and neuronal death. These data demonstrate PEDF-mediated neuroprotection against oxidant injury is largely mediated via ERK1/2 and Bcl-2 and suggest the utility of PEDF in preserving the viability of oxidatively challenged neurons.

  15. Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory.

    PubMed

    Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J

    2014-03-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories.

  16. Capsaicin- and mustard oil-induced extracellular signal-regulated protein kinase phosphorylation in sensory neurons in vivo: effects of neurokinins 1 and 2 receptor antagonists and of a nitric oxide synthase inhibitor.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid; Schuligoi, Rufina

    2009-01-01

    Stimulation of primary sensory neurons with capsaicin or mustard oil leads to phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) via activation of transient receptor potential V1 (TRPV1) or TRPA1, respectively. p-ERK1/2 was determined by Western immunoblotting in the dorsal root ganglia and in the sciatic nerve of rats following either systemic or perineural capsaicin treatment, or mustard oil application to the hind paw skin. To investigate the possible involvement of neurokinin 1 (NK(1)) and NK(2) receptors as well as of nitric oxide, the selective antagonists, SR140333 for NK(1) and SR48968 for NK(2), and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), were employed. The increase of p-ERK1/2 after systemic capsaicin treatment was markedly attenuated by SR140333, while only the increase in the dorsal root ganglia was impaired by SR48968; in contrast, inhibition of nitric oxide synthase had no effect. Perineural capsaicin induced an increase in p-ERK1/2 in the ipsilateral sciatic nerve and in the dorsal root ganglia. This effect was not influenced by SR140333 or L-NAME. We found for the first time that mustard oil application to the hind paw skin caused an increase in p-ERK1/2 in the sciatic nerve and in the dorsal root ganglia and only the phosphorylation in the latter was attenuated by SR140333 while L-NAME showed no effect. From the present results, it may be assumed that capsaicin- or mustard oil-induced p-ERK1/2 in sensory neurons is not solely directly linked to TRPV1 or TRPA1 channels, but under certain conditions NK(1)- and NK(2)-mediated mechanisms are involved.

  17. Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells.

    PubMed

    Herraiz, Cecilia; Journé, Fabrice; Ghanem, Ghanem; Jiménez-Cervantes, Celia; García-Borrón, José C

    2012-12-01

    Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.

  18. Extra-cellular signal-regulated kinase 1/2 (ERK1/2) activated in the hippocampal CA1 neurons is critical for retrieval of auditory trace fear memory.

    PubMed

    Huang, Ching-Hsun; Chiang, Yu-Wei; Liang, Keng-Chen; Thompson, Richard F; Liu, Ingrid Y

    2010-04-22

    The brain regions involved with trace fear conditioning (TFC) and delayed fear conditioning (DFC) are well-characterized, but little is known about the cellular representation subsuming these types of classical conditioning. Previous evidence has shown that activation of the amygdala is required for both TFC and DFC, while TFC also involves the hippocampus for forming conditioned response to tone. Lesions of the hippocampus did not affect tone learning in DFC, but it impaired learning in TFC. Synaptic plasticity in the hippocampus, underlying a cellular representation subsuming learning and memory, is in part modulated by extra-cellular signal-regulated kinase (ERK) signaling pathway. ERK1/2 activation is required for both TFC and DFC during memory formation, but whether this pathway is involved in memory retrieval of TFC is still unknown. In the present study, we investigated changes in ERK1/2 phosphorylation after memory retrieval in groups of mice that received TFC, DFC, tone-shock un-paired conditioning, and naïve control. Our results showed that ERK1/2 phosphorylation was elevated in the hippocampal CA1 region after retrieval of all conditioned fear responses. In particular, in the TFC group, immunohistochemistry indicated higher level of ERK1/2 phosphorylation in the hippocampal pyramidal neurons 30min after tone testing. Inhibition of the ERK1/2 signaling pathway diminished fear memory elicited by a tone in TFC. Together these results suggest that the memory retrieval process in TFC is more dependent on ERK1/2 signaling pathway than that in DFC. ERK1/2 signaling is critical for retrieval associative memory of temporally noncontiguous stimuli.

  19. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis

    PubMed Central

    Balmer, Delphine; Bapst-Wicht, Linda; Pyakurel, Aswin; Emery, Martine; Nanchen, Natacha; Bochet, Christian G.; Roduit, Raphael

    2017-01-01

    Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD. PMID:28298893

  20. The D1 dopamine receptor agonist, SKF83959, attenuates hydrogen peroxide-induced injury in RGC-5 cells involving the extracellular signal-regulated kinase/p38 pathways

    PubMed Central

    Li, Guang-Yu; Li, Ting; Fan, Bin; Zheng, Yong-Chen

    2012-01-01

    Purpose Oxidative stress is widely implicated in the death of retinal ganglion cells associated with various optic neuropathies. Agonists of the dopamine D1 receptor have recently been found to be potentially neuroprotective against oxidative stress–induced injury. The goal of this study was to investigate whether SKF83959, a next-generation high-affinity D1 receptor agonist, could protect retinal ganglion cell 5 (RGC-5) cells from H2O2-induced damage and the molecular mechanism involved. Methods We examined expression of the D1 receptor in RGC-5 cells with reverse-transcription–PCR and immunoblotting and assessed neuroprotection using propidium iodide staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, we monitored the activation and involvement of members of mitogen-activated protein kinase family, extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase, with western blot and specific inhibitors. Results We found that the D1 receptor was expressed in RGC-5 cells, but the sequence analysis suggested this cell line is from mouse and not rat origin. SKF83959 exhibited a remarkable neuroprotective effect on H2O2-damaged RGC-5 cells, which was blocked by the specific D1 receptor antagonist, SCH23390. ERK and p38 were activated by SKF83959, and pretreatment with their inhibitors U0126 and SB203580, respectively, significantly blunted the SKF83959-induced cytoprotection. However, the specific c-Jun NH2-terminal kinase inhibitor, SP600125, had no effect on the SKF83959-induced protection. Conclusions We conclude that SKF83959 attenuates hydrogen peroxide–induced injury in RGC-5 cells via a mechanism involving activation of the ERK and p38 pathways and the D1 receptor is a potential molecular target for developing neuroprotective drugs. PMID:23233790

  1. Rapid Turnover of Extracellular Signal-Regulated Kinase 3 by the Ubiquitin-Proteasome Pathway Defines a Novel Paradigm of Mitogen-Activated Protein Kinase Regulation during Cellular Differentiation

    PubMed Central

    Coulombe, Philippe; Rodier, Geneviève; Pelletier, Stéphane; Pellerin, Johanne; Meloche, Sylvain

    2003-01-01

    Mitogen-activated protein (MAP) kinases are stable enzymes that are mainly regulated by phosphorylation and subcellular targeting. Here we report that extracellular signal-regulated kinase 3 (ERK3), unlike other MAP kinases, is an unstable protein that is constitutively degraded in proliferating cells with a half-life of 30 min. The proteolysis of ERK3 is executed by the proteasome and requires ubiquitination of the protein. Contrary to other protein kinases, the catalytic activity of ERK3 is not responsible for its short half-life. Instead, analysis of ERK1/ERK3 chimeras revealed the presence of two destabilization regions (NDR1 and -2) in the N-terminal lobe of the ERK3 kinase domain that are both necessary and sufficient to target ERK3 and heterologous proteins for proteasomal degradation. To assess the physiological relevance of the rapid turnover of ERK3, we monitored the expression of the kinase in different cellular models of differentiation. We observed that ERK3 markedly accumulates during differentiation of PC12 and C2C12 cells into the neuronal and muscle lineage, respectively. The accumulation of ERK3 during myogenic differentiation is associated with the time-dependent stabilization of the protein. Terminal skeletal muscle differentiation is accompanied by cell cycle withdrawal. Interestingly, we found that expression of stabilized forms of ERK3 causes G1 arrest in NIH 3T3 cells. We propose that ERK3 biological activity is regulated by its cellular abundance through the control of protein stability. PMID:12808096

  2. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signal-regulated kinase signaling in pancreatic cancer cells

    PubMed Central

    YUAN, JIANGTAO; WU, YAOLU; LU, GUIFANG

    2013-01-01

    Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 μM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer. PMID:23833675

  3. Aurintricarboxylic acid protects against cell death caused by lipopolysaccharide in macrophages by decreasing inducible nitric-oxide synthase induction via IkappaB kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase inhibition.

    PubMed

    Tsi, Chin-Ju; Chao, Yee; Chen, Ching-Wen; Lin, Wan Wan

    2002-07-01

    To elucidate the mechanisms involved in cell protection by aurintricarboxylic acid (ATA), an endonuclease inhibitor, high nitric oxide (NO)-induced macrophage apoptosis was studied. In RAW 264.7 macrophages, a high level of NO production accompanied by cell apoptosis was apparent with lipopolysaccharide (LPS) treatment. Direct NO donor sodium nitroprusside (SNP) also dramatically induced cell death, with an EC(50) of 1 mM. Coincubation of ATA (1-500 microM) in LPS-stimulated RAW 264.7 cells resulted in a striking reduction of NO production and cell apoptosis, whereas only a partial cell protection was achieved in response to SNP. This suggests that abrogation of inducible nitric-oxide synthase (iNOS)-dependent NO production might contribute to ATA protection of LPS-treated cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis revealed that ATA down-regulated iNOS protein through transcriptional inhibition of iNOS gene expression but was unrelated to iNOS protein stability. ATA not only inhibited nuclear factor-kappaB (NF-kappaB) activation through impairment of the targeting and degradation of IkappaBs but also reduced LPS-induced activator protein-1 (AP-1) activation. These actions of ATA were not caused by the influence on LPS binding to macrophage membrane. Kinase assays indicated that ATA inhibited IkappaB kinase (IKK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) activity both in vivo and in vitro, suggesting a direct interaction between ATA and these signaling molecules. Taken together, these results provide novel action targets of ATA and indicate that ATA protection of macrophages from LPS-mediated cell death is primarily the result of its inhibition of NO production, which closely relates to the inactivation of NF-kappaB and AP-1 and inhibition of IKK, ERK and p38 MAPK.

  4. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

    PubMed

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  5. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    SciTech Connect

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  6. Extracellular-signal regulated kinase (Erk1/2), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture.

    PubMed

    Tran, Doan Duy Hai; Koch, Alexandra; Saran, Shashank; Armbrecht, Marcel; Ewald, Florian; Koch, Martina; Wahlicht, Tom; Wirth, Dagmar; Braun, Armin; Nashan, Björn; Gaestel, Matthias; Tamura, Teruko

    2016-05-01

    Differentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15 min and continued to be phosphorylated for more than 2h. Both p38MAPK and Erk1/2 were activated at the edge of the cut as well as on the liver surface where the mesothelial cell sheet expresses several cytokines. Notably, in human liver Erk1/2 was also activated under the mesothelial cell sheet shortly after liver resections. Furthermore, in in vitro liver slice culture immediate early genes (IEGs) were upregulated within 1-2 h and the S phase marker proliferation-cell-nuclear-antigen (PCNA) appeared 24 h after injury. Although Erk1/2 was activated after injury, in MK2 depleted liver a set of IEGs, such as Dusp1, Cox2, or c-Myc and proliferation marker gene Ki67 were not induced. In addition, in immortalized hepatocyte cells, THLE-2, the same subset of genes was upregulated upon stimulation with lipopolysaccharide (LPS), but not in the presence of MK2 inhibitor. The protein level of tristetraprolin (TTP), a substrate for MK2 that plays a role in mRNA degradation, was increased in the presence of MK2 inhibitor. In this context, the depletion of TTP gene rescued Dusp1, Cox2, or c-Myc upregulation in the presence of MK2 inhibitor. These data imply that MK2 pathway is positively involved in Erk1/2 induced IEG response after liver injury. These data also suggest that in vitro liver culture may be a useful tool for measuring the proliferation potential of hepatocytes in individual liver.

  7. Operant ethanol self-administration increases extracellular-signal regulated protein kinase (ERK) phosphorylation in reward-related brain regions: selective regulation of positive reinforcement in the prefrontal cortex of C57BL/6J mice

    PubMed Central

    Faccidomo, Sara; Salling, Michael C; Galunas, Christina; Hodge, Clyde W

    2015-01-01

    Rationale Extracellular-signal regulated protein kinase (ERK1/2) is activated by ethanol in reward-related brain regions. Accordingly, systemic inhibition of ERK1/2 potentiates ethanol reinforcement. However, the brain region(s) that mediate this effect are unknown. Objective To pharmacologically inhibit ERK1/2 in the medial prefrontal cortex (PFC), nucleus accumbens (NAC) and amygdala (AMY) prior to ethanol or sucrose self-administration, and evaluate effects of operant ethanol self-administration on ERK1/2 phosphorylation (pERK1/2). Methods Male C57BL/6J mice were trained to lever press on a fixed-ratio-4 schedule of 9% ethanol+2% sucrose (ethanol) or 2% sucrose (sucrose) reinforcement. Mice were sacrificed immediately after the 30th self-administration session and pERK1/2 immunoreactivity was quantified in targeted brain regions. Additional groups of mice were injected with SL 327 (0–1.7 μg/side) in PFC, NAC or AMY prior to self-administration. Results pERK1/2 immunoreactivity was significantly increased by operant ethanol (g/kg=1.21 g/kg; BAC=54.9 mg/dl) in the PFC, NAC (core and shell), and AMY (central nucleus) as compared to sucrose. Microinjection of SL 327 (1.7 μg) into the PFC selectively increased ethanol self-administration. Intra-NAC injection of SL 327 had no effect on ethanol- but suppressed sucrose-reinforced responding. Intra-AMY microinjection of SL 327 had no effect on either ethanol- or sucrose-reinforced responding. Locomotor activity was unaffected under all conditions. Conclusions Operant ethanol self-administration increases pERK1/2 activation in the PFC, NAC and AMY. However, ERK1/2 activity only in the PFC mechanistically regulates ethanol self-administration. These data suggest that ethanol-induced activation of ERK1/2 in the PFC is a critical pharmacological effect that mediates the reinforcing properties of the drug. PMID:26123321

  8. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  9. Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells.

    PubMed Central

    Cook, S J; McCormick, F

    1996-01-01

    Rat-1 fibroblasts were used to study the role of the sustained activation of extracellular signal-regulated kinase 1 (ERK1) in lysophosphatidic acid (LPA)-stimulated mitogenic signalling. Mitogenic doses of LPA, like serum, stimulated biphasic, sustained, ERK activation that persisted towards the G1/S boundary. The EC50 for LPA-stimulated ERK activation after 10 min, the time of peak response, was 2 orders of magnitude to the left of that for the sustained response after 3 h or that for DNA synthesis after 22 h, with the result that non-mitogenic doses stimulated a maximal peak response but no second phase. To complement these studies, we examined the role of different signal pathways in regulating the sustained and acute phases of ERK activation using defined biochemical inhibitors and mimetics. Activation of protein kinase C and Ca2+ fluxes played a minor and transient role in regulation of ERK1 activity by LPA in Rat-1 cells. Sustained ERK1 activation stimulated by LPA was completely inhibited by pertussis toxin, whereas the early peak response was only partly affected; this is correlated with the specific inhibition of LPA-stimulated DNA synthesis by pertussis toxin. The selective tyrosine kinase inhibitor herbimycin A completely inhibited sustained ERK1 activation by LPA but, again, the early phase of the response was only partially inhibited. In addition, low doses of staurosporine inhibited ERK1 activation by LPA. The effects of herbimycin A and staurosporine were selective for the response to LPA but did not affect that to epidermal growth factor. The results suggest a strong correlation between sustained ERK1 activation and DNA synthesis in LPA-stimulated Rat-1 cells. Furthermore, the two discrete phases of ERK activation by LPA are regulated by a combination of at least two different signalling pathways; the sustained activation of ERK1 in Rat-1 cells proceeds via a G1- or Gzero-mediated pathway which may also involve a tyrosine kinase. PMID:8947493

  10. Differential involvement of medial prefrontal cortex and basolateral amygdala extracellular signal-regulated kinase in extinction of conditioned taste aversion is dependent on different intervals of extinction following conditioning.

    PubMed

    Lin, P-Y; Wang, S-P; Tai, M-Y; Tsai, Y-F

    2010-11-24

    Extinction reflects a decrease in the conditioned response (CR) following non-reinforcement of a conditioned stimulus. Behavioral evidence indicates that extinction involves an inhibitory learning mechanism in which the extinguished CR reappears with presentation of an unconditioned stimulus. However, recent studies on fear conditioning suggest that extinction erases the original conditioning if the time interval between fear acquisition and extinction is short. The present study examined the effects of different intervals between acquisition and extinction of the original memory in conditioned taste aversion (CTA). Male Long-Evans rats acquired CTA by associating a 0.2% sucrose solution with malaise induced by i.p. injection of 4 ml/kg 0.15 M LiCl. Two different time intervals, 5 and 24 h, between CTA acquisition and extinction were used. Five or 24 h after CTA acquisition, extinction trials were performed, in which a bottle containing 20 ml of a 0.2% sucrose solution was provided for 10 min without subsequent LiCl injection. If sucrose consumption during the extinction trials was greater than the average water consumption, then rats were considered to have reached CTA extinction. Rats subjected to extinction trials lasting 24 h, but not 5 h, after acquisition re-exhibited the extinguished CR following injection of 0.15 M LiCl alone 7 days after acquisition. Extracellular signal-regulated kinase (ERK) in the medial prefrontal cortex (mPFC) and basolateral nucleus of the amygdala (BLA) was examined by Western blot after the first extinction trial. ERK activation in the mPFC was induced after the extinction trial beginning 5 h after acquisition, whereas the extinction trial performed 24 h after acquisition induced ERK activation in the BLA. These data suggest that the original conditioning can be inhibited or retained by CTA extinction depending on the time interval between acquisition and extinction and that the ERK transduction pathway in the mPFC and BLA is

  11. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  12. Cell Surface Expression of the Major Amyloid-β Peptide (Aβ)-degrading Enzyme, Neprilysin, Depends on Phosphorylation by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) and Dephosphorylation by Protein Phosphatase 1a*

    PubMed Central

    Kakiya, Naomasa; Saito, Takashi; Nilsson, Per; Matsuba, Yukio; Tsubuki, Satoshi; Takei, Nobuyuki; Nawa, Hiroyuki; Saido, Takaomi C.

    2012-01-01

    Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain. PMID:22767595

  13. Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways.

    PubMed

    Zhu, Yanhui; Tao, Hairong; Jin, Chen; Liu, Yonzhang; Lu, Xiongwei; Hu, Xiaopeng; Wang, Xiang

    2015-10-01

    Transforming growth factor (TGF)‑β regulates the anabolic metabolism of articular cartilage and prevents cartilage degradation. TGF‑β1 influences cellular proliferation, differentiation and the extracellular matrix through activation of the extracellular signal‑regulated kinase (ERK)1/2 and Smad2/3 signaling pathways. However, it has remained to be fully elucidated precisely how the ERK1/2 and Smad2/3 signaling pathways mediate anabolic processes of articular cartilage. The present study investigated how ERK1/2 and Smad2/3 signaling mediate TGF‑β1‑stimulated type II collagen and aggrecan expression in rat chondrocytes. The results confirmed that TGF‑β1 stimulates type II collagen and aggrecan expression in rat chondrocytes, and furthermore, that the ERK1/2 and Smad2/3 signaling pathways were activated by TGF‑β1. Conversely, the TGF‑β receptor I (ALK5) kinase inhibitor SB525334 significantly impaired TGF‑β1‑induced type II collagen and aggrecan expression, coinciding with a reduction of ERK1/2 and Smad3 phosphorylation. In addition, TGF‑β1‑induced type II collagen and aggrecan expression were significantly suppressed by ERK1/2 inhibitor PD98059. Similarly, TGF‑β1‑stimulated type II collagen and aggrecan expression were decreased in the presence of a Smad3 phosphorylation inhibitor SIS3. Therefore, the present study demonstrated that the ERK1/2 and Smad2/3 signaling pathways regulate type II collagen and aggrecan expression in rat chondrocytes.

  14. Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice.

    PubMed

    Cheng, Sin-Jhong; Chen, Chien-Chang; Yang, Hsiu-Wen; Chang, Ya-Ting; Bai, Shin-Wen; Chen, Chih-Cheng; Yen, Chen-Tung; Min, Ming-Yuan

    2011-02-09

    Application of phorbol 12,13-diacetate (PDA) caused marked enhancement of synaptic transmission of nociceptive parabrachio-amygdaloid (PBA) input onto neurons of the capsular central amygdaloid (CeAC) nucleus. The potentiation of PBA-CeAC EPSCs by PDA involved a presynaptic protein kinase C (PKC)-dependent component and a postsynaptic PKC-extracellular-regulated kinase (ERK)-dependent component. NMDA glutamatergic receptor (NMDAR)-dependent long-term potentiation (LTP) of PBA-CeAC EPSCs, which was also dependent on the PKC-ERK signaling pathway, was induced by tetanus stimulation at 100 Hz. In slices from mice subjected to acid-induced muscle pain (AIMP), phosphorylated ERK levels in the CeAC increased, and PBA-CeAC synaptic transmission was postsynaptically enhanced. The enhanced PBA-CeAC synaptic transmission in AIMP mice shared common mechanisms with the postsynaptic potentiation effect of PDA and induction of NMDAR-dependent LTP by high-frequency stimulation in normal slices, both of which required ERK activation. Since the CeAC plays an important role in the emotionality of pain, enhanced synaptic function of nociceptive (PBA) inputs onto CeAC neurons might partially account for the supraspinal mechanisms underlying central sensitization.

  15. Trovafloxacin-induced Replication Stress Sensitizes HepG2 Cells to Tumor Necrosis Factor-alpha-induced Cytotoxicity Mediated by Extracellular Signal-regulated Kinase and Ataxia Telangiectasia and Rad3-related

    PubMed Central

    Beggs, Kevin M.; Maiuri, Ashley R.; Fullerton, Aaron M.; Poulsen, Kyle L.; Breier, Anna B.; Ganey, Patricia E.; Roth, Robert A.

    2015-01-01

    Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress. PMID:25748550

  16. Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen-Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma.

    PubMed

    Zhang, Limin; Zhao, Xiaochun; Jiang, Xiaojing

    2015-08-01

    Temporal post-conditioning to induce neuroprotection against brain ischemia-reperfusion injury insult is considered to be an effective intervention, but the exact mechanisms of sevoflurane post-conditioning are poorly understood. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in the cell growth and proliferation. The essential axis of activator Bid, Bim, Puma (BH3s) and BAX, BAK in activating the mitochondrial death program might offer common ground for cell death signal. We hypothesized that, sevoflurane post-conditioning might inhibit the expression of Bid, Bim and Puma and is activated by phosphor-Erk1/2 to reduce neuronal death. To test this hypothesis, we exposed primary cultured cortical neurons to oxygen-glucose deprivation for 1 h and resuscitation for 24 h (OGD/R). The assays of MTT, propidium iodide uptake, JC-1 fluorescence and western blot demonstrated that OGD/R exposure reduced cell viability, increased cell death, decreased mitochondrial membrane potential and the expressions of Bid, Bim, and Puma. Inhibition of Erk1/2 phosphorylation could partially attenuate 2 % of sevoflurane post-conditioning mediated increase in neuronal viability and mitochondrial membrane potential, and also a decrease in cell death and expression of Bid, Bim and Puma after OGD/R treatment. The results demonstrated that, the protection of sevoflurane post-conditioning markedly reducing death of cortical neurons exposed to OGD/R could be correlated with down-regulation of Bid, Bim and Puma expression mediated by phosphorylation/activation of Erk1/2.

  17. Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5'-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia.

    PubMed

    Abraham, E; Arcaroli, J; Shenkar, R

    2001-01-01

    Acute lung injury is frequently associated with sepsis or blood loss and is characterized by a proinflammatory response and infiltration of activated neutrophils into the lungs. Hemorrhage or endotoxemia result in activation of cAMP response element-binding protein (CREB) and NF-kappa B in lung neutrophils as well as increased expression of proinflammatory cytokines, such as TNF-alpha and macrophage-inflammatory peptide-2, by these cells. Activation of the extracellular regulated kinase (ERK) pathway occurs in stress responses and is involved in CREB activation. In the present experiments, hemorrhage or endotoxemia produced increased activation of mitogen-activated protein kinase kinase (MEK)1/2 and ERK2 (p42), but not of ERK1 (p44), in lung neutrophils. ERK1, ERK2, and MEK1/2 were not activated in peripheral blood neutrophils after hemorrhage or endotoxemia. Inhibition of xanthine oxidase led to further increase in the activation of MEK1/2 and ERK2 in lung neutrophils after hemorrhage, but not after endotoxemia. Alpha-adrenergic blockade before hemorrhage resulted in increased activation in lung neutrophils of MEK1/2, ERK1, ERK2, and CREB, but decreased activation of NF-kappa B. In contrast, alpha-adrenergic blockade before endotoxemia was associated with decreased activation of MEK1/2, ERK2, and CREB, but increased activation of NF-kappa B. Beta-adrenergic blockade before hemorrhage did not alter MEK1/2 or ERK1 activation in lung neutrophils, but decreased activation of ERK2 and CREB, while increasing activation of NF-kappa B. Beta-adrenergic inhibition before endotoxemia did not affect activation of MEK1/2, ERK1, ERK2, CREB, or NF-kappa B. These data indicate that the pathways leading to lung neutrophil activation after hemorrhage are different from those induced by endotoxemia.

  18. Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure.

    PubMed

    Symons, J David; McMillin, Shawna L; Riehle, Christian; Tanner, Jason; Palionyte, Milda; Hillas, Elaine; Jones, Deborah; Cooksey, Robert C; Birnbaum, Morris J; McClain, Donald A; Zhang, Quan-Jiang; Gale, Derrick; Wilson, Lloyd J; Abel, E Dale

    2009-05-08

    Impaired insulin signaling via phosphatidylinositol 3-kinase/Akt to endothelial nitric oxide synthase (eNOS) in the vasculature has been postulated to lead to arterial dysfunction and hypertension in obesity and other insulin resistant states. To investigate this, we compared insulin signaling in the vasculature, endothelial function, and systemic blood pressure in mice fed a high-fat (HF) diet to mice with genetic ablation of insulin receptors in all vascular tissues (TTr-IR(-/-)) or mice with genetic ablation of Akt1 (Akt1-/-). HF mice developed obesity, impaired glucose tolerance, and elevated free fatty acids that was associated with endothelial dysfunction and hypertension. Basal and insulin-mediated phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in the vasculature was preserved, but basal and insulin-stimulated eNOS phosphorylation was abolished in vessels from HF versus lean mice. In contrast, basal vascular eNOS phosphorylation, endothelial function, and blood pressure were normal despite absent insulin-mediated eNOS phosphorylation in TTr-IR(-/-) mice and absent insulin-mediated eNOS phosphorylation via Akt1 in Akt1-/- mice. In cultured endothelial cells, 6 hours of incubation with palmitate attenuated basal and insulin-stimulated eNOS phosphorylation and NO production despite normal activation of extracellular signal-regulated kinase 1/2 and Akt. Moreover, incubation of isolated arteries with palmitate impaired endothelium-dependent but not vascular smooth muscle function. Collectively, these results indicate that lower arterial eNOS phosphorylation, hypertension, and vascular dysfunction following HF feeding do not result from defective upstream signaling via Akt, but from free fatty acid-mediated impairment of eNOS phosphorylation.

  19. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation.

    PubMed

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-09-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy.

  20. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats.

    PubMed

    Guan, Xue-Hai; Fu, Qiao-Chu; Shi, Dai; Bu, Hui-Lian; Song, Zhen-Peng; Xiong, Bing-Rui; Shu, Bin; Xiang, Hong-Bing; Xu, Bing; Manyande, Anne; Cao, Fei; Tian, Yu-Ke

    2015-01-01

    Previously, we showed that activation of the spinal CXCL9, 10/CXCR3 pathway mediated bone cancer pain (BCP) in rats. However, the cellular mechanism involved is poorly understood. Here, we found that the activated CXCR3 was co-localized with either neurons, microglia, and astrocytes in the spinal cord, or non-peptidergic-, peptidergic-, and A-type neurons in the dorsal root ganglion. The inoculation of Walker-256 mammary gland carcinoma cells into the rat's tibia induced a time-dependent phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2) in the spinal cord, and CXCR3 was necessary for the phosphorylation of Akt and ERK 1/2. Meanwhile, CXCR3 was co-localized with either pAkt or pERK1/2. Blockage of either Akt or ERK1/2 prevented or reversed the mechanical allodynia in BCP rats. Furthermore, there was cross-activation between PI3K/Akt and Raf/MEK/ERK pathway under the BCP condition. Our results demonstrated that the activation of spinal chemokine receptor CXCR3 mediated BCP through Akt and ERK 1/2 kinase, and also indicated a crosstalk between PI3K/Akt and Raf/MEK/ERK signaling pathways under the BCP condition.

  1. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer.

    PubMed

    Saini, Kamal S; Loi, Sherene; de Azambuja, Evandro; Metzger-Filho, Otto; Saini, Monika Lamba; Ignatiadis, Michail; Dancey, Janet E; Piccart-Gebhart, Martine J

    2013-12-01

    Alterations of signal transduction pathways leading to uncontrolled cellular proliferation, survival, invasion, and metastases are hallmarks of the carcinogenic process. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and the Raf/mitogen-activated and extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways are critical for normal human physiology, and also commonly dysregulated in several human cancers, including breast cancer (BC). In vitro and in vivo data suggest that the PI3K/AKT/mTOR and Raf/MEK/ERK cascades are interconnected with multiple points of convergence, cross-talk, and feedback loops. Raf/MEK/ERK and PI3K/AKT/mTOR pathway mutations may co-exist. Inhibition of one pathway can still result in the maintenance of signaling via the other (reciprocal) pathway. The existence of such "escape" mechanisms implies that dual targeting of these pathways may lead to superior efficacy and better clinical outcome in selected patients. Several clinical trials targeting one or both pathways are already underway in BC patients. The toxicity profile of this novel approach of dual pathway inhibition needs to be closely monitored, given the important physiological role of PI3K/AKT/mTOR and Raf/MEK/ERK signaling. In this article, we present a review of the current relevant pre-clinical and clinical data and discuss the rationale for dual inhibition of these pathways in the treatment of BC patients.

  2. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2.

    PubMed

    Martin, Lynn; Pingle, Sandeep C; Hallam, Daniel M; Rybak, Leonard P; Ramkumar, Vickram

    2006-01-01

    Bacterial lipopolysaccharide (LPS) activates the immune system and promotes inflammation via Toll-like receptor (TLR) 4, which regulates the synthesis and release of tumor necrosis factor (TNF)-alpha and other inflammatory cytokines. Previous studies have shown that the nucleoside adenosine suppresses LPS-stimulated TNF-alpha release in human UB939 macrophages by activating an adenosine A(3) receptor (A(3)AR) subtype on these cells. In this study, we examined the mechanism(s) underlying A(3)AR-dependent inhibition of TNF-alpha release in a mouse (RAW 264.7) cell line. Treatment of RAW 264.7 cells with LPS (3 mug/ml) increased TNF-alpha release, which was reduced in a dose-dependent manner by adenosine analogs N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and R-phenylisopropyladenosine and reversed by selective A(3)AR blockade. The increase in TNF-alpha release was preceded by an increase in intracellular Ca(2+) levels. Inhibition of intracellular Ca(2+) release by IB-MECA, a selective agonist of the A(3)AR, or with BAPTA-AM, an intracellular Ca(2+) chelator, reduced LPS-stimulated TNF-alpha release. Activation of the A(3)AR or inhibition of intracellular Ca(2+) release also reduced LPS-stimulated nuclear factor-kappaB (NF-kappaB) activation and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Similar inhibition by A(3)AR was observed for LPS-stimulated inducible nitric-oxide synthase. These data support the contention that inhibition of LPS-stimulated release of inflammatory molecules, such as TNF-alpha and NO via the A(3)AR, involves suppression of intracellular Ca(2+)signaling, leading to suppression of NF-kappaB and ERK1/2 pathways.

  3. Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: role of c-Jun N-terminal kinase in paraquat-induced cell death.

    PubMed

    Niso-Santano, Mireia; Morán, José M; García-Rubio, Lourdes; Gómez-Martín, Ana; González-Polo, Rosa A; Soler, Germán; Fuentes, José M

    2006-08-01

    Paraquat is a herbicide with a potential risk to induce parkinsonism due to its demonstrated neurotoxicity and its strong structural similarity to 1-methyl-4-phenylpyridinium (MPP(+)), a well-known neurotoxin which causes a clinical syndrome similar to Parkinson's disease (PD). However, at present very little is known about the signaling pathways activated by paraquat in any cell system. In this study, we have investigated the effect of paraquat on extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and protein kinase B (PKB) activation in E18 cells. Low concentrations of paraquat stimulated very early increases in ERK1/2, JNK1/2, and PKB phosphorylation. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) inhibited early paraquat-induced increases in PKB phosphorylation. Furthermore, early paraquat-mediated increases in ERK1/2 activation were sensitive to the mitogen-activated protein kinase kinase 1 (MEK1) inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas JNK1/2 responses were blocked by the JNK1/2 inhibitor SP 600125 (anthra[1-9-cd]pyrazol-6(2H)-one). Pretreatment with wortmannin, LY 294002, or PD 98059 had no effect on paraquat cell death in E18 cells. In contrast, SP 600125 significantly decreased paraquat-induced cell death in E18 cells. In conclusion, we have shown that low concentrations of paraquat stimulate robust very early increases in ERK1/2, JNK1/2, and PKB phosphorylation in E18 cells. Furthermore, the data presented clearly suggest that inhibition of the JNK1/2 pathway protects E18 cells from paraquat-induced cell death and support the fact that inhibition of early activation of JNK1/2 can constitute a potential strategy in PD treatment.

  4. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  5. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    PubMed Central

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  6. Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury.

    PubMed

    Wen, X-R; Li, C; Zong, Y-Y; Yu, C-Z; Xu, J; Han, D; Zhang, G-Y

    2008-10-15

    It is well documented that heat-shock protein (hsp90) plays an essential role in maintaining stability and activity of its clients. Recent studies have shown that geldanamycin (GA), an inhibitor of hsp90, could decrease the protein of mixed-lineage kinase (MLK) 3 and activate Akt; our previous research documented that MLK3 and Akt and subsequent c-Jun N-terminal kinase (JNK) were involved in neuronal cell death in ischemic brain injury. Here, we investigated whether GA could decrease the protein of MLK3 and activate Akt in rat four-vessel occlusion ischemic model. Our results showed that global cerebral ischemia followed by reperfusion could enhance the association of hsp90 with MLK3, the association of hsp90 with Src, and JNK3 activation. As a result, GA decreased the protein of MLK3 and down-regulated JNK activation. On the other hand, Src kinase was activated and phosphorylated Cbl, which then recruited the p85 subunit of phosphatidylinositol 3-kinase (PI-3K), resulting in PI-3K activation, and as a consequence increased Akt activation, which inhibited ASK1 activation and down-regulated JNK3 activation. In summary, our results indicated that GA showed a dual inhibitory role on JNK3 activation and exerted strong neuroprotection in vivo and in vitro, which provides a new possible approach for stroke therapy.

  7. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  8. Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes.

    PubMed

    Madduma Hewage, Susara Ruwan Kumara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Fernando, Pattage Madushan Dilhara Jayatissa; Oh, Min Chang; Park, Jeong Eon; Shilnikova, Kristina; Moon, Yu Jin; Shin, Dae O; Hyun, Jin Won

    2016-11-08

    Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

  9. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  10. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  11. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  12. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells

    PubMed Central

    Sahlberg, Sara Häggblad; Mortensen, Anja C.; Haglöf, Jakob; Engskog, Mikael K.R.; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect. PMID:27878243

  13. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    PubMed

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  14. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    PubMed

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  15. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways.

    PubMed

    El Omri, Abdelfatteh; Han, Junkyu; Kawada, Kiyokazu; Ben Abdrabbah, Manef; Isoda, Hiroko

    2012-02-09

    Luteolin, a 3', 4', 5, 7-tetrahydroxyflavone, is an active compound in Rosmarinus officinalis (Lamiacea), and has been reported to exert several benefits in neuronal cells. However cholinergic-induced activities of luteolin still remain unknown. Neuronal differentiation encompasses an elaborate developmental program which plays a key role in the development of the nervous system. The advent of several cell lines, like PC12 cells, able to differentiate in culture proved to be the turning point for gaining and understanding of molecular neuroscience. In this work, we investigated the ability of luteolin to induce PC12 cell differentiation and its effect on cholinergic activities. Our findings showed that luteolin treatment significantly induced neurite outgrowth extension, enhanced acetylcholinesterase (AChE) activity, known as neuronal differentiation marker, and increased the level of total choline and acetylcholine in PC12 cells. In addition, luteolin persistently, activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; while the addition of pharmacological MEK/ERK1/2 inhibitor (U0126) and PI3k/Akt inhibitor (LY294002) attenuated luteolin-induced AChE activity and neurite outgrowth in PC12 cells. The above findings suggest that luteolin induces neurite outgrowth and enhanced cholinergic activities, at least in part, through the activation of ERK1/2 and Akt signaling.

  16. Effect of lithium on ventricular remodelling in infarcted rats via the Akt/mTOR signalling pathways.

    PubMed

    Lee, Tsung-Ming; Lin, Shinn-Zong; Chang, Nen-Chung

    2017-04-28

    Activation of phosphoinositide 3-kinase (PI3K)/Akt signalling is the molecular pathway driving physiological hypertrophy. As lithium, a PI3K agonist, is highly toxic at regular doses, we assessed the effect of lithium at a lower dose on ventricular hypertrophy after myocardial infarction (MI). Male Wistar rats after induction of MI were randomized to either vehicle or lithium (1 mmol/kg per day) for 4 weeks. The dose of lithium led to a mean serum level of 0.39 mM, substantially lower than the therapeutic concentrations (0.8-1.2 mM). Infarction in the vehicle was characterized by pathological hypertrophy in the remote zone; histologically, by increased cardiomyocyte sizes, interstitial fibrosis and left ventricular dilatation; functionally, by impaired cardiac contractility; and molecularly, by an increase of p-extracellular-signal-regulated kinase (ERK) levels, nuclear factor of activated T cells (NFAT) activity, GATA4 expression and foetal gene expressions. Lithium administration mitigated pathological remodelling. Furthermore, lithium caused increased phosphorylation of eukaryotic initiation factor 4E binding protein 1 (p-4E-BP1), the downstream target of mammalian target of rapamycin (mTOR). Blockade of the Akt and mTOR signalling pathway with deguelin and rapamycin resulted in markedly diminished levels of p-4E-BP1, but not ERK. The present study demonstrated that chronic lithium treatment at low doses mitigates pathological hypertrophy through an Akt/mTOR dependent pathway.

  17. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  18. AG and UAG induce β-casein expression via activation of ERK1/2 and AKT pathways

    PubMed Central

    Li, Sunan; Liu, Juxiong; Lv, Qingkang; Zhang, Chuan; Xu, Shiyao; Yang, Dongxue; Huang, Bingxu; Zeng, Yalong; Gao, Yingjie

    2016-01-01

    Abstract The ghrelin peptides were found to circulate in two major forms: acylated ghrelin (AG) and unacylated ghrelin (UAG). Previous studies showed that AG regulates β-casein (CSN2) expression in mammary epithelial cells. However, little is known about the mechanisms by which AG regulates CSN2 gene and protein expression. Evidence suggests that UAG has biological activity through GHSR1a-independent mechanisms. Here, we investigated the possible GHSR1a-mediated effect of UAG on the expression of CSN2 in primary bovine mammary epithelial cells (pbMECs) isolated from lactating cow. We found that both AG and UAG increase the expression of CSN2 in a dose-dependent manner in pbMECs in comparison with the control group. Increased expression of CSN2 was blocked by [D-Lys3]-GHRP-6 (an antagonist of the GHSR1a) and NF449 (a Gs-α subunit inhibitor) in pbMECs. In addition, both AG and UAG activated AKT/protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, whereas [D-Lys3]-GHRP-6 and NF449 inhibited the phosphorylation of AKT and ERK1/2 in pbMECs respectively. Blockade of ERK1/2 and AKT signaling pathways prevented the expression of CSN2 induced by AG or UAG. Finally, we found that both AG and UAG cause cell proliferation through identical signaling pathways. Taken together, these results demonstrate that both AG and UAG act on ERK1/2 and AKT signaling pathways to facilitate the expression of CSN2 in a GHSR1a-dependent manner. PMID:26873999

  19. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  20. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    SciTech Connect

    Kang, Myoung Hee; Oh, Sang Cheul; Kang, Han Na; Kim, Jung Lim; Kim, Jun Suk

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  1. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  2. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate.

  3. Lico A Enhances Nrf2-Mediated Defense Mechanisms against t-BHP-Induced Oxidative Stress and Cell Death via Akt and ERK Activation in RAW 264.7 Cells

    PubMed Central

    Lv, Hongming; Ren, Hua; Wang, Lidong; Chen, Wei; Ci, Xinxin

    2015-01-01

    Licochalcone A (Lico A) exhibits various biological properties, including anti-inflammatory and antioxidant activities. In this study, we investigated the antioxidative potential and mechanisms of Lico A against tert-butyl hydroperoxide- (t-BHP-) induced oxidative damage in RAW 264.7 cells. Our results indicated that Lico A significantly inhibited t-BHP-induced cytotoxicity, apoptosis, and reactive oxygen species (ROS) generation and reduced glutathione (GSH) depletion but increased the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit genes expression. Additionally, Lico A dramatically upregulated the antioxidant enzyme heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which were associated with inducing Nrf2 nuclear translocation, decreasing Keap1 protein expression and increasing antioxidant response element (ARE) promoter activity. Lico A also obviously induced the activation of serine/threonine kinase (Akt) and extracellular signal-regulated kinase (ERK), but PI3K/Akt and ERK inhibitors treatment displayed clearly decreased levels of LicoA-induced Nrf2 nuclear translocation and HO-1 expression, respectively. Furthermore, Lico A treatment markedly attenuated t-BHP-induced oxidative damage, which was reduced by treatment with PI3K/Akt, ERK, and HO-1 inhibitors. Therefore, Lico A might have a protective role against t-BHP-induced cytotoxicity by modulating HO-1 and by scavenging ROS via the activation of the PI3K/Akt and ERK/Nrf2 signaling pathways. PMID:26576227

  4. Lico A Enhances Nrf2-Mediated Defense Mechanisms against t-BHP-Induced Oxidative Stress and Cell Death via Akt and ERK Activation in RAW 264.7 Cells.

    PubMed

    Lv, Hongming; Ren, Hua; Wang, Lidong; Chen, Wei; Ci, Xinxin

    2015-01-01

    Licochalcone A (Lico A) exhibits various biological properties, including anti-inflammatory and antioxidant activities. In this study, we investigated the antioxidative potential and mechanisms of Lico A against tert-butyl hydroperoxide- (t-BHP-) induced oxidative damage in RAW 264.7 cells. Our results indicated that Lico A significantly inhibited t-BHP-induced cytotoxicity, apoptosis, and reactive oxygen species (ROS) generation and reduced glutathione (GSH) depletion but increased the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit genes expression. Additionally, Lico A dramatically upregulated the antioxidant enzyme heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which were associated with inducing Nrf2 nuclear translocation, decreasing Keap1 protein expression and increasing antioxidant response element (ARE) promoter activity. Lico A also obviously induced the activation of serine/threonine kinase (Akt) and extracellular signal-regulated kinase (ERK), but PI3K/Akt and ERK inhibitors treatment displayed clearly decreased levels of LicoA-induced Nrf2 nuclear translocation and HO-1 expression, respectively. Furthermore, Lico A treatment markedly attenuated t-BHP-induced oxidative damage, which was reduced by treatment with PI3K/Akt, ERK, and HO-1 inhibitors. Therefore, Lico A might have a protective role against t-BHP-induced cytotoxicity by modulating HO-1 and by scavenging ROS via the activation of the PI3K/Akt and ERK/Nrf2 signaling pathways.

  5. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    SciTech Connect

    Ohashi, Kazuya; Nagata, Yosuke; Wada, Eiji; Zammit, Peter S.; Shiozuka, Masataka; Matsuda, Ryoichi

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  6. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes

    PubMed Central

    Wang, Gang; Wang, Jun Jie; To, Tony SS; Zhao, Hua Fu; Wang, Jing

    2015-01-01

    Flavonoids, the major polyphenol components in Cotinus coggygria (CC), have been found to show an anticancer effect in our previous study; however, the exact mechanisms of inducing human glioblastoma (GBM) cell death remain to be resolved. In this study, a novel polyvinylpyrrolidone K-30/sodium dodecyl sulfate and polyethyleneglycol-coated liposome loaded with CC flavonoids (CCFs) was developed to enhance solubility and the antibrain tumor effect, and the molecular mechanism regarding how CCF nanoliposomes (CCF-NLs) induce apoptotic cell death in vitro was investigated. DBTRG-05MG GBM cell lines treated with CCF-NLs showed potential antiproliferative effects. Regarding the underlying mechanisms of inducing apoptosis in DBTRG-05MG GBM cells, CCF-NLs were shown to downregulate the expression of antiapoptotic B-cell lymphoma/leukemia 2 (Bcl-2), an apoptosis-related protein family member, but the expression of proapoptotic Bcl-2-associated X protein was enhanced compared with that in controls. CCF-NLs also inhibited the activity of caspase-3 and -9, which is the initiator caspase of the extrinsic and intrinsic apoptotic pathways. Blockade of caspase activation consistently induced apoptosis and inhibited growth in CCF-NL-treated DBTRG-05MG cells. This study further investigated the role of the Akt pathway in the apoptotic cell death by CCF-NLs, showing that CCF-NLs deactivated Akt. Specifically, CCF-NLs downregulated the expression of p-Akt and SIRT1 as well as the level of phosphorylated p53. Together, these results indicated SIRT1/p53-mediated cell death was induced by CCF-NLs, but not by extracellular signal-regulated kinase, in DBTRG-05MG cells. Overall, this study suggested caspase-dependent activation of both the intrinsic and extrinsic signaling pathways, probably through blockade of the SIRT1/p53-mediated mitochondrial and Akt pathways to exert the proapoptotic effect of CCF-NLs in DBTRG-05MG GBM cells. PMID:26345416

  7. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  8. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  9. beta1-integrin mediates asbestos-induced phosphorylation of AKT and ERK1/2 in a rat pleural mesothelial cell line.

    PubMed

    Berken, Antje; Abel, Josef; Unfried, Klaus

    2003-11-20

    Integrin-mediated signalling has been implicated in asbestos-induced carcinogenesis. In studies here, we examined signal transduction events associated with integrin-directed cell reactions triggered by crocidolite asbestos in the pleural mesothelial cell line 4/4 RM-4. Crocidolite fibres induced a significant time- and dose-dependent activation of the extracellular-signal-regulated kinases ERK1 and ERK2. ERK activation was specifically inhibited by integrin-blocking agents, that are integrin-binding peptides containing the sequence arginine-glycine-aspartic acid (RGD), and monoclonal antibodies against the integrin beta1-chain. Integrin-dependent activation of ERK1/2 in response to asbestos appeared to be independent of focal adhesion kinase pp125FAK (FAK) since FAK autophosphorylation remained unaffected in crocidolite-exposed mesothelial cells. Instead, we observed striking similarities in the kinetics of asbestos-induced ERK1/2 responses and phosphorylation of protein kinase B (AKT) at serine 473, a possible target residue for integrin-linked kinase. As with ERK activation, asbestos-induced AKT stimulation was significantly blocked by both the RGD-peptide and the beta1-integrin antibodies. These studies are the first to establish that in mesothelial cells ERK1/2 and AKT are simultaneously phosphorylated upon asbestos exposure in a beta1-integrin-dependent manner.

  10. Role of IKK-alpha in the EGFR Signaling Regulation

    DTIC Science & Technology

    2014-09-01

    2002) (Huber et al., 2005). To date, several transcriptional repressors, such as Zeb-1/2, Twist1, and Snail -1/2, are known to be involved in EMT...nature of AKT1 in the EMT, we asked whether AKT1 represses EMT via the regulation of EMT mediators, such as Twist1, FOXC2, E12, and Snail . To do this...we transiently transfected HEK-293T cells with HA-myr-AKT1 together with Flag-Twist1, Flag- Snail , Flag-FOXC2, or Flag-E12 and investigated the

  11. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K/Akt

  12. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation.

    PubMed

    Potočnjak, Iva; Domitrović, Robert

    2016-12-01

    We investigated the mechanisms of renoprotective effects of carvacrol, a monoterpenoid compound, against cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 1, 3, and 10 mg carvacrol/kg body weight for two days, 48 h after intraperitoneal injection of CP (13 mg/kg). Four days after CP administration, renal oxidative stress was evidenced by increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), cytochrome P450 E1 (CYP2E1), and heme oxygenase-1 (HO-1). CP treatment increased the expression of phosphorylated nuclear factor-kappaB (p-NF-κB) p65 and tumor necrosis factor-alpha (TNF-α) in kidneys, suggesting inflammatory response. CP intoxication induced apoptosis and inhibition of the cell cycle in kidneys by increasing the expression of p53 and Bax and suppressing Bcl-2 and cyclin D1 expression. Concomitant increase in p21 and proliferating cell nuclear antigen (PCNA) expression suggested enhanced DNA repair process. CP administration also resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) with concomitant induction of phosphorylated Akt and suppression of phosphatase and tensin homolog (PTEN) expression. All these changes were dose-dependently restored by carvacrol. The results of the current study suggest that carvacrol could attenuate CP-induced acute renal injury by suppressing oxidative stress, apoptosis, and inflammation through modulation of the ERK and PI3K/Akt pathways.

  13. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation

    PubMed Central

    Saegusa, Jun; Hsu, Daniel K.; Liu, Wei; Kuwabara, Ichiro; Kuwabara, Yasuko; Yu, Lan; Liu, Fu-Tong

    2009-01-01

    Keratinocytes undergo apoptosis in a variety of physiological and pathological conditions. Galectin-3 is a member of a family of β-galactoside-binding animal lectins expressed abundantly in keratinocytes and other epithelial cells. Here we have studied the regulatory role of galectin-3 in keratinocyte apoptosis by using cells from gene-targeted galectin-3 null (gal3−/−) mice. We showed that galectin-3 mRNA was transiently upregulated in ultraviolet-B (UVB)-irradiated wild-type keratinocytes. We found that gal3−/− keratinocytes were significantly more sensitive to apoptosis induced by UVB as well as various other stimuli, both in vitro and in vivo, than wild-type cells. Moreover, we demonstrated that increased apoptosis in gal3−/− keratinocytes was attributable to higher extracellular signal-regulated kinase (ERK) activation and lower AKT activation after UVB irradiation. We conclude that endogenous galectin-3 is an anti-apoptotic molecule in keratinocytes functioning by suppressing ERK activation and enhancing AKT activation and may play a role in the development of apoptosis-related skin diseases. PMID:18463681

  14. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway.

    PubMed

    Leoncini, Emanuela; Malaguti, Marco; Angeloni, Cristina; Motori, Elisa; Fabbri, Daniele; Hrelia, Silvana

    2011-09-01

    The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents.

  15. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  16. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages.

    PubMed

    Nagendran, Monica; Arora, Prateek; Gori, Payal; Mulay, Aditya; Ray, Shinjini; Jacob, Tressa; Sonawane, Mahendra

    2015-01-15

    The patterning and morphogenesis of body appendages - such as limbs and fins - is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage - the median fin in zebrafish - as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins - evolutionarily recent appendages that are homologous to tetrapod limbs.

  17. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex

    PubMed Central

    Peyre, Elise; Silva, Carla G.; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769

  18. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Lee, Lin-Wen; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism. PMID:25114952

  19. SIX1 overexpression predicts poor prognosis and induces radioresistance through AKT signaling in esophageal squamous cell carcinoma

    PubMed Central

    He, Zheng; Li, Guang; Tang, Lingrong; Li, Yaming

    2017-01-01

    The Sineoculis homeobox homolog 1 (SIX1) protein has been found to be overexpressed in several human cancers. However, its expression pattern and biological roles in esophageal squamous cell carcinoma (ESCC) remain unexplored. This study examined the clinical significance of SIX1 in 119 ESCC tissues. It was found that SIX1 protein was upregulated in 36.9% (44/119) cases. SIX1 overexpression was an independent predictor for short survival of ESCC patients. siRNA knockdown and plasmid transfection were carried out in ESCC cell lines. SIX1 depletion inhibited cell growth, invasion, and colony formation, whereas its overexpression facilitated in vivo and in vitro cell growth, invasion, and colony formation. The apoptosis rate induced by X-ray irradiation was substantially increased by SIX1 knockdown in Eca-109 cells. Ectopic overexpression of SIX1 in TE-1 cells dramatically enhanced resistance to irradiation. Western blot analysis showed that SIX1 depletion downregulated cyclin E, matrix metalloproteinase-2 (MMP-2), Bcl-2 expression and upregulated Bim expression. SIX1 overexpression exhibited the opposite effect on these proteins. In addition, it was found that SIX1 could positively regulate extracellular signal-regulated kinase (ERK) and AKT signaling pathway. ERK inhibitor abolished the effect of SIX1 on MMP-2 expression. AKT inhibitor treatment blocked the role of SIX1 on anti-apoptotic protein Bcl-2. In conclusion, this study demonstrates that SIX1 overexpression predicts poor survival in ESCC patients and confers radioresistance through activation of AKT signaling pathways. PMID:28260921

  20. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    SciTech Connect

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  1. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  2. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    PubMed

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  3. Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes.

    PubMed

    Kim, Ah-Reum; Yoon, Bo Kyung; Park, Hyounkyoung; Seok, Jo Woon; Choi, Hyeonjin; Yu, Jung Hwan; Choi, Yoonjeong; Song, Su Jin; Kim, Ara; Kim, Jae-Woo

    2016-02-01

    Caffeine has been proposed to have several beneficial effects on obesity and its related metabolic diseases; however, how caffeine affects adipocyte differentiation has not been elucidated. In this study, we demonstrated that caffeine suppressed 3T3-L1 adipocyte differentiation and inhibited the expression of CCAAT/enhancer binding protein (C/EBP)α and peroxisome proliferator-activated receptor (PPAR)γ, two main adipogenic transcription factors. Anti-adipogenic markers, such as preadipocyte secreted factor (Pref)-1 and Krüppel-like factor 2, remained to be expressed in the presence of caffeine. Furthermore, 3T3-L1 cells failed to undergo typical mitotic clonal expansion in the presence of caffeine. Investigation of hormonal signaling revealed that caffeine inhibited the activation of AKT and glycogen synthase kinase (GSK) 3 in a dose-dependent manner, but not extracellular signal-regulated kinase (ERK). Our data show that caffeine is an anti-adipogenic bioactive compound involved in the modulation of mitotic clonal expansion during adipocyte differentiation through the AKT/GSK3 pathway. [BMB Reports 2016; 49(2): 111-115].

  4. DNA synthesis during endomitosis is stimulated by insulin via the PI3K/Akt and TOR signaling pathways in the silk gland cells of Bombyx mori.

    PubMed

    Li, Yaofeng; Chen, Xiangyun; Tang, Xiaofang; Zhang, Chundong; Wang, La; Chen, Peng; Pan, Minhui; Lu, Cheng

    2015-03-18

    Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU) labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K)/Akt, the target of rapamycin (TOR) and the extracellular signal-regulated kinase (ERK) pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  5. Metastasis and AKT activation.

    PubMed

    Sheng, Shijie; Qiao, Meng; Pardee, Arthur B

    2009-03-01

    Metastasis, responsible for 90% of cancer patient deaths, is an inefficient process because many tumor cells die. The survival of metastatic tumor cells should be considered as a critical therapeutic target. This review provides a new perspective regarding the role of AKT in tumor survival, and the rationale to target AKT in anti-metastasis therapies.

  6. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    SciTech Connect

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  7. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  8. WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets

    PubMed Central

    Suzuki, Akiko; Pelikan, Richard C.

    2015-01-01

    Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules. PMID:25755281

  9. WNT/β-Catenin Signaling Regulates Multiple Steps of Myogenesis by Regulating Step-Specific Targets.

    PubMed

    Suzuki, Akiko; Pelikan, Richard C; Iwata, Junichi

    2015-05-01

    Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber's cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.

  10. Antiangiogenic effects of indole-3-carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC.

    PubMed

    Kunimasa, Kazuhiro; Kobayashi, Tomomi; Kaji, Kazuhiko; Ohta, Toshiro

    2010-01-01

    We previously reported that indole-3-carbinol (I3C), found in cruciferous vegetables, suppresses angiogenesis in vivo and in vitro. However, the underlying molecular mechanisms still remain unclear. Antiangiogenic effects of its major metabolite, 3,3'-diindolylmethane (DIM), also have not been fully elucidated. In this study, we investigated the effects of these indoles on angiogenesis and tested a hypothesis that I3C and DIM inhibit angiogenesis and induce apoptosis by affecting angiogenic signal transduction in human umbilical vein endothelial cells (HUVEC). We found that I3C and DIM at 25 micromol/L significantly inhibited tube formation and only DIM induced a significant increase in apoptosis in tube-forming HUVEC. DIM showed a stronger antiangiogenic activity than I3C. At the molecular level, I3C and DIM markedly inactivated extracellular signal-regulated kinase 1/2 (ERK1/2) and the inhibitory effect of DIM was significantly greater than that of I3C. DIM treatment also resulted in activation of the caspase pathway and inactivation of Akt, whereas I3C did not affect them. These results indicate that I3C and DIM had a differential potential in the regulation of the 2 principal survival signals, ERK1/2 and Akt, in endothelial cells. We also demonstrated that pharmacological inhibition of ERK1/2 and/or Akt was enough to inhibit tube formation and induce caspase-dependent apoptosis in tube-forming HUVEC. We conclude that both I3C and DIM inhibit angiogenesis at least in part via inactivation of ERK1/2 and that inactivation of Akt by DIM is responsible for its stronger antiangiogenic effects than those of I3C.

  11. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis.

    PubMed

    Shih, Yuan-Wei; Shieh, Jiunn-Min; Wu, Pei-Fen; Lee, Yi-Chieh; Chen, Yi-Zhi; Chiang, Tai-An

    2009-08-01

    This study first investigates the anti-metastatic effect of alpha-tomatine in the human lung adenocarcinoma cell line: A549. In this study, we first noted alpha-tomatine inhibited A549 cells invasion and migration by wound-healing assay and Boyden chamber assay. The data also showed alpha-tomatine could inhibit phosphorylation of Akt and extracellular signal-regulated kinase 1 and 2 (ERK1/2), which is involved in the up-regulating matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) or urokinase-type plasminogen activator (u-PA), whereas it did not affect phosphorylation of c-Jun N-terminal kinase (JNK) and p38. Next, alpha-tomatine significantly decreased the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, treating A549 cells with alpha-tomatine also leads to a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1). Further, the treatment of inhibitors specific for PI3K (Wortmannin) or ERK (U0126) to A549 cells could cause reduced activities of MMP-2, MMP-9, and u-PA. These results showed alpha-tomatine could inhibit the metastatic ability of A549 cells by reducing MMP-2, MMP-9, and u-PA activities through suppressing phosphoinositide 3-kinase/Akt (PI3K/Akt) or ERK1/2 signaling pathway and inhibition NF-kappaB or AP-1 binding activities. These findings proved alpha-tomatine might be an anti-metastatic agent against human lung adenocarcinoma.

  12. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  13. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Jung, Hee Jin; Min, Byung-Sun; Choi, Ran Joo; Kim, Gun-Do; Jung, Hyun Ah

    2015-12-01

    It has been reported that alkaloids derived from Coptis chinensis exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the inhibitory role of epiberberine in the early stages of 3T3-L1 adipocyte differentiation is uncharacterized. Here, we show that epiberberine had inhibitory effects on adipocyte differentiation and significantly decreased lipid accumulation by downregulating an adipocyte-specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1). Furthermore, we observed that epiberberine markedly suppressed the differentiation-mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly inhibited by treatment with epiberberine during adipogenesis. These results indicate that the anti-adipogenic mechanism of epiberberine is associated with inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of adipogenesis, such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the anti-adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 adipocyte differentiation. Moreover, the anti-adipogenic effects of epiberberine were not accompanied by modulation of β-catenin.

  14. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-10

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.

  15. Lipid rafts as major platforms for signaling regulation in cancer.

    PubMed

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  16. Role of IKK-alpha in EGFR Signaling Regulation

    DTIC Science & Technology

    2013-09-01

    resveratrol to induce β-TrCP mediated Twist1 degradation. B as al P=0.2077 -1.0 -0.5 0.0 0.5 1.0 1.5 AKT Lo g2 M ed ia n- C en te re d In te ns ity...Twist1 H 1.0 0.8 0.6 0.4 0.2 0 Tw is t1 E xp re ss io n 25- 50- Twist1 β-TrCP 50- MDA-MB-468 Cyclin D1 50- Tubulin 0 25 50 10 0 CG TG Resveratrol 0 25...2206 Mock Resveratrol Resveratrol Resveratrol 25-Twist1 25- 0 5 10 15 20 25 30 0 20 40 60 80 100 120

  17. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  18. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  19. A Novel Compound Rasatiol Isolated from Raphanus sativus Has a Potential to Enhance Extracellular Matrix Synthesis in Dermal Fibroblasts

    PubMed Central

    Roh, Seok-Seon; Park, Seung-Bae; Park, Seong-Mo; Choi, Byoung Wook; Lee, Min-Ho; Hwang, Yul-Lye; Kim, Chang Hun; Jeong, Hyun-Ah; Kim, Chang Deok

    2013-01-01

    Background The fibrous proteins of extracellular matrix (ECM) produced by dermal fibroblast contributes to the maintenance of connective tissue integrity. Objective This study is carried out to identify the bioactive ingredient from natural products that enhances ECM production in dermal fibroblasts. Methods Bioassay-directed fractionation was used to isolate the active ingredient from natural extracts. The effects of rasatiol (isolated from Raphanus sativus) on ECM production in primary cultured human dermal fibroblasts was investigated by enzyme linked immunosorbent assay and western blot analysis. Results Rasatiol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen, fibronectin and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was remarkably increased by rasatiol, indicating that enhanced ECM production is linked to the activation of intracellular signaling cascades. Conclusion These results indicate that rasatiol stimulates the fibrous components of ECM production, and may be applied to the maintenance of skin texture. PMID:24003274

  20. miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells

    PubMed Central

    Li, Xuyan; Zhang, Zhenwu; Li, Yunchao; Zhao, Yicheng; Zhai, Wenjun; Yang, Lin; Kong, Delin; Wu, Chunyan; Chen, Zhenbao; Teng, Chun-Bo

    2017-01-01

    Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK). PMID:28332553

  1. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling

    PubMed Central

    YAN, KUN-HUANG; YAO, CHIH-JUNG; HSIAO, CHI-HAO; LIN, KE-HSUN; LIN, YUNG-WEI; WEN, YU-CHING; LIU, CHUNG-CHI; YAN, MING-DE; CHUANG, SHUANG-EN; LAI, GI-MING; LEE, LIANG-MING

    2013-01-01

    Mefloquine (MQ) is a prophylactic anti-malarial drug. Previous studies have shown that MQ induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cells. This study investigated whether MQ also inhibits prostate cancer (PCa) cell growth. We used sulforhodamine B (SRB) staining to determine cell viability. MQ has a highly selective cytotoxicity that inhibits PCa cell growth. The antitumor effect was most significant when examined using a colony formation assay. MQ also induces hyperpolarization of the mitochondrial membrane potential (MMP), as well as ROS generation. The blockade of MQ-induced anticancer effects by N-acetyl cysteine (NAC) pre-treatment confirmed the role of ROS. This indicates that the MQ-induced anticancer effects are caused primarily by increased ROS generation. Moreover, we observed that MQ-mediated ROS simultaneously downregulated Akt phosphorylation and activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and adenosine monophosphate-activated protein kinase (AMPK) signaling in PC3 cells. These findings provide insights for further anticancer therapeutic options. PMID:23760395

  2. (-)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways.

    PubMed

    Kim, Hyojung; Sakamoto, Kazuichi

    2012-02-01

    EGCG [(-)-epigallocatechin gallate], tea catechin, is one of the compounds that has been reported to act against obesity and diabetes. To determine the effect of EGCG on adipocyte differentiation, we treated 3T3-L1 preadipocytes with different catechins. Oil Red O staining showed significantly reduced intracellular lipid accumulation, especially with EGCG. Cell cycle analysis showed that EGCG inhibited cell proliferation by disturbing the cell cycle during the clonal expansion of 3T3-L1. RT-PCR (real-time PCR) demonstrated that EGCG noticeably reduced mRNA expression of PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α) and FoxO1 (forkhead box class O1). EGCG also caused a significant decrease in the transcription of FoxO1 - the forkhead transcription factor class O1 involved in adipocyte differentiation - via the PI3K (phosphoinositide 3-kinase)/Akt and MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathways. These results suggest that EGCG suppresses the clonal expansion of adipocytes by inactivating FoxO1 via insulin signalling and stress-dependent MAPK pathways.

  3. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  4. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    SciTech Connect

    Yonezawa, Tomo Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.

  5. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    SciTech Connect

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  6. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.

  7. Bisdemethoxycurcumin protects endothelial cells against t-BHP-induced cell damage by regulating the phosphorylation level of ERK1/2 and Akt.

    PubMed

    Li, Ying-Bo; Gao, Jian-Li; Lee, Simon Ming-Yuen; Zhang, Qing-Wen; Hoi, Pui-Man; Wang, Yi-Tao

    2011-02-01

    Curcuminoids are the major active components extracted from Curcuma longa and are well known for their antioxidant effects. Previous studies have reported that the antioxidant properties of curcuminoids are mainly attributed to their free radical scavenging abilities. However, whether there are other mechanisms besides the non-enzymatic process and how they are involved, still remains unknown. In the present study, we explored the protective effects of bisdemethoxycurcumin (Cur3) against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs), focusing on the effect of Cur3 on the regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways. The pre-treatment with Cur3 inhibited t-BHP-induced cell damage dose-dependently, which was evident by the increased cell viability and the corresponding decrease in lactate dehydrogenase release. The pre-treatment with Cur3 also attenuated t-BHP-induced cell morphological changes and apoptosis. MAPKs, including p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase 1/2 (ERK1/2), as well as PI3K/Akt have been reported to be involved in proliferation, apoptosis and differentiation under various stress stimulations. The pre-treatment with Cur3 decreased t-BHP-induced ERK1/2 phosphorylation and increased t-BHP-induced Akt phosporylation but did not affect the phosphorylation of p38 or JNK. In addition, the Cur3-induced increase in cell viability was attenuated by the treatment with wortmannin or LY294002, the upstream inhibitors of Akt, and was enhanced by the treatment with 2-[2'-amino-3'-methoxyphenyl]-oxanaphthalen-4-one (PD98059), an upstream inhibitor of ERK1/2. These results suggest that the ERK1/2 and PI3K/Akt signaling pathways could be involved in the protective effects of Cur3 against t-BHP-induced damage in HUVECs.

  8. Metastasis and AKT activation.

    PubMed

    Qiao, Meng; Sheng, Shijie; Pardee, Arthur B

    2008-10-01

    Metastasis is responsible for 90% of cancer patient deaths. More information is needed about the molecular basis for its potential detection and treatment. The activated AKT kinase is necessary for many events of the metastatic pathway including escape of cells from the tumor's environment, into and then out of the circulation, activation of proliferation, blockage of apoptosis, and activation of angiogenesis. A series of steps leading to metastatic properties can be initiated upon activation of AKT by phosphorylation on Ser-473. These findings lead to the question of how this activation is connected to metastasis. Activated AKT phosphorylates GSK-3beta causing its proteolytic removal. This increases stability of the negative transcription factor SNAIL, thereby decreasing transcription of the transmembrane protein E-cadherin that forms adhesions between adjacent cells, thereby permitting their detachment. How is AKT hyperactivated in metastatic cells? Increased PI3K or TORC2 kinase activity- or decreased PHLPP phosphatase could be responsible. Furthermore, a positive feedback mechanism is that the decrease of E-cadherin lowers PTEN and thereby increases PIP3, further activating AKT and metastasis.

  9. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  10. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Jin, Kyong-Suk; Lee, Yong-Woo; Song, Young Sun

    2011-06-25

    Synergistic anti-inflammatory effects of luteolin and chicoric acid, two abundant constituents of the common dandelion (Taraxacum officinale Weber), were investigated in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Co-treatment with luteolin and chicoric acid synergistically reduced cellular concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) and also inhibited expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, co-treatment reduced the levels of proinflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Both luteolin and chicoric acid suppressed oxidative stress, but they did not exhibit any synergistic activity. Luteolin and chicoric acid co-treatment inhibited phosphorylation of NF-κB and Akt, but had no effect on extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. This anti-inflammatory signaling cascade coincides with that affected by luteolin treatment alone. These results suggest that luteolin plays a central role in ameliorating LPS-induced inflammatory cascades via inactivation of the NF-κB and Akt pathways, and that chicoric acid strengthens the anti-inflammatory activity of luteolin through NF-κB attenuation.

  11. Integrin signalling regulates YAP and TAZ to control skin homeostasis

    PubMed Central

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I.; Spencer-Dene, Bradley; Stone, Richard K.; Boeing, Stefan; Wculek, Stefanie K.; Cordero, Julia; Tan, Ee H.; Ridgway, Rachel; Brunton, Val G.; Sahai, Erik; Gerhardt, Holger; Behrens, Axel; Malanchi, Ilaria; Sansom, Owen J.; Thompson, Barry J.

    2016-01-01

    ABSTRACT The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib. PMID:26989177

  12. Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium

    PubMed Central

    Kerr, Bethany A.; West, Xiaoxia Z.; Kim, Young-Woong; Zhao, Yongzhong; Tischenko, Miroslava; Cull, Rebecca M.; Phares, Timothy W.; Peng, Xiao-Ding; Bernier-Latmani, Jeremiah; Petrova, Tatiana V.; Adams, Ralf H.; Hay, Nissim; Naga Prasad, Sathyamangla V.; Byzova, Tatiana V.

    2016-01-01

    The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function. PMID:26971877

  13. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation.

    PubMed

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon D; Kapur, Reuben; Ingram, David A

    2014-01-01

    Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation.

  14. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  15. Tocotrienol suppresses adipocyte differentiation and Akt phosphorylation in 3T3-L1 preadipocytes.

    PubMed

    Uto-Kondo, Harumi; Ohmori, Reiko; Kiyose, Chikako; Kishimoto, Yoshimi; Saito, Hisako; Igarashi, Osamu; Kondo, Kazuo

    2009-01-01

    In vivo studies show that alpha-tocotrienol and gamma-tocotrienol accumulate in adipose tissue. Furthermore, a recent study reports that the oral administration of gamma-tocotrienol from a tocotrienol-rich fraction from palm oil (TRF) decreases body fat levels in rats. The objective of this study was to evaluate the effect of TRF and its components on adipocyte differentiation in 3T3-L1 preadipocytes, which differentiated into adipocytes in the presence of 1.8 micromol/L insulin. TRF suppressed the insulin-induced mRNA expression of adipocyte-specific genes such as PPARgamma, adipocyte fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha) compared with the differentiation of 3T3-L1 preadipocytes into adipocytes only in the presence of insulin. To confirm the suppressive effect of TRF, the major components of TRF, such as alpha-tocotrienol, gamma-tocotrienol, and alpha-tocopherol, were investigated. Alpha-tocotrienol and gamma-tocotrienol decreased the insulin-induced PPARgamma mRNA expression by 55 and 90%, respectively, compared with insulin, whereas alpha-tocopherol increased the mRNA expression. In addition, gamma-tocotrienol suppressed the insulin-induced aP2 and C/EBPalpha mRNA expression, triglyceride accumulation, and PPARgamma protein levels compared with insulin. The current results also revealed that gamma-tocotrienol inhibited the insulin-stimulated phosphorylation of Akt but not extracellular signal-regulated kinase (ERK)1/2 in the insulin signaling pathway of 3T3-L1 preadipocytes. Thus, the antiadipogenic effect of TRF depends on alpha-tocotrienol and gamma-tocotrienol, and gamma-tocotrienol may be a more potent inhibitor of adipogenesis than alpha-tocotrienol. Therefore, the results of this study suggest that tocotrienol suppresses insulin-induced differentiation and Akt phosphorylation in 3T3-L1 preadipocytes. Furthermore, tocotrienol could act as an antiadipogenic vitamin in the nutrient-mediated regulation of body

  16. The adenosine A3 receptor agonist Cl-IB-MECA induces cell death through Ca²⁺/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells.

    PubMed

    Kim, Thae Hyun; Kim, Yong Keun; Woo, Jae Suk

    2012-12-01

    Adenosine A(3) receptor (A3AR) is coupled to G proteins that are involved in a variety of intracellular signaling pathways and physiological functions. 2-Chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methylcarboxamide (Cl-IB-MECA), an agonist of A3AR, has been reported to induce cell death in various cancer cells. However, the effect of CI-IB-MECA on glioma cell growth is not clear. This study was undertaken to examine the effect of CI-IB-MECA on glioma cell viability and to determine its molecular mechanism. CI-IB-MECA inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Treatment of CI-IB-MECA resulted in an increase in intracellular Ca(2+) followed by enhanced reactive oxygen species (ROS) generation. EGTA and N-acetylcysteine (NAC) blocked the cell death induced by CI-IB-MECA, suggesting that Ca(2+) and ROS are involved in the Cl-IB-MECA-induced cell death. Western blot analysis showed that CI-IB-MECA induced the down-regulation of extracellular signal-regulated kinases (ERK) and Akt, which was prevented by EGTA, NAC, and the A3AR antagonist MRS1191. Transfection of constitutively active forms of MEK, the upstream kinase of ERK, and Akt prevented the cell death. CI-IB-MECA induced caspase-3 activation and the CI-IB-MECA-induced cell death was blocked by the caspase inhibitors DEVD-CHO and z-VAD-FMK. In addition, expression of XIAP and Survivin were decreased in cells treated with Cl-IB-MECA. Collectively, these findings demonstrate that CI-IB-MECA induce a caspase-dependent cell death through suppression of ERK and Akt mediated by an increase in intracellular Ca(2+) and ROS generation in human glioma cells. These suggest that A3AR agonists may be a potential therapeutic agent for induction of apoptosis in human glioma cells.

  17. Inhibitory Effects of Hwangryunhaedok-Tang in 3T3-L1 Adipogenesis by Regulation of Raf/MEK1/ERK1/2 Pathway and PDK1/Akt Phosphorylation

    PubMed Central

    Lee, Ji-Hye; Kim, Dong-Gun; Kim, Taesoo; Lee, Kwang Jin; Ma, Jin Yeul

    2013-01-01

    Hwangryunhaedok-tang (HRT) has been long used as traditional medicine in Asia. However, inhibitory role of HRT is unclear in early stage of 3T3-L1 adipocyte differentiation related to signaling. In the present study, we investigated the inhibitory effects of HRT on upstream signaling of peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-β (C/EBP-β) expression in differentiation of 3T3-L1 preadipocytes. We found that HRT significantly inhibited the adipocyte differentiation by downregulating several adipocyte-specific transcription factors including PPAR-γ, C/EBP-α, and C/EBP-β in 3T3-L1 preadipocytes. Furthermore, we observed that HRT markedly inhibited the differentiation media-mediated phosphorylation of Raf/extracellular mitogen-activated protein kinase 1 (MEK1)/signal-regulated protein kinase 1/2 (ERK1/2) and phosphorylation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. These results indicate that anti-adipogenesis mechanism involves the downregulation of the major transcription factors of adipogenesis including PPAR-γ and C/EBP-α through inhibition of Raf/MEK1/ERK1/2 phosphorylation and PDK1/Akt phosphorylation by HRT. Furthermore, high performance liquid chromatography (HPLC) analysis showed HRT contains active antiobesity constituents such as palmatine, berberine, geniposide, baicalin, baicalein, and wogonin. Taken together, this study suggested that anti-adipogenesis effects of HRT were accounted by downregulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt pathway during 3T3-L1 adipocyte differentiation. PMID:23762131

  18. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    SciTech Connect

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  19. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle.

    PubMed

    Sakamoto, Kei; Arnolds, David E W; Ekberg, Ingvar; Thorell, Anders; Goodyear, Laurie J

    2004-06-25

    Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity ( approximately 30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21). Exercise at both intensities also decreased beta-catenin Ser(33/37)Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle.

  20. RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction

    PubMed Central

    Zhong, Jian

    2016-01-01

    In postmitotic neurons, the activation of RAS family small GTPases regulates survival, growth and differentiation. Dysregulation of RAS or its major effector pathway, the cascade of RAF-, mitogen-activated and extracellular-signal regulated kinase kinases (MEK), and extracellular-signal regulated kinases (ERK) causes the Rasopathies, a group of neurodevelopmental disorders whose pathogenic mechanisms are the subject of intense research. I here summarize the functions of RAS – RAF – MEK – ERK signaling in neurons in vivo, and discuss perspectives for harnessing this pathway to enable novel treatments for nervous system injury, the Rasopathies, and possibly other neurological conditions. PMID:26760308

  1. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells

    PubMed Central

    DING, GUOLIANG; ZHAO, JIANQUAN; JIANG, DIANMING

    2016-01-01

    Osteoporosis is a disease of the skeleton that is characterized by the loss of bone mass and degeneration of bone microstructure, resulting in an increased risk of fracture. Oxidative stress, which is known to promote oxidative damage to mitochondrial function and also cell apoptosis, has been recently indicated to be implicated in osteoporosis. However, there are few agents that counteract oxidative stress in osteoporosis. In the present study, the protective effects of allicin against the oxidative stress-induced mitochondrial dysfunction and apoptosis were investigated in murine osteoblast-like MC3T3-E1 cells. The results demonstrated that allicin counteracted the reduction of cell viability and induction of apoptosis caused by hydrogen peroxide (H2O2) exposure. The inhibition of apoptosis by allicin was confirmed by the inhibition of H2O2-induced cytochrome c release and caspase-3 activation. Moreover, the inhibition of apoptosis by allicin was identified to be associated with the counteraction of H2O2-induced mitochondrial dysfunction. In addition, allicin was demonstrated to be able to significantly ameliorate the repressed phosphoinositide 3-kinase (PI3K)/AKT and cyclic adenosine monophosphate response element-binding protein (CREB)/extracellular-signal-regulated kinase (ERK) signaling pathways by H2O2, which may also be associated with the anti-oxidative stress effects of allicin. In conclusion, allicin protects osteoblasts from H2O2-induced oxidative stress and apoptosis in MC3T3-E1 cells by improving mitochondrial function and the activation of PI3K/AKT and CREB/ERK signaling. The present study implies a promising role of allicin in oxidative stress-associated osteoporosis. PMID:27284348

  2. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  3. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    SciTech Connect

    El-Mas, Mahmoud M. Abdel-Rahman, Abdel A.

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max}) and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.

  4. Insulin as a Potent Stimulator of Akt, ERK and Inhibin-βE Signaling in Osteoblast-Like UMR-106 Cells

    PubMed Central

    Ramalingam, Mahesh; Kwon, Yong-Dae; Kim, Sung-Jin

    2016-01-01

    Insulin is a peptide hormone of the endocrine pancreas and exerts a wide variety of physiological actions in insulin sensitive tissues, such as regulation of glucose homeostasis, cell growth, differentiation, learning and memory. However, the role of insulin in osteoblast cells remains to be fully characterized. In this study, we demonstrated that the insulin (100 nM) has the ability to stimulate the phosphorylation of protein kinase B (Akt/PKB) and extracellular signal-regulated kinase (ERK) and the levels of inhibin-βE in the osteoblast-like UMR-106 cells. This insulin-stimulated activities were abolished by the PI3K and MEK1 inhibitors LY294002 and PD98059, respectively. This is the first report proving that insulin is a potential candidate that enables the actions of inhibin-βE subunit of the TGF-β family. The current investigation provides a foundation for the realization of insulin as a potential stimulator in survival signaling pathways in osteoblast-like UMR-106 cells. PMID:27302964

  5. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines

    PubMed Central

    Prasad, Anil; Khudaynazar, Nagina; Tantravahi, Ramana V.; Gillum, Amanda M.; Hoffman, Benjamin S.

    2016-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is characterized by high morbidity and mortality. Treatment failure, drug resistance and chemoradiation toxicity have necessitated the development of alternative treatment strategies. Styryl benzyl sulfones, a family of novel small molecule inhibitors, are being evaluated as anti-neoplastic agents in multiple clinical trials. The activity of these compounds has been well characterized in several preclinical tumor studies, but their activity has yet to be fully examined in HNSCC. We tested ON 01910.Na (rigosertib), a styryl benzyl sulfone in late-stage development, in HNSCC preclinical models. Rigosertib induced cytotoxicity in both HPV(+) and HPV(−) HNSCC cells in a dose-dependent manner. Characterization of the underlying molecular mechanism indicated that rigosertib induced inhibition of the PI3K/Akt/mTOR pathway, induced oxidative stress resulting in increased generation of reactive oxygen species (ROS), and activated extracellular signal-regulated kinases (ERK1/2) and c-Jun NH2-terminal kinase (JNK). Increased phosphorylation and cytoplasmic translocation of ATF-2 were also observed following rigosertib treatment. These changes in cell signaling led us to consider combining rigosertib with HNSCC standard-of-care therapies, such as cisplatin and radiation. Our study highlights the promising preclinical activity of rigosertib in HNSCC irrespective of HPV status and provides a molecular basis for rigosertib in combination with standard of care agents for HNSCC. PMID:27764820

  6. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation

    PubMed Central

    Liang, Yuan-Ke; Chen, Wei-Ling; Zhang, Fan; Bai, Jing-Wen; Qiu, Si-Qi; Du, Cai-Wen; Huang, Wen-He; Zhang, Guo-Jun

    2015-01-01

    Overexpression of Twist, a highly conserved basic helix-loop-helix transcription factor, is associated with epithelial-mesenchymal transition (EMT) and predicts poor prognosis in various kinds of cancers, including breast cancer. In order to further clarify Twist’s role in breast cancer, we detected Twist expression in breast cancer tissues by immunohistochemistry. Twist expression was observed in 54% (220/408) of breast cancer patients and was positively associated with tumor size, Ki67, VEGF-C and HER2 expression. Conversely, Twist was negatively associated with estrogen receptor (ER), progesterone receptor (PgR) and E-cadherin expression. Patients with Twist expression had a poorer prognosis for 30-month disease free survival (DFS) (82.9%) than patients with negative Twist (92.3%). Overexpression of Twist led to dramatic changes in cellular morphology, proliferation, migratory/invasive capability, and expression of EMT-related biomarkers in breast cancer cells. Moreover, we show that Twist serves as a driver of tumorigenesis, as well as an inducer of EMT, at least in part, through activation of the Akt and extracellular signal-regulated protein kinase (ERK) pathways which are critical for Twist-mediated EMT. Our results demonstrate that Twist expression is an important prognostic factor in breast cancer patients. PMID:26295469

  7. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    PubMed

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  8. Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation.

    PubMed

    Liu, Xiangyuan; Chen, Min; Li, Long; Gong, Liyan; Zhou, Hu; Gao, Daming

    2017-03-10

    Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process.

  9. Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3

    SciTech Connect

    Sun Maoyun; Wei Yuanyan; Yao Luyang; Xie Jianhui; Chen Xiaoning; Wang Hanzhou; Jiang Jianhai; Gu Jianxin . E-mail: jxgu@shmu.edu.cn

    2006-02-03

    Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation.

  10. Dehydroepiandrosterone Stimulates Endothelial Proliferation and Angiogenesis through Extracellular Signal-Regulated Kinase 1/2-Mediated Mechanisms

    PubMed Central

    Liu, Dongmin; Iruthayanathan, Mary; Homan, Laurie L.; Wang, Yiqiang; Yang, Lingling; Wang, Yao; Dillon, Joseph S.

    2008-01-01

    Dehydroepiandrosterone (DHEA) activates a plasma membrane receptor on vascular endothelial cells and phosphorylates ERK 1/2. We hypothesize that ERK1/2-dependent vascular endothelial proliferation underlies part of the beneficial vascular effect of DHEA. DHEA (0.1–10 nm) activated ERK1/2 in bovine aortic endothelial cells (BAECs) by 15 min, causing nuclear translocation of phosphorylated ERK1/2 and phosphorylation of nuclear p90 ribosomal S6 kinase. ERK1/2 phosphorylation was dependent on plasma membrane-initiated activation of Gi/o proteins and the upstream MAPK kinase because the effect was seen with albumin-conjugated DHEA and was blocked by pertussis toxin or PD098059. A 15-min incubation of BAECs with 1 nm DHEA (or albumin-conjugated DHEA) increased endothelial proliferation by 30% at 24 h. This effect was not altered by inhibition of estrogen or androgen receptors or nitric oxide production. There was a similar effect of DHEA to increase endothelial migration. DHEA also increased the formation of primitive capillary tubes of BAECs in vitro in solubilized basement membrane. These rapid DHEA-induced effects were reversed by the inhibition of either Gi/o-proteins or ERK1/2. Additionally, DHEA enhanced angiogenesis in vivo in a chick embryo chorioallantoic membrane assay. These findings indicate that exposure to DHEA, at concentrations found in human blood, causes vascular endothelial proliferation by a plasma membrane-initiated activity that is Gi/o and ERK1/2 dependent. These data, along with previous findings, define an important vascular endothelial cell signaling pathway that is activated by DHEA and suggest that this steroid may play a role in vascular function. PMID:18079198

  11. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression

    PubMed Central

    Henderson, Veronica; Smith, Basil; Burton, Liza J; Randle, Diandra; Morris, Marisha; Odero-Marah, Valerie A

    2015-01-01

    Snail, a zinc-finger transcription factor, induces epithelial-mesenchymal transition (EMT), which is associated with increased cell migration and metastasis in cancer cells. Rac1 is a small G-protein which upon activation results in formation of lamellipodia, the first protrusions formed by migrating cells. We have previously shown that Snail promotes cell migration through down-regulation of maspin tumor suppressor. We hypothesized that Snail's regulation of cell migration may also involve Rac1 signaling regulated by PI3K/AKT and/or MAPK pathways. We found that Snail overexpression in LNCaP and 22Rv1 prostate cancer cells increased Rac1 activity associated with increased cell migration, and the Rac1 inhibitor, NSC23766, could inhibit Snail-mediated cell migration. Conversely, Snail downregulation using shRNA in the aggressive C4–2 prostate cancer cells decreased Rac1 activity and cell migration. Moreover, Snail overexpression increased ERK and PI3K/AKT activity in 22Rv1 prostate cancer cells. Treatment of Snail-overexpressing 22Rv1 cells with LY294002, PI3K/AKT inhibitor or U0126, MEK inhibitor, decreased cell migration significantly, but only LY294002 significantly reduced Rac1 activity, suggesting that Snail promotes Rac1 activation via the PI3K/AKT pathway. Furthermore, 22Rv1 cells overexpressing Snail displayed decreased maspin levels, while inhibition of maspin expression in 22Rv1 cells with siRNA, led to increased PI3K/AKT, Rac1 activity and cell migration, without affecting ERK activity, suggesting that maspin is upstream of PI3K/AKT. Overall, we have dissected signaling pathways by which Snail may promote cell migration through MAPK signaling or alternatively through PI3K/AKT-Rac1 signaling that involves Snail inhibition of maspin tumor suppressor. This may contribute to prostate cancer progression. PMID:26207671

  12. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-04

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  13. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  14. All Akt Isoforms (Akt1, Akt2, Akt3) Are Involved in Normal Hearing, but Only Akt2 and Akt3 Are Involved in Auditory Hair Cell Survival in the Mammalian Inner Ear

    PubMed Central

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F.; Pak, Kwang; Hemmings, Brian A.; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear. PMID:25811375

  15. NGF increases VEGF expression and promotes cell proliferation via ERK1/2 and AKT signaling in Müller cells

    PubMed Central

    Wang, Jing; He, Chang; Zhou, Tian; Huang, Zijing; Zhou, Lingli

    2016-01-01

    Purpose Nerve growth factor (NGF) is a classic neuroprotective factor that contributes to angiogenesis under pathological conditions, which might be mediated by the upregulation of vascular endothelial growth factor (VEGF). Retinal Müller cells are a critical source of growth factors, including NGF and VEGF, and express the receptor for NGF, indicating the functional significance of NGF signaling in Müller cells. The aim of this study is to explore the effect of NGF on the production of other growth factors and cellular proliferation in Müller cells and to further detect the potential mechanism of these effects. Methods Primary Müller cells from C57BL/6J mice were isolated and identified with glutamine synthetase (GS) immunofluorescence (IF), a specific marker for Müller cells. TrkA, a high affinity receptor for NGF, was detected with IF staining in the primary Müller cells. Then, the cultured cells were stimulated with recombinant mouse NGF, and the supernatants and the cellular lysate were collected at different time points. VEGF secretion in the supernatant was detected with an enzyme-linked immunosorbent assay (ELISA). The signaling activation in the Müller cells was accessed by western blot using specific phosphorylated antibodies. In addition, cell proliferation was analyzed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Furthermore, K252a, U0126, and LY294002, the inhibitors for TrkA, extracellular signal-regulated kinases 1/2 (ERK1/2), and phosphatidylinositol 3-kinase (PI3K)/AKT, respectively, were used in combination with NGF in the assays analyzing VEGF expression and cell proliferation. Results Primary mouse Müller cells were successfully cultured and confirmed with GS positive staining. The IF results showed that the TrkA receptor was abundantly expressed on Müller cells. The ELISA results revealed that NGF significantly promoted the production and secretion of VEGF in Müller cells after 12 or 24 h of

  16. Deoxycholyltaurine Rescues Human Colon Cancer Cells From Apoptosis by Activating EGFR-Dependent PI3K/Akt Signaling

    PubMed Central

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2010-01-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-α-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser473) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser21/9) and BAD (Ser136), and nuclear translocation (activation) of NF-κB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  17. A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells.

    PubMed

    Chen, Yonglin; Shi, Songshan; Wang, Huijun; Li, Ning; Su, Juan; Chou, Guixin; Wang, Shunchun

    2016-06-28

    According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells' growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti

  18. A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells

    PubMed Central

    Chen, Yonglin; Shi, Songshan; Wang, Huijun; Li, Ning; Su, Juan; Chou, Guixin; Wang, Shunchun

    2016-01-01

    According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti

  19. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus.

    PubMed

    Stanojlović, M; Guševac, I; Grković, I; Zlatković, J; Mitrović, N; Zarić, M; Horvat, A; Drakulić, D

    2015-12-17

    The present study attempted to investigate how chronic cerebral hypoperfusion (CCH) and repeated low-dose progesterone (P) treatment affect gene and protein expression, subcellular distribution of key apoptotic elements within protein kinase B (Akt) and extracellular signal-regulated kinases (Erk) signal transduction pathways, as well as neurodegenerative processes and behavior. The results revealed the absence of Erk activation in CCH in cytosolic and synaptosomal fractions, indicating a lower threshold of Akt activation in brain ischemia, while P increased their levels above control values. CCH induced an increase in caspase 3 (Casp 3) and poly (ADP-ribose) polymerase (PARP) gene and protein expression. However, P restored expression of examined molecules in all observed fractions, except for the levels of Casp 3 in synapses which highlighted its possible non-apoptotic or even protective function. Our study showed the absence of nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) response to this type of ischemic condition and its strong activation under the influence of P. Further, the initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by CCH was significantly reduced by P. Finally, P reversed the CCH-induced reduction in locomotor activity, while promoting a substantial decrease in anxiety-related behavior. Our findings support the concept that repeated low-dose post-ischemic P treatment reduces CCH-induced neurodegeneration in the hippocampus. Neuroprotection is initiated through the activation of investigated kinases and regulation of their downstream molecules in subcellular specific manner, indicating that this treatment may be a promising therapy for alleviation of CCH-induced pathologies.

  20. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells.

    PubMed

    Li, Dong-Zhu; Zhang, Qing-Xiang; Dong, Xiao-Xian; Li, Huai-Dong; Ma, Xin

    2014-09-01

    The bone protective effects of the hydrogen molecule (H2) have been demonstrated in several osteoporosis models while the underlying molecular mechanism has remained unclear. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. In this work, we evaluated the effects of incubation with H2 on receptor activator of NFκB ligand (RANKL)-induced osteoclast differentiation. We found that treatment with H2 prevented RANKL-induced osteoclast differentiation in RAW264.7 cells and BMMs. Treatment with H2 inhibits the ability to form resorption pits of BMMs stimulated by RANKL. Treatment with H2 reduced mRNA levels of osteoclast-specific markers including tartrate resistant acid phosphatase, calcitonin receptor, cathepsin K, metalloproteinase-9, carbonic anhydrase typeII, and vacuolar-type H(+)-ATPase. Treatment with H2 decreased intracellular reactive oxygen species (ROS) formation, suppressed NADPH oxidase activity, down-regulated Rac1 activity and Nox1 expression, reduced mitochondrial ROS formation, and enhanced nuclear factor E2-related factor 2 nuclear translocation and heme oxygenase-1 activity. In addition, treatment with H2 suppressed RANKL-induced expression of nuclear factor of activated T cells c1 and c-Fos. Furthermore, treatment with H2 suppressed NF-κB activation and reduced phosphorylation of p38, extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and protein kinases B (AKT) stimulated with RANKL. In conclusion, hydrogen molecules prevented RANKL-induced osteoclast differentiation associated with inhibition of reactive oxygen species formation and inactivation of NF-κB, mitogen-activated protein kinase and AKT pathways.

  1. Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching.

    PubMed

    Zhao, Yu; Lin, Yuting; Zhang, Honghong; Mañas, Adriana; Tang, Wenwen; Zhang, Yuzhu; Wu, Dianqing; Lin, Anning; Xiang, Jialing

    2015-08-04

    The serine-threonine kinase Akt is a key regulator of cell proliferation and survival, glucose metabolism, cell mobility, and tumorigenesis. Activation of Akt by extracellular stimuli such as insulin centers on the interaction of Akt with PIP3 on the plasma membrane, where it is subsequently phosphorylated and activated by upstream protein kinases. However, it is not known how Akt is recruited to the plasma membrane upon stimulation. Here we report that ubiquitin-like protein 4A (Ubl4A) plays a crucial role in insulin-induced Akt plasma membrane translocation. Ubl4A knockout newborn mice have defective Akt-dependent glycogen synthesis and increased neonatal mortality. Loss of Ubl4A results in the impairment of insulin-induced Akt translocation to the plasma membrane and activation. Akt binds actin-filaments and colocalizes with actin-related protein 2 and 3 (Arp2/3) complex in the membrane ruffles and lamellipodia. Ubl4A directly interacts with Arp2/3 to accelerate actin branching and networking, allowing Akt to be in close proximity to the plasma membrane for activation upon insulin stimulation. Our finding reveals a new mechanism by which Akt is recruited to the plasma membrane for activation, thereby providing a missing link in Akt signaling.

  2. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  3. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2016-12-22

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  4. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  5. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation.

    PubMed

    Shivarama Shetty, Mahesh; Gopinadhan, Suma; Sajikumar, Sreedharan

    2016-02-01

    Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long-term plasticity, a cellular correlate of associative long-term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long-term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long-term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5-receptor-mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co-operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal-regulated kinases-1 and 2 (ERK1/2) as signal integrators and dose-sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration-dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long-term associative memory in neural networks.

  6. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  7. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  8. 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway

    PubMed Central

    Tang, Yufu; Lv, Pengfei; Sun, Zhongyi; Han, Lei; Luo, Bichao; Zhou, Wenping

    2015-01-01

    14-3-3ζ protein, a member of 14-3-3 family, plays important roles in multiple cellular processes. Our previous study showed that 14-3-3ζ could bind to regulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is induced by hypoxia and a crucial factor for induction of tumor metastasis. Moreover, we also have confirmed the response of 14-3-3ζ to hypoxia in our unpublished data as well. Thus, in the present study, we attempted to reveal that whether the regulation effect of 14-3-3ζ on HIF-1α functioned in a similar pattern as hypoxia. Stable regulation of 14-3-3ζ in human HCC cell line SMMC-772 and HCC-LM3 was achieved. The regulation of 14-3-3ζ on HIF-1α mRNA transcription was evaluated by luciferase activity assay and quantitative real-time PCR (qPCR). The effect of 14-3-3ζ on the production of HIF-1α and pathways determining HIF-1α’s response to hypoxia was assessed using western blotting assay. Our results showed that regulation of 14-3-3ζ expression influenced the activity of HIF-1α, phosphatidyl inositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and nuclear factor kappa B (NF-кB). Blocking of these pathways using indicated inhibitors revealed that 14-3-3ζ enhanced the production of HIF-1α via the activation of PI3K/Akt/NF-кB pathway, which was identical to hypoxia induced HIF-1α expression. For the first time, our study described the key role of 14-3-3ζ in the HIF-1α production in HCC cells. And the molecule exerted its function on HIF-1α both by directly binding to it and via PI3K/Akt/NF-кB signal transduction pathway. PMID:26884855

  9. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    SciTech Connect

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  10. Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3beta signaling.

    PubMed

    Min, Young Kyu; Lee, Jong Eun; Chung, Kwang Chul

    2007-01-15

    Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.

  11. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  12. Circulating Extracellular RNA Markers of Liver Regeneration

    PubMed Central

    Yan, Irene K.; Wang, Xue; Asmann, Yan W.; Haga, Hiroaki; Patel, Tushar

    2016-01-01

    Background and Aims Although a key determinant of hepatic recovery after injury is active liver regeneration, the ability to detect ongoing regeneration is lacking. The restoration of liver mass after hepatectomy involves systemic changes with coordinated changes in gene expression guiding regenerative responses, activation of progenitor cells, and proliferation of quiescent hepatocytes. We postulated that these responses involve intercellular communication involving extracellular RNA and that these could represent biomarkers of active regenerative responses. Methods RNA sequencing was performed to identify temporal changes in serum extracellular non-coding RNA after partial hepatectomy in C57BL/6 male mice. Tissue expression of selected RNA was performed by microarray analysis and validated using qRT-PCR. Digital PCR was used to detect and quantify serum expression of selected RNA. Results A peak increase in extracellular RNA content occurred six hours after hepatectomy. RNA sequencing identified alterations in several small non-coding RNA including known and novel microRNAs, snoRNAs, tRNA, antisense and repeat elements after partial hepatectomy. Combinatorial effects and network analyses identified signal regulation, protein complex assembly, and signal transduction as the most common biological processes targeted by miRNA that altered. miR-1A and miR-181 were most significantly altered microRNA in both serum and in hepatic tissues, and their presence in serum was quantitated using digital PCR. Conclusions Extracellular RNA selectively enriched during acute regeneration can be detected within serum and represent biomarkers of ongoing liver regeneration in mice. The ability to detect ongoing active regeneration would improve the assessment of hepatic recovery from liver injury. PMID:27415797

  13. Enhancement of insulin-induced PI3K/Akt/GSK-3beta and ERK signaling by neuronal nicotinic receptor/PKC-alpha/ERK pathway: up-regulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells.

    PubMed

    Sugano, Takashi; Yanagita, Toshihiko; Yokoo, Hiroki; Satoh, Shinya; Kobayashi, Hideyuki; Wada, Akihiko

    2006-07-01

    In cultured bovine adrenal chromaffin cells treated with nicotine (10 microm for 24 h), phosphorylation of Akt, glycogen synthase kinase-3beta (GSK-3beta) and extracellular signal-regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by approximately 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)- and concentration (EC(50) 3.6 and 13 microm)-dependent increases in insulin receptor substrate (IRS)-1 and IRS-2 levels by approximately 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin-induced tyrosine phosphorylation of IRS-1/IRS-2 and recruitment of phosphoinositide 3-kinase (PI3K) to IRS-1/IRS-2 were augmented by approximately 63%. The increase in IRS-1/IRS-2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetrakis-acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS-1 and IRS-2 mRNA levels by approximately 57 and approximately 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC-alpha, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC-alpha by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up-regulated expression of IRS-1/IRS-2 via Ca(2+)-dependent sequential activation of cPKC-alpha and ERK, and enhanced insulin-induced PI3K/Akt/GSK-3beta and ERK signaling pathways.

  14. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-03

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  15. Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila.

    PubMed

    Sanchez, Gonzalo M; Alkhori, Liza; Hatano, Eduardo; Schultz, Sebastian W; Kuzhandaivel, Anujaianthi; Jafari, Shadi; Granseth, Björn; Alenius, Mattias

    2016-01-26

    Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.

  16. Type I interferon signaling regulates the composition of inflammatory infiltrates upon infection with Listeria monocytogenes

    PubMed Central

    Brzoza-Lewis, Kristina L.; Hoth, J. Jason; Hiltbold, Elizabeth M.

    2011-01-01

    Type I IFN is key to the immune response to viral pathogens, however its role in bacterial infections is less well understood. Mice lacking the type I IFN receptor (IFNAR−/−) demonstrate enhanced resistance to infection with Listeria monocytogenes. We have now determined that following infection with Listeria, the composition of innate cells recruited to the peritoneal cavity of IFNAR−/− mice reflects an increase in the frequency of neutrophils and a decrease in monocyte frequency compared to WT controls. These differences in inflammatory infiltrates could not be attributed to distinct bone marrow composition prior to infection or to level of apoptosis. We also observed no differences in neutrophil oxidative burst. However, blocking CXCR2 prevented enhanced neutrophil influx and hampered bacterial clearance. Taken together, these studies highlight a novel mechanism by which type I interferon signaling regulates the immune response to Listeria, through negative regulation of chemokines driving neutrophil recruitment. PMID:22212606

  17. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death.

    PubMed

    Lee, Gilbert Aaron; Lai, Yein-Gei; Chen, Ray-Jade; Liao, Nan-Shih

    2017-04-01

    Astrocytes play a pivotal role in neuronal survival under the condition of post-ischemic brain inflammation, but the relevant astrocyte-derived mediators of ischemic brain injury remain to be defined. IL-15 supports survival of multiple lymphocyte lineages in the peripheral immune system, but the role of IL-15 in inflammatory disease of the central nervous system is not well defined. Recent research has shown an increase of IL-15-expressing astrocytes in the ischemic brain. Since astrocytes promote neuron survival under cerebral ischemia by buffering excess extracellular glutamate and producing growth factors, recovery of astrocyte function could be of benefit for stroke therapy. Here, we report that IL-15 is the pro-survival cytokine that prevents astrocyte death from oxygen glucose deprivation (OGD)-induced damage. Astrocytes up-regulate expression of the IL-15/IL-15Rα complex under OGD, whereas OGD down-regulates the levels of pSTAT5 and pAkt in astrocytes. IL-15 treatment ameliorates the decline of pAkt, decreases the percentage of annexin V(+) cells, inhibits the activation of caspase-3, and activates the Akt pathway to promote astrocyte survival in response to OGD. We further identified that activation of Akt, but not PKCα/βI, is essential for astrocyte survival under OGD. Taken together, this study reveals the function of IL-15 in astrocyte survival via Akt phosphorylation in response to OGD-induced damage.

  18. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

    PubMed Central

    Wang, Qingding; Zhou, Yuning; Jackson, Lindsey N.; Johnson, Sara M.; Chow, Chi-Wing; Evers, B. Mark

    2011-01-01

    The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. PMID:21148296

  19. AT7867 Inhibits Human Colorectal Cancer Cells via AKT-Dependent and AKT-Independent Mechanisms

    PubMed Central

    Yao, Chen; Huang, Ping; Zhang, Yi; Cao, Shibing; Li, Xiangcheng

    2017-01-01

    AKT is often hyper-activated in human colorectal cancers (CRC). This current study evaluated the potential anti-CRC activity by AT7867, a novel AKT and p70S6K1 (S6K1) dual inhibitor. We showed that AT7867 inhibited survival and proliferation of established (HT-29, HCT116 and DLD-1 lines) and primary human CRC cells. Meanwhile, it provoked caspase-dependent apoptosis in the CRC cells. Molecularly, AT7867 blocked AKT-S6K1 activation in CRC cells. Restoring AKT-S6K1 activation, via expression of a constitutively-active AKT1 (“ca-AKT1”), only partially attenuated AT7867-induced HT-29 cell death. Further studies demonstrated that AT7867 inhibited sphingosine kinase 1 (SphK1) activity to promote pro-apoptotic ceramide production in HT-29 cells. Such effects by AT7867 were independent of AKT inhibition. AT7867-indued ceramide production and subsequent HT-29 cell apoptosis were attenuated by co-treatment of sphingosine-1-phosphate (S1P), but were potentiated with the glucosylceramide synthase (GCS) inhibitor PDMP. In vivo, intraperitoneal injection of AT7867 inhibited HT-29 xenograft tumor growth in nude mice. AKT activation was also inhibited in AT7867-treated HT-29 tumors. Together, the preclinical results suggest that AT7867 inhibits CRC cells via AKT-dependent and -independent mechanisms. PMID:28081222

  20. Recent development of anticancer therapeutics targeting Akt.

    PubMed

    Morrow, John K; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J; Mash, Eugene A; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.

  1. Yeast extracellular proteases.

    PubMed

    Ogrydziak, D M

    1993-01-01

    Many species of yeast secrete significant amounts of protease(s). In this article, results of numerous surveys of yeast extracellular protease production have been compiled and inconsistencies in the data and limitations of the methodology have been examined. Regulation, purification, characterization, and processing of yeast extracellular proteases are reviewed. Results obtained from the sequences of cloned genes, especially the Saccharomyces cerevisiae Bar protease, the Candida albicans acid protease, and the Yarrowia lipolytica alkaline protease, have been emphasized. Biotechnological applications and the medical relevance of yeast extracellular proteases are covered. Yeast extracellular proteases have potential in beer and wine stabilization, and they probably contribute to pathogenicity of Candida spp. Yeast extracellular protease genes also provide secretion and processing signals for yeast expression systems designed for secretion of heterologous proteins. Coverage of the secretion of foreign proteases such as prochymosin, urokinase, and tissue plasminogen activator by yeast in included.

  2. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes

    PubMed Central

    Eid, Stéphanie; Boutary, Suzan; Braych, Kawthar; Sabra, Ramzi; Massaad, Charbel; Hamdy, Ahmed; Rashid, Awad; Moodad, Sarah; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Abstract Aim: Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. Results: High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. Innovation: Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Conclusion: mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703–719. PMID:27393154

  3. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity

    PubMed Central

    Tsao, Po-Nien; Matsuoka, Chisa; Wei, Shu-Chen; Sato, Atsuyasu; Sato, Susumu; Hasegawa, Koichi; Chen, Hung-kuan; Ling, Thai-Yen; Mori, Munemasa; Cardoso, Wellington V.; Morimoto, Mitsuru

    2016-01-01

    Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial–mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2cNull) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases. PMID:27364009

  4. Apoptosis signal-regulating kinase 1 exhibits oncogenic activity in pancreatic cancer

    PubMed Central

    Hao, Ziwei; Yang, Yang; Xie, Songbo; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Pancreatic cancer has an extremely grim prognosis, with an overall 5-year survival rate less than 5%, as a result of its rapid metastasis and late diagnosis. To combat this disease, it is crucial to better understand the molecular mechanisms that contribute to its pathogenesis. Herein, we report that apoptosis signal-regulating kinase 1 (ASK1) is overexpressed in pancreatic cancer tissues and that its expression correlates with the histological grade of pancreatic cancer. The expression of ASK1 is also elevated in pancreatic cancer cell lines at both protein and mRNA levels. In addition, ASK1 promotes the proliferation and stimulates the tumorigenic capacity of pancreatic cancer cells. These functions of ASK1 are abrogated by pharmacological inhibition of its kinase activity or by introduction of a kinase-dead mutation, suggesting that the kinase activity of ASK1 is required for its role in pancreatic cancer. However, the alteration of ASK1 expression or activity does not significantly affect the migration or invasion of pancreatic cancer cells. Collectively, these findings reveal a critical role for ASK1 in the development of pancreatic cancer and have important implications for the diagnosis and treatment of this malignancy. PMID:27655673

  5. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways.

    PubMed

    Seo, Hyang-Hee; Kim, Sang Woo; Lee, Chang Youn; Lim, Kyu Hee; Lee, Jiyun; Lim, Soyeon; Lee, Seahyoung; Hwang, Ki-Chul

    2017-03-05

    Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis.

  6. HER2 expression and PI3K-Akt pathway alterations in gastric cancer.

    PubMed

    Sukawa, Yasutaka; Yamamoto, Hiroyuki; Nosho, Katsuhiko; Ito, Miki; Igarashi, Hisayoshi; Naito, Takafumi; Mitsuhashi, Kei; Matsunaga, Yasutaka; Takahashi, Taiga; Mikami, Masashi; Adachi, Yasushi; Suzuki, Hiromu; Shinomura, Yasuhisa

    2014-01-01

    The anti-HER2 antibody trastuzumab has led to an era of personalized therapy in gastric cancer (GC). As a result, HER2 expression has become a major concern in GC. HER2 overexpression is seen in 7-34% of GC cases. Trastuzumab is an antibody that targets the HER2 extracellular domain and induces antibody-dependent cellular cytotoxicity and inhibition of the HER2 downstream signals. Mechanisms of resistance to trastuzumab have been reported in breast cancer. There are various mechanisms underlying trastuzumab resistance, such as alterations of HER2 structure or surroundings, dysregulation of HER2 downstream signal effectors and interaction of HER2 with other membrane receptors. The PI3K-Akt pathway is one of the main downstream signaling pathways of HER2. It is well known that PIK3CA mutations and phosphate and tensin homolog (PTEN) inactivation cause over-activation of the downstream signal without an upstream signal activation. Frequencies of PIK3CA mutations and PTEN inactivation have been reported to be 4-25 and 16-77%, respectively. However, little is known about the association between HER2 expression and PI3K-Akt pathway alterations in GC. We have found that HER2 over-expression was significantly correlated with pAkt expression in GC tissues. Furthermore, pAkt expression was correlated with poor prognosis. These results suggest that the PI3K-Akt pathway plays an important role in HER2-positive GC. Moreover, PIK3CA mutations and/or PTEN inactivation might affect the effectiveness of HER2-targeting therapy. Hence, it is necessary to clarify not only HER2 alterations but also PI3K-Akt pathway alterations for HER2-targeting therapy in GC. This review will introduce recent investigations and consider the current status of HER2-targeted therapy for treatment of GC.

  7. Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival

    PubMed Central

    Eaton, G J; Zhang, Q-S; Diallo, C; Matsuzawa, A; Ichijo, H; Steinbeck, M J; Freeman, T A

    2014-01-01

    Endochondral ossification is the result of chondrocyte differentiation, hypertrophy, death and replacement by bone. The careful timing and progression of this process is important for normal skeletal bone growth and development, as well as fracture repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK), which is activated by reactive oxygen species and other cellular stress events. Activation of ASK1 initiates a signaling cascade known to regulate diverse cellular events including cytokine and growth factor signaling, cell cycle regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice display alterations in normal growth plate morphology, which include a shorter proliferative zone and a lengthened hypertrophic zone. These changes in growth plate dynamics result in accelerated long bone mineralization and an increased formation of trabecular bone, which can be attributed to an increased resistance of terminally differentiated chondrocytes to undergo cell death. Interestingly, under normal cell culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show no differences in either MAPK signaling or osteogenic or chondrogenic differentiation when compared with wild-type (WT) MEFs. However, when cultured with stress activators, H2O2 or staurosporine, the KO cells show enhanced survival, an associated decrease in the activation of proteins involved in death signaling pathways and a reduction in markers of terminal differentiation. Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO mice endochondral bone formation was increased in an ectopic ossification model. These findings highlight a previously unrealized role for ASK1 in regulating endochondral bone formation. Inhibition of ASK1 has

  8. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow

    PubMed Central

    Jung, Younghun; Decker, Ann M.; Wang, Jingcheng; Lee, Eunsohl; Kana, Lulia A.; Yumoto, Kenji; Cackowski, Frank C.; Rhee, James; Carmeliet, Peter; Buttitta, Laura; Morgan, Todd M.; Taichman, Russell S.

    2016-01-01

    GAS6 and its receptors (Tryo 3, Axl, Mer or “TAM”) are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment. We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. setting. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133–/CD44–) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo. Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease. PMID:27028863

  9. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway.

    PubMed

    Wang, Weiwei; Zhang, Xiaolin; Zheng, Jiaqiang; Yang, Jianhong

    2010-05-01

    Patients with diabetes tend to have an increased incidence of osteoporosis that may be related to hyperglycemia. In this study, we investigated the effects of high glucose on differentiation of human osteoblastic MG-63 cells and involved intracellular signal transduction pathways. Here, we showed that high glucose suppressed the cell growth, mineralization, and expression of osteogenic markers including Runx2, collagen I, osteocalcin, osteonectin, but inversely promoted expression of adipogenic markers including PPARgamma, aP2, resistin, and adipsin. Moreover, high glucose significantly increased the intracellular cAMP level in a time-dependent manner and induced ERK1/2 activation. Meanwhile, supplementation of H89, a specific inhibitor of PKA, and PD98059, a specific inhibitor of MAPK/ERK kinase, reversed the cell growth inhibition, the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of ERK under high glucose. These results indicate that high glucose can increase adipogenic and inhibit osteogenic differentiation by activating cAMP/PKA/ERK pathway in MG-63 cells, thereby providing further insight into the molecular mechanism of diabetic osteoporosis.

  10. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells

    PubMed Central

    Eder, Stefan; Lamkowski, Andreas; Priller, Markus; Port, Matthias; Steinestel, Konrad

    2015-01-01

    Background Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an important cofactor in the p53-mediated DNA damage response pathway upon ionizing radiation (IR) and exerts anti-apoptotic effects also independent of p53 pathway activation. Furthermore, hnRNP K is overexpressed in various neoplasms including malignant melanoma (MM). Here, we investigate the role of hnRNP K in the radioresistance of MM cells. Methods and results Our results show cytoplasmic expression of hnRNP K in human MM surgical specimens, but not in benign nevi, and a quick dose- and time-dependent upregulation in response to IR accompanied by cytoplasmic redistribution of the protein in the IPC-298 cellular tumor model carrying an activating NRAS mutation (p.Q61L). SiRNA-based knockdown of hnRNP K induced a delayed decline in γH2AX/53BP1-positive DNA repair foci upon IR. Pharmacological interference with MAPK signaling abrogated ERK phosphorylation, diminished cellular hnRNP K levels, impaired γH2AX/53BP1-foci repair and proliferative capability and increased apoptosis comparable to the observed hnRNP K knockdown phenotype in IPC-298 cells. Conclusion Our results indicate that pharmacological interference with MAPK signaling increases vulnerability of NRAS-mutant malignant melanoma cells to ionizing radiation along with downregulation of endogenous hnRNP K and point towards a possible use for combined MEK inhibition and localized radiation therapy of MM in the NRAS-mutant setting where BRAF inhibitors offer no clinical benefit. PMID:26136337

  11. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization.

    PubMed

    Ellis, John G; Davila, Monica; Chakrabarti, Ratna

    2003-01-17

    Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.

  12. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma.

    PubMed

    Gong, Ke; Chen, Chao; Zhan, Yao; Chen, Yan; Huang, Zebo; Li, Wenhua

    2012-10-12

    Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent.

  13. Prelimbic cortex extracellular signal-regulated kinase 1/2 activation is required for memory retrieval of long-term inhibitory avoidance.

    PubMed

    Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang

    2017-04-15

    Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABAA-receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade.

  14. Glycodelin-A stimulates interleukin-6 secretion by human monocytes and macrophages through L-selectin and the extracellular signal-regulated kinase pathway.

    PubMed

    Lee, Cheuk-Lun; Lam, Eve Y F; Lam, Kevin K W; Koistinen, Hannu; Seppälä, Markku; Ng, Ernest H Y; Yeung, William S B; Chiu, Philip C N

    2012-10-26

    Macrophages represent the second major type of decidual leukocytes at the fetomaternal interface. Changes in macrophage number and activity are associated with fetal loss and pregnancy complications. Glycodelin-A (GdA) is an abundant glycoprotein in the first-trimester decidua. It is involved in fetomaternal defense and early placental development through its regulatory activities in various immune cells. The N-glycosylation of GdA mediates the binding and therefore the activities of the molecule. In this study, we studied the biological activities of GdA in the functions of human monocytes/macrophages. GdA was purified from amniotic fluid by affinity chromatography. GdA treatment did not affect the viability, cell death, or phagocytic activity of the monocytes/macrophages. GdA, but not recombinant glycodelin without glycosylation, induced IL-6 production as demonstrated by cytokine array, intracellular staining, and ELISA. GdA also induced phosphorylation of ERK in monocytes/macrophages. The involvement of ERKs in IL-6 induction was confirmed using pharmacological inhibitors. Co-immunoprecipitation showed that L-selectin on the monocytes/macrophages was the binding protein of GdA. Treatment with anti-L-selectin antibody reduced GdA binding and GdA-induced IL-6 production. GdA-treated macrophages suppressed IFN-γ expression by co-cultured T-helper cells in an IL-6-dependent manner. These results show that GdA interacts with L-selectin to induce IL-6 production in monocytes/macrophages by activating the ERK signaling pathway. In turn, the increased IL-6 production suppresses IFN-γ expression in T-helper cells, which may play an important role in inducing a Th-2-polarized cytokine environment that flavors the immunotolerance of the fetoplacental unit.

  15. Integrated bioinformatics, computational and experimental methods to discover novel Raf/extracellular-signal regulated kinase (ERK) dual inhibitors against breast cancer cells.

    PubMed

    Chen, Yin; Zheng, Yaxin; Jiang, Qinglin; Qin, Feifei; Zhang, Yonghui; Fu, Leilei; He, Gu

    2017-02-15

    Beginning with our previously reported ERK inhibitor BL-EI001, we found Raf1 to be an important regulator in the ERK interactive network, and then we designed and synthesized a novel series of Raf1/ERK dual inhibitors against human breast cancers through integrative computational, synthetic and biological screening methods. Moreover, we found that compound 9d suppressed the proliferation of breast cancer cell lines and induced cellular apoptosis via a mitochondrial pathway with only partial dependence on Raf1 and ERK. Our results suggest that an integrative method including in silico design, chemical synthesis, biological screening and bioinformatics analysis could be an attractive strategy for the discovery of multi-target inhibitors against breast cancer.

  16. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells.

    PubMed

    Clubbs, Elizabeth A; Bomser, Joshua A

    2007-08-01

    Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellularsignal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 micromol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.

  17. 5-HT1A receptor-mediated phosphorylation of extracellular signal-regulated kinases (ERK1/2) is modulated by regulator of G protein signaling protein 19.

    PubMed

    Wang, Qin; Terauchi, Akiko; Yee, Christopher H; Umemori, Hisashi; Traynor, John R

    2014-09-01

    The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor-Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.

  18. Targeting inhibition of extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) suppresses growth and angiogenesis of gastric cancer.

    PubMed

    Gao, Jin-Hang; Wang, Chun-Hui; Tong, Huan; Wen, Shi-Lei; Huang, Zhi-Yin; Tang, Cheng-Wei

    2015-11-16

    AZD6244 (ARRY-142886), a highly selective MAPK-ERK kinase inhibitor, has shown excellent clinical efficacy in many tumors. However, the anti-tumor and anti-angiogenesis efficacy of AZD6244 on gastric cancer has not been well characterized. In this study, high p-ERK expression was associated with advanced TNM stage, increased lymphovascular invasion and poor survival. For absence of NRAS, KRAS and BRAF mutation, SGC7901 and BGC823 gastric cancer cells were relative resistance to AZD6244 in vitro. And such resistance was not attributed to the insufficient inhibition of ERK phosphorylation. However, tumor growth was significantly suppressed in SGC7901 xenografts by blockage of angiogenesis. This result was further supported by suppression of tube formation and migration in HUVEC cells after treatment with AZD6244. Moreover, the anti-angiogenesis effect of AZD6244 may predominantly attribute to its modulation on VEGF through p-ERK - c-Fos - HIF-1α integrated signal pathways. In conclusions, High p-ERK expression was associated with advanced TNM stage, increased lymphovascular invasion and poor survival. Targeting inhibition of p-ERK by AZD6244 suppress gastric cancer xenografts by blockage of angiogenesis without systemic toxicity. The anti-angiogenesis effect afford by AZD6244 may attribute to its modulation on p-ERK - c-Fos - HIF-1α - VEGF integrated signal pathways.

  19. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    PubMed

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR.

  20. Acrylonitrile-induced extracellular signal-regulated kinase (ERK) activation via protein kinase C (PKC) in SK-N-SH neuroblastoma cells.

    PubMed

    Chantara, Wantika; Watcharasit, Piyajit; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2006-01-01

    Acrylonitrile (ACN) is classified by IARC as a probable carcinogen. Chronic exposure to ACN increases the incidence of tumors in various organs of test animals, including the brain and lung. ERK1/2 activation plays crucial roles in cell proliferation and is involved in many steps of tumor progression. Therefore, this study examined whether ACN altered the activation state of ERK1/2 in human neuroblastoma SK-N-SH cells. Treatment of these cells with ACN greatly increased phosphorylation of ERK1/2 in dose- and time-dependent manners. This effect was inhibited by PD 98059 and U 0126, specific inhibitors of MEK, indicating that MEK, an upstream activator of ERK1/2, was directly involved in ACN-induced ERK1/2 activation. Furthermore, the activation of ERK1/2 by ACN was attenuated by inhibition of PKC with GF 109203X, rottlerin and prolonged incubation with PMA (phorbol 12-myristate 13-acetate). This demonstrated the participation of PKC in the ACN-stimulated activation of ERK1/2. Taken together, our results indicate that ACN-induced ERK1/2 activation involves PKC through a MEK-dependent pathway.

  1. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants

    DTIC Science & Technology

    2010-12-01

    Triton X-100) for 30 min, followed by a wash in 1 Tris borate-EDTA (TBE) buffer (0.089 M Tris, 0.089 M boric acid , and 0.002 M EDTA, pH 8.0). Nuclei were...0.2 ml of NP-40 buffer [5 mM piperazine-N,N-bis(2-ethanesulfonic acid ), pH 8.0, 85 mM KCl, 0.5% NP-40, protease inhibitors, and RNase inhibitor] and

  2. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling

    PubMed Central

    Hou, Gang; Yin, Yan; Han, Dan; Wang, Qiu-yue; Kang, Jian

    2015-01-01

    Objective We investigated how rosiglitazone attenuated cigarette smoke (CS)-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP) and anti-MMP activity, mitogen-activated protein kinase (MAPK) phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling pathway over-activation. Methods A total of 36 Wistar rats were divided into three groups (n=12 each): animals were exposed to CS for 12 weeks in the absence (the CS group) or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group); a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ), MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα) phosphorylation in lung tissue was examined by Western blotting. Results Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats. Conclusion Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways dependent on MAPKs or NFκB. Our results further suggest that PPARγ contributes to the pathogenesis of emphysema as well as airway inflammation induced by CS. PMID:25897215

  3. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.

  4. DYNAMICS OF EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) ACTIVATION IN DEVELOPING CEREBELLAR GRANULE CELLS (CGC): A SYSTEMS BIOLOGY-ORIENTED STUDY

    EPA Science Inventory

    The objective of this study was to 1) characterize the dynamics of ERK activation in response to BDNF and NMDA; 2) use computational models to promote understanding of the signaling network underlying ERK activation.

  5. Elemene Induces Apoptosis of Human Gastric Cancer Cell Line BGC-823 via Extracellular Signal-Regulated Kinase (ERK) 1/2 Signaling Pathway

    PubMed Central

    Li, Pihong; Zhou, Xiang; Sun, Weijian; Sheng, Weiwei; Tu, Yangyang; Yu, Yaojun; Dong, Jianda; Ye, Bing; Zheng, Zhiqiang; Lu, Mingdong

    2017-01-01

    Background Elemene is extracted from a traditional herbal medicine and is commonly used in the treatment of cancer in China. However, its effect on gastric cancer cells remains unknown. The goal of this study was to investigate its effect on human gastric cancer cells. Material/Methods Human gastric cancer BGC-823 cells and a tumor-bearing mouse model were employed to be divided into 4 groups: control group, elemene group, PD98059 group (an ERK 1/2 signaling pathway inhibitor), and the combined group (elemene plus PD98059). The tumor size, cell proliferation, expression of ERK 1/2 and phosphorylated ERK 1/2 (p-ERK 1/2), Bcl-2 mRNA, and Bax mRNA were measured. Moreover, cell apoptosis was detected and the apoptosis index was calculated. Results Elemene and PD98059 each significantly inhibited the proliferation of gastric cancer cells BGC-823, and their combination showed higher synergistic inhibitory effect (P<0.05). We also found increased expression levels of p-ERK l/2 protein and Bax mRNA, but reduced level of Bcl-2 mRNA expression (P<0.05). Elemene presented higher apoptosis rate in a dose-dependent manner (P<0.05). Furthermore, the injection of elemene decreased the weight of transplanted tumors. Conclusions Elemene can inhibit the proliferation and induce the apoptosis of gastric cancer cells associated with the ERK 1/2 signaling pathway and expression levels of Bax mRNA and Bcl-2 mRNA. PMID:28196062

  6. Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages.

    PubMed

    Jin, Yi; Liu, Yusen; Nelin, Leif D

    2015-01-23

    The mitogen-activated protein kinases (MAPK) have been shown to participate in iNOS induction following lipopolysaccharide (LPS) stimulation, while the role of MAPKs in the regulation of arginase remains unclear. We hypothesized that different MAPK family members are involved in iNOS and arginase expression following LPS stimulation. LPS-stimulated RAW 264.7 cells exhibited increased protein and mRNA levels for iNOS, arginase I, and arginase II; although the induction of arginase II was more robust than that for arginase I. A p38 inhibitor completely prevented iNOS expression while it only attenuated arginase II induction. In contrast, a MEK1/2 inhibitor (ERK pathway) completely abolished arginase II expression while actually enhancing iNOS induction in LPS-stimulated cells. Arginase II promoter activity was increased by ∼4-fold following LPS-stimulation, which was prevented by the ERK pathway inhibitor. Arginase II promoter activity was unaffected by a p38 inhibitor or JNK pathway interference. Transfection with a construct expressing a constitutively active RAS mutant increased LPS-induced arginase II promoter activity, while transfection with a vector expressing a dominant negative ERK2 mutant or a vector expressing MKP-3 inhibited the arginase II promoter activity. LPS-stimulated nitric oxide (NO) production was increased following siRNA-mediated knockdown of arginase II and decreased when arginase II was overexpressed. Our results demonstrate that while both the ERK and p38 pathways regulate arginase II induction in LPS-stimulated macrophages, iNOS induction by LPS is dependent on p38 activation. These results suggest that differential inhibition of the MAPK pathway may be a potential therapeutic strategy to regulate macrophage phenotype.

  7. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    SciTech Connect

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki; Imano, Motohiro; Ogaki, Mitsuhiko; Yanae, Masashi; Nishida, Shozo

    2012-03-15

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920

  8. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells.

    PubMed

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5'-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  9. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  10. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration.

    PubMed

    Yeh, Poh-Shiow; Wang, Weu; Chang, Ya-An; Lin, Chien-Ju; Wang, Jhi-Joung; Chen, Ruei-Ming

    2016-01-01

    In children, neuroblastomas are the most common and deadly solid tumor. Our previous study showed that honokiol, a small-molecule polyphenol, can traverse the blood-brain barrier and kill neuroblastoma cells. In this study, we further investigated the mechanisms of honokiol-induced insults to neuroblastoma cells. Treatment of neuroblastoma neuro-2a cells with honokiol elevated the levels of microtubule-associated protein light chain 3 (LC3)-II and induced cell autophagy in time- and concentration-dependent manners. Interestingly, pretreatment with 3-methyladenine (3-MA), an inhibitor of autophagy, led to the simultaneous attenuation of honokiol-induced cell autophagy and apoptosis but did not influence cell necrosis. As to the mechanisms, exposure of neuro-2a cells to honokiol time-dependently decreased the amount of phosphatidylinositol 3-kinase (PI3K). Sequentially, honokiol downregulated phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in neuro-2a cells. Furthermore, honokiol elevated the levels of glucose-regulated protein (GpR)78, an endoplasmic reticular stress (ERS)-associated protein, and amounts of intracellular reactive oxygen species (ROS). In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular autophagy. Consequently, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2. However, pretreatment of neuro-2a cells with PD98059, an inhibitor of ERK1/2, lowered honokiol-induced autophagy. The effects of honokiol on inducing autophagy and apoptosis of neuroblastoma cells were further confirmed using mouse neuroblastoma NB41A3 cells as our experimental model. Fascinatingly, treatment of neuroblastoma neuro-2a and NB41A3 cells with honokiol for 12 h did not affect cell autophagy or apoptosis but caused significant suppression of cell migration. Taken together, this study showed that honokiol can induce

  11. Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways

    PubMed Central

    WEI, CAN; LI, HONG-ZHU; WANG, YUE-HONG; PENG, XUE; SHAO, HONG-JIANG; LI, HONG-XIA; BAI, SHU-ZHI; LU, XIAO-XIAO; WU, LING-YUN; WANG, RUI; XU, CHANG-QING

    2016-01-01

    Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms. In the present study, PASMCs were cultured with cobalt chloride (CoCl2) to establish a hypoxia model, and Sp at various final concentrations (0.1, 1, 10 and 100 µM) was added to the medium of PASMCs 40 min prior to the induction of hypoxia. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell counting kit-8 assay and 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell cycle progression was determined by flow cytometry, and the protein expression levels of spermidine/spermine N1-acetyltransferase (SSAT; the key enzyme in the terminal degradation of polyamine), ornithine decar boxylase (ODC; the key enzyme of polyamine biosynthesis), cyclin D1 and p27 were measured by western blot analysis. The results revealed that the proliferation of the PASMCs cultured with CoCl2 at 50 µM for 24 h markedly increased. The expression of ODC was decreased and the expression of SSAT was increased in the cells under hypoxic conditions. Exogenous Sp at concentrations of 1 and 10 µM significantly inhibited hypoxia induced PASMC proliferation, leading to cell cycle arrest at the G1/G0 phase. In addition, Sp decreased cyclin D1 expression, increased p27 expression, and suppressed the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT); however, the above-metioned parameters were not markedly

  12. Annexin 2 Regulates Endothelial Morphogenesis by Controlling AKT Activation and Junctional Integrity*

    PubMed Central

    Su, Shih-Chi; Maxwell, Steve A.; Bayless, Kayla J.

    2010-01-01

    Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt. PMID:20947498

  13. Insulin-induced Effects on the Subcellular Localization of AKT1, AKT2 and AS160 in Rat Skeletal Muscle

    PubMed Central

    Zheng, Xiaohua; Cartee, Gregory D.

    2016-01-01

    AKT1 and AKT2, the AKT isoforms that are highly expressed in skeletal muscle, have distinct and overlapping functions, with AKT2 more important for insulin-stimulated glucose metabolism. In adipocytes, AKT2 versus AKT1 has greater susceptibility for insulin-mediated redistribution from cytosolic to membrane localization, and insulin also causes subcellular redistribution of AKT Substrate of 160 kDa (AS160), an AKT2 substrate and crucial mediator of insulin-stimulated glucose transport. Although skeletal muscle is the major tissue for insulin-mediated glucose disposal, little is known about AKT1, AKT2 or AS160 subcellular localization in skeletal muscle. The major aim of this study was to determine insulin’s effects on the subcellular localization and phosphorylation of AKT1, AKT2 and AS160 in skeletal muscle. Rat skeletal muscles were incubated ex vivo ± insulin, and differential centrifugation was used to isolate cytosolic and membrane fractions. The results revealed that: 1) insulin increased muscle membrane localization of AKT2, but not AKT1; 2) insulin increased AKT2 phosphorylation in the cytosol and membrane fractions; 3) insulin increased AS160 localization to the cytosol and membranes; and 4) insulin increased AS160 phosphorylation in the cytosol, but not membranes. These results demonstrate distinctive insulin effects on the subcellular redistribution of AKT2 and its substrate AS160 in skeletal muscle. PMID:27966646

  14. Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis

    PubMed Central

    Khurana, Satish; Schouteden, Sarah; Manesia, Javed K.; Santamaria-Martínez, Albert; Huelsken, Joerg; Lacy-Hulbert, Adam; Verfaillie, Catherine M.

    2016-01-01

    Integrins play an important role in haematopoietic stem cell (HSC) maintenance in the bone marrow niche. Here, we demonstrate that Periostin (Postn) via interaction with Integrin-αv (Itgav) regulates HSC proliferation. Systemic deletion of Postn results in peripheral blood (PB) anaemia, myelomonocytosis and lymphopenia, while the number of phenotypic HSCs increases in the bone marrow. Postn−/− mice recover faster from radiation injury with concomitant loss of primitive HSCs. HSCs from Postn−/− mice show accumulation of DNA damage generally associated with aged HSCs. Itgav deletion in the haematopoietic system leads to a similar PB phenotype and HSC-intrinsic repopulation defects. Unaffected by Postn, Vav-Itgav−/− HSCs proliferate faster in vitro, illustrating the importance of Postn-Itgav interaction. Finally, the Postn-Itgav interaction inhibits the FAK/PI3K/AKT pathway in HSCs, leading to increase in p27Kip1 expression resulting in improved maintenance of quiescent HSCs. Together, we demonstrate a role for Itgav-mediated outside-in signalling in regulation of HSC proliferation and stemness. PMID:27905395

  15. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  16. Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation.

    PubMed

    Kunadt, Marcel; Eckermann, Katrin; Stuendl, Anne; Gong, Jing; Russo, Belisa; Strauss, Katrin; Rai, Surya; Kügler, Sebastian; Falomir Lockhart, Lisandro; Schwalbe, Martin; Krumova, Petranka; Oliveira, Luis M A; Bähr, Mathias; Möbius, Wiebke; Levin, Johannes; Giese, Armin; Kruse, Niels; Mollenhauer, Brit; Geiss-Friedlander, Ruth; Ludolph, Albert C; Freischmidt, Axel; Feiler, Marisa S; Danzer, Karin M; Zweckstetter, Markus; Jovin, Thomas M; Simons, Mikael; Weishaupt, Jochen H; Schneider, Anja

    2015-05-01

    Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinson's disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.

  17. Emerging therapeutics for targeting Akt in cancer.

    PubMed

    Gdowski, Andrew; Panchoo, Marlyn; Treuren, Timothy Van; Basu, Alakananda

    2016-01-01

    The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell's exterior to the effector proteins of the cell's interior. Due to Akt\\\\\\\\\\\\\\'s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform's role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.

  18. Development of sulfonamide AKT PH domain inhibitors.

    PubMed

    Ahad, Ali Md; Zuohe, Song; Du-Cuny, Lei; Moses, Sylvestor A; Zhou, Li Li; Zhang, Shuxing; Powis, Garth; Meuillet, Emmanuelle J; Mash, Eugene A

    2011-03-15

    Disruption of the phosphatidylinositol 3-kinase/AKT signaling pathway can lead to apoptosis in cancer cells. Previously we identified a lead sulfonamide that selectively bound to the pleckstrin homology (PH) domain of AKT and induced apoptosis when present at low micromolar concentrations. To examine the effects of structural modification, a set of sulfonamides related to the lead compound was designed, synthesized, and tested for binding to the expressed PH domain of AKT using a surface plasmon resonance-based competitive binding assay. Cellular activity was determined by means of an assay for pAKT production and a cell killing assay using BxPC-3 cells. The most active compounds in the set are lipophilic and possess an aliphatic chain of the proper length. Results were interpreted with the aid of computational modeling. This paper represents the first structure-activity relationship (SAR) study of a large family of AKT PH domain inhibitors. Information obtained will be used in the design of the next generation of inhibitors of AKT PH domain function.

  19. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    development by tightly coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube.

  20. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    SciTech Connect

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  1. The critical role of Akt in cardiovascular function.

    PubMed

    Abeyrathna, Prasanna; Su, Yunchao

    2015-11-01

    Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.

  2. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.

    PubMed

    Chakraborty, Sayan; Njah, Kizito; Pobbati, Ajaybabu V; Lim, Ying Bena; Raju, Anandhkumar; Lakshmanan, Manikandan; Tergaonkar, Vinay; Lim, Chwee Teck; Hong, Wanjin

    2017-03-07

    The Hippo pathway effectors YAP and TAZ act as nuclear sensors of mechanical signals in response to extracellular matrix (ECM) cues. However, the identity and nature of regulators in the ECM and the precise pathways relaying mechanoresponsive signals into intracellular sensors remain unclear. Here, we uncover a functional link between the ECM proteoglycan Agrin and the transcriptional co-activator YAP. Importantly, Agrin transduces matrix and cellular rigidity signals that enhance stability and mechanoactivity of YAP through the integrin-focal adhesion- and Lrp4/MuSK receptor-mediated signaling pathways. Agrin antagonizes focal adhesion assembly of the core Hippo components by facilitating ILK-PAK1 signaling and negating the functions of Merlin and LATS1/2. We further show that Agrin promotes oncogenesis through YAP-dependent transcription and is clinically relevant in human liver cancer. We propose that Agrin acts as a mechanotransduction signal in the ECM.

  3. A NPxY-independent {beta}5 integrin activation signal regulates phagocytosis of apoptotic cells

    SciTech Connect

    Singh, Sukhwinder; D'mello, Veera; Henegouwen, Paul van Bergen en; Birge, Raymond B.

    2007-12-21

    Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the {beta} chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 ({beta}5) integrin cDNA was expressed in {alpha}v positive, {beta}5 and {beta}3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, {beta}5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing {beta}5 mutant (Y750A) abrogated adhesion and {beta}5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of {beta}5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a {beta}5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 {mu}m diameter microspheres developed as apoptotic cell mimetics. The critical sequences in {beta}5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of {beta}5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the {beta}5 cytoplasmic tail for adhesion and phagocytosis.

  4. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways

    PubMed Central

    Jiang, Dawei; Wang, Tianchen; Zhang, Yinquan; Ma, Hui

    2016-01-01

    It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress. PMID:27806136

  5. Embryonic liver fordin is involved in glucose glycolysis of hepatic stellate cell by regulating PI3K/Akt signaling

    PubMed Central

    Tu, Wei; Ye, Jin; Wang, Zhi-Jun

    2016-01-01

    AIM To investigate the role of embryonic liver fordin (ELF) in liver fibrosis by regulating hepatic stellate cells (HSCs) glucose glycolysis. METHODS The expression of ELF and the glucose glycolysis-related proteins were evaluated in activated HSCs. siRNA was used to silence ELF expression in activated HSCs in vitro and the subsequent changes in PI3K/Akt signaling and glucose glycolysis-related proteins were observed. RESULTS The expression of ELF increased remarkably in HSCs of the fibrosis mouse model and HSCs that were cultured for 3 wk in vitro. Glucose glycolysis-related proteins showed an obvious increase in the activated HSCs, such as phosphofructokinase, platelet and glucose transporter 1. ELF-siRNA, which perfectly silenced the expression of ELF in activated HSCs, led to the induction of glucose glycolysis-related proteins and extracellular matrix (ECM) components. Moreover, pAkt, which is an important downstream factor in PI3K/Akt signaling, showed a significant change in response to the ELF silencing. The expression of glucose glycolysis-related proteins and ECM components decreased remarkably when the PI3K/Akt signaling was blocked by Ly294002 in the activated HSCs. CONCLUSION ELF is involved in HSC glucose glycolysis by regulating PI3K/Akt signaling. PMID:27784964

  6. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  7. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  8. Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes.

    PubMed

    Botta, Adrien; Delteil, Frédéric; Mettouchi, Amel; Vieira, Andhira; Estrach, Soline; Négroni, Luc; Stefani, Caroline; Lemichez, E; Meneguzzi, Guerrino; Gagnoux-Palacios, Laurent

    2012-09-15

    In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-β and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.

  9. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  10. A bipartite signal regulates the faithful delivery of apical domain marker podocalyxin/Gp135.

    PubMed

    Yu, Chun-Ying; Chen, Jen-Yau; Lin, Yu-Yu; Shen, Kuo-Fang; Lin, Wei-Ling; Chien, Chung-Liang; ter Beest, Martin B A; Jou, Tzuu-Shuh

    2007-05-01

    Podocalyxin/Gp135 was recently demonstrated to participate in the formation of a preapical complex to set up initial polarity in MDCK cells, a function presumably depending on the apical targeting of Gp135. We show that correct apical sorting of Gp135 depends on a bipartite signal composed of an extracellular O-glycosylation-rich region and the intracellular PDZ domain-binding motif. The function of this PDZ-binding motif could be substituted with a fusion construct of Gp135 with Ezrin-binding phosphoprotein 50 (EBP50). In accordance with this observation, EBP50 binds to newly synthesized Gp135 at the Golgi apparatus and facilitates oligomerization and sorting of Gp135 into a clustering complex. A defective connection between Gp135 and EBP50 or EBP50 knockdown results in a delayed exit from the detergent-resistant microdomain, failure of oligomerization, and basolateral missorting of Gp135. Furthermore, the basolaterally missorted EBP50-binding defective mutant of Gp135 was rapidly retrieved via a PKC-dependent mechanism. According to these findings, we propose a model by which a highly negative charged transmembrane protein could be packed into an apical sorting platform with the aid of its cytoplasmic partner EBP50.

  11. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease

    PubMed Central

    Bosse, Authors: Kevin; Hans, Chetan P.; Zhao, Ning; Koenig, Sara N.; Huang, Nianyuan; Guggilam, Anuradha; LaHaye, Stephanie; Tao, Ge; Lucchesi, Pamela A.; Lincoln, Joy; Lilly, Brenda; Garg, Vidu

    2013-01-01

    The mature aortic valve is composed of a structured trilaminar extracellular matrix that is interspersed with aortic valve interstitial cells (AVICs) and covered by endothelium. Dysfunction of the valvular endothelium initiates calcification of neighboring AVICs leading to calcific aortic valve disease (CAVD). The molecular mechanism by which endothelial cells communicate with AVICs and cause disease is not well understood. Using a co-culture assay, we show that endothelial cells secrete a signal to inhibit calcification of AVICs. Gain or loss of nitric oxide (NO) prevents or accelerates calcification of AVICs, respectively, suggesting that the endothelial cell-derived signal is NO. Overexpression of Notch1, which is genetically linked to human CAVD, retards the calcification of AVICs that occurs with NO inhibition. In AVICs, NO regulates the expression of Hey1, a downstream target of Notch1, and alters nuclear localization of Notch1 intracellular domain. Finally, Notch1 and NOS3 (endothelial NO synthase) display an in vivo genetic interaction critical for proper valve morphogenesis and the development of aortic valve disease. Our data suggests that endothelial cell-derived NO is a regulator of Notch1 signaling in AVICs in the development of the aortic valve and adult aortic valve disease. PMID:23583836

  12. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  13. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming.

    PubMed

    Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia; Tang, Hsin-Yao; Seo, Jae Ho; Kossenkov, Andrew V; Ottobrini, Luisa; Martelli, Cristina; Lucignani, Giovanni; Bertolini, Irene; Locatelli, Marco; Bryant, Kelly G; Ghosh, Jagadish C; Lisanti, Sofia; Ku, Bonsu; Bosari, Silvano; Languino, Lucia R; Speicher, David W; Altieri, Dario C

    2016-08-08

    Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.

  14. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans

    PubMed Central

    Minor, Paul J.; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R.; Sternberg, Paul W.

    2013-01-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans. PMID:23946444

  15. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans.

    PubMed

    Minor, Paul J; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R; Sternberg, Paul W

    2013-09-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans.

  16. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  17. Spatiotemporal Analysis of Differential Akt Regulation in Plasma Membrane Microdomains

    PubMed Central

    Gao, Xinxin

    2008-01-01

    As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane. PMID:18701703

  18. AKT and oxidative stress team up to kill cancer cells.

    PubMed

    Dolado, Ignacio; Nebreda, Angel R

    2008-12-09

    AKT, a protein kinase frequently hyperactivated in cancer, plays an important role in cell survival and contributes to tumor cell resistance to cytotoxic therapies. A new study in this issue of Cancer Cell shows that AKT also induces the accumulation of oxygen radicals, which can be exploited to selectively kill cancer cells containing high levels of AKT activity.

  19. Targeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092

    PubMed Central

    Yu, Yi; Savage, Ronald E.; Eathiraj, Sudharshan; Meade, Justin; Wick, Michael J.; Hall, Terence; Abbadessa, Giovanni; Schwartz, Brian

    2015-01-01

    As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies. PMID:26469692

  20. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity; Yang, Houa; Van de Water, Judy; Ashwood, Paul

    2017-01-01

    Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD. PMID:28361047

  1. Autophagy and Akt promote survival in glioma.

    PubMed

    Fan, Qi-Wen; Weiss, William A

    2011-05-01

    Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.

  2. Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase (RAGE/Raf/MEK/ERK) Pathway.

    PubMed

    Meng, Hong-Zheng; Zhang, Wei-Lin; Liu, Fei; Yang, Mao-Wei

    2015-11-20

    The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells.

  3. The protooncogene TCL1 is an Akt kinase coactivator.

    PubMed

    Laine, J; Künstle, G; Obata, T; Sha, M; Noguchi, M

    2000-08-01

    Human T cell prolymphocytic leukemia can result from chromosomal translocations involving 14q32.1 or Xq28 regions. The regions encode a family of protooncogenes (TCL1, MTCP1, and TCL1b) of unknown function. In yeast two-hybrid screening, we found that TCL1 interacts with Akt. All TCL1 isoforms bind to the Akt pleckstrin homology domain. Both in vitro and in vivo TCL1 increases Akt kinase activity and as a consequence enhances substrate phosphorylation. In vivo, TCL1 stabilizes the mitochondrial transmembrane potential and enhances cell proliferation and survival. In vivo, TCL1 forms trimers, which associate with Akt. TCL1 facilitates the oligomerization and activation of Akt. Our data show that TCL1 is a novel Akt kinase coactivator, which promotes Akt-induced cell survival and proliferation.

  4. Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to {beta}-amyloid

    SciTech Connect

    Magrane, Jordi; Christensen, Rial A.; Rosen, Kenneth M.; Veereshwarayya, Vimal; Querfurth, Henry W. . E-mail: hquerf01@granite.tufts.edu

    2006-04-15

    Cerebrovascular deposits of {beta}-amyloid (A{beta}) peptides are found in Alzheimer's disease and cerebral amyloid angiopathy with stroke or dementia. Dysregulations of angiogenesis, the blood-brain barrier and other critical endothelial cell (EC) functions have been implicated in aggravating chronic hypoperfusion in AD brain. We have used cultured ECs to model the effects of {beta}-amyloid on the activated phosphorylation states of multifunctional serine/threonine kinases since these are differentially involved in the survival, proliferation and migration aspects of angiogenesis. Serum-starved EC cultures containing amyloid-{beta} peptides underwent a 2- to 3-fold increase in nuclear pyknosis. Under growth conditions with sublethal doses of {beta}-amyloid, loss of cell membrane integrity and inhibition of cell proliferation were observed. By contrast, cell migration was the most sensitive to A{beta} since inhibition was significant already at 1 {mu}M (P = 0.01, migration vs. proliferation). In previous work, intracellular A{beta} accumulation was shown toxic to ECs and Akt function. Here, extracellular A{beta} peptides do not alter Akt activation, resulting instead in proportionate decreases in the phosphorylations of the MAPKs: ERK1/2 and p38 (starting at 1 {mu}M). This inhibitory action occurs proximal to MEK1/2 activation, possibly through interference with growth factor receptor coupling. Levels of phospho-JNK remained unchanged. Addition of PD98059, but not LY294002, resulted in a similar decrease in activated ERK1/2 levels and inhibition of EC migration. Transfection of ERK1/2 into A{beta}-poisoned ECs functionally rescued migration. The marked effect of extracellular A{beta} on the migration component of angiogenesis is associated with inhibition of MAPK signaling, while Akt-dependent cell survival appears more affected by cellular A{beta}.

  5. Extracellular histones inhibit efferocytosis.

    PubMed

    Friggeri, Arnaud; Banerjee, Sami; Xie, Na; Cui, Huachun; De Freitas, Andressa; Zerfaoui, Mourad; Dupont, Hervé; Abraham, Edward; Liu, Gang

    2012-07-18

    The uptake and clearance of apoptotic cells by macrophages and other phagocytic cells, a process called efferocytosis, is a major component in the resolution of inflammation. Increased concentrations of extracellular histones are found during acute inflammatory states and appear to contribute to organ system dysfunction and mortality. In these studies, we examined the potential role of histones in modulating efferocytosis. We found that phagocytosis of apoptotic neutrophils or thymocytes by macrophages was significantly diminished in the presence of histones H3 or H4, but not histone H1. Histone H3 demonstrated direct binding to macrophages, an effect that was diminished by preincubation of macrophages with the opsonins growth arrest-specific gene 6 (Gas6) and milk fat globule-epidermal growth factor (EGF) 8 (MFG-E8). Incubation of histone H3 with soluble α(v)β₅ integrin and Mer, but not with α(v)β₃, diminished its binding to macrophages. Phagocytosis of apoptotic cells by alveolar macrophages in vivo was diminished in the presence of histone H3. Incubation of histone H3 with activated protein C, a treatment that degrades histones, abrogated its inhibitory effects on efferocytosis under both in vitro and in vivo conditions. The present studies demonstrate that histones have inhibitory effects on efferocytosis, suggesting a new mechanism by which extracellular histones contribute to acute inflammatory processes and tissue injury.

  6. Akt isoform specific effects in ovarian cancer progression

    PubMed Central

    Linnerth-Petrik, Nicolle M.; Santry, Lisa A.; Moorehead, Roger; Jücker, Manfred

    2016-01-01

    Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer. PMID:27533079

  7. Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions

    PubMed Central

    Chang, Chia-Yuan; Chen, Yi-Wen; Wang, Tsu-Wei; Lai, Wen-Sung

    2016-01-01

    Accumulating evidence implies that both AKT1 and GABAA receptor (GABAAR) subunit genes are involved in schizophrenia pathogenesis. Activated Akt promotes GABAergic neuron differentiation and increases GABAAR expression on the plasma membrane. To elucidate the role of Akt1 in modulating GABAergic functions and schizophrenia-related cognitive deficits, a set of 6 in vitro and in vivo experiments was conducted. First, an Akt1/2 inhibitor was applied to evaluate its effect on GABAergic neuron-like cell formation from P19 cells. Inhibiting Akt resulted in a reduction in parvalbumin-positive neuron-like cells. In Akt1−/− and wild-type mice, seizures induced using pentylenetetrazol (a GABAAR antagonist) were measured, and GABAAR expression and GABAergic interneuron abundance in the brain were examined. Female Akt1−/− mice, but not male Akt1−/− mice, exhibited less pentylenetetrazol-induced convulsive activity than their corresponding wild-type controls. Reduced parvalbumin-positive interneuron abundance and GABAAR subunit expression, especially in the hippocampus, were also observed in female Akt1−/− mice compared to female wild-type mice. Neuromorphometric analyses revealed significantly reduced neurite complexity in hippocampal pyramidal neurons. Additionally, female Akt1−/− mice displayed increased hippocampal oscillation power and impaired spatial memory compared to female wild-type mice. Our findings suggest that Akt1 deficiency modulates GABAergic interneurons and GABAAR expression, contributing to hippocampus-dependent cognitive functional impairment. PMID:27615800

  8. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells.

    PubMed

    Alique, Matilde; Calleros, Laura; Luengo, Alicia; Griera, Mercedes; Iñiguez, Miguel Ángel; Punzón, Carmen; Fresno, Manuel; Rodríguez-Puyol, Manuel; Rodríguez-Puyol, Diego

    2011-04-01

    Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE(2) production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, N(G)-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.

  9. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  10. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway

    PubMed Central

    Chen, Hang; Wu, Gaoyi; Sun, Qi; Dong, Yabing; Zhao, Huaqiang

    2016-01-01

    Objectives: Mandibular condylar chondrocyte apoptosis is mainly responsible for the development and progression of temporomandibular joint osteoarthritis (TMJ-OA). Interleukin-1β (IL-1β) generally serves an agent that induces chondrocyte apoptosis. Hyperbaric oxygen (HBO) treatment increases proteoglycan synthesis in vivo. We explore the protective effect of HBO on IL-1β-induced mandibular condylar chondrocyte apoptosis in rats and the potential molecular mechanisms. Methods: Chondrocytes were isolated from the TMJ of 3-4-week old Sprague-Dawley rats. The Cell Counting Kit-8 (CCK-8) assay was used to determine cell viability. The phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated AKT (p-Akt), type II collagen (COL2), and aggrecan (AGG) content was detected by immunofluorescence, immunocytochemistry and western blotting. The expression of Pi3k, Akt, Col2 and Agg mRNA was measured using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HBO inhibited the cytotoxicity and apoptosis induced by IL-1β (10 ng/mL) in the mandibular condylar chondrocytes. HBO also decreased the IL-1β activity that decreased p-PI3K and p-AKT levels, and increased COL2 and AGG expression, with the net effect of suppressing extracellular matrix degradation. Conclusions: These data suggest that HBO may protect mandibular condylar chondrocytes against IL-1β-induced apoptosis via the PI3K/AKT signaling pathway, and that it may promote the expression of mandibular condylar chondrocyte extracellular matrix through the PI3K/AKT signaling pathway. PMID:27904712

  11. Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration

    PubMed Central

    Ko, Hyo Rim; Kwon, Il-Sun; Hwang, Inwoo; Jin, Eun-Ju; Shin, Joo-Ho; Brennan-Minnella, Angela M; Swanson, Raymond; Cho, Sung-Woo; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2016-01-01

    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration. DOI: http://dx.doi.org/10.7554/eLife.20799.001 PMID:27938661

  12. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    PubMed

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  13. Making recombinant extracellular matrix proteins.

    PubMed

    Ruggiero, Florence; Koch, Manuel

    2008-05-01

    A variety of approaches to understand extracellular matrix protein structure and function require production of recombinant proteins. Moreover, the expression of heterologous extracellular matrix proteins, in particular collagens, using the recombinant technology is of major interest to the biomedical industry. Although extracellular matrix proteins are large, modular and often multimeric, most of them have been successfully produced in various expression systems. This review provides important factors, including the design of the construct, the cloning strategies, the expression vectors, the transfection method and the host cell systems, to consider in choosing a reliable and cost-effective way to make recombinant extracellular matrix proteins. Advantages and drawbacks of each system have been appraised. Protocols that may ease efficient recombinant production of extracellular matrix are described. Emphasis is placed on the recombinant collagen production. Members of the collagen superfamily exhibit specific structural features and generally require complex post-translational modifications to retain full biological activity that make more arduous their recombinant production.

  14. Extracellular RNA in aging.

    PubMed

    Dluzen, Douglas F; Noren Hooten, Nicole; Evans, Michele K

    2017-03-01

    Since the discovery of extracellular RNA (exRNA) in circulation and other bodily fluids, there has been considerable effort to catalog and assess whether exRNAs can be used as markers for health and disease. A variety of exRNA species have been identified including messenger RNA and noncoding RNA such as microRNA (miRNA), small nucleolar RNA, transfer RNA, and long noncoding RNA. Age-related changes in exRNA abundance have been observed, and it is likely that some of these transcripts play a role in aging. In this review, we summarize the current state of exRNA profiling in various body fluids and discuss age-related changes in exRNA abundance that have been identified in humans and other model organisms. miRNAs, in particular, are a major focus of current research and we will highlight and discuss the potential role that specific miRNAs might play in age-related phenotypes and disease. We will also review challenges facing this emerging field and various strategies that can be used for the validation and future use of exRNAs as markers of aging and age-related disease. WIREs RNA 2017, 8:e1385. doi: 10.1002/wrna.1385 For further resources related to this article, please visit the WIREs website.

  15. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  16. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  17. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    SciTech Connect

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-10-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-{beta}, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten{sup -/-} fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten{sup -/-} cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten{sup -/-} cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  18. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne

    PubMed Central

    Voisey, Christine R.; Christensen, Michael T.; Johnson, Linda J.; Forester, Natasha T.; Gagic, Milan; Bryan, Gregory T.; Simpson, Wayne R.; Fleetwood, Damien J.; Card, Stuart D.; Koolaard, John P.; Maclean, Paul H.; Johnson, Richard D.

    2016-01-01

    The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3′, 5′-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling. PMID:27833620

  19. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions

    PubMed Central

    Xiao, Chang; Ogle, Sally A.; Schumacher, Michael A.; Schilling, Neal; Tokhunts, Robert A.; Orr-Asman, Melissa A.; Miller, Marian L.; Robbins, David J.; Hollande, Frederic

    2010-01-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5Ski) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/ShhKO) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5Ski cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/ShhKO mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1. PMID:20847300

  20. Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer’s disease-risk genes

    PubMed Central

    Ma, Zhixiong; Jiang, Weiliang; Zhang, Eric Erquan

    2016-01-01

    Alzheimer’s disease (AD) is a circadian clock-related disease. However, it is not very clear whether pre-symptomatic AD leads to circadian disruption or whether malfunction of circadian rhythms exerts influence on development of AD. Here, we report a functional clock that exists in the hippocampus. This oscillator both receives input signals and maintains the cycling of the hippocampal Per2 gene. One of the potential inputs to the oscillator is orexin signaling, which can shorten the hippocampal clock period and thereby regulate the expression of clock-controlled-genes (CCGs). A 24-h time course qPCR analysis followed by a JTK_CYCLE algorithm analysis indicated that a number of AD-risk genes are potential CCGs in the hippocampus. Specifically, we found that Bace1 and Bace2, which are related to the production of the amyloid-beta peptide, are CCGs. BACE1 is inhibited by E4BP4, a repressor of D-box genes, while BACE2 is activated by CLOCK:BMAL1. Finally, we observed alterations in the rhythmic expression patterns of Bace2 and ApoE in the hippocampus of aged APP/PS1dE9 mice. Our results therefore indicate that there is a circadian oscillator in the hippocampus whose oscillation could be regulated by orexins. Hence, orexin signaling regulates both the hippocampal clock and the circadian oscillation of AD-risk genes. PMID:27796320

  1. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne.

    PubMed

    Voisey, Christine R; Christensen, Michael T; Johnson, Linda J; Forester, Natasha T; Gagic, Milan; Bryan, Gregory T; Simpson, Wayne R; Fleetwood, Damien J; Card, Stuart D; Koolaard, John P; Maclean, Paul H; Johnson, Richard D

    2016-01-01

    The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.

  2. Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer's disease-risk genes.

    PubMed

    Ma, Zhixiong; Jiang, Weiliang; Zhang, Eric Erquan

    2016-10-31

    Alzheimer's disease (AD) is a circadian clock-related disease. However, it is not very clear whether pre-symptomatic AD leads to circadian disruption or whether malfunction of circadian rhythms exerts influence on development of AD. Here, we report a functional clock that exists in the hippocampus. This oscillator both receives input signals and maintains the cycling of the hippocampal Per2 gene. One of the potential inputs to the oscillator is orexin signaling, which can shorten the hippocampal clock period and thereby regulate the expression of clock-controlled-genes (CCGs). A 24-h time course qPCR analysis followed by a JTK_CYCLE algorithm analysis indicated that a number of AD-risk genes are potential CCGs in the hippocampus. Specifically, we found that Bace1 and Bace2, which are related to the production of the amyloid-beta peptide, are CCGs. BACE1 is inhibited by E4BP4, a repressor of D-box genes, while BACE2 is activated by CLOCK:BMAL1. Finally, we observed alterations in the rhythmic expression patterns of Bace2 and ApoE in the hippocampus of aged APP/PS1dE9 mice. Our results therefore indicate that there is a circadian oscillator in the hippocampus whose oscillation could be regulated by orexins. Hence, orexin signaling regulates both the hippocampal clock and the circadian oscillation of AD-risk genes.

  3. TCF-1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn's disease.

    PubMed

    Beisner, Julia; Teltschik, Zora; Ostaff, Maureen J; Tiemessen, Machteld M; Staal, Frank J T; Wang, Guoxing; Gersemann, Michael; Perminow, Gori; Vatn, Morten H; Schwab, Matthias; Stange, Eduard F; Wehkamp, Jan

    2014-09-01

    Wnt signaling regulates small intestinal stem cell maintenance and Paneth cell differentiation. In patients with ileal Crohn's disease (CD), a decrease of Paneth cell α-defensins has been observed that is partially caused by impaired TCF-4 and LRP6 function. Here we show reduced expression of the Wnt signaling effector TCF-1 (also known as TCF-7) in patients with ileal CD. Reporter gene assays and in vitro promoter binding analysis revealed that TCF-1 activates α-defensin HD-5 and HD-6 transcription in cooperation with β-catenin and that activation is mediated by three distinct TCF binding sites. EMSA analysis showed binding of TCF-1 to the respective motifs. In ileal CD patients, TCF-1 mRNA expression levels were significantly reduced. Moreover, we found specifically reduced expression of active TCF-1 mRNA isoforms. Tcf-1 knockout mice exhibited reduced cryptdin expression in the jejunum, which was not consistently seen at other small intestinal locations. Our data provide evidence that TCF-1-mediated Wnt signaling is disturbed in small intestinal CD, which might contribute to the observed barrier dysfunction in the disease.

  4. Knockdown of apoptosis signal-regulating kinase 1 affects ischaemia-induced astrocyte activation and glial scar formation.

    PubMed

    Cheon, So Yeong; Cho, Kyoung Joo; Song, Juhyun; Kim, Gyung Whan

    2016-04-01

    Reactive astrocytes play an essential role in determining the tissue response to ischaemia. Formation of a glial scar can block the neuronal outgrowth that is required for restoration of damaged tissue. Therefore, regulation of astrocyte activation is important; however, the mediator of this process has not been fully elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is an early responder to oxidative stress, and plays a pivotal role in the intracellular signalling pathway of apoptosis, inflammation, and differentiation. To confirm whether ASK1 mediates astrocyte activation and leads to glial scar formation after cerebral ischaemia, we conducted in vivo and in vitro experiments. C57BL/6 mice were subjected to occlusion of the middle cerebral artery, and astrocyte cultures were exposed to oxygen-glucose deprivation. After silencing of ASK1 , astrocyte-associated genes were downregulated, as seen with the use of microarrays. The glial fibrillary acidic protein (GFAP) level was decreased, and correlated with the reduction in the ASK1 level. In astrocytes, reduction in the ASK1 level decreased the activity of the p38 pathway, and the levels of transcription factors for GFAP and GFAP transcripts after hypoxia. In the chronic phase, ASK1 depletion reduced glial scar formation and conserved neuronal structure, which may lead to better functional recovery. These data suggest that ASK1 may be an important mediator of ischaemia-induced astrocyte activation and scar formation, and could provide a potential therapeutic target for treatment after ischaemic stroke.

  5. β2-Adrenogenic signaling regulates NNK-induced pancreatic cancer progression via upregulation of HIF-1α

    PubMed Central

    Ma, Jiguang; Chen, Xin; Sheng, Liang; Jiang, Zhengdong; Nan, Ligang; Xu, Qinhong; Duan, Wanxing; Wang, Zheng; Li, Xuqi; Wu, Zheng; Wu, Erxi; Ma, Qingyong; Huo, Xiongwei

    2016-01-01

    Cigarette smoking is a risk factor for pancreatic cancer. It is suggested that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, mediates the carcinogenic action of cigarette smoking by promoting cancer growth. In the present study, we show that smoking, HIF-1α expression and β2-adrenogenic receptor (β2-AR) expression are negatively correlated with the overall survival of pancreatic cancer patients. Moreover, HIF-1α expression and β2-AR expression are positively correlated with smoking status, different histological differentiation and among the tumor node metastasis (TNM) stages in pancreatic cancer patients. NNK increases HIF-1α expression in pancreatic cancer in vitro and in vivo. Furthermore, knockdown of HIF-1α and ICI118, 551 (a β2-AR selective antagonist) abrogates NNK-induced pancreatic cancer proliferation and invasion in vitro and inhibits NNK-induced pancreatic cancer growth in vivo. However, using CoCl2 (a HIF-1α stabilizing agent which decreases HIF-1α degradation under normoxia conditions) reverses ICI118, 551 induced effects under NNK exposure. Thus, our data indicate that β2-AR signaling regulates NNK-induced pancreatic cancer progression via upregulation of HIF-1α. Taken together, β2-AR signaling and HIF-1α may represent promising therapeutic targets for preventing smoking induced pancreatic cancer progression. PMID:26497365

  6. Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain.

    PubMed

    Lahti, Laura; Peltopuro, Paula; Piepponen, T Petteri; Partanen, Juha

    2012-03-01

    The structure and projection patterns of adult mesodiencephalic dopaminergic (DA) neurons are one of the best characterized systems in the vertebrate brain. However, the early organization and development of these nuclei remain poorly understood. The induction of midbrain DA neurons requires sonic hedgehog (Shh) from the floor plate and fibroblast growth factor 8 (FGF8) from the isthmic organizer, but the way in which FGF8 regulates DA neuron development is unclear. We show that, during early embryogenesis, mesodiencephalic neurons consist of two distinct populations: a diencephalic domain, which is probably independent of isthmic FGFs; and a midbrain domain, which is dependent on FGFs. Within these domains, DA progenitors and precursors use partly different genetic programs. Furthermore, the diencephalic DA domain forms a distinct cell population, which also contains non-DA Pou4f1(+) cells. FGF signaling operates in proliferative midbrain DA progenitors, but is absent in postmitotic DA precursors. The loss of FGFR1/2-mediated signaling results in a maturation failure of the midbrain DA neurons and altered patterning of the midbrain floor. In FGFR mutants, the DA domain adopts characteristics that are typical for embryonic diencephalon, including the presence of Pou4f1(+) cells among TH(+) cells, and downregulation of genes typical of midbrain DA precursors. Finally, analyses of chimeric embryos indicate that FGF signaling regulates the development of the ventral midbrain cell autonomously.

  7. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain.

    PubMed

    Ricaño-Cornejo, Itzel; Altick, Amy L; García-Peña, Claudia M; Nural, Hikmet Feyza; Echevarría, Diego; Miquelajáuregui, Amaya; Mastick, Grant S; Varela-Echavarría, Alfredo

    2011-10-01

    During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.

  8. Down-regulation apoptosis signal-regulating kinase 1 gene reduced the Litopenaeus vannamei hemocyte apoptosis in WSSV infection.

    PubMed

    Yuan, Feng-Hua; Chen, Yong-Gui; Zhang, Ze-Zhi; Yue, Hai-Tao; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-03-01

    Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.

  9. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects.

  10. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-11-01

    construct from the top, Fig. 1), proved to be incompatible with Akt1 activity. The prenylation signal derived from K- Ras rendered Akt1 catalytically...with either cyclo- dextrin (CD) or water-soluble cholesterol ( Chol ) or with CD followed by cholesterol treatment (CD Chol ). Cells incubated in serum

  11. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-07-01

    variant (third construct from the top, Fig. 1), proved to be incompatible with Akt1 activity. The prenylation signal derived from K- Ras rendered Akt1...water-soluble cholesterol ( Chol ) or with CD followed by cholesterol treatment (CD Chol ). Cells incubated in serum-free medium served as controls

  12. AcSDKP Regulates Cell Proliferation through the PI3KCA/Akt Signaling Pathway

    PubMed Central

    Hu, Ping; Li, Bin; Zhang, Wenhua; Li, Yijian; Li, Guang; Jiang, Xinnong; Wdzieczak-Bakala, Joanna; Liu, Jianmiao

    2013-01-01

    The natural tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) is generated from the N-terminus of thymosin-β4 through enzymatic cleavage by prolyl oligopeptidase (POP). AcSDKP regulation of proliferation of different cells is implicated in hematopoiesis and angiogenesis. This tetrapeptide present in almost all cells was recently detected at elevated concentrations in neoplastic diseases. However, previously reported in vitro and in vivo studies indicate that AcSDKP does not contribute to the pathogenesis of cancers. Here we show that exogenous AcSDKP exerts no effect on the proliferation of actively dividing malignant cells. Using S17092, a specific POP inhibitor (POPi), to suppress the biosynthesis of AcSDKP in U87-MG glioblastoma cells characterized by high intracellular levels of this peptide, we found that all tested doses of POPi resulted in an equally effective depletion of AcSDKP, which was not correlated with the dose-dependent decreases in the proliferation rate of treated cells. Interestingly, addition of exogenous AcSDKP markedly reversed the reduction in the proliferation of U87-MG cells treated with the highest dose of POPi, and this effect was associated with activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. However, extracellular-regulated protein kinase (ERK) activation was unaltered by S17092 and AcSDKP co-treatment. Knockdown of individual PI3K catalytic subunits revealed that p110α and p110β contributed differently to AcSDKP regulation of U87-MG cell proliferation. Disruption of p110α expression by small interfering RNA (siRNA) abrogated AcSDKP-stimulated Akt phosphorylation, whereas knockdown of p110β expression exhibited no such effect. Our findings indicate for the first time that the PI3KCA/Akt pathway mediates AcSDKP regulation of cell proliferation and suggest a role for this ubiquitous intracellular peptide in cell survival. PMID:24244481

  13. Degradation of Akt Using Protein Catalyzed Capture Agents

    PubMed Central

    Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M.; Heath, James R.

    2016-01-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. PMID:26880702

  14. AKT plays a crucial role in gastric cancer

    PubMed Central

    SASAKI, TAKAMITSU; YAMASHITA, YUICHI; KUNIYASU, HIROKI

    2015-01-01

    The AKT protein is involved in the phosphatidylinositol-3 kinase signaling pathway and is a vital regulator of survival, proliferation and differentiation in various types of cells. Helicobacter pylori infection induces epithelial cell proliferation and oxidative stress in chronic gastritis. These alterations lead to telomere shortening, resulting in the activation of telomerase. AKT, in particular, is activated by H. pylori-induced inflammation. AKT then promotes the expression of human telomerase reverse transcriptase, which encodes a catalytic subunit of telomerase, and induces telomerase activity, an essential component of the process of carcinogenesis. AKT activation is increased in gastric mucosa with carcinogenic properties and is associated with the low survival of patients with gastric cancer. The findings of the present study suggest that AKT is pivotal in gastric carcinogenesis and progression. PMID:26622541

  15. AKT/GSK3 signaling pathway and schizophrenia

    PubMed Central

    Emamian, Effat S.

    2012-01-01

    Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different

  16. Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility

    PubMed Central

    Beymer, Matthew; Negrón, Ariel L.; Yu, Guiqin; Wu, Samuel; Mayer, Christian; Lin, Richard Z.; Boehm, Ulrich

    2014-01-01

    Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females. PMID:25269483

  17. Heat-shock protein 70 modulates apoptosis signal-regulating kinase 1 in stressed hepatocytes of Mugil cephalus.

    PubMed

    Padmini, Ekambaram; Tharani, Jayachandran

    2014-10-01

    Oxidative stress causes damage at the cellular level and activates a number of signaling pathways. Heat-shock proteins (HSPs) play an important role in repair and protective mechanisms under cell response to stress conditions. HSP70 has been shown to act as an inhibitor of apoptosis. Apoptosis signal-regulating kinase-1 (ASK1) activity is regulated at multiple levels, one of which is through inhibition by cytosolic chaperons HSP70. The current study was aimed to investigate the alteration in signaling molecules that allow the fish to survive under stressed natural field conditions. The study also investigates the variation in biomolecular composition of hepatocytes by using Fourier transform infrared spectroscopy. The impact of stress on hepatocytes was assessed by measuring the level of lipid peroxides (LPO), catalase activity (CAT) and assessing the changes in hepatocytes of Mugil cephalus inhabiting Kovalam and Ennore estuaries. The expression of HSP70 and ASK1 were analyzed by immunoblot analysis and ELISA, respectively. The spectral analysis showed variations in biomolecular composition of hepatocytes at a wave number region of 4,000-400 cm(-1). There was significant decrease of CAT activity (p < 0.01) (25 %) with significant increase of LPO (p < 0.001) (35 %) and HSP70 (p < 0.001) and insignificant increase of ASK1 (p < 0.05) (16 %) in fish hepatocytes inhabiting Ennore estuary than Kovalam estuary. In conclusion, the present study suggests that the survival of fish in the Ennore estuary under stressed condition may be due to the upregulation of HSP70 that mediates the altered signal pathway which promotes cellular resistance against apoptosis.

  18. β-Catenin/CBP–Dependent Signaling Regulates TGF-β–Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells

    PubMed Central

    Taiyab, Aftab; Korol, Anna; Deschamps, Paula A.; West-Mays, Judith A.

    2016-01-01

    Purpose Transforming growth factor-β–induced epithelial–mesenchymal transition (EMT) is one of the main causes of posterior capsular opacification (PCO) or secondary cataract; however, the signaling events involved in TGF-β–induced PCO have not been fully characterized. Here, we focus on examining the role of β-catenin/cyclic AMP response element–binding protein (CREB)-binding protein (CBP) and β-catenin/T-cell factor (TCF)-dependent signaling in regulating cytoskeletal dynamics during TGF-β–induced EMT in lens epithelial explants. Methods Rat lens epithelial explants were cultured in medium M199 in the absence of serum. Explants were treated with TGF-β2 in the presence or absence of the β-catenin/CBP interaction inhibitor, ICG-001, or the β-catenin/TCF interaction inhibitor, PNU-74654. Western blot and immunofluorescence experiments were carried out and analyzed. Results An increase in the expression of fascin, an actin-bundling protein, was observed in the lens explants upon stimulation with TGF-β, and colocalized with F-actin filaments. Inhibition of β-catenin/CBP interactions, but not β-catenin/TCF interactions, led to a decrease in TGF-β–induced fascin and stress fiber formation, as well as a decrease in the expression of known markers of EMT, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 9 (MMP9). In addition, inhibition of β-catenin/CBP–dependent signaling also prevented TGF-β–induced downregulation of epithelial cadherin (E-cadherin) in lens explants. Conclusions We show that β-catenin/CBP–dependent signaling regulates fascin, MMP9, and α-SMA expression during TGF-β–induced EMT. We demonstrate that β-catenin/CBP–dependent signaling is crucial for TGF-β–induced EMT in the lens. PMID:27787561

  19. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  20. Essential role of AKT in tumor cells addicted to FGFR.

    PubMed

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors.

  1. Akt Regulates TPP1 Homodimerization and Telomere Protection

    PubMed Central

    Han, Xin; Liu, Dan; Zhang, Yi; Li, Yujing; Lu, Weisi; Chen, Junjie; Songyang, Zhou

    2014-01-01

    Summary Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere-binding proteins remains largely unexplored. The phosphatidylinositol 3-kinase (PI3-K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3-K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection. PMID:23862686

  2. AKT as locus of fragility in robust cancer system.

    PubMed

    Radisavljevic, Ziv

    2008-08-15

    Metastatic cancer is a complex positive feedback loop system. Such as system has a tendency to acquire extreme robustness. Signaling pathways controlling that robustness can fail completely if an essential element from the signaling is removed. That element is a locus of fragility. Targeting that locus represents the best way to target the cancer robustness. This prospect presents another locus of fragility in signaling complex system network, controlling the cell cycle progression through the PI3K/AKT/mTOR/RAN pathway and cell migration and angiogenesis through the VEGF/PI3K/AKT/NO/ICAM-1 pathway. The locus of fragility of these pathways is AKT, which is regulated by a balance of catalase/H2O2 or by AKT inhibitor. Tiny and trivial perturbations such as change in redox state in the cells by antioxidant enzyme catalase, scavenging H2O2 signaling molecule, regulates robust signaling molecule AKT, abolishing its phosporilation and inducing cascading failure of robust signaling pathways for cell growth, proliferation, migration, and angiogenesis. An anticancer effect of the antioxidant is achieved through the AKT locus, by abolishing signals from growth factors VEGF, HGF, HIF-1alpha and H2O2. Previously reported locus of fragility nitric oxide (NO) and locus AKT are close in the complex signaling interactome network, but they regulate distinct signaling modules. Simultaneously targeted loci represents new principles in cancer robustness chemotherapy by blocking cell proliferation, migration, angiogenesis and inducing rather slow then fast apoptosis leading to slow eradication of cancer.

  3. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    PubMed Central

    Rotllan, Noemi; Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Wanschel, Amarylis C.; Aryal, Binod; Aranda, Juan F.; Goedeke, Leigh; Salerno, Alessandro G.; Ramírez, Cristina M.; Sessa, William C.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2−/− mice to Ldlr−/− mice results in marked reduction of the progression of atherosclerosis compared with Ldlr−/− mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2−/− macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.—Rotllan, N., Chamorro-Jorganes, A., Araldi, E., Wanschel, A. C., Aryal, B., Aranda, J. F., Goedeke, L., Salerno, A. G., Ramírez, C. M., Sessa,W. C., Suárez, Y., Fernández-Hernando, C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. PMID:25392271

  4. Maximising the potential of AKT inhibitors as anti-cancer treatments.

    PubMed

    Brown, Jessica S; Banerji, Udai

    2017-04-01

    PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.

  5. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    PubMed

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease.

  6. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism.

    PubMed

    Ellis, Blake C; Graham, Lloyd D; Molloy, Peter L

    2014-02-01

    Colorectal neoplasia differentially expressed (CRNDE) is a novel gene that is activated early in colorectal cancer but whose regulation and functions are unknown. CRNDE transcripts are recognized as long non-coding RNAs (lncRNAs), which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Complex alternative splicing results in numerous transcripts from this gene, and we have identified novel transcripts containing a highly-conserved sequence within intron 4 ("gVC-In4"). In colorectal cancer cells, we demonstrate that treatment with insulin a